HUMAN FOODS AND BALANCED RATIONS

By H. W. Hill, MB, MD., DPH.
Director: Institute of Public Health. London. Ontario

The Public Healeh Faculty of Western I Initersity
I stablithed and Muintuined by the Ont ario Cowermenen

HUMAN FOODS
 AND BALANCED RATIONS

By H. W. Hill. M.B., M.D., DP.H
Director: Institute of Public Health.
London. Ontario.

The Public Health Faculty of Western Unisursity
Established and Maintained by the Ontario Government:

Human Foods and Balanced Rations.

BY H. W. HILL., M. B., M. D., D, P. H., DIRECIOR INSTITUTE OF PLBLIC HEALTH, LONDON, ONT,

We are made out of carbon, oxygen hydrogen, nitrogen, principally, with a little iron, phosphorus, copper, sodtum. potassium, calcium, etc. All these thing: are found is our foods, necessarily, for we are made out of food. But we cannot iake pure carbon, nitrogen or hydrogen, and make anything much of it is the body, although we can use oxygen is its unnombined state as air. Almost all these things must be combined and prenared for us by plants taking them into their bodice before we can use them in ours (although we can also get them second - hand from animals). True, we cannot take a stalk of celery or a potato and replace a nerve or muscie with it. We must first break down the foods as we receive them, part way to their elements, using then, so to speak, the fragments to build up again into our bodies.

But besides building up our bodies, we use much of the food for fuel, to produce the immense heat ve use to drive our body-engines. We hava no individual furaace, with boilers over it and pistonrods connected, driving wheels or dynamos; we are, all over, fur race and boiler and machinery in every part, so small. so fitted into each cther, so compact, and so dependent on delicate chemical and electrical reactions, that it has taken the life study of very many men to find out even what we know-a small percentage of the total facts. Fortunately, we are able to live, and probably have lived for many a thousend years without knowing the final details. If we had to know all about food, and what becomer of it in the body before we took a meal. the whole race would have stopped with its firat ancestor, a day or two after he was born 1 However, some of the thingy we have found out seem to be more of less useful as general guides, and one of these deals with the value of different foods in a rather practical way, if you put a good deal of thought and cart upon it.
It has been found, for instance, that o pound of coal will yield, when completely burned, just so much heat, varying with the kind and quality of coal, but always
the same for the same kind and quality it is true we may not bura it completely In our furnaces or stoves; we mny waste the heat we do get from it, letting most of it go up the chlmaney; or we may use the heat we do use for very trivial purposes. But so much carbon, the princspal constituent in coal, always cun yietd just so much heat, whether we waste it or sot. Just so with different foodn 1) we take a turnip, or a pound of meat and burn it carefully as we would burn a pound of coal in testing it, we find a certain amount of heat produced-Sar less than a pound of coal would produce, of course, but exactly the same otherwise. Turnips and meat would make poor fuel for a stove or furnace, because there is so much water in them, but once they are dried out, the rest of them burns well, as we find in garbage incinerators. Now, very careful and elaborate experiments have shown that when meat or turnip is taken into the body and burned, the exact amount of heat it would have yielded if completely burned In a stove or furnace is yielded in the body, less about ten-per-cent, wastage that can be perfectly accounted for. Knowing this, it is not hard to understand that long series of experiments have determined for nearly every kind of food the exact fuel value, and this forms a very fair way of classifying the relative values of these foods to the body. It is not a perfect way however; the fuel value of coal is very high indeed, but since we cannot eat coal, that fact

[^0]does not help us. The fuel value of wood is high, too, but although some animals can use wood for fuel in their bedies, we humans can't, so the fuel value of wood is no use to us. So alao with grass and hay. Cows and horses car use those, but we can't. We have to find out by experience what things ws can eat first, but once we know that, then knowing the fuel values of these different things slso allows us to compare them pretty well. It must not be supposed that fuel value is the whole thing, however. Certain foods, especially vegetabtes, contafin substancos in very small amounts, a dram or less to the ton, which cut no figure at all as fuel, yet are so important to the body that disense and death resuit it thiry are not present. These are called vitamins. Their absence results in a disease called beri-beri, and scurvy is probably due to - similar lack.

Finally, as stated in a previous article, the fuel value of fat is more than double that of sither of the other great toods, carbohydrate and proteln,
point when the hent was first applied to it. (In actual tests, proteln burned yields more heat than this, but in the body it is not all ased for fuel, but partly to replace worn-out tissues, so that in the body it produces the heat above described.)

Carbohydrates have the same heat value in the body that the proteins have : but the fats have over twice the heat value, i. e., would boil twice as much water; a pound of lard, for instance, completely burned, would bring to buil about ten gatlons of frewatig water (about elght imperial gallons)
Now, the body requires varying amounis of fuel, depending on sge, sex, heigbt, welght, amount of work done, anit manv other things. Thus a young inteat needs perhaps an average of 100 calories a day, i. e., enough food-fuel heat to bring to boil a quart of freezing - coid water. An active adult man, doing hard, muscular work, will need from 8,000 to 4,000 calorles, or aven moretnough to bring to boil eight or ten gallons of freezing-cold water.

DAILY FOOD FUEL REQUIRED BY AN ADULT MAN,

Protein Fat Carbohydrate	${ }_{125}^{\text {grams }}$ grams	=	ounces	would boil water				calories
			4.40 oz	=	5	quarts	=	512.5
	75 grans	=	2.6 oz .	-	7	quarts	=	697.5
	500 grams	-	17.6 ox.	-	20.5	quarts	$=$	2050.0
	700		24.6		32.5			3260.0

but we would die in time on a diet of tat alone-so also on a diet of carbohydrate alone. Protein * would keep life in us, all alone, but we would not get on as well as on a mixed diet.

CALCULATING FUEL VALUES.

As previously explained, many of the different animal and vegetable foods that we eat, contain, in a crude atate, mom two or all three of the main things. protein, fat, carbohydrate : and they contain them in different proportions. Instead of laboriousty testing the fael value of every individual food, it is much easier and better to know the fuel value of proteln, of fat, and of carbohydrate. Then we can, by simply analyzing the food, calculate the fuel value without further trouble.
Heat enough to ralse the temperature of one litre of water one degree centigrade, is called a calorie. About one pound of protein, completely burned, would yield heat enough in burning to boll about tour and a half gallons of water (about three and a half imperial gallons) that was just at the freezing

[^1]Now, theoreticaliy, a man could get the 3,000 to 4,000 calories he needs from a pound of lard, but fancy feeding a man a pound of lard a day, and nothing else I Moreover, he would starve to dectil on tt , đespite its fuel vatue, for pure lard contains no protein, i. e., no insuscle or other tissue builder. Theorintically, also, a man would get the heat the needed from about two and a quarter pounds of granulated sugar, but again he would soon give out for lack of protein, even it he could manage to "down" pure sugar three times a day as his only food. Theoretically, also, two and a quarter pounds of protein would do him, with nothing else.

It is true he would not starve to death on this, but he would miss the quickburning fats and sugars, and would not "feel right" or healthy or happy. The proportions of each form of food, then, is important. One might sey, if we need all three kinds, why not just divide the total calories we need by three, and eat protein enough to supply one-third, fat enough to supply one-third, and carbohydrates enough to supply one-third? Doubtless this would make a tolerable diet, but experience and experiment go to show that an average adult man doing reasonably hard work, gets along
best on sbout the following amounts is the following proportions :
Thus, ench of the three menis shoutt average about :

So much is clear; but now comes the real dificulty. We do not have protein in one can, fat in another, carbohydrate in another, in such shape that people will eat and enjoy them, day after day. We must carefully select such cotmmonplaces as meat, potatues, bread, fruit, etc., so that the total eaten will represent these things, in the proper proportions, and giving after all a very commonplace appearance on the table.

To show how it is done, an illustration is given here, together with the necessary taties for a number of the ordinary foods.
EXAMPLE OF BALANCED RATION,
"Meat and Potatoes and Bread."
Desired for one average meal:-

Prot	42 grams	-	
Fat	25 grams	-	8 Oz.
Carbohydrate	170 grams	-	

CONSTITUENTS.

	Protein $\%$	Fat $\%$	Carbolydrate \%
Lamb Chop	17.0	28.3	0.0
Potato	2.2	0.1	18.0
White Bread	9.2	1.3	53.1

Evidently all three supply proteln, while the potatoes and bread supply the carbohydrate, and the chop suppliea the fat chiefly.

If we are to have no waste, we must catculate the chop on the basis of the fat, thus $7 / 25$ (28, per cent.) of the chop is fat; $\}$ of 1 ounce of fat we require in the meal; hence we need chop enough so that $7 / 25$ of it will weigh i of an ounce; that is, the whole chop should weigh $25 / 7$ of 1; equals $3 \frac{1}{1} \mathrm{oz}$.

This not only supplles us fat, but part of the one and a half ounces of protein we require, 1. e., about $1 / 6$ (17.6 per cent.) the chop is protein; hence $1 / 6$ of 3 ounces- $1 / 6$ of $25 / 8$-about it ounce. The rest of the protein we may get from the potatoes and bread. Of course a great many combinations might be made. If we discard the bread and use potatoes only for our carbohydrate, the six ounces of carbohydrate would require over two pounds (say 33 ounces) of potatoes to supply 1 t , for the carbohydrate content of potatoes is only between $1 / 5$ and $1 / 6$ of thetr total wetght. Incldentally, this would add protein to the extent of about 1/45 (2.2 per cent.) of the total weight. 1. e., about $\frac{t}{2}$ of ounce, or nearly
tnough to make up the protein deficiency in the 3) ounces of chop.

However, tew people would wish to eat over two pounds of potatoes at a sit ting: most people would rather substitute bread for part of it. The white bread given is mearly three times as strong in cerbohydrates as the potatoes: bence one ousce of bread would replace thearly three ounces of potatoes, and furnish one-half more protein. suppose then we replace say two-thirds of the a3 ounces of potatoes already figured by bread; i. e., leave out 23 ounces of potatoes and add 10 ounces of bread: then we will have about one and fourfifths ounces carbohydrate from the potato and about five and one-third from the bread, making over the six ounces required: and we should have one-quarter ounce of protein from the potato, about one ounce from the bread. Thus we would obtain nearly the proportions desired.

C			Protein $1 / 2 \mathrm{oz}$.	Fat 1/802.	arbohydrate 0.0
Potato	10	ot.	¢02.	1\% 0 \%.	1
Bread	10	oz.	if 0 \%.	4 oz.	54/

There is th avernge wastane of ic per cent., increasing with the vegetable and carbohydrate foods, and hence this combination would be very nearly correct. We have not figured in any butter or sugar: they would reduce the amount of tat required in the meat and bread; and would make up for some of the carbobydrate. The combinations that might be made are almost inexhaustible. Thus. mother chop wefghing 31 ounces would make up for half the bread so far an protein was concerned, although doubling the fat required; the loss in bread would cut the carbohydrate by over $2 t$ ounces. llowever, the extra fat, having more than twice the heat value of the carbobydrate, would very nearly balance the loss of carbohydrate.

On the other hand, the potato might be cut in two without much damage to the meal, if haif a chop (of $3 i$ oza, in weight) were added, for this would more than supply the protein lost, and the fat added would supply enough heat value to make up the loss of carbohydrate. Of course, sugar in coffee, tea or taken as candy or in pies, would make up carbohydrate requirements very fast, for sugar, weight for welght, yieldnearly double the carbohydrate in bread

From the table which follows, 'balanced rations" can be constructed for many of the ordinary foods.

Percentage Composition of Edible Portions of Certain Common Foods.
ANIMAL AND FISH.

	Protein per cent.	$\begin{aligned} & \text { Fat } \\ & \text { per cent. } \end{aligned}$	Carbohydirate per cent.	Ash per cent.	Water per cent.	Heat value per Ib
Whole milk	3.3	4.0	5.0	0.7	87.0	310
Skim milk.	3.4	0.3	5.1	0.7	90.5	165
Buitermitk......	3.0	0.5	4.8	0.7	91.0	180
Cream	2.5	18.5	4.5	0.5	71.0	865
Butter........	1.0	85.0	0.0	3.0	11.0	3410
Cheese (cream)	25.9	33.7	2.4	3.8	34.2	1950
(theosho (cottage).......	20.9	1.0	4.3	1.8	72.0	510
Whole egg................	14.8	10.5	0.0	1.0	78.7	700
White of egg.............	13.0	0.2	0.0	0.6	86.2	265
Yolk........	16.1	33.3	0.0	1.1	49.5	1808
Lamb chop.	17.6	28.3	0.0	1.0	53.1	1540
Pork chop	16.9	30.1	0.0	1.0	52.0	1580
Bacon	9.1	67.4	0.0	4.4	18.8	3080
Smoked ham	16.1	38.8	0.0	4.8	40.3	1940
Beetsteak	18.6	18.5	0.0	1.0	61.9	1190
Dried beef........ 30.0	6.8	e.e	9.1	54.8	840
Beef suet........	4.7	81.8	0.0	0.3	13.2	3510
Lard	- 0.0	100.0	0.0	0.0	0.0	4080
Cod-lean	- 15.8	0.4	0.0	1.2	89.8	325
Mackerel-fat	- 18.3	7.1	0.0	1.2	73.4	645
Salt cod ...	21.5	0.3	0.0	24.7	58.5	410
Smoked herring.........	. 36.4	15.8	0.0	13.2	34.6	1855
Oyster	- 6.2	1.2	3.7	2.0	86.9	988

CEREALS, ETC.

| Corn (grain)............... | 10.0 |
| :--- | ---: | ---: |
| Corn (green).............. | 3.1 |
| Corn bread................ | 7.9 |
| Wheat (grain).......... | 12.2 |
| Whole-wheat bread | 9.7 |
| White bread............... | 9.2 |
| Toasted bread......... | 11.5 |
| Macaroni (cooked..... | 3.0 |
| Oat(grain)............ | 11.8 |
| Oatmeal (cooked)..... | 2.8 |
| Buckwheat (grain).... | 10.0 |
| Rye (grain).............. | 12.2 |
| Rice (grain)............. | 8.0 |

$\mathbf{4 . 3}$	$\mathbf{7 3 . 4}$	1.8	10.8	1800
1.1	19.7	0.7	75.4	500
4.7	46.3	2.2	38.9	1205
1.7	73.7	1.8	10.6	1760
0.9	49.7	1.3	88.4	1120
1.3	53.1	1.1	35.3	1215
1.6	61.2	1.7	24.0	1420
1.5	15.8	1.3	78.4	415
5.0	69.2	3.0	11.0	1720
0.5	11.5	0.7	84.5	285
2.2	73.2	2.0	12.6	1600
1.5	73.9	1.9	10.5	1750
2.0	77.0	1.0	12.0	1720

SUGARS.

| Granulated | 0.0 |
| :--- | :--- | :--- |
| Maple | 0.0 |
| Stick candy | 0.0 |
| Molanses | 2.4 |
| Honey | 0.4 |

0.0	100	0.0	0.0	1860
0.0	82.8	0.9	16.8	1540
0.0	96.5	0.5	3.0	1785
0.0	69.3	3.2	25.1	1290
0.0	81.2	0.2	18.2	1520

VEGETABLES.

Potato	2.2
Parsnip	1.6
Onfon	1.6
Celery	1.1
Shelled bean (fresh)...	9.
Navy bean (dry).......	22.
String bean (green	

0.1	$\mathbf{1 8 . 4}$	1.0	78.3	385
0.5	18.5	1.4	88.0	280
0.3	9.9	0.6	87.6	225
0.0	3.4	1.0	94.5	85
0.6	29.1	2.0	58.0	740
1.8	59.6	3.5	12.8	1800
0.8	7.4	0.8	89.2	195

[^0]: [*Reprinted from 'The F'armer's Advocate" Bureau of Public Health Information. Questions, Answers and Comments. Conducted by the Institute of Public Health.-(The Public Health Faculty of Western University, London, Ontario.) Eistablished and maintained by the Ontario Provincial Governmont. Questions should be addressed: "The Public Herlth, care of 'The Farmer's Advocate, Loudon, Ont." Private questions, accompanted by a stamped, ac.If-addressed envelope, will receive private answers. Medical treatment or diagnosis for individual cases cannot be prescribed.]

[^1]: The protetn of maize is an exception. It lacks certain constituents that other proteins have.

