The Insti:ute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
 Couverture de coulaur

Covers damaged/
Couverture endommagéeCovers restored and/or laminared/
Couverture restaurée et/ou pelliculee

Cover title missing/

Le titre de couverture manque

Colosired maps/
Cartes géographiques en couleur

Coloured ink li.e. other than blue or blackl/ Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec dautres documents

Tight binding may cause shadows or distortion atong interior margin/
Lareliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible. these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais. lorsque cela était possible. ces pages nont pas èté filmées.

Additional comments:/
Continuous pagination.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les dètails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommageesPages restored and/or laminated/
Pages restaurées et/ou pelliculeesPages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquèesPages detached/
Pages détachèes

Showihrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du ma:ériel supplémentaire

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips. tissues. etc.. have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata. une pelure. etc., cr: été fi!mées à nouveau de facon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

（0）madian gryinulturit，

or

IoURNAL AND TRANSACTIONS OF THE BOARD OF AGRICULTURE
OF UPP曰卫 CANAMA．
TOL．XIV．
TORONSO，NOVEMBER 1， 1862.
No． 21.

Hints for November．

The agricultural year in this part of the world now be considecta almust closed．What Ftule remains to be done cunsists in finishing the pring up and storing away of root crops，a worl that should now be completed without de－ W．Ploughing should be proceeded with as long bithe ground continues unfrozen，and every effort wade to give a finish to the operations of the tm before stern winter finally sets in．The were and protracted doought of the spring nd wily portion of summer seemed at the time poost to annihilate the farmer＇s hopes，but in rasequence of subseyuent rains and genial tem－ fature the result of his labors and care has far greeded the most sanguine expectations．In tany parts of the Province the crops in general sre proved abundant，and in none has any tho like a failure been experienced；a circum－ lance that imperatively calls for gratitude to le bountiful Giver of all good．
The farmer in this climate，whatever persever－ twe he may have exercised，always finds enough foo at this season to bring his operations to a poper and satisfactory conclusion by the time tet the adveut of winter actually takes place． loo many have not safely stored their roots or mapleted as much ploughing as is desirable frone that imperious master－frost－puts a stop thost out of door operations．The ploughing leply，and however roughly heavy land，so as baspose the largest amount of surface to the clion of frost and snow，produces a vast benefit
on the soil in a chemical as well as mechanical point of view，and materially diminishes the la－ bour of apring in procuring a suitable seed bed for vext gear＇s crops．On some soils autumnal ploughing will save at least twenty－five per cent of spring labour，besides the enriching of the land without any outlay to the farmer．The soils least benefitted by these means are such as are naturally loose and sandy，the particles of which will often run together before the time of spring seeding，and become almost as compact as though they had not been operated on with the plough．

Another subject demands the farmer＇s atten－ ion at this season，namely the scouring，when necessary，of surface drains．Before the setting in of winter all obstructions to be found in ditches and open furrows should be removed， that the large amount of water occasioned by the melting of the snow and the rains of spring may readily find an exit，and thus present the serious iujury so often seen done both to the soil and the young crops by the action of stag－ nant water．Winter wheat is often senously injured from negligence in this matter．At present，and in the nature of things it must in a new country continue so for some time to come， the surplus of our fields is often very irregular and uneven，and the water which accumulates in the depressions of our fields，proves highly detrimental to the cultivated crops．Under－ draining and getting a smooth surface must necessarily be the work of time，involving too
much fthought, labor, and expence. But it is obvious to every observer of rural affairs how much is commonly neglected to be done, that might have been accomplished withbut involving much, either of time or outlay. A man with a spade, if nature or art has provided an outfall, may often in a few hours relieve large portions of a field of most if nut all of their stagnant surface water, by deepening at places the furrows made by the plongh, or suck portions of the ditches or natural drainage as are 100 shallow or partially obstructed. Wheat fields should be carefully examined with this object in view before the ground becomes permanently frozeu. This would be a cheap way of benefiting both the soil and the crop.

Stables, byres and yards should be now examined and such repairs effected as are neeessary for the production and thrift of live stock, which frequently suffer as much from wet and cold draughts as from irregular and inadequate feeding. The farmer should always bear this truth in mind, that all our domesticated animals thrive better on a smaller amount of food when kept dry and warm, than with a larger quantity however nutritious, under opposite conditions Notwithstanding the shortness of the hay crop, what with the abundance and quality of straw and roots, cattle if properly protected, kept clean and dry, and regularly fed, may be carried through the approaching winter in a healthy and improved condition. The greatest. care should now be taken that chaff, straw, \&c., be properly husbanded, and that turnips, carrots, mangels, \&c., be secured stored away so as to be availiable for use not only through the winter, but a portion reserved by what is often as pinching a time as any, early spring.

The Wire Worm,

To the Editor of the Agriculturist.

Drar Sir,-Permit me, throagh your paper, to inquire of you and your readers the best means to be adopted in order to destroy the wire-worm, or at least to prevent its ravages, or if:there are:any means of doing so.

My crops have for the last few years been almost totally destroyed by it; and the wheat which tis now growing on my farm, in one field more especially; is being: cut off very fast by it, - much so that I believe it will be all, or nearly all, gono before the frost sets in; and to plougt it cup to now spring wheát, barley, dic. believeropuld be uneleag, anguch would in al!
probability share the same fate. I have trie many ways to banish it without effect. Differen ways and plans have been suggested to me b various individuals, some towards its eradic tion, and some again as a means only of pr venting it working at the wheat plant. Som of these I have tried which I found to be of n service. Now, for general information, I su mit to you the following, all of which I har herrd and seen recommended :-First, the pri priety of rolling the wheat in the fall an spring with a heavy metal roller. Second, th propriety, of ploughing in the fali and summe fallowing the next season, keeping the lan clear of weeds, \&c. Third, propriety of sowin lime, salt, or soot. Fourth, the propriets growing buckwheat on the fallow, and plougt ing it down when in bloom. Fifth, the pre pricty of sowing soda-ash a short time befosowing the wheat.

With respect to the first question, rolling, have heard it mentioned as a means of preven ing the worm injuring the wheat; in fact have heard some of my neighbours who hat tried it say that such entirely stopt its progres How this can be the case (if it is so) seems mystery to me. It may be in consequence the soil being pressed tightly together ar being made hard about the roots of the plan I have noticed that the looser spots in the fiel are always worse affected than the harder one

As to the secund question-ploughing in th fall, \&c.-suggested as a means of starring t^{2} worm out, I have ploughed in the fall ar found it to be of no service to spring crop that is as far as the worm is concerned, fort. barley and the spring wheat which I sowed c it were as much destroyed as on a piece int. same field which was not ploughed until t. spring. But summer-fallowing the next se son, after the fall plouging, may starve them ot and would it not be a good plan, after summe fallowing, instead of sowing fall wheat, to 1 it stand over and sow spring wheat? By th means a person could give it a second fi ploughing without much loss.
As to the third question-sowing lime, ac. some recommend une and some another of the
As to the fourth-growing buckwheathave tried this :rithout sffect, hut the buc wheat was a pour crop, which may account f the failure.
As to the fifth-sowing soda.ash-I ha seen it highly recommended in a Belfast nen paper as being an effectual cure.
By answering the above questions, or maki. any suggestions that may be beneficial toral the eradication of this pest-wire-worm-y will confer a great favour on your humble s vant, and let me know by what means, if th. are any, I could sare the crop which is now the ground. Any infoimation from you or a of your readers on this topic will be thanifu received.
By giving the abovelan ineertion iny paper you will much:oblige;

Yours, de.
Chinguacoupy 27in octop? 1892 .
[We are not acquainted with any specific or absolute method of exterminating the wirevorm, that will be effectual under all circumdances. Most of the means mentioned by our correspondent, although they appear to have tailed with him, will, one or other, be found gencrally to mitigate the ravages of this destructive pest. Our correspondent's case appears to be an extreme one, and nothing less, perhaps, than the burning of the soil, will effect a thorough cure. Old pastures, when broken up, are peculiarly liable to have their cultirated crops, for several seasons, injured, and sometimes totally destroyed by the wire-worm; and this is not unfrequently the case on badly tilled land abounding in weeds, on the roots of which, as well as those of cultivated crops, the larva of this beetle flnds a subsistence. Several expedients for destroying it in gardens may be readily applied, and with, to a great estent, certain success; such as burning, deen and frequent digging, hand-picking, \&c., appliances generally too expensive and tedious on a large scale. In raising hops in England, it is not uncommon to put around the hills in spring the first year after planting a few cut potatoes, for which the wire-worm has a particuiar liking. These potatoes are taken up, and, if need be, others planted, every few days. In this way coun less numbers of the larva are captared, and the roots of the young hops preserved. Our correspondent will find in the
 29, 46, 64, an essay on the wire-worm, treating the subject somewhat in detail. We shall be happy to hear from any of our readers who have had experience of, or made observations on this matter, and shall be happy to embody their remarks in a future article or articles at the earliest opportunity.-Eds.]

Short-Horns as Sinow Stook.

A disposition to lay on fat rapidiy, leading to a more than usually early maturity, is a prominent feature in the improved short-horn. Thas desirable quality is, however, often grossly abused, especially in the case of stock intended to compete at the principal showis. The practice maj have originated, perhape, in a desire on the part of breeders to prove the extraordinary futtening properities of the breed at a time When it wàs fighting its way into public estimayion, aud when it had to contend against prejodices in favor of olher established breedj.

Whether this supposition be correct. or not, it isat least a well-known fact that almost every person who intends to show his short-horns in public considers it necessary to prepare, them for exhibition in a very duterent manuer from the course which would be followed were the animals to be kept at home solely for breeding purposes. A very liberal milk diet is supplied in the rase of young bulls and heifers for many months afte: they would have beer weaned under ordia.ary circumstances; and not only are they amply provided with that very nourishing description of food, but they are also crammed with cake, boiled barley, malt, even double X, a id in short, every kind of food which is calculated to swell out their proportions, and cover every point with flesh and tat. A similar system is pursued in the case of older stock, and thus the "breeding slasses" at our shows usually present an array of animals which would fill appropriately the stalls at a Christmas exhibition, but which are sadiy out of place when shown as "breeding" animals. We have frequently seen butchers, in a mixed show of breeding and fat stock, selecting the cow or heifer which hud been awarded the gold medal as the best of all the breeding animals as being the fattest auimal in the show, far excelling, in a butcher's estimation, any of those whica had been avowedly prepared for slaughter.

We emphatically protest against a system of judying which awards prizes to "breeding ani mals, forced into such an unnatural state as this -forced until it becomes absolute cruelty for any one to insist on their being made to stand up even for a few minutes-until their ungraceful, waddling, hobbling gait, on being led out, produces painful feeling in the minds of spectators, instead of the unqualified admiration which might and ought to be elicit 4 d. And such decisions deceive no one-none, at least whose opinion is worth having. The ticketted and be-ribbonned monsters may call forth the empty praise of those who poke at them with daintily gloved fingers or with the point of natty para: sols, simply because poking of some sort or other is supposed to be essential in the examination of every prize anımal ; but the real Simon Pures look on with a very qualified degree on admiration ; and whilst they certainly contemf plate with interest the well-covered ribs and loins, the overhanging rumps, and the general state of obesity which, like charity, covers perhaps a multtude of faults, ask one another, with a very doubtful air, "Will they. breed?" Ay, that's the rub-; will they breed ?

Now for a practical reply to this very practical question. Year after year and show after show, prizes are withbeld from animale in the breeding classes, simply: because thuse animale have not fulfilled the conditions. To, speat in technical phraseology, they hare not "qualified." They have proved barren -barren of produce, at least, thoogh not of faue, to their owneri.

They stood first at such and such Royal Shows -such is the record in aftertimes; but the fact that they were subsequently deprived of any permanent token of their honours, owing to their barrenness-their artificialls crented bar-remess-is studiously kept out of sight. But, atthough the money prye has not found its way into the purse of their owner, nor is the medal produceable, their temporary honour serves as an advertisement for other, perliaps inferior but more useful, animals of the same herd. and the value of the latter becomes heghhtened in consequence of their relationship to the winuers. That is the secrec. Forcing for show purposes is only a mode of advertising the excellence of the owner's wares; for shorthorn breeding is quite as much a trade as shoemaking or tailoring; and though in some respects a costly mode of advertising, still it pays, and pays well too, in certain eases. Of this we have a clear example in the success and high standing of the Wartaby herd; for, withont attempting for a moment to detract from the unquestionabie merts of the Warlaby short horns, we may be permitted to doubt whether Mr. Richard Booth would ever have enjoyed-and long may he enjioy-his comfortable income of | |
| :---: |
| 5 |, 000 a year from the hiring of his bulls, were it not that he regularly sacrifices some of his best females to the absurd necessity which exists of overforcing for rofal show exhibikions. And perhaps this very circumstance proves mone than anvthing eise the extraordinary excellencies of the Whatraby short-horns. Mr. Booth's females are crammed for show purposes, and sacrificed in consequence as breeders; and yet the standing of the herd is kept up by breeding from what may be called, comparatively speaking, the very weeds of the herd. Such being the case, the reffection naturally arises in one's mind. What would that herd become, and to what pitch of excellence would it arrive, were show judges invariably to act as they would do while purchasing for themselves, and, by their uniform rejection of all animals unfit for breeding in consequence of overllorcing, encourage a feeling in favour of natural condition, and thuis save the lives. and secure the usefuluess, of those wonderful shorthorns which are annually sent forth from Warlaby? If the celat conferred by even nominal success at a Royal Show pays Mr. Booth, and atones for the loss of usefulness on tie part of the prize females of his herd, we cannot, nevertheless, consider it in any other light than a national loss, when the flowers of such a herd are compelled to 'be sacrificed in order that they may attain a certain standard of excellence, :which is:never taken into consideration, and is even scrapulously avonded, at any other time -ihàn at a show, or believed to be desirable in -any save sbow animals.

It is not because Mr. Booth is a sinner above all others in respect to over-forcing his short horis that we thas allude to him. It is becarise.
he is-to use the designation applied to him by his far and enthusiastuc disciple, Lady Pigot"the hero of shot-horns;" because when we speak of "Buoth blood," we refer to the most successful line of short hiorn blood in existence; for the majority of winners at all the shows in the kingdom have Booth blood in their vem, ; and for these and other reasons we hold it to be a national loss, ss we have said, when such a man as Richard booth must yield to a fatal and absurd passion, whenever he chooses to become an exhibitor, and by doing so deprive the coumtry of the advantages which would follory to remain in a matural state, so as to transmit their peeunar excellenecs through a line of healthy and prolitic descenaants.
Jut elthough it may, ferhaps suit Mr. Booth and a few other breeders to run great risks, th dhes not suit ereryone to follow their example. And it is because many have tuied to do so when they had not the right stuff nor the same adrantages to fall back upon that we find in shorthom history so many instences of what we must call disapnointed ambition, and of temporary success followed by sudden and utter ex. tinction. All who are aequainted with such matlers krow that many individuals have attempted to become eminent short-horn breeders and exhibitors, and failed in the attem; ${ }_{i}$ t. Thas have gone to great expense, without much judf: ment as to the materials they were collecting for the foundation of their future herds; they have foreed their show stock, and they have sometimes even got a prize or two ; but the very expensive cost of their whistle has ultimately sickened and frightened them, and they lave abandoned the pursuit in disgust. Now, if those people had chusen to rest contented wih moderate expectations, to have gone quietly ad reasonably to work, it is most likely their efforts would ultimately hare proved serviceatile to the community and profitable to themselves, instead of leaving them in such a position as to act merely as beacons, to warn otheis of the ruck on which they made sbipwreck.
For all these evils there is a remedr, and me feel coavinced it is high time it should be ap. plied. Let it be perfectly understood that judges at our royal shows are resolved to reject every animal which comes before them, no matier how superior that animal may be in other respects, provided it. is. shown in such a state from torcing as to render its qualincation, as a breeding apimal doubtful. Let this rule befirmly and unifornly acted upon, and there will be no more forciug, the finest and, therefore, no more sacrifices of cattle in the world. For breeders. who are exhibitors do not follow the practice bo cause they like it ; they have no desire to o o so, but they have no option. They mist e either force or stay at home. There is, no doubt, a regulation in the programme of our princpal zocieties to the effect that judges are expected
to disqualify animals which dio not appear to be in a fit state for breeding purposes; and in the cow classes it is expected that "a live calf" shall be produced within a certain period after the prize has been awarded. But both regulations are often a dead letter, and might as well be omitted altogether for all practical purposes. Judiges look to condition, and favor it ; and the "live calf" may only have had sufficient strength to draw a single faiat and almost imperceptible breath ere its existence terminates - a finale attributable solely to its dam's unoatural and unhealthy "condition."
It is necessary that show regulations should contain a proviso of the nature we have mentioned, but it must be evident that everything depenas on the judges as to the manner in which a rerulation of this nature shall be carried into effect. We do not mean to say that judges do not act conscientiously under the circumstances when they give prizes to over.fed animals; but we do mean to say that in doing so they act very difierently from what they would do were they making a selection for their own use and advantage; and all we ask is, that they would act for the public as they would do for themselves. Let them do as they would he done by. For what is the object of their appointment as show judges? It is to tell the public which are the best animals for breeding purposes out of a number brought under their notice; and it appears passing strange that they should select as patterns the very fattest, as they almost invariably do, or at least, with comparatively rare exceptions: whist all the time they would never think for a moment of keeping their own regular breeding cattle-male or fe-male-in anything late similar condition. It is in this very point that the absurdity of the present system of judging lies; it is founded on a most vicious and ruinous fashion, and we decidedly think that the judges, who are breeders, should set their faces against it for their own credit, whenever an opportunity offers, and thus confer an inestimable benefit on all concerned.

Nor need we be afraid that the interest felt in our shows would be lessened were natural condition encouraged, instead of being discouraged as it is at present. We entertain the opinion that our show catalogues would present a much greater array of entries, and that the effect of encouraging natural condition would be to bring out many first-rate animals, of the existence of which the pablic are scarcely aware, as these are at present kept at home, because their owners prefer that they shall be sare and regular breeders, rather than prize winners followed by infertility, or at least great uncertainty as to whether they shall afterwards perpetuate their kind or not.
It is not, however, in the short-horn sections alone that the evils: of enforcing are evident. Hereford breeders are equally culpable, and, in fack, with the exception perhaps of West.High-
lands, Ayrshires, and Alderneys, it is questionable if there are any of our British breeds which have not suffered more or less from that praetice. We have all heard of short-horn cows and heifers being shown and wiming ht Christmas shows of fat stock, and then, instead of being handed over to the butcher, as one would anticipate from their appearance on occasions of this kind, taken home and shown nest summer in the breediar class of a royal show, and we have considered such proceedirgs as savouring somewhat of the preposterous, but we have also known precisely the same thing done in the case of heifers of the Angus breed. And when we go into other classes of stock, into the sheep and swine sections of our shows, the same foreing system is found to prevail, and the decisions of judges in such cisess are just as liable to be infuenced by "condition" as in the short-horn and other cattle classes. It is, in short, a genaral as well as a crying evil; the great blot on an otherwise commendable "institution"-that of public competition; and it is satisfactory to know, therefore, that public feeling is decidedly in favour of its entire and immediate abolition; "a consummation," no doubt, "devoutly to be wished:" but which depends wholly on the managers of our royal shows, and our royal show judges m all departments.-Journal of Highland Society.

Experiment to Test the Profitableness of Various Kinds of sheep.

A very interesting experiment, to test the fattening qualities, as well as the profitableness, of various kinds of sheep, has just been brought to a conclusion at Millhill, Inchture, by Mr. MeLaren, factor to the Right Hon. Lord Kinnard. The sheep selected to be operated upon were. Col. Inge's breed of Leicesters, Lord Kinnaird's. breed of the same sheep, Mr. Hardie's border Leicesters, and Lord Kinnaird's Greyfaced Cots:wolds. Ten of each variety were chosen, and. the experiment extended over twelve mouths. Unfortunately, the season was very unpropitious, the continued wet inducing foot-rot in many of the animals, which occasioned the death of some and threw others very far back-so far, indeed, that several of them were a good deai. heavier two or three months before the experi-: ment was completed than they were at its ter-: mination. Those dying had to be replaced by others not equal ia points of weight or excel-. lence, so that the test, so far as the whole reat in each lot are concerned, is not so absalately. perfect as could have heen wished, though. quite as correct as it was possible, under the adjerse character of the weather, to make it. No doubt, it is almost of equal importance, for: farmers to know the hardiest kieds, or which which-will stand best an oxceptionally moist. season like that which we have just experienc-
ed. But that is a question which we do not at present propose to discuss. We pass over also all reference to the werght of the fleeces, and we do so the more readily as we understand that Mr. M'Laren, whose admirable practical essays have more than ence secured the Highland Socicty's premiuns, will supply an elaborate paper on the whole subject to the 1 ransactions of that society. In the meantime, we doubt not the readers of the Scollish Farmer will be glad to learn the result so far as it relates to consumption of fued and fattening alone. In order to show is nearly as possibl the true fattening propertits of the several varieties of sheep, we shall tahe o.diy fuur out of each lot of ten, these four hasing hept amost, if not quite, free from the rut during the whole of the time that the expirement lasted.

Beginning with Colonel lurees Leicesters, we find that four of these consumed on the aver8.ge, in the course of the yeal 2,122 square yards of grass, 932 lbs . of cluver, 10,799 lbs. of turnips, $1,144 \mathrm{lbs}$. of maugels, 200 lbs. hay, 74 lbs . of chaff, 53 lbs . of Indian meal, 6 lhs of Indian corn, 528 lbs. of cake, and 365 ll s. of oats. The four sheep at the be giming of the experiment weighed respectively, \&S ils., E6 lbs., 86 lbs., and 86 lbs . ; at the finish they weighed 160 lbs., $159 \mathrm{lbs} ., 161$! lbs ., and 159 lbs ., showing on an average, a gain in live weight of nearly 7. lbs. each, or a total gain of $295 \frac{1}{2}$ lbs., which, eay at 6 d . per 1 b ., would yield at $\mathrm{E} 7 \mathrm{7s}$. 9 d .
Four of Lord Kinnaird's Leicesters consumed 2,084 square fards of grass, 780 lbs . of clover, $10,479 \mathrm{lbs}$. of turnips, $1,178 \mathrm{lbs}$. mangel, 214 lbs. of hay, 76 lbs . of hay chaff, 53 lbs. Indian meal, 6 lbs. Indian corn, 451 lbs . cake, and 365 lb. oats. The live weights of each at startin! were as follows : $-75 \mathrm{lbs} ., 84 \mathrm{lbs}$., $80 \mathrm{lbs} .$, und 81 lbs . At the conclusion they were 164 lbs ., $146 \frac{1}{2} \mathrm{lbs} ., 155 \frac{1}{2} \mathrm{lbs}$. , and 164 lbs . There was an average gain in the weight of each of $77 \frac{1}{2}$ lbe., or, on the whole four, of 309 lbs ., at 6d. per lb., as before, £7 14s. 6d.; showing a gain of 6 s . 9 d . over the other lot. But t tais positive gain does not represent all the advantage Lord Kinnaird's Leicesters possess over their more thoroughly English neighbours They acquired this at a smaller consumpt of grass, clover, turnip, and cake. To ascertain, then, the real maperiority of the one over the other, our readers must debit Colonel Inge's Leicesters with 38 equare yards of grass, 152 lbs . of clover, 300 lbs. of turnips, and 77 lbs . of cake, which they consamed over and above Lord Kinnaird's variety; and the latter with 34 lbs . of mangels, 14 lbs. of hay, and 2 lbs . of hay chaff which they eat more than Colonel Inge's. We do not put a money value on these things, because the prices varies much in different districts, and because each reader can easily do that or himself in accondance with the prices in his own locality.
We now come to Mr. Hardie's Leicestersthe Scotch or border Lacicester, as they are
ca. ed. Four of these consumed 2,235 square gards of grass, $1,010 \mathrm{bs}$. of clover, 12.093 lbs. of turmps, $1,229 \mathrm{lbs}$. mangels, 250 lhs . hay, 70 lis. hay chatf, 53 lbs. Indim meal, 6 lhs. Indian corn, $\dot{5} 29 \mathrm{lbs}$. cake, and 365 lbs . oats. At the commencement, these sheep weighed respective. $\mathrm{ly}, 91 \mathrm{lbs}, 90 \mathrm{lks} 92 lbs.$. , and 93 lbs ; and at the finish, 198 lbs., 181 lbs., 188 lbs., and $18^{\prime \prime}$ lbs., showing an average increase on each of $95 \frac{3}{3}$ lbs., or on the whole, an increase of 383 lbs., whi,h, at 6 per 1 lb ., would return $£ 911 \mathrm{~s}$. 6il. This is a gain over Lord Kinnaird's, so far as mere butcher syaviue is considered, of $£ 117 \mathrm{~s}$.; but then the greatly mereased ernsumption of Mr. Harde's lot reduces, very materially, the apparent profit. They eat 15l. square yards of orass mure, 230 lbs . ot clover, $1,614 \mathrm{lbs}$. of turnips, 51 lhs , of mangels, 36 lhs . of hay, and 6 liss. of cake. In other words, as much more grass as would have kept a third of a sheep of Lurd Kimnard's breed, as much more clover as would have kept one sheep and a fifth, as many moretturnips as would have kept three-fifths of a s.eep, as much more mangels as would have fed the sixth of a sheen, as much more hay as would have fed two-thirds of a sheep, and as much more cake as would have ted five-sevenths of a sheep. Speaking arprommatels, this experiment shows that about tive of Lord Kin. naird's sheep could be kept on the same quantity of food that is needed fer four of Mr. Hardie's. The gain in meat of these five sheep would fully equal Mr. Hardie'o. four, while the fleece of the fifth shcep would make his Lordship's inore profitable than the others.

The grayfaced Cotswold consumed 2,182 square yards of grass, $1,050 \mathrm{lbs}$. of clover, $: 2,533 \mathrm{lbs}$. of turnips, $1,442 \mathrm{lbs}$. mangels, 254 lbs. hay, 56 lbs . hay chaff. 53 lbs . Indian meal, 6 lbs . Indian corn, 529 lbs. cake, and 363 lbs . oats. Their live weight at the commencement was respectively, $100 \mathrm{lbs} ., 108 \mathrm{lbs} ., 96 \mathrm{lbs} .$, and 89 lbs. At the final end of the trial they weighed $188 \frac{1}{2} \mathrm{lbs} ., 181 \frac{1}{2} \mathrm{lbs} .183 \frac{1}{2} \mathrm{lbs} .$, and 190 lbs . There was thus an average gain on each of $87 \frac{1}{2}$ lbs., or $350 \frac{1}{2} \mathrm{lbs}$-, on the whole, equal in money value, calculated at the same rate per lb. as in the former cases, to $£ 815 \mathrm{~s}$. $3 \mathrm{~d} .-16 \mathrm{~s}$. 3 d . less than Mr. Hardie's Leicesters, which consumed 40 lbs . ess clover, 440 lbs . less turnips, 213 lbs . less mangels, 4 lbs. less hay, and 16 lbs . less hay chaff, but 53 square yards more grass. The trial, therefore, would seem to show that Lord Kinnard's Leicesters are the most profitable keep, omitting the wool. A thorough testry in addition to the particulars above given, would include the price of fleece, the age, and the values of the sheep at starting. Taking the latter in a rough way; at 6d. per 1 lb ., we find that the original value of Colonel Inge's four was $£ 8138$. , and the produce in twelve months, $£ 77 \mathrm{7} .9 \mathrm{~d} . ;$ of Lord Kinnaird's Leicesters, i\& $0 \mathrm{~s}, 6 \mathrm{~d}$, to yield 57 14s. $6 \mathrm{~d} . ;$ of Mr. Hardie's Leiceaterts, $£ 9$ 3s., to produce $£ 911 \mathrm{~s} .6 \mathrm{~d}$; ; and of the gray:
faced Cotswolds, $£ 9 \mathrm{l} 6 \mathrm{~s} .6 \mathrm{~d}$., to return $£ 815 \mathrm{~s}$.3d. In proportion to their value, Mr. Hardie's and Lord Kinnaird's Leicesters again show best. Of conrse this reckoning is not free from empiricism; but we think it is sufficiently indicative of the value of each class of animal to be of some little use to those interested in sheep feeding.Scottish Furmer.

Farin Capital.

Money is needed by the farmer in the prosecution of his Lusiness-(1) for payment of rent and taxes for the land he hires; (2) for the purchase and maintenance of implements, of draught animals, and of steam power for the cultivation of the land, and for the conversion of its produce; (3) for the purchase of seed and manure; (4) for payment of labour during the year; (5) for the purchase of live stock by which to consume the rreen produce of the farm. and by which to provide the home supply of manure on which its fertility must depend.

It is plain that the amount which is made up of these items will vary exceedingly with the circumstances of the farm-(1.) Rent may not be asked for out of capital at all; the landlord may give twelve months' credit and ask for it directly (as he necessarily always does essentially) vut of the produce of the land, not out of the capital which the tenant brings on it. Rent, moreover, whether long credit be given for it or not, varies between wide limits according to the quality of the land. It may be 15 s . or 20 s . an acre or it may be 40 s ., 50 s ., and it may vary even from 5 s . to $£ 5$ per acre, according to the fertility of the land and its neighbourhood to rood markets.
(2.) The amount needed for the purchase of farm inplements and draught animals necessarily varies with the quality of work needing to be done. Stiff clay a a able land cultivated'highly needs more costly equipment in this way than lighter, poorer soils, more easily cultivated and laid down probably two years out of every five in grass; and both need laiger outlay on implements and power than pasture land. The implements of arable land wiil cost from 15 s . to 25 s . an acre, and the horse power perbaps 15 s , to 30 s . an acre. This supposes steam powel to be hired for thrashing purposes. If it be provided for steam cultivation, a twelve-horse engine ard apparatus, displacing twelve or fourteen horses and their implements and somewhat more, must be added to the capital thus required:
(3.) The amount needed for seed and manure is also extremely variable. Firom 10s. to 20 . for clover, and grain crops, and from. 2s. 6d. to 10. for root crops; probably from 10s. to 15 s . on the whole arable farm will be needed for the former; while for the latter the sum required varies from nothing up to as far as another rent, according to the spirit of the farmer and the proved experience of the locality. There are
many farmers who pay $£ 1$ per acre annually for artificial manare.
(4.) Labour varies from 4s. or 5s. an' acre on grass up to 50 s. per acre on our arable land. In the "Hand-book of Farm Labour," the parriculars of farms amounting to 7,824 acres of acres of arable land, and 1,690 acres of pasture, are giveu; the wages paid on these farms were $£ 14,423$ per annum, or, deducting $£ 423$ for the pasture, 33 s . an acre for the arable land.
(5.) The capital needed for the purchase of live stock and for extra food for them is the last item on the list, and this obviously will differ with the fertility of the land, the activity of its cultivator, and the rotation of crops adopted; and even in the case of pasture lands, where the natural fertility of the soil is the leading point, it varies from $£ 2$ or $£ 3$ an acre to $£ 12$ or $£ 14$-the grass in the former cases fit for little more than a sheep or two per acre, and the latter feedinct anmually a heavy bullock. On ploughed land the influence of various rotations comes into play, and the quantity of meat made annually per acre has been shown to vary from 30 lbs. or less up to 1 cwt . or more. In the former case it is plain that the stock will not need to be more thau a sheep to every acre or to every $1 \frac{1}{2}$ acre; in the latter, it may be as much as three sheep or more per acre. But these calculations do not proceed upon the more economical processes now adopted, in which roots are pulped or steamed, and straw is cat into chaff, and much purchased food is used, so that the estimate of the capital under this head may vary from $£ 1$ or less per acre up to $£ 5$ or more, or when heavy crops of roots or straw are grown and double crops of vetches and rape, \&c., are taken and consumed upon the ground.

Adding these items together, it will be found that the capital required on arable land varies from $£ 7$ to $£ 15$ per acre. Of these sums a varyiny portion will be payable on entering the farm on valuation to the out-going tenant, who will have spent for his successor certain amounts under most of these headings.

He may have paid for labour and for seed and. for manure upon certain portions of the farm, and he may hand over by valuation certain portions of the implements and live stock which he has used upon the farm. Of the remainder a varying portion under most of these heads will not need to be paid nutil after harvest, when means may be provided for the purchase of live stock, and for the payment of rent by the sale of grain. In this way the burden of these demands upon the purse of the farmer is considerably. reduced.

Nothing has been said of works for the permanent improvement of the land, which pie properly a landlord's portion, but which, if the tenantibe secured for long enough in his occupation. may be profitably undertaiken by the latter. Almost unlimited scope for the profitable application of capitalato land is thus provided over a
great extent of the island; and the influence of the lease in londing thus to the higher cultivation of the tand las been alrendy referred to.
As a last word upon the capial of the farm, it may be well to r mind the farmer of his interest in insuring his capital, howeerer it may be invested, aganst the risks of fire, disease, and denth, which will be accepted for him by the various iasurance companies on paymcut of an annual promum.-From 21 st Edition of Arthur Young's Farm Calendar.

She Agriculture of Sweden.

to the emitor of the markiane express.
Sir,--Having just concluded a two-months' fishing tour in the central provinces of Sweden, I extract from sume memoranda, chiefly relating to matters piscatorial, a tew notes on the farming of the country, which perhais may not be entirely without interest to some of your readers.
The district I refer to, and which extends from Gothenburg and Cidevalla on the west coast to Northkopping and Stuckholm on the east, consists of extensive tracts of table-land, nug. ged hills, chiefly of grauite, but occusionally alternaling with primitve limestone, vast pine forests, and lakes resemblinst in magnitude inland seas. There is soil here of every variety, from the stiff clays yielding heary crops of wheat, heans, peas, clover, and timothy, to the sandy and peaty soils appropriated to the growth of rye, oats, barles, and potatoes.
The farms in Sweden, strictly so called, are not numerous, more than three-fourths of the longdom being in the hands of peasant proprietors or freeholders, a kind of petty yeomanry holding from 5 to 100 acres of arable land, the average being about 30 . Thisindependent class of men generally becomes wealthy by the same pro. cess which euriches so many of our pastoral farmers in the dales of Yorkshire and Westmore-land-the keeping down of all outgoings on land, or living^{2} and laying by of all the incomings huwever small. Some, however, whilst retaining their peasant rank, live in comfortable style, keeping good steeds in the stable, and good wines in the cellar, and perhaps represent their class in the Royal Assembly, of which the House of Peasants is the largest if not the most influential branch.
In addition to his arable ground, the peasant has invariably a tract of rough pasture land, generally moor, mountain or forest glade, where he pastures his cattlo in summer, cutting the best part of it for hay. The holder of 20 acres of arable will thas keep six or cight cows in addjtion to a pair of working bullocks and a horse, their sole-sabsistonce in winter being straw and wretched hay ; for the peasant rarely grows. -roots or clover, but cultivates his land, 8 s his fathers have done before him, on the two-course
shift, half-fallow, halfgrain alternately, abont one-seventh of the fallow being dunged yearly; the great objectapparently being to grow as much grain as possible with the least expenditure of Iabour aud manure. Vast tracts of rich loamy clay on the east coast of Lake Wettern have been so cultivated from time immemorial, and still yield weighty crops of grain.
The Swedish farmer is se an entrely distinct class from the peasant, and, in virtue of his usually superior education and credtable character and habits, occupies an important social position. He is generally the Thane of his dis. triet, a man of urbane address and liberal ideas, and does the honours of his house and table, which ar: seldom wanting in the elegancies and comforts of life, with graceful aud genial hospi. tality. He is often oblized to be as much mer. shant as agriculturist; for a Swedish farm, in addition to its generally lurge extent of arable land, freyuently includes a llour mill, a saw mill, and a roufing and draining tile manufactory, and perhaps a Brumvin distillerg, where the potato crop is converted into spirits.
The peculiar features of a Swedish farm mas. perhaps, be best understood by a deseription of one in the occupation of a very enterprising agr. culturist at whuse house I had the honour of being most hospitably entertained. The farm of Graffnans, near Allingssos, comprises 9,000 acres, of which 1,000 are arable, 500 pasture, and 7,: 500 forest. The rent is $£ 800$ a-jear. The soil varies from stiff clay to light loam, but is chief. ly loam on a clay bottom. The fields are large -from 40 to 80 acres; 400 acres are in oals, the land being at a high elevation; 40 in wheat, $8 n$ in rye, a few acres in oats and vetches for horses, and 20 in turnips and potatoes. The land reserved for pasture is not sufficiently good for arable, being for the most part marshy, or cunbered with rocks or brush-woou. All the best of this pasture is mown yearly, without any return of manure, which is never applied to meadow land in Sweden.
The forest portion of the farm is chiefly valnable as affording small holdings for torpare, an inferior grade of peasants, who render to the occupier of the farm, in lieu of rent, labour in proportion to the value of their respective tonures. Thus the holder of from 20 to 30 acres works for the farmer, personally or by substitute, every day during June, July, August and September, and two days a week the rest of the year, extra labour being paid for at half the usual rates, namely, balf a rix-dollar, or 7d a day for a man ; one third of a rix-dollar for a woman, and one.fourth, or 3hd for a boy; this scale being reduced in winter. In summer the men work from five in the morning till eight at night, after which they have often some miles to walk home. It is not unusual to see farme advertised to be let or sold, as having the right of five, ten, or twelve thousand day's labour in the year attached to them. In the farm of Griff:
natas 2,000 acres of forse lans are held by torpare or bonders: 300 in amall cut lying patcies of arable, the rest consistine of open grades, scrub, or marsh. The torpare on this farm, including all ages and sexps, ampunt to about nine hundred souls, of whiel about two hundred and fifty are arababhe for work, and the averars amount of tabour done by them on the farm is that of forty me: daily the year round. The horses of the torpare (in this case about forty) are also s.t the disposal of the farmer; but this right is sparingly exercised, except for the cartint of timber for farm or househnid purposes, or of graia to market, or during harvest-time, when they are frequently all sammoned to the field. The peasant has this protection arainst an oppressive exerciae of authority, that he is at liberty toquit his holding after iftren months' notice, which he mustalso receive before he can be discharged from it.
The manarement of the Graffuans Furm would rellect credit on any Norfolk or East Lothian furmer. The firlds, raarls, ditehes, \&e., are beantifully kept; the under-drainage which now extends over on-half of the farm, has been scientitically conducter, the drains, 4 feet deep and 22 leet apart, beinr uniformly in the direction of the fall. On this point the Swedes ap. pear to be generally in advanee of matiy of our Yorkshire farmers, whonstill adhere to the diagomal direction, without er nsidering that on this sjstem only one side of the drain will act. Another point on which I believe most English farmers might teke a lesson from them is that they mariable bexin to lay the pipes at the upper astead of the lower end of the drain, thus avoidwis what otherwise so often happens, especially in wet weather, and when the fall is slifht, the siudgint u_{p} of the pipes as the work proceeds. The pipes used at fratmoas are $1 \frac{1}{2}$ inch, the main drain consisting of six, laid pyramidaliy.
The rotation on this farm is-first year, fallow danged : seeond, rge or wheat; therd, clover and timothy, one crop; fourth and fifth, dito pasturel; sixth. wheat, holf-dungod ; seventh, oats; aghth, peas, tares, potators or turnips, with bone-dust, or oats agrain without manure. 19 paiss of work horses are kent, and there are 160 head of dairy cows, and forty heifers and ealves, which (contrary to the usual custom in Sweden of keepins the cows in the house till the hay crop is off) are pastured from the beginning of Hay till the end of September. Two thirds of these cattle are of the native breed (worth about Ef_{6} a head), the rest either pure Ayrshire or crossed with Ayrshire, 20 cows and a bull of that hreed having been entrusted by the Swedish Government to the farmer, with a view to the mprovement of the breed of the district. The only return required by the Government for this gift is that of two bull calves yearly, which are sold on behalf of the State, or consigned gratuionsly to other farmers. The consiguee of these 0 cows is further restricted from selling their
male offspring till they are two years and a half old, prier to which period they are not supposed to have attained the requisite vigour or developwent. The improvenent effected by thi: cross on the native breed-which are too frequently such as the patatarch Noak would, probably, have hesiated to admit in to the ark-is very marked: and my opinion was frequently and earnestly asked, as to whether any superior advantares would accruc from the use of a Shorthorn bual in the place of an Ayrskire; a questhon which it is difiecult to decide, considering the inferionity of the pasture and che severity of the winters generaliy cumbitud to reader necessary the house fecoling of the cattle i_{1}^{1} monaths in the year, and that the staple foud of the people is not bref and mutton (of which they produce and imp ret buththe), but rather bre ad, milk, cheesc, and hutter, the impuits of which actually exceed in value (in this extensive and thinly populated country) 8400,000 yearly. The question was more than once asked me, "Why do nut Englishmen, pose ssisul of a little eapital, come here instead of going out tu Canda or Luserahia?" and it is perhaps wuthy of consider.s.un, whether a country so near our own -hures, and in many respects so farured mifht not affioud seope for the energies and enterptise of British Agriculturists who feel the want of elbow room at home. My own mpression, however, is, that were a man of moderate capital to enighate there, with the idea of teaching the Swedes, and to introduce costly implements or expensive cattlf, or any moterial innovations upon the established system of farming, without due regard to the exirenains of the climate and country, he would sonn find himself at the end of his tether. For example, high-bred cattle would starcely be remuncrative in a country where becf and mutton, generally indifficent enough in quality, but excellent under the swedish mode of cooking, may be bought for 3 d , and 4 d . per lb., and capital veal fo: sul. Reaping machines would hardly effect a savin., where stunt men can be had for the work at the rate of a penny per hour; or threshing machines, where threshels are contented to take every fiftecmh or sixtcenth sack in lieu of monry wages. Two steam-ploughs have been introduced into Sweden by a wealthy land-owner-one into the South, the other to a farm 20 miles from Wettersborg; but it is credibly reported that the labour of men and horses employed in the transport alone of English coal, by necessarily light loads over the hilly country, wonld suffice to plough the whole farm.

It is more than donstful, therefore, whether any English settler, imbued with English notions of scientific cultivation, would neet with much success in a cuuntry where the conditions of climate and labour are so different from his own; but were be first to acquire by a year or two's tutelage under some intelligent farmer, 2 knowledge of the language of the counirs; and of the system of agriculture, which the observation
add experience of practical men have stablished there, and after maturely considering tie nature and requirements of the soil and climate, cautiously and gradually to improve upon, rather than alter existing practices, judiciously applying the cheap labour at his command, and makiny the most of the internal resurcces of the farm, so as to avoid all umecessary outlay on experimental farming, implements and manures, he would then, probably, receive better interest on his outlay than appears to satisly so many of our agricultural tarmers at home, in these days of high rents and heavy taxes. Were he further to possess the reyuisite mechan:cal skill and mercantile knowled je, he might probably turn the mills and factories, so frequently appertuimus to Swedish farms, to very profitable account. Thus, on one farm north of Uddevalla, were two flour mills, with eight pairs of stones, working night and day, the year round, and yielding a clear anmual profit of above $£ 400$ a-year. The manure left by the horses bringing grist to the mill, and waiting there, exceeds 1000 carl loads yearly. There was here also at tape mamufactory employing 40 hands; a small iron-foundry where castngs were made, and nails, slip-anchors, hawsers, and wheel tires foryed-the pondrous hammers, the furnace blast (of three cylinders), and whole wachiuery being worked by the never-failing water-power of a magnificent trout and salmon stream. The farm here had evidently suf fered from the attention of the tenant being divided between it and the more important oceupation of his mills. It was neglected and unproductive, though I observed upon it a source of fertility mealuable in a granite district-extensive beds of calcareous matter in the form of marine shells. in an apparently calcined state, sometimes imbedded in blue clay, and retaining their perfect shape ; and sometimes, where atmost unuixed with earths and crumbled by exposure to the air, closely resembling bone-dast.
In one respect, and under not unusual circumstances, a Swedish farm would seem to hold out to a man of small capital, advantages which are not offered in this country. I mean that of takins the farm with the live stock, horses, and implements upon it, thus enabling the tenant to retrin his farming capital to meet rent and expenses till his grain crops become available for that purpose. Thus, a Swedish frien? of mine lately had the offer of a farm at Linkoping, the capita! of the rich province of that name, lying on the east of Lake Wettern, consisting of 520 Scotch acres in 10 fields of 50 acres each, 20 acres being in meadow. The soil is principally loam and marl on clay sub-soil, about 50 omly being hard to work, and that not so stiff as much of the land in the Carse of Gowrec. The stock, which is let with the farm, consists of 60 cows, 19 pairs of working oxen, 5 pairs of horses, some youms colts, 50 . sheep, and excellent and extensive huiddinss and dwelline house, the latter with 13 rooms. The rent askied was $E 525$

Euglish, and if from this be deducted $£ 50$ ayear as the produce of a saw mill and flour mill, and $£ 50$ on the score of cattle aud implements (which may estimated as worth $£ 1,000$), it leaves the rent about 16s. a long acre. $£ 60 \mathrm{a}$ year covers all govermment, parochial, and other outgoings, and there are six toryare or free-lahourers.
The yield of grain in Sweden varies, according to the seasou, soll, and husbandry, from four to six. quarters of wheat to the long acre, and fiom four to eight of barley. The price of whent is from 45 s . to 60 s . the qr., accordin? to quality and the markets; barley, 2 25s. to 30 s ; rye, 33 s. to 3 s s.; oats, 16 s . to 20 s . This yeur the yield and quality of the grain, owing perhaps to the moist spring and clondless summer and autum, is without precedent. The farmers know not where to be tow their increase, and it is calculated that at least three millions of barrels will be available for exportation.
It speaking, however, of this year's yield of grain in Sweden as unprecedented, it must be remenbered that a greatly extended area of land was brought under cultivation in the time of the Russinn war, when rye rese from 13 s . to 30s. per barrel, and land temporarily at least, about 50 per cent., and that, under the impetus then given to agriculture, deep draiuage and tillare, with careful cultivation, have yearly made rapid progress, and resulted in increasing produce; the very peasautry begiming to feel that agricu'tue is a progressive art, and exhibting, in many instances, at spirit of active improvement. The marvellous increase of produce in Sweden, wherever thorough-drainage has been effected, leads irresistibly to the conclusion, that the vast tracts of stiff retentive soils yet undrained, or drained only by open trenches and water furrows (the inefliciency of which appears in stuuted crops and coarse herhare). would afford proftable employment for Enflish capital. Sweden is pecuniarity a poor county, and there are everywhere (but sippecially now, under the depression caused by the American war, estates on sale. Not more than onethird or one-fourth of the purchase moneg is usually required to be paid down, the payment of the rest being extended over a series of years. It is impossible, of course, to give any very accurate idea of the value of estates in that commtry : but, at a loose computation, it may be said that five handred acres of average iand may be purchased for $£ 10,000$, the addition of two or three thousand acres of ping forest not materially enhancing the price, unless where the vicinity of a navigabie river gives a marketalile value to the timber. Such purchases should, of course, be judiciously made; if possible, near some line, or projected line, of railway, canal or uavigable river, orseapor-the land sufficientiy concentered, and as level as consistent with ensy dran-age, and the buildings -as is almost always the casc in Sweden-cor-
veniently placed, extensive, and well-arranged. Such farms, I think, let to intelligrni tenantsthe landlord providing for them draining pipes, and subserquently lime, and exacting under oc. casional supervision, a proper system of drainage and cultivation, but at the same time an ensy rent at the outset, augmentable to a certain extent in a specified ratio yearly, as the condition of the farm and its tenant improved-could hardly fail to return a much higher rate of inlerest than is compatible whth anything like good security in England; to say nothing of the prospect of more or less increase to the saleable value of the lend, as the resources and riches of the eountry are opened up and increased by the construction of railways. Thus, land in the neighbourhood of Gottenhurg has increased cent. per cent. in the last teu years; and in the event of the expected union of Denmark with Sweden and Norway, when Gotenturg from its central position and advantarenos seatboard, would probahly become the seat of goverument and the converying point of numerous railways, must continae to advance in value.
The ciimate of central Sweden is delightful, the atmosphere being, in the opinion of old Australians, more clear; bungan, and invirorating than that of their own settlement; and the scenery, without attaining to the wild grandeur of S:witzenland or even our own Lake districts, is generally picturesque. The winters, though severer, are drier than ours; the weather in summer steadier and warmer; wet hay times and harvests are of rare occurrence : and veselation is so rapid that corn is sometimes sown and reaped in six or seven weeks. Nowhere on the face of the earth will ar Englishman meet with more hospitable welcome and hearty kindess than in Sweden and Norway. I say an Englishman : for between the people of Britain aad of Scandinavia there seems to be a mutual sym pathy and bond of aliaance, arising probably from the allinity, and, in great measuc. common origin, of race, maners, customs, md institutions. In Scandinavia, alone, perhaps of all the mations of Europe, is Enerland rerarded with feelings where envy and dislike have no place; and to that quarter alone must her statesmen look, should ever be deemed desirable to for a powerful and endurit.r Northern League.

I have spoken of the steadiness and warmeli of the climate in Sweden; yet with these advantayes they adopt measures for the speedy drying of the crops, whicl: might be copied with benefit in the ruing districts of these islands, especially where arcess can be had to the thinnings of fir plantations. The most simple mode or drying grain is loy rearing a number of light poles, ahout 9 feet high, in holes made for their reception by an iron crowhar. A pair of sheaves are placed upright against the pole to support the other sheaves, which are then linked two and two together and threaded upon the poic. at the junction of the bands, so as to rest in a hori-
zontal position one on each side of the poll. The rest are similarly placed till the top is reached, where one sheaf is then impaled through its centre. In the districts bordering on the Baltie extensive frame-works are used Λ number of fir poles, about 20 feet high and 4 yards apart, are erected in a row, usually romning morth and south. At each side of these poles, namely, east and west of them, and 2 feet apart from them, is erected a lighter pole, 1 foot shorter. Across each of these three poles are then maned or perged nine cross-bars, 2 feet apart, and two slopine pieces are placed at the rop to supporta roof, falling two or three feet each way From cach of these mine cross-bars to the opposite cross-har are then laid four loose poles, generally of spitit fur, thus making between each pair of upights a series of n me shelves, 4 yards long and $4!$ feet wide: on which the fresh cut vetches, clover, or timothy, or in wet scasons, grain, are placed and closely packed, and there remain till dry, proof against any damage from rains. It is of couse necessary to prop against every other uprioht a sloping poll as a buttress: and this on both sides, anless when two paraliel ranges are constructed a fow yards apart, in which case it is sufficient to spur them on the outside, steadsing them on the inside hy a few poles stretched from roof to roof, and fixed at the ends as tierods.

A simpler and less expensive plan is in use in the western districts. Several couples of fir poles, about $\&$ yards long, are raised, at intervals of three ol four yards, against each other, after the manner of a steep house-roof; the upper ends, which are pegged, cross or over-lap each other sufficiently to afford a rest for the horizontal ridye-pole, which combines the couples. On the outside of these couples are inserted: at right angles to the slope of the pole, and 2 feet apart, wooden pins, about 8 inches long, to afford support for a series of lonse horizontal bars, which are then laid from one to the other, this completing the frame or rack. The laying on of the crop (which, whether of grass, clover, or grain, and however laid and twistcd, is all cut with a short lipht scythe, wlich the mower wields an an upright position, cutting close to his fect) is then commenced by hanging the swathe over thr lowest bar (which is two fect from the ground), till it reaches the next bar. The workman then stands upon the first lajer whilst he fills the space hetween the next two hars, and so on till the ridge is reached, where a little straw or thatch is usually laid to turn the water. When grain is dried in this way the heads are put through the bars, the buttends heing outside and inching downwards; the whoie resembling a thatched roof.

I fear that I have already trespassed too far upon your space, and remain, sir, your obedient servant,

Wh. Carr.
Stackhouse, 1Sth Sept. 1862.

Town Sewage.

A good deal of light is thrown on the subject of town sewage, so far as the possibility of turning it to agricultural account is concermed, by the ordinary experience of the farmer.

1. It is the experience of the farmer that manure is just food minus growth, and that it is rich or poor according to nutritiveness of the food and the meagreness of the srowth. He knows that the manure from storefed growing stock is less fertilising and powerful than that from well-fed tating-heasts. Niow, man is one of the best fed of the "domestic animals," and inference seems unavoidible.
2. Although it as certainly true that we have nothing in ordinary agriculture corresponding to the jmmense quantities of fertilising matterr which are thus poured over the sewage meadows of Edinburgh and Carlis!c-nothing corresponding to the 300 anmals in one case, 200 mimals in the other, averaging probably 20 or $2: 5 \mathrm{lbs}$ a quarter, whose waste is in these two instances applied per acre; yet it is undoubtedly the experience of the farmer that an increasing intensity of mamuring is the rule, and is found prolitable. Of that our columms have for sereral past wecks given ample evidence.

Mr. IFudson, of Castluacre, on his 800 acres of arable land, must use 40 tons of cruano, t tons of nitrate of soda, and 25 tons of superphosphate and lime per amnum, costing close on 20s. an acre orer the whote of his farm. And besides this he consumes immense entantities of purchased cattle foul, which goes to enrich the farm-yard duag. Mr. Ifenard, of Biddenham, Bediford, consumes 51,000 worth of cake and other cattle fools per ammum, and thus eariches the manure of the stock on a farm of 300 acres of aralle land and 120 acres of pasture. Mr. Paget, M.P., of Thadingion Grange, Notingham, comsumes 30 tohs of cake anu 200 quarters of corn, custing proljably upuards of $£ 500$ or cece $£ 660$, on 1,0 acres of :anable land and 150 acres of pasture. Mr. Melvin, of Bomnington, Ratho, on a farm of 600 to 700 acres, speads $£ 1,000$ on artificial and purchased manures. Mr. Camplenh, of Buscott Park, Lcchlade, has found it profitable, after dmainige, to apply $1 \pm$ cwt. of Peruvian guano, 3 cht. of superphosplate of lime, 1 cwt. of mitrate oi soda, $1 \overline{0}$ bushels of bonedust, and 1 ewt. of common salt per acre over his permanent pastures, and thereater to feed shecp, five to cight of the large Iincoln sheep per :are, giving them cake in addition daily on the grass. This treatment has been adopted with great success over more tham 1,000 ecres of permanent grass. On an East Lothian farm of about 300 acres of arable land known to us, $1 S$ tous of Peruvian guano, 12 toms of
boncs and superphosphate, 6 tons of nitrate of soda, 3 tons of rape dust, and 3 tons of common salt are used, costing close on $£ 400$ per ammum. On a farm of 280 acres of arable and 400 acres of pasture near Tavistock, Mr. Horswell :upplies 3 to 5 cwt. of Peruvian guano per aure to aljuat, 50 acres of suedes and mangels, consuming also with feeding cattle about 60 acres of barley and oats, whout 25 tons of oilcake, and 20 tons of bran per amnum. The expenditure hare must be sit0 0 in cattle food. and .5150 in artificial manures, on 250 acres of plough land.

These, then are ample illustrations of the fact that chormous quantities of fertising matters are now commonly applied in English agriculture to the soil-that the soil is indeed being considered as a machine through which we put as much of the raw material of farm produce as by means of certain crops it will protitably convert, and that, therefore, there is nothing in ordinary agriculture to forbid the possibility of even the extraordinary supplies of fertilising matter which town sewers now for the most part send to waste being protitably used on a comparatively small extent of land.
3. It is the farmer's experience, morcover, that manure is more effective in the lic ${ }^{\text {uid }}$ than the solid form. If amy one wants proof of that let him read Mr. Rustan's cupital paper on the water drill in the $20 t h$ rolume of the English A mricultural Society's Joumal. Four to ten tons per acre of mangel wurecl, 30 to 40 per cent. of colesced, a greatly inereased produce of oats per acre, is obtained by the simple capedient of "flushing" in the manure that is applied at seed time with 3 or 4 hundred gallons of water to the acre. Another illustration of the advantage of putting mamare in with water is seen in the superior afteciner which artificial manures exhihit in Scothand and the wetter climates of the ishand gencrally, as compared with their cfiect in the south-castern drier countries. A third illustration of the same truth is found in the experience of the manure manufacturer and merchant, that a dry scason is fatal to his trade. is a general rule, farmers c'o not buy these things until they are prepared to use them. And they know that it is useless to apply them in a dry state of the land and of the weather. The consequence is, we are informed, that nobody in the country uses the electuic telegraph more than the agriculturist or his agent the local manure dealer, on any change of weather, as firm a drought to rain, at this time of the year. The Thameside mimuracturer is thus urged to the utmost, and superphosphates are sent off at the rate of hundreds of tons a day during the first wet week in April, May, or Junc, after a period of drought. It is undoubtedly also true that sa
ostremely wet scason is also injurious to the manure trade, but that is owing, not to such weather being injurious to the action of the mauure (the contrary is the case), but to its hindrance of the work of preparation of land for the crops to which such manures are applied doring this and the following month.
4. It is, honever, the famer's experience as a gencrat rule that liguid manure is "more plague than profit." That this arises, perhaps, as much from his keen sense of its bsing a phytu as from any wela asectained expacicnce of its not being pronibble may be admittent; for undoubtedly the use of the water cart enforced by the tanks being fall at times when it is inconvenient to tilie the horses from other work-enforced too, at times when it is often unadvisable to apply manure to all; and, indeed, the use of the water cart at allanew machine and new process altogether, hitherto manown to ordinary agricuitural routine-is teli to be a plague. Neverbeless, the proftableness of the process, considering the extremely diluted nature of the manure, and the labour of its converance in this way, is ofen doubtifl. The lact is, water should be the carrier of tane manure, not merely the thing carried. And the prejudice (shall we call it) which leads the farmer to condemm the patactice of carrying it to the land directis as manure, as a reguhar part of firm mamagoment all through the year, will yield when the labour of it dis:ippears, and its fertilizing inthences are obtainced under the system by "hich a dilute liquid manure is its own earrier in large ghantitus to the land over whice it is proposed to take it.
5. But then it is the farmer's experionce that tillage operations are necessary doring the growth of many of our crops: that a chry, or comparatively dry, condition of the land is necessary diaring the ripening of seed; that hand camot be tilled and seed camot be ripened except the soil be comparatively dry. This, then, shats out frem the possibility of benctitting by these large liguid applications of manure a very iarge nomber of crops, Whether grain crops will benefit by such dressings during the grissy stage of tueir growth has yet to be satisitiremily proved. At any rate, hand coltivated for orain crops cannot be that coustant scenc of sewage operations throughout the year which hand must be to take the constant supply of sewareylelded by towns tirroughout the year: And, indeed, this turh amost entircly shuts us ip to the use of the grasses as the only plants to be cultirated under the influence of liquid and sewage manures applied in large quantities. There are among the grasses particular species which are endowed with extriorcinary powers of growth, and consequently of absorbing food. What we want is a plant which shall have in
its natural constitution, as exhibited in our climate, a power of growth corresponding to the quantity of food which in sewage manurg is applied to the land.

A good deal of evidence has been taken before the committee of the IIouse of Commons on this subject, as to the power of soils to store away the fertilising ingredients of manure for future use. And so far as regards its application during the winter season, when the weather checks the growth of grass, a conservating power of the kind is, no doubt, useful.

But during the summer, the time of growth, what we want is not a soil to lay up these fertilising matters as supplies agaitist a time of use. The summer is the time of use. And what we want is a plant which shall be capable of using the material as it arrives. For this reason, too, the manne as it reaches the plant mast be capable of giving out its fertilising mater for its use at once.

That of it which is capable of feeding the plant must be in a conclition prompting it to leave the water holding it in solution on the very slightest invitation, and indeed to leave it without any invitation at all. For we believe that the maximum produce of grass is obtained when the air immediately above the flowing water is capable of feeding the leaves beneath which it Hows, at the same time that the water is feeding the roots. In Italian raygrass we have a plant exactly of the kind reyuirel, so also in many other grasses; for the Craigentimen meadows, which yield such extravedinary produce of grass, contain little, if any, of the Itainan ray-grass. It is in these srasses, then, and not in the soil, that we are to find the true machine for extracting the food which sewage yields. The mischief which it does and the nuisance which $i t$ is must be reduced to a minimum by turning it to use in this way in districts where the population is at a minimum.

The facts and arguments thus addressed to the reader must lead lim, we think, to the condasion that the sewage of great towns like London should be taken many milesaway to where sandy slopes exist, over which it may be ponired, and through which it will filtrate casily, and by means of which, or rather of the grasses which may thus be grown upon them, or rather of the cows which may be feel upon the grasses, the filthy stream may "by cle:uly manipulation" be converted into wilk.-Gardeners' Craronicle.

The Value ot Eood.

Abundant, nay superfluous tvidence has been furmshed to prove that no one promeiple of food will alone suffice for nutrition ; but clear and unequivecal evidence is still warling to show how far cach princple of rood is esseinial to life
and bealth, provided all else save that one be sufficiently supplie.l. This is a very different question. Agan, ever since Liebir's classification of food into plastic or nutritive and respiratory or calorilicient, some must mportant questions in comection with thave engayed the attention of physiolugists. Amongst them ate these:-Is aty 100 d destined to the produetan of heat without being concemed in the repai: of tissues-that is, 1 s amy portion of the ford directly burnt in the blood? Is any portion o! abbuminous food directly calorifacient, that is, burnt in the blood without forming tissue?Experiments were performed upon rats and a hawk. The animals were fed uoon dificren.t diets, and the experiments may be divided intu three classes accordingly. In one class the diet was a non-nitrogenous one, comsisti.i. of equal parts by weght of arrowroot, sago, taproca, lard and suet; for this minture was lound upon analysis to yield only 22 per ceat. of nitio gen. In another class the diet was anitroremus one. It consisted of lean veal from which every visible particle of fat had been carefully 1 emos-
 cent. of tat. In the third elass the diet was a mixed one. It consisted of a combination of the two former diets. From these experiments the following conclusions are drawn:-Nitrogenous materials are not only calorifacient, bu, at least ander some circumstances, sufficiently so 10 maintain alone the requisite temperatuse. It is in the highest degree probable that. under curtam circumstances, nitrogenous materials may prove directly calorifacient without formmor tissuc. Non-nitrogenous substmees are at least ander some circumstances, directly calurifacient without entering into the cumpusition of tissue of any kind. While non-nitrogenous food only is taken, all the nitrogen which is excreted in the urine, and mure, may be accounted for by the disintegration of the original tissucs, without assuming that any fracetion is assimilated from any other somece. Whic life cannot be maintaned without nitrogenous frod, even thourh every other hind be dimadantly supplied, death in this case bein: due to loss of tissue, life and even health and the normal temperature can we mantainet, at least for a long period, upon a diet ahmost exelusively nitrogenous, win proper inorgavic substances in which there exist only a smail! fraction of nonnitrogenous matter. Such a minute proprotion of fat must be but a poor representative of non nitrogenous food. Moreover in these experi. ments some of the rats sustained a loss of weight considerably above 50 per cent. When their temperature is maivained from external sources, or when they are freely supplied with Calorifacient food, warn blooded animals in:y die rather from waste than loss of temperature, as perhaps is the case with cold blooded animals when they are starved. Lastly, in these experiments the signiscant fact appeared, that while the
weight, strength and general condition of the animals varied very widely under the different diets to which they are subjected, no constderable fluctuation was observed in their temperature. Even the slight variation from time to time recorded seemed rather to result from other causes than to depend directly on the food.W. S. Savory, in lroceedings of Royal So. cicty.

South Australian Farming.

Among the several flourishing colonies of of Australasia, that of Sjuth Australia seems to talie the precedence i, a purely Agricultural point of view. It oot only sustains immense herds and flucks, but lias been very successful in the cult vation of the cereals and root crop: Some of the tinest wheat in the world has been produced in this, and the adjacent colony of Victoria. We are bappy to bear of the pros. perits of our fellow colonists in that distant part of the Empire, aud our readers will be interested in the following article from the last numbers of the Mark Lane Express;

The last overland mail has hrought us some interesting details from South Australia, which seem to mark the gruwing progiess of thes imprrtant and rising colony. The bigh position which it has receotly taken by the a wards con. ferred by the Jurors at the Internatinnal Exhib. ition h s led to a demand for inlormation on the part of the public respecting ite resources and present conditi: u. The statistical detalls just tak n in the colony furnish most apropos all that is required with iegard to its land, crops and live siock.

From these official retarns it appears that at the close of 3861 the total quantity of land alienated from the Crown, in South Australig, amounted to $2.379,048$ acres, of which 1,393,6.2 acre; were in the occupation of the proprictors themselves. As respecte average price per acre, with the exception of 1861 which shows a little advance in price as well as in quamtity sold, the sum realized bas been gradu .ly falliig axay for several jears. Of late the acquirement of land has outstripped the increase of populatim, until at the end of 1861 the lands alienated from the Crown in this colony amountt to 182 acres for every man, woman, and child in the province. The lands alienated in Victoria amount to but five acres $p^{a r}$ head of the popalation; so that the people of South Austrelia own, in proportion to their nombers, nearly four times is mach land as the people of Victoria. The average extent of holdings throughout the colony of Victoris in 1859 was 218 acres,
nd the average number of acres cultivated by ach holder is 26 . We have, as yet no means of comparing these figures with those of South Anstralia.
We have before us a volume of Victorian sataistics from 1835 to 1860. At the last menfioned date the "holdings" were subdivided in10 uine clases, viz, under five acres; 5 and under 15 ; 15 aud under $30 ; 30$ and under 50 ; 30 and under 100; 100 and under 200; 200 and osder 300; 300 and under 500 acres; and 500 scres and upw irds. Of the first class there تere 786 holdinga; of the second class, 1,674 , of the third class, 1,241; of the fourth clase, 1.206; of the fifth class, 2,199; of the sixth clase, 2,087 ; of the seventh class, 1,140 ; of the cighth class, 283; and of the ninth clas, 967. It will hence be seen that the largest number of froms in Victoria are those that range from 100 acres to 230 acres eash, and the next largest those that ragge from $\overline{50}$ acres each, and the nest largest those that runge from 50 acres to 100. The holdings of 500 acres and upwards incl de all the purchased lands, and represent a a wider aggregate acreage than all the other fight classes combined. The total number of all the "holdings" in Victoria was $11,073-$ (exclusive of town and village allntmonts) : the wtal acreage of those holdings being $2,519,156$; and the total of increase upon the foregoing figares. On the 31st March, 1851 , there were, in Victoria, 2,076,014 acres of enclosed land not cultivated, against 1,388,160 acres in South dustralia, enclosed but not cultivated on the 31st March, 1862. On the same dutes the land under tillage in Victoria amounted to 419380 sares, and as the people in South Aastralia exc ed tie people of Victoria as landowners in the proportion of four to one, they surpass them as cultipators of the soil in the proportion of more than fire to one. TheVirtorians, with their recent Land Blll and their permanent provision for imms. gration, are, however, trying new and important experiments, and we may expfet to find the present great relative disparny between the agrarian interests of the two colonies gradually decrease.
The land fenced in, but not cultivated in South Australia, amounted to $1,388,160$ acres, and exceeded the enciosed pasturage of the previous year by 236,984 acres. The number of ares under cultivation in the season 1861-62 was 486,667 , ag inst 418.816 acres in the prericus season, an augmentation of 57,851 acres, or 31.5 per cent. 'These figures give 3.71 acres to each individual of the population; at the end of 1856 the rate per head was only 2.38 acres. Tillage increases at a greater rate than the alien ation of the Crown Lands, 20 per ceat of the laid sold being under cultivation, against 19 per cent. in 1861, and 13 per cent. in 1856. Of the total land cultivated 310,636 acres or 64 per ceat. was unier wheat. The yield a-
mounted to only $3,410,756$ bush. against 3,576,593 bush. in the previous season. This shbws a deficiency of 2 bush. 5 lbs. per acre, or over 400,000 bushels, had the yield been equal to the average of the year previous, although 36,994 acres additional were sown with wheat. The average yield throughout the province was bnt 10 bush. 59lbs, against 13 bush. 14 lbs. in the previons year. This decreased production arose from gales and beavy rains in December, which shook out much of the grain, and laid the stra=.

Another cause of the low average of the aggregrate yield is, that much land was sown with wheat which was not of the description best suited for the successful cultivation in ordinary seasons of that cereal, a state of things doubtless owing to numerous small freeholders and tenunt farmers being compelled, whatever the situation or the nature of the soil, to caltivate the crop, raised with the labour, and capable of being gathered by machine. More than two thirds of the crops are reaped by machine in the colong.

Proceeding from the subject of the culture of wheat, which is at present almost the sole reliance of South Australian farmers, forming as it does two thirds of the whole cultivation, the next important crop to be noticed is that of hay, forming 13 per cent. of the tillage. 62,874 acres, principally wheaten or oaten hay, were grown, against 55818 acres in the previous season-an addition of one-tenth, the produca amonnting to 78,886 tons and 71,241 tons in the respective years. The average yield of the hay crnp was the same in both seasons, or twenty-five hundredweight to the acre.

Ahout one-tenth more land was planted with potatoes than in the previous year, 2612 acres producing 7.726 tons in 1861-2, against 2,348 acres yielding 7,112 tons, the average produce being 59 cwt ., or a hundredweight and a-half less than in the previous year. The above supply was insufficient for the local consumprion; 2,450 tons, or pearly one-third more, having heen imported at a cost of $£ 13,419$ for an article that could have been produced in the colony of equal quality to that imported.

The live stock returns show an addition to the number of all kinds of stoct except horned cattle. There is an increase of 3,198 horses, making a total of 52,597 ; of which 47,434 are returned in the counties, and 5,163 in the pastoral districts. The shipment of South Australian horses to India and other ports during the past three years has obtained some importance, about 509 being the average number exported in each year. The decrease in the number of borced cattle is 12,831, a large falling off appearing is the number depasturing in counties; of which, however, there is difficulty in arriving at a correct enumeration. The total number in the colong is stated to be 265,533 head. Sheer
and lambs number $3,038,356$ against $2,824,811$ in the previous year, showing an increase of 213,545 , or but eight per cent. in the year. The increase occurs chiefly in the more distant coanties and in the other pastoral districts. The number of pigs has increased by 9,539 , there now being 69,286 in the colony; notwithstanding, the imports of bacon, hams, se., amounted during the past year to over eeven thousand pounds value. Poultry of all kinds number 327,709. During the past four years the export of eggs alone has bronght to the col. ony no less a sum than twenty-one thousard pounds.

Vine culture has attained sculh considerable importance in South Australia as to demand particular attention to the statistical facts elicited as to its positioa at the present time. Tue quantity of lard planted with vines has increased rapidly. At the close of 1850 there were 282 acres; in $1854400 ; 1856,753$; 1857, 1,055; 1858, 1,626; 1850, 2,201; 1860, 3,180; $1861,3,918$ acres. The number of vines was -in 1860, in bearing, 1,874,751; not in bearing, 1,948,510; total, $3,823,261$. In 1861 -in beariog. $2,361,574$; not in bearing, $2.386,141$; total, 4,747.715. The quantity of wine manafactured was in 1859, 182,087, and in $1860,312,021$ gallons. In comparing the quantity of wine made with the number of vines in bearing, it will be ceen that only one gallon of wine has been obtained for each six vines. When the whole of the vises now planted will be in full bearing it is reasonable to expect that after dedacting for the fruit, both fresh and dried, each vine will furnish a quart of wine, or a total of 1,186.404 gallons, being equal to 11,864 pijies of 100 gallons. Since 1856 the area of the vineyards has inereased more than five-fold; and as during the last three seasons the number of vines plented has nearly doubled, those in bearing can form bat a moiety, being the proportion shown above. The wine returned as made, is that produced in the season $1860-1$, amounting to 312 , (121 gallons, an increase of no less than 129,934 gallons, or 70 per cent. on the quanity made in the previous year, viz., 182,087 gallons, and more than three timss the quantity produced four ecazons ago.

The weight of graves sold or otherwise dispased of by the grawer th:an in the manufacture of wine, was 23,229 cwt., against 23,398 cwt. in 1860-1; but it is probable that a large proportion of the grapes so returned eventually reach the winemalier, the purchase of small proprictors' crops by neighbouring vine growers possessed of better appliances for the manuactare of wine, being now carried on to some extent, to the manifest improvement in the quality of this article of colonial produce.

At Chicago, on October 30th, 7 grain-loaded vessels cleared for Buffalo, 3 for Port Colborne, and 8 for Oswego.

Agriculture of Colorado Territory.

The rich allurial bottom lands of the Arkansas river are covered with a luxuriant vegetation, and wherever ranches have been commenced and harming labour expended, the resulas have been of the most satistictory and prolitable chameter. We were agreably surprised to find such extensive improvements along the valey of the Arkansis.
The great ohjection heretofore urged against genema agriculture in this region, has been the want of timely rains. This deficiency is nors supplicd by an extensive system of irrigation, and farmers lind it even better dependerce than rain, becaluce they areable to moisten the carth at just the proper time, and to just such an extent as neersity recpuires. We have nerer seen finer com mywhere than that grown this season on the Arkmsas and Fonetaine gui Bouille, and wheat, oats and batey have grown luxuriantly. All the other vegutable products have fourished bountifully, and ue cropshave in some instances yielded inmense returns to ther fortumate proprictors. We sill quite a mumber of wheat-stacks, which, on examination, proved to be ecpal to the best white winter whent. The ber y was plump and large, and the straw musually fine. The yield per acte in some instances reached as high as fortyfive bushels.

Ranchmen with whom I conversed, express. ed their complete satisfaction with the fertility of the lands upon which they were haboring, and their cnife confilence in the surety of a good crop, no matter how dry the season. Carden wectablo, melons, sce, are particuhaty molitic in yiding, and enormonsly large. It Fommane Cia, at the south of Fountaine qui Boville, we stopped an hour at the hospitahbe ranch of Mr: Iteonard Johnston, and were regaleri with the largest and most delicions Witermelons and muskmehons we have ever eaten. Some of the former weighed fitty pomits Other specimens of garden growth were exhibited to us, which would vie in size, qualiey, and abuncance of yield, with the best ever produccel in that culebrated regionSouthern California.

As a grazing region, the rich bottoms and ranges along the Arkansas and Fountaine qui Bouille will compare favourably with any other portion of our territory. Stock raising is attracting the attention generally of the setthers; and already formidable herds of cattle and a few flocks of sheep are fattening on the hills. Another year and the farmers of this region will be enabled to supply in almost unlimited ruantities all the vegetables and cereals for consumption in the sonthern portion of this territory. Fences are being built, diteles constructed, good comfortable buildings erected, and everywhere there is an air of enterprise

1 thrift which characterizes all new and mising farming sections. Drouth is someWhy which inspires no dread in the minds of defirmers of the valleys through which we ve. The facilities for irrigation are most tritable. Ditches stretching for miles in arth, and carrying immense volumes of ater,skirt the hillsides along the bottom, from tieh the grateful clement can be diflused fre thousands of arable acres at will. Timin, if not of the most superior quality, is wudant for fucl, fencing and building.
He do not wish in our remarks on this secin to be understood as disparaging any other rcultural portion of Colorado. All along valley of the Platte, the Cache la Poudre, adder, Thompson, Clear Creek, and a few ter streams, extensive agricultural improveas have been made, and, we presume, with whly flattering results. But we have made erial mention of our southern farming inask, because we have fortunately passed angh that promising region at the time tu the bountiful harvest was just gathered, Iwhen we could see and appreciate the flictions and adaptiveness of our bottom - is for agricultural purposes. We are filly arinced that after another year passes, no we flowr, corn, bacon, or animal food of any d, will be freighted accross the Plains to sterritory.-E.xchange.

Weedy Neighbours

There are few erils aflicting agriculturists atun compare with the mischief occasioned well-farmed district by the presence of a abour who does not cut down his weeds. : the present saason, in some parts of the ary, the air is actually filled with sing thistle-down; and, keep land as amay, if one has a dirty neighbour, high why, in its true sense, is labour in vain. samnot even hold proprictors guiltiess Wis matter of disseminating weeds; for a their woods and commons and warmillions of seeds are hourly winging their ath to the garden-like farms of their tenants. es columms mention was lately made of :institution of a Chamber of Agriculture. ex, then, is a fertile subject for immediate sideration, and one about which the Chamcwald with good graje go to the Legislay for protection. In the colonics, our per brethren have long ago dealt with the stion in a business-like way; and particuin the colony of Victoria, a very heavy sty is enforced from any one who allows 15 to go to seed.
khaps it may be thought by some to be mistent with British ideas of liberty and iste rights, to interfere in such a case; but annot perceive the slightest injustice in
putting down such a nuisance; and a nuisance, in every sense of the word, it is. It would be invidious to mention individual cases; but we presume there is scarcely one of our readers who possesses a clear-kept farm, who could not at once point to some promoters of this evil, so rife at this particular season, and who does not fully sympathize with his brotherfarmer who lives alongside of a "weedy neighbour:" Commons in gencral, or seaside links, are often the great hotbeds and nurspries of this pest of thistles ; and we have heard it mentioned that one in East Lothian supplies thistles for nearly the whole country. In the absence of the proposed Chamber of Agriculture, perhaps the committees of some of our agricultural clubs will put down for discussion during the ensuing winter the subject of "Weedy Neighbours;" and we shall live in hopes of seeing a short bill passing the Fouse of Commons, compelling over, one to cut down his thistles before they go to seed, and wing their fiight to the farms of those who are compelled most umwillingiy to receive them.-Scoltish Farmer:

Use of Leaves.

In many sections of our country, oak leaves are extensively used as bedding for domestic animals. They are gathered in the forests in autamo, and stored in some convenient place till wanted. This affords them time to dry, which increases their power of absorption, and rendera them more valuable in taking up and preserving the liquid voidings, and also facilitates, turough this means, the decomposition of the vigetable fibre when used as a manure. That oik or other linds of leaves, operate porerfully when spread broadcast on the surface of mowing land, is unquestionable; yet this results not so much from the "astringent" matter they contain, as from the non-conducting power. We spread leaves around the trunks of trees, the blossoming of which it is desirable to retard in spring, we apply them also in "mulehing,' the object of which is to retain the moistare in the soil for the benefit of trees newly transplansed.

When they are spread upon the suriace of grass lands, they present, to a very great extent, the action of the solar rays, and thus in a measure deprive the roots of the energizing and vitalizing infliences apon which their strength and vigour very essentially depend. Whatever may be the effects produced by leaves, in their cruds state upon cultivated vegetation, we see that they are eminently useful in woodlands, where, if they are removed annually, the growia is not only greatly retarded, but arrested.

In compost, also, we may often see the value of leaves tangibly exemplified, for experienca has long assured us that few more really valua-
ble accessions can be made to the compost heap or yard, than that obtained from the forest. In the caltivation of young frait trees, this species of dressiug is now greatly valued. From one to two years are required to prepare them for this purpose according to the particular use to which they are to be applied. Any kind of forest leases will be found valuable for this purpose. All that is necessary is to afford them time to decompose. The foliage of the alder, bass, puplar, willow and other similar trees, is more readily decomposed than that of the elm or oak; but they possess less consistence, and consequently tead less to the increase of the compost heap.

The fact is now generally well understood by practicel agricultuists, that the aliment of vegetables, technically denominated Humus, is best produced from that class of sub tances from which plants derive their food. The process ndopted for elaborating this important material is attaived in a variety of wass; but the most direct method is by the application of substances of an animal or vegetable character in a state of active putrescence or decay. We of course, are speaking now of organic manures, aind in the list of materials shail embrace leaves. Tinese, in addition to their organic constituents, possess also matters of an inorganic character no less essential to plants in a growing state, than the former. Toillustrate this point some what more fully we present an analysis of leaves of the "Early Harvest Apple." The leaves were collected September 30, the tree bearing fruit :

Silica 5.775
Earthy phosphates
Phosphate of peroxide of lime 4.875
Phosphate of lime........... 1416
Phosphate of maguesia.... trace.
Silica........................ 5.125
Piosphoric acid............ 5.359—76.775
Lime 36.398
Magnesia........................ 0075
Potash
13.179

Soda 11.616
Chloride of sodium........... 0.060
Sulphuric acid................ 0.137
Carbonic acid................. 15.200
Organic matter................. 2850
101.065

PROP:IRTIOMS.
Water...........................
54.341

Dry
45.659

Ash

4.194
9.163

Calculated dry..
Temperature of the Earth Under Sod and
Under Cultivated Surface.
The writer was recently a listener to an animated discussion between two excellent gardeners. One insisted that the earth was drier and warmer
under sod than under loose earth. The utbe argued on the contrars. Each was sure th other was wrong, and each appealed to u : "There is a Thermometer, we replied, "why d you not go and try for yourselves?"

How strange ii is that men will argue forgear on the most simple questions, when but fiv minutes of actual experiment would often de cide the matterat cnce and toreverl How tro it is that a large amount of misunderstandin: often leading to the most disastrous issues, mi only to individuals, but to whole communatie arisus from magination being mistaken for fac and hasty assumption misplacing cool perception In our sehools most of what we are taught migh come under the head of "what to remember; but how much better would it not be if the ss tem wals "how to observe and consider?" 1 camnot hep maling these rellections, as, in or department of education-horticulture,-we fin this injudicious course of education opposin our prourress at every step. But to the temi rature experiment

It was midday on the 26 th of August, ar the thermometer, in the shade, undre: a tree, s^{\prime} feet from the ground, was 92 ders.

The firstspot selected n as in a yery hot plat on a lawn, where the grass was kept mow pretty cluse by a scythe. A spit was dug up? a spade six inches deep, the thermometer i serted, and the sod placed on immediatel After a few minutes, the thermometer was for: to mark SS degs. Ten feet from this spot, the same full sunny exposure, was a flowerbe kept clean by the hoe and rake. The therm. meter was here inserted as before, and found be 96 ders.

A more exposed place was then chosen, on hill, where a boundary once divided a pasth from a cultivated piece of ground, used as nursery, on which three year-old apple tre were growing. Four feet from the fence, int sod, the thermometer was again tried as befo. and the result was 80 degs. The same distar. in the cultivated lot, tried in the same way, g: 88 degs.

It was evident from these two experimer. tried in the coolest and in the warmest $s p$ that could he found, that the relative differen in the temperature was uniform, and the res is, that on a hot summer's day, the earth, inches under surface in sod, was eight degr cooler than under a clean, loose surface.

It seems to us that this fact, if tound to universally as it was in this particular instan ought to have an important bearing on the cussion of many important horticultural q. tions-such as whether orchards as a rule, better in grass or not, for instance-but it is our uljeet here to enter into snch questic We wish now merely to call attention to want of more observations and less opinio nnd to show the result of such an experimen. a single instance.-Gardeners' Montnly.

to the Selection of Seeds of the Cereals.

in every fie'd of grain there are to be seen ears sfing in size, in form, and in general apnearsfrom those growing beside them. Some these can be recogaised as the ears of estab' 8 rarieties, but a few will be distinct from gof the kinds in cultivation. Farmers usu.lly Iom little attention on the diferent kinds of swnich may be sometimes sen growng in the af field, and which can he hest observed dar--the cutiong and harvesting of the crop; but be farmer in a thousand would undertake the action of such ears with the intention of sowthe seed, and thus propagating the kinds, : oumber of varieti-s would be considerably rased, and the kinds in cultication would be goved by this selection of the best ears. re who interal to collect ears of one or more the cereals s'rould procced methodica $\mathrm{lf}_{\mathrm{g}} \mathrm{nO}^{+}$ Then selecting, but in keeping the ears of :apparently different kinds distinct at the -s of gatherivg them, so that each kind can $3 \mathrm{~m}_{\mathrm{n}}$ by itself, and the produce from the seed the splected eara collected and stored for ye sowing. During the time of selecting s small bags formed of cloth should be ried, and as the ears are separated from the iss they should be placed in one or other of bags. Care should be exercised to prevent rosen and intermixing of tha seeds
Erery circumstance should be noted at the ${ }^{2}$ sach as the field of grain in shich the ears ygathered ; the characteristic features which pars presentedlin growing, such as size, form, ther the ears are close or open, and the color the chatif and straw, chaff smooth or downy, 3 Jother points decmed worthy of being reSkd. A written deseriptinn should be placed the ears put into each bag for after referk, , ${ }^{2}$ it is seldom advisable to trust to the zorf as to the facts. The bags containing ears should be hang in an open place away \because wici or other depredators antil the period yming the seeds.
When it has bren determined that the sowing tee geeds of the selected ears shall be proafd with, a plot of ground near to the enit of the field can be chosen, the remainder tef field to be seeded with grain of the same 1, whether wheat, barley, or oats. Small can be formed by a land hoe, the seed Y Sown, and the earth returned by a hand it the seed being lightly covered. Each plot 3kd should be marked by a piece of wood ted at the end of the rows and the num. marked op the wood for after reference. note book should beused for inserting facts connected with the selecting of ears, the sowing of the seed, the ayacce the d fferent plots presented at the ind of brairding, tillering, earing, blooming nifening, with dates and other particulars.

The amount of trouble which the propagating of varieties entails renders it advisable for expertmenters not to attempt too mu ${ }^{\text {r, }}$ at one time. Only those who are resolved to bestow minate attention during the whole period from the time of selecting the ears until the quantity of grain produced admits of its being distributed, should undertake the selertinn of ears for propagating the vorie's. In propagatira new varieies, constaut attention is essential to keep the variety true to the kind selectet, more particularly if it has originated in what is termed a oport, either the result of cultivation or hybridization -the pollen of the ear or one variety fertilizing the eeeds contained in the ear of a dffrent kind. This hybridization is sometimes effected by experimentere, but accidental contact is the more friquent cause of the sports which appear in cultivated plants. Every variety of grain in cultivation will occasionally shon ears diffring fiom those which posetss the charactrristic appearance of the variety, while some varietie: show red or brown ears, and cars with and without awns. The higher the manurial condition of the soil, the tendence to sporting appears to increase in force. As the soil should be made rich in which the seeds of the selec'ed ears are grown year after year, this tendency to sport is certain to appear, and as the propagating of the selected variety is procceded with, constant care is essential to cull out the ears whith differ from the original standard of se selected cars. If the variety is the r-sult of hybridization, this culling is all important.

The ears will differ considerably in appearance, some resembling the kind from which the fertilizing pollen was derived, and others more closely resembling the variety which the pollen fertilized. Uniformity is essential to entitle any grain to the term variety, and this uniformity can only be secured by constant care in selection. After the type becomes fixed, sporting and degenerating will almost wholly case, provided ordinary care is taken by the propagator. But every established variety should be kept up by occasional selection of the best ears.

In an indastrial point'of view the propagating of a new prolific variety of any of the grains is of immense pational importence. Any new variety which would yield from one to four bushels of additional grain per acre over the ordinary varieties in cultivation would tend thus far to raise the resources of our own soils. In this direction an extensive and most inviting field is open to all cultivators. Were agriculturists to study more closely the operations of horticulturists, much benefit wou'd result to all. Farmers generally not only undervalue, bat wholly disregard what horticulturists have done for agriculture. As well said hy the highly distinguished botanist Dr. Lindley, in a recent address to Prince Albert, as President of the London Horticultaral Society: "Horticultare, sir
is the parent of agriculture. It determines, on a small scale, the value of the principles on which on extended cultivation of the soil depends."

In garden vegetables, in fruits, in flowers, in shrubs, immense pragress has been made within the past few jears, mainly the result of propagating new varieties. In all d partments of horticulture the exercise of skill and untiriug perseverance is apparent, and should be an in. centive to agriculturists to follow in the aade pail.

The plasure, and in exceptional cases the profi', to be derived is so considerab!e that the propagator of new varieties will generally be amply rewarded for the time occupied in conducting the various operations of selecting, sowing, and reaping new kinds of grain. These farmers who are anysous to improve the variet'es of grain in cultivation-wheat, oats, or barles, should adopt the same means as some so successfully followed out by horticulturistshybricizing, and more especially by selecting the best eare, and growing the seed so obtained until sufficient quantities are secured to seed cons:derable portions of land preparatory to dis? posing of as portion of the seeds raised irom the selected ears. 'lhe improrement of the domestic saimals and birds has heen mainly effected by selection, and the same principles are equally applicable for the improvements of the various varieties of the cereals in cultivation. This feld of experiment is open to all, and the persevering may calctate upon success. Where so much can be effented with even an ordinary amount of attention, the experimenter who possesses a knowledge of the cercals, and also of vegetable pbssiolory, is certain to reap a good harvest. North Bralish Agriculturist.

Agricultural Jatellignce.

The Michigan State Fair.

The Prairic Farmer of October 4th eb aerves:

The l.th anmal fair of the Michigan State Agricultural Society was held at betroil last week, and proved a complete success financially, and presented an array of articles and animals in the different departments that entitie it to a fair comparison with the most successful ever held by the socicty.

The opening day closed with a heavy thunderstorm, quite flooding the arounds and dampening the ardor of the members and exhibitors somewhat, but the second morning broke cool and clear with promise of fine weather which held good. Departments filled rapidly and the people turned out.

The attendance was very large Wednesday a Thursday. Parson Brownlow addressed an dience of about 15,000 on Thursday afternor with a recital of personal adventures bef leavin, Thivie land-he was cordially received.

Horse Department.-The entries were t numerous, but enough well known stock ente: to attrat sroat attention. Amoner them" $\mathrm{Na}_{\tilde{c}}$ Charta," "Eamy," a celebrated trotting ma and many others of local celebrity. Seve excellent spams of matehed horses were on : ground for carrioge and general work. Jac and mules were more in number and better th erer, showing the attention paid to this bras The gurerumeat demand for both horses : males will tand to remove very many ordin: horses and then place will doubtless be fill with a bitter srade of stock if we may jai by the fuhing shown amung hurse men: farmers.

Cattle Department.-The number of a mals entered was lar ${ }^{2}$ e, comprising Det ons, F hims and grades. There were a good ner fat catie, some very noticcable ones. One ispucathy, fied by Mr. Sinith, Detroit, wigh wer 3,200 lls. The herd of Messrs. Crouse, IT:atland, ia part of imported stock, was 1 fine, and containdd animals of much promi The Messes. Sly of Plymouth, noted breed: had a fiac herd. Several others from Ohno: Canada, showed good herds.

Sheep Department.-IIere, as at Clevela the Vermonters appeared in competition w local breeders and growers. The home est tion was not what Michigan cam or ought have made. the show was made up of Le: terc, Snuth I) wons, French and Spanish y nos. There is a large demand now for ske corresponding to the government demand clothing and want of cotton, and prices h largely advanced the past season. Large pr. are offe "ed foe fancy sheep We wonld cut those desining to commence to be very car of whom they buy high priced sheep, that do nut suifer as many in the west have ler: fore done

Implement Department.-Ansthing that lessen the labour of the farm, and in part m amends for the labor of those who have ro. teered, gave this department especial prot ence, and the usual number of new inventi. practical and impractical were shown, the prietor of each demonstrating what fortunes be made or saved by their adoption. Rea; ad mowers were well represented. R. I. H ${ }^{\text {ard, }}$, of Buffalo, ${ }_{2}^{5} \mathrm{~N}$. Y., showed the hetd Reaper and llower. The former has a very genious simple raking attachment, which driver can operate with one hand, while drives with the other, or it can be so arran as to be worked by the machine-the cos the attachment is about $\$ 10$ for a bandr. and can be attached to any reaper. He showed an attachment to the reaper for cu
n. The grain platform and cutter bar is ped, and a shorter one put in its place with daped hopper for the corn to fall into as When enough for a bundle is cut, it is ait out upon the ground. It seems as it would work well. With sigght alterait cuuld be made to attach to most ma\therefore

It Buffalo Agricultural Machine Works had bbiation the Kirby Machines-the reaper th had a self-raking attachment, and opefat the will of the driver to lay off bundles ysize, ete. The arrandement was very ini. Its cost, attached to the machine, the from S2.5 to $8: 10$. They have been ral only the past season.
ain Drills.-Thomas Mast \& Co., of SpringWhio, showed their Buckeye grain drill, grois seed attachments. The popularity of fill may be judge of when it is known that pake and sell more drills than any one in the States.
din, Dewitt \& Co., of Clcreland, Ohio, thuwid the Star Drill, a very excellent tin'; and finely finished, its arrangement ting insures a very even distribution of and prevents all clogging from foul or ised. Each of last two firms also showed He cider mills, of which they make large mis.
yp puller-Daniel C. Smith, Adrian, the who used to show a corn-husker at our ;has invented and showed here a powerful p puller, capable of raising 1,000 tons it with one team, it weighs $3,000 \mathrm{lbs}$, and tged upon a pair of whecls for moving fith to field or stump to stump. It is abination of pulleys, lever and shears. :lete for use with ropes and chains it costs
an Prolucts.-This department was almost farbectud A few verotables, a dosen or fhe of wheat, three or four cheeses, very iutter, af fo luaves of bruad, are the princiontents; long ranges of tables were entireapiy.
vil Ihll was better filled, but nothing com1 to what Michigan is capalble of doing. regrapes were shown by several, together some splendid lots of the Concord. The mare was also shown by some half dozen rat ones. The show of Pears was very fair, to that of apples This department was is the charge of I. 'I. Jyon, Plymouth, \rightarrow a prominent Pomologist of that State.
ibral Ifall was very fincly tarranged with a sain and fish pool, filled with various fishin the"centre, and surrounded with a grass etf as wire other departments where plants tbedded in the earth and kept their fresh-- throughout, Cut flowers were arranged lables and shelves to good advantage a of this building was given up to se.riug ines and pictures.

Manufacturer's Holl.-The show here was meagre, and embraced but little that was specially noticeable, except the specimens of Saginaw salt which is now attracting so much attention in the country.
The receipts of the Society enabled them to pay their debt, (about $\$ 2,000$) pay all premiums, and will leave a fair surplus. This, in war times, was unexpected by many.

Kerry Cattle.

A correspondent of the Prairie Far:ner, who has been visiting some of the fine:places in the vicinity of Boston, gives some account of the Kerry cattle belonging to Mr. Austin, of Roxbury, purcbazed for him in Irelatid by Sandford Howard, E.q The original importation consistered of six heifers and a bull; aud the herd now orned by Mr. Austin is believed to be the only one of this oreed in our country. The exportation of these cattle to Λ merica caused quite an excitement in Kerrs. The Kerrgs are usually jet black, though an occasional one of some other color is seen. Their prominent characteristics seem to be ; a hardy constitution, the economy with which they are kept, and good milking qualities of the cors. In size they are about equal with the Jerseys, in form compact and symmetrical, combining the fore quarters of the Devon, with the hind quarters of the Durham. They eeem to be well adapted to the farms and cottages of their native country, and if they were common in this conntry and regarded less as fancy siock, they would be well suited to our billy p-stures and severe winters. The writer alluded to above, aays:
"They are remarkably gentle, and their hair is uniformly very thick, showirg their ability to witbstand the severest of winters without shelter.

Mr. Austin has experimented with them upon different kinds of pastures, and expresses the belief that they are emphatically the "poor man's cattle," yet it is likely that they will be monopolized by the rich for some time time to come. Whilst I will say they are exactly the breed of cattle for the mountainous pastures of New England, 1 will also say that if I lived out in the open prairie, had no barn, and could keep but one cow, I would prefer a little black Kerry Cow to all others."

Saleof Mr. Sanday's Leicester Sheep at Holme Pierrepont.

The great sale of sheep from the justly celobrated flocks of Mr: Sanday took place un Wednesday, and drew together a large attendance of breeders and flockmasters from the Continent, as well as from every part of this country. Mr. Strafford officiated as auctioneer. The peos
comprised 36 rams and 245 ewes, almost all of them eitber prize winners. or animals which had been highly enmmerded at the principal show in the United Kingdnm. This superb flock is now buing dispersed over the world. Some of the nnimals have gone to Australia, others to America. The Mmister of Agriculture in Spain has eccurerl several, and in other countries the esteem in which the Saudy breed of Leicesters is held has heen testified to by the numerous purchases at high pripes wich have made at the s veral salea held at I Ioline Pierrepont. On Wediesday, large purchases were made for Austris nud Prussia. Of the shearling rams, one went to Mr. Princep, of Newion Regis, for twenty seven guineas; another to Mr. Henry Mann, of Luticerworth, for twenty guineas; and a third to Mr. Massey, of Hurlston, for ten guineas; and a fourth to Mr John Spencer, of Dunnington Park, Maltm, for the same price. For a three-shear, Colonel Inge give thirts-eight gui cas; and for another Mr. '1. Hurris, of Stony-lane, Bromsgrove, gave twenty-one guinens; while a five shear fill to Mr. Spencer of Clay brook, Lutter:worth, for twenty guiceas. A lot of tive twes nbtained fify guineas from Mr. Cresswefl, of Asbby-de la Zouch; another, thirty-five guiness frum Mr Dean Derbyshire; a third, the same figure from Mr. Dabbs, of Seck. ington ; two o bers, forty-fie guineas ard thirtytive gaineas respretively from Colonel Inge; one twenty guineas from Mr. Lester, of Tamworth; and a lot of four, forty guineas from Mr. Creswell. A lot of five shearling ewes was knocked down to Mr. Horsfall at eighty-two and a-half guineas, their destination being Koingsberg ; another at thirty-seven and a-half guineas to Dir. Hurlburt, for Prusin; and another for eightyfive guineas to Mr. Fortescup, Abr rdeen. Summary of sile: 37 rams $£ 688$ 16s-average, $£ 18$ 12s. $4 \mathrm{~d} ; 174$ aged ewes, £1.026 7s. 6d.$£ 5 \mathrm{18s}$.; 71 stearling ewes, $£ 5006 \mathrm{~s} .6 \mathrm{~d}$. average $£ 7$ ls.; total sale, $£ 221510 \mathrm{~s}$ Average of 243 ewes, $£ 6438 \mathrm{~d}$; total, $£ 1,52614 \mathrm{~s}$. 72 rams sold July 9, 1862, £1,905 15s.-aver age, $£ 269$ s. $4 \frac{1}{2} \mathrm{~d}$.
Lord Yolfiartres Flock.-This ce!ebrated flock, which has lovg commanded bigh prices at the great $K \cdot$-iso sales, and whose stran is distinctlv tractable in the flocks of almost all the best breeders of pure se tch Leicesters in this country, uriginated in 1882, when 80 ewes were purchased, £2 15s. each, from a well known Northumberland breeder, Mr. Jobson, of Hidgly, near Chillingham, ànd 140 ewes from a Mr. Waddell (also, we believe, a Northumbrian breed -r , at $£ 214 \mathrm{~s}$. Where the rams were obtained from it is now somewhat difficult to ascertain. At that time, however, the most repated breeders did nor care to dispose of their rams, and it is probable that these were hired from the most famous Border flockmasters, of whom Mr. Robertson, of Ladykirk, was one.

Two years after Lnrd Polwarth had pure the fluck from Mr. Jobson, he commenced of rams at Mertoun; and from that tume, continued them every year at that place 1852, when he sent his rams down to 1 were they have ever since been suld. This; it will be noticed that his Lordship realz: the average $£ 811$ s. 2d. per bead more Mr. Stark, of Mellendean, whose stock mad next lighest average. We believe tha: esteem in which Lord Polwarth's flock is b due to the fact trat the blood has been perfec'ly pure during the half century b ? been a breeder; whereas many other of the der breeders, in a desire to improve their a sיme ten or fifteen years ago introduce Cotswold element, with an ffect opposite ts iotended. We have been unable to obtai avorage prices of Lord Polwarth's everg during the fifty eight they have been d'spne: by auction, but the following averages will how they bave been gradually growing in for 183035 at an average of $£ 315 s$; 1840 , an average of $£ 511 s$, ; 1853, 40 at an ar of $£ 618 \mathrm{~s}$. 10d.; 1859,44 at an average 0 1s. ld.; 1860, 43 at an average of nearly 1862, 38 at an average of $£ 18$.
Sales of Shropsimpe Sueep.-Almost last, but far from the least important of ram sales was held on Wednesday in last at Grendou, near Atherstone, when Mr. Jot Lytball, t e Secretary, of the Birminghan (Show, sold and let thirty.five shearling and other rams, the property of Mrs. B.iber, 2 average of nearly $£ 10$ each; and als, dis, of filty ewes at 52 s . per head, and like un of theaves at 63s.
The anoual sale of Earl of Dartmooth's brated Shropshire rams and emes took pla Patshull on Friday last, and was attente several of the leading flockmasters of this -he adjoining counties, and went off in a spirited and satisfactory manoer. At one 0^{\prime}. the company sat down in a splendid mas erected tor the occasion, to luncheon. At past two o'clock the business commenced L the hammer of Mr. Nock (of the firm of 1 and Wilson, Bridgenorth), when ninety store sold, averaging $£ 210$ s.; ninety yearling made an average of $£ 23 \mathrm{~s}$. The rams also with good competition, reaching as high a and thirteen guineas. Twenty-one were 93. an average of $£ 85 \mathrm{~s}$.

Autumn Show and Great Sale of Tue Kelso.-On Friday the Autumn Show of Union Agricultaral Society and the Grest nual Tup Market took place in the Poor- H Field, and was a great success. The prize mals were, as usual, scrntinized with machi est by the farmers present, and it was univer admitted that the awards of the jadges given with the stricteat impartiality. D. the day the sho N-grounds were visited by
the Doke of Roxburghe, President of the
; Lord Polwarth and the Master of PolMr. Grent Suttle, Mr. Prescott, Mr. rorth, of Oowdenknowes, \&c., \&c. The men who officiated on this occasion as were-fur Leicesters, Mr. F. P. Lynn, tom Mill ; Mr. Thomas Cockburn, of Men; and Mr. Melvin, Bonningtod. For CheMr. Clay Winfield ; Mr. John Douglas, - ond Mr. Andrew Douglins, Swinside Hall. It of premiums was as follows:-Leicester
: For the best shearling tup of the pure ter breed, Mr. Simoson, Courthill, £5; for econd best, Lord Polwarth. £3; Mr. TorSis erpath, commended. For the best bear, Mr. Simson, Courthill £3; for the d best ditto, Mr. Roddam, of Roddam, £2 Porves, Linton Burnfoot, commended. For yxt tup of any age not exceeding four shear, Siupson, Courthill, £3. For the best pen Leicester gimmers or shearling ewes, Mr. m, Inymount, £3. Cheviot Sheep: For ket two tups of the pure Cheviot breed, not once shorn, $£ \overline{5}$; and for the best tap of wae breed, not above thrice shorn, $£ 3, \mathrm{Mr}$. nt, Hindhope ; for the second best ditto, Clarke, Ildtrton, $£ 2$; for the best pen gimof the same breed, Mir. Elliot, Hindhope,

fjorticultural.

Light in Plants.

bis light may be classified into two kinds t, continuous, mostly phosphorescent; ad, in the form of lightning. aring wood belongs to the first. A sos (Bynus phosphore, L.) has till lately the credit for it; but Betzius Von Humit and Bishop Argadh (another Swede) ein ascribing to the wood itself the faculofslining.
5 kind of wood, if we believe Dessaniges, git phosphorescent under certain condi-s-riz, a proper degree of decay, therater 46° to 53°, sufficient dampness and opherical air. We find it, however, mostmith alder, beech, white pine, and willow d. They shine before actual decay, but sture rules the intensity of the light-the noisture the less light; no moisture, no t. Where the shining has ceased it can ratored by a little water thrown on the ud, and by enveloping it with paper or ras.
kmperature, we believe, is of no account so thermometer does not exceed either the ling or the freezing point, as in cither case - water would disappear.

But not decaying wood alone has this phosresecnce; other parts of plants have it
when decaying. Thus Meyer tells us that, wandering by night through a forest he found decaying mushrooms in a phosphorescent state, and that he took up the shining matter with his stick and rubbed it against trunks of trees.

Tulasne has given us a very interesting treatise about the shining of dead oak leaves. Moisture is in every instance a necessary condition. Of all things, however, it is the dipta:n which is best known for its remarkable and beautiful light circling round the whole upper part of the plant, whes, after warm and calm cays, a match is brought near it. It is the ethereal oil exaporated by the plant which burns, and makes it appear as if the atmosphere round the plant was in a mild blaze. The beanty of this phenomenon is worth trying it , and enduring the failures which an unfit condition of the atmosplece will often bring.

Less strong than the diptam, but stronger than decaying wool, slines the milky sap of Euphorbia phospinorea. Martins, during his travels in Brazil, found it to shine mostly when a storm was coming on. He also zelates that he was tuld by the natives of an Euphorbia growing in impenctrable thickets of several thousand square feet, which often spontaneously ignite, emit a column of smoke for a whlle, and ultimately blaze in a clear flame.
But not dead matter alone has this phosphorescent quality. We find it in living plants -for instance, Rhizomorpha subterranea, a fungus found on decaying trunks or on timber used in moist mines, emitting light from the tops of its branches so strong that, according to DeCandolle, you can see to read by it; or Agarnens olearius, a fiugus growing on the olive tree, which shines best when vegetation gocs most forward, and which fact Tulasne therefore calis " une manifestation de lactivite de sa vegetation."
The cause or causes of the phosphoreseence of these plants has not been found. A very long range of experiments under all temperatures and at the various stages of vegetation would be required. This explains also why the statements of botanists differ so muchwhy one has never found that such and such plant has emitted light; why the other asserts that only the lamelle of different fungi hadit, \&c. We must, however, here mention a no less interesting phenomenon than either of tuose already stated. It is offered to us by Shistostega osmundacea, a moss growing in caverns and grottoes, which in day-time is in a state of lucidity similar to the Smaragd. In this instance the structure of the plant, as the rays of the sun refracted on it, seems to be the cause, though we would not like to vouch for it.
We would rather speak now of the second class of light in plants-namely, where that
light appears in the shape of lightning. And the first observation it appears has been made by Limmens's own danghter, Elizabeth Christine, who found that one evening in the year 1762 the orange flowers of Tropeolum majus produced a kind of lightning; that is, the flowers seemed by fits and starts to dash light. She ren to her father, not belies ing her own eyes; bat the phenomenom had dienpereared when the lather came, and what he hated never seen or heard of he woukd not heliese in til! he had seen it himself. Oin sumserpent eveninge, howerer, he himself witnessel the fact, wheretpon he asked his datugher to make a re ort of to the Royal Academy of Sciences. This report has been accepted, and exists on the record. We are somy that we havelo add that neitherthe great himents, nor his thangter nor Limaens's son, nor any one of a great many chemists and hotamists who undertook to study the matter, could to this day ancued in telling us an, hing betier that suppositions, which were harily utterel before apset by themsches, and amounted to nothing. If thestiring-up of ohemation- the reteration of facts, the discussion of probahilitics, can shlimately lead the investigating mind to the
true cause, then there is hope for our enli emment. But as we doubt that, and will weary our readers, we will, before we conc this article, tell them that electricity so not to have anything to do with these nomena ; that orange colour of high int iy and fire semus to have a grood deal to with it ; that weak eyesight does not c it, as Limmens mately says, and chat ive Limmetus's daughter, Lector Mingren (al Swede) noticer it in the jear 1785 on C: dula oflicinalis, Jilium bulbiferum, Tagetes patula and erecta, also, but slighly, on the orange rariety of the flower, IIclimenthe amlus. Lastly comes Fries, and fells as that he was indacei write his essay on light in plants by met walking about in the homanical gated Upsata) and seeing lightning shooting tip an isolated groning phant of Paparer o tale, strangely enough after having pas harge group of them without secing anyth that he then led other persons past who not lnow of it, and that he then begar study the light ia plants. May he be abl enrich science with the knowledge of its causes.-Gardeners Monihly.

The Fiyacinth.

Of the many candidates for popular support in the present extended list of gradrn faroritcs there are few receiving more attention at the present time than the Hyaciath. Its beauty, fragrance, and variety are so mamy points of at traction, and,the season at which it blooms is worthy of especial consideration. Bly the ap. pearance of the Myacinth winter is driven from
its last strongholds, and the garden steddents joiees in all the brillianey of a summer patte Then the plant is of such easy culture, that F the hirhest attaimments in the artmay be rea ed for the patient exercise of skill and indas the "prentice hand", in gardening may rem alby expect to attain to fair and satisfac results. In a word, the phant is more man. able than many of its compeers, and hencei. is less fear of failure from the oversight of an, those little kindnesses and attentions which skilled hort iculturist knows so well when
papply. In treating of the culture of the ath three separate points occur to me:ppossession of good bulbs; 2. The sea:planting ; 3. After culture ; and these 1 froceed to discuss separately.
Guod Bunss.-The best Hyancinths are fell from Holland. A more beantutul ould scarcely be conceived than the garj and around Haarlem in the spring and :ammer months, with their acres of gromed, twith millions of Crocuses, Tulips, Hy:--bue, white, red, and yellow, of the richest st aried hues, the more grateful to the ese, te more impressive, because following so fon the footsteps of winter. As is well , the culture of the Hyacinti and its ala speciality in Huhtand. I do not see fithould not be the same here, as the difa in some localities, climates, and soils gland appear to me insufficient to account to being so. Perhaps our horticulturists omuch occupied with other matters, and if it would be commercially unvise to de field against such skilful and indefaticontemporaries without first acquiring a ah knowledge of so distinct a brameh of nof gardening. We may, and I believe and bloom them as well here as there aquestion remains, can we bring bulbs of mgrowth into the marset of the same ind at the same price? The answer is, not -nt. We can, in the present state of our dje and practice, buy and sell cheaper teaa produce.
Hyacinth being a bulbous plant, the :ofsupply, at least during the carly stages th, depend on the nutriment stored up walis the year before. Thus it will be in bat it is as mportant to obtain good sio grow them well when obtained. And Bere caution the cultivator against placsuuch confidence in large bulbs. True, is sound, solid, weighty, and well stored Finated food, the larger the better; but \&e many large, showy, frothy bulbs sold jar in Holland and in England which fail :bese tests, and which it requires a pracFeand hand to apply. Thenagain, there Eibeautiful sorts of Hyacinths-of which ust is a familiar example-which seldom wlage handsome bulbs. On the other tbre are some indifferent linds which Sproduce bulbs of great size and beauty. ather, bulbs of the same kind differ in it the hands of different cultivators. In ait we need only adduce one fact-and it be attributed to the greater skill of 'irator or to the superiority of his soil, - remains-that there is a difference of cout. in the prices of the different growthe highest priced stock always comthe readiest market. Having laid the con of a succesaful culture by the acquiigood bulbs, let as pase to the next
2. The Season of Planting.-The natural period of rest for the Byacinth is from June to ${ }^{\text {Jo- }}$ tober. If planted before the latter month, the shortening of the natural period of rest diminishes the vigour of growth and the beauty of the flowers. So if the planting be delayed far beyond that period, however well the bulbs may be kept, growth commences, the bulb feeds on the deposit of the previous year contained within itself without the means of recruiting the sup ply, and a loss of power is the consequence.
Plant, then, in the month of Octobler, applying a greater or less degree of heat, according to the season or seasons at which the flowers are wanted. If a very early, a very late, or a long succession of bloum be required, some should be planted earlier, and some later; but the month recommended above is the best, if the finest possible bloom is required, without regard to ang definite period.
3. Afren Cumpue. The culture of Fipacinths falls naturally under three heads:-1, In pots; 2, In glasses. 3, In the open ground.

1. Ilyacinths in Pots.-It is a matter of no small importance to secure a stitable soil, for although the plant in the tirst instance feeds on itself, the roots once in action, draw largely from the soil in order to replace the nourishment withdrawn from the bulb. A sandy loam should form the bulk of the soil, but such being usually poor, it must be emriched by a plentiful addition of manure. Cow-dung is the best of manures for the Hyacinth, and it is a good plan to obtain it in a fresh state, mixing it with the loam six months before required for use, turning the whole over two or three times in the interval, that the different substances may be well mixed together. When planting, place the bulb in the middle of the poi, sctting it quite upright on a small bed of sand, and so that the apex of the bulb may be half an inch above the level of the soil. Soak the soil with water, and when well drained place the pots, in the first instance, out of doors on the solid ground that worms may not enter. Surround the sides of the pots with cinder ashes, and cover the top with about six inches of the same material. In about two months remove the pots to a cold frame, covering with a mat for five or six days, to avoid a sudden taansition from darliness to light. When the mats are withdrawn, give more or less air, according to the season at which the bulbs are wauted to flower, bearing in mind that the more air given the better, provided the frost be completely excluded. The long drooping leaves which we see with some cultivators is due to a too wam or too close atmosphere. So soon as the dower-spike rises, a stiff wire should be passed between the bells the whole length of the spike, the lower end bent outwards till it reaches the circamference of the pot, winding it round the outside of the pot beneath the rim to keep the spike upright and steady. Plenty of water should be given from the time the loaves begin
to grow till the flower shows symptoms of decay, when a gradual diminution should take place. When the leaves turn yellow, water should be entirely withbeld, and the bulb should be taken from the pot at the end of July, and stowed away in a dry place for planting in beds the following year. The same bulbs can scarcely be recommended for planturg in pots or glasses a second year, but are very grood for planting out of doors. Masses of Hyacinths may b : planted in ornamental pots or baskets, forming the whole mass of one colour, or the centre and circumference of different colours; and thus ordered, they are at once elergant and effective.
2. Ilyacinths in Glasses.-Under this form of culture we have in the Hyacinth the most beautiful of house plants in winter and early spring, arriving at the same degree of perfection in town and country. The single kinds, to my eye are always the most beautiful, are especially preferable for glasses, on account of their gevater earliness and hardihood. - Soundness of belb at all times important, is more than commouly important here. Set the bulb in ithe glass so that the lower end, whence the roots are emitted, is almost, but not quite, in contact with the water. Uise rain or pond water. Keep the glasses filled up as the water sinks by the feeding of the roots and evaporation. It is a general practice to place Hyacinths in glasses in a dark cupboard or some other place where the light is excluded, and a very good practice it is, for the roots feed more freely in the dark, and thus the system of the plant becomes better stored with food. They may remain in this situation for one or two months, according to the temperature in which they are placed, and should not be too suddenly tranferred to the light. Here, as with Hyacinths in pots, when the flowering is over, the bulbs may be brought gradually into a state of rest by the diminution of the supply of water. This done, dry them, store them away, and in die season plant them in beds out of doors to bloom there the following year.
3. Hyacinths in the open Ground.--I have never yet seen so much done with the Hyacinth as an out-ofdoor plant, as I conceive might be done on principles similar to those which have been so admirably carried out in recrad to "bedding plants." We have here red, white and blue-to say nothing of the so-called yellow -of immmerable shades. Surely there is ample material for a more extended application of those principles, especially if the aid of the Tulip be called in. The Tulip gives an abundance of yellow, a colour deficient in the Hyacmth. 33 y the combination of these two flowers, a gorgeous and complete flower-garden may be had in spring, as well as in summer, ard neither a repetition of the other, but each a change. The Hyacinth is an admirable spring flower. It suffers less from wind and snow, from sleet and hail, than many hardy spring flowers; indeed, almost less
than any other. To-day the snow falls, an plant is hidden and frozen : to-morrow th shines, and it is as erect and as bright as

Hyacinths out of doors should also be pl in the antumn (November). Let the al the bulb be placed four inches beneath th face of the soil, and after the soil is pu add two mehes of decomposed manure as curity against severe frost. In February, all fear of severe frost is rone, the manur be removed. The same soil as that recomin for pot-culture is suitable for Hyacintis doors But it may not be generally cons to remove and replace soil in the flower: Well, this is by no means a sine qua ${ }_{r}$ success. We recommend it, but do not on it. The convenience of the cultivato determine the matter. But if a soil be alls poor, it should be enriched and ni abundant!y; if close and heavy, it shoul be enriched, and wiil usually be impror mixing with it`a good proportion of clea or river sand.-E.rtract from Proceedi the Royal Horticultural Society.
[The cut placed at the head of this represents Mr. Tye's newly invented and Hyacinth Glasses, manufactur England, a quantity of which has jus imported by James Fleming \& Co., Sce and Florists of this City. They are a ornamented production.-Eds. C. A.]

The Gladiolus.

It is not the least of the recommenda of the Gladiolus as an omamental plan proves to be very accommodating to th which it is grown. That it will tlourish sand, and still better if the sand be eari evident from the success which ef knows has been met with by Mr. Sta Bagshot; but the notion which has been ing that such deep satuly soils are nece it, is by no means confirmed by experiel are now referring to the Gladioli of times, the gloriousjuarieties which we great part to the blood of Gandaven. which prove so ornamental when growii garden, and still more so, if possible, for indoor decoration. These varietie. have great constitutional vigour, grow soils of whieh Bagshot sand is a type,bot flourish admirably in beds made up oft post which accumulates from the emp. flower pots wherever a considerable ic and variety of pot plants is cultivated. ever they grow to perfection in deep lo provided they are well drained, and the rendered friable and open by the ada decayed manure in a condition suitable
danical action on the mass. Mr. William has rendered this latter fact evident in his dadmirably arranged nursery at Waltham where the soil being a rather heavy loam bae seen these Gladiohin a most thriving and whence have been derived the speciwhin which, though as yet but a limited :of these flowers, Mr. Paul has won a spectable position on the exhibition table, phate in the prize lists. No one, thereExd hesitate te plant them from any diflsito suil.
? yuestion how these Gladioli can be tw lend their beauties in aid of the genat at our sutummal flower shows, is one beins to require consideration and dethon now that the growers and exhibitors yare increasing in number. They do not to be quite suitable for pot culture : at rien exmbited in this form they have as sed too lanky, and the plants have not sulliciently furmished appearance. Thes zarable flowers for cutting, and in this labless they will be found best suited for sin tables. But then how are they to be ? Are some exhibitors to show single and others bouquets of each kind, or are ato be required to the exclusion of smgle ? We should say decidedly not, for this te to give an undue advantage to quansquality. Besides, the managers of hordexhibitions, besides catering to please zitors, should at least take care that ast of the institution entrusted to their sould tend to improvement in cultivaad how can this be the case, if bouquets Ereral varieties be permitted to compete \}orerpower by mere bulk the single spilies Tohers who are probably more careful if :shilful cultivators, but who possess less re means or less comprehensive collecLike a Hyacinth, the beauty of a Gladipends in great measure on its jwell fur;ille, and the size and perfect form of its ; but how can these points be expected rhen a bunch is shown? Nothing, in sell brought out that way but colour, and ifice made by bunch showing in respect :ther qualities referred to is much greater compensated for by any gain in respect Ir display of colour. Therefore, we say pilies should be shown in competitive s. brishould they be set up? To begin fdon't look well to our eyes in ordinary sd boxes, which do well enough for \rightarrow Dahlias, but don't seem to suii the

- We infinitely prefer the truss set up One of Tye's dwarf Hyacinth bottles, f be had plain or ornamented, as may $N_{;}$though we imagine those of plain rould be coost appropriate. Then azain spike of a Gladjolus, which, be it reflooks better of moderate than of ex-
cessive length, provided it is well bloomed, \mathbf{j} bare and wanting in relieving foliage. Several attempts have been made to supply this deficiency: the group as a whole has been bordered by various broad-leaved plants to form a backerrouna and margin, but broad-leaved plants don tassociate well with grassy leaved monocotyledous like the Gladnolus; they louk foreign to it, and seem out of place; a few of its own leaves liáve been sometimes used, as well as sprigs of some of the larger leaved Grasses such as Poa aquatica, Phaumms communis and the common striped ribibon grass of the gardens; of the Grasses, the best is the Poa, but none of them produce so yood an effect, at least in our opinion as the natural foliage of the Gladiolus itself.

The result of our own observation and con. sideration of this subject then is this:-That for exhibition parposes, Gladiohses should be shown in the form of cut spikes; that the spikes should be of moderate and tolerably proportionate length, but above all well bloomed, not with two thirds or more of their length undeveloped; that they should be set up singly, one spike of each variety; that they should he nlaced separately in Tye's Hyacinth glass; and that cach spmee should be accompanied only by a dressing of three or four natural Gladiolus leaves nearly as long as itseif.-Giardeners' Chronicle.

(Conducted by A. Smith, V. S.)

How is the Horse to be pr:t in Condition.

Country gentiemen of humane feelings still fondly charg to the old plan of giving their horses an occasioual rum at grass. It is so natural, they argue, for the poor things to enjoy a few months of umrestricted liberty to graze on theirnstive, praines, and take such exercise as they please. But, besides such poctical and sentimental recommendations, the run at grass is also supposed to "fine down" and strengthen the limbs, and invigorate the constisution. But to the correctness of these conclusion we seriously demur. Such management may answer well enough as a rest for the over-worked draught horse, but is unsuitable for hunters and well-bred hacka They gorge themselves with bulky food, get gross and fat, and thus overweight their lcgs ; full of spirit and courage, they gallop and play, running i:nminent risk of sprains and other lameness, and often come up with kicks and blemishes, and even with damaged wind, from undue exertion taken whilst the stomach has been overloaded. They lose, moreover, their hard condition and their ablity to go, and proper feeding and well-regulated exercise must be continued for several months to recover the lost muscle and strength of wind and limb.

For manes and foals, for young, mblroken colts of quet temper, and ior dramght amimats of more plach temperament, a grass lield during the summer is ath that can be desired. For hanters, hacks, and the l.ghter sort of horses that have been in guod condtion, it is, however, an expensive and dagerons treat.

Horsemen are begimumy to appreciate the detriment to the heuth and constitution, and the waste of tume and trouble entailed by allowing their horsies, as was the old tashion, to set out of condhen when not wanted for sevcala weeks er monhts. They right.j discover that it is more expunive to turn a horse, atter the hant. ing seasuan for example, to arass, thas allowing him to lose his musele and steength, and argain have him in good order for Uetober, than it would have been to keep hom all summer in a comfurtable roomy box or well-sheltered yard, allowng him a hathe com with his hay and green food, and enjoining daily walk:ng, trotting or other suitable gente work. The desirablity of maintaining horses in contiunous good condision becomes all the more reasonable when it is considered that condation, though some what of an arthiciai state, is symonymues with the highest health and visour. What possible adramtage can there be in luading the wiry mascles wih useles and cumbrous fat, and weighting the frame as if it was intended for lingly liall or Baker-Strect? The legs do not suffer as is sometimee sapposed, by keeping the horse constanty in fair condition On the contrary, the carcase being lifht, the limbs are not uverweighted, and like the rest of the body, are also strong, and able to bear thei butcea. Nothing we may remark, tends more to shaky, weak, tottering legs dian using fo: fitst work horses that are heny and overluaded with beef, and whose limbs want the toaghaess and strength which condition alone cian sive. Although kept during the zummer ia state fit to so, it is, however, by no means necessary that the ammal be subjested to - mtimuous hard work; he need not be galloped or t otted at a "two torty" pace over hard roads. When, like the hunter during the spring and summer months, he is not requised for full work, his exercises maty be relased to an hour or two af walling or gente trotting exercise, he may be profitably used as a hack, or even for light harness work. A handful of clover or vetees pleasantly vary his diet, and exert besides in a natural way that "cooling" influence on the blood which is so much tallied of among stablemen.
Kept in the manner suggested, the horse is at suy time in three or four weeks fit for any reasonable moderate work. A little restriction in his hay, a few nore oats, his exercise cradually increased, and he will cheerfully and easily perform his allotted work on the road or in harness, whilst with a few preparatory gallops he will not even disgrace his owner if he turus oct to the cover side in October. Here the horses
that have run at grass luriug the summer themselyes unpleasantly conspicaous. Th spurt covers them with lather, heavily the over a field or two, boring bianderingly at Lences, and soon give in dead beat; or if: lessly wriged along, are apt to sink from er tion or mathanamon of the hangs. The ns of respiration, like those of the limbs and parts, are weak, and incapable of contina vere exertion.

Io many of our readers it is an impre practical question how such an animal', best rendered serveable. How can his bilities be must speedily brought to perfer ILw can he be prepared so that his dui; be periformed casily to himselt and satistion to his master? Io condition, as to many thing's usetul and raluable, there is no road. The result is to be obtained or proper feeding, exercise, and grooming. must be the stapple lood, and with a horse from grass, os that has been living on food, they should at first be mixed with which will keep the bowls open, and p the evil effects which are so apt to follow sudden tramsition from soft, bully, la food to drier and more nutritive fare. lir to lis lbs. of oats, according to the size a petiee of the animal, is a fair daily alloand shouid be given cracked or bimse ground, and with a bandiull of chatt: hurses intended for fast work beans must. sparingly, as they are apt to cause indit and interfere with free respiration. A farmers the prevaiineg dietetic error is ai excess of hay. The comintry lad, who oft as the farmer's groom, is accustomed to farm horses' racks filled to overibosit acting upon the half true, half false p: that " what is good for the goose is ge the geuder," he thinks the ridug hories unless they have in the rack and under th as much hay as would last them for a ni camut be too often or stron fly insisted horses, and, indecd, all amimals, shook regulanly, and should never have more fothey can clear up at u...c and with relisib. 1.5 lbs. to 20 lbs . of sound Eaglish o clover hay is a liberal allowance tor the sorts of horses, of which at present wear iug. We wouid never have a horse restr: his allowance of water; except for sever before he is required fin work; and to his taking at a time mu.e than is good: he should be oflered it at frequent sho vals of not less than 5 or 6 times a horses are lept, as they should be, in loose boxes or commodious yards, regal exercise during the summer months, s. not in work, is not essential. But all L use, or intended to be used within three for hunting or other such work, nust bs exercise, which ought to be graduallyi in severity and duration until the hors
of performing easily the work iequired of
To the discretion of the groom or his ter must be left the varions questions as to length of time the horse is to be out, the tre of the exercise, whether he is to go out. colls, de. But however these matters be :ld. the horse on coming in must be well aned, rubbed dry, and made comfortable. se dippugy or singeins is practised a rug is Gshe; but the loads of elothes often wised corless and injurious, only securnt a sleek, sy shin with less labor to the rroom, but at sarifice of the poor ammal's confort and ith, and with the certainty of rendering him faceptible of cold. The same, or still Eserinus, objections attarh to the common the of keepimy the stable too warn. For Thorses recently taken up from the fieds sud the temperature should not exceed so, it from 50 to 60 derrees will be sumiciently ator eny horses.-North British Agricul. al

flisallancous.

dyombr Balloon Ascent.-The Britisit mation.-On Monday, Mr. Glaisher, the sitcedent of the meteorological departnent te Rogal Observatory, made a second asIfom the works of the gas company, in srefhampton. As on the first occasion, so noor, the ascent was made in Mr. Coxwell's moth balloon, and under the direetion of 'eronat. The instrumente taken up were in of them the same and others similar to ased on the previous ascent, the only exson being that of Thompson's electrumeter, 1 was destroyed in the descent apon the stoccasion. That justrument being absent io'es will be confined to the primary obserins contemplated by the asseciation-mamete humidity and temperature of the stmos5 with its pressure, the vibration of the 2, and how much (if any) oz ne there is Seatmosphere away from the earth. About Siocubic feet of very light gas was turned wd shortly before one o'clock, Mr. Glaisher agslipped all his instruments and arranged \therefore on the boart before him, preparations : made to leave the earth. One-fourth of quantity of gas supplied was let out, with a bags of ballast, and the signal having been is the balloon left the earth at two minutes sene, amidst the warmest plaudits from Hord thesley and a large number of the gentry of teighbourhood. The ascent was a most fone, the wind was moving about 20 miles loor in the lower region of the atmosphere, by was clear, and the sun was shining brilf. The direction in which the balloon was rafted was gouth by west, about half a to the west. On attaining to about 10,000
feet the upper current of the atmosphere was met with ; the vogagers then got into a southerly direction; were seen due south, then a point or two to the cast ; and in about a quarter of an hour after they left the earth's surface they were north by east, about half a pomt to the east. They then scemed to take their furst dip from 0 higin to a lower altitude, and then again to ascend; and it was thought a second dip was made duriog the time that they vere in sight, which was nearly two and a half hours, for so clear was the atmosphere, so immense the size of the balloon, and so slow the motion of the wiod, that it was $325 \mathrm{p} . \mathrm{m}$. before the machine was lest to the sight of the spectaters on the ground whence it ascended. The drection taken ecemed to be over Bimingham, and towards Coventry. Great interest is lelt in the experiments now beine made, the resuits of the previous experiments bring, in many respects, contrary to all views sitherto entertained on the points of meteorolegy that are now being investigated. For instance, a cloud one mile thick was paased through on the first cccasion, without there being any dew deposited on the most sensitive bygrometer, aud no ozoue was found in the air, notwithstanding that, iu experiments on the earth, the most came was found at the high altíudes. For the experiments of Monday, azone papers were specially made by Dr. Moffat himself. The balloon descended at fire minutes past four o'clock, at Solihull, 25 miles from Wolverhamptoa, aticr attaiuisg a beight of four and a batf miles, where the temperature was 24 degreas, the barometer about 13 iuches, and the dew point minus ten.

A Shmark Preacming a Sermon-There is no such thing :as a soug-bird in Australia; there are birds who chatter, birds who shrich, but no birds that sing. Well there was a young man who went from England as a grolddirger, and was lucky enough to nake some mon*y, and pradence enough to beep it. He opened a "store"-a kind of rough shop where everything from candles to coffics are sold-at a place called "The Ovens," a celebrated goldfield, about 200 miles from Melbourne. Still continuing to prosper, he, like a dutiful son, wrete to his father and mother to come out to him, and if they possibly could, to bring with them a lark. So a lark was procared, and in due time the old follss and their feathered charge took ship and departed from England. The old man, however, took the voyage so much to heirrt that he died; but the old woman and the lark landed in sound bealth at Melboarne and was speedily forwarded to Mr. Wilstead's store at the Ovens. It was on 'luesday when they arrived and on the $n \in x t$ morning the lark was bung outside the tent, and at once commenced piping up. The effect was electric. Sturdy diggers-big men, with hairy faces and
big brown hands-paused in the midst of their work, and listened reverently.-Drunken, bratal diggers left unfioished the sentence and looked bewildered and ashamed. Far and near the news spread like lightning-"Have you heard the lars ?" "Is it true, mate, that there is a real English lark up at Jack Wistlead's ?" So it went ou for three days, and then came Sunday morning. Such a sight had not been seen since the first spadeful of golden earth had been turned! From every quarter-east, west, north, and south-from far hills and from creeks twenty miles away, came a steady concourse of great rough Euglishmen, all brushed and washed as decent as possible. The movement was by no means preconcerted, as was evident from the half-ashand expression of everg man's face. There they were, iowever, and their errand was to hear the lark! Nor were they disappointed. There, perched in his wooden and iron pulpit, was the little minister ; and as though aware of the importauce of the task before him, be plamed his crest and lifting up his voice sang them a sermon.

It was a wonderfal sight to see, those three or four hundred men; some kneeling on the ground; some sitting with their arms on their knees, and their heads on their hands; some leaning against the trees with their eyes closed, so that they might the better fancy themselves at home and in the midst of Euglish corn-fields once more ; but sitting, standing and lying, all were equally quiet and attentive; and when, after an hour's preaching the lark left off, his audience slowly etarted, a little low.spirited, perhaps, but on the whole much happier than when they came. Beston's Home Pets.

Hints for October.

October is one of the most active months in the gear with the gardener, orchardist, and narseryman. A maltitude of labours demand simultaneous attention, and it requires the most antiring energy and industry on the part of every one who has any considerable charge on his hands to see that every thing is done at the proper time and in the proper manner. Fortunately, in this conntry, our October weather is delightfal-dry, cool and bright, generally, and therefore eminently favorable for the rapid and proper execution of all out door work.

Transplanting of all hardy trees, shrabs, and plants usually begins here in the porth about the Ist of Oc.ober ; farther south it mast be deferred later. It is by no means necessary to wait until the lepves have fallen. If growth has fairly ceased, atu the wood has become firm, trees maj be removed; the leaves must be taken off to prevent shrivelling, and the roots must be carefully guarded against exposure until they are again placed in the ground. Autumn planted trees should by all means be socare against the
winds, either by staking or banking $u p$, and ϑ should be well mulc' ed besides.

Neglected orcha ds should be renovated manaring and ploughing or spad ng about roots. 'This should never be deferred till spr because during the winter und spring the sod cays and the manure dissolves, and abund food is thus prepared the trees next $8+8.800$.

Kitchen and garden crops for winter s spring use require nice management to ki them in a proper condition. Such as are tal up and placed in the root-cellar should bo ha' led when dry, and the ce lar should be clean: sweet, and perfectly tree from moisture bc above and below; it should also be kept coo possible, but not admit frost.

Such of the bedding plants as it is desired save for another season, should be carefr lifted early, and either potted or planted clor in boxes, and placed where they will hare lis and not freeze. Many of the broddiug plants taken up carefully und in good season, mays materially to the beanty of the greentho through November! Many of the late flower annuals are aseful in this way.

Hardy bulbous roots should be planted im. diately, yet it can be done any time before ground freezes. There are certain things 1 vegetate early in spring, and should there always be planted in the fall, such as goose ries, currants, rhubarb, and all hardy spt flowering shrubs and herbaceous plants. good bloom next spring may be secured by pl ing now, but will be lost if the planting be ferred till next spring.一 \boldsymbol{P}. Barrey.

Animal Instinct.-I knew of a jackdaw often used to eat the gum that exuded f plum trees, and always did so when it was well. In connection with this sabject, it as well be mentioned that a careful obee would find himself repaid by watching modes of cure employed by sick or wou creatures. We all know that the dog soc resort to grass when they feel out of health, bares to a species of moss. I was also on the authority of the eye-witness, that a_{2} finch, which had been struck by a hank wounded, made its way to a dry puffiball, it open with its beak, and dusted the won shoulder with the spores, thereby stoppin, effusion of blood. The spectator wasg surprised at this incident, and being induct try the effects of the same remedy aponam ed finger, found that the experiment wis. pletely successful-Routledge's Illustrated. ural History.

Chloride of Ling as an Inskctiode. scattering chioride of lime on a plank in ash all kiads of fies, but more especially 4 fies, were quickly got rid of. Sprintling of vegetables with even a weak soluition of salt efrectually preeerves them from the a. of alags, catarpillares, batterdisin mordidn

It has the same effect when sprinkled on the folige of fruit trees. A paste of one part of chloride and one-half part of lard, placed in a arrow band ronnd the tronk of a tree, prevents iosects from creeping up it. It has been noticed tbat rats and mice quit places in which a certin quantity of chloride has been spread.

©

$\Delta g r i c u l t a r a l$ and Veterinary Instruction.

Arrangements are being made for opening sclass of young men for the study of the Vetrinary art and the principles of agriculture, in Toronto, under the auspices of the Board of Arriculture, to commence about the middle of Janu:ny, and to continue for five or six weeks.

Mr. Smith, a licenciate of the Veterinary College of Edinburgh, and Veterinary Surgeon to the Board of Agriculture of Cpper Canada, will give instruction in the anatomy, physiology and diseases of the Horse, and farm animals gencrally, and Professor Buckland, assisted by the Professors of Chemistry, Geology, and Natural History in Universitv College, will take the various branches of science that relate to the practice and theory of agriculture. It is hoped that a considerable number of young farmers from different sections of the country will avail themselves of such an opportunity of improving themselves in a knowledge of the principles of their important. art. Full particulars hereafter.

DUTCH FLOWER ROOTS.

THE SURSCRIBERS BEG TO ANNOUNCE
1 that chey have just received their annual importation of Bulbs in good condition-consisting of Double and Single Hyacinths, $\$ 1.00$, $\$ 2.00$, rnd $\$ 300$ per dozen. A fine assortment of Tulips, from 50 cents to $\$ 2.00$ per dozen. Crocus, 12 to 20 cents per dosen, and at $\$ 1.00$ und $\$ 1.50$ per 100. Polyanthus, Narcissus, 12 to

15 cents each.
Descriptive Catalogues furnished gratis on application. They would also call attention to their fine stock of English Hyacinth Bottles, with supports, suitable for growing Hyacinths in winter, nnd for holding parlour bouquets in summer. (See above cut.)

JAMES FLEMTNG \& Co.,
 Seedṣmen and Florists, Corner of Yonge and Queen Ṣtreets, Toronto.

Horse Infirmary and Veterinary Establishment Corner of Bay and Temperance Streets Toronto, C. W.

ASMITTH, Licentiate of the Edinburgh Veterinary College, and Veterinary Surgeon to the Board of Agriculture of U. C., begs to return his thanks to the Public generally for their support since opening the above mentioned establishment, and respectfully solicits a continuauce of the same.

And also begs to announce that Veterinary Medicines of every description are constautly kept on hand:-Such as, Physic, Diuretic, Cough Cordial, Tonic Condition, and Worm Balls and Yowders. The constituents composing the Cough-balls, have been found (by Professor Dick, of Edinburoh) must serviceable in alleviating many of the symptoms of Brokenwind or Heaves in Horses. Colic Draughts, \&e., a mixture which owners of Horses should always have beside them.

Liniments for Sore throat, Sprain, Curb, Spavin, Ringbone.

Blistering Ointments. Liquid and sweating Blisters.

Horses bought and sold on commission.
Toronto, Aug. 30th, 1862.
'THE

JOURNAL OF THE BOARD OF ARTS and manuractures,

FOR UPPER CANADA,

Is Pablished onl the first of every Month,

AT $\$ 1$ per annum for single copies, or to clubs of ten or more at 75 cents. per copy; to members of Mechanics' Institutes, and of Literary, Scientific, and Agricultural Societies, through their Secretary or other officer, 50 cents per annum per copy.

Subscriptions payable in advance.
Printed for the Board of Arts and Mannfactures for Upper Canada, by W. C. Chemett \& Co., King Street East, Toronto.

FOR SAIE!
 Avrshire Cattle, Leicester Sheep, and Berkshire Pigs.

IHE Subscriber offers several Young Bulls, Heifers and Cows, on very Liberal Terms: Specimens from his Prize Herd will be on Ex. hibition at Toronto, iffall's well: 7
P. R. Wright, Cobourg; C. W.

Aug. 30th, $1862 . \quad 6$-mos.

Contents of this NTumber.

Hints for November
The Wire Worm
Short-Horns as Show Steck
Experiment with Sheep.
Farm Capital
The Agriculture of Sweden
Town Seweage
The Value of Food.
South Australian Farming
Asriculture of Colorado Territory.
Weedy Neighbors.
Use of Leaves.
Temperature of the Earth under Sod and under Cultivated surface
Sclection of seeds of the Cereals.
Agricultural Iitelligence:
Michigan State Fair
Kery Cattle
Sale of Mr. Sanday's Leicester Sheep
Lord Polwarth's Flock, Sales of Shropshise Sheep, Autumn Show and Sale of 'Iups at Kelso

Horticultural :

Light in Plants
The Hyacinth
The Gladeolus
Veternary Department:
How is the Horse to be put in Condition?
Miscellaneous:
A Balloon Ascent. A Sky-lark. The Colour of the Sca, \&c
Editcrial Notices :
Agricultural and Veterinary Instruction \&c., \&c.

©The $\mathfrak{A g r i c a l t a r i s t ,}$

Or Joernal and Transagtons of ther Bit of Agriculttrre or Upper Caxaph,

IS published in Toronto ou the ist and each month.
Subscription-Half a dollar per than Single copies; Eleven copies for Firo I

Editors-Professor Buckland, of UQ College, Toronto, and Hugh C. Thổmone tary of the Board of Agriculture, jTara whom all orders and remittances ario to dressed.

Printed at the "Guardian ${ }^{n}$ Steam Prow 8treet Fast; Torónto.

