THE JOURNAL

OP THE

FOR UPPER CANADA.

JTエT, 1864 .

JACQUES \& HAY'S CABINET FACTORY.

Ooe of the great objects of this Journal being to keep its readers well-informed as to the manufacturing industry of the country, we propose to give a brief sketch of Messrs. Jacques \& Hay's cabinet and furniture factory. Before taking our readers thither, however, it may not be amiss to say a few words about the raw material of which so large a quantity is worked up there.

The subject of Canndian woods, which has so long interested the merchant and artizan of other countries, cannot fail to engage the attention of our own people. The fact indeed of their growing so greatly in favor of late, should awaken a deeper interest in our forest productions as a source of wealth and prosperity th the country. We scarcely need specify any particular purposes for which our woods are adapted, because we believe that they are suitable to nearly all purposes to which the material is applied. At the several international exhibitions the beautiful samples of Canadian woods have elicited general admiration; and, at the late Exhibition for 1862, a commission from Lloyd's was sent to the Canadian department for the purpose of making extended investigations into the nature of these woods. The result was, that in "Lloyd's Register of British and Foreign Shipping," for the years 1863 rad 1864, a number of our Canadian wrods were added to their list, and raised to a high standard for ship-building purposes, in comparison with woods of other countries.
" Black-walnut, hickory, black-hirch, and white and red cedar, are added to the list of timbers for veesels classed A; and blackelm, hickury, white-oak, beech, chesnut, red-cedar, tamarac and birch-pine, are allowed the highest place for outside planking from the keel to the first butuck heads in ships of twelve years in cluss A. The important uses made of Canadian timber in every 'part of the ship, inside' and vut, and which secure the bigheet staindard in their registration, is shewn in table A." The jurors also in their report stated, that "at no previous exhibition in this or any other country has so splendid and valuable a display of the products of the firests and plantations been exhibited, not only when we cunsider the
magnitude of the various collections sent from almost every country, but also in regard to the admirable care shewn in the preparation of the specimens;" and that "in point of size of specimens, excellent selection, and information given, the Opper Canada collection is undouitedly the finest in the exhibition building."

Already we export annually in the form of logs, thirty millions of cubic feet, and of sawn timber we export every year four hundred millions of feet, bonrd measure. The revenue derised from these in 1860, was five hundred thousand dollars.
The value of our forest products exported in The year 1860 was $\$ 11,012,253$

$$
\begin{array}{llll}
" & 1861 & \text { " } & 9.572,645 \\
" & 1862 & \text { " } & 9,482,897
\end{array}
$$

For our finest woods the demand, we think, must grow much larger, from the fact that in South America and in the West Indies, rosewood and mahogany are becoming very, scarce.

From its susceptibility of a very bigh polish and its peculiar adaptation for displaying ornamental carving, black-walnut will, doubtless, become' the facorite wood here, as it already has in the United States.

Our cabinet makers here will act wisely in seeking, if they have not already found, the best possible methods of treating their woods so as to enhance their beauty. We are anxious that our native workmen should not be excelled, and there is no reason why they should be. With a continually advancing power and skill to work up our raw material, we should become large exporters of furniture and cabinet-ware. All that is required in the premises is rightly directed enterprise. Of this there is an eminent example in the establishiment of the Messrs. Jacques \& Haj.

The manufacturing part of this establishment is nituated at the foot of Bay Street, on the Eisplavade in this city, and is the largest of the kind in British Amerisa. If it were not for the heavy inland freights, it would possibly be much more extended, and manufacture more largely for oxportation. Δ_{s} it is the foreigo trade of the firm is confined to the best class of their furniture, some of which goes to England and some to Sevtland.:-

The number of persons employed in all the brariches of this establishment is about three huindred, and these, aided by a stean-engine of thirtyfive horse power, fed with the waste of the fuctory, work up fully one milliun feet of lumber in a year. There are, of course, great quantities of other'materials consumed here, as paint, varnish, glue, sand-paper, \&o., of which it is not our present purpose to speak. For the benefit of our glue manufacturers; however, we would just say that

Messrs. Jacques \& Hay send to England and to New York for much of their glue, beeause they find it:better than the home-made article.

The main building, which contains the machinory, is a large five-storey brick structure. On its wouth side is a separate building, of the same waterial, and perfectly fire-proof, for the boiler and ateam-engine. At the east end of the main building, a little to the south, and extending in that direction towards the bay to within a few feet of the Grand Trunk Railroad is another large boilding: this is divided into storehouses, blackemith's shops, workshops for painters, varnishers, orna menters in bronze, French polishers, hand polishers, and a variety of others. Hand-polishing is the most delicate kind of manipulation through which the finest articles pass, and it is confined to these. In one of these ruoms the floral ornaments in bronze are laid on the common chairs. Other apartments are used for drying the painted and varnished work, which process takes about two weeks, but then, it nust be remembered, that in some cares five or six conts of varnisi are laid on. The visitor will be surprised, perhaps, to find that on one of the lower floors of this building a num. ber of men are very busily employed in making boxes-altogether too small for packing furniture in-even the furniture that takes to pieces for easy corriage. There is a great deal of that sort of goods manufactured in the States for shipment to South America, and the diatinctive name it bears is." knock down" furniture, from its being easily knocked to pieces. Why should not Canada try Her hand at this kind of work? But these are tobacco boxes !

That huge chocolate-colored frame building, immedintely on the south side of the Grand Trunk Railway track, which is liaible to be mistaken for a. large railroad machine shop or a freight: dépôt, is: a two or three-storey building, filled from floor to roof with thousands upon thousands of chairs, bureans, tables, picture frames, wach stands, \&c. Thsough the centre of this storebonse there is a :roadray, ulong which furniture cars pase, stopping undertreath a large opening in the flow to receive their luads for the city trade, or to be shipped on .the railroads or steamboats for other destinations. .There is a vast deal of furniture and fine cabinet Work that never enters this place at all, but is conveyed direct from the factory'to their eatablighment -in King Street.
\therefore Here the general business of the concern is atransacted. The first flow comprises the counting shouse, warerooms, packinit roume, \&o, and upstairs, wareroums, showrome and workshops fur upholsterers. On the upholstering part of the
business the ubiquitous sewing manchine is brought to bear. All through this building the visitor will bohold rich furniture of the most elegnat patterns, graceful designs and exquisitely finished workmanship: costly Etagères, wardrobes, dressing tables, laxurious couches, sofas, loungef, easy and other chairs, with an almost endtess variety of articles fit to adorn the bed-chambers, boudoirs, parlors, drawing rooms, and gilded salons of the opulent, as well as abodes of hambler pretensions. These are being disposed of daily and their places taken by others.

Return now to the faetory for the parpose of viewing the processes by which the rough timber is made to assume the forms of elegance and utility which you have just seen. You enter at the centre of the building. Mr. Craig, the obliging foreman has consented to devote a few ininutes to you in the character of Cicerone. Pointing to some machinery you ask a question-that is, you meant to ask it, and you feel sure you did, but-what became of it? You did not herr it. You try again, and this time you would have heard it bat for the piercing scream of a circular saw-there are twenty of them in the building. That one is a swinging cruss-cut saw, which, in obedience to a touch of the operator's hand, approaches and cuto squarely through the thickest plank of the hardees wood in a mament.

This being the ground floor, all the herviest ma. chinery is here, and here begins the work. The plank you have seen cut off, baving previously been run through a planer, and now being cut into the required lengthe, is taken by anotber workman and passed as rapidly through a Whitney's patent scraper, which is an admirable contrivanee for doing perfectly in less than a minute what would require an hour to do imperfectly by hand labor. It takes off a sheet of the wood as thin as, lissuepaper, and when the plank or board has been evenly planed, unbroken, from the entire surface, leaving the work as even and smooth as a sheet of fine plate-glass. These pieces are now as expeditiously cut, some into one shape and some into others, as they are to form chair frames, parts of sofas, tables, \&cc.: this is done chießl by; gig saws. Close to one of these, convenient to receive its work from the preceding operation, is a very neatly constructed moulding machine, with two cutters. Backs of sofas, and other pieces of irregular shape are placed on the table through which these cutters pass, and bave the moulding executed on them in a space of time to mateh the great rapidity of all the other processes. Sand-papering is very effectively done by a revolving cylinder covered with that material. Ilere, too, is a simple instrument for
cutting at one stroke the curres in seats of wooden chairs. We onit a number of other mechanical operations of perhaps equal importance, and pass to the turning department, where we notice latied with large knives, held diagonally above the work to be turned. As soon te the wheels are thrown into gear the wood revolves, the knive descends, and tefore you bave time to examine the process, there is turned out a pioce of workmanship more accurately executed than buman hands could have produced ; every piece in a thousand being exactly like each of the others. The blade of the knife is bent: into the shape of the pattern to be turned, and as far as we can judge, no skill on the part of the operator is required. We need scarcely observe that for every pattern there must be a separate knife. There is much turning done in this establishment, however, where the hand still guides the tool, and guides it to admiration. Top rails of chairs, and other portions of work (requiring any arc of their respective circles) are cut by oylindrical or "tub" saws, placed horizontally with their teeth'on the periphery at one end. Here is a drill or boring machine, for various kinds of work, with adjustable cutters, boring three or more holes at once. This, as well as many other of their ma. chines, has been considerably modified and improved by themselves. Here also is an iron planer, used in repairing, as well as in making new machinery by their own machinists. This is of their own construction. Daniell and Woodworth wood planers are in constant operation. On the second floor wooden chairs are made with astonishing celerity. Justice to the in tentive ingenuity of the Mesars. Jacques \& Hay require that we should mention in this place, an admirably conceived and well-executed piece of mechanism for sawing and boring at one brief operation, the several four pieces which coupose the seat-frame of the cane chnir. This, we learn, is one of their best and most effective applications of mechanism in the factory. For mortising there is, in a convenient frame, a vertical cutter, with a lateral movement, adjustable to the length of mortise required. The cutting of tennons, other moulding machinery, and a great variety of processes well worthy of notice must be passed over, at least for the present.

In this establishment nothing seems forgotten or neglected that could be:conducive to its efficiency, safety, or comfort of the three bundred hands employed. As a precaution against, accident by fire, for instance, the place is heated by steam, there being no fire whatever in the building. The glue required on each floor is kept in a liquid state by steam, conducted up through'the building for that
purpose, as well as for henting a drying-room, necessary for removing any moisture from parts which are to be glued together. An additional and wise precaution consists in a tank, containing eight thousand gallons of water, being placed abive all, ready, at a moment's notice to be precipitated on any part of the building by meane of a hose on each Goor, attached to the pipe leading from the tank down to the bottom. In each room there is a vessel of filtered water, which, when necessary; is iced for the use of the men. These litule attentions, on the part of the employers, to the comforts of the employed are never thriwn away, and it is very agreeable to notice them. Let us hope that between the two classes the elements of progress, now so active, may evolve a more generally recognised and operative identity of interest.

There in the centre of this extensive apartment you perceive a large platfurm huist moved by steam power; it is laden with some of those pieces you snw receive their shapes beluw, and it is here they are to become chairs. On the nextflyor the cabinet makers' operations interest you. This is a place of comparative quiet. The cabinet department is superintended by Mr. Rugers, to whom yua are introduced by Mr. Craig, who now bids you good morning.

The skill and dexterity with which woud is converted into beautiful furniture all through this department are truly wonderful. Here are a number of boys, too, " learning their trade," under experienced workmen. Higher jet, on the fifth storey, you find busy men contributing their quata of labor and skill as repairers, carpenters, \&un but your curiosity has been awakened-you wish to luok into the designer's studio. This is the pifies for the solution of the problem-" Gipen the uee and material of the article to find a, beautiful shape," and this is worthy the best effigts of art. The taste that has been created of late years iby the grent profusion of art productions must be gratified: And it must be gratified at bọne. Picture galleries and collections of works af art are not enough, all our household gods should confirm 10 the true principles of the beautiful and the pure; not pictured walls and sculptured marble alone will satisfy; not only must the carpet vie:with the natural fora, and the hanginge speak the language of design, but whatever is to have a plate in the "temple of the affectiong" should reveal or suggest ideas of mauliness, purity, benuty and truth. We would also respectfully remird those who are, engaged in manufacturing nrticles of furniture of whatever kiid fur the "lower order," that the delf ware in the humblest cottage has borrowed formo
of "grace and beauty" from Etrusean art. And also that in place of the slapeless, unmeaning "image" on the workingman's mantel-píece, we now behold a good plaster statuette; and on the wall where years ago there bung an ugly print we now see a steel engraving from one of the "masters." If legislators understood how much these things have to do with the formation of character, national as well as individual, something would be done for the encouragement of art in this country. Besides, it has been found that art pays. Schools of Design in France created reputations for ber manufactures and enriched her manufacturers, found employment for her operatives, improved the popular taste, and benefited the country. British manufacturers saw in the actnowledged superiority of their other resoliress no gunrantee against the danger with whith their intereste were thus threatened. Legislative action was invoked and schools of design speedily became flourishing institutions. So flourishing indeed, that in a recent official communication to the Emperor on this subject danger is apprehended to Frencl industry from English superiority in art.

To the reflecting mind no argament will be needed to prove that schools of design must be establisbed here, unless we are to be driven out of the market by those who, in all other things, are our inferiors.

So far; however, as the establishment of the Messrs. Jacques \& Hay is concerned, perhaps it is better provided for in the matter of art than some others. At any rate the designer's studio bespeaks the presence of a mind there. Instead of patching up and adapting old designs made for other purposes, there are numerous casts of natural specimens, many of which belong to the fauna and flora of Canada, whose beauties enter into the compositicn of original designs: One of these, perhaps the most elaborate, is for a side board, made to the order of Lord Abinger, for whom sets of drawing trom and library furniture have recently been made and sent home. Some of the carved work there is: aniprisingly beautiful. Amongst this are to be found parts of a coustly table, inot yet puit togother, orderid by the Governor-General, to be sont home by him to England. :

PROVINCIAL ANNUAL EXHIBITION.

In a little more than two months the next Exhibition will take place Aro our Artists and Manufacturers, preparing for it? If not, we urge upon them to commence at once; there is no time
to be lost if we desire to have a good display of the arts and industrial products of the Province.

Our mechabice and manufacturers should not estimate the value of these Exhibitione to themselves by the pilizes they may obtain-this should be but a secondary consideration; a spirit of emulation is excited in the mind of the competitor, and his employees catch his spirit and also determine to excel, and thus the character of our manufactures are raised to a much bigher standard than they otherwise would be.
Through the instrumentality of these Exhibitions a spirit of friendly rivalry, and a desire on the part of each one to produce something supgrior to his neighbour, has been excited amongst: our Agriculturists; and that it has resulted in great good to the Province in the improvement of the live stock and produce of the farms, is undisputed. This is also trne as regards the Horticulture of the Province, which has now attained a degree of excellence that would be honourable to any country-why should not equally good results be obtaided for our manufacturing industries? In many departments we have both the material and the skilled labour to work it up, and in numerous cases it is worked up to good purpose; but there is still a lack of sufficient patriotic feeling to induce parties to incur the trouble and expense of exhibiting their productions when prepared.

To the manufacturer who has a new branch of business to establish, or an old one to increase, these annual gatheringe afford the best means for him to attain his ohject. Itis articles are seen and examined by thonsands of persons, if worthy of inspection; and if fortanate enough to obtain prizes, the fact is annonnced by the pablic papers, and in the pages of this Journal, throughout and beyond the boaids of the Province; obtaining for his goods a greater publicity than any other means affurd. We have known lärge busińesses established within a very short apace of time, by means of these Extibitions.

AGRICULTURAL ASSOCIATION BY-LAWG.

Notice is hereby given that at the next Annual Meeting of the Agricultural-Association; the council will propose the amending of cleuse fifteen of the By-Laws, so as to give a fixed number of Single Admission Tickets to members, instead of Season Tickets.

\author{
$\left.\begin{array}{c}\text { Hog, C. TGMMson, } \\ \text { WM. EDFARDs; }\end{array}\right\}$ Secretaries.

}

FOR TPPRR CANADA.

ANNUAL EXAMINATIONS, 1864.

The Annual Examination of members of Mechanics' Institutes, according to Programme published in this Journal for November, 1863, took place on the $7 \mathrm{th}, 8 \mathrm{th}, 9 \mathrm{th}$, and 10 th days of June, ultimo. The subjects proposed for examination were, Aritbmetic, Book-keeping, English Grammar and Analysis; Geography, Penmanship, Algebra, Geometiy, Principles of Mechanics, Geowetrical and : Decorative Drawing, Mistory, Trigonometry, Mensuration, Praotical Mechanics, Conic Sections, Chemistry and Esperimental Philosophy, Geology and Mineralogy, Animal Physiology and Zoology, Botany, Agriculture and Horticulture, Political and Social Economy, English Literature, French, German, Music, and Ornamental and Landscape Drawing.

Last year but seven e indidates werg examined, and five subjects only taken up. This year trenty candidates were reported, seventeen have been examined, and twelve different subjects taken up. These, with the Examiners therein, are:Arithmetic...... M. Barrett, M.A.,M.D.,U. O. Cul. Bookheeping ... J. H. Mason, Esq. English Gram-
mar \& Anal.
Algebra
Geometry
Mensuration...
Eng. Literature
Fiench.
Music. \qquad
C. W. Connon, LL.D, U. C. Col. James Brown, M.A., U. C. Col.
\qquad Joo. T. Husgard, Esq. Pennzanship.. McMurcha, B.A J. A. Boyd, M.A. Geom. © Orn.
Drawing E. Coulon, Era. G.W. Strathy, Mus. Doc.,Tr. Col. G. A. Barber, Esq.
W. G. Storm, Esq.

Committee on Examinations.-Rev. Professor W. Hinck a, F.L S., and Professor G. Buckland, Oniversity College, Toronto ; and Prufessor II. Y. Hind, M.A:, F.R.G.S., Trinity College, Toronto.

The Cert:ficates awarded by the Board are for actual merit, and not for mere competition. The lat Class Certificate indicates "Excellence ; " the 2nd Class, "Proficiency;". and the 3rd Class, "Commendableness."

Certificates awnuded 10 Candidates.

No. 1. Miss L. L. Dow, aged 17, member Whitby Mechanice Institute: English Grammar and Analysis, 1 1st class certificate; English Literature, (Milton and Trënch) 3rd class certificate ; French, 3rd class cérificate; Music, 3id clines certificate.
No. 2. Juhn G. Robinson; aged 17. Whitby Mechanics' Institute. Arithmetic, 2 nd class certificate"; English Grammar and Analysis'; 2nd class
certificate; Finglish Literature (Trench and Craik) 2nd class certificate.
No.3. Wm. H. Ballard, aged 18, Whitby Mechanics' Institute. Arithinetic, lst class certificate; English Grammar and Analysis, 2nd clase certificate; Algebra, 2nd class certificate; Geometry, 3rd class certificate.
No. 4. James H. Panton, aged 17, Whitby Mechanics' Institute. Arithmetic, 3 rd class certificato ; English Grammar and Analysis, 3rd cläss certificate.
No. 7. Miss S. E. Brown, aged 17, Whithy Mechanics' Institute. English Grammar and Analysie, 3 rd class certificate; English Literature, (Milton and Cowpor) 3rd class certificate.

No. 8. Miss M. C. Rowe; aged 19, Whitby Mechanics' Institute. Music, 3rd class certificate; Crayon Drawinge, 1st class certificate.
No. 10. J.J. O'Connor, aged 19; Whitby Mechanics' Inotitute. Arithmetic, 3 rd class certificate; English Grammar and Analysis,' 3rd class certificate ; Penmanship, 2nd class certificate.
No. 11. George Dickson, aged 20, Whitby Mechanics' Institute. Arithmetic, 3rd class certieate; English Grammar and Analysis, 2nd class certificate! Algebra. 3rd class certificate ; Geometry, 3rd class certificate ; Penmanship, 3rd class certificate.

No. 12. Joseph Betts, aged 18, Whitby Mechanics' Institute. Arithmetic, 3rd class certificate; English Grammar and Analysis, 2nd clase cestificate ; Geometry, 3rd class certificate ; Penmanship, 3rd class certificate.
No. 13. Robert Pales, aged 18, salesman, member Toronto Mechanics' Institute. Bookkeeping, 2nd class certificate.
No. 14. Robert Mills, aged 19, clerk, Toronto Mechanics' Institute. Bookkeeping, 2nd cless certificate.
No. 15. Alfred White, aged 18, safesman, Toronto Mechanics' Institute. Bookkeeping; 3rd class certificate.
No. 16. John Nimmo, nged 26, anlesman, Toronto Mechanics' Institute. Bookkeeping, 1st class certificnte.
No. 18. Charles Bell, nged 25, plasterer, Toronto Mechanics' Institute. Crayon Drawinge, 2nd class certificate.
${ }^{\text {' No. 19. Alfred C. Edwards, aged 16; clerk, }}$ Toronto Mechanics' Iastitute. . Penmanship, Lst class certificate.
No. 20. Miss FL. R. Wilson, aged 26, Toropto Mechanics' Institute. Crajon Drawings, 1st class certificnte.
The Examiner in Finglish Gramimarand Analysis in his report' on Paper No. 50, (Mies.L. L. Dow)
: 89ys; " It bears marks of the most decided Excelurnce; I do not know that I ever examined a . paper reflecting greater credit on its author."

The Examiner in Geometry reports, "The gentle_men represented by Nos, 53 (J. Betts), 55 (Geo. Dickson), and 57 (Wm. Ballard), bave acquitted themselves most creditably. They have evidently taken the greatest pains in making themselves acquainted with the four books of Euclid; and I regret that in consequence of their not being successful with the deductions, I cannot recommend a higher certificate than that for ' enmmendableness' should be awarded them." On Paper No. 54 the report says, "His papers are written out with great carelessness, and are nearly all incomplete. The carelessaess is the more improper, perhaps, from the fact that he could, in my opinion. if he bad taken the trouble to do so, have done all the propositions from Euclid correctly."
The Examiner in English Litcrature reports on Paper No. 58 (J. G. Robinson) that it "is well entitled to a 2nd class certificate, falling, in fact, not far short of being worthy of a 1st class place;" and "that had not No. 50, (Miss L. L. Dow) through some unfortunate oversight, omitted a portion of the work relating to Millon, in the 2nd section of the examination thereon, I doubt not but that this candidate would have won a 2nd class certificate."

The Examiner in French reports on Paper No. 50, (Miss L. L. Dow) "that the translation from .French into English is the best part of the Paper."

The Examiner in Music reports on Papers No. 50. (Miss L. L. Dow) and No. 51 (Miss M. C. Rowe), "that No. 51 answers the greater number of questions, but that the answers of No. 50 evideuce a greater advancement in the knowledge ofmusic."

We have not time or space to comment on the examinations in this number of the Journal, but may do so in the next issue. The following are the remainder of the papers set by the Examiners, five of which were published in the June number.

ENGLISH LITERATURE.
(Three hours allowed.)
1.-craik's "englibi language."
I. "It is in the highest degree improbable that - the retirement or expulsion of the iubabitante of Roman descent, can have been so complete as these otatements would make it.: From the number of seottlements which both ihistory ;and itheir remains on or under the soil prove the Romans to :have rpossessed in all parts of the country, from the (Ohaniel to the Friths of Forth and Clyde; compre:
hending many towns and villus, as well as mere military stations, it is evident that in the space of between three and four centuries, during which the island had been a Roman province, it had been extensively colonized, like most of the other provinces, from the original central seat of the empire, and that the portion of the population thus formed must in all likelikood have been very considerable and very widely diffused."-Page 12.

1. Indicate the wordes in the above extract that are of Latin; Greek, or French origin, specifying the language from which each word is derived.
2. What philological remains are there of the occupation of England by the Romans? Classify all the accessions to our vocabulary from Latin sources.
3. Under what circumstances, and when, did the Romans occupy and relinquish England?
4. Explain the full import of all that is meant in the expression "from the Channel to the Friths of Forth and Clyde."
5. Compare the Danish with the Roman oceupation of England, both as regards territorial extent and philologieal influence.
6. When Craik speaks of the "original central seat of the empire," what changes in the organization of the Roman Empire does he refer to?
7. Does it follow, from what is said, that all the Roman inhabitants spoke the Latin language? Give reasons for your answer.
II. Mention the various uses of the terminal e mute in early and in modern English.
III. Account for the spelling of the auxiliary verb "could." What distinction does Chaucer make between "ye" and "you"? What pronouns were represented by the form "" hire," employed by him?
IV. Craik speaks of "the Saxon Shore"" "aureate terms," and "lingua franca." Write short explanatory notes upon each phrase.
V. Craik states five prominent facts which constitute the external evidence that we have in regard to the sources of the English language. Mention these facts in chronological order.

> Ii:-TRENCA's "STUDT OF WORDS."
I. "For I am persuaded that I have used no exaggeration in aaying that for many a young man, 'his first discovery that words are living powers, has been like the dropping of scales from his eyes, like the acquiring of another sense, or the introduction into a.new world,'-while:yet all this
may he indefinitely deforred, may, indeed, never find place at all, unless there is some one at hand to help for him, and to hasten the process ; and he who so does, will ever after be esteemed by him *t one of his very furemost benefictors."

1. Compare this passage, as regards its philological character, with the foregoing quotation from Craik.
2. Define what you mean by rhetorical and syntactical figures; and point out all examples of each in the above passage.
3. "Muny a young man;" we commonly hear said " many men," " a great many men;" Tennyson, speaking of the eyes of "The Miller's Daughter," says, "they have not shed a many tears." Are all these four expressions correct? If so, how do you reconcile them in parsing.
4. How many different parts of speech may the word " while" be, in different connexions? Illustrate your answer by examples.
5. Give one or more synonyms for the words " discovery," " deferred," and "esteemed," distinguishing accurately the shades of meaning in each. In how far is the word "synonym" a misnomer?
II. Give the derivation of, and (where applica-
ble) the transmutations of meaning in the follow-
ing in the following words: " tawdry," "knave," " bigot," " dunce," " pagan," " roué."
III. "Muny words, formerly slang, are now used by our best writers, and received, like pardoned outlaws, into the body of respectable citizens." Whas is the meaning and derivation of "slang." Give English examples of the truth embodied in the abuve passage, from our own and former times. IV. Mention some words the history of which dates from the Crusades. What mistakes are in"olved in the Crusades. What mistakes are in the following words: "posthumous," "plurty," "analyze," "sirname," "shamefaced.". "plursy," "analyze," show should these words be correctly spelt? Give your reasons.
V. Mention the most important contributions to Englixh philology, before and since Trench commenced to write, and give some estimate of the effect of his labours upon this subject.

I.

ENGLISH LITERATURE.

(Three hours allowed)
I. Militon : Paradibe lost, books i., If
(2) Soon recollecting, with high words, that bore
(3) Semblance of worth not substance, gently rais'd
(4) Their fainting courage, and dispell'd their fears.
(5) Then straight commands that at the warlike sound
(6) Of trumpets loud and clarions be uprear'd
(7) His mighty standard: that proud honour claim'd
(8) Azazel as his right, a cherub tall;
(9) Who forthwith from the glittering staff unfurl'd
(10) Th' imperial ensiga, which full high advanc'd
(11) Shone like a metcor streaming to the wind,
(12) With gems and golden lustre rich imblaz'd,
(13) Seraphic arms and trophies; all the while
(14) Sonorous metal blowing martial sounds;
(15) At which the universal host up sent
(16) A shout, that tore Hell's concare, and beyond
(17) Frighted the reign of Chaos and old Night."
I. Point out and name all the figures in this passage.
II. Indicate the words that are of Latin, Greek or French origin, specifying the language from which each word is derived.
III. What is the meaning of the words "recollecting," "advanc'd," and "reign," in lines 2, 10 , and 17?
IV. Specify any peculiarities of rhythm and prosody in the above extract.
V. Cite passages from any English poete written in imitation of lines 10 and 11.
VI. In what connexion do you read "Seraphic arms and trophies," in liae 13 y
VII. What do you understand by the term "Chaos," as used by Milton?
II. COWPER: "THE TASE."
I. "But is amusement all stadions of song

And yet ambitious not to sing in vain
I would not trifle merely though the wrorld
Be loudest in their praise who do no more
Yet what can satire whether grave or gay It may correct a fuible" \&c.
Puncturte this passage ; and paraphrase it so as to express the meaning fully in ordinary prose.
II. "O for a law to noose the villain's neck, Who starves his own; who persecutes the blood
IIe gave them in bis children's veins!"
Rewrite this, so as to show the grammatioal connection of the various words and members of the sentence.
III. "He charms a world whom frehion blinds

To his true worth, most pleased when idlo most;
Whose only happy are their wasted hours."

1. Point out and name the figures in these lines.
2. Rearrange the words so as to exhibit the author's meaning.
IV. "Gnats have had, and frogs and mice, long since,
Their eulogy: those sang the Mantuan bard,
And these the Grecian, in ennobling strains;
And in thy numbers, Philips, shines for aye The solitary Shilling."

Explain fully all the allusions in this passage.
V. "The learned finger never need explore

Thy vig'rous pulse;"
"And howl and roar as likes them."
Parse the italicised words in the above lines.
VI. Cowper uses the following words in this poem :
" Vortiginous," "histrionic," "oscitancy," "stercoraceous," " tramontane," "prelibation." Give the meaning and derivation of each.

II.

I. Sketch the history of blank verse as an English measure.
II. Compare the blank verse of " Paradise Lost," with that of "The Thsk," and specify the chitf metrical peculiarities which characterize each poem.
III. Contrast briefly, the poetical genius of Milton and Cuwper, as displayed in these poems.
IV. Wherein consists the appropriateress of the mame "The Task," and of the titles of the various books comprised therein?
V. Mention some of the most important contemporaneous events which Cowper refers or alludes to in his poem.
VI. Hayley, in bis life of Cowper, says:-" Perhaps no author, ancient or modero, ever possessed so completely as Cowper, the nice art of passing, by the most delicate transition, from subjects to subjects that might otherwise seem but little, or not at all, allied to each other; the rare talent,

- Happily to steer,

From grave to gay, from lively to severe.'"
Ezemplify this remark from "The Task," and diecuss the advantages and diendvantages to Cow-

MENSURATION.

(Three hours allowed.)
I. For finding the area of a parallelogram, show that the following is true:-"Multiply one side by its distance from the opposite side." Deduce also the area of a triangle from the above. One side of a parallelogram is 25 yards; distance from oppo site side, 12.4 yards. Find area.
II. A ladder, 40 feet long, may be so placed that it shall reach a window 31 feet from the ground on one side of a street; and by only turning it over, without moving the foot out of its place, it will do the same by a window 19 feet high on the other side of the street. Find width of street.
III. Show how to find area of a trapezoid, having given the two parallel sides, and distance between them. Given, 40,15 and 28 rods to be the two parallel sides and perpendicular respectively. Find the surface.
IV. Having given the three sides of a triangle, find its area in terms of those sides Modify your expression for equilateral and isosceles trianglea. Given sides $218,322,436$ yards respectively. Find area.
V. Find length of perpendicular from the joining of two rafters on a cross beam; length of raf ters 18 and 28 feet, that of beam 40 feet.
VI. State how to find area of a circle. Find the side of a square, equal in area to a circle whoge radius is 15 yards.
VII. The bounding circles are 20 and 30 yarde in radius. Find the area of the spuce enclosed between their circumferences.
VIII. State how to find the curve surfaces of the following bodies: (1) Right cylinder, including both ends. (2) Right cone. (3) Frustrum of a right cone. (4) Sphere.
IX. (1) What will be the cost of painting ${ }^{a}$ conical spire, at 8 d . per yard; height being 1^{8} feet, circuit of base, 46 feet? (2) The ball on the top of St. Paul's Churoh, London, is 6 feet diame ${ }^{-}$ ter ; what did gilding cost at $3 \frac{2}{2}$. per square inch ${ }^{\text {? }}$
X. Ilow many bricks will it take to build a wall 10 feet high and 500 feet long, of a brick and a half thick, reckoning the brick 10 inches long, and 4 courses to the foot in height?
XI. A gentleman has a circular plot containing nn acre, wishing to raise its surface two feet; be digs a trench all round the plot, reserving a foot path, a yard wide, between outer edge of plot and trench : how deep must trench be, suppusing it to be four feet wide, and what cost of digging at

FRENCH.

(Three hours allowed.)
Translate into English :

GUJL亡゙AUME.

Qui l’a vue antrefois, la verrnit hien changes: Sa beauté par les pleurs est déja ravagée; Elle eat là, thute seule. au fond de ce palais, N 'a vant, pour la servir, ni dames, ni varlets; On l'évite avec soin, comme un être funeste, Comme si dans son souflle on respirait la peste.

mobert.

Mais ceux qu' elle a guéris, Guillaume, car je sais Qu 'elle a sauvé la vie a maint et maint blerses, Et ceux qu'elle a nuurris de non pain, faut-il croire Que de lẹur bienfaitrice ils aient perdu mémoire?

GUILLAUME.

Ils n'ont pas seulement oubliéses bienfaits, Comte ; ils tournent encore ses vertus en forfaits. Par ses soins dévinés les blessures guéries, Ne l'ont éce, dit-on, que par surcelleries; Et, quant à ea largesse envers les indigents, Efle achetait ainsi loâme des pauvres gens. Voila quels sout les bruits qui courent par la ville.

ROBERT:
O peuple ingrat et liche! 0 multitude vile ! -Que fait le Roi?

GUILIAUME.

Le Rai défend Madame Agnès. Et les excès répondent aux excès.
Il chasse les prélats, leurs cleros et leurs chanoines;
Il fait par des routiers piller leurs patrimoines; Car, tous ses serviteurs l'ayant abandonné
De ruatiers mécréants il s'est environné. C 'est lui!

PHiLiPPE, parlant du dehors à l'abbo de Saint Denif.
N' excitez pas encor ma colère,
Sire abtue ! le bercail ne vous importe guère
Pourvu que vous mangiez vos rentes en repos,
Et buviez largement le vin de vos clos,
Vuus ne prenez pas garde a mon peuple en sonffrance.
|France !
-Par Saint Charles le Grand, et tous les Saints de
Je ferai déguerpir, tenez-vous-le pour dit.
Quiconque des prélats gardera l'interdit;
Je saisirai les biens de ces pasteurs indignes; Je raserai leurs clos, et couperai leura vignes. -Allez!

Agnès de Meranue, Ponsard.

Grammatical Questions.

1. L' a vue. Why feminine? Give the rule of the past participle followed by an infinitive; also followed by an adjective or past participle, so, rewrite nous l'avons vu' prise-prendre.

That write ascording to knowledge of the rules bearing on these two sentences,

> nous l'avons vi prise,
> nues l'avons vu prendre.
2. Verrait, gueris, nourris, faut, croire, aient courent, fait, buvitz, prenez, tenez, allez-their primitive tenses.
3. Qui. When a nominative, when an object? What here, and how?
4. Toute seule. What part of speech does toute belong to? Its rules-along with those of quelque.
5. Ni. When two nominatives singular are connected by ni, ou, de' meme'que, etc., and when of different persons, what are their rules?
6. What are the different meanings of faut, followed by au infinitive, a subjunctive, or preceded by a dative?
7. Quant-quand-voici, il ya. To what part of the speech do they belong? How used?
8. Que fait le roi. With what rther expressions: do you throw the noun after tho verb? In what cases does the pronoun, a subject, go after the verb, although no question is meant?
9. Cest lui. When are $j e, t u$, $i l$, $i l s$, replaced by moi, tui, lui, eux.

Translate into English :

Nons avinns arrêté que nons irions diner sur lea bords de la mer, pour manger des huirres du lac Lucrin et boire du vin de Falerne. Nous: nous acheminâmes donc vers le lieu dénigné, ou dea próvisions, prudemment acbetees al Naples et envoytes d' $^{\prime}$ avance, nous attendaient, lorsqu' en arrivant près des ruines du temple de Vènus, nous aperçumes un groupe de prome neurs qui e' apprêtaient à en fuire autan:. Nous nous approchâmes et nous reconnámes, qui? Barbaja, 1 ' illustre impressario, Duprez, notre célèbre artiste, et la diva; Malibran, comme on l'appelle par tout le monde. C'était une bonne fortune pour nous qu' une pareille rencontre; et i! fut arrêté al linstant que nos deux diners serajent réunis en un seul. Co point essentiel arrêt, comme il fallait encore un certain temps pour appiêter le banquet commun, et que, nous n' etions qu' a deux cents pas des étuves de Néron, nù le gardien nous offrnit de faire cuire nus oeufa, nous acceptames la proposition, nous lui mimes d la main le panier qui les: contenait, et nous marchames derrière lui. Le paupre homme rersemblait fort aux chiens de la grotte. A merure que nous approchions des étuves, sun pas se ralentisanit. Malheureusement la curiosité est impitoyable. Nous fumes donc insensibles aux gémissements.qu' il poussait, et, à la purte des étuves ouverte, nous nous précipitimes dedans.

Impreasions de Voyage-Dumne.
Grammar Questions.

1. When are si, quelque, quoique, parceque, jusque, elided?
2. What is the feminine of adjectives ending with $g u, g$, ou, eau, et, an, and exceptions-Examples.
3. When can aucun, nul. be used in the plirnal!
4. Give the ure and niceties of autrui, soi, per sonne, quelque chose, tout autre, rien.
5. Feminine ol'cheval, chasseur, moine, duc, farori, fat, courtisan, chretien, paysan, auteur, acteur, empereur, acteur, bouc;, taureau, chien.
6. Meanings and genders of pendule, joirnee, cuiller, voile, vase, pique, coche, an, annee, cuilleree, jour.
7. What mood does que govern? Exemplify.
8. Give the concordance of the past tenses of the atbjanetive; with those of the present indicative and future absolute-Example.
9. When an adjective qualifies two pouns what is the construotion, if it eannot be placed last?
10. What prepositions do esperer, venir, aller, conitinuer, govern before infinitives?
11. Give the plural of délail. gouvernail, naval, blet-clair, casse-tete, perce-neige, arc-en-ciel, belle-denuit, bleu, monisieur.
12. Give the verbs that require pronouns as direct or indirect objecte after them.

Transtate Rdioms:
Il fait jour-Charles se fit jour avec mille fan-tasisine-il faut s'entendre-Quel saint homme que votre père!-Send for him-Call him up-Do not take the horse away-I am coming-I fell upon him and sprained his ankle-How often do you attend church on Sunday ?-1 will attend to your wante.

Translate into Trench :

Nothing is more characteristic of the times than the care with which the poets contrived to put all their loosest yerses into the mouths of women. The compositions in wich the greatest license was taken were the epilogues. They were almost always recited by favourite actresses; and nothing charmed the depraved audience so much as to hear lipes grossly indecent repeated by a beautiful girl, who was supposed to bave not jet lost her innocence.
Our thentre was indebted in that age for many plots and characters to Spain, in Fraace. and to the old English masters; but whatever our dramatists touched they tainted. In their imitations, the houses of Calderon's stately and bigh spirited Castilian gentlemen became sties of sin, Shakespeare's Viola a procuresa, Moliere's Misanthrope a ravisher, Moliere's Agnes an adulteress. Notbing could be so pure or so heroic but that it became foul and ignoble by transfusion through those foul and ignoble minds.

Macaulay's Distory of Eugland.

mustc.

(Three hours allowed.)

TEEORETIGAL EIEMENTS.

1. Write the different notes and their correaponding rests.
2. Explain the effect of 1,2 and 3 dots after a note or rest.
3. What kind of note would express the value of the third dot after a minum? and what kind of rest the seoond dut after a crotobet rest?
4. What note is equal in value to 8 semiquavers?
5. Express the value of a minum by a nole, dot and rest.
6. Express 4 semiquavers, 1 orotehet with 2 dots, 1 semiquaver rest, and 1 orotohet rest, by means of one note.
7. Express the different time the following bars would belong to: .

8. Name the keys major and minor whose signature is 5 中's.
9. Name the keys majur and minor whose signature is 4 D 's.
10. What is the relative minor to E ? and relative. major to F minor?
11. Explain the following musical torms :

Adagio, Allegro, Cres., dim., legalo, Staccato.
12. Write the following abbreviations in full:

13. What is the meaning of enharmonic change? Give examples.

HARMONY.

(1) Explain what an interval is.
(2) Give the different intervals in general use with their inversions as far as an octave, from the following note

(3) What notes of the scale form the common chord on the ley note?
(4) What is the difference between a major and minor triad or common chord?
(5) How many positions can a triad have?
(6) What is meant by an inversion of a chord $?$
(7) How many inversions can a chord have?
(8) Give the figurings of the 1 and 2 inversions of the common chord.
(9) Write the different triads the following note cau belong to in the same key

(10) Fill in the upper parte from the following figured bass, beginning the upper part with the 8th.

(11) What are the principal fundamental basses in every key?
(13) How many inversions can a chord of the dom. 7th have i
(12) Write the chord of the dom:7th to the key of E \downarrow.
(14) Write the different inversions of the dom. 7th, and resolutions, with the figured bass of each.
(15) Write the different chords of the dom. 7 th, and resolution that the following note can belong to

(16) What is the meaning of modulation ?
(17) Modulate from F to its relative minot: from $B D$ minor to its relative major:
(18) Modulate from \mathbf{C} to $\mathrm{D} \nmid \mathrm{by}$ 1st inverg. of its dom. 7th.
(19) Give examples of the chorde of the: diminished 7 th, 9 th, 11th and 13 th; with their resolutions.

BOOKS ADDED TO THE FREE LIBRARY OF MEFERENCE.
Shelf No.
H. 48.Treatise on Mills and Millwork; Part II, on Mnohinery of Transmission and the constructinn aud arrangement of Millis. 8vo.; 1868............................... W. Fairbairn, C.E.
H. 50. The Horse, a Generel History of: A Dissertation on the American Troting Horse ; and an Essay on the Ass and the Mule; by J. S. Skinner. 8vo.... Wm. Youatt.
I. 94.......A. Popular and Practical Exposition of the Minerals and Geology of Canada.

8vo ; 1864.. Chapman, Ph. D.
L. 3.......An Index of Dates; comprehending the principal facts in the Cbronology and History of the World. from the earliest to the present time; being a complete Index to the enlarged edition of Blair's Chronological Tables (elso in the Library). 12 mo . ; 1859.
J. Willoughby Roase.
N. 4.......The Management of Steel, ivoluding Forging, Hardening, Tempering. Annealing. Shrinking and Expansion; also the Case-hardeaing of Iron 24mo. ; 1863. George Ede:
U. S. P.... Report of Commissioners of U. S. Putents, on Arts and Manufactares, for 1861,

P. P......... Parliamentary Publications.

RECENT ENGLISH PUBLICATIONS.

RECENT AMERICAN PDBLICATIONS.

Byrne (Oliver) The Practical Metal Workers Assistant,		H. C. Baird.
Ede (Genrge) The Management of Steel and Casa-Hardening Iron....	050	D. Appleion.
Haupt (H) Nilitary Bridges; with suggestions for crossing strenms, 8vo...		D. Van Nottrand
Lindsley (D. P.), Phonetic Short-Hand ictut..........	085	Brown f Grass:
Miller (W. A.. M. D.) Elemenis of Chemistry ; Theoretienl and Prnctical	850	John Wiley:
Pradal (M P.) Comp. Treatise on Perfumery; conianining formulas, 足c..	600	II. ${ }^{\text {O }}$ Baird:
Stellman (Paul) Stenm Engine Iudientor, nod improved Manometer 8vo......	0.35	D. Van Nostrand
Gmiles (Sutu) Ludustrial Biography ; Irun Worsers and Tool Makers, 12 mo	125	Tieknor \& Frields.
Wells (D. A) Annual of Scientific Discogery or Year Book of Fncts, 12 ino...........	150	Gould \& Lincols.
Wax Flomers rind How to Make them;' Sheering Whx, Modelling Eruit. \&c., 12 mo ...	150	Tilton \& Co.
Whison (Jahn) Thonry and Practice of the Art of Weaving by hant and power,	500	$\boldsymbol{H} \boldsymbol{C}$ Buird.
Williums (C. Wye) On Heat in its relations to Woter ind Sterm,	8.50	II. O. Baird.

quateit indas and Statistics.

CANADIAN PATENT LAWS.

We had hoped that the efforts put forth for the past few years, to secure amendments to the Patent Lave of this Province, so as to assimilate them to the laws of all other enlightened nations, would ere this have been successful. Another session of Parliament has however come and gone, and nothing has been done, except to submit to His Excellency the Governor General, the folluwing Report, by the late Minister of Agriculture, the Hon. L. Letellier :-
"The following statement demonstrates, that notwithstanding that the number of applications for Letters Patent is greater, and the revenue from this source has been larger, nevertheless, the increase has not been so rapid as in former years. This is easily explained by the fact that the public have, for the last two jears, been anticipating important modifications of the law regulating this species of property. On the other hand, patents are evidently acquiring greater importance than heretofore, since the number of transfers has increased This increase indicates a salutary development of the spirit of industrial enterprise, which cannot fail to benefit the commerciat and agricultural interests of the Province. This progress is a matter which demands from the Government serious attention, and a thorough consideration of the means best adapted to the perfecting of this branch of the administrative service, in such a manner as to define more clearly and more efficaciousiy the respective rights of inventors and of the public.
COMPARATIVE STATEMENT OE BUSLNESS TRANSACTED -1861-'62-'63.

号						
1861.	160	142	55	2	3	\$3012.70
1862.	18.0	160	72		17	3,650.90
1863.	207	156	78	4	1	3,759.75

For several years past, it seems to have been admitted that our laws relating to the granting of letters patent for the protection of inventions and discoveries, require certain modifications and the enactment of dew provisions, with the view of aimplifying and regulating this braneh of the public serviee.

The gradual increase in the business of the Patent Office affords, from diaty to day, further proof of the necessity of an early revision of the law relating to that department.

Of all the modifications which have been discussed, for some tine past; the most importantare uindoubtedly those which would have the effect of assimilating our laws more closely to thise of the дations now at the bead of civilization, and permit
inventors from all countries to enjoy amongat us that protection which is now affurded them almost everywhere.
The expediency and advantages of auch a measure have frequently been debated. I think that the reasons given, and which seem to suggest themselves the first from a simple examination of the question, militate strongly in favor of a more liberal system than that which is possible under the present law.
Now, by enabling the subjects of other countries to take our letters patent amongst us, upon the same footing as our own penple, we shall at onee throw open to inventors residing in our country a vast and lertile field, from which they are at present excluded-the States of the neighburing Union, which, by recent enactments, have offered the protection of their luwra, upon the same fioting and upun the same conditions as to Americans themselves, to all inventors the subjects of countries in which protection is extended to American inventions.

By following this example of liberal leginatation we should at once put an end to the position of inferiority in which cur own people, as well as all other British suhjects who come to reside amongst us, are now placed.
But there is a more pressing ensoideration which seems to me deserving of our imuediate attention, and which should induce us to adopt a more liberal system, innsmuch as it affects more directly the interests of the greater number; I mean the stimulus which mnst of necessity be imparted to our own manufacturing industry, by affirding protection ta machinery and improved processes originating in other cuuatries, but which, for lack of adequate protection, no one ever seeks to introduce amongst us. It is quite evident that the establishment of new machinery, the preliminary cost of experiments, the construction of models, \&c., necescitating as they do, a certain outlay of capital and the idcurring of risk, to which those who have only to copy what has been already effected are not exposed serve, to a certain extent, to deter foreign inventors and capitalists who might be disposed to establish: new branches of manufacture in our midst, which, by employing withid the country our primary agencies, the arms of our peuple and our native power, would have the effect of augmenting the general prosperity. By making it a simple condition for the protection afforded to patentees that the machinery or improved production should be maoufactured within the Province, a provision adupted in France and several other countries, consumers would be protected against an outaide monop.ly and our manufacturers against unfair competition. I might refer to several machines and manufacturing processes which would receive much nonre attention and be developed in our midat, if the holders of foreign patente could obtain in this country the same protection whioh is afforded to them elsewbere. I shall cite but one caso of this kind, because it affects more immediately the interests of the agricultural classes, to show that certain products which ire n. .w neglected or lost would become available for useful purposes, and that consumers and the public generilly would themselves reap the greatest advantage from such. a. measure,

A company composed of capitalists from the United States have purchased from the inventor the proprietorship of a new, economical and highly ingenious process, by means of which textile plants, woud, straw and other ligneous substanoes are disintegrated in a few minutes, and the fibres thus prepaied are at once fit for the carding or paper making machine, without the process of ateeping or of the use of alkalies. This method, whith would become a source of wealth by at once rendering profiable the culture of flax, hemp, \&e., belonge, as above stated, to an American company, who will naturally decline investing a lirge amount of capital amongst us unlene they obtain the protection of a patent. The striking importance of this case naturalify induced me to select it from amongst a host of minur instances.

I deem it unnecessary to dwell any.further upon the necessity of fullowing, in the matter of patents for inventions, the eximple of liberality and of reciprucity 4 tiorded us in this respect by older countries, more adranced than ourkelves in :the development of the various branches of manufneturing industry, a course the adoption of which, it would reem, they have never had reason to regret.

Another cossideration which shyuld go far to induce us to modify our laws in this direction is, that the Province nust necessarily derive from the fees to be levied a largo amount of revenue: for a majority of the Americans who incur the expense of taking out a patent at home, would not fail to claim protection here. Now, as the department charged with this branch of the public service already meets its expenses out of the revenue derived from the comparatively small number of patents granted, it eould without any large increase of espenditure, receive a far larger number of applications. Which would thus give a large net surplud, increasing from day to day.

U. S. Patent OFFICE, 1863.

The following tables are taken from the Annual Report of the U. S. Commiseioner of Patente, for the jear 1863; and show a remarkulle degree of activity on the part of inventors, in spite of the deplorable and tremeddous strife of civil war, then and now ragirg amongst then :-

No. 1.

Number of applications made during the year 1863
Number of patents granted, including reissues and designs 4,170
Nunuber of cureate filed during the year
Number of applications for extension of patents40
Number of patents exteoded 48
Nauber of ninteats expired 31et Do- cember, 1863 968
Of the patente grated, there were to-
Citizens of the United States 4,048
Subjects of Grent Britain 68
Subjects of French Eippire 87
Subjects of other foreign governments. 27

No. 2.

Statement of monóy recelved daring the year 1863.

On npplications for pateuts, reissues, \&c. $\$ 178.61700$
For copies and for recording assignments.
16,976 29
195.69329

No. 8.
Statement of exponditures from the patent rumi
For salaries
$\$ 89.55994$
For contingent expenses
42,71529
For temporary clerks. 54.488 . 44
For withdrawals
$1 ; 680 \cdot 00$
For refunding money paid by mistake.... 72050
For judges in appeal cases.
30000
189.414:14

No. 4.
Statement of the patent rund.
Amount to the credit of the patent fund
January 1, 1868
$\$ 88.361$ is
Amount puid in daring the year
195.59829

Total
233,954 44
Deduct amount of expenditures during
the year
189,41414
Lenving to the credit of the patent fund,
January 1, 1864, the sum of.
$44: 540 \quad 80$
Another table gires the increase in the businces of the patent office during each of the past 26 years, from which we learn that the number of

	1843.	1853.	1863.
\because			
Applications were.	819	2,673	6,014
Patents issued......	531	958	4.170

Fees Received $\$ 35,31581$ \$121,627.45. \$195.593:29
Table exhibiting the businesg of the office for twentyoseveni yoars, eniliug Dectmber 31, 1863.4

Yeara.	$\begin{aligned} & \text { Applicutions } \\ & \text { filed. } \end{aligned}$	Guvents fled.	Patento issical
1837.		435
1838.	520.
1889................		425
1840.	765	228	473 ,
1841..........	847	812	495
1842.	761	291	517
1848.	819	815	531
1814.......	1,045	380	502
1845..................	1,246	452	502
1846	1,27:	448	619
1847.	1,581	553	572
1848,	1,628	607	660
1899.	1.955	595	1,070
1850.	2.198	602	995
1851.	2,258	760	869
1852.	2639	996	1,020
1853.	2.678	901	958
1854.	3,8ı4	868	1,902
$18: 55$.	4,485	906	2.024
1856.	4.960	1,024	2,502
1857.	4,771	1,010	2.910
1858.	5.864	948	8.710
1859.	6.225	1.097	4.588
18130.	7,653	1,084	4.819
1861.	4,643	700	8.340
1862	6,038	824	8521
1863.......	6,014	787	4,170

留rocroings of Societies.

WhITBY MECHANICS' INSTITUTE.

The Annual Meeting of this Suciety was held in the Inatitute on Fridny evening. May 27 th, the President, R. J. Wilson, Esq., in the chair.

After the Annual äd Aüditor's reports had béen tread and adopted, the following gentiemen were elected office-bearers for the current year:-R. J. Wilsun, President; M. O'Donovan, lst vice; G. H. Dartnell, 2nd vice; M. Thwaite, Recording Secretary; Thos. Kirkland, Corresponding Secretary; Jis Bain, Treasurer; H. Fraser. Librarian. General Cummittee, Mërsrs. J. Ferguson, K. Maclennan, M.IIarper, J. Shier, G. Y. Snith, J. H. Greenwood. J. Bengough, J. H. Perry, Geo. Curmack, and Blake.

Report.

"Your committee in presenting a report of the proceedings and mandiement of the Institute during the past year, avail themseives of the opportunity to congratulate you upon its present flourishing condition, ind the warm interest taken in it liv the general public.. While, in many parts of the Province, similar institutions have suspended active operation from wint of sufficient patronage and support, yours has not only been sustained, but enabled to make large provisions for future usefulness and success. This intelligent favour and encouragement has not only made the discharge of our duties, more easy and pleasant, but has enabled us to supply a want which would soon have made itself sericusly felt. The public hall and building required thorough overhauling and rep.irs so much, that we felt it would not, under any circumscances, be advisable to allow it to reman undone until another year; we have accordingly expended $\$ 201$ in that work, relying in a very great mearsure up,n the support of the commanity to minke gond the outlay. - This; we are happy to say, they have generously accorded. In the library, it was necessary to make cunsiderable additions of new bouks, in several deparimente; we have therefore laid out one hundred dollars in the purchase of n nety odd volumea, which increases the number to 1109. The number of readers during the yenr, has theen 176. and the number of volumes issued 2309 , being an average to ench reader of 13 rolumes. The lectures, of which there have been nine delivered. were well attended and the course has been well sustaned.

In the early part of the season, a pic-nio was held, which, while made a source of pecuniary profit, wri, we have reason to believe, of unuch greater and more advantagge in bringing the Inetitute mure prominevitly and favourably before the pablic. Yeur commitiee recommend similar annual festivals in fúture, as a means of much goid. Eveniog clawses for instruction in the Ordinary English brancties of education were kepit up turing the winter, aind although; by no mennis unsatisfictoy as an experiment hive not been munetarily successful-balance shieet showing a
loss of nine dollars ofeasioned by them. The attendance was nibt large, there being 17 seholars during the first quarter, and thirteen during the secund qunïter. A püblic dincüssion class was npened; and several debates held and ebsays read, your committee have however to regret the apparent upathy of the young men in this vicinity to its numerous advantiges, but few amoh g them taking either part or ipterest in it. Efforts should be made to sustain and increase the usefulness of and attendavice upon both these important clasises, as they will idd materially to the welfare of the Institute and its individual members. Yiur committee suggest a claseification of studies at evening clawses so that particular nights be devoted to apecialties instead of a general teaching in each branch as hereti fire pureued.

Three re-unions were held, which proved highly successful and pupular; the net reeeipts being quer fifty dollars. la holding these, your committee while deeply indebted to many of the members for asisistance, cannot but call your attention to the decided unwillingness by mosit at doing more than forming part of the andience. If theise pleasant entertainments are tọ be successfully mainthined, as your committeb sincerely bope they will, there must be a more active support given by the members, otherwise they will soon deverioraté both in matter or use. In this cobnection, your com mittee trust they will not be considered invidious in making acknowledgment of the very kind services rendered them by Mrs. Garvin, Capt. Dartiell and J. V. Ham, nind also the great kindness shown by J. V. Ham Esq., in allowing them ctie use of one of Rainers Piano Fortes. The menbership is 209 sigainst 187 last year, showing an increase of 22 members, twelve of whom have passed the preliminary exnmination and entered to obtain certiticates of merit from the Buard of Arts and Manulactures.

Notwithatanding the large outlays which have heen made, expenses incurred; and improvements effected, your committee have to report a deficiency in the receipts of only $\$ 20,33$ after payment of all expenditures, as shown by the subjuined statement."

TORONTO MECHANICS' INSTITUTE.

At a meeting of the Board hold on the 4th of last month, the Directors determined upon holding an Exhibition some time during the present year, of a description similar to the exhibitions beld by this Institute in years past; and which were then fuund to be so interesting and instructive to those who visited them, and peouninrily pruftable to the Institute.

The claracter of the exhibition will be best understood by the fullowing

PROGRAMBE :

1st. "That an exhibition be held in the rooms of the Institute during the present summer; that it be continued open for $\cdot \mathrm{a}$ term of not less than one week; that the net proceeds thereof be applied to the liquidation of the floating debt of the Institute;
and that the following do form part of the programme of objects proposed for such exhibition:
(1) Specimens of natural bistory, such as stuffed birds, animals and fishes, preserved inserts, minerals, dried plants and woods.
(2) Antique and curious specinens, natural, mecbanical and artistic ; numismatics, \&c.
(3) Fine Arts and Decorations, ancient and. modern; embracing architecture, paintinge in oil and water colours, drawings, Bculpture and modelling, dye:sinking and eagraving, photograpliy, and decorations and designs of every kind.
(4) Machines, and models of machines, and scientific apparatus.
(5) Articles of home or foreign manufacture displaying rare morit in design, workmanship or materiai; and raw materials for manufactures.

2nd. That an Eshibition Committee be appointed to consist of the President, and Vice-President, Dr. Connon, Mesers. H. E. Clarke, J. II. Richey, Js. Rollo, W. P, Marston, W. Edwards and D. Spry; and that said Committee be authorised to issue a circular to the citizens setting forth the nature and objecte of the exhibition, and soliciting their assistance by contributions of suitable articles thereto on loan ; and also to mike such personal canvass throughout the city as may be necessary.

3rd. That the President apply to Sir.Wm. Logan for loan of a complete set of the minerals of Canada for exhibition.

4th. Tbat the Exhibition be opened on Thursday, the sixth day of October next, and that the charge for admission thereto be ten cents on ordinary oceasions; but that on two days to be hereafter determined, and during the hours intervening between the opening and six o'clock p.m., on such days, the charge be twenty cente each admission; so as to enable parties who may desire to do so, to make a quiet and careful inspection of the objects on exhibition."

The Programme will, no doubt, be get further elaborated. Probably music, addresses, and scientific experiments will, from time to time, be introduced during the continuance of the exhibition, so that both entertainment and instruction will be afforded visitors thereto. The grentest care will, we believe, be given to the safe keeping and return of all articles entrusted to the Committee of management; and as the building is isolated, and will be well guarded during the time the goods remain in it, contributore need fear no damage to their property while there. We anticipate a very interesting exposition in the several departments of the programme.

Aseful Rectipts

FURNITURE POLISH.

Melt 3 or 4 pieces of sandaric, each the size of a walnut, add 1 piat of boiled.oil; and boil together for 1 hour. While cooling, add 1 drachm of Venice turpentiae, and if too thick a little oil of turpentine: also. Apply this all over the furniture, and after some houre rub it off ; rub the furniture daily, without applying fresh varuish, except about once in twwo months. Water does not injure this polish;. and any stain or serateh may be again covered; which cannot be done with French polish.

To give a glogs to household furniture, various compositions are used. The following are some of them.

Furiniture cream.-Bees-wax 1 lb., soap 4 oz., pearl-ash 2 oz., soft water 1 gallon; boil together until mized.

Furniture oil.-Acetic acid 2 drachms, oil of lavender $\frac{1}{2}$ drachm, rectified spirit 1 drachm, linseed oil 4 oz .
2. Linseed oil 1 pint, altranet root 2 oz ; beat, strain, and add lac varnish 1 oz .
3. Linseed oil 1 pint, rectified spirit 2 oz.; butter of antimony 4 kz .

Frimiture paste.-Bees-wax, spirits of turpentine, ${ }^{\circ}$ and linseed oil, equal parts; melt and cool:
2. Bees-wax 4 oz., turpentine 10 oz., alkanet root to colour; melt and strain.
3. Bees-wax 4 oz., resin 1 oz., oil of turpentine 2 oz., venetian red to colour.

AMALGAMS.

When mercury is alloyed with any metal the compound is called an amalgam of that metal ; as for example, an amalgam of tin, bismuth, \&c.

Amplgama for Inlectrical Machineg.

1. Fuse 1 oz . of zind with $\frac{1}{2} \mathrm{oz}$. of tin, at as low a temperature as possible; then add $1 \frac{1}{2}$ nz. of quick silver, previously made hot; mix, pour out, and when cold reduce it to powder, and triturate it with sufficient quicksilver to bring it to a proper consistence.
2. Zine 1 part; tin 1; quicksilver 2. Mels together.
3. Zinc 2 parts; tin 1 ; mercury 5.
4. La Beaume's. Pour into a chalked wooden box 6 oz of quickailver; put into an irin ladle oz. of beeswax, with 2 oz . of purified zinc, and 1 os. of grain tin; set it over a brisk fire, and when the metals are melted pour them into the bos, avoiding thedross. When cold reduce it to powder; and mix it with lard. Keep it in a bor covered with tallow, and spread it on leather for use.

Liquid Amalgam Tor Sllvering Glohes, \&ec.

Pure lead 1 oz.; grain tin 1 oz.; meltin a clean ladle, and immediately add 1 oz. of bismuth. Skim off the drose, remove the ladle from the fire, and befure the meial sets add 10 oz. of quicksiver. Stir together, avoiding the fumes.

Amalgom for Varmiohing Plastic Bugureno

Melt 2 oz. of tin with $\frac{1}{2} \mathrm{oz}$. of bismuth, and add $\frac{1}{2}$ yz. of quicksilver. When ould grind it with white of egg, and apply to the figure.

Solutions used in Electroigye Manipuiationg, dec

1. Acid Sulution of Copper for the Decompusing Cell. Saturated solution of sulphate of copper 2 parts, sulphuric acid 2 parts, water 6 or 8 parts.
2. Göld Solution. Dissolve 2 oz. of cyanide of potassium (by Liebig's method) in a pint of warm distilled water, add: 1 oz. of oxide of gold, and agitate together.
3. Silver Solution. Dissolve 2 nz. of. Liebig's cyanide of potassium in a pint of distilled water ; add $\frac{4}{4}$ oz. of moist oxide of silver (precipitated by lime water from aisolution of the crystallized nitre), and agitate together till the oxide is dissolved.
4. Solutim in wohich Sleel Articles are dipped before Electroplating them. Nitrate of silver 1 part, nitrate of mercury 1 part, nitric acid ($8 \mathrm{p} . \mathrm{gr} .1$ 1384) 4 parte, water 120 parts.
5. Solution, or Pickle, for inmersing Copper Articles in before Electroplating. \cdots Sulphurio acid 64 parts, water 64 , nitric acid 32 , mariatic acid 1 . Mix. :The article, free from grease, is dipped in the' picklo for a second or two.

Volatile Soap for Removing Paint, Grease Spols, sec

Four table-spoonfuls of spirits of harts-horn, four table:spoonfuls of alcobol, and a table-spoonful if salt. Shake the whole well together in a bottle, and apply with a sponge or brush.

Silected grticles.

BODILY WORK AND WASTE.

By Francis T. Bond, M.D., B A. (Lond., F.C.S., Principal of the Hurtley Institution, Southampton.
(From "Popular scienor Review.i)
There is no truth which modern science bas established with greater certainty than that every manifestation of physioal force involves the metamorphosis of a certain quantity of matter; or to put it in a still simpler firm, that every exercise of power is made at the cost of a certain consumption of material. Whether it the the steam which propels our locomotives, or the elastic gases which project our cannon balls, the subtle fluid by means of whose vibsations we convey our thoughts with the rapidity of lightning from one end of the earth to the other, or the still move useful contrivances by which,we turn vight into dry, and masintain the genial warmith of summer amidat the snows of win-ter-all these azhibitions of force, mechanical, elegtwical, or thermal, alike involve the disintegration, or, in other words, the zoaste, of some form of matter for their production. Without the combustion of coal or wool there would be no steam for the lucomotive, no hent for the fireplace; without a similar, but mire rapid, combustion of gun:powder, or sther explosive substance, there would be no development of elastic gases in the cannom to propel its ponderous missiles, and combustion in these, us in alt sases, is essentially a process of waste in which the active part is played by that most energetic of all wasters, the oxjgen of the atmosphere. The fluid which circuilites in the telegraphio wire is developed at the expense of the
acid and the metals of which the batteries at its extremities are composed; and the light which illumines our streets and public buildings is generated by the waste (using the term in its chemical, not, of course, in its economical sense), in gas works, of conl which was produced ages upon ages ago by the submergence and partial decomposition of nocient forests.

Now all these various ways of obtaining power may at first sight appear so very simple in their nature that it may seem trivial to allude to them. Irrespective, however, of the consideration that the simplest phenomena are often those which exhibit in their most intelligible form the grandest and: most important laws of nature; and obvious as the fact may seem that the man who attempted to work asteam engine without supplying coal for its fire would stand but little chance of seeing its wheels revolve, it is duing no injustice to the majority of our readers to suppose that they have never anked themselves what the fuel really does in such a case as this, and why it is so essential in the productions of steam? It is probable that the idea may never hare suggested itself to them that these and dozens of other instances of a similar kind which might be quoted, all go to show that without the disintegration, or waste, of some form of matter, whether if be coal, or metal, or tallow, or gunpowder, there is no production of any form of force, no real acquisition of power of any kind. And, like Columbus' egg, simple as this truth may seem when once clearly demonatrated, and uften as men have lighted fires to warm themselves by, and long as they have employed the axplosive properties of gunpowder to carry conviction to the minds of their intelligent fellow creatures, it is only quite in recent years that its reality has comu to bo distinctly recognised, and that we have begun to learn that perpetual mution, and other patent processes f r extracting something out of bothing, are ideasi worthy only of the sages of Laputa.

It may however be said, that all exbibitions of force do not involve a waste of matter. We may he told. for instance, the stream of falling water which turns the river-side mill exerts its power on the mill-wheel in virtue of the force of gravitation which draws the water downwards, and gravity is a force which so far as we can see, does not involve the waste of matter as a condition of its manifestation. But this is an exception which is probably more apparent than real, and which is due rather to our ignorance of the nature of gravitation than to any deviation from a law whieb so unquestionably obtains in the vast mijurity of phenomena with which we are acquainted. For it is by no means ualikely that grivity which is iteelf a cosmical fopee, acting through space upon the most distant elements of the universe, may be the lucal manifestation in our world of disturbances in the relations of matter going on in spheres existing at infinite distances from it.

The propulsive furce, too, of the breeze by which the ship is driven through the resisting waces, at first sight appears to lie a case of torce exerted independently of mitter or its relations. But here again the exception is only appirent and not real. For science tells us that the lureeze is the offapring of heat aeting upon the atmosphere, in which it produces currents; and that the heut comes from
the sun, whose matorial relations exhibit, even to our noperficial observation, a state of disturbance which is eminently suggestive of a more prifinuind and incessant disorganization going on beyond our Een.

We may, therefore, take it as unquestionable, that so far as the inorganic forces of nature are concerned, their manifestation in all cases involves the contempurary occurrence of waste, decomposition, or decay. But what are we to bry of the forces which are given off by organized budies? This thinking, talking acting machine which we call man,: whose brain is cuntinually giving off nerve-force, which is as constantly stimulating some orie or other of his muscles to give aff motor or mechanical force, and whose whole organism is incessantly muintained by the operations of the chemical and physiolugical furces which digest his food, convert it into the various tissues of his body, and again reconvert those tissues into the simpler forma in which, when they have served their part, they are eliminated from the system-whence doea he obtain all these frcea, or, mure properly speaking; all these different varieties of force, which are so indispensable to his existence? Here, too; we must recur for an answer to these questions to the great law of the relations of waste and power to which allusion has beture been made: The human body is continually wearing away; as truly though perhaps not 80 ovidently, burning away as if it were a bushel of coals in a dumestic grate. And it is from this ceaseless process of waste which is going on evergwhere within it, that it deriven the power which it expende in the various forms of wort which it continually carries on. There are probably very few of the readers of this article whis have the faintest idea of the amount of firce which they are exerting every day of their lives. Let us see if we can manage, without waudering into details whose due appreciation would require a knowledge of the more profound departments of physiology, to form an estimate of the amount of work which the body of an ordinary man performe in the tweuty-fuor hours, and of the waste of bodily substance of which that work is the equivalent.

We may roughly divide the constituents of the animal frume into three groups. In the first we will place gubstances which are actually incorporated into its organization in the shape of bone, muscle, \&e; to the secind we may assign those which are deatined to minister to the building ap of the nnimal fibric; in the shape of the raw materiats derived from the digention of the food in the alimentary canal, and in the third, we shall place those cinstituents which', having dischatrged their functions in the animat econumy as elements of the various tissuea, are thrown off as waste, and as sugh give rise to whint are commonly known as the excrations of the bidy. It is obviouely to this last clase that we must look for the measure of the wont and tear of the body and of the evilution of force of which that wear and tear is the exponent.

Nuw of all the different suluatances which are thus thrown off from the bidy as the result of the decay which is continually going on within it, there is ove, urea, which is preêminently important, not frum its mere predominance in bulk over all the others, but because it is the one which gives
us the misi accurate gonge of the amount of waste of which it is the product.
If we were to be told that the quantity of urea which is daily manufactured and elininnted from the body of a healthy man, weighing about 1501b., varies from 400 to 630 grains, it is pribable that many of uy would nut be much the wiser fior the infurmation. We must, therefore, see if we can learn what this reprevents in anuther way.
The daily work which is performed by the body of an ordinary human being may be clased under four heade. (1) There is the vital wolk, or that which is required to seep the machinery of life going and in proper order; e. g, to make the heart beat, the stomuch digest, the liver secrete bile, and so on; just as a certain portion of the power of a steam-engine is expenced in merely moving the machinery which sets it in action. (2) Then there is what may be called the calorific work, or that which is required to maintain the temperature of the budy; and which will obviounly be much greater in winter than in summer, and in cold climater than in warm ones. Although this is intimately connected with the preceding variety of work, still it is for many purpuses suff. ciently distinct and important to justify our considering it under a separate head. (3) Next we have the onechanical world which is involved in the physical exercise we take, such ay walking, talking, eating, \&c. (4) And, lastly, there is the mental woork, which we each of us perform in the acts of thiuking, seping, heuring, and in the exercise of our nervious functions generalify. One of the great problems which physiclogy has of late been endeavouring to solve is, how much of the total daily work of the body is absorbed by each of these four departmente of bodily accivity separately; or to put the question in another point of view, how much of the total ditily waste of the body is due to them severally? The recent researches* of a distinguished medical divine-for, by a strange coincidence, though a clergyman hy profersion he is also a physician by education (the Rev. Prifessor Haughton, M.D., F.R.S., of Trinity College, Dublin) have thrown a gowd deal of light upon this obscure and difficult sulject. With the view of giving our readers a general idea of the relations of bodily work to bodily waste, we will briefly recipitulate the nature of these reesarches.

We have befire stated that the total amount of urea which is formed in the body of a healthy man of 150 L . weight, per diem, fluctuates frum 400 to 630 grnins. Of thip amount Dr. Haughtun calculates, from data to which it is impussible for us here to refer, that 300 grains are the revult of that division of work to which we have above given the designation vilul. Hence it follows that each pound of man requires an amount of daily raate which is represented by 2 grains of uren merely to keep it alive, and prevent it frum becoming subject to the ordinary chemical laws of inert matter.

But if this 300 griins of area represents a certain amount of bodily waste, that bodily waste in its turn represents a certain amount of work dones or force expended.; and to estimate what that work is, we must find out the equicalent, in some detinite and easily calculable form of worls, of a
defiuite quantity, say one grain of urea. This Dr. Haughton has done. But befire stating the repulte at which he has arrived on this point, it should, perhans, be mentioned, for the benefit of those to whom this subject may be entirely new, that it is used to calculate all varieties of mechanical force in terms of a single unit, and that unit is the firce which is required to raise one ton avoirdupoise one foot from the earth. Fur instance, a man who walks twenty miles a day can be shown in so doing to perform an amount of mechanical work which, if applied in another wray, wuld raise a weight of 150 lb., i. e., about the weight of his own budg, one mile in the air. Agrin, the ordinary drily work of a etreet paviour, who works ten hours a day, and whose occupation consists in lifting, at definite intervals, a hammer weighing $5 \frac{1}{2}$ stone, is equivalent, if applied arbefore mentioned, to lifting. a weight of one ton 352 feet in the air. In this way the foot ton, as it is called-i. e., one ton lifted one frot-becomes the unit of measurement of dy namical force generally:

Now, let us recur to the ennsideration of the force which is espended in the daily waste of 300 . grains of urea. From a series of eluburate calculations Dr. Haughton estimates that the mecbanical equivalept of this quatity of urea is one ton lifted 769 feet or 769 fuct-wns. That is to say this. enormous furce-a force which is mire than equal to that expanded by two street paviours during a hard day's work, is used up in merely keeping a man of 150 1b. weight alive for the same perind. We may put the same fuct in another puint of view by saying that the amonnt of furce required for this parpose would lift the man's body a little more than two ($2-18$) miles in the air during the twenty-fiur hours.

From similar, though perhaps somerrhat more doubfful calculations, Dr. Heughton estinates that the amount of bodily wabte which is cauned by one bour's hard mental labuar in volven an expenditure of furce which is equal to lifting 111 tons one foot in the air.

Let us further suppose that in addition to the mere act of living, an average man of 150 lb . weight undergoes bodily labuur equivalent to lifting 200 tons one foot daily, and that the total amount of his day's mental work is equiralent to two hours hard study, and the "little bili"' of his daily expenditure of force will stand as follows:-

Total urea $443 \cdot 38=1191$ tons raised one font: or one ton raised 1191 foet; or the welight of the mat's body (150 ib.) rateed a littio more thinn 8 miles.

To balance this side of his debtor and creditor accuunt, unt average man would have to consume an amount of food sufficient to furnish him with the nitrogen contained in 463 grains of urea. Hence he will find it dearable to tale a consider. able portion of animal food in his diet, because that kind of food containe in proportivn to its bulk a much larger quantity of nitrogen than vegetable. subutanice dop; for if he does not do this, he will have to mugment the amouni of pegetable naterint Which he ingeste to such an extent as seriouely to embarrass his digestive functions. It is fir this reusun that the labouring man, who cannot
procure ment, hns recourse to cheese, which, although difficult of digestion, contrina a considerabble quantity of nitrugen:

But, the reader may pot improbably ask, if all this enormous quantity of force is expended by a living mian during the short space of twenty-four hours, whence does it: all come? And this is a question which is by no means easy to answer, clearly within the limited space which is left to us. In goneral terms, however, it may be said that the force which the animal economy expends in the discharge of its various functions, is intimately incorpirated with the fired which it ingests for the suppoirt of its material frameworl. Animals live at the expense either cof other animaly or of vegetables-in bath cases of proviously organized structures. Every process of organization involves the absorption and fixation of furce in the created organism. Hence every organized structure is, as it were, a reservoir of force. The furce which the plant receives from the solar heat is stored up in its cells, to be dispersed again gradually to the atmosphere in the shape of heat when it decays, or rapidly, when it burne as cual; or, if codsumed by an animal as food, is incorporated. with the elements of the plant, into the tisuues of the animal which consumes it. These animul tissues thus become storehouses of pnwer, which, as they waste: and decay, is given off in the varinus forms which their peouliar character adapts them to eliminate. Thus the nervous tissues give it off as nerve force; the nuacles, as musur force; the fatty elemente of the body, as heat ; and so on. One of the mout interesting branches of Dr. Haughton's researches is the determination of the amocount of furce which is stored up in human muscles.* By a series of careful observations and calculations, he finds that the muscles which sustain the arm in a horizontal pusition-the central p.rtion of the deltoid and the supraspinatus-weigh $5 \frac{1}{8}$ ounces, or $2,242 \frac{1}{2}$ grains, and that the work which they do in sustuining the arm. until it becomes exhausted is. equivalent to litiong half a tọn through one font. Hence it follows, that 1 lb . of such muscle cuntains stored up in it, sufficient furce to raise 1.56 t th through the same distance. This statement will go far to explain the orrigin of a portivn. at lezat, of the force which is expeuded daily by the body of a liviog man. When it is remembesed that during bis wating hours the voluntary muscles of man are rarely at rest for mure than a few seconds tugether, it will be seen that we have, in their constrint waste alune, a fertile suarce for the evolution of furce. But it is to the action of the involuntary muscles that we must look for the most abundant urigin of the force which he is censelesely eliminating and more especially tio that most important of all the involuntars muscles, the heart, which, from the time lie draws his first breath till his ejelids close in death, is never at rest Most people are afare that the henrt is simply a muscular. bag, divided into fuor cavities, and that the eirculation of the blood through the bluod-vessele, which is so essential to the mintenance of life, is matinly due to the force with which the muscular walls of the heart contract on thé blood as it passes through

[^0]thene cavities. Few, however, would imagine the force which this small llesliy bay-no larger than gie's double fist, and only weighingé about nine ounces-exerts on the miss of blowd which it is calléd ou to pripel. Dr. Hinughtion has must ingeni ously eetimited that the firce which thë hënrit ex. pepds in the twenty-four harirs is equivialent to lift. ing 124 tons one foot This estimate would be almost incredible, if it were not obtitined by twis totally different methods of calculation, used as checke upon one anioilier. And if this amount of force is expended by the henir in tiventy.four hours, how ripid must be its wasta; and how vigorous must be the nutrition by whith that waste is repaired." Few instances could be quicted which show more forcibly thitn this does the wonderful perfection of adaptation, and the conceehtration of activity which the higher organized structures exbibit.

To those who are unt familiar with the subject of physiolngical dynamics these statements, zenerally, will probatily appear litile short of increntible, sodifficult is it for the imagination which is untrained in the teitichings of science to realise the fact, that the apparently simple and unilaboribias functions of mind or body cain involve thè expenditure of force nit all. The most unsecientific is. server cantiot fail to perceive that the arm which Works the paviour's raminer, or the legs which bear the weight of the budy over the nany miles of a long day's walk, niust in the perffirmance of these offifees, exert a cundiderable amount of force; but te does not so readily áppreciate the manilestatiob of the same phenomenoin in the sileit decay of the whole budy when at rest or in the unconscicius exercise of the mind. Those, on the other band, who have learued with what a mizhty energy nature works even in her most simple oper-ations-that the force which tolds the elements of a single grain of water together is equal to that which is cointained in a very powerful lish of lighining. will know that, althought there are sume of Dr. Haughton's cetilculations which, from the uncertain state of our f'nowledge, must at present be received with siome degree of reservintion, the genernl character of his reaiklts ia quite in unison with the dy inmical laurs which the reisenrches of Joule, Mayer, and other physiciste biave during recent years established.

INFLUENCE OF ALR ON HEALTH.

Some persons are scarcely nume of how much has been dune in lese thar a contury: Within a comparatively sfort period railwnes hive branched in all directions, buth at hime and abriad, like the fibres in a spider's web; ateam-hoats are travelling every ocen ; and gas, which bëgin to enilizhten the darkness of cities in our time, is noow rapidly extending its unefulnés, not ofily in small towno, but even in villages; the application of other diacoveriee are no less wonderfül; but, nötwithstanding it is not ninety yearis suce the composition of the air we brealhe and of the water wo driñk, wis made known. Chemistry; at the period alluded to, wio only beginnitg to free itself frim the shactiles of alchemy, and to look forward not merely to becime a practical and contrullableart, but also to erect itzell into a soieuce.

Soon after the componstion of the air was made know, it was believed that in all places, whether in eruwded cities or on open plains in the ciuntriy, that compusition wan cuisistant; that id, that the amiunt of cisygen sind nitrogen was alizays the same by mearure. This inference: andoubiedly, was drawt from the emall quantity of hir opersted in the eudiometrical experiments which were rearitied to. These give the quantity of oxygen and nitrogen. but the infinitessimal quantities of certiin impuritiea, excopting carbinic acid gag; escaibed ubservation. But within the last five-and: twenty years, more extensive sualyses have been càried out. which havo jivèn rise tio more accuraté results; and .ove are now better informed respecting thée evile which increased and concentrated popu: lationis' are covitinually producing in atruowiberic deteriorstion. The sulijeet has been carefully handled both at home and abroad, and it has been already shown at page 11, vol. i.. that the cumposition of the atmosphere is affected accorditig to circumsarces, and this having been thoroughly proved, it bebioves us to be comstintly endeavouring by changing the air of nur appartments, to reinder it muire fit lor the officee of life, than when it is "cribbed, cabinied and confined," or where ventilation is entirely diaregarded.

We may refer to Liebric, as well as to others, who have considered this suliject abroad, and we might show that the chemists of our bwn country have not been backward in prusecuting the subject. Amongst others Dr. Ruiert Angusi Siniti has played his part in a very careful and successful manier.

Both air and water have a most important influence on health. The geveral feeling that town has always been found to differ from the country in respect to the health of man, the lower animals and plants, is a more decisive experiment than any that catn be made in a laboratury.

Although man of high starding have been found to deny that any difference exists between the air of the largest tuwns, or of the must crowded ruoms -for reasins already given-and that of the open country, it seems to be only a proof that men accustomed to experimental inquiry are apt to forget the value and firce to be attached th those apparently lesa rigorous observations, which the sénses are constantly and unconsiously making, and to believe oinly that which can be demusirated in the priuper procesee of a laboratory, The inquiries made by the Sanitary Commissioners, yeurs ono, have cimpletely established the fact, that crowded towine are dangerous places; and aliboughit is still at open quention whether a wellrönclitied town or country life be the imusi benlthy it is sufficiently, established that our huwne have been subject to many dangers, which weare in selfdefence trying to arert, by acting acourding to natural laws as far as there acquaintance hus been mide.

Must persons from the country must have felt, that the éntrance into a large town is lite the entrance intu another olimate. Infiabitants of the sea cuast in of the hills perceive the change rapidly, and the effect on them is, often decidediy bad, ind it requires time to acclimatize them to the atiousphere of the new situation. It appeirs that we can hear the gradual deteriuration of aifir ; but we find urselves
surprised at the state of the air in which we find persons sitting in a cluse and crowded room, and whe are perfectly unconscinus of any want of attention in their eanitary state.

It is the oxygen of the air which purifies all impure matter, and bodies which are impure have a tendency to mix with the air, nfter which they become purified, or they mix with the soil of an open country; in which, by the same source of oxygen, they are also rendered pure. The air of a town contains a portion of all exhalations which arise in a town. These are in a great measure, the produce of living bodies, and are exhalations which can never be got rid of, but which, probably are not at all dangerous, unless they become accumulated. There are also exb:lations from sewage, and from the combustion of fuel. Various manufactures give out a variety of effluvia, and we cannot walk through a large winn wibbout perceiving that no streer is entirely free from eflluvia, and that every: street seems to have a peculiar odour of its iown. Even every city, nay, every towa, and, we may almost add, village is known by its odour. Although custom causes us to forget that odour to which we are conatantly exposed, a frequent change gives us an acuteness of smell, by which we may understand that buth houses and streets may fairly be complained of, when the inhiabitants are not:all aware of the evils by which they are surrounded.

That animals constanily give out a quantity of solid organic matter from the lungs may be proved by breathing for some time into a bottle through a tube, when the condensed breath will be collected at the buttom of the bottle. If this condensed breath be placed on a piece of platinum, or on white porcelain, and evaporated, and the residue burnt, the amell of organic matter will be evident: If the condensed breath be left to stand for a few davs, it will then be iohabited by animalcules; which may be seen by a good microscope. Animalcules are now generally believed to come frum the armosphere, and to depueit themselves on places favourable to their existence. Thus they only appear where there is fond or materials of a peculiar kind, adapted to their wants. Their presence is Ω proof of decomposing matter. A liquid of the kind just named must be injurious by giving out unwholesome vapours.

Spallan Nzani, many years ago, showed that the seeds of the phant moild, constituting mouldiness, are constantly floating in the uir, and when they come in contact with anything favourable to their growth, they germinate. This may be shown by taking two fresh specimens of newly made paste; place one under an exhausted receiver, the other expose to the air; the former will not become mouldy, but the latter will in n stiort time.

Thus far as regards organic matter, and the emauations resulting therefrom having an influence which is deatructive of ntmospheric purity. It is not now only necessary to call attention to impurities which are strictly of an inorgunic kind, or neurly, namely the very minute particles which are always floating in the air, and which only render themselves visible in a sunhbeana darting through an operiog into a room.

These impurities exist in all places, io the mosit remote districts as well as in the mrat crowded cities. They possess no odour; their action on
the respiratory organs would probably in time be attended with mischief, were they not collected by the mucous of the fauces, and thus rendered harmless. Not so with the invisible particles of mutter, the presence of which is sometimes evidenced by some peculiar odour, while at other times no evidence is given of their presence, except thy the baneful influence they are capable of exercising on the human frame. *

Dr. Robert Angos Smith has called attention to the organic matter which he has repeatedly obtained from the moisture condensed on the windows and walls of a crowded room. If after being collected by means of a pipette it be allowed to stand sume time, it forms a thick, appareptly glutinous mase; but when examined by a microscope, it is seen to be a closely matted confervoid growih,or organic matter converted into confersmas it probably would have been converted into any kind of vegetation that happened to take root. Between the stalks of these conferva may be seec a number of greenish glubules constantly moving abrut, various species of volvox, accompanied also by monads manly times smaller. When this happens, the scene is certainly lively and the sight beautiful, but before this occurs, the odour of perspiration may be distinctly percoived, especiaily if the vessel containing the liquid be placed in another vessel containing builing water. When this exhalation trom animals is condensed on a ccld substance it in course of time dries up, and leaves a somewhat glutinous organic plaster constitutibe the substance which we often see upon the furniture of dirty houses, and in such cases there is alwaye a disaagreeable odiur perceptable. This is the cause of the necessity for constant cleaning; it is the reason why that which is not cleaned becomes dirty.

Water or dampress is necessary to the spontaneous decomposition of organic matter, and it is thonght that, in a warm climate, this conting of walls and furniture would not be so dangeruas as where everything is exposed to moisture a considerable part of the year. In a warm and dry climate it will probably be diffused mure into the ntmosphere; and not be so much retained as it is by the water which dissolved it, or to which it nttaches itself. This kird of matter would perhaps not be poisonous if taken into the atomach, but it is known to be inimical to healch when brenthed into the langa, which is shown by the incunvenience we experience in the air of crowded rooms. It consists of carbon, hydrogen and nitrogen, and by oxydation no doubt forms carbonic acid, water and nmmonia. From it the ammonia of the atmusphere is in a great measure derived. Ammonia is not injurious unleas inlarge quantities, and may be considered as one of the most wholesome furms in which witrugen and hydrugen, as gates, pans into the air, and it is the fieutralizer of sulphuretted hydrogen when it is given off along with that gas in sewers and cesspuouls. It is not so very long when, in numbers of houses in the metropolis, and in large country towns, the privies were ofter merely cesspools in the cellar, or in a small yard, and were it not for the correcting property which ammonia bas as regurds sulphuretted hydrogen, such houges as contained chese open places would have been intolerable. Thè sul-
phide of ammonium formed by the action of ammonia on sulphuretted hydrogen is eventually converted, through the agency of the oxygen, of the air, into hyposulphite of ammonia, the sulphur being partly precipitated and partly oxydized, a portion of the hydrogen combining, at the sama time, with the oxygen of the air, and thus the poisonous properties of sulphuretted hydrogen become annibilated.
*
If this did not take place, it would be impossible for men to exist as they do for hours in the sewers of the metropolis. It is true the sewage is not stagnant in the sewers; but were itsodecomposition would take place more rapidly, perbaps than oxi dation of the deleterious gases could be accomplished. The dilution with a large quantity of water, alko renders the change less rapid than it otherwise would be. One portion of the sewage is continually displaced by a succeeding portion, and its course along the sewer, is constantly becoming supplied with water scarcely rendered impure; it is always moving, and always being diluted. It would seem therefore, that as ammonia is not injurious, unless in large quantities, it may be considered as one of the most wholesime forms in which nitrogen and hydrogen pass off from decomposing matter into the atmosphere. In cases where there is n o exposure, or, at least when the substance is in water, inflammable gases are produced, which was first shown by Priestley, and which has since been to a certain extent explained by Liebia. It appears that when decomposition commences, oxidation of one portion necessarily takes place, leaving the other portion without oxygen, except when an abundant supply can he obthined. Dalton found the gas from the floating island at Derwentwater to contain carburetted hydrogen and nitrogen. When nitrogen comes off alone, or as ammonia, the snme division of a substance into oxidised and deoxydized occurs, as in the fermentation of sugar, where curbonic acid, a body yxidised, and alcohol, a body to a great extent deosidised; occur. We have only to suppuse compounds of carbun, hydrogen, and nitrogen, coming from decomposing matter, to show us the great danger. It is not to be depended upon that there budies alwnys appear in modes of onmbination meationed above, as they combine variously, and they are capable of firming the mostactive poisuas with which we are acquainted.

Although a large quantity of wuter may mask decomposition, or retard it, by preventing access of air to all the matter preparing to undergi, deenm position, yet a certain amount of muisture is essential to chemical changes, and the consequent eacape of odour from sewaige, as well as from many other budies. The vapour of water is a vehicle for organio matter, and water also favours decomponition in budies, so that, as they decompose, the vapour is given off. From what cause suever, it will be found that moisture rapidly facilitates the escape of odour. We ascertain by breathing on a mineral what its nature may be. The moisture of an evening affects the scent of flowers, and even the watering of them enuses them to emit their odour. The moist istate of the atinosphere, or a shower, is the ceause, rs we often experience, of great fragrance in a fluwer garden. But whilat
this is being effected, the same laws are operating for injurious effects wherever there is a reservoir of putrid matter, for then the exhalations are so abundant that bubbles of gan, the result of decom: position, may be seen to arise from filthy water.

Dr. Angus Smith observes that it is not improbable that the state of the atmospheric pressure may cause this, as Mr. G. W. Binney has shown that the gaees in coal-pits are caused to escape rapidly during a depression of the barometer. We all are in the habit of observing that rain is likely to come, when we perceive an odour from sioks or drains, the escape of odoriferous matter being consequent upon a lighter atmosphere, the gases escaping which had been retained under a higher atmospherie pressure.
Budies that are moist rill give out more organic vapours than those in a drier condition. If there be abundance of water, as in a lake, large river or sewer, the vapiurs. will to a great extent be dissiolved, even if the same lind of decomposition were to proceed as in merely moist or marahy ground. We may expect then that soil, if moist, will give out; not pure papour of water, hut water carrying up organic matter within it. Wet suil is a little acid generally, and when very acid, is bad land; bat when made alkaline by mattere producing ammonia, it becomes fertile. This neutralizing of acidity in a soil is frequently effected by lime. This state of ulmost neutrality of soil is also regulated by nature, and a fertile alkalinity is attained by the rapid decomposition of organic matter through moisture and warmth. In this alkaline and warm state more vapours will of course be given off, and the ammonia will assist in pussing off irganic matter into the air.
The substance obtained from dew collected by condensation on a glass cylinder; and allowed to drop into a glass vessel below, was fucuad by Dr. Syite to be very different from that olltained from the condensed rapour of a warm and crowded riom, of which we spuke in a former article. The residue from dew, unlike that from the condeased vapour of a room, is almost devoid of nitrogenized matter, and is rather agreenble than otherwise. It is not improbable that the matter resulting from dew may be made a measure of its amount in the almosphere; if so, the decided difference between that of the country and that of crowded rooms is to he remarked, and may prubably form a good, guide towards a knowledge of comparative purity of atmosphere. In walking along the ficlds in an evening, when there is much dew, it may be observed how much effect a dry soil has; indeed, the climate of a field will be found to vary almest every yard. Every cause of cold, the form tion of a drain, the looseness of any spot its being higher or more level, or more shellered, is indicited by this delicate thermometer, the rise of vapuir and the perception of cold. If we ascend higher, the same is seen on a large scale-on miles instead of yards. A house may be in a olear atminsphere, and the lawn befure it in an impenetrable fog. One fuot in height makes a difference, and one fivot also of level distnnce, if the ground differ in quality. The damper plates give a feeling of freshness, and cause a slight irritation of the nose. Every wall enuses a certnin amount of dampness; and even on a wiady day, a leaflese hedige will proteot the
ground on one sitde trom eraporation. In these respects, therefore, every field and biuse in the country, and probably every house and streat in town, has its owin peculiar climate.-Sanitary Reporter.

SORAP-IRON FORGINGS.

We once asked a blacksmith, of great experience in his tride, his opinion of making fine forgings for first-class work out of sursp-iron; whether - merely accumulating shreds of iron and fagotting them up indiscriminataly would produce a superfine piece of material at the completion of the jub. The answer was lacunic and unequivncal; said he -"Good scrap-iron will make gud material, and poor iron will always be poor iron.". This is precisely our own opinion in most respects. Skilful manipulation and successive heats may indeed make inferior iron a litule beiter than it was, but the idea that superior forginge can be made out of refuse scrap, or bits of poor iron, is an erronenus one, palpably so to those who will take the trouble to think for a moment. In establishments where only the best iron is used; such as the Ulater, Latike Superior, or Salisbury brands, the seraps will of course be of the first quality ; but as for the miscellaneous combination of every conceivable sort of cuttings that are sometimes "piled" in biacksmith-shops-such as curry-comb backe, old iron skates, kitchen pukers, bitts, auser-shumks, or ordinary rolled iron-makiag good iron, it is unreasonable to suppose it.
"But," says the practical reader, who possibly objects to this view, "no matter if the quality of the iron in inferior at first, you have adonitted thist successive heatings and workings will improve it so much that at length it becomes of an excellent quality." Our anstrer to this is that the experiments of Mr. William Clay, an Englishman, who bas made the subject a study, prove that, up to a oertair point, working iron over and over is advantagerius; but after the minium is reached the strength decreakes in the same ratio that it rose: In twelve experiments with ordinary No. 1 iron (whise original tenisile streingth was 43.904 pounde), throcight bix trials the atrength wias increased to $61: 824$ pouthds, but upon cuntinuing the working of the sitme iron ap to the twelfth ex perimente the quafity deteriorated to theorigibal figures, 43:904 püüds.

Froin thebe experiments it is easy to see that frot highly retihed, and particulirly scrap-iron which may hate been worled and reworbed an infinite number of times before it was pited, is the Very worst mititerial that can be used for forginge thiat requirégreat atrength, ḅomiogénity, and tenacity., Pum ainother reasun serap trion is bnd for large forgings, and that one is the different welding points at which different qualitiés of roo unite: fron mioducturers are well a wíre of this peculiarity, atid in piline iron for rolling, tho hardest and iniost refined metal is placed outside, and the softest, or what is knuwn as puddled irun, io the centre of the masis. Were it nut for this precaution the exte-
rinr would be buried before the: center was fully heated:
Gun barrels, konwn as the stub-and-twist, or Dimancuis pattern, are made frim sorap-iron and steel, but of the beat quality, sid they are more चaluahle froin their peculiar appearance than from any special value in the selector of the material or the manner of their cinatruction. The "regulation rifie," made at Springfield. is rulled from pure soft iron, and is one of the strongest weapons of its kind in the world. There ure very many plaves where serap-iron forgings can be used with economy and to great advantage; in fact there is no other way of utilizing the continual waste of the smithery; but where a t aniform and eten wearing surfuce is required, scray-iron is the worst that oan he used. The praetical wotkman knows that in turning a scrap iron shaft there are minny degrees of difference in the hardness of certain portions, and we can eall to mind several instanses where pieces of bardateel have been cut out of jourgals and replaced with soft iron. Many engine shafts pound in their bearings in spite of all the efforts of the eingineer tis prevent it; by lining up or serewing dōwn, and very oftein the trouble oin be remedied only by curning the jourinal anew. Surie portions of it were sufter than otheris, and weariag fuster, caused the shift to becime oval, so that the mrre the "binder" was bruught down the worse it bebaved. Links for wörking 隹lves, in fact all parts that require homogenity, either for bearing surfaces or mere finish, should be made fromí irió of one kind, if it is desired to obtain the best results.-Scientific American:.

STEAM BOILER EXPLOSIONS.

The following practical remarks conclude an article or "Locrmotive Builer Esplosions," in the London Mechanic's Magazine of a recent date.
"The time his almost gone by when an explosion was regarded as the result of mysterisus agency. It is pretty well known now, that but two causes can lead to the bursting of a steam generator under the conditions of legitimate working. These are simply congenital weuknes, due to bad matorials or an imperfeot method of cunstruction, or iuduced weakieesa, the i esult of overheated plàtes, or cirrysiōn." Mure than 80 per cent of the explosions which occur yearly are the result of this last canse. If we take a hyputhetical case of three builerg, of precisily the vame form and obnstruction, worked under precisely the same conditions, and exposed th like siources of dete: rioration, but earrying different pressures; the time, when each will explode maty be as tiertainly rectuned ion an the mument when a watch wound up tiothight will bé cumpletely risn down. Suppose that dïe carty 100 lbs ., anuther 75 lbs ., and the last 50 lbs of steáni ; the frst maj last five years, the secuad seven, and the list nine or ten yonts, simply beciuse the process' of dentruction may tiare so far - weakened all the bivilers that, in five yeare, they are incapible of carrying 100 ibs stean, but yet retain strength enough to carry 751 bs . Therefore, on'y that one earrying 100 lh . will be dentroyed then; the others must wait until corrusion has done a little more, but they will go in turn. The end of all
flesh is denth, and the end of all boilers is explosion. An old writer quaintly remarks that, "If a man lives long enough he will oertainly die.? In the same way, if, a boiler is worked long enough it, will explode, in spite of all the safety appliances;wich ever were or ever will, be invented, At best these can only provide for the oocurrence of ccertain phenomena whigh, without this provision, would cause an explosion ; but they cortuinly cannot provide fon the occurrence of all the phenomena which produce explosions. Untila asfety-valve or a fusable plug, is invented which shall stop a leak or put on a patch, or arrest the progress of corrosion, neither one nor the nther can prove its title to be esteemed as an infallitle specific. The only certain preventive is careful, properly organized and thorough inspections; and the reports of our steam-boiler societies prove its eftiarcy daily.
"Experience gues to prove that fully as many explosions occur while the engine is in motion, or while the boiler is under steam and the engine at rest, as at any other time. It is almust impussible to trace any connection between the withdrawal of a portion of steam from a builer and the subsequent explosion of the latter. Could it be pruved that the gage either rose or fell perceptibly, the case might be different; but the hand seldom moves, ipstantanenusly at least. The only remarkable phenomenon is, the sudden rise of the water in the glass gage; and this rise from its character would seem to denote a dilation of the whole body of fluid, not a mere funming or priming, for the gage shows a rise of " oolid water", invariably, and not fonm, when the boiler is properly full. It is not likely that either of these explosions will ever be found to present any unusual phenomena; but the lesson which they conver in not the loss instructive. Inspection, and eareful inspection alone, can secure saffty, and the suoner steam engine proprietors become convinced of the truth of this proposition, the better for the eatire community."

FLY W HEELS.

The fly wheel is the nust elegant mechanical device in existence. It answers its purpuse when properly designed, and putto work as it should be, with almost absulute perfection. It is very inexpensive, never wears out, causes very little friction; Fastes an insignificunt amgunt of power, takes up, in one senese, but little room, is, equally applicable to reciprucating, rotatory muchinery, under a host of varying circupatances und conditions, and, in short. fulfils every desand which oan be made on ite powers with an ease and certainty which entitle it to rank in the foremust place as an example of the accurate adaptation of certain means to a deaired end. By whom it was invented is a question which has never yet been eatisfaptorily anwwered. and in all pribability never will be. Fur the first idea of its apolication to the steam engipe the world is indehted to Fitzgerald, an Irieh: profeseor, who proposed. in 1757, that it should form, part of Papin's engine, working with rack-headed piston rods, gearing alternately into a pinien on the main ahaft. Up to that time the crank had zeven been filled to the stenmengine. It has been urged that the fly Wheel was practically unkown provicusly to this date, but there oan be no ooubt that such a state-
ment involves a gross error. Old spinning wheels worked with a treadle and crank are still in existence, constructed much more than one hyndred years ago. The fly wheel is one of those things which never were invented. Its; application to machinery is a growth, not a creation, and the history of that growth goes baok so far that it is. totally indistinet, lost, and shrouded, in the mists of the past. No interest was attnobed to it until it became an all but indispensable adjunct to the steam engine, and therefore no recurdis exiat calculated to clear up. that which is obscure. If there were any pecun!ary advantakes to be derived from. tracing a lineal descent from its inventor to some individual of the present geveration, we should hear a great deal more of the matter. The world always dues hear much in such cases, but as the fly wheel in its simple form never was patented, and as its use is open to all mankind, it is seldom indeed that the question is asked, From whenoe did this thing come? and with this state of affairs we may rest and be thankful.
The dutiea performed by 8 fly wheel are very simple. Within its periphery,-speaking in general terms, which neglect the effect prodiced by the arms and centre bars-is stored up at particular periods a certain amuunt of powier, abourbed in: the impartation to the mase of a glightly increased velocity of rotation; ind this power, hy a law of nature as inexplicable and mysterious-and let us add, as simple withal-as the action of gravity. must there remain stored up even to the end of time, unless the motinn of the wheel be reduced, or stopped altogether Further, all this power will be returned in'aet to the machine, when the speed of the wheel is reduced exnctly that amount which it was previously increased in order that the ${ }_{3}$ power thus returned might be taken up. As a result the fly wheel cannot produce perfectly regular motion. It can only prevent sudden and violent irr gularities of m tion. At the moment. when the piston arrives at, say, the middle of its, stroke, the strain on the crank pin; and the power of this last on the wheel, will be at or dear a masimum; the velocity of the wheel then becomes elightly accelerated.: As the crank arrives at the dead points its effect is loat ; then the wheel gives nut its store of power, hut in so doing; its speed must fall off to exactily the rate which it poseessed before it was: accelerated: thus during every revolution of a single cylinder engine, there are two periods of retardacion and two periuds of acceleration, and the mechanical value. of these perinds will depend on the apeed and weight of the wheel; and thus; although the irregularity can never be wholly: eliminated in euch engines, it can always be brought withia reasonable limits. The maximuma velocity occurs-when the pressure on the piston, or rather on the orank pin, is pretiy uniform- When the crank is at an angle of:about 140 degrees; and the minimum when it is at'about 20 degrees from the dend point ; and the duty of the fly wheel is in: volved in rendering the difference between these twa velncities as amall as may be deemed neceasary. We bave no desire to burden oure pages. With abatruse farmula, but the following rule, given by: Profesaur Pole for finding the weight in owts. of a fly wheel, will be found generally useful, gnd is certainly not abstruse:-

Let $\mathrm{H}=$ Effective horse power of engine; $\boldsymbol{R}^{\prime \prime}=$ Mean radius of fly wheel, $\mathrm{N}=$ Number of revolutions per minute,

Then in round numbers the weight in cwts. will $=\frac{90,000 \mathrm{H}}{\mathrm{R}^{2} \bar{N}^{2}} n$

In this formula n represents the degree of irregularity which is admianible, and this will of course depend on circumstances, and may be anything hotween 20 and 60. Where nis great degree of unifurmity is required, the former value will answer: for the finest onttin spinding machinery the latter is not too great. For ordinary practical workshop use, howiever, n may be eliminated, by substitution, and tlie furmula then becomes-

$$
\begin{aligned}
& \text { For ordinary machinery, } W=\frac{2,000,000 \mathrm{H}}{\mathrm{R}^{2} \mathrm{~N}^{3}} \\
& \text { For purposes where a maximum } \\
& \text { regularity is requisite, } W=\frac{5,000,000 \mathrm{II}}{R^{2} N^{3}}
\end{aligned}
$$

In oiher cares some value hetween these will be found inost suitable** The determination of the diameter for any given power, and the velocity, cannut be settled exuctly by any rule, as these things depond almost wholly on circumstances reldum quite within the control of the engineer. In corn mills the rim of the wieel should, as a genernl rule, run fuster than the stunes, in order to preveit back lash, and this hulds guod in the case of many other machines, as well as curn mills.
It it as well to remember that the pressure on the arim of a piston does not necurately represent the pressure on a crank pin when the engine is in motion, because the velucity of a heavy piston, counecting rod, cross-hend, und guide blucks, represents a very considerahle amount of momentum; and thus at the heginving of a struke the straingn the crank pin is less, and towarde the end greater, than that due to the preskuire on the piston. From this it follows that an ergine might easily be constracted which, while working steam very expansively, would exert a strain nearly constant on the crank pin. It would only be requisite to pruportion the gravity of: the mass of metal reciproeating, the speed, the grade of expansion, and the initial prensure in order to attain this end. Thus fast ruuning engines with heary criss heade, \&c.; will not require nearly so ponderous a fly wheel, if they are: worked expansively, as at first right may - eem necessary in consequence of the varying pressure on the piscun. Fur such engines the rules we have just given need not be departed from. Slow running expansive engines are usually oo wasteful of fuel that they are not very popular; at least, stea'm is seldom cut of very early in their cylindersi:and we need not, therefore. trike them into consideration: Simple as the fly wheel is, there are many problems involved in ite netion worth the atiention of the practioal mechanic; and we purpose returning to the subjoct.-Mechanics': Mügaziie.

[^1]
CONOENTRATION OF POWER.

On the concentration of power depends the solation of important mechsnical problems daily enciuntered by the engineer in the practice of his profession. In ite practical form the concentration of poiser is embudied in the reduction of the dimensions of any motior to minimum limits, no matter what its individund construction, or the nature of the priticiples under whise adininistration it gives forth power: The problem, thus stated, involves in its solution many points of technical detail which can only meet with proper treatment at the hands of those praticully, in well as theoretically, acquainied with the working of machinery, because all the difficulties mot with in dealing with small machines intended to develop a high power are enciuntered in their worting, seldom or never in their mere construction. The whole sulject is one pussessing no cominon interest, the struggle for concentrated power having produced sume of the most elegant and inportant mechanical arrangements ever called into existence by the excogita. tions of mankind.
It is needless to complicate the subject just now by any disquisition on the origin of power. We know that no machine or syatem of mathines, however complex or ingenious in construction, can do more than direct in o the required channels certain proportions of those forces which are developed by particular laws of nature over which we porsess a very limited control. To originate power in themselves is beyond the capacity ot wood, iron, stone, or, in short, any constructive materials at iurdisposal. The warer wheel stinds atill until the stream is permitted to fluw intu, its buckets; but the streatm dues nut possess volition -it also womld stand wtill but fur the action of gravitation, a force in the abstract wholly independent of man's control or influence ; obeying certain well-known laws, from which it never depirth, and perpetually operating throughout the entire universe. Why a larger body should attract a smaller one, we do not know; we can only recugnise and avai! ourselves of the fact. In like manner, the steam eugine is incapable of doing more thin cunverting to useful purposes, a certain proportion of the force stored up in the fuel which heats the water from which the sterim is raised. In either the fall of water or the combustion of fuel, a certain furce is merely set free or called into action; it is never creared by the aid of machiaery of the existence of which, all the forces in nuture are whilly and entirely independent. Thus. whea: ever a pound of coal undergoes the pricess of cumbustion, power previously stored tip is set free; and precisely the same mechanical effortis requisite to evaporate a pu,und of water in an open vessel, as in a olosed generator connected with a steam oglinder and pimton. Were it not that pure force or power husexistence independently of mechanism, there would be little roum for improvement in the construction of machines. We shoild expect to find their dimensions bear an inv riable pruportion to the ansunti of power which they were intended to produce, while the least pisisible varieig wiuld be permitted in matters of detail. on which their working would doubtless alnust, if not altogether depend It is therefire perhaps fortunate that the existence of power is wholly separate and distinot
from that of machinery, for, as it is in the abstract incapable of change or alterition in its nature, we are enabled to adopt just that arrangement of wood, iron, \&ce, in separate parts which we find most convenient, well knowing that so long as a few laws are attended to which will prevint the waste of force, its nature, oharacter, or existence can be in no way imperilled. And we thus find that the dimeneions of a machine really benr no relation whatever to the amount of power which it may render available, other than those which are impressed by certain properties of the materials of which it is composed, such as their tensile or transverse strength, their liability to wear by friction, and the nature of the modes by which the developed forces are subsequently transmitted. In practice, we meet with instances of the truth of this proposition continually. The ponderous Cornish engine, with all its arrangements of colossal heam, huge cylinder, and vast boilers, developes less power, perhaps, than the little locomotive which hauls a train of coal waggons laden with material for the supply of its furances. It is needless to multiply exnmples with which all our readers must be sufficieully familiar.

Power is force in motion, and therefore the question of relative velocity is a matter of great importance in the construction of all machines, but more especially of those which are intended to concentrate a great capacity for work in a very small compass. Most of the forces at our disposal will operate, under certain conditions, at any speed deemed must desirable. These conditions are in general easily secured, and, therefore, we find that nothing but considerations, totally apart from the development of power per se, prevent us from resorting to the use of even minute mechanism whenever its employment becomes desirable from the exigeccies of situation, \&e. Practically speaking, the great obstacle to the concentration of power is found in friction. A given straio being placed at our disposal, the amount of mechanical effect, or, more exactly, power, which that furce or atrain can give out, will be measured directly by the space which it pases over in a given time. Consequently, smull machines intended. to do much work must run at a high speed. A resistance of 1 lb . overcome at a speed of $33,000 \mathrm{ft}$. per minute, is a horse power just as much as $33,000 \mathrm{lb}$. overcome at the velocity of 1 ft ; but at high speeds all the trouble ever given by friction becomes magnified, and speciul arrangements for lubrication, and particular furms and dimensions for the rubbing parts or surfaces must be adupted, or the machine will altogether fail in the performance of ite duties. When the friction problem is solved no difficulty whatever is met with in the concertration of power, provided the conditions under whioh that power is produced in the first instance, by some one or other of the natural forces, are complied with. Thus, a cannon ball; at the moment it leaves the muzzle in its flight, is the very impersonation of concentrated power due to liigh velocity. This, perhaps, is scurcely an iustance strictly analogons to anything found in matchituery. Turbines, however, now and then fursish fine examples of the production of immenee pówer within a very smisll wpsce. At. St. Blazier, in the Black Forest, a Fourneyrun turbine, only 20 in. diameter, ander a fall of 17.2 ft., gives 56 burse
power, although its entire weight is but 105 lbs. Another turbile at the asme place, of but 13 in . in diameter, under a head of 354 ft ., makes 2,200 revolutions per minute, using 1 cubic fivet of water per secund, and driying 8,000 spindles, besides looms, \&e., in the mill to which it is attached. In cutton mills, spiadies are frequently driven at 11, 000 revolutions per minute. Now, if one of these spindles is fitted with a dise 12 in . in diameter; its periphery will attain the enormous selocity of 33, 000 ft . per minate, and therefore it will require just 1 lb . of resistance at this periphery to render a horse power necesnary to overcome it; and vice versa, were the furce impressed on the disc sufficient to overcome this resiatance, it would give out a horse power. The late Mr. Richard Ruberts has driven spiadles for the experiment, at 60,000 revolutions per minute; a greater speed, perhaps, than was ever before attempted in any machine. High speed lathes, circular sarrs, and sume other machines supply us with examples, where an immense amount of power is concentrated within a very small space. These are, however, strictly speaking, negative examples illustrating the expenditure, rather than the development of force.

As the power of steam is the most universally applicable of all the forces used for driving machinery, its concentration becomes a matter invested with considerable importance. A great deal has been done in the production of small high speed engines of late years, but a great deal more remains to bê done before the principle can be regarded as approaching those limite, beyond which it may be neither safe nor prudent to carry it. The "Great Britain" locomotive has frequently given out 1,000 horse power for many minutes together, with a pair of $18 . \mathrm{in}$. cylinders 24 in . stroke, the weight of the engine in working order being littie over 35 tons, or, with the tender, 50 twe. This may, perhaps, be considered as a maximum effirt which it would not be advisable to attempt to maintain. Taking the work done, then, at but half this, or 500 herse power, we bave atill over 14 horse power per ton; or, if we neglect the weight of the wheels is in no way necessary to the development of this power, we have at least 15 horse power per ton of machinery. One of the steam fire engines, tried last year at Sydenham, developed nearly 30 horse power, the weight being under 50 ewt. This estimate of power does not pretend to atrict accuracy, as the indicator was not used, and the power was calculated merely at an assumed pressure, some 20 or 30 lbs. less than that in the boiler. Still if we disregard the weight of the wheels, driving seats, \&c., we find that the amount of piwer developed very nearly equals that of a first-dass locomutive, weight for weight. Mudern express engines give out 350 horse power as a matter of duily occurrence, and even goods' engiries sometimes a great deal more. It is needlese to say that in all these cases the power is obtained by an extremely high velocity of pistun. In stationary engives, seldom cunfined in space, the mareh of improvement goes slowly, but, nèvertheleas, stendily on ; and we crust ere long to see the clumsy beam and its appendages banished for ever in favour of high speed horizontal eaginen, working expansively. The "Allen" engine. exhibited in 1862, inaugurated a change of practice, which is
slowly making its way. This engine hid a piston speed of 600 ft. per minute, and rah 150 revolations with an ease, steadiness, and absence of heating, not greater, perhaps, than was to be expected from the cire taking in designing the machine to the minutest details; but very/satisfacthry, nevertheless, in that it farisished a complete refutation to arguments now and then brought forwati, dag up, as it were, from old-fuehoned practice, to prove that a high speed ongine must in the nature of things be a failure.

In order, then, to concentrate power, it is only necessiry to impart a high velocity to some member of a systen of mechanism which first receives the direet effect of the original moving firce, as the piston of a steam ergine, or the bucket vanes of a turbine. No theoretical objections exist to the adoption of this course. The practical objections are found to reside chiefly in friction, and the difficulties met with in carrying out a complete and thorough system of lubrication. In the case of vertical spindles heavily loaded, and running at high velocities, it is necessary that the footstep should be worked to some curve, which will estend the bearing surface and prevent the extrusion of the lubricant. In the case of ateam engines, the main shaft bearings seldom give trouble if properly made, especially if the weight of the fly-wheel is sufficient to keep the shaft duwn steadily in the lower brasses. The connecting rod head, with its brasses and the crank-pic, are not so easily jealt with, and it cannot be denied that the anncyance which these ocension, has done much to retard the introduction of high speed engines. The fact is, that the brasses will not permit of that amiunt of louseners or play which may exist in any other bearinge almost; because of the destructive hammering aetion which ensues. It is not easy to say Why lightening a brass should make it heat; we find in every-day practice that a bearing which supports perhaps 1 cwt. per square inch, without undue friction so long as it is left moderately slack, will becime almost red hot in a few minutes, if an additional pressure of not more than a few pounds per square inch is brought on it by screwing down the cap. Until we can give a satisfactory explanative of this phenomenon, it is nut ersy til see how its occurrence can be guarded against. Meanwhile, it is the source of all the trouble ever met with from a coninectiog rod end. The best remedy appears to consist in increasing the bearing surface very considerably, and providing an effectual method of lubrication, either by a telencope pipe from an overbead vessel of oil, or, in cases where the engine stande for a few hours out of tho twenty fuur, by boring a large cavity in the crank-pin, and filling it with tallow, n transverve apperture conveying the lubricaut when tmelted to the surfaces where its prevence is required. Attention to little matters of dettil and good workmanship are really:all that are required to ensure the success: of any motor running ata high spoed:

Nutwithstanding agreat reduction in the dimen--siona of ang engine, pidwer can scarcely be said to be concertrated while the boilers renain very large. In many cunes, a small builer is imperatively dictated nud ir yet rumuins to be seen if peculiar arringements cannut" be adopted. by which a very small furnate and a tierce cumbustion will do the work
of one mach larger with equal ecónomy. Hitherto fire boxes have been rapidly bernt out under ruch conditions; perhaps this has been oocasioned by the over thickness of the plates. Loconotive fire boxes frequently burn down to a thicknees of little more than one-fourth of an inch very quickly, although they will last for years without much subsequent detéfioration. A getierator might possibly be constructed with ex ceessively thin cold drawn steel tuhes, through the subtance of which the heat would pass so quickly to the water that their destruction ;would be almost indefinitely retarded.

THE HISTORY OF THE HYDRAULIC PRESS.

As the celebration of centenaries seems to be one of the fashions of the time, perhaps we may be allowed to celebrate, in a mild way. the second centenary of the hydraulic press. We may apy that we may even feel in manner bound to this our celebration of the anniversary of the invention of this mighty neechanical agent, because, just as with regard to the origin and histories of immortal bards, there are some very mistaken and dubious accounts current as to the origin and history of the hydranlic press. The first birth of this machine, only secondia value and importance to the steam engioe, may be said to date from 1664; for in that year was published the." Traite de t"équilibre des liqueurs, et de la pesanteur" by that extraordinary man, Blaise, Puscal. IHe wrote:-"Si un vaisseau plein d'eau, clos de tentes parts, a deux ouvertures, l'une centuple de l'autre, en mettant a chacune un piston quii lui soit juste, un homme, poussani le petit pisthm, égàlera lu furce de 100 hommes qui pousscront celui qui est plus large, et en surmonitera 99 ." He gues on to say that, "in whatever proportion are sizes of the openings, if the furces on the piatons be as the openings, these forces will be in equilibrio." Pascal then, with remarkable clearness and method, points out that the principle of virtual velocities found in the lever, the inclined plane, \&c., is also to be seen in this machine, "as the space gone over by the little piston is to that passed by the large piswon, as the force of the second is to that of the first." The first hydraulic press was of an eesentially rough-aind-ready kind, as it consisied simply of a barrel filled with water, in communication with a long verical tube. The hydraulic pressure, however, burst Pascil's wooden barrel with the sume efficiency as the cylinders of some ill-constructed and badly cast presses are now broken this day. We next here of the hydrauilio presis in Leupold's "Theatrum Machinarum." published in 1720. A practical"application of its principlos was made about 100 years ago by a distinguished anatoraist of that day, named Wilf. In order to examine animal tissues, he stretched his specimen over the brond and short leg of in inverted syphon, the lodger leg being filled with water. The hydraulio pressure thus distended the sibibstnice stretched over the short lein of this, probnbly now obsolete, "anatomical syphon". At lasit came that remarkable min J, seiph Bramah, born nearly in the middle of the last century, and the Richard Roberta of his time. Although it has been ignorantly stated in Mr. Smiles's last work thet be was not
a first class inventor, we must beg to differ from thita opinion; and we feel contident that a thorough oxamination of his life will show Bramah to have been only second to W atit in pretily much the same relation as the bydraulic press is inferior in importance to the steam engine. He was the true and original inventor of many of the machine tools, fur the honour of whose introduction several different meen have scrambled during the last 50 years. Mang of the inventions of the great, and as yet but insufficiently appreciated, Brumah are still as much adjuncts to our daily Enцlish life, as "honsehold words" are'familiarin sur mouthe." In 1795, Bramah obtained a patent for ai " newo invented hydrostatical machine, capable of beciming the primordial, or first cause of motion in all kinds of inanimutte movements whatsurever, and may be employed instead of pumps, or any other hydraulic engine, for the purpose of raising water througli any given space." Bramah, by this patent, converted the seemingly absura " hydrostatic paradox" in to a livingmechanical truth. Pascal was thus the scientific discuverer, the inventor on paper, of the hydraulic press; Bramah was the practical nechanical inventor. A beantifully executed hydraulic press, the first ever made, inacribed, "J. Bramah Invit. et. Feott., 1796," is now in the Kensington Meseum, contributed for exhibition by the director of the Museum of Economic Geology, under the fosturing care of our distinguished Superintendant of Specifications.
Since Bramah's patent, two great improvemente, apart frum the different special improvements and alterations incidental to special requirements, have been applied to the hydraulic press. The first of these is the arringement fir packing the joints; the second is the mode of strengthening the cylinder of the press.

We all know how much more difficult it is to make a water-tight joint than a steam-tight joint, with equal pressures behind each. This difficulty had of cuurse to be encuuntered by Bramab. In all mudern presses the packing is furmed by casting an annular recess in the neck of the cylinder of the press; into the recess is fitted a cupped leather collar, which is itself steadied in the middle by a metal ring furmed in segments. This cupped leather collar is generally beaten into shape out of a circular piece of leather, from the inside of which has been cut a circular dise. This annular dish, as it were, is inverted towards the water, which thus entera, and the very pressure tends to keep the joint tight. The combined simplicity and elegnace of the whole echeme are evidence of a stroke of genius, and its invention sheds great honour on whoover invented it, although, at the same time, we may reunart that the anme general idea is imbodied in the ordinary pump bucket, used in cummon suotion pumpo, and in the larger draw-lifth for mines. But who is the inventor of the cupped collar? That is the question, and one to which we will devoto a few moments' atteation.
In the first place, this contrivance is not described or delineated in Bramah's patent: Bramah is, huwever, generally credited with itg invention in the enminon text-bioks, nod Brumat, appears to liave at fir it used a hempon and leathern packing. Sitied into a oummon atuffugbox: Th Mry Sonileg?
late work,* he states, on the authority of Mr. James Nasmyth, that the late Mr. Henry Maudolay was the inventor of the self tightening collar of the hydraulic press. Mr. James Nusmyth agningives the nuthority of Mr. IIenry Matadslay hingelf for his statement. There can be no dubting the good faith of buth the late Mr. Maudslay and of Mr. Nasmyth, but it is a pity that Mr. Smiles did not make some attempt to verify the question. Mr. Nasmyth was Mr. Miudslay's apprentice and it is pot customary to tale the interested evidence of either masters or men, however honourable the individuals themelves mar be. We think that a reference to page 394 of the "Cumpenditim of Practical Inventions," published as long ago as 1810. will dispel these illusisins with regard to Mr. Mudalay, and will place the crown, or rather collar, on the right man. \dagger It will there be seen that the invention is distinctly ascribed to the late Benjamin Hick, of Bolton, the well-known and dintinguished engineer. In alluding to a drawing and desuription of the cupped leather collar, the writer says:-"This simple mode of making the junction of the ram and cyliiddr water-tight was invented by Benjamin Hicn of Bulton, several vears ayn, and is nuw universilly practiced. In the old method of fitting up this part, an enlargement of the cylinder was made at the mouth. in which the leather was placed, and then secured by a loose ring, called a collar-plate, placed over it, and as large in diameter as the head of the cylinder, to which it was attached by ten or twelve screws, which, from the unavoidable inequality of their bearings, were continually subject to accidents." The "Compendium of Practical Inventions" was thus published unly five years after the death of Bramah himsell; the same statement will be found in a work published as an anterior date. The late Mr. Benjamin Hick was the first agent, or, rather, the firm of Thwaites, Hick, and Ruthwells, of Bolton, in which Mr. Hiek was the managing partner, were the first agents, in Lancashire for the sale and manufacture of Bramah's presses. Cunsidering how much Benjamin Hick actiieved in the osuse of mechanical ucience, it is rather surprising that his name is not oftener meationed in the front rank of the mechanics of the age we are fast leaving behind.

We now come to what may be termed the second great improvement mude in hydrauliy presses since Bramah's death, and in this category we place the proper construction of cylinders intended to stand high pressures. We have alluded to this principle in an article in one of our late numbers under the heading of "The hoop tension of thick cylinders" As long ago es 18\%5 Prufessur Barlow showed that the outer, portiong of a thick oylinder add very litte: to itt strengtb. as but little of the strain is transmitted to the outside hyers. His law is thiat "in cylinders of motal the power exerted by different parte varies inversely as the equare of the distances of the parts frim the axie." If this wo see the explanation of the continual failures of the presses used in launching the "Great Eastern." Although the rams were really only 10 in. in

[^2]diameter, and alithough the sides of the cylinders were as much as $7 \frac{1}{2}$ in. thick, yet they nevertheless burst under pressures of less than five tyns to the square inch. : The practical rule given by Pro. P. Birlow to find the thickness of metal for a hydraulic press is:-"Multiply the pressure per square inch by the radius of the cylinder, and divide the product by the difference between the cohesive power of the metal per square inch, and the pressure per square inch; and the quotient will be the thickness sought." According to the usual calculation, a press which would have to stand twice the pressure to be undergone by one of the same size, would accordingly have its sides made twice as thick; whereas it will be seen that the doubly-strained press will have to be made rather more than twice as thick. But mere thickness of metal has limits of several kinds, and recourse should be had-in presses required to stand much preseure, or to be yery light-to hoop tension, by shrinking on rings, or by straining on coils of wire, upon the plan pateated by Mr. Longridge. To this plan, rather than to idly wait for the discovery of a new cast metal, should the makers of hydraulic presses look for means of improvement. So much for the cylinders, while the rams and tops and botioms could be cast much lighter than they usually are by the use of well chosen metal, and by a proper arrangement of webs.

To enumerate the different applications of the hydraulic press would be to compile a catalogue of almost every engineering operation in which the exertion of a very great powor is reqired. After having been used for many years in making clay pipes for drainage and water supply, lead and pewter pipes for plumbers and gas-fitters, the hydraulic press is now used for what appears a somewhat similar, and almost still more important application-that of cold-drawing steel tubes. In India, Egypt, and the other cotton countries, the press is used to compress the cotton to such an extent that one ton weight only measures 40 cubic ft. The australian bales of wool, and the hay sometimes sent out abroad for the army, are compressed for packing in the same way. Hydraulic pressea, generally placed vertically, are used for extructing the oil frum linseed, rape seed, and hemp seed, and also for almond, olive, and nut oils. The press is also used in the manufacture of stearine candles, and in expressing the essence from hops, and the tannin frum the bark. In all experiments on the strength of materials were the specimens are of harye size, and whether they be tested up to ouly proof strength, or to destruction, the hydraulic press is indispensable. It is accordingly used for testing bars either' by extension, compression, or lexure; for teating chains, chain oableg, aneliors, iron beams, and girders. Meesrs. Hict', of Bulton, having punched holes, by means of hydraulic preseure, about 8 in . in diameter ino 3 in. plates, with an exertion of force of more than 2,000 tons. A small tool on this principle is now used for punching plates, instead of the common boiler-maker's "bear," and the lightest and most useful lifting jacks are those on the hydraulic principle. Robert Stephenson used the hydraulic prese for huisting the tubes of the Britannia and Conway:bridges; by menns of presees the "Great Eastern" Was at last launched, and by this means
hydraulic lifts now replace expensive dry dockg, and patent slips. One of the most important applications of the hydraulie press is made of it in late years to furging large masses.-Mechanices Magazine.

CALORIC ENGINE.

Mr. Roper, of Boston, lately explained, with the aid of diagrams; the caloric engine lately in use at the Sanitary Fair, to the Polytechnic Association of the American Institute at New York. This engine is designed to be used were small power is required. Its pecularity is, that it does not use, upon the piston, common air, heated, but only the products of combustion. The air to supply oxygen for the combustion of anthracite coal is pumped in; the carben is burned rapidly and completely, under pressure, and the resulting carbonic acid gas and uncombined nitrogen gas from the air, are passed from the generator to the piston, which is io the form of a hollow plunger; so arranged that it is packed and fitied only at the top, where there is the least heat. In this way the common difficulty of lubricating a hot cylinder and piston is obviated. The generator of litat is surrounded with fire-brick or sonpstone, which prevents the iron from being burnt: The engine is single-acting ; that is, the power is applied to the piston moving in one direction, during which movement the air to feed the fire is pumped in; the momentum accquired at the same time, by balance or fly-wheal, is used to carry the piston back to its original position. The diameter of the air-pump in the engine at the Fair is 12 in. ; that of its piston is 10 in.; the difference in the areas of the pump and piston, multiplied by the usual pressure, 8 lbs . per square inch, shows that this cugine exerts a two-horse power. It requires about 10 lbs of coal per tour, it occupies five syuare feet of room, and weighs 3,000 lbs.

AN ENORMOUS SCALE.

An enormnus scale, the largeat perhaps in the country; has just besn finished at Cleveland for the Fort Pitt Works in this city. They are intended to weigh the monster twenty-inch gun, and are of the following dimensions:' Length; 30 feet, breadih; $7 \frac{1}{2}$ feet, and 4 feet in height. They will weigh from two prounds and a half up to one hundred tuns, and are so nicely and accurated adjusted that the weight of half a pound will turn the benm. A half pound weight on the beam weighs one tun on the seales. They are built entirely of wrought iron, with the exception of the lever heads, which are cast. The pivots are made of wrought-iron steel edges, for the purpose of securin'g greater strength and durability. The cost of these scales, whon set up in Pittsburgh, will be $\$ 2,000 .-$ Pitisburgh Chronicle.

British Raliways.

There are now in the British islands 375 diatinct railwhy companjes, who own 11,500 miles of road. They carry abive 80,000 paseengers yearly, and abou ve $80 ; 000$ 000 tons of merchandise and minerale. The y ive employment to probably not less than 200,000 persions.

ghratical ghatmoranox.

THE MECIANICAL POWERS, AND THEIR APPLICATION.
The simple Mechanical Pumere aresix in númber, vid., the Lever, the Fulley, the Wheel and Axle; the Inclined Plane, the Wedge, and the Screv. : All machines are formed by combinations to a greater or less extent of these six elements. The mechanical effecte, however, of the whole, are ultimately resolvable into that of the lever.

By means of the Mechanioal Powers a great weight may be sustained, or a great resistance slowly overcome, by the application of a small force. Or, a great velueity may be imparted to a small weight or resistance, by the use of a great force or power.

The Licter.

Levers are of three orders:
In the first order, the falcram is between the weight and the power.

In the second order, the weight is between the fulcrum and the power.

In the third order, the power is between the weight and the fulcrum.

The bent lever has no peculiarity except that of form, which is given to it for convenience in use. Its properties are those of the first order.

In order to preserve an equilibrium between the power and the weight, they must be to each other inversely as their distances from the fulcrum.

Case 1. When the Lever is of the first order, or tohen the fulcrum is between the power and the weight.

Rule. Divide the weight to be raised by the porer to be applied; the quotient will give the difference of leverage necessary to support the weight in equilibrio. Hence, a small adation either of leverage or weight will cause the power to preponderate.

Example 1. A ball weighing 3 tong is to be raised by 4 men; who can exert a furce of 12 cwt . Required the proportionate length of lever.

$$
3 \text { tons }=60 \text { cwt; and } \frac{60}{12}=5
$$

In this example; the proportionate lengths of the lever to maintain the weight in equilibrio, are as 5 to 1.: But, although the bull is sustained by a force of only one fifth of its weight, no power is gained, for the weight pasges through only one fifth of the space passed through by the power.

Eximplé 2 . A weight of 1 ton is to be raised with a lover 8 feet in length, by a man who can exert, for a sbort time, a force of rather more than 4 cut. Required at what part of the lever the fulcrum must be placed.
20 cwt :
4 owt. $=5$; i,e, the weight is to the power as 5 to
$\therefore .8$

$5 ; \times 1=1$ foot and a third from the weight.

Example 3. A weight of 40 lbs is placed one foot from the fulurum of a lever. Required the
dower to raise the same when the lengti of the lever on the other side of the fulcrum is five feet.

$$
\frac{40 \times 1}{5}=
$$

Case 2. When the lever is of the second order, or when the fulcrum is at one end of the lever and the power at the other, with the weight between them.

Rule. As the distance between the power and the fulcrum is to the distance between the weighs and the fulcrum, so is the effect to the power.

Example 1. Required the power necessary to raise 120 lbs. when the weight is placed six feet from the power and two feet from the fulcrum.

As $8: 1:: 120: 30 \mathrm{lbs}$., the power.
Example 2: A beam 20 feet iu length, and supported at both ends, bears a weight of two tons at the distance of eight feet from one end. Required the weight on each suppurt.
40 cwt . $\times 8$ feet
20 feet
16 cwt . on the support that is

$$
40 \times 12
$$

weight ; and $\frac{X 12}{20 \text { feet }}=24 \mathrm{cwt}$. on the support 20 feet nearest to the weight.
Case 3. When the lever is of the third order, or the weight is at one end of the lever, the fulcrum at the other, and the power: is applied between them.

Rule. As the distance between the power and the fulcrum is to the length of the lever, so is the weight to the power.

Example. The length of the lever being eight feet, and the weight at its extremity 601 ls ., required the power to be applied six feet from the fulcrum to raise it.

$$
\text { As } 6: 8:: 60: 80 \mathrm{lbs} \text {., Ads. }
$$

The Pulley.

Pulleys are of two hiods, fixed and moveable.
The fixed pulley afforde no economy of power, but merely changes ite direction. The movable pulley changes its position with that of the weight, and effects a saving equal to half the power. An equilibrium is preserved betweei the power and weight, when the weight is equal to the product of the power and twice the number of novable pulleys.

Rule. Divide the weight to be raised by twice the number of pulleys in the lower block; the quotient will give the power necessary to raise the weight.

Example. Required the powior to raise 600 lbs . when the lower block contains side pulleg.e.

$$
\frac{600}{6 \times 2}=50 \text { lbs., the power. }
$$

The Wheel and Axte:

The wheel and axle uct as a revolving lever; and in order to obtain an equilibrium berween the power acting on the circuniference of the wheel, and the weight or resistance acted in by the oircumfererice of the asle, the power must be to the weight ns the radius of the axle' is to that of the wheel. One or more radii of the: wheel, or winches, are often substituted for the wheel in the simple
machine; and in compound machines the action is communicated by teeth or cogs, furming wheel and pinion work.
Ruls. As the radius of the wheel is to the radius of the axle, so is the effect to the power.

Example. A weight of 50 lbs. is exerted on the periphery of a wheel whose radius is 10 feet. Required the weight raised at the extremity of a cord wound round the axle, the radius being 20 inches.
$50 \mathrm{lhs} . \times 10$ feot $\times 12$ inches
20 incbes.

The Inclimed Planes

The inclined plane acts as a mechanical power by sustaining a portion of the weight to be raised. while the direction of the applied force is changed from the perpendicular to one more or less horizontul, and the weight muves upwards on it in a diagonal between them. Equilibrium is sustained when the power is to the weight is the perpendicular height of the inclined plane is to its inclined length or hypothenuse, when the power acts in a direction parallel to the inclination of the plane; but as the height is to the base when in a direction parallel to the base.

Rule. As the length of the plane is to its height, so is the weight to the power.
Example. Required the power necessary to raise 540 lbs. up an inclined plane 5 feet long and 2 feet high.

$$
\text { As } 5: 2: 540: 216 \text { lbs., the power. }
$$

The length, in the above rule, must represent that of the inclined surface, or of the base, accordingly as the power acts parallel to eitber of these surfaces.

The Wedge.

The wedge may be regarded as two inclined planen, united by a common buse, acting on two weights or resistances at once, or on a fulcrum and a weight, between which it moves, generally, in practice, by the impulse of successive blows.

As in the inclised phane, equilibrium cunsists in the powser being to the resistance as the back of the wedge is to its length, or to the length of its side, accordingly as the resistance acts perpendicularly to the central line of length or to that of the side.

Cuse 1. When two bodies are forced from one another by means of a wedge, in a.direction parallel to its back.

Rule. As the length of the wedge is to half its back or head, so is the resistance to the power.

Exakple. The breadth of the back or head of the wedge being 3 inchea, nnd the length of either of its inclined sides 10 inches, required the power neoessart to separate two substances. with a force of 150 lbs .

As $10: 1 \frac{1}{3}: 150$: $22 \frac{1}{2}$ lbs., the power.

Cane 2. When only one of the bodies is movable.

Rule. As the length of the wedge is to its back or head; so is the resistance to the power.

Exarple. The breadth, length, and fonoe, the game an in the last example.
'As. 10 : 3 :: 150 : 45 lbs.; the power.

The Screw.

The screw is an inclined plane, and may be supposed to be generated by wrapping a triangle, or an inclined plane, round a cylinder. The bnse of the triangle is the circumferecte of the cylinder; its height, the diatance between two consecutive corda or threads; and the hypothenuae furms the spiral cord or inclined plane.

Role. To the square of the circumference of the serew, add the square of the distance between tro threads, and extract the square root of the sum : this will give the length of the inclined plane. Its height is the distance between two consecutive cords or threads.

When a winch or lever is applied to turn the serew, the power of the screw is as the circle described by the handle of the winch, or lever, to the internal or distance between the spirals.

Case 1. When the weight to be raised is given, to find the power.

Role. Multiply the weight by the distance between two threads of the screw, and divide the product by the circu mference of the circle described by the lever. The quotient is the power.

Exanple. Required the power to be applied to the end of a lever three feet long, to raise a weight of five tons with a screw of 1 inch between the threads.

$$
\frac{11200 \text { lbs. } \times 1.25}{36 \text { inches } \times 2 \times 3.1416}=61.9
$$

Case 2. When the power is given, to find the weight it will raise.

Role. Multiply the power by the circumference of the circle described by the lever, and divide the product by the distance hetween two thireads of the screw : the quatient will be the weight. The example is the converse of that in the former case." -Huzletl's Huad-Book.

Shingles rendered Fire proor.

M-. John Mears says, in the Buston Cultizator. that he has propared sibinules in the fullowing manner, and after an experience of elevell years, and using severi forges in his blacksmith's shup, he has never reen a shingle on fire, nor has a nail atarted. The ahingles are prepired in the following manner ;-" Having a large trough, I put into it a buahel of quiciclime, half a bushel of refues salt, and five or six pounds of pounsh, adding water to nlack the lime and digsolvo the vegotable alkali nnd the salt-well knowing that pieces of an old lime pit, a suap barrel, or a pork tub, were not the beit kindling stuff, anil having long sinco learned, white at the Vineyard Sound, that bot silt-whter white wish endure fir longer thai that made with fresh wnter, absorbigig misiature, striking into the wood and not peeling and washing off. I set the bundles of the shingles nearly to the bands, in the waish firt iwo hours; then turin ed tbem and tor end. When laid on the rouf and walls, they were brushod over tivice with tho liquid, and were brusbed over at, intervals of two or three jeari after."

What is at quinarteris of Gratin?

One of the speakers at the Meeting of the Oorn Trade, at the Liondon Gorn Exchange, gives the following Standard Weights to the Quarter of Eight Bushels of the difierent Grains.

Wheat	496 lbs to the Quarter.	
Barley,	400	do do
Oats,	320	do do

This a quarter is as much a part of the Imperial table of measures as a bushel, and is simply eight busheis of grain, varying of course, in weight with the kind of grain.

Statistical ${ }^{2}$

Emigration to Canada and the United States.

The following table gives the number of emigrants who arrived in Canada and the United States from 1830 to 1860 , and shews the increase in proportion to the whole of the two countries at the later date to be 3606 for Canada, and 3505 for the United States, giving us a surplus of 1.01 over our neighbours:

Honem Import ana himinufacture.

Our civil war, along with other results, has tended to stop the supply of cutton to prove the inadequacy of other countries for a sufficient yield of the right staple, and consequently, to substitnte other fabrics. The effect is marked very clearly in English trade returns. Linen has been produced in an unparalleled quantity there, and exported to us mure largely than ever before. In the first three months of 1862 the total value of linen piece goods exported from England was $£ 982,013$; in 1863 it was $£ 1$,327,895 , and in the corresponding period of 1864 , £1,869,785. This production and export includes white and plain piece-gisids; checked, prints, and dved ditto; cambrics and lawns; damasks and diapers; sail cloth, thread, and hosiery. The total value of exporits of liuen munufactures of all kinds in the first quarter of 1864 amounted to $£ 1,998$, 452, againgt $£ 1,454,777$ in the correspunding quarter of 1863 , and $£ 1,088,363$ in the corre ponding period of 1862 . The expurt nearly doubled in three yeirs. This country, too, was the largest. consumer and customer for this wonderful increase, Which amounts to null less a sum thin $£, 910,089$ or $\$ 4,550,445$ for a single quarter, and $\$ 18.201,780$ per annum. We impirt to the value of $£ 378735$ in 1862 , $£ 556,774$ in 1863 , and $£ 914,917$ in 1864. This is an increase in linen goods of $£ 536,182$, or about $\$ 2,681,000$, in one quarter, produced in two years. The increase in a jear, at this ratio. would be $\$ 10,723,640$. The last returins show that the increase is still increasing; and that, although some suffering has been produced amung British operatives by the cotinn famine, and some mills reodered less valuable, the suffering is compensinted in another quarter by an exicessive and unparalleled consumption of linen.

These facts show that linen manufactures here are starting at the right time. The creation of 80 good and endden a demand cannot but carry up prices. The duties will be added to that cost and render linen manufactures very valuable. We have some manufactures of this kind and ëvidently need more. I'heir erection will lead to the immigration of skilled aperatives, and thus we shall be permaneat gainers through a lesson and discipline of loss. It will also stionulate the prodution of flax and hemp, and thus we shall have another crep added to the vast variety that alrendy vary our agriculture. Kentucky and Missouri cannot supply. even their former yield now. Other States miny therefore prepare to meet a profitable demand, and do it safely, -ince it has been shown:that fins-growing doess not injure the soil, as it. Was supposed to do:-Uuiled Slates Gazette.

The Snlimarine Catoles of the World:

From an official communication of the Gutta:perchir Company, Lrindon, to Cyrus W. Field. Esq., it appears that $\mathbf{2} 2$ lines of submarine cable have been laid by: English firms in different parts of the world, all of which are in successful operation with the exception of that between. France and Algiers, and it is sumposed that that was injured by lightning. The longest livie in otieration is that hetween Midta and•Alezandria;' $1,5,55$ miles. The deeport water in which working enble reste is 1,550 fathoms-14 milee-between Toulon and

Corsica. The aggregate length of working lines given in the tahle is 5,105 miles, and this diea not include a number of short lines laid in different parts of the world, nor those laid by Felten \& Guilleaume, of Cologne, amounting to more than 1,000 miles. One line has been laid 13 years, five have heen laid 11 years, four 10 years, and others shorter perinds.

Mizellatent.

PUBLIC DRINKLNG FOUNTAINS.

The Metropolitan Aasociation has been instrumiental in the erection of nearly eighty founnains. The number is liarge, but the mouths are many. Others besides the positively poor will occasionally satisfy thirst by drinking from a fuuntain which has a fair and actractive appearance. Clerks and others, of a somewhat superior grade, and particularly young people of alunost all class9s, relish a draught of clear, cold water in the heat of the day. These eighty fountains are planted in the midst of three mililions of people, and Mr. Gurney states that net less than a quarter of a million of persuns drink of them daily during the heat of the year. But must we coneider the remaining two millions and three-quarters indifferent to the limpid tricklings of these beneficient institutions? If we calculate that one third of the metropolitan population are of an age, status, and mode of life which may render a public drinking fountain accasionally acceptable to the individuat, we find that at the race of water drinking already observed the metrop, ilis ought to have 320 fountaine instead of 80. Then there are the cattle, and of course the dogs. In regard to the latter there is the "ILome for lost and Starving Dugs;" but Mr. Gurney has a special regard for the "thirsty" ones. When we remember what hydrophobia means; our very selfishness may be quickeneil with philantrophy, and we may feel the importance of sacisfying even the thirety cur, so as to leasen the risk of our being bitten by that worse than an Indian tiger-a "mad dog." It is hard tin imagine how much the inferior creation may suffer from thirst in our arid streets during the hent and drought of summer. The spectacle presented by our hirned cattle, and even by the poor helpless sboep; thy they are driven through our streets when the weather is far from cool, is often anything but creditable to our civilisation. Mr. Gurney says that, "the provision made tor the relief of the sufferings of catte and dogs from thirst falls fars short of what is required," and we can readily believe it. Nor is it cunsistent with the public safety to ignore the fict. Thirst and fever are ilmost aynonyinous, and a mad bull is even worke th in a mad dug, while the sufferings of cattie before they are killed may account for the deteriorated appearancé so often presented by our beef and nutton, and which is in etriking contrast with the tempting-louking juints to be seen in the shops of provincial bucchers.-English Puper:

If drinking fountains such as above deseribed could be established in all our cities and populous towns in Canada, they would prove a great conve-
nience ns well as comfort to thirsty passers-by, and would serve the cause of temperance and morality more perhaps than almost any other simple institution. Multitudes during our warm summer daye are drawn to the taverns to procure wherewith to slake their thirst, who would otherwise, if such fountains were provided, abstain from the intoxicating cup. Could not our municipal authorities of towns whercin water-works exist, have simple water-taps placed in shaded nooks around our market places, and along our princiṕal tboroughfares; and so as to secure a clean glass and a pleasant drink at all times, place such taps in care of aged or infirm individuals, who might charge a cent a drink to all persons able to pay-thus effecting a public good, and affording an honest livelihood to such as would otherwise be dependant upon the charitable puiblic for a subsistence. Where water-works are not in existence, public pumps might be eatablished under similar regulitions to those above suggested.-Ed. Juurnal.]

The Big Troes of Calliformia.

Let us walk upon the " big eree" stump." You see it is perfectly amooth, sound apd level. Upon this stump on the 4th of July, thirty-two persons were engaged in dancing fuur sets of cotillions at one time, without suffering any inconvenience whitever, and besides these there were musicinas and lookers on.

Across the solid wood of this stump, five feet and a balf from the ground, (now the bark is remused, which was from fifteen to eighteen inches in thickness), measures tweaty-five feet; and with the bark twenty eight feet. Think for a moment; the stump of a tree exceeding nine yards in diameter aud sound to the very center. - This tree employed five men for twenty-two days in felling it, not by chopping it down, but by boring it off with pump augers. After the stem was fairly severed from the stump, the uprightness of the tree, and the breadth of its base austained it in ite pusition. To'accomplish the feat of throwing it over, about two and a half days were spent in inserting wedges and driving them in by the butts of trees, until at last, the noble monurch of the furest was forced to tremble, and then ts fall, after braving "the battle and breeze" of nearly three thousand years. -This noble tree was three huadred and two feet in height, and ninety-six feet in circumference at the ground.

A shirt distance from the above lies the prostrate and majeatic body of the "Father of the Furesr," the largest tree of the whole group, balf buried in the soil. This tree measures in circumference at the roote, oue hundred and ten feet: \cdots It is two hundred feet to the first brianch. By the trees that were broken off when this -tree buwed its proud head in its fall, it is estimated that when standing it could not have been less than four hundred und thirty five feet in :height: Three hundred feat from the roois, where it was broken off by striking against another tree, it is eighteen feet in diameter.-Hutchin's Wonders of California.

[^0]: " Opflines of a Now Theory of Muscular 4ction." 1863.

[^1]: - The teotional area of a fy wheol rim in inches, $\frac{11 \cdot 42 . W}{\mathrm{D}}$

[^2]: * "Induatrial Blography: Iron workers and Tool makars." Londnn: 3 john Murry, 4862 .
 t The "Mechanloi or Qpmpondiym: of Fractical Inrontions." Fol. 2. Liverpool, 1810.

