The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/ Couverture de couleurCovers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurėe et/ou pelliculée

\square
Cover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filrnées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci.dessous.

Coloured pages/

Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de ''en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (f ériodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de rėduction indiqué ci-dessous.

JOURNAL OF AGRICULTURE

PUBLISHED BY THE DEPARTMENT OF AGRICULTURE FOR THE PROVINCE OF QUEBEC.

Table of Contents.

Editorial Notzs - Notice to Secretaries of Agricultural So-
dietiês.-Vines.113
Centrifugal Separators and Dairy-Schools 113
113
Forest Heplews. 113
YcCormiok's Harvester (with engraving). 120
On Orabs and Orab-hybrids. 120
A Sethod of Leading Oattle (with engravingl. 122
Slips or Outtings (with engravings) 122
Peterson's Double Oream Separator (with engravings) 122
Reperimen's on Potatoes in lreland. 122
Agriculture 124
Doyssicic Eoonour -A cover for a barrel (with engraving)
Doyssicic Eoonour -A cover for a barrel (with engraving) 125 125
Canon Bagot on Irish Butter. 125
Combined Harrow and Olod-crusher (with engraving). 126
Trigbinary Department. - Diseases of the Horse's Foot. 126

EDIMORIAL NOTES.

We beg to call the attention of our readers to the admirable artiole, by the Hon. Mr. Joly, on tho oultivation of fozest trees. The earnest devotion of our statesmen to the interests of agricultare promise an improved condition of the att before long. Among the mosi pressing questions of the day are those of arboriculture and the replanting of the thousands of acres of cleared land which are daily going to ruin, and in which a future rural generation might find a prosperous living. Students of arboriculture say, that a thoroughly well managed acre of woodland, in the neighbourhood of a railmad or of a navigable river, would yield at every fifty jears from one thousand to five thousand dollars; an average of fifty dollars per acre per annum. Is not this enough to cause us to reflect, now that our pablic domain, so vast, so rioh, is so little productive?

Notice to Secretaries of Agricultural Societies.

The Scoretaries of Agricultaral societies are requested to fill up the blanks in the lists they will receive this month. The Slanks should be filled up by writing the names of the subseribers in such a fashion that all those that have the same postofice address be found together, one after the other. The post-office should be given in the address, not the parish, as there are not always identical. The lists should be addressed, when they are completed, to Ed. A. Barnard, Director of the Journal of Agriculture, Cap St. Miohel P. Q. and they shonld contain only the names of the subsoribers for the year 1881.
This notice is addressed, also, to the secretaries of the "Ceroles Agricoles."

Vines.

Our readers are referred to our advertisement regarding the purohase of vines, which will be found on the last page of the journal.

As many people fear to undertake the oultivation of vines We have made arrangements to send to each purchaser a pamphlet containing a full avoount of the most profitable system to be pursued; and we shall be happy to answer any questions on the subject. It is wise to make preparations in time, that the vines may be planted as soon as the frost is out of the ground nest spring. The vines will be despatohed by mail the moment the weather is fit for planting, if the order is given in advance. Of the hundreds we sent out lest spring we know of no failures-everybody was satisfied.

Centrifugal Separators and Dairy-Sohools.

The following letter addressed to one of the most distinguished agronomes of the country, will show how muoh importance we attaoh to the newly invented maohine for separaing the cream from the milk.
To C. A. M. Globensiey, Esq., St. Eustaohe.
Dear Sir - In reply to your letter of the 12th of September last, I hasten to say that, to my personal knowledge, you have, since March, taken tho greatest possible pains to furnish your noighbouriood with a model dairy-sohool. At my request, you put off the ereation of the establishment for some months; but latterly you seemed very anxions, nay, pressing, to put it into operation.
As you did me the honour to oonsult mo on the subject, I feel that I ought to give you my reasons for besitating to advise the immediate erection of a second dairy-sohool in the province.

For two years past a great ohange has taken plase in the style of apparates for bntter-making. The oream san now be extracted from the mill, warm as it leaves the cow's udder, with a machine of the centrifugal type, which appears to have advantages over any apparatus now in use. This transformation, however, whose real value is recognised in the prinoipal dairy countries of Europe, renders necessary an entire ohange of buildings, eto., etc. I expeot to receive very shortly from Europe further information on the subject.

I ask you to defer the escontion of your project for a short time, solely with a view to the benefit of our provinoe; that it may receive the newest and safest lessons in the art of drawing the greatest and completest benefits from our dairyindustry, the importance of whioh to our country it is impossiblo to exaggerate.
Such being the case, you will be rendering a real service to the province if you will defer your plans for a short time. The interval will be fell spent in studying the numerous questions which arise from this new system.

I am, eto., ete.,
Ed. A. Barnard.
FOREST TREE OULIURE. bY Hon, H, G. JoLx.
The European traveller who visits only the settled parts of this Province, is invariably disappointed at the soaroity and
meanness of our trees. Of courso, it he leaves the beaten tracks of travellers, and goes fur enough into the wilderness, up the Ottawa and St. Maurico, he will see fine timber, but, in our settlements, we can only show him, here and thoro, at long :atervals, one solitary elm, a model of grace and beauty, and the traveller will fecl, as we do, grateful to the man who spared that tree.

On a warm summer's day, the Desert of Sabara, with its lovely oases, would be suggestive of coolness, compared with our country. No trees to shade the `dusty roads, shelter the pantiog ere.tle, to set off the neat white-washed houses, only far away, hidden nearly out of sight, the patch of small neglected timber which the farmer is compelled by our stern winters, to spare from the general slaughter, as he dies, without fucl.

If every acre of ground were covered with valuable orops, one would try and get reconciled to the absence of trees, and bow to the iron rule of our age which converts every thing into cash. But what a small proportion of all that ground is used profitably! We can find plenty of spare room for growing forest trees, they are not only the most beautiful ornaments to a country and the most useful produot of nature, giving fuel, timber, shade, shelter, retaining moisture, and a protection against droughts, \&c., \&c., but, considering the question from a strictly moncy-maling point of view, the culture of forest trees is porhaps the best anel safest investment that can be made.

It is rather difficult, I admit, to induce people to plant forest trees in this Province, where, for generations, they have been brought up to look upon the forest tree as their natural enemy, to be got rid of at any cost, hacked down, burnt out of the way (for want of a better mode of disposing of ith, and still troubling the settler for years with its everlasting stump, an obstacle to thorough cultivation. The children and grandehildren of the old settlers remember too well; they cannot be expected to love the forest tree, but self-interest ought to conquer instinct and prejudice. With us, land is not too valuable for forest tree culture. In Europe, where land is scareer and more valuable than here, they plant, every year, thousands and thousands of acres in forest trees.

To those who say that our country is tov netc to think of that, I will answer that New Zealand, the Australian Colonies, India (so far as the settlement of the land by Europeans is concerned), are newer countries than ours, and they are all taking active steps towards the planting of forest trees on a large scale. In the United States, the Federal as well as the States' Governments encourage the culture cin forest trees by grants of land and money, and exemption from taxation, and powerful societies are co-operating with energy and liberality. The Government of Canada has begun by offering free grants to those who undertake the planting of a certain number of trees on the Western prairies, but I will here ubserve that it will require more active measures to set the people in motion, and especially the establishment of nurseries, where the people can buy young trees and seed, and the beginning of some large plantations, as an cesample, to show to the people, by practical results, that the culture of forest trees is within the reach of every one.

We see in the papers that the Western railways have started the culture of trees on their own account, the St. Paul, Minneapolis and Manitoba Railway is reported as having appointod a superintendent of treo culture, who has just contracted for three handred thousand trees, and most of the roads west of the Mississippi and Missouri rivers have also begun to raise trees, in order to insure a supply of ties, and foreother purposes.

How manygive as their reason for not planting forest trees, that thoy will not live long enough to get any profit out of
them. You do not hear that in Europo. Aro people more selfish in America than they are in Europe? Or is tho fed. ing of self-reliance so mucl more developed in Amerioa, that the peoplo here expect tho next generation to take care of itself as they have taken oare of themselves? Then leare them some timber, if you wish them to have the same chance that you had. It was but a heathen who wrote, more than eightecn huadred years ago: "Arbores serit diligens agricola yuorum fruclus numyuam vilebil" "The good husbandman plants trees whose fruits he will never see." But I must not drift array from my subject into philosophical considerations, it will be more to the point to show that the profits of forest tree culture are not only onormous, but that their realization is far from being delayed to an indefinite future.

I do not pretend that the whole of our farms should be planted in forest trees; that would be too absurd. . Our farms are generally too large for the small number of hands we cmplog, there are almays some odd corners, idle strips, stong or damp patches which it does not pay to cultivato; begin and plant forest trees there, suiting the tree to the nature of the soil-you will find some for cvery kind of soil. Once planted and fairly started, they will take oare of themselves, give oo trouble and increase yearly in value, in a wonderful ratio, so well expressed by the Honorable F. B. Hough, chief of the Forestry Div....un of the United States Agricultural Depart meat, in the address lately delivered by him at Columbus, Ohio.

For years past, I have sought the best and cheapest mode of re-wooding our denuded lands, and have made some expe riments, they have not yet been carried over a great mans years, and are, so far, most cocouraging, notwithstanding ms numorous nistakes and enfireed absence at the best season, and they satisfy me as to the correctness of the statemeats made by the leading advocates of forest tree culture. I trust not to be charged with egotism if I now give the results of some of these personal experiments, rather than copy or cor dence what has been written by others, and it will be a great satisfaction if I can induce a few to try for themselves.
In selecting forest trees for planting, the first consideration ought to be the nature of the soil where they are to be plank ed, if the soil is not favorable to one kind of trees, do not waste your time in planting it there, you will find another tree that will suit the soil. After paying all due deference to soil and climate, you must be guided in your selection of a particuly kind of tree: 1st. By the value of the timber. 2nd. The greater or lesser ease and certainty with which the tree ${ }_{c}$ be grown. 3rd. The rate of growth.

I have tried,principally, black walnut, oak, elm, maple, ab, tamarack, Russian pine, and fir and poplar, and will now gire some of the results:

Black Walnot.-The value of that wood is so conis derable (a dollar a subic foot at the present time), and it getting so scarce that it struck me as the most worthy of beim introduced and cultivated here. True it did not grow sper taneuusly any where in the Prorince of Quebee, but tivi appeared to me no conclusive reason why it should not gom and flourish here. The lilac comes all the way from Persi, and it spreads out its leaves carlier and keeps them unchangd later than our typical tree, the maple. I did nou fear ourgral colds, for in the West, the natural home of the black malnur the thermometer ofton ranges as low as here, though forl shorter period at a time. It was well worth trying.
I procured a bag of black walnut nuts from the West in th fall of 1874, and sowed them at once, it was late in Norese ber, we had to remove the snow and break the frozen gronal but I thought the earth the safest place to winter them. Thoy began to come up about the tenth of June following, not fin per ceat failed, and they have never been artificially shelterd
in any way. It would not be worth while introducing them here if they could not take oare of themselves.
Of those left undisturbed where they were sown, I bave not lost one; they have now had six summers' growth. I have just had some of them measured, so as to be certain of their size; the height of the four largeat is as fulluws: fifteen feet and a half, fourteen feet and a half, fourteen feet, and twelve fect, and thick in proportion. Those have not been transplanted; now notice the difference between them and those that have been moved.
In the fall of 1875 , when they were only one year old, one lot were transplanied, but the soil was not favorable and they have not done well, so far; however, they are beginning to recover. In the spring of 1876 I transplanted another lot; the best are about eight feet high : and another lot last spring, the tallest of which are about ten or eleven feet. All those trees are of the same age as the fifteen and fourtecn feet trees, the difference in size results from the transplanting, whorefore it is much better to sow them at once where they are to remain. Plant them thick, as the wood of the young tree is rather soft, like that of our native butternut.
It is contrary to all preconceived ideas, even among those who handle timber every day, but nevertheless true, that the black walnut (juglans nigra) and the Canadian oak (quercus alln) as a rule increase much more rapidly in growth than our pine and white spruce. I conciude, from counting the rings on the trees after they are cut down, and from watching the crowth of the living trees, that black walnut and Canadian ouk generally gain ne inch in diameter in about three years and a half, while our spruce and pine take alout double that time to accomplish the same result ; this can easily be a.certained by counting and measuring the rings. Of course there will be exceptions, and it would not be fair to judge by those only; I spoak of the average.

It is now time to say something of the profits, and I must be careful to avoiu exageration. Judging by the growth of the living trees and rings of the timber when cut, I do not besitate to say that a black walnut, under ordinary circumstances, at the age of seventy-five years, will hare attained twenty-one inches in diameter and will contain at least fifty cubio feet of timber, the actual valuc of which is about one dollar per cubic foot. (See for prices the Lumberman's Gazelle, published at Bay City, Michigan, the numbers of the 26 th January, 2nd February, and 2nd March of this year.)
For how many such trees, judiciously planted, will there be comfortable room on one acre? It is difficult to find a regular plantation of any kind of trees of that diameter here, to help us towards a solution of the question, and the way in which trees are scattered in the forest and their irregular size leave but a vague impression on the mind, varying according to the personal experienoe of each. I am not ready to answer the question at present for want of full information, and will not venture a guess, but I do not feel the same hesitation where trees standing in one single row, with plenty of room on two sides, are concerned, in that case, trees twenty one inches indiamater would not be too close, standing at eighteen feet from one another. Take a farm threo aeres wide, with a road across the width and a row of black walnuts of an average diameter of twenty-one inches on each side of the road, the trees eighteen feet distant from one another, you get sisty trees containing fifty cubic feet each, three thousand cubio feet, worth, at the present price, three thousand dollars.
But it will be safer to sow the black walnut in clumps, pretty close. They will protect one another when young, and, as they grow, they can be thinned gradually. Their culture will entail little trouble, apart from th. preparation of the soil, and the sowing of the nut; the worl of thinning will soon
repay itself with the timber removed. The better the soil, the quicker the growth. Such a valuable tree as the black walnut deserves to be well treated. If possible, find somo shelter against the strongost prevailing winds for the young plantation, a belt of older trees, or a hill. They are rather soft, like our butternut; it is the only drawback 1 have found out so far, but not fatal. Even tho youngest trees will get several branches torn off and very ugly wounds without dying; they are wonderfully hardy.
The value of these plantations will inerease steadily from the day when they have taken root; they represent an everincreasing marketable value long before the expiration of that period of tiventy-five years which I have indicated-not as the limit of their growth; they will grow for centuries, butas the period necessary to attain a profitablo size, when they can be cut down without waste.

Tie Butternut grows spontancously here; its beautiful tiuber can be worked with as much ease as the softest pine; it ranks immediately after the black walnut, and is inferior to it only in the color of the wood, which is lighter. Rubbed with linseed oil, it takes the soft, rich hue of sandal wood, and if judiciousiy sawn, shows wonderful marks. I recommend strongly its oulture, and will be glad to send nuts to those who will plant them, noxt fall, as we gather a large orop of them.

White 0ak. - The acorn ought to be sown as soon as possible after it drops, in the fall, as it loses its vitality rapidly; and to avoid the great check resulting from transplanting, it ought to be sown at once, if possible, where the tree is destined to remain. Its wood is tougher, and not so liable to break when youvg. I think it ought to grow with at least as much ease and rapidity as the black walnut; ours are rather behind, as they have been transplanted twice. The oak is so useful and valuable, and its culture so casy, that plantation of trees ought to contain a grood proportion of oak, provided the soil be not too poor for 1 t.
White Elas.-This splendad tree recommends itself suficiently by its beauty and usefulness to dispense me from dwelling at any length upon it; it grows rapidly in a deep, damp soil. I have not grown it from seed, but by taking up young trees from a low island, where they grow in abuadance. It appears to bear transplanting better than the oak, walnut or maple, and can be moved safely at a much larger size than any of those trees.
Maple.-If you wish to raise a maple sugary with the smallest amount of expense and trouble, go to an old maple grove in the fall; the ground is covered, with a thick carpet of seedlings. After rain, you can pull them up by hand with the greatest ease, without breaking any of their small roots, if you are moderately careful. Plant them at once in a corner of your garden, about tro feet apart each way ; weed during the first two summers with a light hoe. We found, after four years, the trees fit for transplanting, about five feet high, and the thickness of a man's thumb. As the ground was mellow and free, we took them up with little damage. Of course, there is still the objection of transplanting, but in a less degree than when you seek your maples in the woods, where their roots are mixed up with those of other trees, stumps and stones, and must be more or less torn up with violence. There is an immense difference in the comparative cost of the tro processes, which will tell upon the hundreds of trees required to make a sugary worth working. Those small trees never fail (at all events, nono of those we transplanted did), while much larger trees, more injured in the moving from the furest, die in great numbers, and the survivors are scriously checkea. I have been told that the seedlings would overtake them, but have not yet had time to verify that statement. Maples will begin to yield a reasonable quan-
tity of sap ser sugar, when about twonty to twenty-five years oid.
Tur Asm. - It is well known, and its difforent varieties are found vory useful, especially the white ash, which recom mends itself for its elastioity, its wood is beautifully marked, and is largely employed in the making of furniture, panels, \&o. It will thrive where the walnut, oak and maple refuse to grow, or only linger miserably. I remember paxt of a maple avenue, where, year after year, the maples had been replaced over and over and failed; at last, we had recourse to white and black ash, none failed, and they are progressing most satisfactorily.

Tlamarace will grow in damp, wet ground ; we have suc. ceeded with them where even willows had failed; the value of its timber and leaves is too well known to require any com ment from me.

Rusbian Pine (Pinus Sylvestris).-In making new plantations, especially frum seed, it is no more trouble to try foreign than Capadian seed, and, however straoge it may appear, I find it easier to procure the seed of the Russian and the Himalaya than of the Canudian Pine. One may find among foreign trees valuable additions to our plantations, such as, I think, the Russian Pine, native of the north of Russia. Oar climate suits it admirably, and it appears a more vigorous grower than our Canadian White Pino. I cannot give any opinion as to the quality of the timber, as they have only been sown in the spring of 1873. They started rather slormly, and their height and thickness are less than those of the black walnuts sumn two summers later, in November, 1874 , but they are nor beginning to take more rapid strides. I measured the season's growth of one of them last year, on the third day of July. It showed twenty-six inches in length, gained in about thirty days, as the buds of the conifere do not open muoh before the beginning of June; the year's growth was already over, and from that mument it only thickened and hardened into wood.

Since the growing seasou of our trees is so short, we ought to lose no time if we wish to help them along, by thinning, reanoving useless branches, mellowing the ground, or otherwise, all that ought to be done before June, so as to afford thom every chance during the growing month. I think the Abics Nubilis, or White Fir of Washington Territory, is the fastest grower among the Conifero.

Poplar.-I must beg the indulgent reauer to listen to my plea in favor of this tree, and not condemn it unheard. I speak of the kind known as Cotton Wood or Populus Canadensis (not to:se confounded with the Balsam Puplar and the Aspen). Its growth is wonderfully rapid; twenty-three years ago, in November, 1858 , I stuck in the ground three cuttiogs, it Was my first trial at tree culture. They are now over sixty feet high, one is twenty five inches in diameter, the second twenty-four inohes, and the third twenty-tro inches, an average of one inch a year in diameter. In every new plantation, in a country completely denuded of forest trees, and especially in re-wooding our Western Prairies, I would recommend, at the start, a plentiful use of this Poplar, without neglecting, of course, more valuable trees. It strikes at once from cuttings, whioh can be procured and transported anywhere with the greatest ease. Thanks to its rapid growth, it will soon enliven the scenery (as it is a handsome tree), afford shade, shelter the other trees in the plantation, and supply timber, not of the first quality, but better than none, uatil the slower growing trees are ready with their more valuablc contributions, and it oan easily be cut down when the room it oocupies is manted for better trees. This poplar has been introduced from Canada into France, where it is designated as the "Peuplier du Canada," and considered as a useful and profitable tree.

I must now olose this long artiole. The resulte of my experiments are nothing to boast of; practical men would hare done much better. If I had chosen tho soil for the different kinds of trees more judiviously, had not left them mich tos long without thinning them, and been able to attend to them in the proper scasons, I am convinced that, as a whole, they would be much finer. At all events, it shows that any one who will take the trouble, ean begin the oulture of forest trees without previous training. I do not speak of orchards here. Having no School of Forestry in Canoda, wo must clucate ourselves, wo have got books written on the subject by eminent and practical men, and wo have got, always opened before our eyes, the great book of Nature.

First Lessons in Farming. (Young Man's Departmeut
It would puzzle me to say whence I derived the information contained in the following pages. It is the result of mang years study, and though some fow hints may spring from original thought on my part, I doubt not that for the greater part I am indebted to the works of Liebig, Boussingault, Lawes, Tanner, and other well known writers on agricultural subjects. In fact, I rather make the lessons than compuse them. I mention this lest I be accused of plagiarism, of literary theft, a form of dishonesty much more cummon than is usually supposed.

As the farmer is a manufacturer, so it is necessary that he have a raw material to work upon. In his case the raw material is the suil, and out of it, the farmer's duty is to call into life the various finished products which he carries to market in his carts, or whioh walk there on their feet.

The soil is the surface of the land, and is of varied com. position and of different depths. There are claye, loams, and sandy soil, in some places the parent rock is almost at the surface, in others you may dig for feet or yards, even, with out reaching it. Thus, on the soils of the South of England the plough in many places brings up the chalk, whereas, on the neighbouring Upper green sand we frequently find three feet of fine loam before the rock is reached.
Beiow the soil, by which, in general, is meant the depth of the plough-furrow, lies the subsoil, and it is upon the quality of this that the quality of the soil depends. Nov, all soils are formed from the breaking up of rooks, not necessarily of the subjacent rocks, for sometimos the materials hase been transported for miles by water and other agents, but it may be taken as an axiom, that the parent of soil is roch. Bear in mind, please, that clay, when found, as in the London and Paris beds, in cuuches of great depth, is considered by geologists as rock.

From these rooks, of various degrees of hardness from the Serpentine of Cornwall to the Rag of Kent, soils are formed by three active workers: one visible, rain; the other tro, carbonio acid and frost, invisible.

We all remember the old proverb: "Constant dropping of water will wear away a stone." As the water falls, in rain, upon a rock, it dissolves parts of it, and carrying those partis away, gives place to the action of future rain after the same fashion.

Referring to the lecture on Meteorology, in the number of this journal for Feb. 1881, you will see that the air or at mosphere contains, besides oxygen and nitrogen, a small proportion of carbonic acid. Now rain, in falling through the ait, cutchey, as in a net, some partioles of air, and carries them down in its course to the earth. The oxygen gas, findingitell in comfortable quarters, immediately makes acquaintance pith its new acighbours, and finding among them some congenial friends, sets itself io work to form (chemical) combinations with them, which extromely intimate social intercourse ends in the old resident's entire transformation. Carbonic acid,
too, being present in the rain, dissolves matters whioh the pure water would have left untouched. Thus, in process of time, holes are formed in the rock, and these becomo larger and larger, exposing fresh surfaces to bo acted upon by renewed supplics of rain.
And now the most mighty agent of the three sots to roork. Frost, God's plough, as it has been aptly termed, finds a hole in the rook filled with water; as this water expands by cold it inoreases in size, and the particles of twet rook are pushed apart to make room for the water whioh is freezing. When the thaty succeeds, the rigid bands relax, and parts, sometines large sometimes small, of the rook fall off, and, the same agency continuing, are gradually broken up and pulverised. Thus wator, with its associated gases, and frost, abrade our hardest rocks; the lowest forms of vegetation, finding food prepared for them, scizo upon tho opportunity, and their rootlets, penetrating the newly formed soil, immediately proceed to perform their duty of offering this food to the digestive powers of the plant. Dying, when its course has been run, the original plant is succeeded by others, which in their turn dio, and thas, by a species of green manuring, decayed vegetable matter is added to the soil: which by degrees becomes fitted to supply the wants of the higher forms of vegetation.
But, though rocks are almost invariably, the primary source of soils, we must not imagine that they have been al. lowed to remain where they were first formed. Were that the case, there would be little differance between the soil and the underlying rook, exeept that the condition of the former would bo finer, or more broken. Many a wonderful ohange has taken place on the face of our globe: soils have been washed away from their parent rocks, and, mized with the constituents of other rocks, have been deposited far from their original site in some distant valleg. These are the alluvial soils, and fortunatc is the man whosefarm is situated on one of them.
Peat is about the only exception to our general rule. It is formed almost entirely of vegetable matter which has grown and decayed in the place where it is found. Peat often contains as much as 97 ofo of vegetable matier, consisting of aquatic plants and moses, and is generally found in hollow places where the water is dammed back. Growth succeeds and dies away, its abundance depending upon the supply of mater; decaying matter accumulates, and at last the bed of peat begins to show its head above the water; then, tougher, woodier plants establish themselves on the top of the peat, giving that deceptive hard-Jooking surface to the bog whioh bas led so many men to a sudden death. (1)
Mechanical division of sozls.
The classification of soils is simple enough : sands, clays, and loams; with their subdivisions, as sandy loams, clay loams; and the peculiar ones, as chalk soils, which need not trouble us here, as we have none. I wish we had, for they are very jolly soils to farm; never too wet to plough, never so dry as to parch the crops, and they suit sheep to a nicety.

If any one should wish to make a mechanical analysis of his soil, he may proceed as follows: With a sieve separate the coarser part, stones \&ce., and dry the finer part carefully. Takc, say, 200 grains of this and mix thoroughly with a halfpint of water, shaking well for a fery minutes. Let the misture repose for a minute, or so, to give the sand a chance to g^{0} to the bottom, and then pou: off the muddy water into another vessel-puur quickly, and if you think some clay remains with the sand, wash again and proceed as before You have thus got the two substances in two vessels, and
(1) In 1841, I had to be dug ont of a peat-bog, in Soath Wales, on Fhich I had imprudently ventared when out trout-fighing.
when tho super-natant water, which will soon clear itself, is poured off, you may dry and weigh both sand and olay.
The subjoined tables show in what proportion the two materials, sand and olay, are generally found in our soils:

Name of Soil
Porcentage of Sand
Sand... 80 to 100
Loam.
40 to 60
Clay... 40 to 20
Again, for the disorimination of loams.
Name of Soil
Pcroentage of Sand
Sand.

$$
\begin{array}{r}
\text { Sandy Loam........... } 60 \text { to } 80 \\
\text { Loam........... } 40 \text { to } 60 \\
\text { Clay Loam............ } 20 \text { to } 40 \\
\text { Clay....................................... } 20 \text { to } 20
\end{array}
$$

I do not think that on this side of the Atlantio we have any real clays; at least, I have never seen any thing stiffer than a clay loam, whioh, in my opinion is the nost valuable of all soils, as with proper dunging and cultivation it becomes tender and friable, very retentive of manure, and will grow anything vou like to ask it, if, only, you ask in a proper maneer. Our Oxford clay, in ploughing whioh I have seen four powerfal horses "stuok," has no equal here.

You see, then, that what we have been in the habit of calling light land is heavier than we have thought it; clay being light takes longer to subside in the experiment we havo been trying than the sand, which sinks immediately. Thus, when the course of a river is suddenly interrupted by any barrier, we find along its banks, at the highest part, gravel, lower down. sand, and lowest of all, clay, as you may sec any day at Chambly tracing the Richelicu from the Bassin up to "Yule's Bridge."
Chemicnl Analysis of soils. This is a very different sort of thing. and I do not intend to trouble my readers much with it. My orn opinion is that its study will, eventually, bo of the greatest possible use to agriculture, but, at present, there is clearly something wanting which nobody seems able to supply, viz. the difference of plant food in an active or passive stato. For instance. I do not believe any ohemist can tell, from an analysis of a particular soil, whether potash will, or will not, benefit that soil. However, numbers of the best men are working away at the various questions invoived, and they will sooner or latter, arrive at a conolusion.

We all know that soils consist, of tro parts : one part whioh can be burned, and the other that won't burn. The part that is burned does not go out of oxistence by any means, it is only sent off in its gaseous form; this is the organic matter, the remainder is the inorganic, and remains behind as ashes. Inorganic Matters in Soils.

Silica.
Phosphoric Acid.
Carbonic Acid.
Sulphuric Acid.
Chlorine.
Alumina.

There are other inorganio matters found in the soil, but the above are sufficient for our present purpose.

Silica. or silicic acid, plays a very important part in the soil. It forms a great proportion of sandstone, and enters largely into the compositinn of granite and other crystalline rocks. With soda and other alkalies, or with an alkaline earth, it forms silicates. Clay is a silioate of alumina, and the fertility of olay soils depends very much upon the presence of a peouliar form of silicate of alumina which I will try to explain, though in the absence of the numbers of the journal of the Royal Agricultural Society in whioh Professor Way gave his discovery to the world, I fear I shall make a mess of it:

To the best of my recollection it was this: Thete exists a
class of bodies which Way calls double silicates. Thus a silicate of alumina may havo part of its alumina replaced by an equivalent quantity of lime, soda, potash, or ammonia. So we have a silionte of alumina and lime, another of alumina and potash, and again one of alumina and nmmonia. All these double silioates are of great use to our orops, and the straugest thing seems to be, that alumina itself does not enter into the composition of our plants, but contents itself with preparing their food, and ianding it to them when it is ready for their usc. When we come to study the liminy of land, we shall see more about the value of these double silicates.

Phosphoric Acid is. I may say, one of the most important constituents of the soil. It enters in large proportion into the formation of every one of our cultivated plants, and forms a great part of the skeleton of every animal. This subgtance is present in no soil in very great quantity, our most fertile lands seldom containing more than 2.5 per cent, i. e. one part in two hundred.

The Organic, or burnable, parts of our soil are, as we have seen, gascous in form. They consist of substances which have grown under the influence of animal or vegetable life, and have thus become organied as part of some living plat or animal. Perishing, as they do, the inorganic matters which had formed part of the onimal or plant are added to the mineral matter of the soil, while the organic matter forms a series of substanecs which practically yield to the soil-Carbon, with Oxygen and Hydrogen, in various forms of conhination; and Ammonia with other nitrogenous matters.

Tha forms which these matters assume are varivus, but the chemist can detect them under all their disguises, and tho knowledge thus obtained enables us to extend our classification of soils beyond the results obtained by our mechatucal analysis. This determines whether a soil is a sand, a clay or a loam, but chemical analysis determines whether it is calcareous or peaty, that is, rich in lime or in vegetable remains.

IIour plants feed. - We have only one mouth, a plant has a million, visible only by means of a microscope. Plants, however, do not eat with these tiny mouths - they only breathe, and drink, like a little child, whose only substance is taken in a liquid form: it is nece-sary to the substance of every plants that its food be dissolved in water. The first meals are contained, in a solid form, in the seed itself. Take a few grains of barley steeped in water and keep them warm and damp-you will see in a few days that the roots will start from one end, and then the plumule, or green stalk, start from the other. These could not come into life when dry; but when the food in the grain was liquified and became capable of giving pourishment, the plant immediately took advantage of it, and put forth its infant roots, gradually imbibing all the store, and then, in our case, perishing for lack of further food.

But had the grain of barley been put into the ground, by the time the reserve of nourishment in the grain was exhausted it would have grown accustomed to its environment, and could have found its way to obtain support from the earth itself,until its leaves had sprung forth from the plumule, then the myriad little mouths on the leaves would have gone to work and added a third source of food-the air-to the other two-the seed and water. It is worth anybody's while to go into a mall house and watch the way :a which the grain behaves from the first appearance of the root until the plumule or acrospire has grown half or threo quarters of the way up the back, when the maltster puts it on the killu to stop its growth, lest the green leaf should escape and begin to feed upon the sugar formed in the process.

What crops are made of. - We have seen that every plant is made up of two sorts of materials: one sort distinguished as organic, the other as inorganic; whercof, if any vegetable matter be carcfully burnt, the former vanishes in smoke, the
lattur rumains, constituting tho ashes. The ash left behnd oonsists of mincral mattor entirely, and on boing submitted to chemical analysis, is found to be a misture of soveral kinds of substances, the proportion varying in different sorts of plants. Some variotics of plants contain more of one material than others, and some plants contain more ash than others. The seed and the strave of our grain orops, for instance, con. tain very different proportions of one of theso inorganic matters, silica, but, at all ovents, every one of the substances in our list of inorganio matters is taken up by plants and worked up into their structure, except alumuia, which, as we saw, seems to be a sort of agent to present the food to the plants in au acceptable shape, and not plant food at all.
The organic matter, we saw, when the plant was burat. flew off in a gaseous form, this consists of carbon, with the elemerts of water, namely oxygen and hydrogen (azanuher and water-maher), and ammonia and other nitrogenous matters. These exist in plants in a great variety of firms, some easily recognized in one place, but utterly different in appearance ia another, and they have been divided by scientific men into two classes; nutrogenous and non-ntro. yenuus. The compounds containing nitrogen you will alwasa know by their names invariably ending in the letter n. They are principally these. Allumen, Fibrim (gluten); Casen (legumin. They used to be called Protecn compounds, from theis frequent change of form, but ntrogenous is a wore convenient, because less fanciful, term.
Tho nun-nitrogenous are Starch; Gum; Sugar: Cellulose and wouly fibre, and Oil. The difference between the groups is simply this: the non nitrogenous bodies are composed of carbon, hydrogen, and oxygen, the nitrogenous group contains nitrogen in addition to the carbon, hydrogen and oxygen
Starch is a white grauular body, very abundant in gran and potatoes. If you cover a tumbler with a piece of five muslin or cambric, and wash a little wheat flour on it with a stream of wafer gently falling as you wash, in a short time the water which reaches the tumbler will become milky, and on being allowed to repose fur a short time will deposit a whte grainy substance : this is stareh. On the muslin ccree will be found a glutinous mass, like soft strings of india rabber; this is the gluten of the wheat.

Gum you all know by sight-some of you, doubtless, by taste-it is generally in a liquid state in plats, but este: ing through a broken part of the bark of trees, becomes hand and transparent.

Sugar, too, is found in great quantity in a liquid form in tho cane, sorghum, sugar-bect, \&o, but it is also present in out cultivated crops, even when not in sufficient abundance to be separated for use. Flowing through the plant with the sap, it promotes growth in many important ways.

Celluluse, or cellular matter, is so called because with it the plants are built up. When in the incipient state, it is tender and fragile, but when old it becomes hard and strong, and at last becomes woody fibre. This is the change which tates place in the passage of young grass into over-ripened haf. All these substances are very much alike in composition, and sometimes pass from one form into another, but it is worth remembering that, although the quantity of carbon vaies slightly, the weight of oxygen is invariably eight times the weight of hydrogen, and this one of hydrogen to cightof oxygen is-water. Thus, any of these non-nitrogenous maters may be represented as made up, in different proportions of carbon and water, as:
Carbon. Water.
50 lbs with 50 lbs make 100 lbs of woody fibre.

"	"	$37 \frac{1}{2}$	"	$87 \frac{1}{2}$	"
"umio acid.					
"	"	$72 \frac{1}{2}$	"	$122 \frac{1}{2}$	"cane sugar, starch orgom.
	"	56	"	106	"

And, do you ask how woody fibre for instanco, can bo formed from carbon and water? I answor, thus:
Whoreas the root of the plant is continually employed in sucking in liquid food, the million mouths of the leaves are occupied in inhaling gascous food Carbonic acid is com pased of carbon and oxygen - all day long the leaves are absorbing carbonic aoid from the air; tho plant appropriates the carboo and rejeots the oxygen Water abounds in the sap of tho plant, henee water and oarbon are both abundantly present in the pores or vessels of the green loaf. Now as woody fibro consists only of carbon and water chemioally combincd, it is easy to see how, when these matters meet in the leuf, woody fibre may be produced by their mutual conbination.
The threo principal nitrogenous bodies we mentioned above, Albumen, Fibrin, and Casein, are very like one another in composition. Thoy are sometimes called albuminoids, from their leading represeatative, albumen, which occurs in a nearly pure state in the white of egg. Gluten, occurs as we know, in wheat, and is largely composed of fibrin, an albuminoid net with in blood, from which it can be separated by gently beat ing the blood with a for trigs. Small threads, or fibres will adhere to the twigs, and will consist of the fibrin of the blood The value of foods depends greatly on the quantity of these albuminoids they contain. Casein occurs in the ourd of milk, and in pease and boans, when it is termed legumin, from these plants belonging to the order leguminasce. The following tables will show how hittle these albuminoids differ in composition from one another: Albumen consists of :-

Carbon	5484
Hydrogen................................	709
Nitrogen	1583
Oxygen with Phosphorus and Sulphur.	2224
	10,000
ctable fibrio consists of:- \	
Carbon..................................	.. 5456
Hydrogen........................... 690
Nitrogen.	1572
Oxygen with Phasphorus and Sulphlum.	. 2282
	10,000

I bope to resume this subjeot next month.
arthur R. Jenner Fust.

REVIEWS.

The Joural of The American Agricultural AssociationJuly and October, Vol. 1. Nos. 3 and 4.-Nerr-York: Pu blished by the Association, at 127 Water Street-1881.
The American Agricultural Association does not seem to have grown up, but to have sprung suddenly into mature life, like Minerva from Jupiter's-well, the simile is rather trite. They do not appear, in the United States, to have much dificulty in secaring contributors to such a publication as the one under consideration; and the surprising thing is, that there is no sigas of what we call trash, and literary men call padding. One great and good feature strikes the reader forcibly: the writers are not restrained from expressing in the very fullest manner their convictions, and thus, as I believe in almost all modern magazines, truth is brought out by that action of mental frietion which can alone produce it. I used to think that the people of the United States were afraid of truth; but this journal, written by men from all parts of that exten. sive country and of all shades of opinion, shows me, plainly, that I was most egregiously mistaken.
There is only one blot in the publioation: a reply to an artide in the first number written by Mr. Edward Atkinson,
of Boston, and reprinted in the present issua. The author of the roply, the Hoin. L. E. Chittenden, "President of tho Anti-Monopoly League," whatever that may mean, seems to have forgotten that, oven in politios, a certain amount of respeot is due to an opponent. It is hardly polite to term an opponent's argument an "artful,skilful,deceptive presentation of selected facts, calculated to mislead the people nnstead of instruoting them, written to serve the purposes and perpetuato the control of the most despotio and anti-republican monopoly that has ever existed-the present railroud monopoly of the United States." If this is the style used in polemics among our neighbours, I do not wonder that so many gentlemen refuse to enter the arena of public life. Why, our journals are hardly more illbred in this province of Quebeo!
Au reste, the Editor puts the answer to Mr.Chittenden rather neatly: "Railroad companies that oan be obliged," by competition, I suppose," to reduce their profits in ton years $58.60{ }^{2} 0$, and to reduce the cost of working $49 \mathrm{om}{ }^{\circ}$, and their charges to their customers $52.4 \mathrm{q}^{0}$, as Mr. Atkinson shows, aro monopolies of whioh we cannot have too many."
Professor MoBryde's article, on "Ancient HusbandryRome and her provinces," will well repay perusal. He shows that the Silo, or rather Siro, is no new thing, but was practised by the Orientals long previous to their invasion of the West. That the Romans dried their wet lands by means of covered drains, most people who are interested in ancient agriculture know, but it will probably be new to my readers to hear that as, 50 years ago, the people in the South-East of England made drains of straw tristed into ropes and covered with earth, so,Columella, writing 1800 years ago, recommends the conduits to be mado of "a bundle of imigs twisted together in the form of a rope," and this in the absence of small stones or of gravel, which he evidently considers the better ducts. These drains are to be made three feet deep, shelving in width from top to bottom; and when finished, they are to be levelled with the surface, and the grass or turf replaced. They burned the stubble, but were in doubt as to its effeots; whether the ashes afforded plant-food, or the fire destroyed some evil matters in the earth; which latter idea, illis omne per ignem excuquitur vilum, seems to be a forerunner of the exarementitious theory of De_{C} Candolle. "Tho value of tillage was fully appreciated, and many different styles of ploughing were practised." Straight furrows were olearly held in great estimation, for a man who ploughed crookedly was said delirare, or as we should say "to be delirious"; and the boy who mismanaged the harrows was said provaricare, whence comes our word, to prevaricate.

Green manuring was a common practice. Columella says: "If the lupins, vetches, ler'ils, ete., are ploughed down when green" (preferably, when in flower), "they fully supply the place of farmyard manure." Columella and Palladius, both, give instructions for the cultivation of lucern which differ very little from those in Stephens' Book of the Farm.
But, to my mind, the directions for the cultivation of wheat are the most striking of all the passages of Columella's book. Hallett, of Susses, Eng., is the choragus of wheat culture, but our friends of ancient Rome, Celsus among others, were far in advance of him, "For seed, the best ears should be seleoted at harvest and separately threshed. The best grains picked from those that rofuse to pass through a fine sieve should be chosen." And the great agronome, Virgil, says; "I have, nevertheless, seen seed long carefully selected degenerate unless the largest grains be culled by hand, for thus it is fated that all things should deteriorate, and revert to their original states; " adding by way of illustration, the simile of the boat, which all my classical readers will remember.

The experiment Farm of the "Rural Ner-Yorker" scems to be conductod on the same principle as Dr. Lawes' well
known establishment, and will probably bo productive of great good.

Curiously enough, a passago in the Fronoh Journal, written by M. Chapais, on the earthing up of corn, finds here an ccho. So long ago as 1867, I found that "the lateral roots of corn extend, late in the senson, well aoross the rows, and in oarthing up, the soil is taken from the extended roots, where it is most needed, to heap about tho stems where it is less needed. The objection that, in ploughing to hill up, some of the lateral roots aro severed, is not worth much, as nature will, for every rootlet cut off, supply a dozen sucoessors; but the real injury is, that whereas the plants had, with 3 feot between the rows, unrestricted feeding ground of 18 inches on each side of them, when carthed up, as the practico is usually carricd out, the roots are confined to a range not exceeding 8 to 12 inches in surface measurement, and they are consequently crowded together in a noost disdavantageous position. I spoke of this in my essay on root crops \&e., in the first volume of this journal.

The "Rural Nerw-Yorker" seems to be astonished that some shrivelled grains of Dcfance wheat produced a return of fine long ears with good plump berry. I am not at all astonished at it, as I well remember that in spring, Canbridge market, used to be full of samples of fengrown Cheralier barley, which, thin and poor as it was, when sown on tho chalk soils of Essex, Hertfordahire, \&o., produocd the finest malting barley in the world. As for Spring wheat and Fall, or Winter wheat, they are one and the same thing, only a special habit of growth has been superindued by constant sowiog at a fixed season.

I should recommend every ono to read "Farmers and the Tariff," by Professor Perry. It contains nothing new, but it puts the old trutbs in the full light of day.

Professor Sheldon's account of the state of agriculture in Britain is hardly so clear sighted a report of the condition of things that country as I should have expected. lond lan, as he says, has doubtless fallen some 20 per cent in the market, but the farmers, particularly in Scotland, are not looking for impossible remedies for their misfortunes. All the information I can gather, public as well as private, tonds to show that, in the long run, the loss rill fall upon the landlords. " A new race and a new order of things will spring out of new conditions," but the tenant farmers will not be the vanishing quantity.

A quantitave analysis of a manure cannot be had here for less than 8501 In consequence, the market is full of rubbish, and the unscientific farmer is a prey to all kinds of rogues and sharpers. Would not the practical ohemists at the new beetsugar factories help them in any way? In England and Scotland, the troo chemists of the Royal and the Highland societies do this work for a mere trifle. In Olio, huadreds of tons of fertilizers are anoually sold, and the chances for fraud were great and tempting; but a law has been lately passed by that State making the Secretary of the Board of Agriculture the inspector of fertilizers, and giving him power to expose and severley punish fraud in their manufacture or sale, as well as to publish results of all offic: ! analyses made under his direction, and to show, at least approximatively, the real and comparative value of the different manures offered for sale in Ohio, thus furnishing a guide as well as a protection to pur-chasers.-A. R. J. F.

MOCORMCE'S HARVESTER.

A full deseription of the annexed engraving of tho gold medal Reaping and String-binding machino will be given noxt month.

ON CRABS AND CRAB HYYRIDS.

By Ciarles Gibb, Aabotsfond.

It is of the Hybrids betrreen the Siberian Orab and the common apple that I especially wish to spenk; a class of fruit of the greatest value in our Nortbern climate.
Let us weigh their morits and demerits.
Tho good points of a cmb are--lo. Hardiness and producti. veness 30 Eariy bearing. 30. Thinness of skin of the fruit 40 . Brisk sprightliness of flaror.
The weak poinls .-10. Smallness of size of fruit. 20. Astringencs of flapor.
Most of the kinds described below havo all these good points, witb increased size, and in many cases without the slightest astringent of puckery flavor.
The following 15 varieties I have grown and fruited. They mas all be considered trees of decided hardiness and car!'y bearing,

unless stated otherwise. I describe them as nearly as possible in order of ripening.
Early stbawberry (of Dinnesola) -This, like most of thoje that follow. I have grown from root grafts planted in the spring of 1873. So that I have had every opportunity of watchng their growth and hardiness It did not come into bearing until the past year, and is therefore not as young a bearer as crabs usually are-yet the form of tree gives every promise of heavy be tring in future. It is as large as Transcendent; striped, and mostly copered with red; is of good texture,and brisk and sprightly in Ravor,and ripens with Red Astrachan Hence its special promise of usefulness, as an carly, edible fruit, that can be grown where the Astrachan cannot. Perbaps, too, it might bo grown as an early market crab, if so, for near market only, as it would not stand distant carriage any better than lied Astrachan.
Hesper Rose tof Minnesotai.-Is larger, but more appley and fat in flavor, and quite inferior to the above.
F X L. (of Wisconsin).-Is a soft texture, yellow, non-astringent subacid crab, but lacks character, and is therefore inferior to some others.
Briens Sweyt of Wisconsin). - Is a cross between Bailey's Sweet apple and the Transcendent, by A P. Tuttle, Barabon It has decided beauty, and large size, but somewhat lncking in hat Sibcrisa sprightliness which makos these non-astringent craby 80 liked by thoge who know them it must bo a good orreet crab for baking.
Hesper Bevsin (of Minnesola) - This is to all intents and purpose a small apple with some astringency. A. profuse bearer, yet a poor thing, not trortly of culture.
Gexeral Grant (of Minnesola)-Although an early and heavy bearer and of good size and rather dark color, yet I cannot consider it worthy of culture ; of use only for cooking.
Grbs (of Wisconsin).-A seedling raised by Geo. P. Peffer, of

Pewamkee, and named, it would scom, after the man who first observed it to bo in bearing in his orchard. It is largo in size-areraging two inches across, by an inch in depth. Tho skin is yellow, milh a blush of dull red on one side; flesh, unusunlly yellow, crisp and juicy, with a rich mingling of sharp acid and sweotoess. Its astringoncy is 80 slight that it is hardly observablo unless specially looked for. Tho flesh is quito firm, but brenking, though not melting, until it becomes meliow and censes to bo crisp. It fruited heavily. with me, for the firsi time this year. Tho treo is a medium grower, and if of but modium bardiness for a crab, yot liardier than Eameuso, I should say, tho stalk, too, is short, and it greatly lacks beauty, 80 cssential for a market crab.
Its thinness of skin and sprightliaess of Alvorare Biberinn characteristics which make it a favorite. The Rev, R. Burnet, of Pictou, N S.late president of the Ontario Fruit Growers Association, pronounced it "the best crab he had ever tasted." It is a crab, which, if surrounded by tho best of apples, will all be caten before the apples are louched Sensou from Sep. 15th to 30th.
()rasme (of Ninnesota) - Is an unusually carly and heavy bearer, of fair sizo. except, when bearing too heavily, thin skin, and 19 free from astringency. It has a long stalk, and though orange is the wrong color for a market crab, yet it is bright and rather taking in appearnace. It is not equal in richness, to Gibb yot is a crab I think rers highly of.
Swert Rosset !nf Minnesola) -Is a ghort textured little fruit I iather liko.
Goiden Sweet inf Wisunnsinl.-This I tasted at Wawantosa, some years ago, and thought highly of it as a brisk, thin skinned steet crab. free from astringency, and one that keeps till Cbristmas - recommended it to friends, saying that I had tasted it and knew it to be good Some years nfter I again tasted it in Wisconsin, but found that year, that it was somewhat astringent. Strange enongh it has been more than shightly astringent with me each year. I therefore cannot recommend its culture.
Jinnesota lof Minnesntal.-Is a very large fruit of fine texture and good color, but seems to me likely to prove a shy bearer as I had been led to expect beforo planting. At Excelsior, Ninnesota, Mr Peter Giduon showed me a loug dark red crab, of rich acid Gavor, which he then called by the above name, but this is not the fruit mint:u-iti abovo.
Aleex's Striped Winter (of lowa) - Is of good gize, sharp acid, and thin skinned. It is not as good a keeper as its name rould mply With me, it has been a late fall fruit. It is a good cooking crab. It is a very heavy biennial bearer, though the tree is not of special hardiness It is too good to be condemned, get.there are others of at least equal merit.
Meeden's Winter (of Minnesola) -Is n favorite with Dr Hoskins of New Port Vt., who speaks of it as the spiciest and richest desert apple of its season.
It is a litt'e under-sized, but thin in skin and good in color, in flarorand in lealure. I am not able to rate it as highly as does Dr. Hoskin:s, yet I have fruited it but one year as a standard in orchard, and before only as a top graft in other trees. So my experience is very hmited
Marenoo No 1 (of Illinois) -This is the latest keeper of the Marengo group. I have but one tree of it, and from some causo the fruit has been under-sized, smaller than that I have seen in tho West. Eren were this not the case, the fruit does not seem of special value
Qoanen's Beadty (of Minnesota).-Is a nice, rather spicy, acid litle crab. Said to keep till Biarch I have not kept it, but its testure suggests that it would seep pretty well. Tree not of special hardiness, and the fruit lacks size and beauty.
Soulard lof the Western Statest - Is interesting to a botanist as a sample of the (Pyrus Coronaria) American wild sweet-sceated crab. To a fruit grower it has but one point of merit. It is the longest keeper in this ligt of crabs. Its flavor is bitter, and ncrid be youd anything one might expect, yet it is samd 10 be as unfair thus 10 judge it, as to test a quince uncooked. There is truth in this. Still, I find baked Soulard a failuro.-Stewed, it largely loses its astringency, but not its bitterness, even with an amount of sugar that would spoil cranberries, yet, with a little lemon in it and lots of cream, it makes fair apple sauce. Its only merit is that it keeps.
The following well known kinds I will note next.
Montraal Wayen -This is the variety known in Ontario and in the States, as the Jontreal Beauty-the mistake is a very old one As one may see in list report Montreal Hort. Soc. 1876, p. 17., of late years it has been largely sold about Stanstead under the name of Qeeses's Choice
It is an invariably carly and heavy bearer. The fruit has good size and beauty, and fair color, and is but slightly astringent.

Mostreat Beaury. - Is but little known except in the Province of Quebec. It, like the abore, scems to have been a seedling of the late

Robert Oleghorn, of Elinkbonnio Gardon, in Sherbrooke Street; and its right to its namo is attested by the fact that all the nurserymen of the past generation, except one, propagated it as such. Tho fruit is well known. It has perhaps ligher color, but a thicker and less transparent skin, than the above, and is more astringent.
r'adnscendent.-This is, in all probability, a true Siberinn Crab (Pyrus prunifolia.)
It is the first that wo have mentioned that is not a hybrid of tho Siberian Crab and the common applo Its origin is unknown It is such a hardy and thrifty growing aursery treo that it has been largely planted, apecially in unfarorablo localities for applo growing in tho North West, where wholo orchards of it have been planted as a market fruit for culinary use.
Its weak point is its astringency, which makes it a cooking fruit only.

Hyslop. -This too, like the above, seems to be a true Siberina. It bears less than Transcendent, but has sold at slighlly higher rates, rnaccount of its great beauty and slightly prolonged keeping qualities It is even more astringent than Transcendent, yet is good for cooking Once at a hotel, in Vermont, I tasted Eyslop pio ; the astringency of the fruit was scarcely perceptible; the skin so thin that it was not noticeable in texture ; but its deep color had stained the fruit red.

Red Sideran, Yellow Sinemian, and other crabs of this class, aro useful as jelly crabs, or perbaps the larger kinds for canning. For jelly small size and astringency matter but little, deep color is tho special thing needed.

Camar Casb, Curaant Crab, \&c, are other species from Siberia, knowa as the berry crab Pyrus Bacenta, The therry is grown to a fair extent for jelly and may be known by the falling off of its segments, leaving the fruit berry like - This spocies also crosses With the common apple - As carly as 1Ru7, the late T A. Knight obtained prizes in England for the Siberian Hurvey, seedling of the cherry-crab pollenized by Golden Harvey-Foxley from Cherry and Golden Pippin and others were produced at the same time, but were considered of value for cider only or mainly.

The following kinds are less known to me than those firstmentioned.
Rose of Stasstbad.-Is carly, well colored, of fine grain and fine quality. It has been largely grown in the Stanstead nad St. Francir districts. I have not grown it, but have seen it in fruit in different places. Sometumes tha fruit is somewhat dcfective, but I am told, by those rho know it well, that this is exceptional. It is a crab of combine. fine qualities and ripens soon after Red Astrachan.
Van Wyce Sifeet (of Fishhill, N. Y).-Dr Hoskins, of Newport, Vit. has found the tree somewhat tender in nursery Two trees from Geneva, N Y., have proved hardy witb me.
The fruit is not of special beauty and judging from samples grown bymyself and from others given to me by Dr. Hoskins, not as rich in flavor as I expected.

Wimsey's No. 20 (of Illinois).-This I tasted at Mr. A. R. Whitney's, at Franklin Grove, some years ago and was much struck with its fine terture and good fiavor. Mr. Tuttle mentioned it to me as the beat crab he knew of. It was fruited by R. W. Shepherd, jr., at Como, this last season.

I can only say that the tree seems a model of hardiness, as I have grown it in nursery. This crab combines besuty with fine quality, and ripens, I should think, about the same time as the peach apple.
Baicer's Crimsos.-Is a seedling by John W. Bailey, Platisburg, N Y.I have not grown it, but have seen the parent tree in full bearing, and tho younger irees also in part bearing in Mr. Bailey's nursery.
It is of fare size; in color mostly a dark crimson, often purplish on one side. The flesh is yellowish, subacid, and fine flarored, but I think a little astringent. In this crab wo have great beauty combined with good quality.

Winel 'r's Soartet (of Knowleon 2).-Has a peculiar carmine tint which no other crab has. It is of good size, but its flavor is infe. rior, and it is only fit for cooking.
Gensva or TAADY Elain (of llinois.)-This is No 4 of the Marengo group. It is of fair beauty; fine in texture: not astringent, of good flavor, bit somewhat lacking in spiciness. The tree, too, is of slender and feoble growth for a crab.
This hybridizing of the Siberian Crab with tho common apple is by the same process that has given us most of the luscious grapes we now grow.

Mr. E. S. Kogers, of Salem, Mass., gathered the best kinds he could get of the New England Fox-Gmpe, and fecundated them with the best foreigy kinds We all know with what resirt. - Lindley, Wilder, Agawam, and many others, of real value in our cold climate.
So in the same way, the Cherry or Berry Orab of Siberian (Pyrue Beccata) and the Sibsrian Orab (Pyras Prunifolia) is fecandated by the common apple and the Russian apple (Pyrus Astrachanl ;a). The
result is a race of improved fruits, crab in tree and leaf, crab in hardiness, and yet delicate and spicy in flavor

The Minuesota Experimental Frut Station at Excelsior is carrying on a most interesting series of experiments, under Peter M. Gudeon. It was he who produced the Wealthy, that large promisng winter apple, whose hardiness is so uearly wa a par with Duchess-an apple likely to enlarge the aren of our culturs of winter apples, northward. It came up among a lot of crab seedlings from seed sent from Maine Mr. Gideon, at the time, suggested that the crab probably was its female parent.
The Yorthfield Deauty of Yt, wehered to bo trom crab seed, is a good sized, well colored wintar apple, which Dr. Hoskins thinks very highly of.

Soon after the fruiting of the Wealthy, Mr. Gideon sowed the sceds of a crab close to which was a blue Pearmain apple. In time, these fruited, and the result was a lot of worthless orab and two like the blue Fearmain, which had eridently fecundated the parent apple, and taking directly after their male parcot.

This orchard, planted with the special object of crossing, contained in 1868 about 745 trees. At first, Siberinns were intermingled with less hardy long keepers, but the Siberian seemed to control the season of the offspring. Later, Iron-Clad apples have been planted anong bigh qualitied long keepers, topgrafted, with the hope that hardy females will produce a hardier progeny, yet like the male in Havor and texture.

Enough I have said to show the value of this race of bybrids. Would that we had in this Frovince an Experimental Station, where we could undertake the trial of all nerr fruits that seem wirthy of trial; that would introduce, test, and, if worthy, disseminate, the pears of Central Russia and Streden, the Russian mulberry, the Siberian apricot, the crosses of the Duke and Morelln cherry from Sweden and Northern Germany, the Chickasars plums of the North West ; all bardy saces of fruits adapted to our hard climate.

The above highly valuable article is well worth studying. We reecho Mr. Gibb's wish for an experimental fruitstation in our Province, with the ebject of testing and producing fruit trees specially adapted to our soil and climate. And should our wish mect sufficient good will to come to a practical result, then would we wish again that Mr. Charles Gibb, of Abbotsford, be placed in charge of such Station. We know of no man in this Province who has worked harder and more successfully in the testing of fruit and fruit trees, and in the dissemination of useful knowldge to the fruit grower.

A. Method of Leading Cattlo.

Mr. J. W. Gilman, Kearncy county, Ncbraska, writes of an arrangement of the halter for the casy leading of cattle

Method of Leading n Corr.
that are inclined to hang back. He says:-"I learned the method from a young Danc in my employ. I had two cows, neither of which rould lead with any degree of comfort; to lead them both at once was out of the question. One day I noticed the Dane leading them with as little trouble as if
they were well broken horses. This ease in leading was due to his taking a half.hitch in the halter around one car of each cow in such a way that it rould not slip off. This idea has been worth a great deal to me." To those who have tugged and worricd over a cuw that would not lead at the halter, this lint will be welcome. - American Agriculturist.

Slips or Cuttings.

The two ways of striking slips or cuttings, which I am about to describe, will, I am sure, be highly satisfactory to my readors. The engraving 1 , shows how to strike cuttings, or rather

layers, of the pink. Twist a piece of lead-paper into the shape of a cone, and fasten it to the branoh you wish to layer with a pin. Fill the cone with rich mould, and keep it damp. In a fer days the layer will throw out rootlets, when you maj separate it from the parent stem and pot it.

Geranium cuttings should be treated as shown in engraving 2. Break, nearly in trro, that part of the stalk which you intend to be the end of the slip. A callous will form there after it has hung from the stalk for a ferg days, and the strit. ing of the cutting will take place as soon as it is inserted 10 the ground. This is a safe plan for striking abutilons, begonias. pinis, cactus, etc. If the stem should not break casily, a slight incision may be made with a knife.

J. C. Cinapais.

Peterson's Double Cream Separator.

W zare in our November number a very full description of Laval's improved cream separator. The engravings in this number represent a still newer machine the full value of which we are not yet able to appreciate, as it will require several careful comparative tests, in order to find out which of the various cream separators is the best; for there are quite a number competing in Europe for supremacy. This fact shors how the new centrifugal process seems to have taken a strong hold of the European dairymen's attention. In figure 2, seme idea of the working of the machine maj be obtained. The milk runs into a funnel, seen in fig. 1 , and enters 10 to the machine at Λ through a number of small apertures. The milk is separated from the cream by the centrifugal force in the rapidly revolving whecl, the skimmed milk being forced to the further sides of the wheel, the cream uniting in an inner circle, close to the centre. When the separation is complete, the skimmed milk is withdrawn at B and the cream at C bj means of spoon-shaped tabes seen in both figs. 1 and 2.

Experiments on Potatoes in Iroland.

Professor Baldrin, has been conducting experiments os the growth of potatoes at the government farms of Glassneria, Cork, and Athy. His report to the Cork Agricultural Society is a very interestiog record of fact, and worthy of our
best attention. Some of the best potato land I over saws, This table will be found useful in calculating the weight barring the alluvial, or warp, lands of Yorkshire, lics under lof any root crop, allowanco being made for miss-plants, my view as I write; and the yield is- 90 bushels, or $2 \frac{1}{2}$ which, whether from carclessness in cutting the sets or from gross tons per acre! Farmers must really give up the idea' whatever cause, are far too frequent in our potato fields. Im. that a dressing of rotten straw will grow a full orop of any- mense pains have been taken of late years to get at the botthing. The plants they cultivate demand food, and food they tom of this question of profitable potato growing, but if tho must have, or else they will refuse to yield a remunerative re-- practical farmer will not take advantage of the results worked tura for the labour expended upon thew. Potatoes are fetch-lout for him by men of seienee, I do not see what is to be ing a rare price- 60 cents a bushel-and it is really sad to done.

Fig. 1-PaTERISONIS DOUBLE CREAM SEPARATOR.
hink that an aore is only worth $\$ 54$, instead of at least, 8108 ; five tons, or 180 bushels, being only a moderate crop, if the land is fairly done by. Just analyse a crop, for a moment, and see what a trifing weight per set comes to: 27 inches betreen the drills and 10 inches between the sets, there will be 23,232 sets to the acre; and if each set produces one half pound of potatoes, there will be 193 bushels per acre! At 12 inches apart, the rop will amount to 19,360 plants, cqual to 164 bushels. wo, it is casy to sce that, on the averare, our sets of potatoes produce less than half a pound each. I think that, taken roughly, our old calculation, in England, was pretty correct; namely, that each good sized tuber represented a ton or 40 bushels, per aere. The following table will be found correct:

Distance between drills.	Dist. between plants.	No. of plants. per acre.	$\left\lvert\, \begin{aligned} & \text { Veight } \\ & \text { ot plants }\end{aligned}\right.$	Bushels per acre.
27 inches.	10 inches.	23,232	$\frac{1}{1} \mathrm{lb}$.	963
${ }^{6}$	"	t	1 lb .	$193 \frac{1}{2}$
0	11	'4	1 lb .	387
06	12	19,360	1 lb .	S2
"	"	-	$\frac{1}{16}$.	164
4	"	"	I lb.	328

phate, 7 tons, 9 cmi , 6 stone; nitrate of soda, 7 tons, 3 crit., 4 stones. Ground bones came next with 6 tons, 19 cmt ; ground coprolites, 6 tons, $15 \mathrm{cmt} ., 2$ stones, while sulphate of ammonia with mineral superphosphate yielded 6 tons, 11 crit. 4 stones. No manure gave 6 tons, 3 crit., 6 stones, showing that the land was in much too good heart to be perfectly adopted to an experimental crop; and sulphatc of ammonia, alone yielded only 5 tons, 9 crt , 4 stones, or considerably less than where no manure at all was applied, which is of
(I) The cmi. of 112 lbs ; the tons 40 bushels of 56 lbs.
course an accident, as it is absurd to suppose, that this invaluable manure could damage the orop-the land as I said above was too good.

From these and other data Mr. Baldwin arrives at the fol lowing conclusion: on improved land, a mixture of three manures, viz: 4 or 5 owt., of superphosphate, 5 cwt. of kainit, and a small quantity of manure oapable of yielding ammonia, is likely to yield the maximum crop, taking into account not only the total produee, but the degrec off soundness.

At Cork, where the soil was a good sandy loam, kainit topped the list with 10 tons, $16 \frac{1}{2}$ owt.; 6 cmt . bone superphosphate, 2 owt. aulphate of ammonia, and 5 cwt . of kainit, coming nest with 9 tons, 4 stones; while 7 tous, $17 \frac{1}{2}$ owt. were yielded by 4 cwt . mineral superphosphate, 2 cwt . salphate of ammonia, and 5 cwt . kainit, no manure giving 3 tons, 15 cmt .
At Athy, on an inferior sandy soil, which for several years had received large doses of phosphates giving small retarns, the results were confirmatory of the two other series of experiments. The unmenured plot yield practically the same as those which received undissolved phosphates. Dissolved phosphates increased the produce, on the average, to the extent of 2 toas, 3 cmt ., 4 stones per acre in excess of the undissolved. The maximum yield was 6 tons, 7 crt 4 stones, from the application of 6 owt. kainit superphosphate, $1 \frac{1}{2} \mathrm{owt}$. sulphate of ammonia, and 5 cwt . kainit. The unmanured plot gave 2 tons, $12 \mathrm{owt}, 4$ stones, while below this were, in the following order, ground bones, ground coprolites, salphate of ammonia, and, lowest of all, nitrate of soda, which only yielded 1 ton, 14 cwt., 4 stones. Mr. Baldwin is exporimenting with shoddy, as a source of nitrogen for the potato crop. As his report was written before l'rofessor Voelcker had given his opinion that, in the sandy soil at Woburn,shoddy scemed to be ineffectual, and as that article has been ased with bencfioial effect for many a year in our Kentish hop-gardens and wheat-fields, I am inclined to think there will be a very pretty contest between the tro chemists. My opinion is that Mr. Voelcker has hardly allowed times for the action of the nitrogen in the shoddy to become opcrative, and, like the fish-gaano at Woburn, it will be found of greater value the third year than the first. It is certainly the cheapest source of nitrogen we have.

The greatest yield of the different varicties of potatoes experimented on was given bs Taylor's purple forly-fold; 17 tons, 19 cmt ., 3 stones, or nearly 800 bushels to the acre; Nicoll's champion coming next, with 16 tons, 14 crrt., 3 stones or nearly 700 bushels; and Carter's magnum bonum, with 15 tons, 8 cmt ., 3 stones, or 620 bushels to the acre. Carter's had the smallest percentage of diseased tabers. Thuse are crops, and though we oannot expect, with our climate, to equal them, we might gel a little more out of our soil than we do, as a farmer at Koowlton has frequently grown 400 bashels to the acre, and I dare say he is not quite perfect. I can lay my finger on a spot where there are at least 30 tons of mangels to the acre, and by the side of it, at most, 110 bushels of potatoes. Now the labour employed in growing the two crops is about the same, all that is wanting for the potatoes is a little artificial manure. ashes are cheap enough, there are bones to bo had at a reasonable price; and the sulphate of ammonia we send abroad, could be bought at the Montreal Gas Company's rorks. The change of seed could casily be managed-the soit I should recommend are Mag. num Bonum and the Champion from England, and a fresh supply of Early Roses from Ontario or the States. Dr. Girdrood, of St. Anne's, tells me that his imported potatoes have yielded this year in the proportion of 13 to 10 in comparison with last year, and I doubt not that nest year, the thin I since they were brought here, they will be better still, as

I find that, generally speaking, it takes three years to thoroughly acclimatiso both grain and potatocs.
About 20 bushols per aere of hardwood ashes, would fully equal kaiait, and, except on recently cleaned land where the brush, \&o., has been burned, should nevor be omitted in the preparation for potatocs.

Arthur R. Jenner Fost.

AGRICULTURE.

Paris, September 1881.
The Societe Nationale d'Agriculture, has the excellent. habit to pass in revier the history of the country's agriculture for each yeas. the resume is ever the product of M. Barral, who in addition to being an able chemist, is one of the most pratioal minds in France, and whose long public career has ever been associated with tho progress of the age. A few gleanings from that interesting document: It draws attention to the discoveries of Pastear, who not only has found a remedy in inoculation, against the terrible stock plague charbon, but has pointed out, that the origin of that malady, is due, to the burial of deceased animals in lands over which cattle subsequently raage, and thus catch the animalcules or plague-germs, as thrown ap by worms from the pits where the carcasses have been interred. The United States are accused of having introdaced the phyllosera into France, Whether the oharge be accurate or not, the antidote has come from the same source, as the grafting of American vine stocks has been found efficaious in resisting the ravages of the vine bug. Testimony is sorne to the happy results attend. ing also the employmunt of sulpharet of carbon, and abore all, to the adoption of antumanal irrigations and rich spring manurings, Enown as the Faucen prooess, and whose author has been recompensed by an objel d'art. In what may be desigaated, industrial agriculture, the cultivation of sugar beet ranks high, and its development has received a fresh mm. pulse from the reduction of the inland duty on sugar. Connected with this progress, is the now general adoption of the extraction of the juice by the process known as diffuston, imported from Austria, instead of the old plan of presses. The pulp resalting from the new system, has been found to be more nutritive for feeding purposes. In the norticrn and contral regions of the conntry, where beet calture provails, this palp has next to revolutionized stook farming ; agrioulto. rists in the neighborhood of the faotories, no longer rear stock; they purchase the lean kine in other districts, and fat them. It is a branch of farming very remuuerative, as the demand for fresh meat exceeds the supply, and no danger is apprehended that America will be able to compete in furnishing live stock to the butchers. The distillation of alcohol from beet and maize, also has made important progress, and M. Savalle, has demonstrated, that rectified alcohol is so chemically pure, that it is of no importance from what substance it be obtained. Despito the development in the preparation of the cheese and butter iodustries in Denmark, England, and Sreden, France continues to hold her own. It is satisfactory to observe, that Mr. Duclaus has • tained a medal for his beneficial labors in the sole of animactules in the manufacture and ripeniog of chcese. Respeating egss, France not only exports millions for consamption, but for hatching too, and for the latter, supplies incubators Mr. Joseph Boussingault, son of the veteran chemist, has also been honourcd for his rescarches in agrioultural chemistry: nor have the national teachers been overlooked, for ther humble, but important services. One schoolmaster aged 75, and 50 years in harness, has been pensioned; he is happs, as be boasts, "I am going now to commence nev experiments." Some local argricultural societies armard premiams to the
sobool mistresses for inculoating goneral notions of farming, dairy managemont, and house-keeping, to their pupils.
This year's harvest will bo inferior to last season's, wheat will represent a less yield of 30 millions of bushels; barley, is fair ; rye, good ; oats, bad: maize, passable. On the whole in point of cereals, France and Russia are the most famed countrics in Europe. Forage is nest to a failure : beet is suffering from abnormal fluctuations of temperature, but the vintage promises to bo excellent in quantity and quality.
The Electricity International Exhibition, has from an agricultural point or view, some attractions. In prinoiple the applioation of electricity is simply a transmission of force, the secret of the economic utility of that power has been found; the afplications will come in due course. Professor Deheraire, cxhibits his experiences. on the influence of electric light on vegetation ; M. Felix, on the application of electricity to ploughing and tireshisg: M.Albaret,to the lighting of farm yards and agricultural operations, and otiers, to the heating of incubators, and the examination of eggs, by electricity.
In the south of France, where the climate is hot and the country mountainous, rearing sheep for their milk, to produce cheese, (Roquefort) is largely extending. The best milking ewes ought to have 4 or six teats, the udder voluminous. the wrool rare, and secreting much grease; ears long, head small and without horns. Sheep with four teats ought to be sought. In the agricultural college of Montpellier, there is a ewe with two lambs, and yielding milk from sis teats. So far the esperiments have not succeeded in obraining an animal producing much milk and a good flecee at the same time; counting milk, lamb, and wool, a ewe produces net about fr. 48 yearly; sis quarts of milk yield 1 lb . of checse. The Chilians, to ob tain special skias much sought after, cross the sheep with the goat, esperiments are being conduoted in the end of a simijar crossing, for improving the milling capacittes of ewes. Goat farmiog does not pay, the anımal is destructive, its flech held in little repute, and its offal of no value.
To combat the epidenic of typhoid fever from which horses not suffer, a veterinarian urges the use of arsenic as an infallible cure or preventive, he holds back, however, the recipe. The stable ought to be spribkled with a solution of carbolic acidtro ounces in a quart of water. Arsenic imparts a fresh and eleek look to the coat, and, in Vienna, is given to make carriage horses foam at the mouth.
C'p to the present the mechanical fatting of pouitry consisted in storing the birds in a pigeoned-hole revolving tower and making each shelf with its tenants, pass before a man with a bucket of prepared liquid food, that he injects in measured quantities, through a tube rorking by a treadle. iato the throat of the bird.
In Italy and France, the Humane Soceties attempted, but without success, to put down this mode of rapidly contribating to our food supplies. An improvement has taken place, instead of the revolving tower, the bras are placed, 6 to 8 in number, under a kind of box or maclon frame, and left to enjog all the liberty they can find therein; the feeding apparatas is maintained, each bird being taken out to be dosed, and then put back to enjoy its confined "constitutional." The frame is heated to a certaia temperature, that which aids the putting on of flesh.
M. Guigoct dratss attention to cases of pigs having been poisoned, by giviog in spring cooked potatoes and their germs. or later, a mash of green potato stalks; he adds, excepting the tober, cvery other part of the potato contains as deadly a poison as nightshade.
Among the many prizes offered by the National Agronomical Institution of Franoo, is one of much importance; the right of two of the most successfal candidates at the annual
examinations, to reside abroad, in the centros of the best farming distriots, for three years, at the expense of the government, they furnishing reports on the farming of suoh countries.

DOMESTIC ECONOMY.

A cover for a barrel, vilth lock and key.
It is often desirable to lock up barrels containing flour, pork, etc., and a good deal of troublo is taken to contrive an
 easily-closing lid. The engraving represeats a fanious sort of cover, to which an ordinary lock can be easily fitted. A frame is applied to the outide of the barrel, which fixes itself on the sides, to which it is fastened by screw bolts. Hinges attach a flat-lid to the frame, and the lock cau be easily added. When the barrel is empty, the bolts can be unsereved, and the cover can be transferred to a fresh one.

J. C. Cmapais.

Canon Bagot on Irish Rutter.
At the monthly meeting of the Royal Agricultural Society of Ireland last week, the Rev. Canon Bagot reported to the Council on the success which attended the exhibition of butter at the Dairy Sbow beld ait Islington. The rer. gentleman recounted the successes of the various exhibitors, and considered it was a gratutyog fact for tho Council. as showing the success of the Society's trareling danry in educating the farmers.

In the reference thereto, he said wherever it had been the farmers won the most prizes-notably, in the county of Longford. Every single exhibitor, without exception, from the county of Longford, was highly commended or commended, which, in the opinion of the judges, was equal to a prize. The dairy was a fortuight in longford. and the exhibitors from that county had evidently attended to the lessons given. He noticed the same result in others place-Co. Tyrone, for instance. He considered this most satisfactory; but, perhaps, the most gratifying feature of the whole show was the fact that the Munster Dairy Sehool, followiog the success at Birmingham, had gained the first prizes in both classes, namely, for 6 lb . rolls and 56 lb . firkins. This was the more remarkable, as there were two different sets of judges who had selected the same butter for the first prize. The results have abundantly proved the value of the educational dairy, and it would be remembered that on returning from the continent Mr. Robertson and himself had put cducation in the forefront as the means of improving Irish butter, and their words had come true. He thought there were a few hints to be derived from the London shors. First, they must have butter of firmness and testure, and the cxhibitor had taken his advice in having the butter charaed in the morning early , or almost at night. They hare thas secured greater firmness. They were supplied with air-tight cases, in which the butter was sent to London. These cases were made of rood, with glass tops. There was an inner and outcr case. In the inner case the butter was packed, the outer case being airtight. Whatever air was between the cases preserved the butter in the same condition to London as when it left the dairy. This rras one of the hints of success. It was essential that the botter should be firm. Another was the uniformity in salting. Some dealers were of opinion that, as a rale, Irish butter required a little salt, but they were divided on this poinfs; but all said there could not be finer butter. They, perkaps, laid more strass upod the colour. In talking of colour, one or tro large dealers pointed out to him butter of
different colours-one whiter than the other. Thoug̀ the whitest was a better butter, twopence per lb . more was paid for the inferior, because the whitest was unsalable with them. He had learned the exact shade of colour, and was having a paper printed to the shade. so that it might bo distributed, in order that farmers might see the exaot shade most approved in London. It was a light but very bright straw colour. Good butter of palish colour might be depreciated to the extent of 2 d . per lb .
Then came the question oi how to obtain the colour. The dealers said, "Do it naturally if you can, either by feeding or by the use of Channel Island sattle ; and ii you oan-
intend to try it on the first snow roads, and our readers shall have the earlicst information as to the results.

VETERINARY DEPARTMENT.

Unler the direction of D. McEacliran. F. R. C. V. S., Principal of the il nitreal Velerinary College, and Inspector of Slock for the Canadian Go.ernment.

Diseases of the Horses Foot.
Quirron is the name given to fistula whioh ocour at the coronate just abeve the horn of the hoof from which there is a discharge of pus caused by the irritation of some foreign body or diseased tissue within the hoof. It is attended by

not do so by these means, it must be done artificially by using annatto, or by any other means, but it must be done well. ${ }^{\circ}$. The fourth point stress was laid on was the uniformity in packing by which greater value was added to Irish butter and in this respect they had beaten English exhibits, which were shown in everv conccivable receptacle, from honey-soap boxns to large baskets. It was remarkable English butter got so fer conmmends It was gratifying to learn from the judges that in London they could take any quantity of Irish butter, and, in the face of all the competition, they need not be afraid in the least, as the Trish butter was better than Danish, French, or any other kinds. It was no small gratification to the council and himself to find cvery county in Ireland repre sented, excepting tro. He sàid the council might not have been aware that the Sccretary of the Rugal Agricultural Socicty of England had lately visited some of the large butterine manufictories in Holland He had given him some figures on the extent of the trade. They showed the startling fact that there were sisty butterinc factorics in that country, and one of them turaed out ninety tons per week for the Y.ondon market. However, the dealers said the consumplica of butterine would not injure the Irish trade, as there would be always a demand for the genuine article made within trenty four hours of sale.

Combined Harrow and Clod-crusher.

We have a high opinion of this implement as being useful in many ways. It answers the purposes of a cultivator, a harrow, and a clod-crusher, and is a capital machine for both winter and summer road-making. Messrs. Nash \& Brother 22 College Place, Nerr-York, are the manofacturers. We
considerable swelling, lameness, r.2d suppuration. It may occur in ang horse's foot and it may be simply a single sinus in the laminae and coronate or it may communicate, with numerous siuuses running in all directions and not infrequentls producing disease of the os pedis or its lateral cartilages. This latter condition proves very difficult to heal, and not infrequently becomes incurable.
Cacses. - It often supervenes on neglected corns attended by supparation, which not being allowed a free orifice to escape by, burrows under the horn of the wall; and, causing disease of soft testures, fistulous openings are produced ; and in many cases, the bone becomes diseased, caries sets in, and an almost incurable condition results. Braises of the heel, or wall pricks from nails, or whatever causes irritation followed by surpuration, may give rise to quittor. Injuries to the coronate by being stepped upon with sharp caulkings during winter often result in quittor.
Srarptoss.-Fain and lameness, swelling of the side of the foot with a fistulous opecing from which a purulent glairy discharge takes place, which if associated with disease of the bone or cartilage, is offensive, the surrounding tissues are infiltrated, and the hair is bristling. The pain and lameness is alight or severe according to the extent of the disease and the irritability of the patieut. The foot becomes deformed by one sided contraction in some cases, while the lower part of the foot contracts, and the growth of horn at the coronate is exuberant and bulging.
It is more commonly seen in the fore feet than in the hind ones.
Treatisent.-The shoe must be removed, and if the disease be caused by a corn, that exorescence must be pared
out opening up the heel freely, the wall on the course of the sinus should be thinned by the rasp, and the opening in the coronate enlarged. It should then be freely injeoted with a solution of corrosive sublimate in alcohol, and prapped in a large hot linseed meal poultice, ohanged two or three times a day. Should it not yield to this treatment, the horn of the wall in the course of the sinus should be freely cut away exposing the fistulw and conrorting them into open wounds. Caustics can then be directiy applied, and the diseased tissues destroyed, which will slough out, leaving a healthy healing surface bencath. When the cartilages or boner are diseased, it is sometimes necessary to scrape them, and aress them with dilute hydrochlorio acid. Such cases often repcome incurable.
During the treatment, in these cases, the ioot must be kept soft and the toe shortered, as it is apt to grow rapidly and become hard. After the discharge has stopped and the wound is healed, sare must be taken in applying a shoo which will not press on the weak part and produce lameness; a bar shoe, or three quarter-bar, is best, so as to distribute the pressure and protect the weakered quarter. Quittor usually leaves more or less thickening of the coronate and of the hoof growing from it.

Pricking by nails in shoeing.
When we consider the thin wall of the hoof to which the shoe has to be nailed, and the fact that very fers indeed of those who make this art their special business take the trouble to familiarte themselves with the structure, or even the physical character of the hoof, but practise the driving of nails into it as a mechanical art; the wonder is, not that the sensitive attachments are sometimes pierecdby the nails, but that it is not of far more frequent occurrence.
Some feet are more liable to this accident than others, owing to the thinness and brittleness of the horn necessitating frequent shoeing and the consequent destruction of the wall, leaving but little horn for the nails to be driven safely into. The destraction of the foot by the injudicious use of the rasp and laife of the farrier; the breaking of the wall by imperfect cutting of the clenches, and the violent wrenching off of the shoe, all render the foot more liable to injury from this cause.
In many cases the sensitive parts are not actually penctrated by the nail, but it is driven so close to the laminae, that the pressure produces irritation, followed by suppuration and results are as severe as if this penetration had taken place.

Oring to the unyiclding nature of the hoof, the pain is severe when the contained tissues are iuflamed, and the horn not undergoing the suppurative process, the pus forms sinuses underrunniag the sole or wall, detaching the horn, and ultimately making an eruption at the coronate, leading to troublesome quittor.
Symptoss.- Where the nail actually wounds the laminae, the pain is immediately evident, and an observant fi.cier will at once notice the expression of it by the flinching of the animul. Too often, however, the drawing away of the foot is attributed to restlessness, flies, or temper, and the poor animal is further punished by unmerciful blows. When not so piereed, the acute symptoms do not show themselves for several days, often for a reek. When caused by the working of the aail in the horn by concussion on the road, irritation is produced, followed by inflammation and suppuration, and the foot is found hot, and very tender to tapping with a hammer, or squeczing with a pair of pincers. The lameness is severe and continuous, the feight is thrown off the spposite side from that on which the injury has oocurred, and when the injury isat the heel the horse steps on the toe.
The process of removing the shoe is attended by considerable pain, and when removed, the nail hole is found discoloured, and generally the:o is oozing from it a black fetid fluid whioh
infiltrates and discolours the surrounding horn of the sole. Should it have continued for any length of time, there will be more or less detachment of the horn, and the sole will be under-run.

Treatment.-At once remove the shoe as carefully and painlessly as possible; with a sharp fine pointed diaving knife open up the nail hole till a free vent is made for the pus to escape by, thin the sole and wall round i, and immerse the foot in a bucket of hot water for fifteen or twenty minutes, then apply a hot poultice of linseed meal, whioh shculd be changed at least twice a day. When the inflammation subsides, the poulticing may be discontinued and the feot diessed Tith tar. Tine shoe should not be applied till the lameness disappears, when it should be put on so that the wounded part may not be pressed upon by it, nor should any nails be inserted near it.

Wounds of the feet froii nails being stepped uPON. - In oities this is \& very common accident, owing to carelessness in sweepiug on to the streets nails and débris from warehouses, where packing boses are constantly being broken up, also in the cartage of old materials from condemned houses, and other sources. The nails being buried in the mud are stepped upon, and penctrating the foot, produce results of the most disastrous nature.
Unfortunately the parts most easily penetrated, the Sog and the lateral clefts of the frog cover the most delicate parts of the foot, viz, the tendon, the navicular burs, and the coffin joint itself Should a nail penctrate any or all of these parts, the case is well nigh hopeless from the beginning, whereas a nail may pierce the sole, or even become embedded in the bone itself without producing any very serious results, provided it is immediately properly attended to. It will, thus, be seen, that a puncture of the undessurface of the foot is dangerous or otherwise according to the part punctured.

When the aail breaks within the hoof and becomes lodged in the deep tissues, the care is complicated, and prospects of recovery lessened.
Under certain conditions of the system at the time of the accident, there is a liability to Tetanus or Lockjaw which is by no means an uncommon signal of wounds of the feet from nails.

Sysptosss. -There is lameness almost immeüiately; often most acute pain. If the joint or navicular burse are involved, there is usually considerable irritative fever, and a diseharge of synovia, and as it is, almost invariably, accompanied by shrinking or destruction of tissues in the articulation, followed by suppuration, the case is often hopeless from the beginning.

A simple wound of the sole is trifling as a rule, if the nail is at once withdrawn, the seat of puncture freely opened up to give a ready escape for the discharge, it speedily heals up; not so however, the case where the tendon, burs, or joint, are involved.

Treatment.-Remove the nail, pare the horn round the puncture thin, open up freely, and soak the foot in hot water for half an hour and apply a poultice. This case usually requires the skill of an experienced veterinarian, and even in his hands, many cases will be followed by such changes as reader the animal practically useless.

OMINIANA.

Something really must be done about cotton-seed. It is ridiculous to sappose that we are going to pay $\$ 45$ a ton for the cake, or rofuse, when the seed itself, delivered at Manphis, is werth only $\$ 9$ a ton, of which the planter takes only $\$ 3$ for his share, freight \&o. devouring the remainder. Mr. J. H. Moore, Arkansas, has used this food largely, and speaks very highly of it as a preventive of liver-rot. In 1854, he bought a lot of half-bred Mcrinoes, from Kentucky,
and fed thom entiroly apon ootton-seed, and what they oould piok upou the rough paztures. Thoy ate two pints a day, and did well on it, 31 ewes rearing 45 lambs, some of whioh dressed 60 lbs . in the month of jane.

I gather from the Ontario Agrioultural Commissiou's Roport that 95 per cont. of the bones grown in this country are oxported! only 5 per cent are retained. No wonder our pastures degenerate. The following is an analysis of the superphosphate made by Messrs Lamb \& Co., Toronto.
Moisture 9.64
Insoluble phosphatos. 31.24
Soluble 7.92
Ammonia. 2.12
Soda Salts 4.82
Organio matter (rubbish) 25.80
Sulphate of Lime (plaster) 18.46
100.00
$\mathrm{F}_{\mathrm{K}}^{\mathrm{O}}$ R SALE-MAMMOTH BRONZE TURF EEYS, dercended from the prize flock at the U. S. Centenmal Exhiblion, 1876 \$5.00 each. R. S. TAFT, Wilisfon, Vi.

FOR SALE-TWO FINE AYRGHLRE BDLL Calves - Price: $\$ 35.00 \mathrm{el} \$ 30.00$ Apply 10 E. A. C. CAMPBELL, St-Hilaire.

A THE MANOR HOME FARM ' St. HILAIRE, P. Q. - The umported thoroughbied auallion "Rejolnder" by "Kendedrum" vat of C. Repartie '' wall atand for the keason of $1881, \$ 26.00$ per mare. Pasture at 25 cta. per day.
Address: CAPJ. QAMPBLLL, Sh. Hilare.
TIHOROUGHBRED SHORT-HORNS, AYRI shiro Cattlo.and Berkshiro Pigs, all from imported stock, and entoredinCanadian and american poried stock, and entoredinCanadian andameric Compton, P. Q.
WTLLIAM RVANS, IMPORTER \& GROMER of Field, Gardenand Fluwer Roeds Nurserie and Sced Farms, Broadlands, Cute St. Paul.- Fruatand O:namentalTrecs. Shrubs, Rosez, Greenhouse and Bedding Plants, Vegetable Plants, Small Fruits, \&c. agricultural Implements, Fertilisers, fc. Warehouses, Nos.89, 91 \& 93 KcGill Street (comer) 106 \& 108 Foundling Street and over St. Ann's markel, Montroal.-Catalogues free on application.

FARMERS: Soe Cossitt's Mowors, Reapors and T Horse-rakes. Tho best and cheapest. For sale everswherc. Head Ufice, 81 McGui St., Honireal R. J. Latimer. Managor.

CANADIAN PROVISION PACKING CO. OF. fice and works, 30 , Henderson Street (P qlais) Quebec. Preserved Meats, Fish Vegetables and Fruts. Wholesale only. Awards: Fires Prizin and Diriosta, QucbecProviricialExhibilion,1877.Tirax: Frest Prizes, Two Midals and a Diploua, at the Dominion Grand Exhbition, Otawa, 1879.

THE BEST

PInABEIER
 For the land.

SUPERFHOSPHATE

Of the best quality.

EXOELLENT

PARIS GREFN
 Pare, or mixed with ground plasior.

For salix at
Messrs. LYMMAN, SONS \& CO., 332 to 386, St. Paul St., Montreal.

THE HILLS STUCK FARMIFRELJGHSBL'RG
1 P. Q.- Throughbred Ayfihires, South-Down theop, Borkahre pigs. Catalogues on application N. S. VHITNEY. Honireal, P. Q.

TMPLEMENTS FOR THE MANUFACTURE of syrap and sugar from so ghum.-Crushers with three oyluders;-Carbonic actd eas eagines; Racking-lubs Evaporators; Thermometers, Aroo-meters.-FOR SUGAR. Vacuum pans; Crystalizing boilers; Mixers ; Contrifugals, \&ans.
As we ourselves are makers. on a large scale, of sugar and syrup from Sorghum, we are us a position to give every information on the suliject of these new products. A circular will be forwarded if requested.
E.S. MANNY Beauharnols.

H^{0}OMES IN TEXAS, is the uhe of a new illustrated pamphlet, descriptive of the country along and tributary to the lline of the International \& Great Northern R. R. and contains a good county map of the State. It also contains the names and addresses of Farmers and planters in Texas who have Farms for sale or rent, and those who will want Farm Hands for this yoar. A cops of this book will be malled free to those who desire reliable information about Texas, apon applicalius by leites or postenl card to

Gen'l Freight and Pusg'z Agt. Palestine Tex.
DAWES \& CO. ${ }^{\text {D }}$ LACHINE, P.Q.-BREEDERS and importers of Thor jugh bard and Carriage horios, Ayrshire catle, and Bebrbhiar

BURNELL'S four point steel barb wire fenclag. - The best and cheapest Farm and Railway Fence.

Send for circulars and prices to
H. R. IVES \& Co., Hanufacturers of HARDWARE, Irod, Railings.
QUEEN STREET zfontreal.

COR SALE. - A FEW THOROUGH BRED Jersey Bull Calves, from impored cows and good milkerz. On reazonable terma, Apply to H. STEPHENS, Jf., St. L\&mbert, Q.

TINE-GHOWING.-In order to encourage the cultivation of vines suited to our cimats wo havomado arrangements with ono of the celobrated American firms, which enable tis to ofter for atie ten-year old vines, in exceltent condilion, and fit to we planted nexi spring. On the secerpt ol tone dotlar, we will send by mail, post-paid, three vines of the following sorts. at the purchaser's chotec, sel ecled expressly for the climsio. Wirite ofapis Allens Hybrid, Martha.-hED Grapes - Agawan Brighton, Delaware, Petkins, Salem, black orapm Eunclandar, Herrert, Hanford, Isabolla, Janesvillo, ThiEuncianl Herpert, Hatord, kabelia, Janesvile, Th-
man or Champion, Telograph, Wilder. Addrea, by $\operatorname{man}_{\text {lettor. }}$

To ED. BARNARD.
10 St. Vincem Strect Montreal

ESTABLISHED 1839-TRROST \& WOOD.-
H Sman'sFalls, Om. Manufactarers of Nowerie Reapers, Hurse Hay Rakes, Sieed Ploughs, Calh マatora, Dield Rollere ac. \&e
For particulars. Address:
LARMONTH \& SONS.
as College Sireet, Montreal.
FOR SAIF TEROUGEBRED AYRSHEI
Stook, and Berkehire Pigs. Addrese.
Mr. LOUIA BEAUBEEN,
No. 16,Si, JamesStreot, Montrial.
WY CONTINUE TO GROW YOUNG apPLs: thousand ces for sale. Wo shall have nearly 30 varioties, and wo hope to bo ablo to salisfy the taste of our curtomers. P. SIMON LACOMBE,

Cote ubs Ne: ${ }^{\text {ent, Montroal. }}$

TRENCH ECUNOMICAL RANGES. - Tyi most convenicnt ranges or cooking, combininf great economy in fuel with perfoct wort and grem durability. They are absolately perfect in erety respect. We can arrange them to warm, by manimp of hot water, all the rooms of a large house at onct, as well as performing all the reguirements of the kitchen. Wo have ourfurnaces, at Montreal, in the St. Lawronco Hall, Otawa Hotel, Cify Clab, be Convent of Hooheloga, Good Shepherd, Si. Bryil and in tho houses of Mossrs, Alired ginhorneand Ed. Barnard, (Director of Agriculturo) Varennes,az, hundreds of others who allow us to refer to then fort. confirmation of the above statements.
Formore ample information, apply to the undets signed.

BURNS \& GORMLEY
875, Cralg Et, MEntreal.:

To Agricuitiural societies and otherg.-Printing, Book Binding and Wood Engraving, on the most favorable term do ne by the Printer of the IllustraledJournal of Agricullure, E. SENEUAL, 10 St . Vincont \&t., Montreal.

