IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculýe

Cover title missing/
Le titre de couverture manque
Coloured mapa/
Cartes géographiques en couleur
Coioured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or iliustrations/
Planches at/ou illustrations en couleur
Bound with other material/
Relić avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de ia distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Ii se pout que certaines pages blanches ajoutbes lors d'une restauration apparaissent dans ie texte, mais, lorsque ceia útait possible, ces pages n'ont pas óté filmées.

Additional comments:/
Commentaires suppiémentaires:

L'Institut a microfilmé le meilleur exempiaire qu'il lui a été possibie de se procurer. Les détails de cet exemplaire qui sont peut-6tre uniques du point de vue bibilographique, qui peuvent modifier une image reprodulte, ou qui peuvent exiger une modification dans la móthode normale de filmage sont indiqués ci-dessous.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au teux de réduction indiqué ci-dessous.
10X

The copy filmed here has been reproduced thanks to the generosity of:

L'exemplaire filmed fut reproduit grâce al la générosité de:

Hamilton Public Library

The images appearing here ere the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impresssion, and ending on the last page with e printed or illustrated impression.

Hamilton Public Library

 or llutrad ingThe last recorded frame on each microfiche shall contain the symbol \rightarrow meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

禺

THE CIRCLE

STRAIGHT LINE.

PART SECOND.

MON'IREAL :
JOHN LOVELL, ST. NICAOLAS STREET.

FEBRƯARY, 1874.

Entered according to Act of Parliament in the year one thousand eight hundred and seventy-four, by John Mams, in the office of the Minister of Agriculture and Statistics at Ottawa.

HAMITE:

THE CIRCLE AND STRAIGHT LINE.

> 'Prove all things; hold fast that which is good.' St. P'aul.

PART SECOND.

The Construction of the Circle.
Having in the preceding exposition of the subject demonstrated ' the true relation of the circle to the straight line' in accordance with Euclid's methodical application of the inductive system of reasoning, we will here give an illustration of the general relationship thereby established, in order-to make, in some measure, apparent the structural completeness and perfection of the circle as a reality, -to show the circumstantial necessity for that particular inter-relationship of the parts whicli has been now demonstrated to be actually existent, and thereby-to make manifest the great importance of the circle as one of the fundamental facts belonging to the Plan of Creation.

Let us take, in the first place, the construction of Fig. 2, as it was left at page 19, and develop that construction as follows:-

Figs. $10 \& 11$. Constrcction. (Fig. 10 is a repetition of Fig. 2 on a smaller scale, similar letters denoting similar parts.) Produce the radius $A . B$. through A. and through B. and make A.B., (Fig. 11,) the production of A.B., ten times the length of $A . B$. With centre A. and radius A.B. describe the quadrant B.F. ; bisect the quadrant at M. and divide the arc M.F. into ten equal parts at the points of equal division ' a. 'b. 'c. ' d. ' c. ' f. 'g. ' h. ' i. Complete the greater figure similarly to the lesser figure.

Illustration of the fuct that the diference between the chord and arr-length of the quadrant is an aliquot part of the chord, and of the arc-length.*

Because R.M. in the greater figure equals S.R. and R.M. of the smaller figure taken together (to wit, S.M.) it follows that, however small the magnitude of a eircle may be, the are-length and the chord of the quadrant of that circle are each divisible into a certain number of equal parts, each of which parts is necessarily equal to the difference of the chord and arc, and each of whi h parts is an aliqnot part of the chord and of the arclength of the quadrant of any other circle of which the magnitude is an equimultiple of the magnitude of the first circle, however great that other circle may be. Now it is to be particularly observed that, it R.M. of the greater figure were not equal to S.R. and R.M. of the lesser ligure taken together, this would be no longer true. In that case either S.R. or R.M. of the lesser figure might be evenly divided, but the equal divisional parts would not be aliquot parts of the compound parts belonging to the circle of greater magnitude. The relative magnitude of the greater circle might be such that R.M. of the greater would contain at equimultiple of R.M. of the lesser; but, then, S.M. of the same greater. circle could not also contain an equimultiple of R.M. ot the lesser, nor of S.IR. of the lesser, neither could S.R. of the greater contain an equimultiple of R.M. of the lesser. nor, if S.M. of the lesser and R.M. of the greater ligure were unequal, could R. M. of the greater, however great the magnitude of the greater circle might be, coutain an equimultiple of S.R. of the lesser.

The gencral theorem illustrated by this construction may be thus stated. The difference between the chord

[^0]and arc-length of the quadrant of a circle is an aliquot part of the circle; and if a second circle be so related to the first that the magnitude of the first is an aliquot part of the magnitude of the second, then is the difference of the chord and are-length of the quadrant of the first also an aliquot part of the second circle.

Fig. 12. (a) Construction.-With centre A. and radius $A . B$ describe the quadrant B.S.C. ; draw B.D. and C.D. and join A.D. bisecting the quadrant at S. Through S. and at right angles to A.B. draw R.S.T., intercepting $A . B$. at R. and C.D. at T. Divide R.S. into nine equal parts at the points of equal division ; from S.T., at the distance $S . X$. equal to one of the equal divisions of R.S., draw X. X. perpendicular to B.D., intercepting B.D. at X. Divide the radius $A . B$. in to ten equal parts at the points of equal division. With the point S. as a centre and with the radius S.b. equal to one of the equal divisional parts of the greater radius A. B. describe the small quadrant b.s.t., bisected by the line $A . D$. at the point s. Draw the tangent b.d. aud the sine S.r. of the sinall are l.s., and join $t . d$.

Schotium. Since the radius of the small are is onetenth the radius of the greater arc; the arc, the sine, and the timgent, of the small are are respectively one tenth of the arc, of the sine, and of the tangent, of the greater are ; and therefore, also, the difference of the sine and arc on the small scale is one-tenth of the difference of the sine and arc on the larger scale (i.e.-x.s. is the one-tenth of X.S.) But s.t. the difference of the sine and tangent on the small scale is manifestly one-tenth of S.T. on the large scale, and x.t. must be also necessarily one-tenth of $\mathfrak{X} . T$. It will follow, if the small arc $b . s$. is straightened upon or rolled upon the line b.d., that the point of contact must fall upon the line \mathfrak{X}.X. This will become more apparent by developing the constructiont.

Prop. (in quantitive geometry.)
Theonem.-The quantity of length by which the length of the half-quadrant of a circle exccects the length of the sine of the half-quadrant is equal to the one-tenth part of the length contained in the half-quadrant.

Construction.-Fig. 12. (a) inas been alveady described.
Specification.-Let B.S. be the hialf-quadrant of which $S . R$. is the sine, and let S.X. indicate the diff. in length between B.S. and S.R.;-S.X. shall equal one of the divisional parts of the arc B.S., if B.S. be divided into ten equal parts.

Demonstration.-Because the radius S.l. is the onetenth of the radius A.B., the sine S.s. of the lesser are b.s. is one-tentl of $R . S$. the sine of the greater arc. But S. X. the diff. of the arc-length and sine of the greater are is ten times greater than the similar diff. s.x. of the arc-length and sine of the lesser are; therefore s.x. + S.s., that is S.X.:, is the one-tenth of R.X. Now R.X. is the arc-length of B.S. ; and S.I. is the diff. between that arc-length and the sine of the same arc. Wherefore the theorem has been demonstrated.

Scholitm.-The foregoing prop. may be numerically exhibited in units of radius : for example :
The radius $A . B .=10$. The sine R.S. $=\sqrt{5} 0=7 \cdot 071068$

* Therefore R. $\mathfrak{X} .=7.856742$
" " S.rl. $=1$. The sine $S_{. s .}=\sqrt{ } \frac{1}{2} .=0.707107$

$$
\begin{aligned}
S \mathscr{X} . & =0.7856742 \\
\text { s. } x . & =0.0785674
\end{aligned}
$$

Development of the Construction. Fig. 12. (b.) From the point \mathfrak{X}. on the line B.D., at the distance $\mathfrak{X} . V$. equal to $\mathscr{X} . D$., take the point V. From V. at right angles to S.D. draw V.F., intersecting S.D. on the line $\mathscr{X} . \mathscr{X}$., and intersecting the line b.c. at v.
Illustration.-Now, if a second arc similar and equal to the greater are B.S.C. be described in such wise that the point V. become the extremity of the secant, and the

[^1]production of V.F. be the secant, and the production of V.D. be the tungent, of the second greater are, it is manifest that the second are, so described, must, necessarily, intersect the first greater are on a production of the line $\mathscr{F} . \mathscr{X}$. Now S.el., the secant of the small are, is ineluded in the secant $A . D$. of the first greater are, and likewise, if a second small are be described similarly related to the second greater arc, then will the secant of the second lesser are be included in the (production of the) line V.F., the secant of the second greater are; therefore since $x . d$. is one tenth of $\mathscr{X} . D ., x . v$. must necessarily be the one tenth of X.V. It becomes evident accordingly that the point x. of the lesser arc necessarily falls upon the line $X . X$.

Fig. 12. (b.) may be firther developed by completing the double figure. Produce $\mathscr{E} . T$. through T. and on that production make (R.) X. equal to R. F. Produce A.C. through C. and produce $B . D$. through D. and make C. (A.) and D.(B.) each equal to T. (R.) on the line R. (\boldsymbol{R}). With centre (A) and radius $(A).(B$.$) describe the are$ $(B).\left(C\right.$.) intersecting the are $B . C$. in the line $X_{X} . X^{\prime}$. With the centre F. (on the line R.(R.) and radius F. z. equal to $S . b$. (equal to $A . B$. divided by 10), describe the arc z.y. Join z.d.b. Draw n.m. the sine of the are. Join $y \cdot x$. and produce $F . z$. through z. intercepting the line \boldsymbol{B}.(B.) at Q.

The analytical value of the construction thus developed may be understood by considering that the line R.(R.) contains the sines $R . S$. and (R.) F. of both the arcs together with the space $S . F$. And $P(R$.) also contains the tangents R.T. and $(T).(R$.$) of both the arcs, less$ $T .(T$.$) Again, because the radius F . z$. is equal to the radius s.b., and because $F . z$. has the same relation to the $\operatorname{arc}(B).(C$.) that $S . b$. has to $B . C$. therefore $y . x$. is equal to $t . x ., \mathbb{\& c} ., \& c$.

Example. The radius $A . B .=10$.
R. (R.) $=2$ R.T. -2 X.T'. equals 20
$-4 \cdot 28652=15 \cdot 7134$
R. $($ R. $)=2$ R.S. +2 S. X. $_{\text {. equals } . ~} 14 \cdot 14214$
$+1 \cdot 57134=15 \cdot 7134$
R. $($ R. $)=2$ R.T. +2 S.X. -2 S.T. equals
$20+1 \cdot 57134-585776=15 \cdot 71: 34$

R. $\left.S_{.}+\frac{R . S_{.}}{10}+\frac{R . S .}{100}+\frac{R . S^{\prime} .}{1000}+\mathbb{\delta} c .=7 \cdot \$ 5674\right)$
$15 \cdot 7134$
$($ R. $\left.) F+\frac{(\text { R.F. }}{10}+\frac{(\text { R.F. }}{100}+\frac{(\text { R.F. }}{1000}+\mathbb{E} c .=7 \cdot 55674\right)$
Illustration by the construction. Because the line $x . x$. belonging to the small are is included in the line $\mathscr{X} . \mathscr{x}$. of the greater, the line $S^{\prime} . X^{\prime}$. is equal to $S . s$. added to s.x. (i.e. the diff. of the sine aud are on the large seale is equal to the sine of the are added to the diff. of the sine and arc on the small scale.

Quantitive and Numerical Illustrations, to Fig. 12.

$$
\begin{aligned}
& \text { R.T. }=\text { A.D. }=\quad 10 \cdot 000000 \quad \text { S.D. }=\text { A.D. }- \text { A.S. }=4 \cdot 14213 \mathrm{~J} \\
& \text { R.S. }=\sqrt{ } 50=\quad 7.071068 \quad \text { S.T. }=\text { R.T. }- \text { R.S. }=2.928932 \\
& \text { A.D. }=\text { A.S. }+ \text { S.D. }=14 \cdot 142135 \quad \text { R.S. }=\text { R.S. }+\frac{\text { R.S. }}{10}=7.778174 \\
& \text { R.x. }=\frac{\text { R.S. }}{9} \times 10=7.856742 \\
& \text { Beeause S.s. }=\frac{\text { R.S. }}{10} \quad \text { And S.t. }=\frac{. T}{10} . \\
& \text { Aud S. } s+\text { s.t. }=\frac{\text { R.T. }}{10} \quad \text { And R.T. }=\text { R.S. }+ \text { S.T } . \\
& \text { Therefore (1) R.s. }+ \text { s.t. } \quad=\text { R.t. } \\
& \text { (2) R.T. }-9 \text { S.t. }+ \text { R.S. }=\text { R } \cdot \text { t. } \\
& \text { (3) R.S. + S.t. }=\text { R.t. } \\
& \text { And } \\
& \text { (1) } 7 \cdot 7781748+\cdot 292593=8 \cdot 0710678 \\
& \text { (2) } 10-9+7 \cdot 0710678=8 \cdot 0710678 \\
& \text { (3) } 7 \cdot 0710678+1 \cdot 0000=8 \cdot 0710678
\end{aligned}
$$

Because S. s. $=\frac{\text { R.S. }}{10}$ Therefore R.s. $=$ R.S. $+\frac{\text { R.S. }}{11}$ and consequently if the scale be again reduced to one tenth of the lesser figure, and then again reduced to one tenth of the last, and so an 'ad infinitum' R.I. must evidently include the (sum of the one-tenths) one-tenth of each and every of all the sines; (i. e., the one-tenth of each of the sines of all the figures from the grestest (R.S.) to the least imaginable). Therefore R. X. equals

$$
\begin{gathered}
\text { R.S. }+\frac{\text { R.S. }}{10}+\frac{\text { R.S. }}{100}+\frac{\text { R.S. }}{1000}+\frac{\text { R.S. }}{10000}+\& c ., \text { ad inf. } \\
7 \cdot 0710678 \\
70710678 \\
70710678 \\
70710678 \\
70710678 \\
70710678
\end{gathered}
$$

Arithmetical Illustration of the fact that x. falls on the line \mathfrak{X}. \boldsymbol{X}.
Because S.s. $=\frac{\text { R.S. }}{10}$ Therefore S.s. $=\frac{\text { S.R. }+ \text { S.s. }}{11}$
$\cdot 70710678=\frac{7 \cdot 0710678}{10}=\frac{7 \cdot 0710678}{11}+\frac{.70710678}{11}$
And S.s : S. $x .:$: S.R : R.X. Therefore.
S. $x .=$ S.s. $+\frac{\text { S.s. }}{9} \quad \cdot 7856742=\cdot 70710678+\cdot 07856742$
R. $\mathcal{X} .=$ S. $. X .+$ R.S. $\quad 7 \cdot 856742=\cdot 7856742+7 \cdot 0710678$
S.s. $=\frac{7 \cdot 7781745 \mathrm{~S}}{11}=\cdot 70710678$

But S.s. : S. x. : : S.R. : R.X.
S. $s .=\frac{\text { S.R. }}{10} \quad$ R. S. $=$ S.R. + S.s. $=7.778174$
S. $\mathscr{X} .=\mathrm{S} . s+\frac{\mathrm{S} . s .}{9}=\cdot 7856742=\frac{\mathrm{R} . \mathscr{X} .}{10}$
S. $\mathscr{X} . \times 10=7.85674=$ R. $\mathscr{X} .=\mathrm{S} . \mathscr{X} .+\mathrm{S}{ }^{\prime \prime}$.
s. $x .=\frac{\mathrm{S} . x}{10}$ And R. $x .=$ R.s. + s. x.

That is, $7 \cdot 775174+\cdot 078567=7.856742$
And again $\mathfrak{X} . T .=$ R.T. - R. $. X_{1}=2 \cdot 143258$

$$
\begin{aligned}
& \text { agan t.T }=\text { R.T. }- \text { R.X. }=2 \cdot 143258 \\
& \mathscr{X} . t .=\text { S.t. }- \text { S.X. }=2143258\left(\text { i. e. } \mathscr{X} . \text { t. }=\frac{\mathscr{X} . \mathrm{T} .}{10}\right)
\end{aligned}
$$

Because the lesser (right angled) triangle S.W.D is similar to the greater triangle A.R.S., therefore

$$
\begin{aligned}
& \frac{\text { S.W. W. S.D. }: ~: \frac{\text { R.S. }}{9}: \text { A.S. }}{9}: \\
& \text { And } \frac{\text { S.W. }}{9} \times \frac{\text { A.S. }}{\text { S.D. }}=\frac{\text { S.R. }}{9}
\end{aligned}
$$

That is, $\frac{2 \cdot 925932}{9} \times \frac{10}{4 \cdot 14213}=\frac{3 \cdot 25437}{4 \cdot 14213}=\cdot 7856742$
(lumentitive and Numerical Illustration (demonstration) of the fact that the quantity obtained by analytical methods, which is now supposed to represent the ratio of the circumf. of a circle to the diameter is erroneous.

Scholium. The quantity under examination, stated as the ratio of the circle to a unit of diameter, equals $3 \cdot 14159$; therefore, taking the radius $=10$. the arc of 45 degrees $=7 \cdot 85397$.

By Fig. 12. Taking the radius A.B. $=10$.
And assuming the arc-length to be as stated, then
R.X. $=7.85397 \quad$ R.T. $=$ A.B. $=10$
R.S. $=\sqrt{ } 50=7.071067$ And therefore $:-$

$$
\text { S.X. }=\text { R.X. }- \text { R.S. }=\cdot 78291
$$

Again, S. s. $=\frac{\text { R. S. }}{10}=70710678$
And, s. X. $=\frac{\text { S.X. }}{10 .}=\cdot 078291$

Therefore S.X. $=$ S.s. + s. $\mathcal{X} .=78539$.
But it has been shown that S.X. $=\cdot 78291$, and therefore the same line has (appears to have) two different lengths which is impossible.

And again, further :-

$$
\text { R.s. }=\text { R. S. }+\frac{\text { R.s. }}{10 .}=\text { S.s. } \times 1.1=7.7781745, \text { conse- }
$$ quently (R.X. - R.s.) $\times 10=$ s.X. $\times 10=$ S.X. $=\cdot 75795$.

But it has been already shown that S.X. equals 78539 , and also equals '78291-and therefore the same line S. X^{\prime}. is (apparently) demonstrated to have three different lengths, which is absurd.

Again by the assumption ; R. $X .=7.85397$
But S.X. $=\frac{\text { R.X. }}{10}=785397$
R. $\mathfrak{X} .=$ S. $\boldsymbol{X}^{\prime} .+$ S.R. $=785397+70710678$ 7•S5646.

Therefore R.. . has (appears to have) two different lengths which is impossible. Wherefore the assumption is erroncous.

Fig 13.
Construction.-Describe the quadrant B.C. bisected by the line A.D. in the point S. Draw the sine R.S. and the tangent B.D. of the arc B.S. Join A.C. and D.C. and produce R.S. through S., intercepting D.C. at T. Divide the radius $A \cdot B$. into ten equal parts at the points of equal division. With centre S. and radius S.b., describe the quadrant b.t. bisected by S.D. in the point s.; draw the sine s.r. and the tangent b.d. of the arc b.s.

Produce the line B.D. through L, and make $X . F$. equal to \mathscr{X}. B.; produce $A . C$. through C., and from F. draw $F . E$. perpendicular to $B . F$., and intercepting the production of A. C. in the point E. From the point n., where A.D. intersects \mathscr{X}..X., join $n . B$., and from the same point join n.F. intersecting C.D. at II., and from
the same point draw also n.I.E. at right angles to A.D. intersecting C.D. at I., and intercepting the point E. at the vertex of the angle A.E.F. With centre I. and radius I.H. describe the quadrant H.K. bisected by I.n in the point e. Draw the sine G.e. of the arc H.e., and from d. through c. draw d.t. perpendicular to R.T., and intercepting R.T. at t. From K. at the extremity of the quadrant H.K. draw K.m. perpendicular to R.T. and intercepting R.T. at m.

Scholium.-We have now three similar triangles, namely : A.n.B., S.n.b., I.n.H. Because n. is a point in the line $\mathfrak{X} . \mathscr{X}$., and T. is a point in the radius $I . H$., end R. a point in the radius A.B.; the ratio of the radius $I . H$. to the radius $A . B$. is the same as the ratio of the line $\mathscr{X} . T$. to the line $\mathfrak{X} . R$., and also the ratio of the radius S.b. to the radius I.H., the same as the ratio of S.X. to T. \mathcal{X}.

Illustration (a) of the fact that the point x. falls on the line $\mathfrak{X . X .}$

Because the radius S.b. is the one-tenth of the radius A.B., therefore s.x. is the one-tenth of S. $\mathscr{F}_{\text {. and }}$ x.d. the one-tenth of $\mathfrak{X} . T$. But S.t. (i.e., S.x. $+x . d$.) is the one-tenth of R.T., and the ratio of S.x. to $x . t$. is the same as the ratio of $R . \mathfrak{X}$. to $\mathfrak{X} . T$. (because the ratios of similar arcs each to each, and of the tangents, and also of the sines of similar arcs each to each, are directly as the ratios of the radii each to each, to which they respectively belong.) And the ratio of R.S. to T.t. is also the same as the ratio of $R . \mathscr{X}$. to $\mathscr{X} . T$., therefore $x . T$. is equal * to $\mathfrak{X} . T$. and $x . R$. equal to $\mathfrak{X .}$.R. Wherefore it becomes evident that the point x. is included in the line $\mathfrak{X} . \mathfrak{X}$.

By the same reasoning applied to the sccant,
Because S.b. is the one-tenth of A.B., therefore S.d. is the one-tenth of A.D., and S.s. the one-tenth of R.S., and s.d. the one-tenth of S.D. But s.n. is, therefore, the one-tenth of S.n., and n.d. the one-tenth of n.D. Consequently the point n., which is a point in the line

[^2]$x . x$., is also included in the line $\mathfrak{X . X .}$. Wherefore it clearly appears that the line $x . x$. is the same line as $\mathfrak{X} . X$.

Vemonstration (a) by the consiruction Fig. 13 (to prop. B.) That the diff. of the sine and arc-length of the half-quadrant is one tenth the length of the half-quadrant.

Because S.t. $=\frac{\text { R.T. }}{10} \quad$ s. $. \mathscr{T} .=\frac{S . \mathscr{F} .}{10}$

$$
\text { R.T. }- \text { S.t. }=\frac{9 \text { R.T. }}{10}=\text { R.S. }+ \text { T.t. }
$$

and R.T. $=$ R.S. + T.t. + S.t. $=($ R.S. + S. $x)+.($ T.t. + t. x.
and also R. T. $=$ R.S. + T.t. $+\frac{\text { R.S. }}{9}+\frac{\text { T.t. }}{9}$
Therefore S.X. equals $\frac{R . \mathscr{X} .}{10}$ And t.X. equals $\frac{T . \mathscr{X}}{10}$
For let it be supposed possible that S.X. may be a magnitude less than $\frac{R . X \text {. }}{10}$ then must $t . X$. be a magnitude greater $\operatorname{than} \frac{\text { T.X. }}{10}$ (and s.X. less than $\frac{S . X .}{10}$)

But R.T. is wholly compounded of R.X. and T.X. together. (Demonst. b), and R.T. contains R.S. and T.t. together with $\frac{\text { R.T. }}{10-}$ (i.e. R.S. + T.t. $+\frac{\text { R.S. }}{9}+\frac{\text { T.t. }}{9}$) and $\frac{\text { R.T. }}{10}-\frac{\text { R.S. }}{9}=\frac{\text { T.t. }}{9}$ consequently if $S . X$. be any magnitude less than $\frac{\text { R.S. }}{9}$ then must the remaining magnitude, of which, together with $\frac{\text { R.S. }}{9}$, the magnitude $\frac{\text { R.T. }}{10}$ is compounded, be greater than $\frac{\text { T.t. }}{9}$

Now T.t. is the sine of an arc similar to the are of which R.S. is the sine, and therefore it is impossible that the ratio of $t . \mathscr{X}$., the diff. of the sine and arc length
of H.e.; to T.t., the sine of the arc H.e., can be greater than the ratio of S.X., the diff. of the sine and arc-length of B.S., to R.S. the sine of the arc B.S. Wherefore it is demonstrated that S.X., the diff. of the sine and arc-length of the half quadrant B.S., is the one-tenth part of the arclength contained in the half quadrant B.S. Q.E.D.

Demonst. (b). That the line R.T. is wholly compounded of the arc-length of B.S. together with the arc-length of H.c., and that the same point x. is the extremity of the arclength of each of the two arcs-to wit, of the are B.S. and the arc H.e.
(If the arc-length of B.S. contained between R. and a point indicated by \mathfrak{X}. in the line R.T. be taken from R.T. it is manifest that a magnitude will remain which must be equal to the arc-length of some arc contained between T. and the point indicated by \mathfrak{X}.) The triangle I.H.n. is similar to the triargle A.B.n. and the bases of the two triangles together-to wit H.n. and B.n. togetherinclude all of the magnitude contained in the line R.T., and, since \mathscr{X}, is the divisional point which divides the part of the line R.T. belonging to R, from the part thereof belonging to T, the ratio of R.X. to T..X. must be the same as the ratio of B.n. to H.n. and the same as the ratio of the radius A.B. to the radius I.H. Therefore the point \mathscr{X} has a similar relation to each of the arcs, and to the similar lines belonging to each of the arcs respectively -to wit, to the arc H.e. and the arc B.S. . . . to the sine G.e. and the sine R.S. . . . to the 'diff. t . x, of the sine and are-length' of the are, H. e. and the 'diff. S.x. of the sine and arc-lengtl'' of the are B.S. . . to the 'difl. of the arc-length and tangent' $x . m$. and the 'diff. of the arc-length and timgent' $x . T$. Now, if the difference between the sine R.S. and the are length of the are B.S. were either less or greater than S. $x_{\text {. then would }}$ $x . m$. be not in the same ratio to $x . T$. as the ratio of X.T. to $X . R$. (for if it be supposed possible that
the tangent of the are H.e. may be greater than T.m. then will t.m. no longer have the same ratio to T.t. which S.T. has io R.S. ; nor will the ratio of t.m. to S.T. be the same as the ratio of the radius I.H. to the radius A. B.). Therefore, since the sine R.S. and the diff.S. \mathscr{X}., of the sine and the are, together with the diff. $\mathfrak{X} . T$. of the are and the tangent belonging to B.S. wholly compound the line R.T., and since T.t. is to t. x. and to $x . m$., respectively, in the same ratio as R. X. is to S.x., and $x . T$. respectively, the point x. at the extremity of the arc-length of each arc cannot be other than the same point \mathfrak{X}. which divides the line R.T. in such wise that the part R. \mathscr{E}. thereof has the same ratio to the part T.X. which the radius A.B. has to the radius I.H. Wherefore it is demonstrated, \&e., Q.E.D.

Quantitive and numerical illustrations to the construction. Fig. 13.

By the Construction:-

$$
\begin{array}{r}
\text { R.T. }=\text { A.B. }=10 \cdot 00000 \\
\text { R.S. }=\sqrt{ } 50=\underline{7 \cdot 07107} \\
\text { R.T. }- \text { R.S. }=\text { S.T. }=2 \cdot 92593 \\
\text { S.t. }=\text { S.b. }=\frac{\text { A.B. }}{10}=\frac{1 \cdot 00000}{1 \cdot 92893}=\text { T.t. }
\end{array}
$$

By Demonstration:-

$$
\text { S. } X_{1}=\frac{\text { R.S. }}{9}=\frac{7 \cdot 07107}{9}=0.785674
$$

R. $\mathfrak{X} .=$ RS. + S. $\mathscr{X} .=7 \cdot 07107+0.785674=7.85674$

Now t.x. : T.t.: : S.X.: R.S.
Therefore $\frac{1 \cdot 92893 \times \cdot 785674}{7 \cdot 07107}=\cdot 214325=\mathrm{t} . x$.
$\mathrm{T} . x .=\mathrm{T} . \mathrm{t}+\mathrm{t} . \mathrm{x} .=1.92893+\cdot 214325=2 \cdot 14325$
And T.X. $=$ S.T. - S. $\mathcal{X} .=5 \cdot 92893 \cdots \cdot 7856742 \cdot 14325$
Test :

Let it be possible for S.X. to be less than $\frac{\text { R.S. }}{9}=\frac{707107}{9}$ and let S. $. \mathfrak{X} .=0.78283$

Then

$$
\text { R. } . \mathscr{X} .=\text { R.S. }+ \text { S. } \mathscr{X} .=7 \cdot 07107+0.78283=7.3539
$$

Now t.x. : T.t. :: S.X. : R.S.

$$
\text { Thercfore } \frac{1 \cdot 92893 \times \cdot 78283}{7 \cdot 07107}=\cdot 213549
$$

and T.X. $=$ T.t. + t. $x=1 \cdot 92593+\cdot 213549=2 \cdot 14248$
But T. $. \mathfrak{X} .=$ S.T. - S.X. $=2 \cdot 92893-78539=2 \cdot 14354$
Therefore the same line T.X. has two different quantities of magnitude which is impossible. In the same manner it may be shown that S.X. cannot be greater than $\frac{\text { R.S. }}{9} \quad$ Wherefore $\quad S . X .=\frac{\text { R.S. }}{9}$

Illustration of the relationship of the arc-length to the sine of the half-quadrant. By the construction, Fig. 13.

It is evident that, since $s . x .: S . x:: s . b .: A . B$., if another are be described with the point s. as a centre, and a radius s.c. less than $s . b$. in the same ratio that s.b. is less than $A . B$., then $s . x$. must contain the sine and arclength of the are so described with the radius s. c.; and, again, the diff. $f . x$, between the sine and arc-length of this small arc must contain the sine and arc-length of a smaller are, described with the point at the extremity of the sine of the last small are as a centre, and with a radius less than s.c. in the same proportion that s.c. is less than s.b. ; and, in the like manner, ares may be continually described, each arc being less than the arc preceding it in the same proportion, so long as there be any assignable quantity of distance remaining between the extremity of the sine of the arc last described and the point x.

Note.-The reader may, if he please, describe Fig. 13, on a scale ten times larger ; the small are and radius, $b . s$. and S.b. will be then enlarged to the size of the
greater arc and radius-B.S. and A.B., and the second smaller arc, described with radius s.c., will be then, if described, the same size and occupy the same relative position in the enlarged figure, which the arc b.s., described with the radius S.b., occupies in our Figure 13. The figure may be then again enlarged in the same proportion as before and a third smaller arc be described; and so on 'ad infinitum.' Instead, however, of actually describing enlarged figures, an alteration in the letters denoting the parts will serve to illustrate the case, by supposing the lesser arc to have been enlarged into the greater arc, as often as may be desired.-

Quantitive and Numerical Illustration.

$$
\text { R.X. + T.X. = R.T. = } 10.0000
$$

.Since R.X. equals R.S. $+\frac{\text { R.S. }}{10}+\frac{\text { R.S. }}{100}+\frac{\text { R.S. }}{1000}+$ ad inf.
And T.X. equals T.t. $+\frac{\text { T.t. }}{10}+\frac{\text { T.t. }}{100}+\frac{\text { T. t. }}{1000}+$ ad inf.

Figure 11.
Quantitive and Numerical Illustrations to the construction.
(By the construction :-A.B. the radius of the greater figure (Fig. 11), equals $A . B$. the radius of the lesser figure (Fig. 10) multiplied by ten.)

By the established trigonometrical relationship of the parts:

In the greater	In the lesser
Fig.11.	Fig. 10.

The radius

$$
\mathrm{A} . \mathrm{B} .=10 \cdot 000000
$$

A.B. $=1 \cdot 0000000$

The sine $\sqrt{ } 50$ S.R. $=7.07106 \mathrm{~S}$
S. $R .=0.7071068$

The diff. of) S.R. $\left.\begin{array}{c}\text { the arc and } \\ \text { sine }\end{array}\right\} \frac{\mathrm{S.R}}{9}=\mathrm{M} . \mathrm{R} .=0.7 \mathrm{~S} 5674 \quad$ R.M. $=0.07 \mathrm{~S} 5674$

The are length M.F. or S.M. $=7.55674$
The are length M.F. or S.M. $=0.785674$
Therefore:

$$
\text { R.M. }=\frac{\mathrm{S} . \mathrm{M} .}{10}=0.785674 \quad S . M .=0.785674
$$

Demonstration that R.S., the sine of the arc O.S. (Fig. 2.) contains a certain number of equal divisional parts, each of them equal to R.M. the diff. of the sine and the arc-length.

Divide the radius A.M., of the arc B.M., at I. the point of bisection. With centre I. and radins I.M., describe the quadrant $H . M . G$. half the length (magnitude) of the quadrant B.M.F. (because the radius $I . M$. is half of $A . M$.) The point M. which bisects the greater, bisects also the lesser quadrant, and the arc M.G., the half of the iesser, is similar to $M . F$., the half of the greater quadrant.

Now, let the arc H.M.G. be rolled upon the straight line H.W. until the point M. becomes in contact on the line . . . Since the arc is similar to the greater are and the notion is similar, and the lesser contains one half the length of the greater, it is manifest that the point G. at the extremity of the are will intersect the line M.S. at the point of bisection of that line . . to wit, at the point e., half the distance of S. from M. on the line $M . S$. But since the two ares are similar and the magnitude of the lesser is one-half of the greater, the sine of the lesser is also onehalf the sine of the greater. Consequently the remaining half $e . S$. of the line $\operatorname{Mr} . S$. must contain one-half of
the sine-length and one-half of $R . M$. the difference between the sine and arc-length of the greater arc. If, therefore, the sine S.R. of the greater are be evenly divided, e.S. coutains one-half of those even divisions, together with one-half of R.M. But e.S. also contains one-half of the even divisions contained in the line M.S' (arc-length.) Therefore, each of the even divisions of the sine S.R. is an aliquot part of the line M.S., and consequently $R . M$. is an aliquot part of R.S.

But the line S.M. is divided into ten equal parts; and R.M. is known to contain either the whole or very nearly the whole of one of the divisional parts. If R.M. were equal to the half of one of the ten divisional parts, then would $S . R$. be equal to nine and a half of those parts ; that is, $\frac{S . R \text {. }}{19}$ would then equal R.M. But since R.M. is known to equal considerably more than the half of one of the parts and is shown to be an aliquot part of S.R., it must equal the whole of one of those parts. Therefore, since R.M. is an aliquct part of S.R., R.M. must be one of the ten equal divisional parts of S.M. ; and S.R. (equal to S.M.-M.R.) must evidently contain nine of those equal divisions. Wherefore, the sine R.S. is shown to contain nine equal divisional parts each of them equal to $R . M$. the diff. of the sine and are-length.
(Fig. 14.)-Constnuction.
With centre A, and radius $A . B$. describe the quadrant B.M.F. Bisect the quadrant in the point M., and through M. draw A.K., the secant. Draw, also, M.N., the sine of the arc B.M., intercepting A.B. at N. Divide A.N. into ten equal parts, and divide also N.B. into ten equal parts, at the points of equal division, 1.2.3. 4.5.6.7.8.9., respectively :-

With radius 9.9. describe a quadrant of one-tenth less magnitude than B.M.F.

With radius S.S. describe a quadrant of two-tenths less magnitude than B.M.F.
With radius 7.7. deseribe a quadrant of three-tenths less magnitude than B.M.F.
And so on. Finally :-
With radius 1.1. describe a quadrant of nine-tenths less magnitude than B.M.F.
To each successive are draw the tangent and cotangent of the arc, and also from each of the points in the line M.N., where the line is intersected by the successive ares, draw a perpendicular through the line $B . K$.

We now obtain three distinct divisions of B.K.;
(I) the successive tingent-lengths dividing $B . K$. into ten equal parts;
(2) the successive arc-lengths dividing B.O. into ten equal parts ;
(3) the successive sine-lengths dividing B.D. into ten equal parts.

Taking the radius $A \cdot L^{\prime}=10$. The quantitive relations of the three lines are $B . K .=10 \cdot 000000$

$$
B . O .=7 \cdot 856742 \quad \text { B.D. }=7.07106 \mathrm{~s}
$$

And these relative proportions are precisely the same in the least as in the greatest of the arcs, and however far the reduction in size may be carried, solong as it be possible to describe a similar are, or to imagine a similar are to be described, these lines pertaining to the are, and which even in imagination are inseparable therefrom, must necessarily have the same relative proportions each to each and each to the arc. Referring to Fig. 11, we observe that so soon as the quadrant B.M.F. commences to roll upon the line $B . E$., the (upper half quadrant) are $M . F$. commences at M. to pass through the line M.S.; when the rolling process is completed, and the point M. becomesin contact on B.E., the entire are has passed throngh the line M.S., and every component part of the are has passed through the line at the same angle; therefore if we suppose a number of perpendiculars drawn through the line MIS: at any very
minute distances from each other, each proportionally minute part of the are in passing through the line M.S. would form with that line and the perpendicular (which cuts the line where the minute portion of the are commences to pass through,) the figure R.O.S. on a scale proportionate to the minute magnitude of the lines compounding it. Now when the point M. of the arc has arrived at O. the straight * longitudinal extension of the arc is contained in the length of the line-to wit, in (O.T.) R.S. Every portion of the arc, therefore, relatively to the straight longitudinal measurement thereof on the line O.E. suffers a diminution in length in the ratio of R.S. to M.S. Consequently a manifest relationslip becomes apparent between the horizontal and perpendicular lines M.S. and R.O., which must be so proportioned to each other as to result in the are length O.S. containing as its sine the horizontal length $R . S$. The quantitive relationship expressed in figures makes this relationship readily apparent,

$$
\begin{aligned}
& \text { for let } A . B . \text { the radius, }=10, \text { then }:- \\
& \text { M.S. the arc-length, }=7 \cdot 85674 \\
& \text { R.S., the sine, }=7 \cdot 07107 \\
& \text { R.O. the versed sine }=2.92593 \\
& \text { Now } R . S .+R . O=A . B . \\
& \text { thus, } \cdot 7071068 \times 10=7 \cdot 071068 . \\
& \cdot 7856742-\frac{7856742}{10} \times 10=7 \cdot 071068 \\
& \text { And } 7 \cdot 071068+2 \cdot 92893=10.00000
\end{aligned}
$$

The quantitive relationship of the other principal lines which occur in these figures (Figs. 11 and 14) may be briefly noticed. The secant $A . K$. is equal to the chord

[^3]of the quadrant which, relatively to the radius * as 10 , contains $\sqrt{ } 200=14.14214$ (equal to twice the sine of the $\operatorname{arc} B . M$.) and, therefore, if divided into nine equal parts, the quadrant contains ten equal parts, each equal to each of those nine parts (Coroll. prop. D.) Again, the difference of the radius $A . M$. and secant A.K., namely M.K., is in the same proportion to M.D. as A.M.: A.N., to wit, as $10:$ 707107. Therefore, M.K. $=4 \cdot 14214$. (i.e. $\sqrt{ } 200-10)$. M.D. $=2.92593$. . The numerical values of these quantities of magnitude in units of radius exhibit their relationship, thus : R.S. + R.O. = A.B. (or B.K.) $7 \cdot 07107+2 \cdot 92593=10$
\[

$$
\begin{aligned}
\frac{M . K . \times M . N .}{B . K .} & =M . D . \\
4 \cdot 14214 \times \frac{7.07107}{10} & =2.92593
\end{aligned}
$$
\]

Mathematios and the art of computation.

The fundamental character of the relation of the circle to the science of number and quantity is established by demonstration that the difference of the quadrant and the chord of the quadrant, (of the are and sine of the arc) is an aliquot part of the quadrant and of the chord, and that the number of those equal parts contained in the chord being nine-the quadrant contains ten ; because herein we find conclusive evidence that the (so-called) Arabic system of notation is not an artificial human contrivance, but a great natural fact of a primary character, a fundamental part of the Science of

[^4]Creation. When this is well understood it will be only necessary, in order to appreciate in some measure the immense number of facts of a secondary character, belonging to the science of Number and Quantity, furnished by the correlation of the lines compounding (or belonging to) the circle, to consider the relationship, of the few primary lines-exhibited in their numerical values furnished above-in comnection with the method shown in Fig. 14, of reducing the are $B . M$. from a radius equalling 10 . to the one-tenth thereof by a gradation of similar ares, through the nine successive intermediate magnitudes. It is to be noted that each of these lesser ares has its own dependent lines with the same respective proportions each to each as the lines belonging to the greater are, and that since each lesser are has a known definite ratio to the greater are, each* and every line belonging to each lesser are has a known definite quantitive (numerical) ratio to each and every line belonging to the greater arc. Again, this primary division of the arc of given magnitude (that of the are with radius $=10$ into units,) may be subjected to subdivisiom, and then, to further subdivision; each division furnishing an additional series of quantitive representatives or members, each member of the series having its own system of compounding lines, with their definite ratios each to each, and each to the radius of that member, and each member also having a definite known ratio to each of the other members of that series, and, through the primary member of that series, having a definite known ratio to the general primary, - that is, to the primary are or circle of given magnitude ; and, through the general primary, having also, a known definite ratio to each of the members, and to each and all the definite divisions and subdivisions of the primary circle.

[^5]Now these relations of the compounding lines belonging to the circle are matural faets. They may be justly considered the material ont of which and with which the instruments of quantitive analysis are to be constructed, to be improved, to be simplified, and to be, as far as possible, perfected.

That these facts are existent, and that they are not by any means deeply buried, is well known to many of those whose occupation it is to till the gromed, or whose especial duty it is so to do ; but many of those persons prefer, with a strange, and, as it would seem, with an increasing perversity, to cultivate the thorns and thistles, leaving the good seed as not worth utilizing.

Amongst the things denominated 'thorns and thistles' we are not to be imderstood as intending to include the modern methods of mathematical analysis. It is true that in the compound trigonometrical process (monder which genema expression it is intended to include collectively all of the several forms of applied quantitive mathematies) we have an instrument of great value, a mechanism which is correctly adapted to perform its work with certainty and accuracy, and which is, when properly used, perfectly reliable and trustworthy. It is also true that this mechanion has performed a part in the work of civilization, the value and importance of which, in a human sense, it might be diflicult to overstate or to estimate too highly; and it is again also true that the lives of very many able men belonging to successive gencrations have been employed in constructing, elaborating and perfecting this mechanism, and that it has been now brought, comparatively speaking, to a state of completeness and, almost, of perfection. But all this being admitted and fully appreciated,-it is no less true that this mechanism is only a homan contrivance,-it is one form of application only out of a number in which the matcrial may be applied; it is the utilization only of a very few facts where the number, from which selection may be
made, is almost unlimited. That the mechanism is of a complicated and elaborate character requiring in its higher forms a special training, a long course of study, and much practice to apply it efficiently and with safety to the purpose for which it is adapted, is undeniable. Is this a recommendation or the reverse? No doubt its application and use had much better be left to those who have had the necessary training and are therefore able to apply it in the proper manner : but is it to the advantage of the commmity that such potentiality should be confined to a very few individuals? Is there any obvious natural necessity that it should be so ? Who shall say that the few facts now utilized are the best adapted for the purpose of such an instrument, or that the form of mechanism now in use is the most simple and objective that can be devised. The evil of separating one division of knowledge from the rest as an exclusive department is manifold and unquestionable, and that it is so would probably be admitted in theory by some, perhaps be readily admitted by many, who are, nevertheless, quite prepared to say to those of their fellow labourers in the field of science who approach too nearly their depart-ment.-'This is holy ground—go back : thou art unfit.' Is it, or is it not, true that the language of mathematics is fast becoming an unknown tongue to ordinarily educated men, and that those to whom it is known can scarcely hold converse with their fellows (on any scientific subject) in ordinary language without a feeling of condescension and scarcely without a feeling of impropriety? No man's knowledge is perfect, or nearly perfect, in respect even to one kind or variety of knowledge, and much of the value of any one kind unquestionably consists in its belonging to general science, as the part belongs to the whole. Is it true that the mathematician does now, in some degree, regard his fellow-worker who is unpracticed in the calculus and non-conversant with differentialmethods as but little better than a publican and heathen?

If it be true that such a result does manifest itself in any considerable degree, it may be pronounced decidedly unwholesome and bad-bad for science and bad for civi-lization-because mathematical knowledge is a necessity to science and a necessity to civilization.

We have now put before the public demonstration of the problem which determines the quantitive ratio of the perimeter of the circle to the diareter. We know that examination will show the demonstration to be mathematically incontestable, and we know, moreover, that the requisite examination cannot be now much longer delayed. We are mindful, however, that there has been for a long time past a trigonometrical (supposed) solution of the problem, which is looked upon by many persons, educated in this department of science, as a mathematical determination of the question ; so that when those persons are asked to examine and consider a geometrical solution of the problem, they reply by requiring to have that which they consider to be adverse demonstration disproved before they are willing to pay any attention at all to the alleged geometrical demonstration. In the circumstances of this particular case there is, at least to some extent, a justification of such a requisition as reasonable, becanse mathematicians have been exposed to much and continuai amoyance on this subject from persons who, having neglected the legitimate means of qualifying ihemselves to investigate such a subject, have not hesitated to give trouble to and waste the time of other people without first taking the trouble themselves to consider whether their qualifications were such as to entitle them to occupy the attention of others, or to justify them in endeavouring to do so. We will now, therefore, attend to this requisition.

There are several methods in which the trigonometrical process is applied, from each and all of which the same result (supposed solution) is obtained. But these several methods belong essentially to one and the same
process, of which they are merely variations. That process consists in dividing and subdividing the are of a circle, and in measuring by trigonometry the extremely small portion of the are, which would result from a long continued process of red iction by definite division. The application of the process being fundamentally based on an assumption or assumed axiom-that, if the are of a circle be continually reduced by continued bi-section, the last remaining fraction of the arc is equivalent to the fuaction of a straight line. The truth of this fundamental assumption we deny. In regard to the trigonometrical result, our objection is to the application of that result and to the inference that a correct solution of the question is thereby arrived at. The most satisfactory way to specify our objection and to point out the precise locality of the mistake, will be to take Legendre's method of applying the process by inscribing and circumscribing polygons in and about the circle; because Legendre's formal exhibition of the process so applied is generally considered by mathematicians as particularly conclusive and reliable.

Legexdre's Geometry, (translated by D. Brewster). Book V.-Prop. XIII. Problem.
"The surface of a regular inscribed polygon and that of " similar polygon circumseribed, being given; to find the surface of the regular inscribed and circumscribed polygons haring double the number of siles.

Let $A . B$. be a side of the given inscribed polygon ; E.F., parallel to A.B., a side of the circumscribed polygon ; C., the centre of the circle. If the chord A.M., and the tangents A.P., B.Q., be drawn, A.M. will be a side of the inscribed polygon, having twice the number of sides; and A.P. + P.M. $=2$ P.M. or P.Q. will be a side of the similar circumscribed polygon (Prop. VI. Cor. 3.) Now, as the same construction will take place at each of the angles equal to A.C.M., it will be sufficient to consider A.C.M. by itself, the triangles connected with it being evidently to each other as the whole polygons of which they form part. Let A., then, be the surface of the inscribed polygon whose side is A.B., B. that of the similar circumscribed polygon ; A^{\prime}. the surface of the polygon whose side is $A . M$., B^{\prime}. that of the similar circumscribed polygon : A. and B. are given, we have to find A^{\prime}. and B^{\prime}.
First: The triangles A.C.D., A.C.M., having the common vertex A., are to each other as their bases C.D., C.M.; they are likewise to each other as the polygons A. and A^{\prime}. of which they form part: hence A: A':: C.D. : C.M. Again, the triangles C.A.M., C.M.E., having the common vertex M., are to each other as their bases C.A. C.E.; they are likewise to each other as the polygons A. and A^{\prime}, of which they form part ; hence A.:A.':: C.D:C.M. Again, the triangles C.A.M., C.M.E., having the common vertex MI., are to each other as their bases C.A., C.E.; they are likewise to each other as the polygons A^{\prime}. and B. of which they form part; hence A.': B.:: C.A.: C.E.

But since A.D. and M.E. are parallel, we have C.D. : C.M. : : C.A. : C.E, -hence $A: A .^{\prime}:$: A.' : B.--hence the polygon A^{\prime}., one of those required, is a mean proportional between the two given polygons A. and B., and consequently $A^{\prime} .=\sqrt{A \times B}$.

Secondly.-The altitude C.M. being common, the triangle C.P.M. is to the triangle C.P.E. as P.M. is to P.E.; but since C.P. bisects the angle M.C.E. we have P.M. : P.E.: : C.M. : C.E. (Book IV., Prop. XVII.) : : C.D.: C.A.: : A. : A^{\prime}-hence C.P.M. : C.P.E. : : A. : A^{\prime}.and consequently C.P.M. : C.P.M + C.P.E. or C.M.E. : : A. : A. $+A^{\prime}$. But C.M.P.A., or 2 C.M.P. and C.M.E. are to each other as the polygons B^{\prime}. and B. of which they form part; hence $B^{\prime}: B .:: 2 A .: A .+A^{\prime}$. Now A^{\prime}. has been already determined; this new proportion will serve for determining B^{\prime}. and give us $B^{\prime} \cdot=\frac{2 A \cdot B .}{A .+A^{\prime} .}=$ and thus by
means of the polygons A. and B. it is easy to find the polygons A^{\prime}. and B^{\prime}. which shall have double the number of sides.

Prop. XIV. Problem.
To find the apmoximate ratio of the cireumference to the diameter.

Let the radius of the circle be 1 ; the side of the inscribed square will be $\sqrt{ } 2$ (Prop. III. Sch.,) that of the circumscribed square will be equal to the diameter 2 ; hence the surface of the inscribed square is 2 , and that of the circumscribed square is 4 . Let us therefore put $A .=2$ and $B .=4 ;$ by the last proposition we shall find the inscribed octagon $A^{\prime}=\sqrt{ } 8=2 \cdot 8284271$, and the circumscribedoctagon $B .^{\prime}=\frac{16}{2+\sqrt{ } 8}=3 \cdot 3137085$. The inscribed and the circumscribed octagons being thus determined, we shall easily, by means of them, determine the polygons having twice the number of sides. We have only in this case to put $A .=2 \cdot 8284271 . \quad B .=3 \cdot 3137085$; we shall find $A^{\prime}=\sqrt{ } A . B .=3 \cdot 0614674$, and $B^{\prime}=\frac{2 A . B}{A .+A^{\prime}}$. $=3 \cdot 1825979$. These polygons of 16 sides will in their turn enable us to find the polygons of 32 -and the process may be continued till there remains no longer any difference between the inscribed and the cireumscribed polygon, at least so fir as that place of decimals where the computation stops, and so far as the seventh place, in this example. Being arrived at this point, we shall infer that the last result expresses the area of the cirele, which, since it must always lie between the inscribed and circumscribed polygon, and since those polygons agree as far as a certain place of decimals, must also agree with both as far as the same place.

We lave subjoined the computation of those polygons, carried on till they agree as firr as the seventh place of decimals:

$\begin{gathered} \text { Number of } \\ \text { sides. } \end{gathered}$	Inscribed polygon.	Circumscribed polygon.
4	$2 \cdot 0000000$.	$4 \cdot 0000000$
8	2.82S4271	. $3 \cdot 3137055$
16	3.0614674.	.3-1525979
32	$3 \cdot 1214451$. $3 \cdot 1517249$
6	$3 \cdot 1365455$. $3 \cdot 14411$ S 4
128.	. $3 \cdot 1403311$. $3 \cdot 1422236$
256	.3-1412772	. $3 \cdot 1417504$
512	. $3 \cdot 141513 \mathrm{~S}$	$3 \cdot 1416321$
1024	.3-1415729.	. $3 \cdot 1416025$
204 S .	. $3 \cdot 1415877$. $3 \cdot 1415951$
4096	. $3 \cdot 1415914$.	. $3 \cdot 1415933$
S192.	. $3 \cdot 1415923$.	.3-141592S
16384.	. $3 \cdot 1415925$.	. $3 \cdot 1415927$
32768.	3-1415926	. $3 \cdot 1415926$

The area of the circle, we infer, therefore, is equal to $3 \cdot 1415926$. Some doubt may exist perhaps about the last decimal figure, owing to errors proceeding from the parts omitted ; but the calculation has been carried on with an additional figure, that the final result here given might be absolutely correct even to the last decimal place.

Since the area of the circle is equal to half the circumference multiplied by the radius, the half circumference must be $3 \cdot 1415926$, when the radius is 1 ; or the whole circumference must be $3 \cdot 1415926$, when the diameter is 1 ; hence the ratio of the circumference to the diameter, formally expressed by π, is equal to $3 \cdot 1415925$. The number $3 \cdot 1416$ is the one generally used."

Of these two propositions the last is a computation *

[^6]based upon the first, or it may be considered as the numerical equivalent and illustration of the first, exhibiting in numerical units of the radius those relations of the parts which the first proposition apparently establishes. The first of these two propositions (prop. xin.) is, however, quantitive, and may be also correctly considered as belonging to the science of Quantity and Number * rather than to that of 'Magnitude and Fom.' Our objection to these propositions is two-fold, by which we mean that we object to two assumptions involved in these propusitions, and which two assumptions, although nearly related, may be considered distinct.

Almost at the commencement of proposition xif., we find the first assumption, to which we object, distinctly stated in these words: "If the chord $A . M$. and the tangents A. P., B. Q. be drawn, A. M. will be a side of the inscribed polygon, having twice the number of sides; and $A . P .+P . M .=2 P . M$. or $P . Q$. will be a side of the similar circumscribed polygon." Here then we have the statement that $A . P_{0}+P . M .=P . Q . \quad$ To justify the acceptance of this statement it should either be supported $b y$ de ionstration or be in itself manifestly true. (1) Is it supported by demonstration? We refer as directed to Cor. 3 of Prop. vi., which reads thas: "It is plain that N. IF. + II. T. $=$ II.T. + T. G. $=$ II. G. one of the equal sides of the polygon," \&c. Now these lines are in the same case as $A . P .+P . M .=P . Q . ;$ so that we find therein not demonstration, but an assertion that the thing stated is a manifest fact. (2) Is it manifestly true? The case in the Corollary, just quoted

* It is not meant that these propositions of Legendre are, for this reason, less reliable or of less value, but the distinction is noted as a protest against calling things which belong to different divisions of science, and which are not the same, by the same name. According to the title of the book, they purport to be propositions in Geometry.
from, is that $N . H .+H . T$., which is an angle and indirectly defined, by the preceding and following propositions, to be a complete angular figure* is equivalent to $I I$. G. which is a straight line. Similarly in proposition xiri., the angle $A . P^{3}+P . M$. is assumed to equal the straight line P. Q., because either $A . P$. or $P . M$. measured separately as a straight line is apparently equal to one-half the straight line P.Q. It is, therefore, assumed as manifest that the vertex of the angle has no quantitive value in itself independently of its sides considered as straight lines.

Fig. 1.

Fig. 2.

Let us suppose Fig. 1 to be a ligure compounded of straight lines placed close together, and Fig. 2 to be a figure likewise compounded of angle-lines placed close together. In Fig. 1, if two of the lines be considered relatively to each other, they appear to be similar and equal magnitudes, and on consideration of the figure,that is, of all the lines eompounding the figure relatively to each other,-it becomes manifest that the lines are actually similar and equal longitudinal magnitudes, because both the sides of the figure compounded by the lines are perpendicular to the longitudinal extension of those straight lines, and the compounded figure is rectangular : therefore, if two or more of the lines be similarly divided, the divisional part or parts of the one will be equal to the

[^7]similar divisional part or parts of the others. In Fig. 2, if the two top or bottom angle lines be considered relatively to each other they appear to be also similar and equal magnitudes, but on consideration of the figure, that is, of all the lines compounding the figure relatively to each other, it becomes manifest that the lines, although similar, are not equal, for the lower lines of the figure are evidently lesser longitudinal magnitudes than the upper lines; nevertheless, if two of the angles compared together be considered as compounded of four straight lines, and the four straight lines be compared with each other as longitudinal magnitudes, the difference may be less than any assignable quantity ; moreover, if the equal lengths of the lines be equally increased, the extremely minute difference must be proportionately diminished, and, if the equal longitudinal magnitudes be in such wise indefinitely increased, the difference will be indefinitely diminished ; nevertheless, the diff. is actual, and if one of the angle lines compounding the figure, however extremely minute may be the breadth which that line is inagined to possess, be (supposed) separated into two lines each having half that breadth, then must necessarily the outer of the two halves be of greater length than the inner ; and, moreover, the under surface of the outer half must necessarily be in longitudinal magnitude greater than the upper surface of the inner half. Before considering the (1) objection further, we will go on to define the character of the (\because) objection which, as we have stated, is in some measure distinct, and we will then consider the two-fold objection as one. In Fig. 3, we have the are $A . B$., the sine $C . B$. and the tangent A. d. of the are. Now, there is an assumption, which we are about to explain and to which we are about to object, in rexpect to the diminution of this figure by definite division of the arc, which is at the present time generally adopted by mathematiciaus; and which, although not
distinctly put forward as an axiom or theorem in either of the two propositions, is adopted also by Legendre, and forms an essential part of the foundation* upon which his apparent demonstration rests. Let us suppose the are $A . B$. to be bisected, and the sine of the remaining half-are to be drawn, and the tangent A. d. to be also bisected; we shall then find that both the sine and tangent in the lesser resulting figure are much nearer to the are throughout their length

than in Fig. 3. If the are and the tangent of the lesser figure be also bisected, a still nearer approach of the sine, the are, and the tangent to each other will result, and it is evident that if this process of bisection were to be con-

[^8]tinued in like manner, the deviation of either of the remaining parts of the three lines from a single straight line would be but very small; for, at the 8th bisection, only the 256 th part of the tangent A. d. would remain, and this would evidently very nearly coincide with the remaining 256 th part of the arc. Now, the assumption whir ${ }^{1}$, we wish to specify, and to which we object, is that-if the process of bisection be so continued, a small part of each of the three lines will eventually remain, which will absolutely coincide and become essentially one line. Observation of Fig. 3 shows that the two extremities of the figure A.C.B.d. are not similar ; the relations of the three lines-the sine, the arc, and the tangent-are such that if the line $C . B$. be moved down and applied upon the line A.d., a small part of the tirree lines at the extremity A. will appear to coincide; but at the opposit te extremity B.d., although the two lines C.B. and $A . d$. would in that ease coincide, the are $A . B$. would deviate by the amount of its curvature from the straight line. Now if the usual method of consider ing the result of the process is reversed, and, instead of considering the eventual relationship of the lines (when the process has been carried very nearly to the vanishing point) with reference to the extremity A. and the perpendicular R. A., that eventual relationship is considered with reference to the opposite extremity of the remaining arc and to the radius which intercepts that opposite extremity-the impossibility of an absolute coincidence of the three lines becomes at once apparent, becausehowever minute the fraction of the are remaining-ss long as there be any arc, the radius which intercepts the extremity of the are opposite from A. can never become quite perpendicular, consequently the sine must neuessarily remain, until the very last, inside the are, and the tangent must renain outside. The obvious impossi-
bility of an actual coineidence of the three lines would seem to have forced itself for the moment (to be again immediately lost sight of) on the attention of Legendre, and it is admitted in Prop. xiv. by the words "We shall infer that the last result expresses the area of the circle, which, since it must always lie between the inscribed and circumscribed polygon, * and since these polygons agree as far as a certain place of decimals, must also agree with both as far as the same place." Now the cumulative character of any disagreement has here been overlooked; a very close approximation to equality in the three lines, left remaining as the result of continued bisection carried to the extreme, is quite intelligible and indisputable, but a very close approximation between the inscribed polygon, the circumscribed polygon, and the are between them, if that arc contains the eighth part of a circle, becomes, when the construction of the circle is correctly under. stood, a manifest impossibility. If the increase of the small remaining part of the arc was merely an extension thereof into a greater magnitude of similar form, such as would result from increasing the length of the radius namely, the production of a larger are similar in form to the small arc, there would then be a possibility of an almost absolute agreement, such as alleged; but a circle cannot be produced in such a way; the circle may be considered as formed by the longitudinal union of extremely small arc magnitudes similar in form to each other ; consequently, as the compounded magnitude increases, so does the deviation from the straight line, and so, also, does the

* We have put these words in italics to specify the admission. It is to be noted that this admission is quite irreconcilablo with the alleged agreement or equality of the lines, because such agreement would be equivalent to abso lute coincidence of the lines.
amount of difference between the are and straight line, continually accumulate. The difference which expresses the disagreement in actual length of the small lines, is a part of the relation in form of those lines, which increases proportionally to the increasing development and magnitude of the figure. If the small part remaining as the result of bisection be the 100th part of the halfquadrant* then the difference between the sum of the one hundred small sines, the sum of the one hundred small tangents, and the half-quadrant itself will be one hundred times greater than the corresponding difference existent in the small are between the similar lines; or, if the small arc be the one-thousandth or the onemillionth part of the half-quadrant, then must the difference between the sum of the sines and of the tangents of all the combined small ares, and the half-quadrant itself be one thousand times, and one million times respectively, greater than the difference between the corresponding lines, to wit-between the sine, the tangent, and the arc-length, belonging to the small are.

[^9]Some of those persons who are reasonable enough to feel that to nominally define a thing by calling it an abstraction does not define it at all, prefer to adopt the expression 'surface' whereby to denote a line, * and define a geometrical line as 'the surface of a geometrical figure.' Now the surface of a thing must either belong to and be a part of the thing or must be outside of it . . . in regard to the circle, for instance, the surface must either belong to and be a part of the area of the circle or it must be outside the circle. If supposed to be within the circle then must the circumscribed polygon, compounded by the union of the small tangents, (if the circumscribed

[^10]polygon be a continuous and not a fractional figure) be necessarily greater than the surface. And if the surface be outside the circle, then must the surface be greater than the sine, which is always within the circle and therefore less than the circumscribing polygon by which the circle is surrounded.

The objections to Legendre's propositions, as a supposed demonstration of the ratio of the circle to the diameter, are:-

First-Evidently, he assumes the circumscribed polygon to be a simple continuous figure ; because the application of his propositions is based upon a comparison of the polygon with the: : of the circle which is a simple contimuous figure, and f the polygon be not simple and continuous his demonstration fails, since, in that ease, the reasonableness of the application is not shown. It is objected that the case is not in fact as he assumes it to be : the circumscribed polygon is not simple and continuous, but compound and fragmentary . . for, if a straight line be bisected and the two halves thereof be placed together, so that their adjoining extremities form the vertex of an angle, it is manifest that the quantity of length contained in the exterior surface of that angle must be, measured as a continuous surface, greater than the sum of the two lines, measured separately and taken together ; because the interior surface (within the angle) must be equal to the lengths of the two lines taken together, and the exterior surface of an angle, considered as a complete figure, is evidently greater than the interior surface.

Sccond.-The inscribed polygon is assumed, if the process of bisection be continued, to become eventually coincident with the circle. It is objected that this is impossible, for so long as any are remains, however minute that part may be, the sine of the arc must be within the are ; and, if this be admitted, (which it must
necessarily be) it then follows that, in comparing the half quadrant with the radius, the difference, because cumulative, must be increased proportionally to the magnitude of the half-quadrant compared with that of the minute arc.

Some mathematicians are disposed to require in this case, in addition to adverse demonstration and to reasonable objection, the explanation of an apparent difficulty of a particular kind. It is said :-there can be no doubt that this numerical quantity found by Legendre and others as the ratio of the circle to the diameter, does represent the ratio of a quantity which has some actual and significant relationship to the circle ; that it must be so, is established by indirect evidence, for the very same quantity appears as the notable result of quite a number of different computations connected with the circle. Explain, therefore, what this quantity really is. What is the relationship of this quantity if it be not in fact that assigned to it by Legendre and others?

The answer to this requisition is:-The quantity in question, namely- ${ }^{\circ} 88539$. . . . is the sum of the sinelengths of all the elementary arcs contained in the halfquadrant, and into which the half-quadrant may be divided by the continued process of bisection. In other words, 78539 represents the length of the sine belonging to the extremely minute (ultimate) arc, which results from the continued process of bisection, multiplied by the number of those minute arcs contained in the half-quadrant, when the radius of the circle is valued as a unit.*

The origin of the error in Legendre's method, as well

[^11]as in the application of the process known as that of continued bisection, is in the omission to observe that comparison has to be made between a continuons curved line (the circle) and a continuous straight line (the diameter.) The circle may be divided into four equal parts, and the inseribed (or circumscribed) square is then equally and similarly reloted to each of those purts ; and, further, each of the quadrants and each side of the square may be bisected, and still the same equal and similar relationship will exist between each of the eight parts of the curvilinear figure and each half-side of the square ; but, if division be carried further, the relationship will no longer continue similar and equal. If the half side of the square were to be broken up into its (ultimate) component parts, and these arranged as an inscribed (or circumscribed) polygon, each minute part would be related to its are-similarly to each of the other minute parts ; but the polygon, being fragmentary and non-eontinuous, would not be in the same case as, and would not admit of indiscriminate comparision with, a continuous straight line.

For the purpose of defining the characteristic distinction between a straight line and an arc of a circle, and, at the same time, indicating the boundary between the conceivable and the inconceivable-between the reality of Science and unreality of Metaphysics,-we will notice here the word 'infinite.' In the first place it may be of service to call attention to the foolish and mischievous manner in which this word is becoming more and more frequently used. The word 'infinite' is properly and correctly used in Mathematics and in other divisions of science as the opposite to 'finite.' Outside or independently of its use in such sense the word 'infinite' has a naturelly sacred character as applying to the attributes of the Creator, and it is very desirable that the use of the word should be restricted to its proper and correct
application. It is now used in all sorts of literary composition,-in newspaper articles, lectures, sermons, d. .-in a mamer chat may be termed unsense, and which would oftentimes be absurd if it we.e not calculated to have a seriously mischievous effect. Perhaps, the most common mistake is its use as equivalent to the expres-sions-'indefinite,' which merns that which is finite, but of which the limit is not, or cannot be, defined-and 'immeasurable,' which means that which camnot be measured in consequence of its exceeding greatness.
'Infinite' means boundless, unlimited, endless, continual extension, \&c., de. The word does not correctly compound with words (adjectives) which express comparative extent, or in which measurement is implied. Such a compound expression as 'infinitely great' is, therefore, (with exception of the theological sense) barbarous; ' infinitely greater' or 'wiser' is about equally so ; 'infinitely small' and 'infinitely less,' or 'infinitely more foolish' are perhaps even worse. We make these remarks in this place, primarily, for the purpose of obtaining the requisite attention to the distinction between a circle described (1) with a definite radius or (2) with a radius of indefinitely great length, and (3) a circle described with (using the expression for illustration only) an infinite radius. In the first there is included, because necessarily resulting therefrom, the idea of a definite circle, of which the magnitude is determined and defined by the definite magnitude of the radius. Belonging to the second is a circle the magnitude of which is limited; its mugnitude may be immensely, perhaps immeasurably, great, and of unknown greatness, but it is limited by the limited length of the radius, whatever that length may be . . for example, the radius, or radial distance, may be the distance between the earth and the most distant star, and, as the distance of the star is evidently finite, so must the magnitude of the circle described with that
radial distance be limited accordingly. It may be here noted that we can conceive or adopt as a conception and distinctly cognize as an idea, anything of which we have (obtained) certain knowledge as a fact . . . taking the example just stated, or the similar casc-of the earth moving in its orbit of revolution around the sun, if we consider the motion of the earth through a quantity (an extension) of space equivalent to a few yards or feet of terrestrial measurement, the motion would appear to be in a straight line. Compared to any merely terrestrial motion, it would be almost absolutely in a straight line ; and, considered merely in reference to any such motions, its deviation from a straight line would be inconceivably small, and would scarcely admit even of intelligible expression as a comparison with any merely terrestrial quantity; nevertheless, by a knowledge of the fact, and of certain other facts with which to make comparison, we are enabled not only to obtain the conception of, but also to distinctly appreciate the deviation and even to determine and measure its amount with almost perfect accuracy; we are enabled to be perfectly sure that the path or line of the earth's motion, throughout that quantity of space, is not in a straight line but in the are of a circle, having the sine of the are within and the tangent of the are without, the boundary (perimeter) of that circle.

Thirdly, (3) we have the idea of a straight line, or, so to speak, we have the compomen idea* of the are of a circle which has become a straight line. If it were conceivable that a radius-vector might have infinite length, it would then follow that the extremity of such a radius would describe a straight line, and the straight line

* We have already stated that these expressions are used, in this connection, only in illustration of the par' cular case under consideration.
might then be considered as the arc of a circle of iufmite magnitude. It may be that herein we have the nearest approach that can be made by the human mind to a conception of that which, if it can exist, does not belong to the world of humanity ; to a conception of the inconceivable ; for, in what may be termed a compound negative sense, the mind does seem to be very nearly able to distinctly coguize the supposition as a positive idea. Having certain knowlerlge of the straight line as a fact, and apprehending the necessity that, if the supposition of the infinite radius were admissible, the straight line must have that relation to it which the arc of the circle has to a finite radius-the shadow seems to assume substance, and it is almost as though the mind were able to grasp the unreal idea as a reality. F :t, in fact, there would be no circle and the supposition as a positive hypothesis does not belong to (human) science. To entertain and to wilfully play with such an unreal idea as a positive or concrete conception is forbidden; to do so would be to leave the realm of scieuce, and, contemning the guidance and authority of reason, to enter the dark domain of metaphysics. We believe, however, it is admissible to entertain the idea, thus far, negatively, for the express purpose of defining the boundary and of clearly realizing the essential distinction between the straight line and the circle.

A very serious obstruction in the way of intellectual progress has been now pointed out and clearly indicated. The false statement at the commencement of Euclid's great work is now unmasked and its actual character made manifest as a monstrous deception of Untruth in the place of that which it purports to be-a true definition of reality. Those who for the future are deceived by it must be so by wilfully subjecting themselves to such deception, So soon, however, as its false and deceptive
character has become distinctly understood, those who more particularly represent Education and Science, should mark its baneful influence in the vantage ground it has so long occupied, and see to its speedy condemnation and removal. Let 'the stumbling-block be taken up out of the way.'

APPENDIX.

An ingenious endeavour has been made by Dr. Simson, (and others,) to give an intelligible explanation of the compound dogma prefixed to Euclid's worl' by means of the figure of a solid cube or parallelopiped. The solid is supposed to be evenly divided by a section at right angles. to its sid...s. It is then explained (argued) that the section is the wiperficies, and that the superficics cannot belong to either part of the solid, beeause if either one of the parts be remsed the surface still remains wit the other part; and hence it is inferred that the surface hat no breadth; \&c., \&c., as follows:

Dr. Simson's Explanation.-" It is necessary to consider a solid, that is, a magnitude which has length, breadth and thickness, in order to understand aright the definitions of a point, line, and superficies; for these all arise from a solid, and exist in it. The boundary, or boundaries, which contain a solid, are called superficies, or the boundary which is common to two solids which are contiguous, or which divides one solid into two contiguous parts, is called a superficies: thus, if BCGF. be one of the boundaries which contain the solid ABCDEFG.H., or which is the common boundary of this solid and the solid BKLCFNMG., and is therefore in the one as well as the other solid, it is called a superficies, and has no thickness; for if it have any, this thickness must either be a part of the thickness of the solid AG., or the solid BM., or a part of the thickness of each of them. It cannot be a part of the thickness of the solid BM. ; because, if this solid be removed from the solid AG., the superficios BCGF., the boundary of the solid AG., remains still the same as it was. INor can it be a part of the thickness of the solid AG., becanse if this be removed from the solid BM., the
superficies BCGL. the boundary of the solid BM., does nevertheless remain ; therefore the superficies BCGF. has no thickness, but only length and breadth.
"The boundary of a superficies is called a line; or a line is the common boundary of two superficies that are contigit ous, or it is that which divides one superficies into two contiguous parts: thus, if BC. be one of the boundaries which contain the superfieies AB CD., or which is the common boundary of this superficies and of the superficies KBCL. which is contiguous to it, this boundary BC. is called a line, and has no breadth ; for, if it have any, this must be part
 either of the breadth of the superficies ABCD. or of the superficies KBCL., or part of each of them. It is not part of the breadth of the superficies KBCL. ; for, if this superficies be removed from the superficies ABCD., the line BC., which is the boundary of the superficies ABCD., remains the same as it was. Nor can the breadth that BC. is supposed to have be a part of the breadth of the superficies ABCD.; bezaluse, if this be removed from the superficies KBCL., the line BC., which is the bonndary of the superficies KBCL., does nevertheless remain: Therefore the line BC. has no breadtli ; and, because the line BC . is a superficies, and that a superficies has no thickness, as was shewn; therefore a line has neither breadth nor thickness, but only length.
"The boundary of a line is called a point, or a point is a common boundary or extremity of two lines that are contiguous: Thus, if \mathbf{B}. be the extremity of the line AB. or the common extremity of the two lines AB., KB., this extremity is called a point, and has no length; for if it have any, this length must either be part of the length of the line AB . or of the line KB. It is not part of the length of KB.; for, if the line $K B$. be removed from $A B$. the point B. which is the extremity of the line $A B$., remains the same as it was; nor is it part of the length. of the line $A B$.; for
if AB. be removed from the line KB., the point B., which is the extremity of the line KB., does nevertheless remain : Therefore the point B. has no length ; and, because a point is in a line and a line has neither breadth, nor thickness, therefore a point has no length, breadth nor thickness. And in this manner the definition of a point, line, and superficies are to be understood'"

We object to this explanation ; that. . the boundary defined is a space outside the solid: for (1) the boundary which surrounds and contains a solid must be greater than and must be outside the solid which it contains, and (2) the boundary which separates and is common to the contiguous sides of two solids is a space-which space must contain more or less breadth aecording to the greater or less distance between the two solids (or two parts of the solid.) Let the distance between them be any definite small quantity of space.the two contiguous solids (or parts of the solid), may be then removed to twice that distance, and the boundary which is common to both will have twice the amount of breadth...... or, the two solids may be brought nearer together and the distance between them lessened to th one-half, the boundary common to both will then have one-half the breadth it previously had, or the distance may be lessened to the one millionth part and then will the breadth of the boundary be diminished to the one millionth part of the breadth contained in the previous boundary, and so on. But now, if the two solids (or the two parts of a solid) are brought into absolute proximity and united into one solid (or into a whole undjvided solid,) the boundary common to the two solids and which is outside each of the solids (and is a part of the boundary containing each of the solids respectively) has disappeared, it is no longer between them for they are united: evidently the boundary of the solid (or part) ABCDEFGH., if it be outside that solid must be now a part of the other solid (or part) BKLCFNMG., and inversely the boundary of the last, if it be outside the last solid itself, must be a part of the first.

The reasoning applies equally to the similarly related case of the line in which the line BC. must be a breadth-containing space between the two contiguous superficies and be common to both of them; for if they be united, a boundary
in the same sense is no longer existent; neither is it con-ceivable-for, to conceive suoh a boundary is to include the idea of separation which necessitates the cognition of a space measured by the distance (amount) of that separation. And it is evident that the space: is the line so conceived or cognized.

Similarly in regard to the point B. If the point be the extremity of the line AB., and be in the line; then is it a part of the line AB., and if the line $A B$: be removed, then is the point B. removed with it ; for, to assert the contrary is to assert that the same one point B. can at the same time be in two or more different places; which is absurd. And again, if it be neither in the line ABi, nor in the line KB., then it cannot be the extremity of either line, in the sense of belonging to and ending the line, therefore it must be the space. between the oxtromities of the lines and must contain magnitude (broadth) limited and measured by the distance which separates thena extromities, (or a minute and definite divisional part of that space may be taken to represent the line; i.e., the line may be considered as constituted by the space, or as contained in the space and constituted by a divisional part of the space:)

THE. ULTIMATE SINE.

The repeating process of duplicating the bisected arc.-The result of this process is to obtain the sine length belonging to the minute (ultimate) part of the are which would remain after the process of bisection had been repeated a great number of times--that is, repeated until the vanishing-point had been almost arrived at. It is, therefore, strictly speaking, a nethod belonging to the same general process of which several methods are already known and practised, amongst them being that of Legendre which we have quoted.

The method which we are now about to explain has the advautage, we think, of exhibiting tue facts from which the elements of the computation are derived, in a moresimple, direct, and readily intelligible form; and perhaps, also, in a more generally instructive and useful form.
has the ich the simple, so, in a

FIG. 18.

4 c- $\mathrm{cos}^{2} x^{7} 7^{3}$,
2 $=5$
 . $x+2$, \quad,

, y
浬 $\sin ^{x} 1 \%$.

ysis thas

The method may be thus explained:-The half quadrant (or any other definite fraction of a circle) being described with a given radius of definite length-(1) The chord of " ? are is drawn; througle the terminal point of the are, and at right angles to the chord, a line is drawn (of indefinite length,) which line is a part of the secant belonging to half of the are duplicated in magnitude. (2) The are is bisected and through the point of bisection, from the extremity of the radins, a line is drawn which intercepts the secant of the duplicated halfare; the line last drawn is therefore the chord of the half-are duplicated, and the point at which that line intercepts the secant is the terminal point of the halfare of duplicated magnitude: that is, if the radius of the primary are were to be duplicated $*$ and a half-quadrant described therewith, the point thus found would necessarily bisect that half-quadrant. (See Fig. 18.) In like manner, a line is drawn through the point thus found at right angles to its chord, which line is a part of the secant belonging to the second half-are (the half of the duplicated half-arc)duplicated in magnitade. Now in order to draw the chord of the third arc, without actually describing the second are, the chord, or any part of the chord, of the second are, may be taken as a radius and an arc described therewith intercepting the tangent of the primary arc ; the are so described being bisected, the point of bisection would be necessarily a point in the line drawn from the extremity of the radias through the point of bisection of the first duplicated half-arc (if the are be described and the line be drawn.) And the line being drawn from the extremity of the radius through the point thus found and produced until it intercepts the secant last drawn, the point of interception will be the terminal point of the second half-arc quadrupled in magnitude, and the line joining that point with the extremity of the radius is the chord belonging to the second half-are quadrupled. In like manner the process may be carried on so long as any space remains between the tangent of the primary arc and the terminal extromity of the are last drawn.

[^12]The foregoing is a brief explanation of the general method which, however, admits of several variations by means of which the construction may be made to more completely exhibit and illustrate the application of the method to the purpose of measuring and investigating the lines pertaining to the successive arcs. Fig. 20, for example, in addition to the preceding explanation, which is illustrated therein, shows a convenient method of obtaining the terminal parts of the radii belonging to the successive ares respectively.
In order to make the reliability and computative value of the method distinctly apparent, we will now, taking the radius equal to 10 , and commencing with the half quadrant, carry the computation through eight successive bisections, and then compare the results with those obtained by Legendre from the process of inscribing and circumscribing polygons.
(Note. The square root of 'the square of the radius less the square of the sine,' deducted from the radius, gives the versed sine.)

The square of the sine together with the square of the versed sine give the square of the chord.

The chord of (the half quadrant) $\frac{\mathrm{C}}{8}$ equals the sine of $\frac{\mathrm{C}}{16}$ duplicated; and so on.

$$
\begin{aligned}
& \text { Radius }=10 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1st Bisectn. } \left.\quad \begin{array}{rl}
\mathrm{C}=20
\end{array}\right\} \quad \underset{\overline{1} \overline{6}}{\mathrm{C}} \quad\left\{\begin{array}{l}
\text { Sine } \\
\text { V.S. } \\
\text { Chord } \frac{1 \cdot 53667^{2}}{}=58 \cdot 578631 \\
7 \cdot 803612^{2}
\end{array}=\frac{2 \cdot 317732}{60 \cdot 896363}\right.
\end{aligned}
$$

The following is in correction of an error in the last part of the table on jage 55. Appendix, to Part Second.

120	$=1 \cdot$ ชоихzช	\%•>0uxz\%	128 th
256	$=7.853193$	$7 \cdot 85319$	256th
512	$=7 \cdot 853785$	$7 \cdot 85379$	512th
1024	$=7 \cdot 853932$	$7 \cdot 85393$	1024th
2048	$=7 \cdot 853969$	7-85396	2048th

It is sufficiently evident that the two methods of computation are precisely equivalent in their results. To correctly appreciate the true relationship and significance of that re-

[^13]The foregoing is a brief explanation of the general method which, however, admits of several variations by means of which the construction may be made to more completely exhibit and illustrate the application of the method to the purpose of measuring and investigating the lines pertaining to the successive arcs. Fig. 20, for example, in addition to the preceding explanation, which is illustrated therein, shows a convenient method of obtaining the terminal parts of the radii belonging to the successive arcs respectively.

In order to make the reliability and computative value of

8th Biseetn. $\}$ C $\left\{\begin{array}{l}\text { Sine } \quad 7 \cdot 853966^{2}=61 \cdot 6847914 \\ \text { V.S.................................. }\end{array}\right.$ $\mathrm{R}=2560\} \overline{2048}\left\{\begin{array}{l}\text { Chord }\end{array}\right.$
T rompare Legendre's computation $*$ according to the method of inscribing and circumscribing polygons: Since he takes the whole circle and the diameter as unity, his figures must be multiplied by 10 and divided by 4.

The inscribed polygon of Legendre's method; multiplying the figures by 10 , and dividing by 4 , to compare with the half quadrant and with $\mathrm{R}=10$.

The number of sides.	The lengths.
8	7-071068
16	7.653668
32	7-803613
64	7.841371
128	$7 \cdot 850828$
256	7-853193
512	$7 \cdot 853785$
1024	7.853932
2048	$7 \cdot 853969$

The bisected are duplicated. The sine lengths belong to the successive arcs of bisection when increased in magnitude to equal the half quadrant.

The lengths.	The fractlonal parts of the circle.	
7.071067	The	8th part.

It is sufficiently evident that the two methods of computation are precisely equivalent in their results. To correctly appreciate the true relationship and significance of that re-

[^14]sult it is necessary to particularly note that the radius of each successive arc is of increased magnitude; in such wise that the seventh arc, resulting rom the process, is comparable with its radius which equals 1280 ; whereas the primary are is comparable with its radius which equals 10. Therefore, although the seventh are is absolutely the same length as the primary arc and may bu, in that sense, correctly considered as the samn arc from which the greater part of its curvature has been elimin tted, yet relatively to the radius and therefor u relati vely to the completo circle (or to the half quadrant) the seventh are is the 128th part of the primary arc divided off therefrom by repeated bisection and, relatively to the tangontial straight line, dissimilar therefrom in form. It now clearly appears thet, altheugh the length of the sine belonging to the seventh arc approximates to the length of that arc, since $1 \% 8$ of these fractional arcs must be combined in order to reproduce the half-quadrant, the difference between the sine and are length of the seventh arc, whatever that difference may be, is sulject to multiplication by 128, in order to obtain the difference represented br ${ }^{\text {the ratio of that }}$ sine-length when increased by 128 magnitides, to the arclength of the half-quadrant.
An advantage of this method for the purpose of quantitive investigation, is that the one continued computation determines the sine lengths belonging to each of the successive arcs. The arcs are all equal in length each to each, and as the curvature is eliminated from the arc by the successive bisections and duplications of magnitude, the ratio of the sine length to the arc-length of the arc continually approaches equality, (i.e. until the ultimate limit at the vanishing point of the circle is reached.) Much facility in carrying on the computation arises from the fact, which an examination of the figure will make apparent, that the chord of the one arc is the sine of the arc next succeeding; for example, the chord of the primary arc of 45 degrees is the sine of th 3 duplicated are of $22 \frac{1}{2}$ degrees. The chord of the arc of $22 \frac{1}{2}$ degrees is the sine of the duplicated are of 114 degrees, and so on. It is to be also observed that the square of the chord length, by means of which the quantitive value of the verstd sine to each suecessive arc is obtained, is continually furnished by the computation itself.

FIG. 10.

FIG. 10.

cher

$$
\square
$$

IMAGE EVALUATION TEST TARGET (MT-3)

\square

Photographic Sciences Corporation (716) 872.4503
4

Fid:

い？．20．

い！20．

[^0]: * Evidently, in this connection, the relation of the halfchord to the half-quadrant is equivalent to the relation of the chord to the quadrant.

[^1]: * Beeause R.X. $=$ R.S. divided by $9, \times 10$.

[^2]: * J 3ecause $x . T .=x . t . \times 10$, and $x_{0} R_{0}=x . r . \times 10$.

[^3]: * Wo mean by this expression-the longitudinal space between two perpendiculars, the one drawn through the point at one extremity of the arc, and the other perpendicular drawn through the opposite extremity of the arc.

[^4]: * It may be observed that taking the radius $=1$. The chord of the quadrant becomes $\sqrt{ } 2$ and the sine of the half quadrant becomes $\sqrt{2}$.

[^5]: - Or which may be readily known,

[^6]: * All computations really such (i. e. which are not merely explanatory or merely the numerical equivalents of statements), may be considered the solutions of propositions in the science of quantity and number. If an algebraical computation, the proposition is quantitive; if belonging to arithmetic, the proposition is numerical.

[^7]: * That is-not a compound fragmentary figure formed by iwo lines merely placed together.

[^8]: * The coincidence of the lines"appears to be included in, and to be partly the subject of his demonstration; but careful consideration will show that theprocess itself, having regard to its intended application, is primarily based upon a foregone conclusion as to such coincidence.

[^9]: * The circle naturally divides itself into eight parts compared to an inscribed or circumseribed square, because the four quadrants are each divisible into two half-quadrants, each of which has the same relative relation to the side of the square as the relation of the other half; so that the eight parts of the circle relatively to the sides of the square are similar and equal each to each, but if further division be made, then such equality and similarity in form relatively to the side of the square wiil be no longer obtained, beeause the curvature of the diminished are will be less than that of the part divided off from it. The non-appreciation of this fact has much to do with the erroneous conclusion supposed to have be on demonstrated; it is, indeed, in the distinct and thorough apprehension of this relationship that an explanation of the pre ise character of the fallacy is to be found.

[^10]: - Strictly speaking, according to the presently accepted doctrine, it line is the extremity of a superficies. It' a superficies were to be defined as a realsurface, compounded of real lines, the expression would not, we opine, be subject to objection; a line night be then considered as one of the extremities of the surface, or ats a section of, or as one of the elementary constituents of the surface. As the (so called) definition now stands, it we attempt to directly cognize it as an intelligible idea, we find ourselves almost immediately enveloped in a network of contradictions. (1) The surface is either compounded of lines, or it is not compounded of them.-If it is, how can that which hath breadth be compounded of that which is without breadth? If it is not; what then is that surface of which the line is the extremity, and of which, nevertheless, the line is not a part? of what then is that surfac compounded, and is the surface itself a part of, or does it belong tu a:ything? But the difficulty (dilemma) is of a still more refined charac-ter.-"The extremities of a line are points," which are negatively defined to be nothing. Now, the relation of the line to the surface is defined to be similar to the relation of the point to the line: it theretore seems to follow that since the line has nothing for its extremities, the surface likewise has nothing for its extremities. How are we to cognize the idea of a surface without any extremities; or, of a surface which hath length and breadth together with extremities which, according to the definition, certainly have no breadth and probably have no length, for the supposition of a line without extremities possessing length is, if it have any meaning, the negative suppor tion of a non-existent line which might be possessed of length if it were existent.
 (See, in the Appendix, Dr. Simson's explanation of a superficies, and illustration of Euclid's dogına.)

[^11]: * This fact, with its precise significance, may become more distinctly apparent by consideration of the process of the continued duplication of the continually bisected arc-an explanation of which will be found in the Appendix.

[^12]: * Meaning the radius duplicated by donbling the distance of the centre, with which the arc is described, from the point at the original extremity of the arc.

[^13]: *The tabulated figures of Legendre's computation will be found at page 33.

[^14]: *The tabulated figures of Legendre's computation will be found at page 33.

