IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked belove.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other then blue or black)/
Encre de couleur (i.e. autre que bleve ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration epparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a ét'́ possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées
Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/ Comprend du matériel supplémentaire

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible imege/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ontété filmées à nouveau de façon à obtenir da meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the mothod:

L'exemplaire filmé fut reproduit grâce à la générosité de:

La bibliothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filme, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papler est imprimée sont filmes en commençant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la derniere image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé é partir de l'angle é'nérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

婑

The Montreal, Ottawa and Georgian Bay Navigation.德 RERORT
of T. C. Clarke, Esq. C.E., submitted to the Legislative Assembly, in 1860, together with a

SUPRLEGENTARY REPORT

by Mr. Clarke on the Present Aspects of the Undertaking.

OTTAWA :
Paynter \& Abbott, Printers and Booklinders, 36 Elgin Street. 1900.

The Montreal, Ottawa and Georgian Bay Navigation.

RERORT

of T. C. Clarke, Esq.. C.E., submitted to the Legislative Assembly, in 1860, together with a

SUPPLGGMENTARY REPORT

by Mr. Clarke on the Present Aspects of the Undertaking.

OTTAWA:
Paynter \& Abbott, Printers and Booklinders, 36 Elgin Street. 1900.

RETURN

To an Address trom the Legislative Assembly w His Excellency the Governor Ge?eral, tate:l the sth instant, praying His Excellency to $^{\text {the }}$ be pleased to cattse to be laid before the House, a Return of the recent Survey and Report of the Engineers on the Ottawa Ship Camal.

By Commanl,

Secketary's Offer
Quebec, 19 th March, $1860 . j$

C. ALLEYN, Secretary.

REPORTT.

To till: Honor viles Joun Rosis, Commisssoner of l'ublic Works.
sir, -I have the honor to submit herewith my Keport upon the Ottawa navigation, in atcordance with instructions received from the Department of Public Wiorks, and hereunto appended.

The guestions upon which information is sought, and to answer which the Survey has been carried on during the past year, are as follows:-
I. To determine the practicability ol a navigaton for vessels of the larger class, between. Montreal and Litke Huron by way of the River Ottawa, and its tributary the Mattawan, Lake Nipissingue, and the French River.
II. Tor ancertain what seale is best suited to the nature of the route.
III. To give a reliable estimate of the cost of the improvement.

In the fitst place, 1 bave to report that the distance between Montreal and the mouth of French River on Lake Huron according to the plans furnished me by the Department.) is, following the line of navisation adopted, +30.76 miles.

That of this distance 351.81 miles are already a good natural navigation, and reguire no improvement, and that it is perfectly practicable so to improve the remaining ,8.95 miles, as to convert the whole chain of waters into a lirst class navigation for steam vessels, and to reduce the length of canalling to 29.32 miles, or, exchusive of the lachine Canal, to 20.82 miles.

Secondly--The scale of navigition attainable, and which 1 would recommend as best suited to the capabilities of this route, is calculated for vessels of one thousand tons burden, and bas lock; 250 feet long by 45 feet wide, by twelve depth, on the mitre sills.

Finally-A careful estimate, resulting from a close instrumental survey of all obstructed points, the details of which will be found hercafter, enables me to state that the cost of this improvement, exclusive of interest, legal expenses and land damages none of which I have any means of ascertaining, will not exceed the sum of $\$ 12,057,080$, distributed as follows:--

There are, exclusive of the lachine Canal. 20.82 miles of Comals, costing $\$ 12,057,680$, which is epual to $\$ 579,139$ per mile of Canal. lint the cost of the whole
 per mile.

Such are the results of the Survey. The manner in which they have been attained will be described under the following general heads.
1.-Physical characteristics of the Ottawa.
II.-Methods of Improvement proposed.
111. Character of work and material in locks, danss canals, iee.
IV.- Scale of Navigation.
V.--Special description.

Vh.--ieneral Remarks.

I. - PHYSICAI, CHARACTERISIICS OF THE OTVINA.

Before taking up in detail the method of improvement proposed tor this chain of waters, I shall sketch brielly the physical geography of the Otawa Valley, and some of its prominent geological features. Nor is this foreign to an lingineering report, for, in order to clearly understand the matter of the changes proposed, we must first get a correct idea of things as they are.

Kivers have been well defined as the channels by which the water. originally evaporated from the sea, and falling upon the land, is returned to the sea again, and the volume of water discharged is the excess of precipitation over tvaporation throughout thefvalley of any river, varying directly with the area of drainage, the rain-producing character of the atmosphere, and the nature of the soil.

Their position is determined by the laws of gravity, and they always follow, from the interior portions of continents to the sea, the line of quickest descent, -that is, the line of lowest level, whether resulting from upheaval, denudation, or the combined effects of both.
positc
tain s
from
fifty
works
settle
dımin
canno
meltin
Henc
damm
where
of :ha
its inh
cape
nearly
surplu
for the
of gett
of this
the Ot

The characteristics of rivers are much modified by the nature of the geological formations through which they pass, and their diferent powers of resistance to the transporting and eroding effect of the waters.

In a country based upon sedimentary rocks, which are not hard enough to resist the force of the current, and senerally do not appear above the surface at ali, the formation of river channels is a process simbar th that which we see when a shower fall; upon a newly cultivated ficld. The water follows the line of quiches: descent, but meeting material of different degrees of hardness, it meanders about from right to left and assumes a sinuous course ; its ronstant tendeney being to elongate its channel and consequently diminish its slope 'These windings are so great in some rivers as to double their length, as in the case of the Mississippi, hetween the (hion and the (iulf of Mexico. When the length of the channel has heen so much increased as to diminish the slope, and the consefpent velocity of the current to such a rate that it will eat into the shores no longer, the regime is said to be estahlished.

But in a furmation composed of the harder crystalline rocks which obtrude themselves above the surface, the waters have not the satme pewer to form for themselves channels: and the characteristics of the rivers of such a country are very different from those previously described.

The irregular depressions and elefts in the surface beconce filled with water, and form Lakes, whose overflow tumbles in cascades and rapids, over the rocky barriers which it cannct destroy, until it finds its way into other lakes, bing at a lower ievel and from these to others, until at last it is received in some such arm of the sea as the fiulf of St. Iawrence, or Itudson's Bay:

A glance at the map of our continent will show at once the distinctive peculiarities of the two systems; north of the st, lawrence, in the regon of crystalline rocks, the comotry is dotted with Iakes and the comnecting rivers are generally short. In what may be termed the Mississippi system, there are but few lakes, and the rivers are long, and marked by a peculiar sinuosity ot course.

Owing to the absence of the harder rocks, there are but few cascades and rapids. The currents are strong, but all the tributaries of the Mississippi have at some seasons of the year a matural navigation for boats of light draft of water.

On what we may call the northern river system, the navigation consists of stretches of deep and sitill water, interrupted by rapids and falls: around which the light canoes of the voyageurs are portaged by hand.

The obstacles to the improvement of these two river systems are of an entirely opposite nature. 'The problem in the one case is 10 regulate the natural flow, so as to retain sufficient depth for navigation in summer, and to defend the surrounding country from the disastrous inundations caused by Spring floods, which often rise to a height of lifty or sisty feet above the Summer level, and would probably sweepaway any artificial works intencled for the improvement of navigation. As the country becomes more widely settled, and a larger area of timbered land is cleared away, the evil increases; for swamps diminish evaporation, and actas natural reservoirs to moderate the violence of torrents.

Our river system, fortunately for us, is furnished with a series of reservoirs, which cannot be destroyed, in the lakes themselves. These lakes receive the waters from the melting of the snows in the spring, and hold them stored up against the summer heats. Hence the beautiful uniformity of the flow of our rivers. The st. Iawrence, unless dammed by ice, seldom rises over four or five feet: and the average rise of the Ottawa, where free from ohstructions, is about twelse. There are few more beautiful illustrations of that beneticient design, which adapts the physical structure of the earth to the wants of its inhabitants than this; for, from the unretentive nature of the soil, the rain would escape nearly as fast as it fell; and the northern rivers would be torrents at one time, and nearly dry for the rest of the year, were it not for these natural reservoirs in which the surplus waters have been stored up among the hills.
'I'o improve the navigation of such a river system is a comparatively simple matter, for the greater part is already done to our hand, and we have only to devise some means of getting from one Lake to another, and our task is accomplished.

This brief sketch of the more prominent peculiarities of the northern river system of this Continent, will enable us readily to comprehend the physical characteristics of the Ottawa, the largest of the tributaries of the St. Lawrence.

Its total tengeth from its source, near the heads of the sagneray and st. Maurice aceording to Sir i'illam I 1 sam, trom whence it describes nearly the halt of a circle in its course, matil it balls into the st. lawrence it the Istand of Aontreal, is ower seven hundred miles: and it drains an area of one less than cighty thousand square miles.

From the Table of Resers (sce Appendis 1) it will be seen that its si/e is about equal to that of the Khine, and its great regulanty of ifow, pantioularly as compared with such river a the (hate and Rhine, with the wident.
 degree to the fart, that, from the difiference on latituse, the or has melied and pased vit of its לouthern tributame, befure its " north water," as a as called. comes down.

The two great geological divistors of its rocks are laurentian and silurian. The Laurentian rocks are supposed by gedegists to have heen the surface of the then exsting
 deposited.

The ondines on the shores of this andent continemt followed the North bank of the St. Lawrence, and thence ran of the Otawa, skirting its north shore at varying distances. The present (otawa Valley, as far up as Deep River, sems what heon a bay or inlet of the silurnansea : bounded on the North and West ly the man continent, and on the South by a peninsula which runs into Northern New Yirk, and forms that wild section of combtry of which the Adirondark Montans ane the Eastern homdary. 'The Riverst. Lawrence bas br ken through the isthmus which romerted this peninsula with the main land, in a preat mumber of hamels, firmong the celeorated gromp, of the Thousand I slands.

The surbe on this laurentian fomation is extemely ruged, and the rocks are contorted in a manuer that hows the artion of some extraordinary force. 'There is little level land, and the hollows between the rocky hills are fillod with intumerable lakes, whose water is clear and deep. 'The whole region shews the wearing effect of water, and has evidently been much influenced by placial action, as may be seen from the growed appearance of the rocks and the hiils, and the huge deposits of boulders that choke up portions of the river beds. The rocks comsist chicfly of micaceons and hornblendic gneise, mira slates, and vems of crystalline limestone.

The silurian rowk, on the other hand, are sandstomes and limestenes: lying in regular strata, llat and undisturbed as when deposited on the floor of the orean.

The truth of the observation of Ilush . Ailler that the physiognomy of the landscape depends upon its geology, is nowhere wore eviden tham umen the L'per and Lower 1 thawa.

From Dontreal to Deep River the (Dtawa runs in a Silurian valley: although at some points, as the "Rocher fendu" and the Chat:, the crystalline rucks shew themselves in the chamel of the river. The general features of the landscape are those of a level country, like that or all limestone formations. Rocky barriers have peoned back the waters intolong lakes, like the Des Chenes and Chats, whose shores are low and flat, and generally cultivated to the water's edpe with iertile farms. The timber is hardwood, principally heech, maple, ash and elm. The width of these shects of water is from halt a mile up to two miies. Along the Northern shore at varying distances, runs the unhroken outline of the Laurentian hills; which, as has been stated, were probably once cliffs against which beat the waves of a Silurian sea.

Above leep, River the character of the landscape changes. We are now entering upon the oldest part of our continent, whose rugged masses and contorted outlines speak ot the convulsions of tormer ages. The hills that had admitted a strip of level country between their bases and the river now crowd close ujon its edge, and rise precipitous, in some places to the height of seven or eight hundred feet. The groves of hardwood give place to those vast forests of pine of which the wealth of the Ottawa chiefly consists, and the clearings are few and mimportant.

As we advance, the scenery becomes more wild and rugged, and the picturesque beauty of the cliffs and cascades of the Mattawan, and of the lonely isles of French river, is unrivelled in any part of the continent.

Lake Nipising is of irregular shape, from forty to fifty miles long and twelve to eighteen wide, and receives the water of seven rivers: two of them, the Sturgeon and Nauwanitigone, of considerable size. The south and west shores are bold, and the depth of water is great. 'The north and east shores are low and flat, and the water shoals
gradually. 'The western end of the lake is filled with islands, and the shores are cut up with inlets ending in marshes.

The Mattawa ind lirench Rivers consist of a series of long and narrow lakes, of great depth and sluggish current, the waters escaping from cach into the next helow over natural dams of rock. Wherever, from greater softeses or a more unfaverable disposition ot the strata for resistance, *hese rocky dams have been much worn down, the current is stronger, and it may be seen from the rombed and wave worn appearance of the roekbound shores, that the lake above has once mantaned a higher level than it now holds.

On the Ottawa, from the Mittawa to Deep River, there are strong currents, and the character of the water is more river than lake-like.

lirom the preceding sketch, the following conclusions may be deduced:-
That there are two great matural divisions of the Ottawa country ; on one of which the banks of the riwer are low, and the rocks generatly soft ; while on the other the shores are precipitous and the rocks hard.

That the owa is a river of very even How, and ant subject to sudden rise or destructive freshets.

That the extent of obstructed water reguing improvement is but a swall proportion of the whole, and that the grenter part is at chain of inland lakes, affording a good natural navigation.

How to correct these unobstructed parts is the question now to be considered.
When a river is obstructed by falls and rapids, there are several methods of making it navigable.
I. We may cut Canals around the rapils, and lock up and down throush them, keeping away from the river, and letting it entirely alone.
11. We may throw dans across the channel of the river and convert the rapuds into a series of still lakes, and lock darectiy from one into another.
III. We may combine these methods by canalling around rapids, and using low dams to give the required depth, and to drown out eurrents between canals.

Sometmes one of these methods is most applicable to a particular locality, and sometimes another : and the judgment of the engineer is shown by his choosing that which best suits the circumstances of the case.

On the lower Ontawa, where the I.akes are long and deep, and the shores low and highly cultivated, th would be unwise to attempt to itter the existing levels, for we should drown a large extent of conntry, thereby destroying arable land, and protably rendering what was left unhealthy. Whatever plan is proposed will carefully avoid disturbing the long levels.

But furtumately for the project, on the greater part of the river, where the water is required to be raised, the shores are bald, and the desired lift would overflow but little land. Here we have only to raise the natural dams or reefs of rocks to the desired height, by arrificial structures, thus restoring a condition of things which possibly existed before the ceaseless rush of waters, or glacial action had worn the rock dams down to their present state.

Wherever canalling is resorted to, the canal will follow the store, and be constructed by embankments rather than in excavation, on account of the great saving of expense over thorough cuts in solid rock, of the large dimensions necessary for the navigation.

The whole key to the system of improvement proposed for the Otawa is comprised in two propositions.
I. Follow the natural bed of the river, and avoid cutl!ng into the rocky shores.
II. Gain the depth required for \mathbf{n} vigation by raising the surface of the water rather than by submarine rock excavation.

We may lay it down as a general principle that, although on the lower part of the river where the shores are flat and lie upon sedimentary rocks, we could dispense with the use of

[^0]dams; yet as soon as we enter upon those portions where the river has eut its bed through crystalline rocks, (which is more than half the whole distance from Montreal to Lake Huron), the only mode by which a mavigation can be mate at all is by raising the water by dams.

There is not now depth enough of water : the currents are too strong to be overcome: and at the shores rise almost perpendicular from the water's edge, there is no room to comstruct canals; moreover, even if there were room, the length of artificial canal required would be so great as to condemn the project; and there can le no doubt of the superiority of a still deep, lake from two to three humdred yards wide, for purposes of navigation, over a canal of fity yards in width.

Fortunately every existing condition favors this mode of construction.
The bed of the river consists of bard crystalline rocks, worn smooth and generally free from boulders: and the shores of the same material rise abruptly on cither side, diminishing the length of the dann reguired.
l'oints can be obtained where the water is shallow. and where there are rocky islands which wi! act as natural buttresses for the structure. Under these cremmstances there is no more danger of a properly constructed flat dim ieeng disturned than one of the islands themselves.

As has been previously said, the Otawa is not a river subject to sulden rise or extraordina floods. It never averages over three inches in :wenty-four hours for any number of days in surcession : its common rise is one ind per day. Its rise to its high water mark, stand, and subsequent fall, occur every year at nearly the same dates, with the utmost requarity. (see appendix for table "(C.")

There is very little shove of ice in the Ottawa, where dans woutd be reciuired.
so ample is the volume of water, even in the driest time, that notwithstanding leakage and the effect of wind blowing down stream, the dans would be always submerged, with from one to two feet of water running over their crests.

A very important effect of dams upon the Otawa will be to diminish the varation between high and low water. This is always proved to tee the case wherever they are buith, for there is a greater area to be fitled inp by the flood waters betore they can rise ; and the discharge ower the top of a dam is so free that the water can never rise above it to the same extent that it does in a river channel obstructed by islands and smaken rocks.

In designing a system of dans for the Ottawa improvement, we should have the actual voluane of water discharged both at the lowest and highest recorded stages. This would repuire a series of gauges in different parts of the river, taken for a term of years, until the greatest and least flow was ascertained trom actual measurement.

As the time of this survey has been limited to one season, I cannot pretend to have attained such accuracy; nor, merely for the purpose of an estimate of cost, is it necessary: It is only requisite, for that purpose, that what is assumed as the greatest and least volume should cover the extreme limits of variation

The results of several guages give, for the summer volume of discharge, at Portage du liort, 31,000 cubic feet per second, and that of high water, 127,000 cubic feet per second. Prom anything on record, it does not appear probable that the least discharge ever falls below 25,000 cubic feet per second, or the greatest over 130,000 These guantities, , herefore, have been assumed as a maxim and mimimun (see Appendix, T'able ")"

Where the dams themselves act as waste weirs, it bas been thought preferable to raise the masonry of the upper or guard lock, and allow the water to rise as high as it would upon the crests of the dams, rather than to attempt to control it by guard gates in the body of the dams, as this would be introducing a perishable material, and mode of construction, into the body of the work.

The height at which the water will stand upon the crests of the dams for different volumes of discharge, has been calculated by the formula tor weirs, originally due to the investigations of Du Buat.
L.et Q be the number of cubic feet per second, and L the length of the overfall of dam be known and we can obtain :
H. = Twe height at which the water will stand above the crest of the dam from the simple equation
$\mathrm{H}=($ () $)$
$3.5^{6} \mathrm{~L}$.
By this tormula the table of dams (see appendix I)) was calculated, and the height of the coping of guard locks established.

It will be seen that these dams will have from $1.3 . f$ to 3.51 of water running over them at low water. Yet for purposes of estimating, their crests have been assumed to be as ligh as the level of water above them, which gives excess of material.

One other point demands notice. We know that by dams we can drown out currents, in these lakes themselves, strong enough to affect navigation.
'The velocity of any carrent depends directly' tipon the area of ilowage. When that is large in proportion to the volume, the velocity is slow; and as the area diminishes, the velocity increases, in order that equal volumes may pass in equal times. How great this velocity will be at any point is strictly a matter of calculation, founded on well known hydraulic laws. Without here giving details, it is sufficient to state in general terms that the present area of tlowage will be so much enlarged by the depth of water thrown on by dans, that no greater velocity of curreut need be apprehended than three miles an hour, at any point, even during the six or sevee weeks of high water; and during the rest of the season the currents will be entirely imperceptible."*

III. ALETHOI OF IN!PROVEMENT PROLOSEIS.

In accordance with the instructions of the Department, the quality of the works is proposed to be not inferior to the standard of the st. Lawrence Canals; and every thing has been designed as substantial as possible. It is believed that there will be nothing perishable but the lock gates on the whole line.

Dans, where carried above water, will be of rough but strong rubble masonry laid in cement; wherever the water runs constantly over them they will be llat timber dams composed of sold timber laid up crib-fashion, without faming, tastened with $3 / 4$ inch spuare bolts, zo inches long, at each crossing rock bolts $\frac{3}{4}$ inch round ; to be filled with loose stone, covered with + inch plank, well spiked, and staunched with gravel, similar to those usually constructed by the Department in connection with timber slides.

In most places the water can be diverted by a rough coffer dam, and the permanent structure commenced directly upon the flat rock. 'This operation is much facilitated by the numerous channels into which the river is divided, at the peints selected, by large and small istands. The dams can be run from one island to another, and passages left for the discharge of the waters, which can be afterwards closed.

When the water is deep, recourse must be had to the system of sinking cribs. The dam should, where possible, be laid out upon segments of circles arching up stream ; at

[^1]mode of construction in which the greater the pressure the tighter the dam. Every alternate crib slould be lowered to its place, sunk, and fastened to the rock with heavy iron bolt:
'Tine key crl'sis should then be flated in to fill up the spaces, and the whole sheet piled on the up stream side

Com this ievel sume the superstructure of the fhat dam is corried up in the usual

 tect the rack below.
'limber and stone suitable for doms are foand abondan'ly an prea of the route,

 Ottawa.

 generally assumed to be samd, bat a tight timber toundation, laid in conctele, is provided for under the recesses.

The gater ate designed of solid timber, in the stvle now used on the st. lawrence Canals. Eich gate will have two sluices $10^{\prime} 6^{\prime \prime} \times 2^{\prime} 6^{\prime \prime}$, and eulverth around the hollow quoins to be used in case of accident to the sluices, or together with them if required.The arragement for opening and shatting wase shou'd be of tie mosi appored kind: and it is bolieved that a loknge need not take over tea minues, the averose time on those locks of the St. Lawrence Canals, where the latest improvements in machinery and gates are uscd.

In arranging the lockage it has not been found necessary to phace m ore than two locks in combination, except at the Talon Caute, whare three have been combined, the contour of the ground prohibiting any other arrangement.

The cost of the execution of this work will depenil, more than anything else, upon the character of the rock, its hardness in excavation, and its suit.bleness for purposes of construction. As has been before stated, the two great divisions of the Ottawa rocks are Laurentian and Silurian. The former are very hard, difficult to work, and too brittle for the face stone of locks; white, on the other hand, the Silurian lime and sandstones are easily excavated, and, from the upper beds of the limestone known as the Trenton group, we can procure a building material excellent in every respect, both as regards ease of workmanship, strength and durability. From some of the Argillareuus beds a good hydraulic cement can le obtained, such as is now made at Hull, opposite Ottawa City.

We know, then, that from Montreal to Deep River, building stone lies all around us, but from that pint to Lake Huron, it was much to be feared that the stone of the country, although good enough for backing lock walls, filling lock dams, and rough masonry in general, could not be depended on for face wark. Luckily, however, this is not true of the whole of that extent of country. A bed of yellow weathering, fossiliferous limestone, on the North-east shore of the river, a little above the De:ax Riviéres Rapids, will afford good stone for the structures in that district and on the lower Mattawan.

At Talon Chute there is a vast mass of crystalline limestone, described in the Geological Report, which is a fine grained and tolerably tough stone, and appears to be good enough for face work. The locks at that point have been estimated to be built of it:

The face work of the rem linder of the locks upon the lower Mattawan is designed to be built from a quarry of gray granite (probably an intrusive dyke) on the north side, about half a mile from the river, helow Paresceux Chîte.

For the structures on French River, the face stone must come from the beds of Niagara limestone, on the Manitoulin Iflands of Lake IIuron. This will much increase the cost of that portion of the work, and render its construction necessarily gradual.

IV. SCALE OF NAVIGATION.

The first point to consider is, whether we are designing a local or a through Navigation. This would be decided by the general depth of the chain of waters, the difficulties
of overcoming the summit, the supply of water, and other points, more or less closely connected with the preceding.

To these my intention was first directed, and after careful personal examinations of the whole route, aided by the graphic report of Mr. Shanly and the result of such Surveys as were at the time made, I was able defnitely to decide, that, whatever seale was fixed on should be with the view of completing, at some future day, the through line of Navigation.

It must be borne in mind that this is exeluslvely a steam navigation ; sails, although useful austliaries, would never alone enable vessels to pass through this route, with any saving of time over that by the Welland Cana**
the next point is, whether we shall build locks fitted for large vessels; or whether, preserving the dimensions suited to an inland and Local Navigation, we shall cause a tramshipnent to take place at the mouth of Freneh Kiver, which is about half way between Chicaso and Montreal by this rome.

This question is determined by the length of Camal (or what is equivalent in delay to an artificial eut) on the route where a large propurtion of the distance is canal. I should then terommend transhipment: for 1 belicte the unwieldness of larde vessels, on accennt of their top hamper being acted on by the wind, - the risk of damage to the vessels and to the works in the narros channel of the Canal. and the delay arising from the se causes, woutd more than balance the cost and trouble of transhipment into steam barges better suited for Camal navisation. \dagger

As som as I had ascertained that the length of Canal on the whole roate, including Lachine, would not enced 20 :32 miles and that the remaining for:4 miles could be made a naveation allowine of as rapid a transit as the great lakes themselves; and indeed mare so, so fir as freedom from head winds and storms is concerned; I was then prepard to recomend the larger seale, and an unbroken line of Navigation.

It only remans to decide how large. When crops are good, and full fieights offer, it is an admitted axiom, that, the larger the wassels the cheaper the cost of transport. It is a fortumate pecularity of this route that vessels can always depend upon making up full freights of sawed lumber from the inexhaustable pine forests of the Ottawa, manufactured at every dam on the river.

It requires then, I think, no argument to prove that we cannoterr in providing to Iet down to Montreal the largest elass of Propellers, now confined to the Upper Lakes by the limited size of the Welland Canal.

From these data, and after consultation with various persons experienced in the Lake Trade, I have fixed upon the dimensions given, as iollows:-

The length proposed by Mr. Shanly, and suggested in the instructions of the Department, 250 feet, is long enough for vessels of the desired touage. It does not, however, seem desirable to exceed the breadth of the St. Lawrence Canals, 45 feet; because this is in itself wide enough; and because it makes the enlargement of the Lachine Canal attainable, without pulling down the present lock walls.

The depth has been fixed at 12 feet, which is ahsolutely necessary if we wish to admit vessels ot over six hundred tons, as will be seen from the table of large Propellers (given in Appendix E.) for which I am indebted to the kindness of Capt. D. B I) obbins, Secretary of the looard of Lake Underwriters, Buffalo, N. Y.

[^2]Although, through the heavy cuttings, as where the distance is short, I have followed the width recommended by the Department, 100 fect on the bottom, I have not hesitated to increase the prism of the Canal generally to 146 feet on bottom; as I believe that is not more than is required for vessels to pass with speed and safety. The depth has been fixed at one foot more than the locks-say 13 feet; and in Lakes and Rivers will be 15 feet, and generally average 20 teet.

V.-SPECIAL DESCRIPTION.

Commencing at the City of Montreal, we have the Lachine Canal common to both the St. Lawrence and Ottawa routes. It is 8.5 miles long; has five locks, $200 \mathrm{ft} \times 45 \times 9$, with a total lockage of 43.75 feet. The prism of the Canal is 80 feet on the bottom, i2c at water surface, and averages 10 feet deep. This would have to be deepencd, and the locks lengthened to admit vessels of the same tonnage as could pass the proposed Ottawa Canals.

As neither the time nor means at my disposal have enabled me to make a survey of this, I have not included it in my estimate. The enlargement involves no serious obstacles, and will, probably, be made whether the Ottawa Navigation is opened or not.

A map of Lake St. Louis, made tor the Commissioners of the St. Lawrence improvement, in 1842, by A. LaRue, P. L. S., shows a channel depth, somewhat circuitous, of not less than 15 feet from Lachine to Isle Perrôt. For reasons given above. I have not made any survey here, but am informed by pilots that there are 55 feet, and over, along the North Shore of Isle Perrot, up to the foot of the present St. Annes Lock. I bave myself, taken soundings for half a mile below the lock, and over that distance can corroborate the truth of their statement; but it is much to be desired that there should be a new survey with soundings carefully made from St. Annes Lock to Lachine.

Saint annes.

Length of Canal, 1.19 miles.
I Lock, ift. lift, L.W. ; 3.5 ft., H.W.
Canal above, t 25 ft . wide by 5010 ft . long.
Guard pier below, 1000 feet long.
Estimated cost, $\$ 469,672$.
I propose to enlarge the present lock to the requisite dimensions, as it occupies the best point that can be selected. In order to do this it will be necessary to put in a coffer dam and pump it dry, take down the east wall, and get the pit sunk to the proper depth, as early in the spring as the weather will admit of laying stone. Then by working night and pay. it would be possible to complete the new lock without delaying the opening of the navigation for more than three or four weeks.

I will be necessary to build a guard pier 1000 feet long helow the lock, on the side next the rapid, to cut off the current, which, at high water, is strong enough to incommode vessels very much. This will be an ordinary crib-pier filled with stone.

Above the lock, the river bed is Potsdam Sandstone, in strata of from five to eighteen inches thick, somewhat tilted upon one another, and covered with boulders from the Laurentian rocks. The average depth, from the head of the lock to a point where the water snddenly decpens to eighteen feet, is eight feet, and the distance 5000 feet.

I propose to make a double line of timber piers, 15 feet wide and 125 feet apart, for the whole distance. Half of the width of each pier to be filled with earth lining and sheetpiled, and the enclosed area divided into sections by water-tight bulk heaks. The rock is seamy and would leak a good deal but by puttiug in powerful steam pumps and shortening the length of the section to be laid dry in proportion to the leakage, it would be perfectly practicable to keep down the water until the excavation was made to the required depth of five feet. The stone would be used to fill the outside compartments of the piers, and the excess deposited outside of that. The bulkheads would be removed, and the whole thing would be an artificial canal 125 feet wide, and 13 feet deep, in the bed of the river, while the piers would serve as guides to keep vessels from straying out of the channel. I have been particular to describe this in detail, as a simlar method will be proposed for submarine rock excavation wherever it may occur.

The face and backing of locks is estmated to come from the neighboring quarries of Chazy limestone at l'oint Claire of which the piers of the Vistoria Bridge are built: filling of cribs out of the excavation.

This is unquestionably the best way to make the improvement, for were the proposed canal located on the shores of the Island of Montreal, as has been sometimes proposed, the amount of under water rock excavation required to reach 15 feet of water from the shore, both above and below, would actually exceed that on the line I propose, and we should have, in addtion, an enormous amount of excavation on land, and an expensive bridge to build for the Grand Trunk Railway.

IAKE OF TWO MUUNTAINS.
The head of the Saint Annes, Cana would he 23 miles from Montteal. From the 23 rd to $24^{\text {th }}$ mile, according to the surveys of W. B. (Gallwey, C. F.., placed in my hands by the departmem, it has a depth of from 20 to 30 feet. Fiom the 24 th th the $261 / 2$ th mile, the low water depth does not exceed 13 to 14 feet, and 1 am unable to say whether the bottom is rock or some material that could, if required, be dredged. From the $261 / 21 \mathrm{~h}$ mile to the foot of the Carillon rapids at the $473 / 4$ th mile, the channel is 30 feet and the navigation is straight and unimpeded.

Carillon.
Length of Canal 0.5 miles. 2 locks, 12 and 5 feet lift; passing basin, 2000 ft. long.
Rolling lam, $17 \times \mathrm{ft}$. overfill ; lift of water, 6.25 feet.
Estimated cost, \$307,742.
At Carillon the river is obstructed for 1.3 miles by a reef of calciferous sandstone with only two or three fett of water running over it, except in the "Sickle" channel, about 150 ft . wide and 9 or to deep, and, as its name mplies, very crooked. The fall, at the stage of water when we levelled it, was 8.75 feet.

This has been overcome by the military canal, built by the Imperial Government, 200 miles long; locks up, 23 teet, by two locks $128 \times 32.5 \times 5.5$, and down again 13 to 15 teet by one lock of the same size, and is fed from the North river. The prism of the canal is very irregular, being from 18 to 40 feet wide on bottom, and 50 to 80 at surface, say 5.5 deép in the centre, gradually shoaling to each side. It runs from 5 to 16 feet cutting to water surface, principally rock.

The locks are in a very ruinous state, and cannot last many years longer in their present condition.

The great amount of rock excavation necessary to enlarge this canal to the new scale, its twelve to fifteen teet of unnecessary lockage, and bad location of the lower lock, forbid us attempting to improve the present work.

I have located the new canal on the south shore of the river. The water is 25 to 30 feet deep up to the lower lock, which is at the foot of the current, near the house of the late Judge Macdonald, Point Fortune. The passing basin is defended from the river hy a wall of stone laid in cement battering $2^{\prime \prime}$ in 12 ", backed by a bank of loose rock out of the excavation, sloping $11 / 2$ to itowards the river, and the whole paved with stone set on edge. The rolling dam stands on flat rock, free from boulders, and except in the channel, the depth of water is not over two feet. It will have a slide for timber, and the height of water above its crest will range from 2.57 to 8.11 feet.

By removing some fitty thousand cubic yards of rock between the upper lock and the head of the rapid, this dam across the river could be dispensed with. On referring to the map it will be seen that the proposed canal occupies the place of the side dam just constructed. To gather enough depth of water to run deal and timber cribs, as we are obliged to destroy this channel, we must provide a new one ; and there is no way so practicable as to raise the water by a dam, which shall contain a broad and short slide leading directly into deep water below.

The lock stone will come either from the Pointe Claire quarries, or those of Isle Bizard. The loose stone for dam filling, out of the excavations, and the stone for the wall, to be laid in cement, can be got out of the bed of the river in such size and shape as will enable it to be laid up into a wall with scarcely any dressing. On this account I
have considered that $\$ \mathbf{3 2 5}$ yer cubie yard would be sufficieat ; which price implies that but little labor is required.

CHUTE A HIONHEALI.
Length of canal, o.07 miles.
One lock, ten feet lift.
Kolling dam, over fall, 1750 ft ., lift 12 ft .
Light dam, cement masonry, 1550 ft . long.
Estimated cost, $\$ 14+3{ }^{1} 5$.
A stretch of five miles of still water over 30 ft deep, brings as to this rapid, about 900 ft . long, and falling +it . 'The Military Canal is here formed by cutting off a point of rock, and has one lock of the same size as at Carillon. The canal is forty feet wide. and eut through rock, about th? same depth.

We place the new lock in a channd between the island and the present lock, and follow the line of reef with one dam, the depth, except in channel, not being over two or three feet. This dam has a slide for timber similar to Carillon.

The object of raising the water 12 ft . by this dam is as follows:-The lower end of the present Grenville Canal is through rock cutting. liy raising the water at the Chute a Blondeau, we can follow the river for $\mathbf{1 . 1}$ miles above the present lower lock of the Grenville Canal, shortening the new one by so much; and saving a large amount of rock cutting.*

The lock stone is estimated to come from the same point as Carillon. Stone for dams can be procured on the spot.
(;RENVI]I.I:.
Length of canal, 4.43 miles
One parr of combined locks, 12 ft . lift each.
l'assing basin, 400 ft . long.
One lock $61 / 2$ feet lift; prism of eanal 150 ft. at surface, 146 on bottom and 13 deep; at head for 2000 ft ., 100 ft . wide on bottom.

Guard lock, ito 1.5 ft . lift.
Estimated cost, $\$ 1,197,852$.
The bed of the Ottawa, at the foot of the Long Sault, which is an almost continuous rapid for five miles, w!th a fall of forty-five feet, consists of ealciferous sandstone, covered with boulders from the laurentian erystalline rocks. These are worn smooth and polished by the water, are of all sizes,and in many places entirely conceal the rock in position. This makes s., bad a foundation for artificial structures, that we are driven perforce out of the bed of the river, and can do nothing ut enlarge the present Grenville Canal, which is generally well located on a strip of flat land lying between the high bank and the margin of the river.

As has been stated, we ieave the river t.r miles above Greece's Point, and lock up at once to the Grenville level, in order to raise the bottom of the canal out of cutting. The new line joins the old one in about a mile, follows it for about a mile and a half, and then, to avoid rock cuttings, runs along the river's edge, which forms one bank, while the other is formed by a stone wall laid in cement, backed by a bank of loose rock out of the excavation of the head, and sloped $11 / 2$ to t toward the river, and paved. The new canal follows the old line, cutting through the neck of land upon which the Village of Grenville stands. Here, for 2000 feet, the width has been estimated to be 100 feet, with sides nearly vertical. The embankments (not river wall) are formed by dry battered wall, backed with earth filling.

If, instead of using these stone walls, laid on dry land, and in cement in river wall, the embankments werd dressed to a slope of $\mathrm{I} 1 / 2$ to I and paved, the estimated cost of this section cculd be reduced about $\$ 300,000$.

[^3]ston
labo
thin
allo
and
from
side
ing
runs
over
get t
sand
for a
St. A
guide
s.and
of Mr
City
straig
long ;
prolon
head
K
backec
A
decent
taken
on the
Seve
low the
of rock
swanp.
leges w
St
the Tr
La
and var
general
Bei
and 18
Chats tt

[^4]The lock-stone can be brought from below by the present canals; all the other stone can be got out of the river, or near by; and, as at Carillon, will require but little labor to lay it into a good wall. All the rock from Carillion to Crenville is soft, lies in thin strata, and can he easily got out. I have considered $\$ \mathrm{I}$ per cubic yard as an ample allowance, except at Chute a Blondenu, where the rock is harder and there is less of it, and I have called it $\$ \mathbf{1} .25$ per yard. The lock stone is easily dressed and can be carried from the fuarries, to where it is wanted, in scows : distance 25 to 35 miles. I have considered that $\$ 12$ for face and $\$ 6$ for packing, averaging $\$ 8$ would be sufficient.

At the head of the Long Sault is a great sand-shoal, partly dry at low water : but following close to the north shore we have 24 to 30 feet. From Grenville to Ottawa, the river runs in a level valley, with low shores of blue tertiary clays; a considerable extent is overflowed by high water, and covered with sand deposited by the river.

The width is from one to two thousand feet, and the channel depth 30 teet, until we get to the "Green Shoal," some 8 or 9 miles below Ottawa (ity. Here a calciferous sandstone reet runs clear across the river, diminishing the depth at low water to eight feet for a length of five hundred feet.

It will be necessary to pursue the same comrse here, that has been recommended at St . Annes, and remove the stone by a coffer dam, :he sides of which should he left for guide piers to indicate the channel. Betwen this place and Ottawa City, there are some sand shoals that must 're dredged, but no more rock.

The sum estimated for the improvement of this section is $\$ 136,105$.
The plans of this part ot the river furnished me by the Department from the surveys of Mr. Gallwey being unfinished, I have obtained the distance from Grenville to Ottawa City through the kindness of Sir William Logan, who calculates it at 55.25 miles in a straight line. Allowing for the bends of the river, I have called it 56.07 .

CHAUUERE AND DES CIIENES.

Lergth of Canals: Chaudiere, 2 miles; Des Chênes; 0.6r. Total, 2.6i.
Slides channel ; pair of combined locks in $1 / 2$ feet lift pach ; passing basin 600 feet long ; pair of combined locks, $11 / 2$ feet lift each ; water surface above raised 3.7 feet by prolongation of present dam from head of mill flume, across islands to Sparks' Point.

Sparks' Point ; t lock, $8 \frac{1}{2}$ feet lift; stone side dam. 1700 feet long; rolling dam at head at little Chaudière, 2000 feet over-fall ; lift of water four feet, drowns out Remoux. Remonx; coffer dam and rock excavation.
les Chênes: i lock, $81 / 2$ feet lift; canal banks battered wall of stone in cement, backed with stone filling, and paved. Estimated cost, 8816.733.

At Ottawa City the river is interrupted by rapids and falis for 636 miles, having a decent between Ottawa harbor and Des Chênes Lake of about 60 feet, $* 36$ of which are taken up by the Chaudière, a magnificent foll which affords one of the finest water powers on the continent.

Several lines had been previously surveyed tor this Canal, but I have preferred to follow the river, shortening the length of Canal re, uired, and much diminishing the amount of rock-cutting, and consequent expense. But little land is overflowed, and that chiefly swamp. Two mills would be destroyed, (Sparks, and the Britannia,) but the new privileges would be better than those now existing.

Stones for the dans can be got out of the excavation, and excellent lock stone from the Trenton group of limestones, abounds close at hand.
I.ake Des Chênes, or as it is sometımes called, Chaudière Lake, is 26.69 miles long, and varies from half a mile to two miles in width; and according to Mr. Gallwey, its general channel depth is from 20 to 30 feet of water.

Below the river Quio the channel is crooked for a short distance, the depth $\mathbf{1 4}, 16$ and 18 feet, and some points might have to be taken off. From there to the foot of the Chats there is 25 to 30 feet.

[^5]Length of (anal, 0.6 miles.
Chats Island: i pair of combined locks, 12 feet lift each; passing basin, too feet long ; clay emhankment paved; 1 pair of combined locks, 12 and 6 feet lift; rolling dam 3700 feet over-fall ; tight dam, 300 teet ; lift of surface + feet. Chats Rapuds: i lock, eight feet lift; rolling dam, 2100 teet spil ; tight dams, 1000 feet long; lift of surfice, eight fert, up to low water level of Chats Lake.

Head of Kapids ; coffer dam and rock excavation. Estimated cost, $\$ 6 \mathrm{~S}_{1,9}, \mathbf{z}$.
This, it will be observed, differs entirely from the old route of the Chats Cinal. A considerable proportion of the excavatiot necessary to finish that work to the scale originally contemplated (60 feet wide, and 7 deep,) bas been done, but it forms a very insiguificant amount of that required for the new scale. 'The canal ends below in Big Bay, a sheet of water about a mite long, yuite shathow, and with a bottom of gneiss rock.

The depth at low water for 700 feet is not over 5.5 ; for 1000 feet not over S_{5}; and for 1600 feet, at the entrance, not over 6 or 7 feet, although mosi of this is probably clay, and could be dredged.

The only way a sufficient depth can be got except at a ruinous expense, is to throw a dam across the mouth of Big Bay, and raise the surfiace, placing a luck on what is called Hudson's l'oint.

My estimate tor the completion of the present Chats Canal on this plan, to a scale uniform with the rest of the river, is $\$ 1,465,439$. [See appendix]

There being some difficulties in ascertaining theamount of work done, I have credited the work with the whole amount expended, as per last rep rit of Department of Public Works, amounting to $\$ 32+, 000$, leaving a balance to be yet expended of $\$ 1,1+1,+39$.

My estimate for the new work has been stated at $\$ 681,93^{2}$, showing that it would be a saving to the l'rovince of $\$+5 \% .507$ to abandon the work airesdy done on the old rouse and take the new.

The length of Camal on the old oute is three miles, and is quite crooked: on the new ronte we have only 1^{10} of a mile, heing the locks and passing basin. The rest of it will be as good navigation as any part of the river. I have no besitation in recommending the adoption of the new route.

We cross the Chats Island with four locks, as stated above and run a low dam atong' the line of reefs at the head of the main fall, raising the surace enough to drown out currents up to our upper lock. The water does not exceed three feet in depth on the line of dam, except in the channels, and there are so many islands to work from, that the difficulty of building a dam here is not so great as at first sight would appear.

The depth of water will not be less than from 20 to 25 feet from this point to the upper lock and dam. This brings us to the level of Chats Lake, and we have is to 30 feet depth as far as the reef at the present head of the rapids. At what is called the canoe channel, there is now a depth of ten feet, but it is narrow and crooked. It slopes above into 13 feet of water in about 300 feet, and, below, pitches off at once into is feet of water. After the dam has been built below, and water stilled, it will be necessary to put in a coffer dam here, and remove some rock, which is chiefly crystalline limestone, leaving the sides of the dam for guides, as at Green Shoal.

The lock stone for this work should come from the quarries of Black River limestone on Des Chênes Lake. Stone for dams can be got in the neighbourhood. I have estimated the face stone at $\$ 12$, and the backing at $\$ 6.50$ per cubic yard, or an average of $\$ 8.25$.

Up to this place whatever rock excavation has been necessary, was through Silurian lime and sandstones of soft texture. But this rocky barrier, over which the river tumbles in some thirty different chutes, is one of the Laurentian series, and consists of hornblendic gneiss, mica slates, and crystalline limestone. The strata are considerably inclined, dip in the direction of the current, and the "strike" is generally at right angles to the direction of the stream, as may be plainly seen from the course of the reef.

These rocks are all hard to work. The crystalline limestone is much the easiest, and I have allowed $\$ \mathrm{I} .50$ per cubic yard for it. The mica slates, and particularly the hornblendic gneiss of a greasy texture, and greenish red color, such as is found at the lower end of the canal excavations, are hard to drill, and require much power to break them up. The price which I have allowed, and which is proportioned to the rock prices over the rest of the river, is $\$ 2.50$ per cubic yard.

The Chats Lake is a fine shest of water 18 miles long, and from half a mile to three miles wide, with a channel depth of from 25 to 30 feet.

From the head of this lake to the head of the Calumet Island, a distance of 3 1.07 miles by the North or Calumet Channel, and 24.79 miles by the South or "Rocher Fendu" channel, the river has a total fall ot 102.48 feet, and is much obstructed by rapids and shoals. On the north channel more than balf the fall is concentrated at one point, the Grand Calumet Falls, and there are longer stretches of still water. The south channel is a continuous rapid tor much of the distance.

In deciding between these two channels, several thing were apparent without further instrumental survey:

1. The Calumet was 0.28 miles longer than the other
II. From the head of the Calumet l'alls to la lasser 17 miles, the bed of the river is cut through sandy alluvial soll, is very crooked, and is filled with shifting sand-bars and shoals, that would have to be dredged, not only once, to open the navigation but continually to keep it open.
III. The timber slides now occupy the Calumet channel, and as there is not room for both timber and vessles, if we take this channel new slides must be built on the Rueher Fendu.
IV. The nature of the ground at the Calumet Falls would require three locks in combination.

The zery important question of cost could not be determined without making location of locks and dams on both channels, and estimating on each.

The Lock at the Snows is common to both routes; the lift at the upper one at Portage du Fort, and the height of dam, would have to be increased six feet. Two locks and a dam, and 0.28 miles of canal at the "Mountain" chute, and five locks and a dam at the "Grand Calumet." raising the water to the level of the river at the head of the island.

Here the only possible location for the canal son the site of the present slides. A ravine to the left of the fall was surveyed in $\mathbf{1 8 5 7}$. But even by combining all the five locks at the lower en 1, there would be fifty feet cutting for one mile, which, even for a camal of a hundred feet wide, would require the removal of nearly a million yards of rock.-This is, of course, impracticable.

In comparing the cost of the two routes, the lockage is the same ; and the difference of dams is not enough to affect the estimate materially. But the "Calumet" route would have in excess,

> 167,500 cubic yards ruck cutting, at \$1,50 $\$ 251,250$
> 1,000,000 " dredging, at 35 C 350,000
> Shewing a difference of cost of - $\overline{\$ 601,250}$ over the Rocher Fendu route.

Taking all these things into account, I have no hesitation in recommending the Rocher Fendu for improvement, and shall describe how it can be done.

chenaux or "SNows."

Total length of Canal, 0.2 miles.
1 lock, 6 feet lift.
Dam $\mathbf{i}, \mathbf{2 6 7}$ feet.
Estimated cost, $\$ 133,356$.
The rapids of the Ottawa are caused by reefs.
These are the remains, more or less worn away of the rocky barriers which once separated the different lakes In the limestone formations; the whole bar has generally been washed away, leaving an entirely submerged reef. But among the Laurentian rocks, the river cuts channels through the softer veins, leaving the harder rocks protruding above water in the form of islands. The "Snows" is a place where even the reefs between the islands have been worn away, so that it is now merely a contraction in the channcl, forming what hydraulic writers call a "discontinuous weir."

In summer the volume of water is only sufficient to dami itself up some six or eight inches, ${ }^{*}$ forming a slight ripple ; but in flouds the water atove rises from three to four feet, making a rapid too strong tor steamboats to ascend.

Three methods ot impovement have been suggested:-To raise the Chats lake and drown out the rapid;-Toremove the islands which obstruct the channel;-To put a lock in one of the channels.

When a river channet is contracted, the water dams itself up until it has attained a head sufficient to give itself velocity enough to pass through a narrow passage. Raising the water below will not prevent this from taking plaee, unless it is raised enough to give it an area of flowase eyual or that of the average channel of the river. 'To do this bere would rejuire a lift of the Chats I.ake so great as to be inadvisable.

To enlarge the area from 8,400 to 20,000 square feet, by removing obstructions, would reguire too mueb) rock excavation.

We are, therefore, reduced to the third plan, as recommended by T. E. Norman, C. E. . in his report to the department last year, and must put a lock in one of the channels. The Canoe Channel has been selected as the hest ; and the Steamboat Channel will be left open for the decending trade ; but all the others will be closed by low dams. This will raise the water six feet \dagger above its present level. In the spring the high water will pour over these dams.

I have gone somewhat more into detail in describing this place than its importance would seem to warrant ; because, from its being the line of the present steamhoat navigatoon, it has been much discussed, and many plans suggested for its improvement, both by professional and amateur engineers.

The lock stone should come from the superior quarries at the lower end of Chats Lake.

```
portage du fort.
```

Length of canal, 0.24 miles.
1 lock 12 feet lift, passing basin 400 feet long
1 lock 8 feet lift. Rolling dam, 2,664 feet long.
Tight dam, of masonry, 1,360 feet ; lift of surface, $10 . i$. Estimated cost, $\$ 287,396$.
Here we have a multitude of islands and channels, but the reefs between are not worn down more than two or three feet below the surface of the water, with one exception a narrow channel called the "Devil's Eilbow," which is over twelve feet deep. The locks will be placed at the head of the island to which runs the dam of Usborne's Mills. From the locks to the north shore the dam is a tight one, with a flume to admit water and logs to the mills. The remainder is a rolling dam, giving free discharge to the Hood waters. The timber slides will not be disturbed, except to lengthen them for the increased fall.

The locks may be built of a crystalline limestone, known as Portage du Fort marble, and the dams of the same.

[^6]Rock
which
distan
is $7 \cdot 3$
and a
Rapid
necess
prever
Lafont
follow
head
only a
flood
difficul
selves
our wo
and th
from th
or Cha
T
hard as
the pre
causes
vation
Fr
expand:
several
not bee
feet and
over ter
Th
tion of 1
of water
Th
of which
Thi
rapids at

Rocher liendu.

1.ength of Canal, o. 61 miles.

8 locks and 5 dams, as follows :-
Rocher-Pendu Chute Canal, 0.07 miles.
1 lock ten feet lift; dam 450 feet long.
Lift of surface 13 feet.
I.ong Rapids Canal, 0.12 miles.

Pair of combined locks, 14 and 6 feet lift; rolling dam 600 feet; tight dam 500 teet ; lift 17 feet.
Lafontaine's Rapids, length 0.23 miles.
1 lock 12 feet lift; hasin $\downarrow 00$ feet long; 1 lock 12 feet lift; dam 350 feet long: lift 17 feet.
Norman's Rapids, length 0.12 miles.
Pair combined locks 12 feet each ; dam 350 feet flat, 100 feet tight; lift 23 feet.
Black Falls, length 0.7 miles.
Guard lock, 2 to + feet lift ; tight stone dam 1100 feet long; low water lift 2.4 feet.

Estmated cost, $\$ 836,088$.
The dan at lortage du Fort will drown out the small rapids known as the "Split Rock and Tables," and give sufficient depth of water as far as the Rocher-Fendu Lake which, according to the surveys of T. E. Norman, Escq., is 30 to 60 feet in depth. The distance from lortage du Fort to the head of this lake, where we have a lock and dam is 7.35 miles. A distance of 1.61 miles takes us to $1.0 n g$ Rapids, where are two locks and a dam. 'The lift of water, 17 feet, drowns out la Barriere, Muskrat, and Mice Rapids, all of which have channels worn through the reefs, so that there will be no necessity for submarine rock excavation, while the shores are bold and high enough to prevent much land from being overflowed. We are now at the foot of what is called lafontaine Island, and here the river is divided into three channels. It is proposed to follow the south channel, and by huilding a tight stone dam above Black's Falls at the head of the island, to shut out the flood water and drive it down the other two channels, only admitting enough for navigation. Otherwise, the amount of water discharged in flood it se great in proportion to the contracted size of the channel, that it would be difficult either to build structures, or use them after they were done. By availing ourselves of the existence of these other channels to take of the surplus water, we can lay our work without coffer dams, and regulate force of currents as we please. Five locks and three dams take ns to the head.

Some of the crystalline limestone is good enough for locks, some stone will come from the quarries on Allumettes Island above, and perhaps some from Portage du Fort or Chats lake.

The rock in this part of the river, although of the Laurentian series will not be so hard as that at the Chats, owing to the greater amount of ciystalline limestone, and to the preponderance of felspar in the gneiss, which is easily acted on by the weather, and causes the gneiss to crumble, and become broken up. I have estimated the rock excavation at $\$ 1.50$ per cubic yard. Stone for dams can be got in the locality.

From the head of the Calumet Island to the foot of the Allumettes Island, the river expands into what is known as Lake Coulonge. At its foot the river is divided into several channels and islands. The main body of water passes on the west side. and has not been sounded until this year. The other channels are quite shallow, but this has 20 feet and over, except at one pcint, where, for five hundred feet in length, there is not over ten feet at low water.

Through the remainder of Lake Coulonge according to plans made under the direction of Mr. Shanly, and furnished me by the department, there is 25 to 30 feet in depth of water.

The river is again divided into two channels by the Allumettes Island ; the Northern of which, known as the Culbute, is much the better suited for navigation.

This Channel is narrow with bold shores, and the fall 18.26 feet, is concentrated into rapids at the head, the Culbute and l'Islet. For nine miles from the foot of the island,
up to a slight rapid oi five or six inches fall, known as the Chapeau, and caused by a contraction of the channel, we must follow the natural bed of the river, which is somewhat crooked, and will require a considerable amount of dredging, particularly at the mouth of Black River, a turbulent stream which brings down much sand during spring treshets.

It is probable that there will be some houlders, and points of reef below water, to be removed. For the improvement of this section there has been estimated the sum of $\$ 262,514$.

Chapeau and L'Isiet.

Length of canal, 0.14 miles.
Chapeau: 1 lock, 12 feet lift, and rolling dam 500 feet long; tight dam, 240 feet; lift of surface, 11.5 feet.
L.Islet : I lock, 6 feet lift, L. W.; 12 feet, H. W. : tisht dam, 700 feet lon; ; lift of surface 9.5 feet. Eitimated cost, $\$ 243,507$.

The lift of 11.5 feet at the Chapeau, gives good navigation for 5.85 miles to the foot of l'Islet. Here a tight dam of masonry in cement, as at Black's Falls, will keep) out the flood waters, and drive them down the broad Pembroke chamnel, and the lock is located in the channel between the island and the north shore.

This raises the surface of the water above l'Islet to the level of the river at Fort William, and drowns out the Culbute, which rapid darts through a narrow gorge in the rock, not over eighty feet wide, with high perpendicular cliffs on either hand. It will be necessary to tah e three or four feet off the top of the reef for about fitty teet in length. This can be done by putting in a short temporary dam at the head, after the water is raised and made still by the dam below. Then, on opening the gates of the lower dam. the bed of the river will be laid dry at this point, and the rock can be removed, after which the coffer dam above must be taken out.

The lock stone for these works is estimated to come from the quarries on Allumettes Island, four or five miles from the work. Stone for dam can be got near by.

Although it does not properly fall w: in the limits of this report, yet I shall take the liberty of ealling the attention of the \mathbf{c}^{\prime} minissioners to the fact that the expenditure of the above named sum of $\$ 243,507$, would extend the present steamboat navigation from Des Joachims to the head of Calumet Falls, a distance of 75 miles. From thence the macadamized road just finished by the department, would atoid the 8.41 miles of obstructed navigation, between the steamboat landing above the Calumet and Portage du Fort, the present head of navagation on Chats lake; avoiding the expensive and tedious detour of Muskrat Lake. An additional expenditure of $\$ 30,000$ would build the lock at the Snows. The dam would not be required at present.

I know no point above the City of Ottawa where so little expenditure would do so much for the local traffic, as at these places.

From the head of Culbute to Fort William, 5.3 miies, the river is much broken up by rocky islands, but according to the soundings laid down on the plans of Mr. Shanly, there is a deep, although somewhat tortuous channel.

From Fort William to the Rapid des Joachims, we have the fine stretch of water known as Deep River ; this is very straight, one to two thousand feet wide, and 27.6 miles long. The depth is very great, and said to be over 100 fathoms in some places; the shores are very bold, and the general character of the scenery resembles that ot the Saguenay on a small scale,

Des Joachims

Total length of canal 0.57 miles.
Pair combined locks, 13 feet lift each. Passing basin 2000 feet long. Embanked by material taken trom the excavation and sides of river. Slopes paved. One single lock, 12 feet lift. Dam, $\mathrm{x}, 272$ feet long ; length of overfall, I , 148 feet; lift of surface, 17.8 feet.

Estimated cost, $\$ \mathbf{3 2 7 , 7 7 4}$
This rapid is 1.54 miles long and falls 26.4 feet. It comes nearly at right angles to the general course of the river, which, if prolonged, would run through a series of lakes, and strike the river again about three miles above. A line of levels were taken by Mr. G. H. Perry, to see rhether this chain of lakes might be followed and a canal cut through
the ridge, dividing them from the river. Although the distance is less than a mile, the cutting even with proposed dam at head of Des Joachims, would average 20 feet, which would require the removal of over 400,000 cubic yards, principally rock. Hence we prefer to follow the north shore of the river itself. The rock occupies the place of the slides, which will have to be removed to the south side of the island, where there is a very good place for them.

Face stone of locks is estimated to come from l'embroke quarries. All other stone can be obtained in the neighbourhood.

McSorlev's

L.ength of canal, o. 13 miles; ilock ten teet lift.. Length of dam, 1,383 feet ; length of overfall $t, 041$ feet ; lift of surface, 16.5 feet. listumated cost, $\$ 169,375$.

From the upper lock at lees Joachims, a distance of 13.68 miles brings us to a series of small rapid's of 3 feet fall, where we put in a lock on the south side of the river, and a dam. It is necessary to raise the water eleven feet on the foot of the Rocher Capitaine ; and to avoid making the dam at the Joachims so high, this intermediate dam at McSorley's is designed.

The face stone of the lock must come from the Pembroke quarries. Backing, and other stone, adjacent to the works.

Rocher Cabitaink.

Total length of canal, 0.65 miles.
Single lock, 13 feet lift; passing basin, $\mathrm{I}, 000$ feet long. Material for bank, taken from excavation; slopes paved.

Single lock six feet lift, L. W., 12 feet H. W. Dam, $\mathbf{1 , 0 0 5}$ feet ; lift of surface, 22.4 feet ; pool, o. 70 miles long. Parr of combined locks, 13 and 6 feet lift; dam 1,702 feet long ; overfall, $\mathrm{I}, 400$ feet ; lift of surface, 21.5 . feet.

Estimated cost, $\$ 533,5+4$.
The Rocher Capitaine, which it is proposed to overcome in the above manner, is one of the largest rapids on the Ottawa, falling 40.9 feet in a distance or 1.35 miles. The locks are located on the north side of the river. 'The bank is composed of an immense mass of houlders of all sizes worn smooth by the water. It covers a space of about two square miles, and rises some sixty feet above the water. liortunately, between these boulders and the river there is a strip of solid rock in position, upon which we place the locks and canals. The bottom of the river is smooth rock, the depth where the dams run is not great, and, except that the upper dam must be long, there is no special difficulty in overcoming this rapid.

The face stone of locks is estimated to be got from the Pembroke quarries ; but the expense would be less, if the canal, hereafter described at the Deux Rivieres, were built first, as the stone would then come from the quarries above it, without transhipment. The rest of the materials can be got near the work.

Deux Rivières.

Length of canal, 0.46 miles.
Pair of combined locks, 12 feet lift each ; passing basin, 500 feet long. Material of bank from excavation ; slopes paved; single lock, 12 feet lift, passing basin, 500 feet long; single lock, 6 feet lift ; upper locks, on tiniber foundations. Dam, total length, 1,292 feet; overfall, 938 feet, lift of surface 33.9. feet.

Estimated cost, $\$ 419,942$.
The rapids, known as Deux Rivières, Trou and La Veillée, occupy 3.15 miles, and fall 31.1 feet. The fall in the river, from their head, to Johnson's Rapids, a distance of 17.85 miles, is 9.7 feet, most of which occurs in the rapids, at the Rocky Farm, which occupy 4.75 miles. It was thought best to put in a high dam at the Deux Rivières and then back the waters to Johnson's Rapids, as the facilities were greater for that mode of construction, than for putting in another dam and lock between the two, and the amount of land overflowed is quite insignificant.

The locks are situated on the south side of the river, on a flat piece of land, well suited for their location; the lock stone will come from beds of a yellow or buff colored
fossilferous limestone, which appears on the north side of the river, atowt three miles above, and promises thafford a gowod hdilding sone. Other stome can be got near at hand.

JOHNSON'S RAMIDS.

Iength of comal, o 15 miles. Single lock 12 feet lifi : pasung basin 1 goo feet kone: raised with carth and stone trom cmting: slopes paved : single lowk on timber fiundation,
 lift ol surtace 21 feet.

The locks and camal are on the north side of the iser on a strip of hat land. The dan stands in \boldsymbol{f}^{\prime} : feet of water at 1 . W.

The lock stome will come from quaries below, other stone near by.
This than drains ble rapids just below the monh of the \mathbf{X} Ittawan, and the currents in that river, and throws 1 , fee of water up on the foot of the Pein Ciants rapids, 3 . to moles abowe.

> MAMFAM:N RIER

At Fort Mattasan ;os miles from Montreal, we leave the Otawa which turns to the northwart, and is still a large river, the anome of water passing in summer being but litte less than that ruming over the Chathere at ()tawa. This is owing to the fact that as we descemt, the river expande into wide lakes, and loses by exaporation nearly as much as it rexeives trom its tributaries.

From this peint to Fiench River, 1 canol do better than to guote from the renort of my principle assistant, Mr. Li. R. Blackwell:-
"()n commencing examinations tor a work of the contemplated character and magniLude of the impovement of the Ottawa and liench River waters, the first thing presenting itself as indispensibly necessary, was to obtain a reliable section of French River. I.ake Nipissing, and the summit or height of land between Nipissing and Trout Lakes. The camimations were commencel at the primeipal month of the midelle outets of French River on the zoh Nowmber 1858 .
"This debouchment of freneh River is entirely land locked. To the west lie a large group of ishands known as the "Hustard hilands," which completely shelter the month of the river from the westerly and the smethwesterly winds of (demgian Bay. The main land affords protection from the northerly winds.
"The chamel to the entrance of French River lies at the norther!y cextremuy, and close under these istands. 'There appear to be several deep and brout channels divided by sunken reets, and I an eonfident that a spacions entrance con be mated out, tree from these treacherous sumken rocks which mark the whole coast of Georgian Bay.*
"From the mouth of liench River, for the distance of $2.7+$ mites, the river is straig't, bread, and leep) ; the hanks bold, and the gray crystalline qaess rocks rise perpe icular out of the water, and make it resemble more the deep bays of the lake, than 4 mouth of a river.
"A his distance from the bay, the river makes a turn nearly at right angles to the right, and necomes quite narrow ; and here "Les Petites Dalles Rapids." form a barrier to mavigation ; the fall at this puint is six feet. The rapids are about ninety feet in width, and it is about 11 (oo feet from deep) water below to deep water above. The rock on the north rises nearly perpe:adicular to the height of ninety feet, and on the sonth side, with a gente slope. th the height of twenty feet, in a distance of one hundred and twenty feet, and then rises abmptly into broken cliffs.
"From "hes lectites Dalles" we continue our course nearly east for the distance of one and a quarter miles ; here we find two large channels, one continuing directly on the

[^7]\[

$$
\begin{gathered}
\mathrm{con} \\
\mathrm{de}
\end{gathered}
$$
\]

wit

ascen

head
rome.
line of
is 8.4
rucks
about
throug
in wid the firs Talom an eles with do
"Th with an 21 feet total fal cliffs.
" r
they re: of pond
21 feet.
" A
which
feet abor
course we have been traversing, ard the other nearly at right angles to the north.
"We pursued our examination up the latter for the distance of three miles to 'I ae de Bewf.' a body up water abou three miles long by one mile in width, thickly studded with istands : here we enter on our easterly direction for Iake Nipissing.
" It the distance of 10.17 mices from "lees Petites lallies," we find a small rapid of two feet fall, about 200 feet wile, and the water from 6 to 8 feet deep at a low stage.
"At a further distance of 3.52 miles, another small rapid of seven-tenths of a foot
 fall of 6. So feet. The witth of the river at his point is two hundred and fifty feet. The bank on the north side rises neariy perpendicular to the heggh of one hundred and fitty teet above the water. On the south sude there is a table searely sutticient in length and breadth for the lock. The rest of the hank rises perpendicularly eighty or nincty feet.
"After leaving 'Le (itand Recollet' we have a reach of 17.02 miles to the 'Rapide de Parisien,' where there is a fall of 1.20 feet. In the next +10 miles, we pass the ' Petite l'ancelle Rapiel,' fall +4 feet. 'Rapide du Buison,' fall 33 fect, '(irand liaucelle Rapid,' fall 5.6 feet, and 'Rapide du l'in,' fall 2.6 feet. In tracing the dhstance we change our course fom east to north. At the head of the 'Rapide du l'in,' the course agatn hecomes easterly, and continnes so to the foot of the 'Chaudiere Rapids,' a distance of 7.57 miles.
"The fall between the foot of I,ake Nipissing and the still water in French River below the rapids, is divided into fine caseades and rapids. The total fall is 26 feet in a distance of 1,6 miles. The hanks at the water's edge of the rapids are mostly low ; rising gradia:lly for the distance of sisty to one hundred feet back; then they rise abrupt into high rocky cliffs.
"From the mouth of French River on the Ceorgian liay, to its source at the outlet of lake Nipissing, the distance is +7.52 miles; the aseent at low water is 60.3 leet, making the elevation at Iake Nipissing $63.4,3$ feet, above tide water.
"The distance through lake Nipissing is 30.44 miles. letween Nipissing and Trout lakes two rontes were carefully examined.
"The first, by the valley of the 'Riviere des Vases,' (6.69 miles in length,
"The second. by the valley of the '()jibwas spppi,' f. 11 miles in length, with an ascent betwen Nipissing and Tromt lakes of twenty-four and a-balf feet. The waterheads of the Mattawan are 658.8 feet above tide water.
"In comparative cost these two routes have no relative merits. by the "Yases, romte, there are four miles of cotting, any one of which would cost more than the whole line of the ' Ojibwaysippi ' rome.
"Here we pass this watershed between the waters of the Ottawa and French Risers.
"After entering "Trout Iake' our course bore sonth of east. 'The length of this lake is S 4 a ; miles, and average width one mile. It the foot of this oectrs a marrow ridge of rocks which divides it from Turte lake. The fall is nine-tenths of a foot. The rapid is about ten feet wide, and not over eishteen inches in depth. We then pass ises miles through Tourtle lake, nearly on a due east course. This lake averages about hali a mile in width.' Passing down the omblet of 'Tartle lake, we change our comese to the north in the first two miles: thence wastwardly, and at the distance of $3.7+$ miles, we enter hac Talon The descont between these two last-named lakes is 29.9 feet, giving lac Talon an elevation of 628 feet above tide water. The outle has a succession of small rapids with deep still ponds betwern them.
"The course throngh lac 'Talon lies about southeast, and is 7.63 miles in length, with an average width of one mile. Lac Talon discharges through a flume-hke chute of 21 feet in width, with three beautiful cascades lefore reaching the level below, The total fall is +2.7 feet. Each side of the chute is bouded by high and barren syenite cliffs.
"From the foot of 'Talon Chute, the course of the waters changes to the north, until they reach the foot of the Paresseux Chute, 2.28 miles ; in this distance there is a series of ponds, or basins and rapids, making a descent to the head of the Paressens Chute of 21 feet. At the Paresseux Rapids and Chute there is 33.8 ft . fall in a beautiful cascade.
"After passing the Paresseux Chute, the river passes between bold cliffs of syenite, which present the appearance of rough and massive masonry, towering about 150 feet above the surface of water. The river is narrow and deep between these iron bound
barriers, in places only 105 feet wide. It soon widens to 250 and 300 feet in width.
"From Lake Talon to the river below Talon Chute, a route was examined, leaving Talon Lake about one and a half miles above its frot. At the distance of 1500 feet from Lake Talon, we encountered a summit of fifty feet in height above the lake, and about 2000 feet in length; after passing this summit, we dropped down into a chain of small ponds running nearly east, and emptying into the Mattawan about one half of a mile below Paressenx Chute. The length of this line is 4.15 miles, and more direct than the channel ot the river, and well adapted for the line of improvement, were it not for the heavy cutting at the summit. The examinations, estimates, and plans of this route were made with the same care and attention as marked those of the main route.
" The river route is 1.06 miles longer, but is estimated to cost $\$ 564,000$ less, and is recommended.
"From the foot of the Parasseux Chute to the mouth of the Mattawan, the course is direct and nearly due east. At 2.64 miles we reach the 'Rapide des Aiguilles,' with a fall of four-tenths of a foot; 0.7 I miles further east is the 'Rapide des Rochers,' with a descent of 4.8 feet. At this rapid the land on each side is low and swampy for the distance of six to elght hundred feet back. Passing down with a strong current for 1.20 miles, we reach the 'Rapide de la Rose,' fall 5.6 feet. At the further distance of seventenths of a mile is the 'Rapide des Epines' fall 5.6 feet.
" From the toot of the 'Rapide des Epines,' we find a broad and deep stretch of river 5.5 miles in length, with the same rugged, syenite cliff-like banks; at the foot of this fine stretch of water, we reach the 'Lac Plẹn Chants Rapids and Chute,' with a fall of 16.9 feet, in the distance of four-tenths of a mile. At the further distance of 2.40 miles, the Mattawan enters the Ottawa waters. In this distance we find three small rapids with a fall of 5.4 feet ; making the total descent of the Mattawan 169.8 teet in the distance of 39.79 miles, and the low water surface at the mouth 489 feet above tide.
"A tabular statement of the low water section of these rivers. \&c., is annexed.
"The characteristics of the French River and Mattawan waters are similar, each being a succession of pools of wide, deep and still water, separated by short falls and rapids; in many of these pools there is no perceptible difference of level.
"The shores are principally lined with the ever-prevailing syenite and gneiss, rising abruptly out of the water into bold precipitous cliffs, covered with a dwarf growth of timber.
" By the mode of improvement proposed, that is by locks and dams, which is the only feasible plan of work to render these rivers navigable for any class of vessels that may navigate the western lakes ; the characteristics of these rivers will, in a great degree, remain the same as now, after the completion of the improvement.
"My early attention was called to the question of supply of water, 'upon which the success of the whole project depends,' and more particularly directed to the practicability of the plan of elevating Lake Nipissing to the summit level, as proposed by Mr. Shanly, both by the general instructions of the board of Public Works, and by your letter of instructions.
" Mr. Shanly, in his report on the 'Ottawa Survey,' says ' It may at once be stated that the summit does not fnrmish water sufficient to meet the demands of even a far inferior scale of navigation to that which the general character of the route would warrant us in looking forward to.'
"To this opinion of Mr. Shanly's, respecting the supply of water from the summit, that is from Trout and Turtle Lakés, I agree ; and after a careful examination of the whole subject, I would recommend the following plan for

SUPPLY.

"For the supply of water it is proposed to raise Lake Nipissing 9.46 feet above high water, and lower Trout Lake 7.85 feet, and Turtle Lake 6.95 feet, and Turtle Lake outlet to the same level, and to raise Lac Talon 20.95 feet, which brings it up to the same height, making a summit level for navigation of 57.12 miles in length, with an area of watershed of 3165 square miles, and a reception basin of eighty miles in length, and
varyir
hundr
make
tor an
depth
of acc
declivi
rough
conser
sing thr
questio
a low st
hundre
four ho
each wa
than one
(1) 5,472
neressit
" 1
water fol
and alm
"T
bounded whole, e: from one
by the S
distance
mersed
Nder ma
of this he
"In
largest tia in length,
about one
tor agricul
Taking th
anconsider
agrecultura
"Kai
struction a than one
three times
"The
of the Hud
in deciding
the water of
" F irst
also for two
the rocks,
fact this m
entirely abo
entire south
should be ut
in the plan
"The r
land to any
varging from one-half of a mile to 12 miles in width. giving a surface of about three hundred and thirty sefuare miles. liy this arrangement it does not become necessary to make any provision for a storage reservoir. The waters of Lake Nipissing are sufficient for any scate of mavituon, sid for all time to come.
" N though the guantity of water recuired to maintain a steady" flow of any given depth through open sluiees of regular width, may be calculated with a considerable degree of accuracy; yet, in the raw of an open river of uneven bottom and irregular width and declivity, like that of the french river, it camot be expected that anything more than a rough approximation can be obtained ; uncertainly must attend the measurements, and conserguently the results fomaded thereon.
"Fortunately for us in this case, the quantity of water discharged from Iake Nipissing through the lrench River is so large that any crror of this kime could not affect the question of supply for any seale of navigation that may be adopted.
"The quantity of water found, by careful ganging, to be fl wing in French River at a low stage, was rine thousand live hundred (9,500) cubic feet per serond, or eight hundred and twenty millions cight hundred thousand ($820,800,000$) cubic feet in twentyfour hours. Assuming the locks to be $250 \times 50 \times 12$, and that litty lockages are made each way in twenty-fuur hours, it would require filteen million cubic: feet of water, or less than one-fiftieth part of the supply. The whole amount of water flowing is equivalent to $5,+72$ lockages each twenty-four hours. This, at once, sets at rest any idea of the necessity of a storage reservoir.
"There are int few objectionable features to this mode of supplying the necessary water for navigatom, and of raising Lake Npissing to the height above stated. The first, and almost the only one, is the overtlowing of the lands bordering on the takes.
"The entire southern shore of Lake Nipissing, east of the Chaudiere Portage, is bounded by high barren rocky cliffs, with a scanty growth of evergreens covering the whole, except a strip on the east end of the lake, about cight miles long, and varying from one tenth to one-fourth of a mile in width, one-half of which is annually inundated by the Spring freshets. The shore of the East Bay and the east end of the Lake, for the distance of ten miles, wili be overflowed; a large portion of this tract is annually submerged by the freshets, and nearly the whole is one extended 'lamarac swamp, or an Alder marsh. The north shore, for two-thirds of its let is high, and out of the reach of this height of water.
"In the vicimty of the Hudson's bay Post, at the mouth of the Sturgeon River, the largest tact on the boders of the Lake will be submersed, say from ten to twelve miles in length, and foon two to three miles in width; one-hird of the tract is low open marsh, about one-thod swamp annually oferflowed, and the remaining third tolerably fair land for agricultural purposes.
"In the llestern Bay there is an occasional marrow strip that will be drowned out. Taking the whole land that will be drowned by the raising of Lake Nipissins, it will be meonsiderable when compared with the length of shore, and that but of small value for agriculurai purposes.
"Raising Lake Nipissing to the height of Trout I ake, wouthlessen the cost of construction about one million dollars, and reduce the lenyth of canal on the summit to less than one and three-quarter miles, would increase the lockage ${ }_{5} 6$ feet, and overflow three times as much land as the plan proposed.
"The land, being in a district unimhabited, except by a few Indians and the servants of the Hudson's bay Company, camot be looked upon as claiming much consideration, In deciding upon such an impertant guection. The objectionable features in elevating the water of Lake Nipissing to the level of Trout Lake, are :-
"First, the low banks atong the southerly shore. .xest of the Chaudiere Portage, and also for two miles to the east of the l'ortage ; Scond, the large fissures and crevices in the rocks, affording an opportunity for the escape of water, scarcely to be estimated : in fact this might prove so large as to cause any attempt to meet such an emergency entirely abortive, and without a more careful and minute instrumental examination of the entire southern shore west of the Portage, than my limited time would permit me. I should be unwilling to recommend the raising of Lake Nipissing higher than contemplated in the plan proposed.
"The raising of Lake Talon can be accomplished without overflowing the adjacent land to any considerable extent.

1,OCK゙AGE.

"'The arrangement of Locks and Dams connected will be as follows:-
"At lees l'etites Dalles, on lock, fourteen feet lift, on the south side of the river.
"T'o establish the level above the l'etites Dalles, it would be necessary to construct seven Dams across the several outlets of the French River.
"'lotal length of Dams, $\mathrm{I}, 535$ feet.
Aggregate Spill, $1,59.5$ feet.
Crest of 1)am, 8.50 teet above low water.
"These lams throw the water up to "Le Grand Recollet Rapys," fifteen and onetenth miles, drowning out two small rapids, so that no excavation will be necessary to give the reguisite depth of water.
"At 'Le Grand Recollet,' one lock of ${ }_{13}$ feet lift on the south side of the river.
"Two Dams will he necessary, one across each channel of the river.
Total length of Dans, 566 teet.
Aggregate Spill, yot tect.
Crest of Dam, 11.30 feet above low water.
"'The length of the next reach is 16.95 miles, extending to the 'Rapnde de l'arisien,' where we bave one lock of ten feet lift, on the north side of the river.

Total length of Dam, 599 feet.
Length of Spill, $4+5$ feet.
Crest of Dam, 2 i feet above low water.
"The next reach is only 2.23 miles to the 'Rapide du Buisson,' drowning out the Petite Fancelle Rapid," so that no excavation will be necessary for the reguisite depth of water. At this poiht there $1 s$ one lock of ten feet lift on the north side of the river. Here the river is divided by a large island into two channels; it will be necessary to dam each of them, and also to dam the north channel of the enst, in making these dams.

Total length of dams, 1,070 feet.
Aggregate Spill, 1,055 feet.
Crest of Dam on Main Cbannel, 19.5 feet above low water; Crest of lham in the North Channel of the East, 10.8 feet above low water.
"From the head of the Lock at the 'Rapide du Buisson', the level extends to the foot of the Chaudière Portage, ten and one balf miles, drowning the 'Grande Faucelle,' and 'Rapide du lin.' A small island one bundred feet long by twenty-five feet wide, will have to be excavated to the depth of five feet from its present surface.
"At the ('haudière l'ortage there will be three locks of ten feet lift each, the first single, and the second and third combined ; located on the south side of the river. By combining all these locks, a saving of about $\$ 80,000$ could be made.
"Four lams across the outlets of Nipissing will be necessary. Total length of Dams, $1,13+$ feet.
Aggregate Spill, 1,3 ro feet.
Crest of 1hams, 16.7 fect above low water.
"The next or summit ievel extends to the foot of Iac Than, a distance of 57.12 miles with a guard Lock in the Canal between Nipissing and Trout Lakes, to control the waters in times of high wind.
"At the foot of Talon lake, there is one lock of eleven and a half feet on the north side of the outlet.

Total length of Dam, 500 feet.
Length of Spill, 472 feet, Crest of Dams, 23.7 feet above the low water mark.
"The next three Locks occur 0.43 miles below the last-mentioned Lock, and on the south side of the river at Talon Chute, all in combination, each fourteen and a half feet lift.

Total length of Dam, 382 feet.
length of Spill, 332 feet.
Crest of Dam, 12.3 feet above low water.
"Two combined locks of eleven feet lift each next occur at the 'Petit Paresseux Rapid'; length of level 2.13 miles. 'The locks are located on the north side of the river. This level drowns out several small rapids, so that but trifling excavation will be required to make the necessary depth of water.

Total length of Dam, 1,128 feet.
Length of Spill, $1,12 S$ feet.
Crest of 1)am, 22.8 feet above low water.
"At " Paresseux Chute." 0.35 miles telow are two locks in combination, each fourteen feet lift, located on the south side of the river."

Total length of Dams, 872 feet.
Length of spill, 872 teet.
Crest of Dam 10.4 feet above low water.
" A level of 4.62 miles extends to the " Rapide de la Rose." There we have one lock thirteen feet lift on the south side of the river. This level completely drowns out the "Rapide des Aiguilles," and "des Rochers."

Total length of Dam, $8 \boldsymbol{1}_{2}$ feet.
l.ength of spill, 812 feet.

Crest of dan 21.2 feet aioove low water.
The next level of 6.29 miles reaches the last locks in this division at "Lac Plein Chants Rapide and Chute," where there are two locks in combination, of thirteen feet lift each, on the north side of the river.

Total length of Dam, 66_{+}feet.
Length of spill, 388 feet.
Crest of Dam, 18.8 feet ahove low water.
"A short reach of 2.40 miles carries us to the mouth of the Mattawan, the eastern end of the western or Nipissing division."
"'The question of cost will he greatly enhanced by the difficulttes to be encountered in procuring the materials necessary for the construction."
"The face coping and culvert stone for all the Locks west of the Summit, will have to be procured trom the great Manitoulin Island, in Lake Huron, which lies to the west ward about fifty miles, directly facing the mouth of French River. The stone for the lock at Les Petites Dalles can be landed at the work, and that for the Rapide de Parisien will be attended with the additional cost of two short portages. For the lock at " 1)u Buisson." three short portages will be necessary, and for the locks at the Chaudière Portage, two short portages, and two miles of land carriage will have to be encountered. All foreign materials for these locks will be subject to similar expense of Transit.
"Tlye stone for the backing and interior of all the Locks of this division, will be ohtained from the excavation for locks, and from the banks adjacent to the works.
"Large guantities of rectangular blocks are found upon the banks of the river, often with parallel beds and jolnts more perfect than it would be possible to quarry them from limestone quarries, and in size well adapted to the character of the work. The stone for rubble masonry will be procured in the same manner as the backing. Loose stone for filling the Dams, will be obtained from the excavation, and picked up from the river banks.
"The timber for the Loocks and Dams is in all cases convenient ; in no instance do I think it will be necessary to haul over two miles. In some instances it will be found cheaper to cut the timher on the banks above the work, and float it down rather than haul it.
" The work west of the summit requires no special description ; there are no diffleulties to be encountered in the construction, of an unusual character.
"The two first miles of Canal, on the summit, between Nipissing and Trout Lakes, are wholly of earth, cutting through an open marsh, easily drained. This work has been estimated at thirty-five cents per cubic yard.
"For the remainder of the Canal, the material has been all estimated as rock. The excavation will all be disposed of with a short haulage. In this portion of the Canal there are several deep ponds, which can be easily drained without machinery, as the work progresses. The rock excavation has been estimated at two dollars per cubic yard. Twenty-two hundred feet of this cut have been estimated with a width ot 100 feet on the bottom.
"For the excavation of the bars in Trout and Turtle Lakes, it is contemplated to commence the work at the foot of the Turtle Lake outlet, carrying it up to Turtle Lake, the water of the Lake will then pass of through the cut. and leave the rocks to be excavated out of water, and easy of access. Then, by cutting through the barrier between

Turte and Trout Lakes, which is only three hundred feet long, the work in Trout lake will be drained, and will be as easily accomplished as any on the whole length of the inprovement, except that in some places boats will have to be used to pass to and from the work; a liberal allowance has been made for such contingencies.
"The greater portion of the work to be done in Trout lake, is the removal of round boulders, varying in size from one fourth of a cuhic yard, to six and eight cubic yards.
"That in T'urtle lake is the excavation of roeks and reefs, mostly in the pinnacle form. As they stand up, with bold slopes and deep soundines near them, they can be readily excavated at less than the usual expense of rock excavatom. Anticipating that this character of work would be looked upon as a hazardous undertaking and expensive, I have given it a price of two dollars and twenty-five cents per cubic yard; a far larger price than that for which 1 think it can be safely executed.
"For the locks at the foot of 'Lac Talon,' and 'Talon Chute,' an abundance of crystalline limestone is found at those points, and from the examination made of this material, it is presumed that it will make suitable masonry for loock walls. The excavation for these locks is chiefly in this kind of limestone.
"For Jocks at 'Petite P'aresseux.' and 'Paresseux Chute,' the face stone will have to be hauled about two miles from a tine Quarry of grey granite. A liberal estimate has been made for the expensive dressing of this character of stone.
"'The face stone for the looks at the 'Rapide de la Rose,' and at 'Plein Chants Chute,' it is proposed to obtain from the same Quarry."

Vl. (iENERAL REAARKS.

In the preceding pages it has been attempted to show that the Ottawa waters may be improved for vessels of one thousand tons burden, for a sum not exceeding $\$ 12,026,351$.

The discassion of the important questions of the present or prospertive need of such improvement ; its effect, if constructed, on the conrse of Western Trade, and its relative merits to other routes already existing, formed no part of my instractious, and will not be taken up, here.

I shall take the liberty, however, to recommend, that whatever new work may be hereafter constructed upon this line of waters, may not be of less dimensions ban those which I have stated as necessary for the through line of mavigation, as the differenee in cost between a Canal on a small scale like those already built, and such a one as has been recommended, would not amount to so much as, in my judgment, would warrant the construction of work which might hereafter have w be enlarged.

I camot conclude this report without expressing how much we have been indebted to the labors of the Geological Survey, and its accomplished director, Sir William Logan. Their plans of lirench River, Lake Nipissing, and the Nattawan, were so complete, and after a close test, proved so accuraic, that they left nothing further to be desired towards a general map of that section ot the waters. Had they not been in exstence, this Report could not have been made without another season's field work.

Had maps of the Ottawa River, of a similar character to those of lirench River, been accessible, a large part of the expense of the Ottawa Survey might have been saved to the province. I mention these facts both as an act of justice, and because I wish to record distinctly my appreciation of the Geographical results of the Geological Surves, in regard to which my past year's labors have qualified me to speak,

The labors of my predecessors, Messrs. Stewart, l'erry, and Gallwey, have been made use of to determine the lengths and depths of the unobstructed, or rather still water portions of the river.

The plans and sections of the "Rocher Fendu" Channel, and Chats Rapids, made for the Department by Mr. Thomas E. Norman, have been adopted in full.

Mr. Slater's levels and bench marks, from Fort William to the head of the Chats Channel, have been followed; everything else upon which this Report and estimate of cost is based, has been derived from actual survey, carried on under my own supervision, and for the correctness of which I am responsible.

In accordance with the instructions of the Department, the plans and estimates "yive in detail the dimensions and guantities of each section of work, and the structures pertaining thereto." This has required a much more careful survey than is usual on a preliminary examinition, and has involved a large amount of labor It has been necessary to make a continuous section of 198.73 miles of river, and to make detailed surveys Plans on a large scale, hocation of every Lock, Canal and Dam on the whole line. quantities taken out in detail with constructed from these surveys, and the estimates and

This could not have been ac
been so fortunate as to have had very energetic the limited time allowed, if I had not
To Mr. E. R. Blackwell, whose repungetic as well as carefull assistants. stands high in the United States, I owe the lator an experienced Hydraulic Engineer, Joachims to lake Huron, and taking out the quar of conducting the surveys from Des judgment I have been much suided in arranging plans upon the whole line. By his

To my other assistants, Messrs. T. E Nong plans and determining prices. much indebted for executing quickly and accuran, C. H. Irvin and Mr. H. Civer, I am form.

I have also been assisted by the judgment and experience of Mr. Horace Merrill, Suparintendent of Ottawa Timber Slides, to whom is due the plan of Timher Dams. His report upon the effect of the proposed improvements upon the timber navigation, and the arrangement and cost of new Slides will soon be handed in.

I must also state that all our work on the river has been facilitated by the courtesy of the officers of the Hon. Hudson Bay Company, among whom I may particularly mention George Mc'Tavish, Esq., C. T. Fort William.

All of which is respectfully submitted by

> (Signed)

January 2nd, i86c.

THOS. C. CLARKE, Engineer, Ottawa Survey.

APPENDIX.

TABLE: OF CONTENTS.

The survey is to be prosecuted with a view of ascertaming the praticability of opening a ship communication between the St. lawrence and Lake ILuron, through the Ottawa waters ; and not for the purpose of making a minute and highly accurate hydrographic chart of the river, except so far as the same may be subservient to the first named purpose.

The Engineer in charge of each section of the Survey is to examine, in that section, the nature of the dificultics, and the guantity of the caballing regnired to be done, and to state the cost of such canallang; giving in detail the dimensions and guantities of each section of work, and the structures pertaining thereto, and the prices which appear to him sufficient to their execution ; in order that the data, upon which his estimates are based, may be open to the inspection of this Department.

The Scale of Navigation upon which his cstimates are to be based, will be that proposed lyy Mr. Shanly, i. e. dimensions of locks $250 \times 50 \times 10$ feet.

Canals one hundred feet wide at bottom, depth ten to deven feet. Should he, bowever, see any reason which appears to him sufficient for modifying any of these dimensions, he will make a separate estimate upon such portions, giving his reasons for the change.

The quality of the works proposed should not he inferior to the standard of the st. Lawrence Canals.

He will be expected to report generally upon the method proposed for executing the works, and to designate the points from which meterials are to be obtained ; and should any special dilficulties of construction occur on his section, he should show how he proposes to overcome them.

With hi Report he will furnish a seperate plan and section of each piece of Canal, carefully noting upon the sections, the difference of level between extreme high and low water.

As the question of supp'y, :upon which the success of the above project depends, is to be determined upon your sect on. you will give particular attention to that point, and to the praticability of the plar of elevating Lake Nipissing to the summit level, as proposed by Mr. Shanly. The cuestion of a terminal harbor on lake Wuron should receive your careful constderation, and the proper site for the lighthouses and piers should he pointed out.

Toronto, 15 th Nive., 1858.
(Signed,)

1. V. SICOITE,
Chict Commissoner.
B.

Tabie of Rivers.

C．

	January．
 	系三产
	1elmuary：
 	$\stackrel{\%}{=} \underset{=}{\underset{y}{3}}$
	Narch．
	．Aril．
	May．
	Junc．
 ぶ心 心	

(Signed) THIOMAS C. CI.ARKE,
Engineer Ottawa Surves:

N．M．MU．	$\begin{gathered} 1 . \\ \text { h.cuith } \\ \text { inf } \\ \text { werfall } \\ \text { in } \\ \text { fect. } \end{gathered}$	l．＂w $1!$ Cillic feel 1ul vecomel	er． 11. Hecight ${ }^{i 11}$ fert				k．marh．
Carillo：	1701						
Clute a Blondcan	175＇1		315	1．＂	is	5 17	
Cinte Chandicre	2 ¢и	25، ${ }^{\prime \prime}$＂	2.1	$13 \times n$	693	＋69	
Portage iolu lour	2100 2401	＂	2 Su，	．	－＋	${ }_{5} 6$	
Koncher Vemdu ．．．．．．．．．．．．	¢＇4＇	15＇＂．	2110 4 4	ごния	${ }^{6}$（1）	$4{ }^{+}$	
Long Kapisl．．．．．．．．．${ }^{\text {a }}$	6，${ }^{1}$	${ }^{\prime \prime}{ }^{\prime \prime}$	361	7＇．120．	$\begin{aligned} & 1 ; \\ & 1: 110 \end{aligned}$	${ }_{6}^{4} .30$	1 Rucher ten－
Joachims：	1150	$25 / 141$	33	125＇＂M．	970	64	
Mcsurleys：${ }^{\text {a }}$	1140	－＇	， 55	．．	1＇14 4	6 6s	
Roscher Capitaine Wo． do．	1150	＂	351	＇＊	11.8	6 S	
Dens Rivictes．	14010	＂	292	＂	S 54	$5{ }^{12}$	
Johnoen＇s｜くa，in｜	2011）	＂	3 3 2 10	＂．	1121	7 s	
Baressun Chme．．．．．．．．．．．．	92＂	$5 \times \cdots$		7 Som	07	4 4 4 10	

The heights II．and 11 ．in column + and 6 were calculated ly lie formala 11 （
 which will pass eser the bams．

（Signed）THOMAS $1 \therefore$ CI．AKKに，

Ensineer，（htawa surves．
Januars and，isco．

[^8]
$1:$

tho lins ant oite.

NSME:	liore of Hail.		Over all.				
			1.cogrls.	Diam.	Iraft when lamicel		
ito. . Wheghany	${ }^{\text {hautfala }}$	762	$190 \cdot 6$				
do . Viriatic.		5 5	1720		10.0 10.0		
$1 \$ 55$ (hicagr....	Hıllat,	0.63	17 S -	31.6	100		
(1) ${ }^{\text {a maima. }}$	Clevelaml	6,2 6018	181.3 193.4	29.0 $30-4$	11.6		
lo. Viclijse.	Buthalu.	U20	193.4 1550	$30 \cdot 4$ $30 \cdot 0$	11.0 10.0		
du. . Empator.		620	185.0	300	10.0 10.0		
1857 Free stave.... itw fioutain	Mulfakg.	${ }^{624}$	192.6	$\begin{array}{r}37.9 \\ \hline 20\end{array}$	10.6		
(la) Pumbain ('ity.	'levelanil	(768	1966 210.0	31.6	10.6		
do. Itunter		820	$210-0$ 193.0	$3 \cdot 3$	12.11		
1856. Iron Ciity	Bunlian... Clevelani	680	193.0 21000		10.6		
, 3 Iowa.....	Heremant	6107	184.2	294	10.6 9.6		
1855 . - Jerry cily		981	$247 \cdot 0$	31-0	9.6 11.6		
1850. Kemsila .	Mlankink	63.3	182.0	29.5	11.6 10.6		
de.. Montgomety	betruit	645	194.7	$27 \cdot 10$	10.0		
N6. Nohawk...	luftala	879	$204 \cdot 0$	3.3.5	110		
..... Milwaukec.	-	789	200.6	31.2	116		
..... May Flower		709 650	19.39	30.7	11.0		
~.... Nile		023	185.0	28.0	10.6 11.10		
1856.. Nepmare		700	185.0	$2{ }^{2} 6$	12.1 11.4		
do. New Vork	保	675	181.1	$3 \mathrm{O} \cdot 2$	10.6		
IS5S - Northern Light	Hevedan	665	$1 \mathrm{~S}_{2} .1$	320	10.6		
- Orichal		716	207-19	jow	10.6		
\%.... Plymuth		850	2.4 .0	3.40	10.6		
1850 P'tandurs	-	8.46	2120	32.0	110		
855. - Potumac.	-	6×6	1850	${ }_{2} \mathrm{~N}-0$	10.6		
1856.. Racine.	"	818	209-0	33.0	11.0		
do. Kocker	..	715	196.0	$3{ }^{10}$	10.8		
do Tomawant		611	181.1	29.3	11.6		
1857. Wenona.	levelan	922	-•••				
	-		193.0	30.6	11.0		
(Signed) THOMAS C. CLARKE,							
January 2nd, i86o.		Ot	wa Sur				

F.

Ohall Watekn Unimbotro.- Table of Dinancen and levels.

Names of Rivers, Lakes, Kapids, Se.	Mistances.			LEVELS.			
					نِّ		苞
Tidewater, Three Nivers.					0.00		
Montreal llarhour...	$0 \cdot 10$			12.75	12.75		
Lachine	S'50		8.50	+3.75	56.50	62.50	6.00
Lower St. Innes	22.00	$13 \cdot 50$. 50	57.61	63.51	6.50
Upprer st. Smues	22.10		- 10	1.00	58.00	67.00	9.00
Carillion Kapids.	4770	25.60		100	59.00	71.00	12.00
Sbeve da	$49^{\circ} 0$		$1 \cdot 30$	S.75	07.75	77.75	10.00
Chate i Brondean Kipichs	5.300	4.00		.05	67.so	79.80	12.011
Dhere do	$53 \cdot 10$		- 10	$4 \cdot 10$	71.50	57.00	15.20
Frow of Long Sault Rapids	54.50	1.40		-10	71.90	S8. 30	16.40
(ircnsilfe.........	60.43		5.9;	45.80	117.70	132.50	14.80
Ottawa Ilarbour	116.50	56.07		* $2 \cdot 30$	120.00	140.00	2 2\%.00
Above Chandicre Fa				$+\therefore 30$	162.30	${ }^{170.30}$	810
Sbove Little do	118.50			S. 10	170.40	177.40	7.10
Above Remoux Rapids				2 -Su	17.3.20	181.20	\$.16
Des Chenes Lake. .	122-86		$6 \cdot 36$	9 So	183.00	191.80	8.00
Foot of Chats Falls	149.55	20.49		30	183.30	193. 30	10.00
Alowe Chats.	150.05		3 SHO	221.30	$225 .{ }^{\prime \prime}$	4.00
Chats Lake..	153.16		3.61	11.80	23.3.10	2.90 .10	7.00
Foot of Snows Rapid	171.1.3	$17 \cdot 97$		-20	2.3 .30	240.30	7.00
llead of do	171-33		20	-60	23.3.9	24.3 .10	10.00
\bigcirc Portage du lint Kapid.	175.73	$4+40$	1-90	235.5	24.50	10.00
				13.00	$2+8.50$	257. ${ }^{\text {\% }}$	9.00
E Momutain Kapid	181-3.3			${ }^{1} 20$	25.40	215.00	10.10
5 llead of do				$13 \cdot 3$	-68.29	$281.21)$	13.00
				1.76	270.15	27 Si 05	8.00
$\stackrel{\text { U }}{ }$ Fowt of Calunct. .				5.05	275.70	285.70	10.00
Ellay of do	$1 \mathrm{~S}_{4} 14$			3507	.31.37	. 340.37	9.00
J La Passe	202.20		4.21	3.55 .55	3.45.5 ${ }^{\circ}$	10.00
- Lontape du Eirr Kapid.	175.7.3				$2+8.50$		
	183.00			50	2.19 .30	259.30	10.00
Ef Foot of Long Rapid	18.50			$0 \cdot 10$	255.70	20.70	9.00
E Fint of La barricre	180.00			10.30	272.00	$2 \mathrm{~S}, \mathrm{OLO}$	12.00
g Muskrat	187.00			3 jo	275.30	2 Si .3 jo	9.00
ㅋ. Mice.	185-00			0.80	282.10	291.10	9.10
Sta Fontaine's	188.50			3-30	285.40	29.3 .40	5.10
- Black Rapids.	189.5.1			18.70	30.4. 10	31.410	10.00
${ }_{3}$ Black Falls.	$190 \cdot 30$			17.80	321.94	331.90	10.00
${ }^{5}$ Flat Kapids.	192.00		16-27	12.00	33.300	3.3.90	${ }^{10.00}$
(La Prasse.....	195.92			1-485	3.35 .58	345.58	${ }^{16.0 .0}$
Fion of Allumette Island	20 2, 60			$2-55$	338.16	3.49.16	11.06
Fiout of Chapeat.	215-43	$23 \cdot 43$		-76	338.92	3+9.92	11.0%
Itand of do	215.50		(16)	339.52	250.52	11.00
Fuat of L'islet.	$220 \cdot 35$. 57	340.09	350.59	16.50
Itearl of ciulbute	221.10		$5 \cdot 69$	17.09	357.18	$36+18$	$\because 0$
Fort William..	$226 \cdot 40$			32	357.50	36.4	\cdots,
Head of Deep River..........	25400	32.90		$1 \cdot \mathrm{jo}$	$358 . \mathrm{So}$	36.	9
Itead of Des Josehims Rapids.	255.64		1.64	$26-10$	355.20	40-20	17.18
Mumb of Des Moines River.	263.30	7-66)		1.00	386.20	40,3.90	17.70
Fion ol Mcsiotey's Rapids.	208.25		4.95	$3 \cdot 0$	389.20		
llead of do do	269-10		$\cdot 75$	3.300	392.20		
Foot of Rocher Capitaine kapids. .	272.50	3.50	\cdots	2.90	. 395.10		

* Estimated at 2.3^{0}

1:-Comtinntad.

Names of River, Lakes, Rapiok, de.	mistances.			LFMFI.s.			
	淢						烒
Head of Rocluer Cagutane Rapids.	27.3 .15		1.35	\%0.\%	4.36 .00	450.00	14.00
Pown of Deux Rivicres Rapids.	285.55	11.70	4.30	4.40 .30	455.90	15.60
Head of dor dor	286.0146	12.60	452.90		
Lowt of Trom Riapids.	286.70		. 60	.so	45.50		
Head of Trou Ray ids (at Mic Macs).	237.15		0.45	7.40	461.10	$47 \mathrm{~S} \cdot 50$	17.4)
Foot o! la \oillie.	2SS. 10		0.95	2. So	+6,3.00		
llead of do	288. 70		0.60	7.50	471.70		
Pown of Racky liarm Raprils.	296.75	S.15		0.40	47 I .8 sc		
lleal of do do	301.50		4.75	S. 50	48 So 30	
fint of Johnsonis Rapis	306.55	5.05		. So	${ }_{4} 8 \mathbf{S} 1.10$. . .
lload of do	307.00	(10)	0.45	4.90	+ ${ }^{\mathbf{N} 6.00}$		
Pimot of Mataman Rapios	. 307.60	.		. 10	+ 86.15		
Head of da dar	308.00		0.40	2.10	4 SOm	503.30	$1+36$
Month of Mattavan Kiver....... ...	308.00				4*\%.00		
		242.5	65.48				

Matthon anh French River Waters Unimboolen.

Mouth of the Matt	308.00	242.52	65.48		489.00		
Fout of Lac l'lein Chant* Rapiols and							
Chute.	,310.40	2.00	0.40	5.40	494.411		
Foot of Lac Plein Chant:	$310 . S$ ¢		0.40	16.90	511.30		
Loon of Des lequnes Rapids	316.25	$5 \cdot 45$		0.20	511.50		
llead of do do	316.30		0.05	5.60	517.11		
	. 316.85	0.55		0.21)	517.311		
Head of do do	317.00		0.15	5.601	522.90		
foont of Rapide tes Roc	318.20	1.20		1.41	524.30		
Head of dos do	318.30		0. 10	4.80	529.10		
Fiont of Rapide der digut	310.00	0.70		0.10	529.20		
llead of dor do	319.01		0.01	1.40	529.6n)		
Fort of Chates des laressens.	321.65	2.64			529.(0)		
Heme of do da	321.85		0.20	3.3 .5	563.40		
Foon of Detite laresseux Ra	322.20	0. 35			56.3.44		
llead of do do do	322.35		0.15	8.20	571.60		
Fowt of Lace l'imisi	323.34		1.03	12.50	584.40		
Foot of Talom Chut	324.5.3	1.15			5S.4.44		
llead ol dos	. 324.71		1.18	42.70	627.10		
Rapiol helow Lake	325.14	0.47			627.10		
Fout of Lake Talon.	325.3.3		1.15	0.90	628.00	633.10	5.111
Flead of do	332.34	7.01			62S.01		
Foot of Turtle Lake	3,36.08		3.74	29.90	657.90	659.71)	.
Fiot of Trout L.	339.36	3.28		0.90	658.80		
lead of dos	3.47.79	8.4 .3		Fial.	655.80	661.60	2.80
Least shore of Lake Nipissing	351.98		4.19	$24.5{ }^{\circ}$	634.30		
Head of Chaudiere l'ortage	$3 \mathrm{S2} .42$	30.44			$634 \cdot 3{ }^{10}$	641.60	$7 \cdot 3^{\circ}$
Foot of doy	3 3i2.72	0.30	$25.3{ }^{\circ}$	6019.01		
Foot of Chandicre Rapiols.	${ }_{3}{ }^{\text {S }} 4.03$		1.31	0.70	(m8).30	612.00	3.70
lead of Rapide du I	391.60 391.60	$7 \cdot 57$	2.60	608.30 605.71	611.90	3.30

F.-_Contimued.

llead

Chats

Luck
Chats

Foot of
L.ock a
l'ortage
Locks a
Rocher
Locks a
Long k:
Lock an
Latontai
Lucks ar
Norman'
"Hawa Watkes 1mbroved,--Table of Distances and Levels,

"G"

Ottawa Waters Imbrovfi.-Table of Distances and Levels.-(Continted.)

" G .
Ottawa Waters Improved,-Table of Distances and Levels,-(Comcluded.)

Abstracts of Estimates.

	\$	$\begin{aligned} & \$ \\ & 469672 \end{aligned}$
Saint Annes Carillon	307741 so	
Chute a Biondeau.	14431525	
(irenville.........	119785230	
Green Shoals		136105
Chaudiere and Des Chenes.		816733
Chats...		681932
Snows.	13335650	
lourtage da Fort..	28739610 836088 00	
Kucher fendu. .	83608800	1256840
Lake Coulonge.		262514
Chajcean, I'Islet, Sc.		243507
Des Joachims.. ...	327773 16937515 585	
McSiorley's........	16937515 553543 70
Kocher Capitaine. Deux Rivieres...	553543 419941 40	
Johnson's	28701920	75765;
I'lein Chants.	21574435 ${ }^{\text {a }}$
De la Rose -	12357320	...
Paresseux.	24209620
l'etite l'aresseux.	21211645
Talon Chute.	27010505 98518	
Talon Lake. .	9851865	1162154
Summit Cutting.......		2160.36
Chauliere of French River.	36892502 132612 50	
Rapide du Buisson.	13201250 1083589	…........
1'ari-ien Kapid.	113634920	.
(irand Kecollet... Petites Dalles...	13957090	
	--	88017
Add 5 per cent. for Ergineering and		$\begin{array}{r} 1443505 \\ 57+175 \end{array}$
	\$	12057650

(Signed) THOMAS C. CLARKE, Engineer, Ottawa Survey.
January 2nd, 1860.

	I			
ITEMS.	Ouantitics.	I'rice.	Amount.	Total.
Wokk at sami dina's				
I.ocl No. 1.				
Remowng old Lock Walls........... Cubic yds.	2900	1) 75	2175 or	
Excavation, inclating pumping, \&c... do	$13+\mathrm{SoO}$	15	2022000	
Vimbankiment............. dor	4060	- 25	1015 (11)	
Masomry in Lock Walls, face and coping do	2055	1200	27660 (יㅣ	
du dr do Culverts..... du	148	1600	2368 ¢
do do do backing..... do	+509	S 00	3607200	
Rublle Masmry in Cement.... do				
Consrete Masmry du	68	6 00	4 S (0)	
Timher in fommlations.......... , inl. feet.	2020	$1{ }^{1}$ IS	36360	
	$+500$	015	67500	
Casthondos	57 oc	- 10	$575^{\circ} \mathrm{O}$	
Mitre Sills, cemplete.			1225	
culvert liates, complete.			5016 00
Luck tiates, complete.			65000	
I'us.				
line Timber.. linl. feet.	858400	- 16	1.373440	
Wrought Iron..... ${ }^{\text {dis. }}$	1.47600	- 10	$1+7(x)$ wo	
battered Wall in Cememt............ Cubic yds.	+94	$+10$	1976	
Store filling...................... (lo	-398o	$1{ }^{1} 25$	$197+50.1$	
Lining with carth. de...... do	36400	${ }^{1} 35$	12740 (\%)	
Copfir liams to he remore.t.				
l'ine Timber.......... Linl. feet.	15750	1122	$3+6500$	
liming with earth, dc.............. . Cubic yds.	6 6o	\% 6	+03 00	
Plank.. dis	94000	2600	$24+46$	
Winek ai Cakthan.				
				\$ +6967160
		\$ ct.	\$ ct.s.	\$ ct.
Lixcavaiom of Rock. Cubic yds.	30000	110	300010	
komusal of Crib llink........ dn	10000	05°	5000 (1)	
Emhankment. do	511.35	025	1278375	
	4082	12 ıо	$4 \mathrm{tays}+60$	
	296	16 \%	+736 +711
(1) du lacking....... du	yo3s	600	5422 S ט0
Kuble Masmery in Cement. do	3785	$+5^{\circ}$	1702350	
Concrete Masonry................ . do	136	610	816 oo	
Timber in frumdations.... Linl. feet.	40.40	$1{ }^{1}$ IS	6,86 8o
Wrought Iron, in du Lhe.	9010	015	13515	
Cas Irom.......... do	115%	010	1556	
Vitre sills, complete.................................			1250	
b.ack gates, complete. Cubett sates, complete			1255000	
			1 1 30000	
Pince Timber lam.				
	342000	22 (10)	752400	
Wrought Iron Lls.	46000	110	4600	
Stone filling Cubic yds.	47000	" 50	2.350000	. . .
Slope or pavement wall.............. dis	+850	15^{01}	727500
liatterel wall.............. do	$9+13$	325	3059225
Caffer Dams to be remoznd.				0757125
Pine Timber......... Linl. feet.	31500	1122	6930 о0	
stone lilling......... Cubic yds. lining with earth, icc do	3700	O 75	277500 \cdot.
	2000	1) $3^{\prime \prime}$	60100	10305 00
				\$309741 80

l'ine ti slone 1 Lining

Work
head of

Excara
Excavat
cof
Excaval
in
Remova
Emhank
Masonns

Coursed
12.

Rulitle
Concrete
Wrought
Cast Iron
Mitre sil
Lock gal
Culvert

I-C(intinued.)

I-Ciontinuted.

ITEMS.	Clanntities.	l'rice.	Amount.	Total.
Dames and Camal banks.				
l'ine Timber........................ . . . ininl. ft.	166200	O 16	2650200	
Plank, inclucling spike................F. II. M.	310400	2200	6828	
Wrought Irom........... Llis.	91690	- 10	9169	
Stone tilling............ C Cnbic yds.	14540	- 75	11.9050	
Shpe or bavement wall............. to	6510	151	975000	
Battered wall, had dry do	23^{30}	3 O	Styo co	
gattered wall in cement............. . do	10224	350	$3 \div 784$ oo	
Juddle wall....................... do	3560	- 45	1602100	
Liniug with chip stone and gravel..... do Coffir Mams, $\frac{1}{1}$ to la removed.	2770	(1) 30	8.3100	ing95I So
l'ine Timber..... I inn. It. stune flling. Cubic yds. Wrought Iron.............. Llis. Lining with earth, icc............... Cubse gits.	156260	$1{ }^{10}$	318520	
	15799	100	1S799 Oo	
	15249	- 10	152400	
	5500	${ }^{1} 30$	165000	53×2590
				\$8167.33 ${ }^{\circ}$
		\$ it.	\$ its.	\$ (ts.
lockis Nos. 15,16, 17, 18 athd 19. lixcavation of earth. Cubic yds.				\$ (As.
	32500	025	812500	
do of rock................... No	77645	251	$19+11250$	
incluting pumping............. do	+444			
E:mbankiment.... ds	7432.3	115	1114845	
Masomey, lock walls, facing and coping do (l) to culverts......... its	9185	1200	11122400	228939 95
	600	1600	9600	
do dor backing........ do	27726	6 50	134719 \%	
Rubhle masumry in cement........... do dor	433	+51	194	
	18.8	600	10548 co	
Timber in fommation.... Linl. ft.	23300	- 16	372S 0	
Wrought itsm in do Lbis	10856	115	162540	
Cast Pron.. iln	23.341	(1)	233.400	
	-9+40	2000	17 SS ¢0	
Plank, inclucting spikeF. I. M. Mitre sills, completc..... .			250100	
Lock gales, complete..........			2075000	
Culvert gates complete............. Dams ant Piers.	\cdots	26000	302687\%
Lixavation........... Cuhic y yls.	400	250	100000	
Pine timber........................ Lïnl. fi.	298402	1) 15	44760 30	
Plank, incluting spike............... Fi. B. M.	407500	21100	9950 00	
Wrought Iron................... Lbs.	S7470	- 10	874700	
Stone filling Cubic yds.	45555	" su,	$364+400$	
Shope or pavemen wall............. do.	2734	130	+101 0	
Batterel wall in cement..... (l)	$294{ }^{\prime}$	40.	$117 \% 0$	
Lining with chip stone amt gravel..... do	3310	0 ¢	13240	
Coffer Dams-one half to he removed.				30
	95530	- 20	191060	
Stone tilling.... Cubic yds.	10014	120	12016 So	
Lining with earth, \&c do	2190	- 50	1095 00	
Work at the Snows, or Chenaux Raphes				32217 *
			2905000 342000	\$68193195
Lock No. 20. Excavation of rock............ Cubic ydl. Embankment. do				\$ cts.
		$\begin{aligned} & 175 \\ & 1721 \end{aligned}$		
				3247000

[^9]

1.-(Cimtinned.)

I.- (Comlinurd, $)$

I-(Continued.)

I.-(Continucl.)

1．－（Comtinued，$)$

[^10]
I.--(('mutinutid.)

[^11]
I.-(Continued.)

[^12]
J.

Chats Canal Ola Lane.

\begin{tabular}{|c|c|c|c|c|}
\hline ITE.MS. \& Quantities. \& I'rices, \& Am, unt. \& Total.

\hline Locks Nos. 1, 2, 3, +, 5 amt Guard Loik. \& \& \$ cts. \& \$ cts. \& \$ ct.

\hline Excavation of liarth Cubic yds. \& 9,3700 \& 25 \& 23.325 \&

\hline do $\begin{aligned} & \text { doneise Ruck } \\ & \text { do } \\ & \text { Limestone Kock.......... } \\ & \text { do } \\ & \text { do }\end{aligned}$ \& 321270
155420 \& $25^{\prime \prime}$ \& So317500 \&

\hline Embankment do \& $\begin{array}{r}\text { 15540 } \\ \hline 6510\end{array}$ \& 150

30 \& 23.313 ${ }^{3} 100$ \&

\hline Masonry in Lock Walls, face and coping (to \& \& \& \& 1070773 (6)

\hline do do Cubserss...... do \& 748 \& 16 (\%) \& 11068 (\%) \&

\hline do do backing do \& 24077 \& $65^{\prime \prime}$ \& 1.5650 \&

\hline Kubble Masonry in Cement ${ }_{\text {a }}$ \& 69\% \& +

+ \& , 114500 \&

\hline Concrete Masonry do \& 12 k \& 600 \& 72нк⿺ оо \&

\hline Timber in foutmations Linl. fi. \& $24+59$ \& 16 \& 391344 \&

\hline Wrought Iron in foundations..... Lhs. \& 16915 \& 15 \& 253725 \&

\hline Cast Iron dis \& 29220 \& 11 \& 2922 (\%) \&

\hline Plank in foundations................ If. B. . . \& 57.3\% \& 20110 \& 114600 \&

\hline Nitre Sills, complete. \& \& \& 3125 \&

\hline Lock Gates, complete \& \& \& ${ }_{25+35} 00$ \&

\hline Culvert Gates, complete............... \& . \cdot. \& \& 325, 00 \&

\hline Itam and Crils, Hutson's Point. \& \& \& \& 3.4643019

\hline Pine Timber........ Liml. ft. \& 9230\% \& \& ${ }^{1} 354500$ \&

\hline Plank including spike F. B. ll . \& 191500 \& 20 (6) \& 3\$30 00 \&

\hline Wrought Iron....................... his: \& $2875{ }^{\circ}$ \& ${ }^{\prime \prime}$ \& $2 \$^{3} 750$ \&

\hline Stone filling..... Cubie gis. \& 14201 \& So \& 11360 so \&

\hline Battered Wall in Cement ds \& 1515 \& + 0 \& voto ow \&

\hline Slope or pavement Wall : dor \& 3796 \& 150 \& $569+$ oo \&

\hline Lining with Chip Stone. (iravel, de... do \& 600 \& 40 \& 24000 \&

\hline Coffer dam to bremoval. \& \& \& \& tigot

\hline Pine Timber \& 11880 \& 26 \& 237600 \&

\hline Stone Filling , \& \& 120 \& 1666 So \&

\hline \multirow[t]{2}{*}{Lining with earth, etc.............} \& \multirow[t]{2}{*}{576} \& \multirow[t]{2}{*}{50} \& 288 \% \&

\hline \& \& \& \& \$1465438 79

\hline
\end{tabular}

(Signed,)
THOS. C. CLARKE,
Engineer Ottawa Survey.

Whliond Stimeart. Essy,

1) e.vir Sur: -

I have the honor to submit the following Report, bringing down to the present date the matters treated upon in my Report of 1860.

Great changes have taken place since that Report denoonstrated the feasibility of improving the Ottawa and French Rivers into one of the greatest channels of commerce. What was then only a scientifie discussion has now beeome a matter of great importance to two nations.

Including together the present exports from the basin of the Great lakes, both in the United States and Canada, there is enough traftic in sight to warrant a large expen. diture in opening a new route, if the conditions are such that the cost of transportation between the lakes and the Ocean can be diminished. Canada alone does not at present furnish enough traffic The Ottawa route must be treated as an international one.
'Iwo remarkable changes have taken place during the last ten years, which have each resulted in greatly lessening the cost of water transportation ; one, upon the 1 akes and the other between the North Atlantie ports of the United States.

The construction of the locks at the outlet of lake Superior has devoloped a traffie, vast in sioe, and differing from all others in the world, in that it enables vessels to get full cargoes in both directions during the whole season of open navigation.

The U. S. lake ports will all be deepened to 20 fect very soon. Steamers now carry cargoes of 6,000 tons of grain and iron ore eastward to South Chieago, Cleveland and Buffalo, and take back eargoes of coal to mper lake ports. It is a well-known axion that the larger the vessel the cheaper it can handle freight. These 6,000 ton steamers have carried grain from Chicago to Buffalo for $1 \frac{160}{160}$ ets. per bushel, which is less than one half of one mill per tom-mile. Hence there has arisen a popular demand for ship canals of 20 or even 25 feet deep, from the Lakes to the Ocean. Even if such canals were built and could be used free of tolls, no such economy of transpotation by large steamers could take place as in the open lakes.

The rate of speed of thitteen miles an hour would be reduced to five, as in the Sucz Canal. Canal traffic would not give full cargoes in both dircetions, and more detention in port would be necessary than at Cleveland or louluth where whole eargoes of 6,000 tons of coal or ore have heen handled by machinery in less than one day. The large steamer is a very expensive machine, and if she were not able to make as many trips per season as she now does, much of her economy would be lost.

It does not now seem possible, except at a probibitory cost, to deepen the Ottawa navigation to 20 feet, and fortunately it is not neeessary.

The second change, which has resulted in lessening the cost of transportation between Atlantic ports, suggests the true method of improving the Ottawa.

Some ten years since all coal was carricd between the shipping ports of Philadelphia and New York to other Atlantic ports, chiefly of New England, in single collier steamers, at a cost of $\$ 1.50$ to $\$ 1.75$ per ton.

Now it is carried in tows of three or four large barges drawing from 16 to 18 feet of water, towed by a single powertul tug. boat, 'This tug does not wait in port for coal to be loaded or unloaded. but each tug has many barges, and she picks up her tow of full. or empty barges without detention, as a locomotive does cars. In this way many trips are made per season. 'The distance between Philadelphia and Boston and returr is about 800 miles, and coal is now carried for an average of 75 cents per ton, which is ninetenths of a mill per ton-mile.

This economy of transportation has increased the coal traffic to some twenty-five million of tons annually, which is as great as the tonnage annually passing through the Detroit River. 'The use of these tows of barges is fast inereasing upon the Upper Lakes.

All these facts bave been clearly set forth by Maj. T. W. Symons, U. S. Engineer Corps, in his adnirable and exhaustive report to the U. S. Congress in 1897. He shows that if the Erie Canal were deepened to in feet and grain were carried in tows of barges of $15 c 0$ tons capacity, it could be carried from Chicago to New York, including reason-
able transhipment charges at Buffalo from large steamers into canal boats, for less than steamers of 20 feet dratt conld carry it through the Eric Canal if that could possibly he deepened to over 20 feet, and steamers run continuously from Chicago to New York. In both cases tolls are not taken into aecount.

The estimated cost of the 11 ft . canal is 50 million dollars and of the 20 ft .200 millions.

The great value of the Ottawa navigation is thls: Out of 975 miles between Chicago and Montreal 591 miles is an inland or perfectly protected navigation, leaving but 384 miles of cpen lake. In open lake a speed of $41 / 2$ miies an hour can be made by tows of barges. In the protected portion an average speed of ten miles an hour can be made. The cost of insurance by this route would be much less than by any other.
liy the Welland and St. Lawrence route, there are 991 miles of open lake navigation, and but 267 of inland or protected navigation, The depth of the Welland and St. Lawrence canals would limit the draft of barges to $13^{1 / 2} \mathrm{ft}$. which is too shallow for navigation in lakes such as Erie, subject to sudden violent storms. The rates of insurance would be greater, and a longer time reguired, owing to greater length, and slower movement through the unprotected parts, would more than make up for the 22 days of longer open navigation by the Welland route.

I recommend that the scale of the Ottawa navigation be fixed as follows:--I.ocks 300 ft . long $\mathrm{x}+5 \mathrm{ft}$. wide $\times 14 \mathrm{ft}$. deep, capable of passing steel !arges 280 ft . long, 42 ft . beam and carrying 3,100 tons net on $131 / 2 \mathrm{ft}$. draft of water.

The excavated channels should be fitteen feet deep and have five times the area of the vessel, with sufficient room for two vessels to pass each other, which would give a width of 160 ft . on the bottom and 170 ft . at low water level.

The cost of carrying grain from one of the Lake ports, say Chicago, to Montreal by the Ottawa route would be as follows :--

CAPACITY.

A tow would consist of three steel barges, each $280 \times 42 \times 20$ feet, moulded depth, carrying, on $131 / 2$ feet draft, 3,100 net tons. These would be towed by a powerful tug steamer capable of towing the barges at the rate of four and one-half mites per hour in open lake, and ten miles per hour through the sheltered lakes and rivers of the O.tawa navigation. The tug steamer would be capable of carrying a cargo of 1,200 tons, making a total capacity of 10,500 tons.

TIME.

Open Lake-
Chicago to a point near the mouth of St. Mary's River-3So miles at $41 / 2$ miles per hour
72.2 hours. Inland Lakes and Rivers-
St. Mary's River to French River, 160 miles
Ottawa navigation 401
561 " at 10. 56.r hours.
Canals....................... 29.3 miles at 2.9 10 . hours.
Lockages $11 / 2$ minutes per foot

Total............... 206.5 hours.
$206.5 \times 2=413$ hours.
In port 91 hours.

504 hours, or 21 days round trip.
The open season of navigation on this route, is limited by the closing of Lake Nipissing and gives an open season of 213 days, or ten round trips.
will a
Lachi
Mont

which divided by 1 fo,000 'lons gives as the cost about 500 . per ton, or $1 / 2$ cts. per bublel.

It is absolutely essential to the success of this project that there should be ample elevator facilities at the port of Montreal, so that ocean steamers should suffers no detention. With such an elevator of the capacity of one million bushels as lately has been built by the (ireat Northern Kailway at Buffalo, the whole cost of elevating and storage should uot exceed three quarters of a cent, making the total cost per bushel two and one quarter cents, which is tar below the cost by any existing route, or than can be obtained on the Welland and St. Lawrence route when the canals are completed.

This extremely low cost is based on the assumption of full cargoes going East, and one third full going West. The larger the amount of business done, the more nearly will this be realised, and the financial success of the scheme would be enhanced, if the Ottawa navigaticn could be extended upon the same scale, through lake Champlain to New York, the feasibility of whech the U. S. Deep Water Ways Commission are now, it is believed, investigating. By this route the distance from Chicago to New-York, would be about 1353 miles, of which 380 miles would be open lakes, S_{+7} miles inland navigation, and 126 miles of canals.

By similar calculations to those above given, eight trips could be made in an open season of 235 days, and the cost would be 2 cts. per bushel, to which should be added the present elevator and other charges at the port of N. Y, which are very high, amounting to $1 / 2 \mathrm{cts}$. per bushel, or a total of $31 / 2$ cents per bushel. Maj. Symons estimates that when the Erie canal is deepened to nine feet and the locks lenghtened, wheat can be carried from Chicago to N. Y., for 3.67 cts ., to which add N. Y., terminal charge, 1.50 cts ., a total of 5.17 cts ; showing the superiority of the Ottawa route.

The cost of interest, maintenance and repairs, lock tending, electric lighting, etc., on the Ottawa route, would be borne by moderate tolls, and leases of water power, described hereafter.

As compared with the estimated cost of the Ottawa navigation in 1860 , there will be an increase of guantities and a diminution of cost in tem prices.

The increase of the size of the locks from $250 \times 45 \times 12$ to $300 \times 45 \times 14$, will increase quantities. Also the enlargement of the prism of the excavated canal from 146 x 13 to 160×15, will increase quantities.

The locks at Grenville and Carillon, will have to be enlarged, The Lachine locks will also have to be lengthened unless it is decided not to use the present crowded Lachine Canal, and improve one of the branches of the Ottawa north of the Island of Montreal.

Another increase of cost is due to the fact that Lake Nipissing cannot now be raised by damming its outlets, as was proposed in 1860.

The sountry around the summit lakes is now well settled and has many cultivated farms, The town of North Bay, which would have to he moved back to prevent overflow, as some 2500 inhabitants. Thirty miles of the Canadian Pacific Railway would have to be moved or raised.

The level of Lake Nipissing must still be maintained from French River to the Mattawan, 57 miles. This means lowering the level of Trout and Turtle Lakes to coincide with that of Nipissing, which can be done. 'I'nis is the only way in which suffcient water for lockages can be obtained. The total lockage will be reduced from 715 to 682 feet.

The amount of excavation will be increased, but it is believed that the extra cost of this will not exceed what would have to be paid for damages if Lake Nupissing were raised.

The plan of $\mathbf{1 8 6 0}$, which raised existing levels by dams on the French and Matawan Rivers and on the Ottawa as far east as Chats Lake, can still be followed, as the shores are steep and rocky, and but little land will be overflowed There are a few places where sites of locks and dams may have to be changed, but not at an increased cost.

In 1860 the whole Upper Ottawa was a wilderness. All materials and supplies above Deep River must then have been transported partly by teams and partly in batteaux towed by horses, or poled by men. Now, the Canadian Pacific Railway can deliver materials, supplies and men all along the route, and at far less cost.

Several locks of low lift cen now be concentrated into one, as in accordance with the best modern practice. T'as will reduce cost.

I am in favour of locating locks so that a duplicate lock can be built hereafter alongside of the one first to be built.

I now advise constructing the locks of concrete (made from the stone near by) and Portland cement. The lock walls can be protected by waling pieces of steel and oak, thus saving much costly cut stone masonry.

The most important item of ecorony comes from the fact that the cost of the rock excavation, which is the largest item of cost, can be greatly reduced by the improvements which have been made during the past few years in the use of power drills, high explosives, and better kinds of machinery for handling materials.

The air compressors and other machinery can in many cases be driven by electric power derived from the river. The latest price paid for rock excavation on the Chicago Drainage Canal was 59 c . per cubic yard, while the average price estimated tor the Ottawa improvements in 1860 was generally from $\$ \mathrm{t} .50$ to $\$ 2.00$ per yard.

I am not now prepared to revise the figures of cost made in 1860 , as this cannot be done without further examinations and surveys, which will take several months to properly carry out.

There are several very important economies in construction that can now be made available, which could not in 1860 .

It is proper to point out that the most important change in the situation since 1860 has come from the development of electrical transmission of power. The dams which were designed by me in 1860 were then, and are now, absolutely necessary to give suffcient depth for navigation. These dams will also be the means of developing and controlling water power for electric appliances.

I can state unreservedly that I know of no other place in any manufacturing country, Niagara Falls not excepted, where there is such an amout of water power as this scheme can make available, both for manufacturing purposes and possibly for moving vessels rapidly through the locks.

It is proposed to construct 20 dams on the Ottawa with an average of 20 feet fall each. The low water discharge of the Ottawa never falls below $1,500,000$ cubic feet per minute, of which one third should be allowed to run over the crests of the dams to
prevent decay, leaving $1,000,000$ cubic feet per minute to run through flumes and do effective work. By the usual formula
bams cu. ft. per min. fall.
$\frac{20 \times 1,000,000 \times 62 \frac{1 / 2}{} \text { lhs. } \times 20}{44,000 .}$ we have 566,360 horse power.
Adding that available on the Mattawan and French Rivers there will probably be, at minimum, not less than 700,000 horse power.

The arcrage discharge of the weirs would give not less than four times this amcunt.

All this can be made available, by the comparatively small expenditure necessary for flumes and the foundations of penstocks and turbines. The cost of the installation of electric plant would vary greatly with the situation.

All of which is respectfully submitted by

> (Sgd.) THOMAS C. CLARKE,

Consulting Engineer Montreal, Ottawa \& Georgian Bay Navigation. Member Institution of Civil Engineers, and of the American Society of Civil Engineers.

[^0]: * Note. - When the lif of the strata is in the direction of the current, the water has only an erosive fore ; thut where it is against the current, the strata are undermined, fall from their own weight, and are broken to pieces, and the next thoul carries the detris away down the stream.

[^1]: *The inventigation of the laws that gevern the thow of water over wiens is one of the most importan branches of hydramic engineering, and has reeved the athention of many eminemt savants, among

 and James IS. Francis, of lawell, in the United States.

 Alt the rules and formula derived from their insestigations are fumbelel on that matural haw govern-
 paring the results derised from it with chose funished by experiment. Sh these experiments have as yet been mate on a comparatively small seale, we camot apply the rule deduced from them to circumstances widely lifieriog from thone under which the eaperiments were mate, without discrepanctes more or less great being found in the results.

 The ease will which we have to deal is fortumately one where we proceed from the greater to the less, so that an cror, whatever it is, is diminished instead of twing increased. Were we calculating the amont of available waterpower from the height on the crest of our dam, a very small errer either in observation or in the co-efficient itself, would give results widely differing foom the truth; but where we have alrealy gauged the dow of the strean, and only caleulated the height for a given length of dam, we know that the calculat a result most, at least, be as close an opproximation to mathematical truth a. is the quantity expressing the mumber of cubic feet of water passing a given area ln a secomb, as obtained from our gauges.

 Newerlheless it would be very desimble to have a series of experiments made, with special reference to determining the actual longitudianal section of a large river, dammed entirely across, during different volumes of discharge, from extreme high to low water. Such experiments, if properly made, would not only le a very valuable contribution to engincering science, bat are almost indispensable to the proper carrying out of a scheme of the magnitude proposed in this Report.

[^2]: *When the question of the enlargement of the brie Canal came up some years ago, this point was discussed very throughty, and the opinimof forwarders w shat, if the lirie Canal were large enough to admit vereds of 1,000 tons, they would still prefer to tranship at buthato.

 + Inthis I am supported by the opinion of Mr. Shanly, who has in his report so well expressed the character of this route, that I shall make no apolongy for quoting it here.
 "It is as a Steam Navigation, and more especially for that denomination of Stemers known as "Propellers," that I believe the Ottawa and French River route is destined to hold a tirst place as a Channel of Trade. For vessels of that description the character of the waters, and of the region on either side of them, is peenliarly litted. Land loeked for the greater portion of the way, the route will not in that respect be as advaningeous for sailing Craft as that by the great Lakes, but the ineahaustible supplies of wool at all points along it, and the facilities for taking their fuel on board at frepuent intervals, will forever render the cost of working steam Vessels lower on this than on any equal leugth of Navigation on the comtinent. llere. too, the l'ropeller ean keep the even tenor of its way heelless of the storms which, sweeping across the Lakes in the Autumn of each year. cause such immense destruction of life and property."

[^3]: *The Chute a Blondean is one of the few points on the Oltawa where the phenomenon of "icepacking" takes place.

 The floating ice which has come down the Long Sault, is arrested by the sheet of still water below this rapid, jammed under it and "packed," until an ice-dam is formed, raising the river some 25 to 30 feet above its summer level.

 The effect of the proposed dam would be to form a still lake for some three miles above it, which would be frozen over wth a thick sheet of ice, and the "packing" if it took place at all, would be removed some three miles up the river, above the point fixed for the lower entrance of the Grenville Canal.

[^4]: * At
 but the di some dou prudent to

 Belo
 fact that draws bac

[^5]: * At the time we took our levels, the fall between Des Chênes Lake and Ottawa harbor was 59.5 feet but the difference between the recorded levels of low water is 63 feet. If this is correct, of which I have some doubts, it is owing to the greater evaporation on the longer level below. It has been thought prudent to provide for sixty-three feet of lockage.

 Below, the river rises more than at any other point, some 20 to 24 feet. This is attributed to the fact that the Gatineau, a very large siver, comes in a little below at right angles to the main river, and draws back its waters.

[^6]: *The cross section of this point gives an area equal to that of a channel 420 feet wide, by 20 feet deep. The river above averages soon feet wise, by 20 feet deep. liy the formula for discontinuous weirs, where
 $b=$ breadth of channel. $=420$ feel.
 $d=$ depth... $=20$ feet.
 $h=$ height to which it is dammed. ... $=6$. $\frac{\text { of } \text { a foot. }}{}$
 $y=q u a n t i t y$ of discharge in cubic feet per second $=9 h \sqrt{2} \xi^{h}(+d)=32,254$ cubic feet. The quantity was guaged at same lime, and a mile above was 30,913 .

 $$
 \begin{aligned}
 & \text { At high water } d \text { becomes............... } 28
 \end{aligned}
 $$

 agrecing very nearly with other observations of H. W. discharge.

 > + Call $q=32,254$ cubic feet, per second.
 > $d=20$ feet
 > $h=6$ feet, height required,
 > And $b=$
 > The formula, $\quad \frac{q}{9(2 / 3 h+a)} / 2 g h=1054$ feet
 which is about the brealth of the present steamboat channel, which may be left alone. And by closing the others, the water will be dammed up six feet.

[^7]: *The mouth of Freach River is a deep tissure or eleft in the rock, extending from the lake ioto the land lts course is about north-east and somb-west, which is that of the "strike" of the strata in that locality, and consequently of the ridges on land and the reefs in the water. Thus, although the navigation is dangerous to those who are constug, and have to pass over the ents of the reefs, there can always be found a direct entrance hetween them, unobstructed ly sloals or sumken rocks. I have myself sounded from the foot of thet'etites Dalles, oat into the open lake, and foumd a gradual increase of $6,7,8,9$ and to fathoms, where my soundings ceased, about half a m.le from the point where the river may be said to end.-T. C. C..

[^8]: of the Mattawan．

[^9]: Exe
 Eml

[^10]: ジロジ

 Exca
 line
 Plank
 Wrou
 stone
 Batter
 Linin

 Wors

 Excav
 Emba
 Mason

 Ru
 Concre

[^11]:

 Exca
 Emb,
 Maso

 Kubl
 Conc
 Timb
 Wrou
 Cast
 Mitre
 Lock
 Culve

 Excav
 P'me
 Ilank
 Wroug
 Stone
 Bater
 Lining

 Excave
 Embar

[^12]: 11

 Wi,

 Ec
 Mas

 Kull
 Cone
 Timl
 Wron
 Cant
 Mitre
 Lock
 Culve

 Exca
 l'ne
 l'lank
 Wrou!
 Stone
 Batter
 Linin $_{2}$

 Pine
 Slume
 Lining

