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PREFACE.

1~\URING many years it has been my duty and pleasure to

"^"^ give courses of lectures on various Mathematical subjects

to successive generations of students. The course on Statics

has been made the groundwork of the present treatise. It has

however been necessary to make many additions ; for in a treatise

all pirts of the subject must be discussed in a connected form,

while in a series of lectures a suitable choice has to be made.

A portion only of the science of Statics has been included in

this volume. It is felt that such subjects as Attractions, Astatics,

and the Bending of rods could not bo adequately treated at the

end of a treatise without either making the volume too bulky

or requiring the other parts to be unduly curtailed. These re-

maining portions appear in the second volume.

In order to learn Statics it is essential to the student to work

numerous examples. Besides some of my own construction, I

have collected a large number from the University and College

Examination papers. Some of these are so good as to deserve to

rank among the theorems of the science rather than among the

examples. Solutions have been given to many of the examples,

sometimes at length and in other cases in the form of hints when

these appeared sufficient.

I have endeavoured to refer each result to its original author.

I have however found that it is a very difficult task to effect this

R. s. I. 6



VI PHEFACE.

with any completoiieHs. The references will show that I have

searched many of the older books and memoirs as well as some

of those of recent date to discover the Hrst menti<m of a theorem.

In this edition I have made many additions and have also

omitted several things which on after consideration appeared

to be of minor importance. The explanations also have been

simplified wherever there appeared to be any obscurity. For

the convenience of reference I have retained the order of the

articles as far as that was possible.

The latter part of the cha[)ter on forces in three dimensions

has been enlarged by the addition of several theorems and the

portions on five and six forces re-arranged. The chapter on

graphical statics also has been almost entirely rewritten.

An index has been added which it is hoped will be found

useful.

EDWARD J. ROUTH.

Petebhoose,

May, 1896.
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CHAPTER I.

THE PARALLKLOGRAM OF FORCF:s.

1. The science of Mechanics treats of the .action of forces on

bodies. Under the influence of these forces the bodies may either

be in motioii or remain at rest. That part of mechanics which

treats of the motion of bodies is called Dynamics. That part of

mechanics in which the bodies are at rest is called Statics.

If the determination of the motion of bodies under given

forces could be completely and easi.y solve(i, there would be iio

obvious advantage in this division of the subject into two parts.

It is clear that statics is only that particular case of dynamics in

which the motions of tlie bodies are equated to zero. But the

particular ctise in which the motion is zero presents itself as a

much easier problem than the general one. At the same time

this particular case is one of great importance. It is important

not merely for the intrinsic value of its own results but because

these are found to assist in the solution of the general case by the

help of a theorem due to D'Alembert, It has therefore been

generally found convenient to lead up to the general problem of

dynamics by considering first the particular case of statics.

2. Since statics is a particular case of dynamics we may begin

by discussing the first principles of the more general science. We
should consider how the mass of a body is measurefl, how the

velocity and acceleration of any particle are aftected by the action

of forces. The general principles having been obtained we may
then descend to the partii-ular case by putting these velocities

equal to zero. In this way the relationship of the two great

branches of mechanics is clearly seen and their results are fcumded

on a common basis.

H. s. I. 1
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3. There is another way of studying statics which has its own

advantages. We might begin by assiniiing some simple axioms

rehiting to the action of forces on bodies without introducing

any properties of motion. In this method we introduce no

terms or principles but those which are ccmtimially used in

statics, leaving to dynamics the study of those terms which are

peculiar to it.

Whether this is an advantageous method of studying statics or

not depends on the choice of the fundamental axioms. In the

first place they must be simple in character. In the second place

they must be easily verified by experiment. For examj)le we

might take as an axiom the proposition usually called the parallelo-

gram of forces or we might, after Lagrange, start from the

principle of work. But neither of these principles sati.sfies the

couilitions just mentioned, for they do not seem sufficiently

obvious on first acquaintance to command assent.

If we found the two parts of mechanics on a common basis,

that basis must be broader than that which is necessary to support

merely the principles of scatics. We have to assume at once all

the experimental results required in mechanics instead of only

those re(piired in statics. Now there is an advantage in intro-

ducing the %ndamental experiments in the order in which they

are wanted. We thus more easily distinguish the special necessity

for each, we see more clearly what results are deduced from each

experiment. The order of proceeding would be to begin with

such elementary axioms about forces as will enable us to study

their composition and resolution. Presently other experimental

residts are introduced as they are req\iired and finally when the

general problem of dynamics is reached, the whole of the funda-

mental axioms are summed up and consolidated.

In a treatise on statics it is necessary to consider both these

methods. We shall examine first how the elementary principles

of statics are connected with the axioms required for the more

general problem of dynamics, and secondly how they may be made

to stand on a base of their own.

4. In mechanics we have to treat of the action of forces on

bodies. The term force is defined by Newton in the following

terms.

An impressed force is an action exerted on a body in order to
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change its state either of rest or of uniform motion in a straight

line.

5. CharacteriBtio of a Force. When a force acts on a

body the action exerted has (1) a point of application, (2) a

direction in space, (3) magnitude.

Two forces are said to be equal in magnitude when, if applied

to the same particle in opposite directions, they balance each

other. The magnitudes of forces are measured by taking some

one force as a unit, then a force which will balance two unit

forces is represented by two units and so on.

6. The simplest appeal to our experience will convince us

that many at least of the ordinary forces of nature possess these

three characteristics. If force be exerted on a body by pulling a

string attached to it, the point of attachment of the string is the

point of application, and the direction of the string is the direction

of the force. The existence of the third element of a force is shown

by the fact that we may exert different pulls on the string.

All the causes which produce or tend to produce motion in a

body are not known. But as they are studied, it is found that

they can be analysed into simpler causes, and these simpler 'jauses

are seen to have the three characteristics of a force. If there be

any causes of motion which cannot be thus analysed, such causes

are not considered .as forces whose effects are to be discussed in

the science of statics.

7. There are other things besides forces which possess thes(^

three characteristics. These other things may bo used to help us

in our arguments about forces so far as their other properties are

common also to forces.

The most important of these analogies is that of a finite

straight line. Let this finite straight line be AB. One extremity

A will represent the point of application. The direction in space

of the straight line will represent the direction of the force and

the length of the line will represent the magnitude of the force.

Other things besides forces may also bu represented graphically

by a finite straight line. Thus in dynamics it will be seen that

bt)th the velocity and the momentum of a particle have direction

and magnitude and may in the same way be represented by a

finite straight line. One extremity A is placed at the particle,

1—2
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I

the direction of the Htraight lino represents the direction of thi-

velocity and the length represents the magnitude. Generally

this analogy is useful whenever the things considered obey what

we shall presently call the parallelogram law.

8. In order to represent completely the direction of a force by

the direction of the straight line AB, it is necessary to have some

convention to determine whether the force pulls A in the direction

AB or pushes^ in the direction BA. This convention is supplied

by the use of the terms positive and negative. The positive and

negative directions of straight lines being defined by some conven-

tion or rule, the forces which act in the positive directions of their

lines of action are called positive and those in the opposite direc-

tions are called negative. These conventions are often indicated

by the conditions of the problem under consideration, but they

usually agree with the rules adopted in the differential calculus.

Thus the direction of the radius vector drawn from the origin

is usually taken as the positive direction, and so on for all lines.

Sometimes instead of using the term positive, the direction or

sense of a force is indicated by the order of the letters, thus a force

.^^ is a force acting in the direction A to B, a force BA is a force

acting from B towards A.

9. The third element of a force is its magnitude. This is

represented by the length of the representative straight line. A
unit of force is represented by a unit of length on any scale we

please ; a force of n such units of force is then represented by

a straight Hue of n units of length.

10. Measure of a force. A force must be measured by its

effects. Since a force may produce many effects there are several

methods open to us. If we wish the measure of two equal ibrces

acting together to be twice that of a single force equal to either,

the effect which is to measure the force nmst be properly chosen.

We ma}' measure a force by the weight of the mass which it

will support. Placing two equal masses side by side, they will be

supported by equal foi'ces. Joining these together we see that a

double force will support a double mass. Thus the effect is

proportional to the magnitude of the cause.

We may also measure a force by the motion it will produce in

a given body in a given time. If by motion is here meant velocity
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then it may bo shown by the e.vporinients usii.illy tpioted to prove

the second hiw of motion that a donble force will produce a doubU'

velocity. So here also the eflFect chosen as the mojisure is pro-

portional to the magnitude of the cause. This measure recjuires

«ome experimental results, necessary for dynamics, but not u.sed

afterwards in statics.

If we agree to measure a force by the weight it will support

the unit will depend on the foice of gravity at the place where

the experiment is made. Such a unit will therefore present

several inconveniences. If also we measure a force by the velocity

generated in a unit of nuvss in a unit of time, it is necessary

to discuss how the.se other units are to be cho.sen.

It iH not ueceHsary for us, at this stage of our argument, to decide on the

best method of mb.-'suring a force. It will be i)resently seen that our etiuations

are concerned for the most part with the ratios of forces rather than with the

forces themselves. The choice of the actual unit is therefore unimportant at

present, and we can leave this choice until the proper occasion arrives. The

comparative effects of forces will then have been discussed, and the reader will

the better understand the reasons why any particular choice is made.

When therefore we speak of several forces ecpial to the weight of one, two or

three pounds (fee, acting? on a body and determine the conditions of ecpiilibriura,

we shall find that the same coh litions are true for forces equal to the weight of

one, two or three oz. &c., and generally if all forces in the same ratio.

11. Cue system of units is that based on the foot, pound, and

.second as the three fundamental units of length, mass, and time.

The unit force is that force which acting on a pound of matter for

one second generates a velocity of one foot per second. This unit

of force is called the poundal.

The foot and the pound are defined by certsiin standards kept

in a place of security for reference Thus the im[)erial yard is the

distance between two marks on a certain bar, preserved in the

Tower of L<mdon, when the whole bar has a temperature of

62'' Fah. The unit of time is a certivin known fraction of a mean
solar day.

The tinits committee of the British Association recommended

the general adoption of the centimetre the gramme and the

second as the three fundamental units of space, mass and time.

These they proposed should be distinguished from absolute units,

otherwise derived, by the letters c.G. s. prefixed, these being the

initial letters of the names of the three fundamental units. The

c. a. s. unit of force is called a dyne. This is the force which
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acting on a gramme for a second generates the velocity of a

centimetre per second.

It is found by experiment that a body, say a unit of mass,

falling in vacuo for one second acquires very nearly a velocity of

3219 feet per second. This velocity is the same as 981 17

centimetres per second. It follows therefore that a poundal is

about g'jth part of the weight of one pound, and a dyne is the

weight of g^th part of a gramme. These numerical relations

strictly apply only to the place of observation, for the force of

gravity is not the same at all places on the earth. The difference

between the greatest and least values of gravity is about j^^th of

its mean value.

The relations which exist between these and other units in

common use are given at length in Everett's treatise on units and

Physical Constants and in Lupton's nnmencal tables. We have

nearly

one inch = 2'54 centimetres, one pound = 453"59 grammes

It follows from what precedes that one poundal = 13825 dynes.

12. The parallelogram of velocitlei. This proposition is

preliminary to Newton's laws of motion.

The velocity of a particle when uniform is measured by the

space described in a given time. A straight line whose length is

equal to this space will represent the velocity in direction and

magnitude ; Art. 8. Suppose a particle to be earned uniformly

in the given time from to C, then OC
represents its velocity. This change of

place may be effected by moving the

particle in the same time from to .4

along the straight line OA, if while this

is being done we move the straight line OA (with the particle

sliding on it) parallel to itself from the position OA to the

position BC. The uniform motion of the particle from to ill

is expressed by the statement that its velocity is represented

by OA. The displacement produced by the uniform motion of the

straight line is expressed by the statement that the particle has

a velocity represented in dir. ntion and magnitude by either of the

sides OB or AC. It is evident by the properties of similar figures

that the path of the particle in space is the straight line 00.
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It follows that when a particle moves mth two siviultaneous

velocities represented in dij'ection and magnitude by the straight

lines OA, OB its motion is the same as if it were moved with

a single velocity rep7'csented in direction and magnitude by the

diagonal OC of the parallelogram described on OA, OB as sides.

This proposition is usually called the parallelogram of velocities.

Let a particle move with three Himultaneous velocitic!-" repre-

sented in direction and magnitude by the three straight lines

Oil,, OAi, OA3. We may replace the two velocities Oil,, OA^
by the single velociuy represented in direction and magnitude

by the diagonal 05, of the parallelogram described on Oil,, Oil,

as sides. The particle now move.s with the two simultaneous

velocities represented by 05, and Oil 3. We may again use the

same rule. We replace these two velocities by the single velocity

represented in direction and magnitude by the diagonal OB^

described on 05, and on Oilj as sides. We have thus replaced

the three given simultaneous velocities by a single velocity.

In the same way any number of simultaneous velocities may
be replaced by a single velocity.

If the simultaneous velocities represented by Oil,, Oil, &c.

were all altered in the same ratio, it is evident from the properties

of similar figures that the resulting single velocity will also be

altered in the same ratio.

Let the simultaneous velocities 0-4,, Oila &c. be such that

their resulting velocity is zero. It follows that if all the velocities

Oil,, OA^ &c. are altered in any, the same, ratio the resulting

velocity is still zero.

13. Newton's laws of Motion. These are given in the

introduction to the Principia.

L Every body continues in its state of rest or of uniform

motion in a straight line, except in so far as it may be compelled

by force to change that state.

2. Change of motion is proportional to the force applied

and takes place in the direction of the straight line in which

the force acts.

3. To every action there is always an equal and contrary

reaction; or the mutual actions of any two bodies are always

equal and oppositely directed.
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The full significance (»f these laws cannot be iindorHtofMi until

the student takes tip the subje<!t of dynainics. The exptirinients

which Huj^geat these laws, and their further verification, are best

studied in connection with that branch of the science, and are to

be found in books on elementary dyr ^h. The student who has

not already read some such treatise Jvised to aasume the truth

of these laws for the present. We snail accordingly not enter into

a full discussicm of them in this treatise, but we shall confine our

remarks to those portions which are required in statical problems.

14. 21ie first Uiw asserUs the inertnens of mdtter. A body at

rest will continue at rest unless acted on by some external forci*.

At first sight this may appear to be a repetition of the definition

of force, since any cause which tends to move a body at rest is

called a force. But it is not so. Here we Jis.sert as the result

of observation or experiment the inertness of each particle of

matter. It has no tendency to move itself, it is moved only by

the action of causes external to itself.

16. In the second lavj of motion the independence of forces

xuhich act on a particle is asserted. If the effect of a force is

always proportional to the force impres.sed it is clearly meant

that each force must produce its own etfect in direction and mag-

nitude as if it acted singly on the particle placed at rest.

Let us consider the meaning of this statement a little more

fully. Let a given force act on a given particle placed at rest at a

point and generate in a given time a velocity which we may
represent graphically by the straight line OA. Let a second force

act on the same particle again placed at rest at and generate in

the same time a velocity which we may represent by OB. If both

forces act simultaneously on the particle both these velocities are

generated. The actual velocity of the particle is then represented

by the diagonal OC of the parallelogram described on OA, OB as

sides, Art. 12. In the same way, if any number of forces act

simultaneously on a particle at rest, the law directs that we

are to determine the velocity generated by each as if it acted

alone for a given time. These separate velocities are then to

be combined into a single velocity in the manner described in

Art. 12. This single velocity is asserted to be the effect of the

simultaneous action of the forces.

Let a system of forces be such that when they act simul-
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taneously on a particle placed at rest the resulting vel(«*ity of

the particle is zero. These forces are then in ei|uilibriutn. Let

a second system of forces bo also such that when they act on

the particle p'iced at rest, the resulting velocity of the particle is

again zero. Then this second system of forces is also in ecjui-

librium. Let these two systems act simultaneotisly, then since

the forces do not interfere with each other, the resulting velocity

of the particle is still zero. We thus arrive at the following

important proposition.

Let us suppose that there are two systems of "trees each of which

when acting alone on a particle would be in equilibrium. Then when

both systems act simultaneously there will still be equilibrium.

This is sometimes called the principle of the superposition of

forces in equilibiium. When we are trying to find the conditions

of equilibrium of some system of forces, the principle enables us to

simplify the problem by adding on or removing any particular

forces which by themselves are in equilibrium.

Let the forces Pj, Pj &c. acting on a given particle for a given

time generate velocities y,, v.. &c. respect vely. If the same or

equal forces were made to act on a different particle the velocities

generated in the same time may be different. But since the effect

of each force is proportional to its magnitude the velocities gene-

rated by the several forces are to each other in the ratios of v, to

Vj to ^3 &c. If then a system of forces is in equilibrium when

acting on any one particle, that system will also be in equilibrium

when applied to any other particle (Art. 12).

10. We notice also that it is th? change of motion which is the effect of force.

A given force produces the same change of motion in a particle whether that

particle is in motion or at rest.

In this way we can determine whether a moving particle is acted on by any

external force or not. If the velocity is uniform and the path rectilinear there is

no force acting on the particle. If either the velocity ia not uniform, or the path

not rectilinear, there must be some force acting to produce that cliange.

Let two equal forces act one on each of two particles and generate in the same

time equal changes of velocity; these particles are said to have equal mass. If the

force acting on one particle must be n times that on the other in order to generate

equal changes of velocity in equal times, the mass of the first particle is n times that

of the second. It follows that the mass of a particle is proportional to the force

required to generate in it a given change of velocity in a given time. Now all bodies

falling from rest in a vacuum under the attraction of the ea.th are found to have

the same velocity at the end of the first second of time, Art. 11. We therefore infer

that the masses of bodies are proportional to their weights. The units of mass and
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force are no ohoiien thut tho unit of furoo acting on the unit of niAflM will Koierato C'

unit of velocity in a unit of time.

Tho product of the mann of a particle into it* velocity i calleil itH mnm^ntum.

It foUowH from what haH jiiHt been Haid that the cxpreHsion "change of motion"

roeanit change of momentum produooil in a giv«n time.

Thime rcNulta are peculiarly important in dynamics, l)ut in Htation, where the

particles aot<«d on are all initially at rcHt and remain ho, thoy have not tho name

Higniflcanco.

17. Ill the third law the principle of the trans missihiliti/ of

force is implied. The principle is more clearly stated in tlio re-

marks which Newton added to his hiws of motion. The law a.s.serts

the ecjuality of action and reaction. If a force acting at a point

A pull a body which has some point B held at rest, the reaction

at B is asserted to be equal and opposite to the force acting at A.

In general, when two forces act at different points of a body there

will be e({uilibrium if the lines of action coincide, the directions

of the forces are opposite, and their magnitudes equal.

From this we deduce that tuhen a force acts on a body, its

effect is the same ivhatever point of its line of action is taken as the

point of application, provided that point is connected with the rest of

the body in some invainable manner.

For let a force P act at A and let B be another point in its line

of action. We have just seen that the force P acting at A may
be balanced by an equal force Q acting at B in the opposite

direction. But the force Q acting at B may also be balanced by

an equal force P' acting at B in the same direction as P (Art. 1.5).

Thus the two equal forces P and P' acting respectively at A and

B in the same directions can be balanced by the same force Q.

Thus the force P acting at A is equivalent to an equal force P'

acting at B.

18. Statical Axioms. If we wish to found the science of

statics on a basis independent of the ideas of motion we require

some elenientary axioms concerning matter and force.

In the first place we assume as before the principle of the

inertness of matter.

We also require the two principles of the independence and

transmissibility of force.

The first of these principles is regarded as a matter of common
experience. When our attention is called to the fact, we notice
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that bodies at rest do not bejifin to move unloHH urged to do ho by

some iXturnal caiiHUH.

Tho other two require Homo elementary experimentH.

Let a body be acted (>n by two forces, each ecjual to P, and

having A, A' for their points of application. We may suppose

these to be applied by means of strings attached to tho body at

A and A' and pulled by forces each of

the given niagnitude. Let us also suppose

the body to be removed from the action

of gravity and all other forces. This

may be partially effected by trying the

experiment on a disc placed on a smooth

table or by suspending the body by a string attached at the proper

point, or the experiment might be tried on some body Hoating in

a vessel of water.

It is a matter of common experience that when the strings are

pulled there cannot be equilibrium unless the lines of action of

the forces acting at A and A' are on the same straight line.

The body acted on will move unless this coincidence of the lines

of action is exact.

This result is not to be regarded as obvious apart from

experiment. In the diagram the points of application A and A'

are separated by a space not occupied by the body. The forces

have therefore to counterbalance each other by acting, if we may
so speak, round the corner E. As the manner in which force is

transmitted across a body is not discu.ssed in this part of statics,

it is necessary to have an experimental result on which to found

our arguments.

Let us now suppose that two other forces each equal to Q are

applied at B and 1^ and have their lines of action in the same

straight line. These if they acted alone on the body without the

forces P, P' would be in equilibrium. Then it will be seen, on

trying the experiment, that equilibrium is still maintained when

both the systems act. Thus it appears that the introduction of

the two forces Q, Q' does not disturb the two forces P, P' so as to

destroy the equilibrium.

From the results of this experiment we may deduce exactly as

in Art. 17, the principle of the tmnsmissibility of force.
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19. Rigid bodies. Let two or more bodies act and react on

each other and be in equilibrium under the action of any forces.

The principle of the transmissibility of force asserts that any one

of these forces may be applied at any point of its line of action.

If the line of action of any force acting on one of the bodies be

produced to cut another, it does not follow that equilibrium will

be maintained if the force is trausterred from a point on the first

body to a point on the second.

It is therefore to be understood that when a force is transferred

from any point in its line of action to another the two points are

supposed to be rigidly connected together. When the points of

application of the forces sire connected in some invariable manner,

the body acted on is said to be rigid. Such are the bodies we

shall in general sneak of, though for the sake of brevity wt shall

often refer to them simply as bodies.

20. It is sometimes convenient to form the conditions of

equilibrium of the whole system (or any part of it) as if it were

one body. That this may be done is evident, since the mutual

actions and reactions of the several bodies are equal and opposite.

But we may also reason thus ; the system being in a position of

equilibrium, we may suppose the points of application of the

forces to be joined in some invariable manner. This v,'ill not

disturb the equilibrium. The system being now made rigid we
may form the conditions of equilibrium. These are generally

necessary and sufficif nt for the equilibrium of the system regarded

as a rigid body, but though necessary they are not generally

sufficient for its equilibrium when regarded as a collection of

bodies.

31. When a force acts on a rigid body, the principle of the transmissibility of

force asserts that the body transmits its action from one point of application to

another, but does not itself alter the magnitude of the force. It appears, therefore,

that 60 far as this principle and that of the independence of forces are concerned

the conditions of equilibrium depend on the forces and not on the body.

If a system of forces be in equilibrium when acting on any body, that system

will also be in equilibrium when transferred to act on any other body, provided

always the points of application are connected by some kind of invariable relations.

It follows that no definition of the body acted on is necessary when the forces

in equilibrium are given. The forces must have something to act on, but all we

assume here about this something, is that it transmits the force so that the axioms

enunciated may be taken as true. For this reason, it is sometimes said that

statics is the science which treats of the equilibrium and action of forces opart from

the subject matter acted oh.
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22. Resultant force. When two forces act simultaneously

on a particle and are not in equilibrium, they will tend to move
the particle. We infer that there is always some one force which

will keep the particle at rest.

A force equal and opposite to this force is called the resultant

of the two forces and is equivalent to the forces. It is obvious

that the resultant of two forces acting on a particle must also act

on that particle. It is also clear that its line of action is inter-

mediate between those of the two forces.

Let Pi, P.,,...Pn be any number of forces acting on the same

particle. The two forces Pi, P., have a resultant, say Qi. We may
remove Pj and P., and replace them by Qi. Again Qi and P, may
be replaced by their resultant Q-, and so on. We finally have all

the forces replaced by a single force. This single force is called

their resultant.

If the forces of a system do not all act at the same point,

it may happen that there is no single force which could balance

the system. If so, the system is not equivalent to any single

I'esultant force.

23. To find the resultant of any number of forces acting at a

point and having their lines of action in the same straight line.

Let be the point of application, and first let all the forces

act in the same direction Ox. Since each acts independently of

the others, the resultant is clearly the sum of the separate forces

and it acts in the direction Ox.

If some of the forces act in one direction Ox and others in the

opposite direction say Ox', we sum the forces in these two direc-

tions separately. Let A' and X' he these separate sums, and let

X be the greater. Then by Art. 15 we can remove the force X'

from both sets of forces. The whole system is therefore equivalent

to the single force X — X' acting in the direction of X.

By the rule of signs this is also equivalent to a single force

represented by the negative quantity X'~A acting in the opposite

direction, viz. that of X'.

The necessary and sufficient condition that a system of forces

acting at a point and having their lines of action in the same

straight line should be in equilibrium is that the algebraic sum of

the forces should be zero.
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24. Parallelogram of Forces. To find the resultant of two

forces acting at a given point and inclined to each other at any

angle. Let the two forces act at the point O aivi let them he repre-

sented in direction and magnitude by tiuo straight lines OA, OB
drawn from the point O (Art. 7). Let us now construct a paral-

lelogram having OA, OB for two adjacent sides and let (3C be that

diagonal which passes through the point O. Then the resultant of

the two forces will be represented in direction and magnitude by the

diagonal OC.

Several proofs of this important theorem have been given.

As the "parallelogram law" is the foundation of the whole theory

of the composition and resolution of forces, it will be useful to

consider more than one proof, though the student at first reading

should confine his attention to one of them.

25. Newton's proof of the parallelogram of forces.

This proof is founded on the dynamical measuie of force. Its

principle has already been explained in Art. 15. It is repeated

here on account of its importance. The figure is the same as that

used in Art. 12 for the parallelogram of velocities.

26. Suppose two forces to act on the particle placed at in

the directions OA, OB. Let the lengths OA, OB be such that

they represent the velocities these forces could separately generate

in the particle by acting for a given time. Since each force

acts independently of the other, it will generate the same

velocity whether the other acts or does not act. When both act

the particle has at the end of the given time both the velocities

represented by OA and OB. These are together equivalent to

the single velocity OC. But this is also the measure of the

force which would generate that velocity. Thus the two forces

measured by OA, OB are together equivalent to the single force

measured by OG.

27. Duchayla's proof of the parallelogram of forces.

This proof is founded on the principle of the transmissibility of

force, Art. 17. It has been shown in Art. 18 that this principle

can be made to depend only on statical axioms.

To prove the proposition we shall use the inductive proof We
shall assume that the theorem is true for forces of p and m units

inclined at any angle, and also for forces of p and n units inclined
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at the same angle ; we shall then prove that the theorem must be

true for forces oip and m + n units inclined at the same angle.

Let tlie forces p and m act at the point and be represented

in direction and magnitude by the straight lines OA and OB.

On the same scale let

BD represent the force /^c 7\ 7-0

n in direction and

magnitude. Let BD
be in the same straight

line with OB, then the

length OD will repre-

sent the force m + n in direction and magnitude, Art. 23. Let

the two parallelograms OBCA, BDFG be constructed and let OG,

OF, BF be the diagoiials.

By hypothesis the resultant of the two forces p and m acts

along OC. By Art. 18, we transfer the point of application to C.

We now replace this resultant force by its two components p and

m. These act at C, viz. p along BC produced and m along CF.

Transfer the force p to act at B and the force m to act at F.

Since BC is equal and parallel to OA, the force p acting at B
is represented by BC. The force n may be supposed also to act

at B and is represented by BD. Hence by our hypothesis the

resultant of these two acts along BF. Transfer the point of

application to the point F.

The two forces p and m + n are therefore equivalent to two

forces acting at F. Their resultant must therefore pass through

F, Art. 22. For the same reason the resultant passes through 0,

and the forces have but one resultant, Art. 22. Hence the

resultant must act along OF. But this is the diagonal of the

parallelogram constructed on the sides OA, OD which represent

the forces p and m + n.

It is clear that the resultant of two equal forces makes equal

angles with each of these forces. The resultant of two equal forces

therefore acts along the diagonal of the parallelogram constructed

on the equal forces in the manner already described. Thus the

hypothesis is true for the equal forces p and p. By what has just

been proved it is true for the forces p and 2p and therefore for

p and 8/) and so on. Thus it is true for forces p and rp where r is

any integer. Again the hypothesis has just been proved true for
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forces rp and p ; hence it is true for rp and 2p and so on. Thus

the hypothesis is true for forces I'p and sp, where r and s are

any integers. Thus the proposition so far as the direction of the

resultant is concerned is established for any commensurable forces.

28. We have now to find the directimi of the resultant luhen the

forces are incommensurable. Let OA, OB represent in direction

and magnitude any two incommensurable forces jj and q, then if

the diagonal OC does not represent the resultant, let OG be the

direction of the resultant. The straight line OG must lie within

the angle AOB and will cut either EC between B and C or AC
between A and 6'; Art. 22. Let it cut BC between B and C.

Divide OB into a number of equal parts each less than GO and

measure off from OA beginning at portions equal to these until

we arrive at a point K where AK is less than GC. Draw GH,
KL parallel to A C. Since

OB and OK are commen-

surable the forces repre-

sented by these have a

resultant which acts along

the diagonal OL. Thus

the forces p and q acting

at are equivalent to two

forces, one of which acts

along OL and the other is the force represented by KA. The
resultant of these two must act at in a direction lying between

OL and OA. But OG lies outside the augle AOL, hence the

assumption that the direction of the resultant is OG is impossible.

But OG represents any direction other than OG for then only is it

impossible to divide OB into equal parts each less than CG. Thus
the resultant force must act along the diagonal whether the forces

be commensurable or incommensurable.

We have given a separate proof for incommensuM^le forces.

But this is unnecessary. The theorem has been proved for all

forces whose ratio can be expressed by a fraction. In the case of

incommensurable forces we can still find a fraction which differs

from their true ratio by a quantity less than any assigned

difference, ^n the limit the theorem must be true for incom-

mensurable forces.

J

<
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29. To prove that the diagonal representi, the magnitude of the

resultant as well as its direction.

Let OA and OB represent the two forces, and let DC be the

diagonal of the parallelogram

OACB. Take OD in CO pro-

duced of such length as to repre-

sent the resultant in magnitude.

Then the three forces OA, OB,

OD are in equilibrium and each

of them is equal and opposite to

the resultant of the other two.

Construct on OB, OD the

parallelogram OBED. Since OA is equal and opposite to the

resultant of OB and OD, OE is in the same straight line with OA
and therefore OE is parallel to GB. By construction 00 is in the

same straight line with OD nd is therefore parallel to EB. Thus

EG is a parallelogram. Hence OG is equal to EB and therefore

to DO.

Thus the diagonal OG represents the resultant of the two forces

OA, OB in magnitude.

30. Ex. Assuming that the diagonal represents the magir'*ude of the result-

ant, show that it also represents the direction.

As before, let OA, OB, OD represent forces in equilibrium. It is given that

OA = OE, OC~OD, and it is to be proved that AOE, DOC are straight lines.

Since AB and BD are parallelograms, OA=BC, OD= BE. Hence in the quadri-

lateral EOCB the opposite sides are equal in length. The quadrilateral is therefore

a parallelogram. (For the triangles OEB, BOO have their sides equal each to each.)

It follows that OE is parallel to BG, and is therefore in the same straight line

with OA.

31. Biatorlcal Summary. The principles on which the science of statics

has been founded in former times may be reduced to three.

There is first the principle used by Archimedes, viz., that of the lever. It is

assumed as self-evident or as the result of an obvious experiment, (1) that a

straight horizontal lever charged at its extremities with equal weights will balance

about a support placed at its middle point, (2) that the pressure on the support is

the sum of the equal weights. Starting with this elementary principle, and

mensuring forces by the weights they would support, the conditions of equilibrium

of a straight lever acted ou by unequal forces were deduced. From this result by

the addition of some simple axioms the other prOj,osition of statics may be raade

to follow. The truth of the first elementary principle named above is perhaps

evident from the symmetry of the figure, but Lagrange points out that the second

is not equally evident with the first.

The second principle which has been used as the foundation of statics is that

R. S. I. 2
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of the parallelogram of forces. In l')86, Stevinua enunciated the theorem of the

triangle of forces. Till this time the science of statics had rested on the theory of

the lever, but then a new departure became possible. The simplicity of the

principle and the ease with which it may be applied to the problems of mechanics

caused it to be generally adopted. The principle finally became the basis of modern

statics. For an account of its gradual development we refer the reader to .-1 Short

History of Mathematics, by \Y. VV. R. Ball.

Many writers have given or attempted to give proofs of this principle which are

independent of the idea of motion. One of these, that of Ducliayla, has been

reproduced above, as that is the one which seems to have be'n best received.

There is another, that of Laplace, which has attracted considerable attention.

This is founded on principles similar to the proofs of Bernoulli and O'Alembert.

It is assumed as evident that if two forces be increased in any, the same, ratio the

magnitude of their resultant will be increased in the same ratio, but its direction

will be unaltered.

In comparing these proofs with that founded on the idea of motion, we must

admit the force of a remark of Lagrange. He says that, in separating the principle

of the composition of forces from the composition of motions, we deprive that

principle of its chief advantages. It loses its simplicity and its self-evidence, and

it becomes merely a result of some constructions of geometry or analysis.

The third fundamental principle which has been used is that of virtual

velocities. This principle had been used by the older writers, but Lagrange gave,

or attempted to give, an elementary proof and then made it the basis of the whole

science of mechanics. This proof has not been generally received as presenting

the simplicity and evidence which h*^ had admired in the principle of the compo-

sition of forces.

I



CHAPTER II.

FORCES ACTING AT A POINT.

The triangle of forces.

32. In the last chapter we arrived at a fundamental pro-

position, usually called the parallelogram of forces, which we
shall be continually using. Experience shows it is not always

convenient to draw the parallelogram, for this complicates the

figure and makes the solution cumbersome. Several artifices

have been invented to enable us to use the principle with facility

and quickness. In this chapter we shall consider these in turn.

33. If OA, OB represent two forces P and Q acting at a

point 0, we know that their resultant is represented by the

diagonal OC of the parallelogram constructed on those sides.

Now it is evident that AG will represent the force Q in direction

and magnitude as well as OB, though it will not represent the

point of application. This however is unimportant if the point of

application is otherwise indicated. Thus the triangle OAC may
be used instead of the parallelogram OACB.

As the points of application are supposed to be given inde-

pendently it is no longer necessary to represent the forces by

straight lines passing through 0. Thus we may represent the

2—2

I
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]

forces P, Q, R acting at both in direction and magnitude by the

sides of a triangle DEF provided these sides are paralh^l to the

forces and proportional to them in magnitude.

It is clear that all theorems about the parallelogram of forces

may be immediately transferred to the triangle. We therefore

infer the following proposition called the triangle of forces.

If two forces acting at some point are represented in direction

and magnitude by the sides DE, EF of any triangle, the third side

DF ivill represent their resultant.

If three forces acting at some point are represented in direction

and magnitude by the three sides of any tinangle taken in order

viz., DE, EF, FD, the three forces are in equilibrium.

34. When three forces in one plane are given and we wish to

determine whether they are in equilibrium or not, we see that

there are two conditions to be satisfied.

1. If they are not all parallel two of them must meet in some

point 0. The resultant of these two will also pass through the

same point. The third force must be equal and opposite to this

resultant and must therefore also pass through the same point.

Hence the lines of action of the three forces nitjat meet in one

point or be parallel.

2. If the forces are not all parallel, straight lines can be

drawn parallel to the forces so as to form a triangle. The

magnitudes of the forces must be proportional to the sides of

that triangle taken in order.

The case in which the forces are all parallel will be considered

in the next chapter.

35. We may evidently extend this proposition further. Sup-

pose we turn the triangle DEF through a right angle into the

position D'E'F', the sides will then be perpendicular instead of

parallel to the forces. Also if the forces act in the directions DE,
EF, FD they now act all three outwards with regard to the

triangle D'E'F'. If the forces were reversed they would all act

inwards. We have thus a new proposition.

If threeforces acting at some point be represented in magnitude

by the sides of a triangle, and if the directions of the forces he

perpendicular to those sides and if they act all inwards or all

outtvards, the three forces are in equilibritim.

f
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Instead of turning the triangl(> through a right angle, we

might turn it through any acute angle. We thus obtain another

theorem. If three forces acting at a point be represented in

magnitude by the sides of a triangle and if their directions uiakf^

equal angles with the sides taken in order, the three forces are in

equilibrium.

In using this theorem, it is sometimes found to be inconvenient

to sketch the triangle. We then put the theorem into another

form. The sides of the triangle are proportional to the sines of

the opposite angles. This relation must therefore also hold for

the forces. Hence wo infer the following theorem.

Three forces acting on a body in one plane are in equilibrium

if{\) their lines of action all meet in one point, (2) their directions

are all toiuards or all from that point, (3) the magnitude of each is

proportional to the sine of the angle between the other tiuo.

36. Polygon of forces. We may further extend the triangle

of forces into a polygon of forces. If several forces act at a point

we may represent these in magnitude and

direction by the sides of an unclosed polygon

BE, EF, FG, GH &c. taken in order. The

resultant of DE, EF is represented by DF.

That of DF and FG is DG and so on. Thus

the resultant is represented by the straight

line closing the polygon. It is clear that the

sides of the polygon need not all be in the same plane.

If several forces acting at one point be represented in direction

and magnitude by the sides of a closed polygon taken in order, they

are in equilibrium.

37. Ex. 1. Forces in one plane, whose magnitudes are proportional to the

sides of a closed polygon, act perpendicularly to those sides at their middle points

all inwards or all outwards. Prove that they are in equilibrium.

Let ABGD &c. be the polygon. Join one corner A to the others C, I) &o.

Consider the triangle ADC thus formed. The forces across AB, BG meet in the

centre of the circumscribing circle, and have therefore for resultant a force propor-

tional to AC acting perpendicularly to it at its middle point. Taking the triangles

ACD, ADE &c. in turn, the final resultant is obviously zero.

Ex. 2. Forces in one plane, whose magnitudes are proportional to the cosiues

of half the internal angles of a closed polygon, act inwards at the corners in direc-

tions bisecting the angles. Prove that they are in equilibrium.
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Apply alonR each Ride of a polygon two equal and oppoHito foicos, Hay each equal

to F, and let thefle act at the corners. The '..vo which act at the corner A have a

resultant 2FnoB!jA whoso direction bisects that an({le. Those resultants must

therefore be in equilibrium.

as. Ex. 1. Forces represented by the numbers 4, ti, are in equilibrium; find

the tanRonts of tlie halves of the angles between the forces.

By drawing parallels to these forces we construct a triangle of the forces. The
angles of this triangle can be found by the ordinary rules of trigonometry.

Ex. 2. Forces represented by 0, R, 10 lbs. are in equilibrium ; find the angle

between tlie two smaller forces. How must the least force be altered that the

angle between the other two may be halved?

Ex. 3. If 0.1, on represent two forces, b'"^w that their resultant is represented

by twice OM, where ^1/ is the middle point of Ali.

Ex. 4. Two constant equal forces act at the centre of an ellipse parallel to the

directions SP and PH, where .S' and // are the foci and P is any point on the curve.

Show that the extremity t. ^ the line which represents their resultant lies on a circle.

[Math. Tripos, 1883.]

Ex. 5. Forces P, Q act at a point O, and their resultant is II ; if any transversal

cut the directions of the forces in the points L, M, S respectively, show that

^'
[Math. Tripos, 1881.1

OL OM ON

I

.i I

Clear of fractions and the equation reduces to the statement that the area LOM
is the sum of the areas LON, MOS.

Ex. 6. A particle is in equilibrium under three forces, viz., a force i*' given

in magnitude, a force F' given in direction, and a force P given in magnitude and

"irection. Find the lines of action of F by a geometrical construction.

If OA represent P, draw Ali parallel to F', and describe a circle whose centre is

O and whose radius represents F in magnii,ude.

Ex. 7. AISCD L a tetrahedron, P is any point in DC, and Q any point in AD.
Prove that a force represented in magnitude, direction, and position by PQ, can be

replaced by four components in AH, BD, DC, CA in one and in only one way, and

find the ratios of these components. [St John's Coll., 1887.]

Ex. 8. Lengths liD, CE, AF are drawn from the corners along the sides BC,

CA, AB of a triangle AliC ; each length being proportional to the side along which

it is drawn. If forces represented in magnitude and direction by AD, BE, CF
acted on a point, show that they would be in equilibrinm. Conversely if the forces

AD, BE, CF act at a point and are in equilibrium, then BD, CE, AF are pro-

portional to the sides.

39. Parallelepiped of forces. Three forces acting at a

point are represented in direction and magnitude by three straight

lines OA, OB, OC not in one plane. To show that the residtant is

represented in direction and magnitude by the diagonal of the

parallelepiped constructed on the tnree straight lines as sides.

I
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OD. If ('K bo the parallel diagoDivl of the

opposite face, it is cK-ar by geometry that

0( 'ED will be a parallelogram. The resultant

of the forces lepresented by OC, 01) will

therefore^ be OA', i.e. thi* diagonal of the

parallelepiped.

Wo may also deduce the theorem from Art. 30. The reatiltant of the three

forces repreHcuted by DA, AD, I)K is reprenented by the Htrai>?ht line whicli closes

the polygon OADK, i.e. it is OK.

40. Three methods of oblique resolution.

(1) Any three directions (not all in one plane) being given,

a force R represented by O/i' may be replaced by three forces

A"^, Y, Z, acting in the given directions. The force R is then said

to be resolved in these directions and the forces X, V, Z are called

its components. The magnitudes of the components are found

geometrically by constructing the parallelepiped whose diagonal is

R and whose sides OA, OB, OC have the given directions.

(2) When the resultant OE is given, each component may be

found by resolving perpendicularly to the plane containing the other

two. Thus suppose the component along 0(' of a force R acting

along OE is required. Let 00, OE make angles d, y respectively

with the plane AOB, then, since the perpendiculars from C and E
on that plane are equal, OC sin d = OE sin y. The component Z
along OC is therefore given by ^ sin ^ = iJ sin 7.

(3) A third method of effecting an oblique resolution is given

in Arts. 51 and 53.

Ex. 1. If six forces, acting on a particle, be represented in magnitude and direc-

tion by the edges of a tetrahedron, the particle cannot be at rest. [Math. T., 1859.]

.
Ex. 2. Four forces acting at a point are in equilibrium, and e<^iual straight

lines are drawn from along their directions. Prove that each force is proportional

to the volume of the tetrahedron described on the lines drawn along the other three

forces.

Method of Analysis.

41. We have seen that any force may be replaced by two

others, called its components, which are inclined at any angle to
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i:j

oftch othor which may iippcur suitable. But it is found by

tixperiencc that when a force has to be resolved it is generally

more useful to resolve it into two components which arv at right

angles. When therefore the component of u force is spoken of it

is meant, unless it is otherwise stated, that th«) other component

is at right angles to it. By referring to tht; figure of Ar*. 33, we

see that the; parallelogram OAC'Ii becomes a rectangle. The two

components of the force 0(7 are Of*, cos COA and Of*, sin COA.

We may put this result into the form of a working rule. 1/ a

force R act at in the direction 00, its component in any direction

Ox is R cos COx. Its component in the opposite direction Ox' is

R cos COx'. In the same way the component of R perpendicular

to Ox is R sin COx.

It is convenient to have some short name to distinguish the

rectangular components of a force from its oblique components.

The name resolute for the components in the fiist case has been

suggested in Lock's Elementary Statics,

42. Two forces Pi, 1\ act at a point 0. To find the position

and magnitude of their resultant.

Let Ox, Oy be any two rectangidar axes, and let a,, a, be the

angles the forces P^, P^ make with the axis of x. The sums of the

components parallel to the axes are

X = Pi cos a, + P. cos a,,,

F = P, sin flj + P., sin a^.

If these are the components of a ,' .je R whoso line of action

makes an .angle a with the axis of x, we have

X = Rcosa, Y= R sin a.

We easily find by adding together the squares of X and Y that

R' = Pi' + Pi + Wi P. cos 6,

where d = oii-ai, so that 6 is the angle between the directions

of the forces P,, P.,. This result also follows from the parallelogram

of forces. For the right-hand side is evidently the square of the

<liagonal of the parallelogram whose sides are Pj and P.,.

The direction of the resultant is also easily found, for we have

_ Y Pi sin Oi + P.. sin a.^

tan a = -Ty= y-, i.' .X Pi cos «i + y a cos Oa
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49. Ex. 1, Two foro«fl P, Q act at an angle a and have a resultant 72. If each

force be iiioreasod by /{, prove that the new renultant makes with R an angle whuiu

(/'-^)Hina
tangent is [St John's Ooll., 1880.]

P + Q + li + (P + Q)a(Mm

Take the line of action of the resultant R for the axis of x.

Ex. 2. Forces each G(|uitl to F act at a )x>int parallel to the sides of a triangle

ARC. If R be their resultant, prove that R* = F* (3 - 2 cos /I - 2 cos R - 2 cos C).

Ex. 8. The resultant of P and (^ is R, it Q he doubled R is doubled, if ^ be

reversed, R is also doubled ; show that P : Q : R :: s/2 : ^S :^2. T^t John's Coll.]

44. Ani/ number of forceft act at a point in any directions.

It is required to find their resultant.

Take any rectangular axes Ox, Oy, Oz. Let P,, I\, P, &c. be

the forces, (a,/9,7i), (a,/9a73) &c. their direction angles. The sums

of the components of these parallel to the axes are

X = Pi cos o, + Pi COS a.j -h . . . = tP cos a,

Y= Pi COS /9, + P, cos ^, + . . . = SP cos ^,

Z = Pi cos 7, + Pj, cos 7a + . . . = SP cos y.

If these are the components of a force R whose direction

angles are (a/57) we have

RcoHa = X, Pcos/fci= Y, Rcoay = Z.

By a known theorem in solid geometry

cos' a + cos* ^ + cos* 7=1.

Hence E' = X' + Y' + Z',

cos a cos ^ _ cos 7 _ 1

~T~ ~ F" ~ T" ~ (X'TY^+W)i

'

Thus both iJ and its direction cosines have been found.

If the conditions of equilibrium are required it is sufficient and

necessary that R = 0. This gives the three conditions

Z = SPcosa = 0, F=2Pcos/9 = 0, -^=SPcc'7 = 0.

45. If the resolved parts of the forces Py, P.^ dtc. along any three directions

OA, OB, OC not all in one plane are zero, tliey are in equilibrium.

Let the axis Oz coincide with 00 and let the plane xOz contain OA. Since

the resolved part along Oz is zero, we have Z=0. Since the resolved part along

OA is zero, we have Xeo3xOA=0, Since xOA cannot be a right angle without

making OA, OC coincide, we have .Y=0. Lastly since the resolved part along OB
is zero we find Y cob yOB =0. This gives y=0.

46. The magnitude and direction ofR may also be expressed

in aform, independent of coordinates in tlie following manner.
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By a known theorem in solid geometry if Bk be the angle

between the straight lines whose direction angles are (a,/9,7i)

(oo/Sv/a) with the usual convention as to direction, then

cos 6y, = cos «, cos Of,, + cos /3i cos /3... + cos 7, cos 7.2.

Adding together the squares of the expressions for X, Y, Z we

have R" = Pj- (cos" a^ + cos" /3, + cos- 71 ) + &c.

+ 2P1P3 (cos fli cos a.. + cos y3i cos 0., + cos 71 cos 7...) + &c.

= Pr + P,- -»- &c. + 2P, P, cos e,, + &c.

This gives the magnihtde of R.

To determine the line of action of R, we shall find the angles

^1, <j>n &c. which its direction makes with the directions of the

forces Pi , P.J &c. The axes of coordinates being perfectly arbitrary

;

let us take the axis of x to be coincident with the line of action of

the force P,. Then a = ^1, «] = 0, a^ = ^12 &c., the equations

R cos 0. = X = SP cos a

become R cos 0, = Pj + P^ cos 0,2 + P, cos Oy^ + &c.

In the same way by taking the axis of w along the force P^

we find R cos ^3 = Pi cos ^12 + Po + P3 cos 603 + ...

and so on. Thus the direction of R has been found.

47. Polyhedron of forces. The equations of Art. 44 have a geometrical

meaning which is often useful. Let any closed polyhedron be constructed, let

A^, Ao &c. be the areas of its faces. Let normals be drawn to these faces, each

from a point in the face all outwards or all inwards, and let ^1, d., &c. be the angles

these normals make with any straight line which we may call the axis of z. Let us

now project orthogonally all these areas on the plane of xi/. The several projections

are .i^icos^i, A„coaff.2&(i- Since the polyhedron is closed the total projected

area which is positive is equal to the total negative projected area. We therefore

have AiCoae^ + A„coa0., + ... = O.

Similar results hold for the projection on the other coordinate planes. Thus we

obtain three equations which are the same as the equations of equilibrium already

found, except that we have A^, A„ &c, written for P,, P., &c. We therefore have

the following theorem. If forces acting at a point be represented in magnitude by

the areas of the faces of a closed polyhedron and if the directions of the forces be

perpendicular to those faces respectively, acting all imvards or all outivards, then

tliese forces are in equilibrium.

\B. By using the theory of determinants we may put the results of Art. 46 into

a more convenient form. Let it be required to find the resultant of any three forces

acting at a point. To obtain a symmetrical result we shall reverse the resultant

and speak offour forces in equilibrium.

Let Pj, Pa, P,, P4 be four forces in equilibrium. Putting i?=0, we have found
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point which will be found very useful both in geometrical and

analytical reasoning.

Let us represent the forces P,, P^ &c. in direction by the

straight lines 0^4,, OA., &c. To represent their magnitudes we

shall take lengths measured along these straight lines, thus the

force along OA^ is represented by p^.OAi, that along OA^ by

j[>j . OA^, and so on. The advantage of inti'oducing the numerical

multipliers pi, p., &c. is that the extremities A-^, A^ &c. of the

straight lines may be chosen so as to suit the figure of the problem

under consideration. It is evident that this is equivalent to

representing the forces by straight lines on different scales, viz.

the scales p^, p^ &c. of force to each unit of length.

Taking for origin, let {x^y^z^), {x„y.,z.^ «&c. be the coordinates

of the points A^, A., &c. We have already proved that the com-

ponents of the resultant are

X = SP cos a =1p. OAi cos a = 1px\

F=SP cos ^ ^lpy\.
Z=XP cosy =1pz}

Let us take a point G whose coordinates (xyz) are given by the

-_ ^/^^
z =

Spz

.(1).

.(2).equations

It follows at once that

X = xXp, Y= y^p, Z= zip.

These equations imply that the resultant of the forces is repre-

sented in direction and magnitude by OG . tp.

This point G is known by a variety of names. It is called the

centre of gravity, or centroid or mean centre of a system of particles

placed at Jj, A., whose masses or weights are proportional to

Pi, P-2
&c.

The result is, ifforces acting at a point he represented in

direction by the straight lines OAi, OA^ &c. and in magnitude by

Pi . OAi, p., . OA., <i-c., then their resultant is represented in direction

by OG and in magnitude by 'S.p . OG, where G is the centroid of

masses propoHional to pi,p., <ix. placed at Ai,A^ dx. This theorem

is commonly ascribed to Leibnitz.

We notice that forces represented in magnitude and direction

by pi. OAi, p.,. OA, (t'C, are in equilibrium when is the centroid

of masses proportional to pi, p^ <ix., placed at Ai, A.^ d'c.

I

I
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Conversely, a force R, acting along OG, may be resolved into

three forces Pi, P.,, P3, which act along three given straight lines

passing through 0, by making G to be the mean centre of masses

placed at convenient points A^, A.., A^, on those straight lines. If

i>i. Pi> Pa s^re those masses, the components Pj, P., P;, are given by

pi.OAi 'p..OA., ps.OA^ (p\+pl+p3)0G'

In using this theorem we may draw some or all of the straight

lines 0-4 1, 0-4 2 &c. in the opposite directions to the forces. If

this be done we simply regard the p's of those straight lines as

negative.

When some of the p's are negative, it may happeri that Sjt) = 0.

In this case the centroid is at infinity and this representation of

the resultant though correct is not convenient. The components

along the axes are still given by the expressions X = ^px, Y= ^py,

Z = ^pz which do not contain any infinite quantities.

69. The utility of this proposition depends on the ease with which the point

G can be found when A^, A^, &c., are given. The working ride is that the distance

of G from any plane of reference, taken as the plane of .ry, is given by the formula

-Lpz

cussed in the chapter on the centre of gravity.

The properties of this point and its positions in various cases are dis-

53. Ex. 1. The centroid G of two particles p^ , p., placed at two given points

^1, A2, lies in the straight line A^A., and divides it so that p, .A^G^p., .AM.

Take AiA^ as the axis of x, ^, as origin and let AiA.,= a. Then .Cj — 0, ar..= o,

yj = 0, 2/2=0. Using the working rule we have

^_ P]Xi + p„.r., _ p.^a

lh+P-2 Pl+Pi'
y= PiVi+PdJi

P\+Pi
:0.

Hence G lies in A^A^ and since x= AiG we find 2^1 . A^G=p.,{AiA.^- Afi)=p.,. A.,G.

This theorem enables us to resolve a force P which acts along a given straight

line OG into two directions OA^, OA.^, which are not necessarily at right angles.

The components Pj , Pg are given by

Pi . OAi Ps • OA. (jJi +2>.j) OG

where Pi, p^ are the distances of G from A.,, A^^ taken positively ivhen measured

inwards.

Ex. 2. Prove that the centroid of three masses j;, , p.^, p.^, placed at the corners

of a triangle is the point whose areal coordinates are proportional to Pi,p<, P:i.

When the masses are equal this point is briefly called the centroid of the triangle.

If a, p, 7 are the distances of a point G from the sides BC, CA, Ali of a

triangle taken positively when measured inwards, and j;, q, r are the perpendiculars

from the corners on the same sides, the ratios x= alp, y = plq, z=yjr are called the
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area! coordinates of G. It is evident that .c, ij, z are also proportional to the areas

of the triangles liGC, CGA , A Gli respectively. Also .t + y + c = 1.

Taking any side AB as the axis of reference we deduce from the working rule

(Art. 52) that the distance of the centroid from it is y=j).^rjs where » =;Ji +2>o +|).i

.

Similarly a—Pypfa, ^=pji\»- It follows that x, y, z are proportional to^'j, /Jo, Pj,

Ex. 3. A force P acting at the corner I> of a tetrahedron intersects the

opposite face ABC in a point G whose areal coordinates referred to the triangle

ABG are (xyz). If the components of F along the edges DA, DB, DC are Pj , P.,, P,

P, _ P, __P^ _ P
P^°^® x.DA~y.DB~z.DC~DG'

Ex. 4. Any number of forces are represented in magnitude and direction by

straight lines A^A^', A.4.,',...A,^A,^' and G, G' are the oentroids of tha points

Ji, A.,,...A,^ and A^', A.,',...A^. Show that these forces tiansferred parallel to

themselves to act at a point have a resultant which is represented in magnitude

and directiuo by n . GG'. [Coll. Ex. , 1889.]

The group of forces A A' is equivalent to the three groups AG, GG', G'A', Art. 36.

The first and last are separately in equilibrium, Art. 51.

Ex. 6. Three forces in one plane, acting at A, B, C, are represented by AD,

BE, CF where D, E, F a'e their intersections with the sides of the triangle ABC.
Sliow that these are equivalent to three forces acting along the sides AB, BC, CA

,,, , . , ,,, /CD CE\ /AE AF\ ^ fBF BD\

,

of the triangle represented by ( 1~ )
*'>

( ~h ^ )
" ^ \

~~- )

Thence show that if BDja=CEjb= AFIc = K, these three forces are statically

equivalent to the three forces {1-2k)c, (1-2k) a, {l-2K)h acting along the sides

of the triangle.

Prove that the centroid of equal particles placed at D, E, F, coincides with that

of the triangle. Thence show that the forces represented by OD, OE, OF, (where

O is any point) have a resultant whose magnitude and line of action are indepen-

dent of the value of k.

^ Ex. 6. A particle in the plane of a triangle is acted on by forces directed

to the mid-points of the sides whose magnitudes are proportional directly to

the distances from those points and inversely to the radii of the circles escribed

to those sides. Find the position of equilibrium. [Math. Tripos, 1890.]

The point is the centre of the inscribed circle.

V" Ex. 7. A, B, C, D are four small holes in a vertical lamina, and four elastic

strings of natural lengths OA, OB, OC, OD are attached to a point in the lamina,

their other ends being passed through --1, B, C, D respectively and attached to

a small heavy ring P. Assuming that the tension of an elastic string is a given

multiple of its extension, prove that when the lamina is turned in its own plane

about the locus of P in the lamina will be a circle. [Coll. Ex., 1888.]

Ex. 8. A quadrilateral ABCD is inscribed in a circle whose centre is 0,

forces proportional to i,BCD^2ii.0BD, aACD^2aOAC, aABD^2aOBD,
A ABC^2 A AC, act along OA, OB, OC, OD respectively, the signs being

determined according to a certain convention, show that the forces ar< in equi-

librium. [Math. Tripos, 1889.]

V Ex. 9. Three forces P, Q, R act along three straight lines DA, DB, DC not in

cue plane; if their resultant is parallel to the plane ABC, prove that

PIDA + QjDB +RIDC= 0. [St John's Coll., 1882.]

1-
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Ex. 10. Assuming that the force of the wind on a sail is proportional to some

power of the difference of the velocities of the wind and boat resolved normally to

the sail, determine if the boat, by properly adjusting the sail, could be made to

travel quicker than the wind in a direction making a given angle with the wind,

and find the limits of the angle.

1/ Ex. 11. ABCDEF is a regular hexagon, and at A forces act represented in

magnitude and direction by AB, 2AC, 3AD, iAE, 5AF, Show that the length of

the line representing their resultant is ^'d6lAB. [Math. Tripos, 1880.]
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Equilibrium of a particle under constraint.

54. Distinction between smooth and rough bodies. Let a

particle under the influence of any forces be constrained to slide

along an infinit 'y thin fixed wire. Thsre is an action between

the particle and the curve. Let this force be resolved into two

components, one acting along a normal to t!ie curve and the

other along the tangent. The latter of these is called friction.

By common experience it is found to depend on the nature of the

materials of which the wire and particle are made. When this

component is zero or so small that it can be neglected the bodies

are said to be smooth. When it cannot be neglected the conditions

of equilibrium are more complicated and will be found in another

chapter. For the present we shall confine our attention to smooth

bodies. Similar remaiks apply when a particle is constrained to

remain on a surface. In all such cases the constraining curve or

surface is called smooth when the action betiueen it and the particle

is along the normal to that curve or surface.

55. If the particle be a bead slung on the curve, the bead can

only move in the direction of a tangent drawn to the curve at the

point occupied by the bead. The necessary and sujficient condition

of equilibrium is that the component of the forces along the tangent

to the curve at the point occupied by the particle is zero.

If the particle rest on one side of the curve the action of the

curve on the particle will only prevent motion in one direction

along the normal. It is therefore also nececnry for equilibrium

that the external forces shoidd press the particle against the curve.

If a particle rest on a smooth surface at any point, the

component of the forces along every tangent to the surface at

that point must be zero. In other words, the resultant force at

a position of equilibrium must act normally to the surface in such

a direction as to press the particle against the surface.

I
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66. The form of a cui've being given by its equations; to find

the positions on it at which a particle would rest in equiWyrium

under the action of any given forces.

Suppose the curve to be given by its Cartesian equations, and

let the axes of reference be rectangular. Let x, y, z be the

coordinates of the particle when in a position of equilibrium.

Let JT, F, Z be the compcnents of the forces parallel to these axes.

Let s be the arc measured from ''ome fixed point on the curve

up to the point occupied by the particle. Then resolving the

forces X, F, Z along the tangent, we have by Art. 41,

ds ds as

If the equations of the curve are given in the form

^{x,y,z)^^, ylr(x,y,z) = 0,

we have with the usual notation for partial differential coefficients

<f>gi(iX + (h,,dy + <f>^z = 0, yfr^dx + yjfydy + yjr^z = 0.

Eliminating the ratios dwidy : dz, we have the determinant

J=iZ, F, Z =0.

I

i>x, <f>y, <j>z

This determinantal equation, joined to the two equations of the

curve, suffice in general to find the values of x, y, z. There may
be several sets of values of these coordinates, and these give all

the positions of equilibrium.

57. Theform of a surface being given by its equation; to find

the point or points on it at which a particle would rest in eqiu-

libHum under the action of given forces.

Let the surface be given by its Cartesian equation f{x, y,z) =
Avhen referred to rectangular axes. By Art. 55 the direction

cosines of the resultant force must be proportional to those of

the normal to the surface. We therefore have

X/f,= Y/fy = Z/f.

Joining these two equations to the given equation of the surface,

we have three equations to find {x, y, z).

58. Pressure on the curve or surface. It follows from Art. 54

that in the position of equilibrium the resultant force acts normally
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to find
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and is equal to the pressure. If then R be the j/rossure on the

curve or surface, its magnitude is given by R" = X- + Y- + Z- and its

direction is determined by the direction cosines XjR, Y/R, ZIR.

60. In these propositions the components A', \\ Z are supposed to be given

functions of the coordinates ;r, y, z. lu mnny cases these components are respec-

tively partial dififerential coefficients with regard to .r, y, z of some function V

called the potential of the forces. Thus A'=-,- , Y= -j- , X= j (1).
ax dy dz

The condition of equilibrium of a particle resting on a smooth curve defined by its

Cartesian equations ^=0, i//= has been found above and is equivalent to the

assertion that the Jacobian of {V, 4>, ip) vanishes at the points of equilibrium.

If we equate the potential V to an arbitrary constant c we obtain a system of

surfaces. Each of these is called a level surface. By equations (1) A', Y, Z are

proportional to the direction-cosines of the normal to a level surface. The resultant

force at any point, therefore, acts along the normal to the level surface which

passes through that point. If then a particle is comtrained to rest on any smooth

cnne or surface, the positions of equilibriuni are those jioints at which the cime or

surface touches a level surface.

A curve or surface may be such that every point of it is a position of equilibrium.

In this case the resultant force is everywhere normal to the curve or surface. If

then the particle be constrained by a curve, the curve must lie on one of the level

surfaces, if by a surface, that surface must be a level surface,

60. Another interpretation may be found for the condition of equilibrium

Xdx+Ydy + Zdz= 0.

Substituting for A', Y, Z from (1), this is equivalent to dK=0, i.e. at a position of

eciuilibrium the potential of the forces is a maximum or minimum.

61. Ex. 1. A heavy particle is constrained to slide on a smooth circle whose

plane is vertical. A string, attached to the particle, passes through a small ring

placed at the highest point of the circle and supports an equal weight at its other

end. Prove that the system is in equilibrium when the string between the ring and

the particle makes an angle 60° with the vertical.

Ex. 2. The ends of a string are attached to two heavy rings of masses m, m\
and the string carries a third ring of mass M which can slide on it ; the rings m, m'

are free to slide on two smooth fixed rigid bars inclined at angles a and /3 to the

horizontal. Prove that if be the angle which either part of the string makes with

the vertical, then cot0 : cot/3 : coia —M : jl/ + 2wi' : M + 'lm. [St John's, 1890.]

^ Ex. 3. A weigh' P, attached by a cord to a fixed point O, rests against a -<

smooth curve in the same vertical plane with 0; show that, (1) if the pressure on

the curve is to be independent of the position of the weight on it, the curve mujt be

ii circle
; (2) if the tension in the cord is to be independent of the position of the

weight, the curve must be a conic section with as focus. [Math. Tripos, 1886.]

The verticr.l OA drawn through 0, the normal PA to the curve and the string

PO form a triangle whose sides are proportional to the forces which act along

them. In case (1) the ratio )f OA to AP is constant; it follows that P lies on
a circle or on a straight line passing through 0. In case (2) the ratio of OA
to OP is constant ; it follows that P lies on a conic or on a horizontal straight line

through 0.

l^

m

R. S. 3
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Ex. 4. Two small rings without weight slide on the arc of a smooth vertical

circle ; a string passes through both rings and has three cquul weights attached to

it, one at each end and one between the pegs. Show that in equilibrium the rings

must be 30° distant from the highest point of the circle. [Math. Tripos, 1853.]

Ex. 6. A smuu>.l i elliptic wire is placed with its major axis vertical, and a bead

of given weight ]F V' capable of sliding on the wiru but is maintained in equilibrium

by two strings passing over smooth pegs at the foci and sustaining given weights, of

which the higher exceeds the lower by JF/c, where e is the eccentricity. Prove that

the pressure on the curve will be a maximum or minimum when the bead is at the

extremities of the major axis or when the focal distances have between them the

same ratio as the two sustained weights. [Christ's Coll., 1865.]

Ex. 6. If four equal particles, attracting each other with forces which vary a.s

the distance, slide along the arc of a smooth ellipse, they cannot be in equilibrium

anless placed at the extremities of the axes; but if a fifth equal particle be fixed at

any point and attract the other four according to the same law, there will be

equilibrium if the distances of the four particles from the semi-axis major be the

roots of the equation

'

5a^--6b-) ~ (3a^-5bY^

where p and q arc the distances of the fifth particle from the axis minor and axis

major respectively.

Ex. 7. A surface is such that the product of the distances of any point on it

from two fixed points A and B is equal to the sum of those distances multiplied by

a constant. A particle constrained to remain on the surface is acted on by two

equal centres of repulsive force situated at A and B. If each force varies as the

inverse square of the distance, show that the paiticle is in equilibrium in all

positions.

Ex. 8. A heavy smooth tetrahedron rests with three of its faces against three

fixed pegs and the fo'irth face horizontal : prove that the pressures on the pegs are

proportional to the areas of the corresponding faces. [Math. Tripos, 1869.]

{y'-b^)[y

Wofk.

62. Let a force P act at a point A of a body in the direction

AB and let us suppose the point A to move into any other posi-

tion A' very near A. Let <}> be the angle the direction AB of the

force makes with the direction AA' of the displacement of the

point of application, then the product P . AA' . cos
<f)

is called the

work done uy the force. If for ^ we write the angle the direction

AB of the force makes with the direction A'A opposite to the

displacement, the product is called the work done against the force.
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ART. 65.] WORK. 86

Let US drop a perpendicular A'M on AB\ the work daiie by the

force is also equal to the product P . AM, where AM is to be esti-

mated positive when in the direction of the force. Let P' be the

resolved pa.*t of P in the direction of the displacement ; the work

is also equa! to P' . AA'. These expressions for the work of a

force are clearly equivalent, and all three are in continual use.

63. The forces which act on a particle generally depend on

the position of that particle. Thus if the particle be moved fron.

A to any ])oint A' at a, finite distance from A, the force P will not

generally remain the same either in direction or magnitude. For

this reason it is necessary to suppose the displacement A A' to be

so small a quantity that we may regard the force as fixed in

direction and magnitude. Taking the phraseology of the dif-

ferential calculus this is expressed by saying that the displacement

A A' is of the first order of smrJl quantities.

We may suppose any finite displacement of the point A to be

made along a curve beginning at A and ending at some point C.

Let ds be any element of this curve, and when the particl j has

reached this element let P be the resolved part of the forcf along

ds in the direction in which .s- is m.easured. Then by th i above

definition JP'ds is the :mm of the separate works done by l'ij^ force

P as the particle travels along each element in turn. Thii sum i&

defined to be the ivhole work in any finite displacement, if s be

measured from any point on the curve, the limits of this

integral will evidently be 5 = OA and s = OG.

64. The resolved displacement vlJ.' cos </> is sometimes called

the virtual velocity of the point of application. The product

P .AA' .cos, <^ is called the virtual moment or virtual work of the

force. But these terms are restricted to infinitely small displace-

ments. When the displacement is finite, the integral of the

virtual works is called the work.

65. It is often convenient to construct a proposed displace-

ment by several steps. Thus a displacement AA' may be con-

structed by moving A first to D and then from D to A' (see figure

in Art. 62). Supposing AD and DA' to be infinitely small so that

the direction and magnitude of the force P continue constant

throughout, it is easy to see that the work due to the whole displace-

ment AA' is the sum of the works due to the displacements AD and

3—2

i

rJ^
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DA'. For if we drop the perpendiculars DN and A'M on the

direction of the force, the separate works with their projier signs

will be r.AN and P.NM. The sum of these is P.AM, which

is the work due to the whole displacement AA'.

If the displacement A A' is finite, and the force P remains

unaltered in direction and magnitude, the work due to the

resultant displacement is equal to the sum of the works due to

the partial displacements AD, DA'.

66. Suppose next that several forces act at the point A ; then

as A moves to A' each of these will do work. The sum of the

works done by each separately is defined to be the work done

by all the forces collectively.

If any number of forces act at a point A, the sum of the works

due to any small displacement A A' is equal to the work done by

their resultant.

The work done by any one force P is equal, by definition,

to the product of -4^4' into the resolved part of P in the direction

o{ AA'. The work done by all the forces is therefore the product

AA' into the sum of their resolved parts. By Art. 44 this is

equal to il^' into the resolved part of the resultant, i.e. is equal

to the work done by the resultant.

67. This theorem leads to another method of stating the

conditions of equilibrium of any number of forces Pi, P^ &c. acting

at the same point A.

Case 1. If the particle at A is free to move in all directions it

is necessary for equilibrium that the resultant force should vanish.

The virtual work of the forces P^, P.. &c. must therefore be zero in

whatever direction the particle is displaced.

Conversely, if the virtual work for any displacement AA' is

zero it immediately follows that the resolved part of the resultant

in that direction is also zero. If then the virtual work of

Pi, Pn &c. is zero for any three different displacements not all in

one plane, the three resolved parts of the resultant in those

directions are zero. The particle is therefore in equilibrium.

68. Case 2. If the particle is constrained to move on some

curve or surface, then besides the forces Pj, P., &c. the particle is

acted on by a pressure R which is normal to the curve or surface.

The forces which maintain equilibrium are therefore Pi, P. &c.

^ff^^RK'*J»M*'
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AKT. 69.] WOKK. H7

and R. Then by Ca.se 1 their virtual work is zero for all .suiull

displacenicnts.

If the displacement given to ..I is along a tangent to the curve

or is situated in the tangent jdane to the surface, the angle <^

between thi; reaction R and the displacement is a right angle.

The virtiud work of that force is therefore zero. It immediately

f«)llows that for all such displacements the virtual work of /^,, R.,

tic. is zero.

Conversely, suppo.se the particle constrained to move on a

curve; then if the virtual work for a displacement along the

ti'.ijgent is zero the resolved part of the resultant force in that

direction is also zero. The particle is therefore in equilibrium.

Next, suppose the particle constrained to move on a surface;

then if the virtual works for any two displacements, not in the

same straight line, are each zero, the resolved parts of the

resultant f;'rce in those directions are each zero. The particle

is therefore in etiuilibrium.

69. Ex. 1. Deduce from the principle of virtual velociticH the conditions of

equilibrium obtained in Art. i56, for a particle constrained to rest on a curve.

The forces on the particle are .Y, Y, Z ; the displacement is r.'n, the projections of

(h on the forces are dx, dy, dz. Multiplying eacli force by the corresponding pro-

jection, we see at once that the condition of equilibrium is Xdx + Ydij + Zdz = 0.

Ex. 2. Two small smooth rings of equal weight slide on a fixed elliptical wire,

of which the axis major is vertical, and are connected by a string passing over a

smooth peg at the upper focus ; prove that the rings will rest in whatever position

they may be placed. [Math. Tripos, 185S.]

Let P, Q be the two rings, W the weight of either. Let T be the tension of the

string, I its length. Let S be the peg, let x, .r' be the abscissne of P, Q measured

vertically downwards from .S' ; let r=SP, r'= SQ, then r + r'= l. Since the ring P
is in equilibrium, we have by the principle of virtual work Wdx -Td>=iO. The

positive sign is given to the first term because x is measured in the direction in

which W acts ; the negative sign is given to the second term because T acts in

the opposite direction to that in which r is measured. In the same way we find

for the other ring Wdx' - Tdr' = 0. Since dr= -dr' this gives as the condition

of equilibrium Wdx + Wdx'= 0. As . et we have not introduced the condition that

the wire has the form of an ellipse. If 2c be its latus rectum and e its eccentricity,

we have r= c + ex, r' = c + ex'. It easily follows that dx + dx'= 0, so that the condition

of equilibrium is satisfied in whatever position the rings are placed.

Ex. 3. A small ring movable along an elliptic wire is attracted towards a given

centre of force which varies as the distance : prove that the positions of equilibrium

of the ring lie in a hyperbola, the asymptotes of which are parallel to the axi \ of

the ellipse. [Math. Tripos, 1865.]

Ex. 4. Two small rings of the same weight attracting one another with a force

varying as the distance, slide on a smooth parabolic shaped wire, whose axis is
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vorticiil iiiul Vftrtcx upwardH : nhnw tliat if tlioy nro in oquilibriuiii in ntiif Hvtiiiiit'trioal

|M)Mition, tlwy are ho in i-nrii aui\ (('oil. Kx., IHH?.]

Kx. T). Twu mutiiully attracting or repeliinf^ particles arr plaocil in a paraliolic

Kroove, and connected by a thread which paHHt>H through a Minall ring at the focus;

prove that if tlie partiden [w at rent, the line joining tiic vortex to the focus will bo a

mean proportional between the abHciMHiu ineaHurod from tlie vertex, [^[ath. T. IHiVi.]

Ex. <). A weiglit ir it) drawn up a rough conical hill of height li and slope a

and the path ciitH all the lines of greatest slope at an angle (i. If the friction be /x

times the iiornial j)res><ure prove that the work done in attaining the summit will lie

ir/i(l ( /i cot o sec /S). [St Jihn's Coll. 1HS7.J

Astatic Equilibniim.

70. Suppose thiit thrci' forces l\ Q, li ivcting at a /mnt are in

oquilibiiuiu. Wo iniiy cloarly turn the forces round that i)oint

through any angle without disturbing the equilibrium if only the

magnitudes of the forces and the angles between them are un-

altered. Since a force may be supposed to act at any point of

its line of action these three forces may act at any points A, B,C
in their respective initial lines of action. If now we turn the

forces supposed to act at A, B, C, each round its own point of ap-

plication, through the same angle it is clear the equilibrium will

be disturbed unless these points are so chosen that the lines of

action of the forces continue to intersect in some point (Art. 34).

It is evident that instead of turning the forces round their

points of application we may turn the body round any point through

any angle. In liiis case each force preserves its magnitude

unaltered, continues to act parallel to its original direction

supposed fixed in space, while the point of application remains

fixed in the body and moves with it. When equilibHum is un-

disturbed by this rotation, it is called Astatic.

71. Let A and B be the points of application of the forces

P and Q. Let their lines of action intersect in 0. Then as the

forces turn round A and B, in the plane AOB, the angle between

them is to remain unaltered. Hence

will trace out a circle passing through A
and B. I'he resultant of these two forces

passes through and makes constant

angles with both OA and OB. It there-

fore will cut the circle in a fixed point C.

This resultant is equal and opposite to the

force called R.

-V .
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// therefore three forces P, Q, R, actiuf) at three pointfi A, B, C,

iiiter.sect un the circle circmnscinbxny AliU, and be in eqinlibriitm,

the et/iiilibriina will not be distn.-bed by tuniiiiff the forces round

their points of application through any angle in the plane of the

forces. Thirt proof is given in Moigno's Statics, p. 22iS.

It' tlio forcuH /' and Q are parallel, the circle of conHtriiotion licconieB the Htraiglit

line All. Tile point (' lioa on All, and the nincH of the an^leH AOC, HOC are

ultiniutcly proportional to AC and Cll. Honoe AC in to ('// iiivcrflel.v m the ratio

of the forccH tending to A and li. If the foreeH /', <^, IniHideH being parallel, are

equal and oppoHite, the force li actn at a point on the Htraight line at inlinity.

72. When two forces /*,, 1\ act at given points ^l, li the

j)oint at which the re.sultant acts, however the forces are turned

round, is called the centre of the forces. If a third force P.^ act at

a third given point G, we may combine the resultant of the Hrst

two with this force and thus obtain a re-dtant acting at another

fixed point in the body. This is the centre of tlu- thrct! forces.

Thus we may proceed through any number of forces. We see that

we can ob+nin a single force acting at a fixed point of the body which

is the resultant of any number of given forces acting at any given

fixed points in one plane. This single force will continue to be

the resultant and to act at the same point when all the forces are

turned round their points of application through any angle. This

force is called their astatic resultant.

73. Aatatlc triangle of forces. This propositiou leads us to another method

of using the triangle of forces. Referring to the figure of Art. 71, we see that the

angles ABC, AOC and 11AC, HOC beiug angles in the same segment are equal each

to each. If therefore P, Q, li are in equilibrium, they are proportional to the sinea

of the angles of the triangle ABC. It follows that P, Q, R are also proportional

to the sides of the triangle ABC. Thus

P •.BC=Q.CA = R: AB.

The points A, B, C divide the circle into three segments AH, BC, CA. If be

taken on any one of the segments, say AB, then the forces whose lines of action

pass through A and B must act both to or both from A ana li. The third force

acU from or to C according as the first two act towards or from A and B. We
deduce the following proposition.

Let three forces act at the corners of a triangle ABC; they will be in equilibrium

if (1) their viagnitudes are proportional to the opposite s/V'e«, (2) their lines of action

meet in any point on the circumscribing circle, (3) their directions obey the rule

given above. Also the equilibrium will not be disturbed by turning all the forces

round their points of application through any, the same angle, but %vithout altering

their magnitudes. The forces are supposed to act in the plane of the triangle.

74. Ex. 1. Any number of forces P, Q, R, S &c. in one plane are in equilibrium,

and their lines of action meet in one point 0. Through describe any circle
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cutting the lines of action of the forces in A, B, C, D &c. If these points are regarded

as the points of application of the forces, prove that the equilibrium is astatic.

Ex. 2. If CC is drawn parallel to the opposite side AB to cut the circle in C",

prove that the forces P, Q, R make equal angles with the sides BC\ C'A, AB of the

triangle BC'A. Thence deduce from Art. 35 the conditions of equilibrium.

Ex. 3. If a, /3 are the angles the forces P and Q make with their resultant It,

prove that the position of the centres of the forces is given by

AE _ BE _ AB
cot /3

~ cot a ~ cot a + cot /3

'

where CED is d: "n from G perpendicular to AB.

Ex, 4. Let the forces act from a point O towards A and B where O is on the

left or negative side of AB as we look from A towards B. If p, q are the coordinates

of A, p', q' of B referred to any rectangular axes, prove that the coordinates of the

central point of A and B are given by

(cot o + cot /3) a; =j> cot o +p' cot /3 +((/'- g)|

(cota + cotj8)// = (/cota + (?'cot|3- (p' - p)\
'

If the forces P and Q are at right angles, prove also that

(P'+Q^) x=pP^+p'Q^+(q' - q) PQ)

{P-+Q-^y-^qP^ + q'Q-^ -ip' -p) Pq\
'

These aie obtained by projecting AE, EC on the coordinate axes.

Da ^!

Stable and Unstable Equilibnum.

75. Let us suppose a body to be in equilibrium in any

position, which we may call A, under the action of any forces.

If the body be now moved into some neighbouring position B
and placed there at rest, it may either remain in equilibrium in

its new position (as in Art. 71) or the body may begin to move

under the action of the forces. In the first case the position A is

called one of neutral equilibrium. In the second case the equili-

brium in the position A is called unstable or stable according as

the body dui'ing its subsequent motion does or does not deviate

from the position A beyond certain limits. The magnitude of these

limits will depend on the circumstances of the case. Sometimes

they are very restricted, so that the deviation permitted must be

infinitesimal ; in other cases greater latitude may be admissible.

The determination of the stability of a state of equilibrium is

a dynamical problem. We must according to this definition

examine the whole of the subsequent motion to determine the

extent of the deviations of the body from the position of equili-

brium. But sometimes we may settle this question from statical

considerations. If the corditions of the problem are such that for

all displacements of the body from the position A within certain

,
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limits, the forces tend to bring the body back to that position,

then the position may be regarded as stable for displacements

within those limits. If on the other hand the forces tend to

remove the body further from the position A, that position may
be regarded as unstable. This cannot however be strictly proved

to be a sufficient condition until we have some dynamical equa-

tions at our disposal. Properly we shoiild, for the present,

distinguish this as the criterion of statical stability or statical

instability. But for the sake of brevity we shall omit this dis-

tinction, except when we wish to draw special attention to it.

76. Two equal given forces P, Q act on a body at two given points A, J}, and

are in equilibrium. They therefore act along the straight line A B. Let the body

be now turned round through any angle less than two right angles and let the

forces continue to act at these points in directions fixed in space. It is required to

find the condition of stability.

Referring to the figure, it is evident that the forces tend to restore the body to

its former position if each force acts from the point of application of the other force,

while they tend to move the body further from that position if each force acts

towards the point of application of the other. In the first case the equilibrium

is stable, in the second unstable.

If the body be turned round through two right angles, the forces will again be

in equilibnrm. The position of stable equilibrium will then be changed into one

of unstable eq lilibrium and conversely.

P-^

A G
1?_ DB

77. Ex. 1. A smooth circular ring is fixed in a horizontal position, and a small

ring sliding upon it is in equilibrium when acted on by two forces in the directions

of the chords PA , PD. Prove that, if PC be a diameter of the circle, the forces are

in the ratio of IW to AC. If A and B be fixed points and the magnitude of the

forces remain the same, show that the equilibrium is unstable. [Math. Tripos, 1854.]

Ex. 2. Three given forces P, Q, R act on a body in one plane at three given

points A, B, C and are in equilibrium. When the body is disturbed, the forces

continue to act at these points parallel to directions fixed in space and their

magnitudes are unaltered. Find the condition of stability. See also Art. 221.

In the given position of equilibrivmi the lines of action of the forces must meet

in some point O. If this point lie on the circle circumscribing ABC we know by

Art. 71 that the equilibrium is neutral.

Next let the point Olie within the segment of the circumscribing circle coutained

by the angle ACB, Let P and Q act towards A, B while R acts from C towards O,
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Describe a circle about OAB cutting OC in C Then since O is within the

circumscribing circle, C is without that circle. By Art. 71, the forces P and Q are

astatically equivalent to a force equal and oppo-

site to R but acting at C. Thus the whole

system is equivalent to two equal forces acting

at C and C and each tending away from the

point of application of the other. The equi-

librium is therefore stable for all rotatory dis-

placements less than two right angles. In the

same way if the forces P, Q act respectively from

A and B towards O the equilibrium is unstable.

If the point O lie outside the circumscribing circle, but within the angle AGB,

the point C' ' is within that circle. The conditions are then reversed, and therefore

if the forces P, Q tend from O towards A , B the equilibrium is unstable.

If the point O lie within the triangle ABC, all the three forces must act from O

or all the three towards O. By the same reasoning as before we may show that in

the former case the equilibrium is stable, in the latter unstable.

Summing up, we have the following result. If two at least of the forces in

equilibrium act from the common point of intersection O towards their points of

application A, B, C; then the equilibrium is stable if O lie within the circle

circumscribing ABC and unstable if lie outside that circle. If two at least of the

forces act from their points of application towards O, these conditions are reversed.

Ex. 3. A particle is in equilibrium at a point O on a amootli surface under the

action of forces which have a potential, and Oz is the common normal to the

surface of constraint and that level surface which passes through O. The particle

being displaced through a small arc OP — ds, prove that the resolute F of the force

of restitution in the direction of the tangent at P to OP is i''= ( -;— ) Zds, where
\P PJ

Z is the equilibrium pressure and p, p' are the radii of curvature of the normal

sections of the two surfaces made by the plane zOP.

Let z =PN be a perpendicular on the plane of xy ; A'', 1", Z' the resolved forces

at P, and <p the angle xON. Since dsjp is the angle tlie tangent at P to the normal

section zOP makes with OX, we have when the squares of small quantities arc

neglected F= - X' cos <f>- Y' sin tp - Z'dsjp,

where we may write for Z' its equilibrium value. Since z is of the second order

A', y, at P have the same values as at JV ; hence the two first terms have the same

values for all surfaces which touch the plane at 0. But ^=0 when the surface is a

level surface, hence these terms= Zdsjp'.

It follows that when the level surface intersects the surface of constraint the

equilibrium is stable for some displacements and unstable for others, the separating

line being the intersection. If the level surface lies wholly on one side of the

surface of constraint, the equilibrium is stable for all displacements or unstable

for all.

We suppose that the particle is constrained, either to return to its position of

equilibrium by the way it came, or to recede further on that course. The constraining

force F' acts perpendicularly to the section zOP, and by considering the angle of

torsion at P, we find that its magnitude is F'=Zds sin <p cos d>{ + —
,

)

\Pi Pi Pi Pi /

where Pi, p^: Pi , p/ are the principal radii of curvature of the two surfaces.

*



CHAPTER III.

PARALLEL FOIK'ES.

78. To find the resultant of two parallel forces.

Let the two parallel forces be P, Q and let them act at A, B,

which of course are any points in their lines of action. In order

to obtain a point of intersection of the forces at a finite distance

let us impress at ^, 5 in opposite directions two equal forces

of any magnitude, each of which we may represent by F, Art. 15.

The resultants of P, F and Q, F act respectively along some

straight lines AO, BO which intersect in 0.

Thus we have replaced the two given forces by two others,

each of which may be supposed to act at 0. Draw OG parallel

to AP, BQ to cut AB in C. Consider the force acting at along

OA. . We may resolve this force (as in Duchayla's proof of the

parallelogram of forces) into two forces, one equal to P acting along

OC and the other equal to F acting parallel to CA. In the same

Avay the other force acting at along OP is equivalent to Q acting

along OC and F acting at parallel to GB.

The two forces each equal to F balance each other and may be

removed. The whole system is therefore reduced to the single

force P + Q acting along OC.

The sides of the triangle OCA are parallel to P, F and their

OC P
J ,,

OC Q ,..

jj2=y- In the same way jj^^j- We

AC _BC _ AB
Q ~ P ~P+Q-

The resultant of the parallel forces P, Q is P + Q, and its line

of action divides every straight line AB which intersects the forces

in the inverse ratio of the forces.

If the forces P, Q act in opposite directions the proof is the

resultant. Hence

therefore have



44 PARALLEL FORCES. [chap. in.

U

hi

I '

same, but the figure is somewhat different. If Q be greater than

P, BO will make a smaller angle with the force Q than OA makes

with the force P. Hence will lie within the angle QBC. In

this case the magnitude of the resultant is Q — P and its line of

action divides AB externally in the inverse ratio of P to Q.

We also notice that, A, B being any two points in the lines of action of the

parallel forces P, Q, the point C through which the resultant acts is the ^entroid

of two particles placed at A and B whose masses are proportional to the forces

which act at those points (Art. 53).

79. Conversely any given force R acting at a given point G
may he replaced by tivo parallel forces acting at two arbitrary

points A and B, tuhere A, B, G are in one straight line. Let us

represent these forces by P and Q.

Let GA = a, GB = b, and let these be regarded as positive

when measured from G in the same direction. We then find

P + Q = R, P=^L.R, Q^
a

R.
b—a ' a—b

If A and B lie on the same side of G, a and b are positive : in this

case the force nearer R acts in the same direction as R, the other

foi'ce acts in the opposite direction and is therefore negative. If

G lie between A and B, one of the two distances a, b is negative

;

in this case both forces act in the same direction as R.

80. To find the resultant of any number of parallel forces

Pi, P.2 d'c. acting at any points A^, Ao d'c. when referred to any

axes.

Let (*"i2/i^i), {xny.yZ.^ &c. be the Cartesian coordinates of the

points Ax, A., &c. The forces Pj, P„ acting at ^i, A^ are equiva-

lent to a single force P, + P., acting at a point G^ situated in

AiA, such that P^. yl,Ci = Po. ^oC, (Art. 78). Let {^.'niQ be

the coordinates of Cj. Since A^G^, A.,Gi are in the ratio of their

projections on the axes of coordinates we have
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Similar results apply for the other coordinates of f\.

The force Pj + Pi acting at C^ and a third force P^ acting at A.,

are in the same way equivalent to Pi + P.. + P,, acting at a point

C-i whose coordinates (^...rj.^^i) are given by

(P, + P, + P,) ^, =r. (P. + P,) ^, + P„r,

:-- PiXi + P.,X, + P.,.%;

with similar expressions for t/o and ^2-

Proceeding in this way we see that th-'^ resultant of all the

forces is Pj + Pn + ... and if (^rj^) be the coordinates of its point of

application, we have

(P, + P, + &c.) ^= Pi.T, + P,a;., + &c.

(P, + P, + &c.) V = l\h + PiVi + &c.

(Pi + Po + &c.) ^ = P,^. + P,z, + &c.

These equations are usually written

^ =
l.Px

XP ' V
_1PIJ
- 2P ' r=

tPz
SP

81. It might be supposed that this proof woulil either fail or require some
modification if at.y one of the partial resultants 1\ +/'._,. P^ + P., + P.^ Ac. were zero,

for then some of the quantities ^, , ^o Ac. would be infinite. The final result also

might be thought to fail if SP=0. But any proposition proved true for general

values of the forces must be true for these limiting cases, though its interpretation

may not be understood until we come to the theory of couples.

We may avoid this apparent difficulty by a slight modification of the proof.

Let us separate the forces which act in one direction from those which act in the

opposite direction, thus forming two groups. Let us suppose the sums of the

forces in the two groups are unequal. If we compound together first all the forces

in that group in which the sum is greatest and then join to these one by one the

forces of the other group, it is clear that we shall never have any of the partial

resultp.nts equal to zero and no point of application of any such partial resultant

will be at infinity. If the sums of the forces in the two groups are equal, the

centre of parallel forces is infinitely distant.

82. The expressions for the coordinates (^r)^} are the .same as

those given in Art. 51 for the coordinates of the centroid ; we

therefore deduce the Allowing rule.

To find the resultant of the parallel forces Pj, Pn &c. lue select

convenient points A^, A., d'c. on their respective lines of action and

place at these points particles luhose masses are proportional to the

forces Pi, P.J <L'c. The line of action of the resultant passes through

the centroid of these particles, its direction is parallel to that of the

forces, and its magnitude is SP.
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Conversely, any given force can be replaced by parallel I'orces acting at arbitrary

points Aj , An &c. provided the foroeR are such that the centroid lies on the given

force.

This proposition is really the limiting ease of Leibnitz's theorem. If concurrent

forces act along OA^, OAn&c. their resultant may be found by any of the methods

considered in the last chapter. By regarding an a point very distant from

-I J, A^ &c., the forceri acting along O (,, OA., Ac. become parallel and the cor-

responding theorem follows at once. Thus in Art. 51 it is shown that the resultant

of forces proportional to Pj . 0A^, /'o. OA^&c is a force proportioimi to 'LP.OG
acting along OC wher , C is the centroid of particles /', , P., &c. placed nt .^,, .!._, etc.

In the limit OA, OB, OC are all equal; hence the resultant of parallel forces

proportional to P, , P., &c. is proportional to 2P and acts at G.

83. The point (^rj^) determined by the equations of Art. 80

has one importimt property. Its position is the same whatever be

the magnitudes of the angles made by the forces with the coor-

dinate axes. If then the points of applicatiun at the given parallel

forces viz. A^, A^ dx. are regarded as fixed in the body, the point of

application of their resultant is also fixed in the body however the

forces are turned round their points of application provided, they

remain parallel and unaltered in magnitude.

This point of application of the resultant is called the " centre

ofpa7nllel forces."

84. Ex. 1. Parallel forces, each equal to P, act at the corners A, B, C, D of

a re-entrant plane quadrilateral and a fifth force equal to - P acts at the intersection

H of the diagonals HCA, BHD. If the centre of the five parallel forces coincide

with a corner G of the quadrilateral, prove that HC= GA.

Ex. 2. ABC is a triangle; APD, RPE, OFF, the perpendiculars from A, B, C
on the opposite sides. Prove that the resultant of six equal parallel forces, acting

at the middle points of the sides of the triangle and of the lines FA,PB, PC, passes

through the centre of the circle which goes throuj^h all of these middle points.

[Math. Tripos, 1877.]

Ex. 3. ABCD is a quadrilateral whose diagonals intersect in O. Parallel

forces act at the middle points of AB, BG, CD, DA respectively proportional to

the areas AOB, BOG, GOD, DOA. Prove that the centre of parallel forces is at

the fourth angular point, viz. G, of the parallelogram described on OE, OF as

adjacent sides where E, F are the middle points of the diagonals AG, BD of the

quadrilateral. [Coll. Ex., 1885.]

Taking BD as the axis of x we find v=h{P~P') where p, p' are the per-

pendiculars from A and G on BD. It follows that the centre of parallel forces

lies on EG. Similarly it lies on FG.

85. To find the conditions of equilibrium of a system ofparallel

forces.

Let the forces be Pi, ... P„; then by Art. 80 they will have a

resultant unless %P = 0. This, though a necessary condition of

equilibrium, is not sufficient.
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We can find the resultant of n — 1 of the forces by Art. 80

without introducing any forces whose lines of action are at infinity,

because the sum of these n — \ forces is ecjual to — P„ and therefore

is not zero. It is sufficient for equilibrium that the point of applica-

tion of this resultant should be situated on the line of action of P„.

Let i^T)}^) be the coordinates of that point of application of this

resultant which is found in Art. 80, then

with similar expressions for ?; and ^. Let {oL^y) be the direction

angles of the forces.

Since ^ — a;„, r)—i/,u K~'^n '^^'^ the projections on the axes of

the straight line joining the point (^t?^) to the point of application

of the force P„, viz. (^ny,iZn), we have

cos a cos/Q cos 7
'

Substituting for {^rj^) and remembering that the denominator

of I is equal to — P,i, this reduces to

cos a cos /3 cos y

Joining these two equations to the condition SP = 0, we have

the three necessary and sufficient ccnditions of eqailihrimn.

If the equilibrium is to exist however the forces are turned

round their points of application, the point of application o*" the

resultant of the first n—1 forces as found by Art. 80 must

coincide with the given point of application of the force P„. We
have therefore

These give SPa; = 0, %Py = 0, lPz = (2).

Joining these three equations to SP = we have the four

necessary and suffidcr.t conditions that a system of 'parallel forces

shoidd be astatically in equilibrium.

86. Ex. 1. Prove that any system of parallel forces can be replaced by three

parallel forces acting at the corners of an arbitrary triangle Ai.'C.

Let P be any one of the forces, intersecting the plane of the triangle in a point

whose areal coordinates are .t, i/, z. Art. 53, Ex. 2. We may replace P by the

parallel forces Px, Py, Pz, acting at the corners, Art. 82. All the forces are

therefore equivalent to liP.r, ^Py, TPz acting at A, B, C, respectively.

Ex. 2. If four pava'lel forces balance each other, let their lines of action be

intersected by a plane, and let the four points of intersection be joined by six

.(1).
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Btrai^^ht lines ho an to form four trianglna ; eaoh force will be proportional to the

area of the triangle whose cornerH are in the lineR of action of the other three.

[Rankine'H Applictl M<ithem<itic», Art. 143.]

87. A heavy body is suspended from a fixed point without any

other' constraint. It is required to find the positum of equilibHum.

The body is in equilibrium under the action of the weights of

all its elements and the reaction at the point of .support. The

weights of the elements form a system of parallel forces and are

equivalent to the whole weight of the body acting vertically

downwards at the centre of gravity. It easily follows that in

equilibrinni, the centre of gravity must be vertically under the point

of support. It is also clear that the pressure on the point of

support is equal to the weight of the body.

In applying this principle to examples, the positions of the centres of gravity of

the elementary bodies are assumed to be known. The positions of these points

will be stated as they are required. If the reader is not already acquainted with

them, he may either assume the results given or refer to the chapter on the centre

of gravity where their proofs may be found.

Ex. 1. A uniform triangular area ABC is suspended from a fixed point O by

three strings attached to its corners. Prove that the tensions of the strings are

proportional to their lengths.

To find the centre of gravity a of the triangle

ABC, we draw the median line AM bisecting JiC in

M. Then G lies in AM, so that AG='iAM.

The three tensions acting along AO, BO, <J(>

and the weight acting along OG are in equilibrium.

The resultant of the tension AO and the weight

is therefore equal and opposite to that of the tensions

BO, CO. Since each resultant acts in the plane of

the forces of which it is the resultant, their common
line of action is OM.

Draw through Jl and C parallels to OC and OB, and let D be their point of

intersection. Then, since 0.1^ bisects BC, OM passes through /). Hence the sides

of the triangle OCI) are parallel to the tensions CO, BO and their resultant. The

tensions are therefore proportional to OC, CD, i.e. to OC, OB.

Another proof may be deduced from Art. 51. The centre of gravity of the

triangular f -ea coincides with the centre of gravity of three equal weights placed

one at each -orner. The components along OA, OB, OC of the force represented

by 3 . OG are therefore represented by the lengths of those lines.

Ex. 2. A heavy triangle ABC is hung up by the angle A, and the opposite side

is inclined at an angle a to the horizon. Show that 2 tan a = cot 7i ~ cot C.

[Math. Tripos, 1866.]

Ex. 3. Two uniform heavy rods AB, BC are rigidly united at B, the rods are

then hung up by the end A : show that BC will be horizontal if sin C=^/2BiDiB,

B and G being angles of the triangle ABC. [Coll. Ex., 1883.]

'^B
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Ex. 4. A heavy equilateral triangle, hung up on a smooth peg by a string, the

endH of which are attached to two of its angular points, rests with one of its sides

vertical ; show that the length of the string is double the altitude of the triangle.

[Math. Tripos, 1857.]

Ex. 5. A piece of uniform wire is bent into three sides of a square AliCD, of

which the side AD ia wanting; prove that if it be hung up by the two points A and
li successively, the angle between the two positions of BC is tan"' 18.

The distance of the centre of gravity O from liC can be shown to be equal to

one third of AB. When hung up from A and B, AG and BO respectively are

vertical. The angle required is therefore equal to AGB. [Math. Tripos, 1854.]

Ex. C. A triangle ABC is successively suspended from A and B, and the two
positions of any side are at right angles to each other; prove that 5c^=a' + h\

[Coll. Ex.]

Ex. 7. A uniform circular disc of weight nH^has a heavy particle of weight W
attached to a point on its rim. If the disc be suspended from a point A on its rim,

B is the lowest point ; and if suspended from B, A is the lowest point. Show that

the angle subtended hy AB a,t the centre is 2 sec"' 2 (« + 1). [Math. Tripos, 1883,]

Ex. 8. The altitude of a right cone is h and the radius of its base is r ; a string

is fastened to the vertex and to a point on the circumference of the circular base

and is then put over a smooth peg: prove that if the cone rests with its axis

horizontal the length of the string is ^(h^ + 4r^). [Math. Tripos, 1865.]

If V be the vertex and G the centre of gravity of the base of a cone (either right

or oblique), the centre of gravity of the solid cone lies in VC, so that VG = ^VC.

Ex. 9. A string nine feet long has one end attached to the extremity of a

smooth uniform heavy rod two feet in length, and at the other end carries a

light ring which slide? upon the rod. The rod is suspended by means of the string

from a smooth peg; prove that if $ be the angle which the rod makes with the

horizon, then tan = 3~i - 3~i [Math. Tripos, 1852. ]

Ex. 10. A heavy uniform rod of length 2a turns freely on a pivot at a point in

it, and suspended by a string of length I fastened to the ends of the rod hangs a

bead of equal weight which slides on the string. Prove that the rod cannot rest in

an inclined position unless the distance of the pivot from the middle point of the

rod be less than a^ll. [Math. Tripos, 1882.]

Ex. 11. Two equal rods AB, BC of length 2a are connected by a free hinge at B;

the ends A and C are connected by an inextensible string of length I : the system is

suspended from A : prove that, in order that the angle AB makes with the vertical

may be the greatest possible, I must be equal to ^aj^Z. [St John's Coll., 1883.]

As { is varied the centre of gravity G of the system moves along the circle

described on BE as diameter, where E is the middle point of AB. Hence the angle

GAB is greatest when AG is a tangent to this circle.

Ex. 12. At the angular points A, B, G oi & light rigid frame-work, three

heavy particles of weights W^, Wb, Wc are fixed and the whole is suspended

from a point by three strings OA, OB, DC; ^i the tensions in equilibrium be

'-*. TB> OB . Wb
and henceTa respectively, prove that

^^ ^^^ =^ y^^
= ^^^^

,

determine T^,Tb, Tc. [St John's Coll., 1886.]

Ex. 13. A heavy triangular lamina is suspended from a fixed point by means

of three elastic strings attached to its angular points : the stiings when unstretohed

R. S. I. 4
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are equal in length, ^nl the moduli of their elasticities are different. AsBuming

that the tcnnion of each is equal to the modulus multiplied by the ratio of the

extension to the unstretohed length, prove that the strings will be equal, if a weight

be placed at a certain i^oint on the lamina, provided the weight be not less than a

certain weight : prove also that the locus of its position for difierent magnitudcH of

the weight, is a straight line. [Coll. Ex., 1887.]

Ex. 14. A uniform circular disc, whose weight is ir and radius a, is suspended

by three vertical strings attach }d to three points on the circumference of the disc

separated by equal intervals. A weight W may be put down anywhere within a

concentric circle of radius ma ;
prove that the strings will not break if they can

support a tension equal to | (2mW + W+ w). [Trin. Coll., 1886.]

Ex. 15. A right circular cone rests with its elliptic base on a smooth horizontal

table. A string fastened to the vertex and the other end of the longest generator

passes round a smooth pulley above the cone, so tliat all parts of the string except

those in contact with the pulley are vertical. If the string become gradually

contracted by dampness ox other causes and tend to lift the cone, show that

the end of the shortest generator will remain in contact with the table provided

that the diameter of the pulley be less than three times the semi-major axis of the

elliptic base. [Math. Tripos, 1878.]

88. A heavy body is placed on either a smooth horizontal

plane or a rough inclined plane, and its base is any polygonal

area. Determine whether it will tumble over one side or remain

in equilibrium.

The weights of the particles of the body constitute a pystem of

parallel forces. These have a resultant whose position and magni-

tude may be found by the theorem of Art. 80 when the weights

of the particles are known. This resultant acts vertically down-

wards through a point of the body called its centre of gravity. If

equilibrium exists, this must be balanced by the pressures of the

plane on the body. These pressures however distributed over the

polygonal area must have a resultant which acts at some point

within the polygonal area. It follows that equilibrium cannot

exist unless the vertical rough the centre of gravity of the body

intersects the plane within the area of the base.

Ex. 1. The distance between the heels of a man's feet is 2b, and the length of

each foot is a. As the body sways, the vertical through the centre of gravity

should always pass through the area contained by the feet. The toes should

therefore be turned out at such an angle that the area contained by the feet is a

maximum. Show (1) that a circle can be described about the feet with its centre

on the straight line joining the toes, (2) that its diameter is b + (b^ + 2a^)K

Ex. 2. A heavy right cone whose height is h and semi-angle o is placed with

its base on a prrfectly rough plane; prove that the cone will tumble over the rim
of its base if the angle 6 at which the plane is inclined to the horizon is greater

than that given by tan 9=4 tan a.

in
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Ex. 3. A hemicpherical cup of weight W in loaded by two weiglitH tr, w'

attached to its rim and is then placed on a smooth horiitontal plane; sitow that

the angle which the principal rndius of the cup makes with the ^ .rtical when the

cup is in e(iuilibrium is given by the equation

ir tan = 2 {{w- toy + 4itV cos^ fi) *,

where 2/3 is the angle between the radii through the weights to, w', and it is asHumud

that the centre of g avity of the cup is at the middle ])oint of its principal radiUH.

[King's Coll., 1HH<).]

Ex. 4. Two equal heavy particles are at the extremities of the latus rectum of

a parabolic arc without weight, which is placed with its vertex in contact with tliut

of an equal parabola, whose axis is vertical and concavity downwards. Prove that

the parabolic arc may be turned through any angle without disturbing the equi-

librium, provided no sliding be possible between the curves.

[Watson's Problem, Math. Tripos, I860.]

Theuri/ of Couples.

89. There is one case in which the theorem of Art. 80 leads

to a remarkable result. Let us 8uppo.se that the parallel forces

P, Q are equal and act in opposite directions. According to the

theorem the magnitude of the resultant is zero, and the point of

application is infinitely distant.

Two equal and opposite forces acting at two points A .and B
cannot balance each other unless these points are in the same

straight line with the forces. Yet we have just seen that these

two forces are not equivalent to any one single force at a finite

distance. They therefore supply a new method of analysing forces.

When a number of forces act on a body we simplify the system by

reducing the forces to as few as we can. Sometimes we can reduce

them to a single force acting at some point of the body. In other

cases (as in the case considered in this article) the point of appli-

cation is at infinity and the reduction to a single force is no longer

convenient. By using a couple of equal forces, as a new elementary

term, we obtain a simple method of expressing this infinitely distant

force. We now have two elementary quantities, viz. a force and a

couple. It may be possible to reduce a given system of forces

to either or both of these constituents. With the help of both

these, we may analyse a system of forces with greater completeness

than with one alone.

If we regard a couple as a new element in analysis, it becomes

necessary to consider the properties of such an element apart

from all other combinations of forces. Since a couple can itself be

4—2
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analyHcd into two fnrce.s wo can deduccj the propertioH of a couplo

from those which belong to a combination of forces. No new axiom

is necc.s.sary in iwldition to those aheady given in the begiiniing of

this treatise. We proceed in the following articles to investigate

the elementary properties of a couple.

The theory of coupltin is due to Poinsot. In his EUmentt of StaUci published

in 1808 ho discusHeH the oompoBition of parallel forces and doduocs his new theory

of couples. On this theory he founds the general laws of equilibrium.

90. Definitions. A system of two e(iual and parallel forces

acting in opposite directions is called a couple.

The perpendicular distance between these two forces is called

its arm. It should be noticed that the arm of a cotiple has length,

but has no definite position in space. From any point A in the

line of action of one force, a perpendicular AJi can be drawn on the

other force. Then AB is the arm. If in any case it is convenient

to regard the forces as acting at A and B, then we might regard

AB, if perpendicular to the forces, as representing the arm in

position as well as in length.

The product of the magnitude of either force into the length

of the arm is called the moment of the couple.

91. The effect of a couple is not altered if it be moved parallel

to itself to any other position in its own plane or in a parallel

plane, the arm remaining parallel to itself.

Let P, Q be the equal forces of the given couple, AB its arm.

Let A'B' be equal

and parallel to A3,

we shall prove that

the couple may be

moved so that the

same forces act at

A', B'.

At each of the

points A', B' apply

two equal and opposite forces, each force being equal in magnitude
to P. These are represented in the figure by P', F'

,
Q', Q".

Then because AB is equal and parallel to A'B', AA'BB' is a
parallelogram and therefore the diagonals AB', A'B bisect each

other in some point 0. The resultant of the forces P and Q" is

2P acting at 0, the resultant of P" and Q is 2P also acting at 0,

Al
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but in the oppowite direction. TheHe two rosultunts neutralise

each other. Removing them, the whole Hystem of forces is

eijuivalent to the couple of forces, which act at A' and li'.

92. The effect of a ample is not altered by tuminf/ the whole

couple through any angle in its oiun plane about the middle point

of any arm.

Let the arm AB be turned round its middle point C and let it

take any position A'li'. At each of the points A', li' apply as

before equal and opposite forces P', P", (/, Q'\ each force being

('(pud to P. The e(iual furces P and P" acting at A and A' have

a resultant which acts along CE and bisects the angle ACA'. The

forces Q and Q" have an ecjual resultant which acts along CF and

bisects the angle BCB'. These neutralise each other and may bo

removed. The forces remaining are the equal forces P', Q' acting

at A', B'. These together constitute a couple, which is the same

as the original couple except that it has been turned round G
through the angle ACA'.

93. The effect of a couple is not altered if we replace it by

another couple having the same moment, the plane remaining the

same, the arms being in the same straight Ivie and their middle

points coincident.

P /< Q^

t

B
Q"

Let P, Q be the equal forces, AB the arm of the given couple.

Let A'W be the new arm, P', Q the new forces. Apply at each

nil
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of the points A', B' equal and opposite forces each equal to P'.

Then by the conditions of the proposition, P.AB = P'.A'B'.

Hence if C be the middle point of both AB and A'B\ we have

P.AC = P'.A'a

The forces P and P" have a resultant P-P" which by Art. 78

acts at C. In the same way Q and Q" have an equal resultant,

also acting at C in the opposite direction. Removing these two,

it follows that the given couple is equivalent to the couple of

forces + P' acting at A', B'.

94. It follows from Arts. 91 and 92 that a couple may be

transferred without altering its effect from one given position to

any other given position in a parallel plane. Thus by Art. 92 we

may turn a couple round the middle point of its arm until the

forces become parallel to their directions in the second given

position. Then by Art. 91 we may move the couple parallel to

itself into the required position.

It follows from Art. 93 that the forces and the arm may also

be changed without altering the effect of the couple, provided its

moment is kept the same.

Summing up these results, we see that a couple is to be

regarded as given when we hioiu, (1) the position of some plane

parallel to the plane of the couple, (2) the direction of rotation of

the couple in its plane, and (3) the moment of the couple.

95. To find the residtant of any number of couples acting in

parallel planes.

Let Pi, Pn &L(i. be the magnitudes of the forces, Oi, a^ &c. the

arms of the couples. Let us first suppose the couples all tend to

produce rotation in the same direction.

By Art. 94 we may move these couples into one plane and turn

them about until their arms are in the same straight line. We
may then alter the arms and forces of each until they all have a

common arm AB whose length is, say, equal to b. The forces of

the couples now act at the extremities of
.

' J5, and are respectively

equal to PiO^/b, P^a^/b &c. All these together constitute a single

couple each of whose forces is (Pittj + P^cu + &LC.)/b and whose arm

is b. This single couple is equivalent to any other couple in the

same plane with the same directi - of rotation whose moment is
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Pittj + P^2 + &^c., i.e. whose moment is the sum of the moments of

the separate couples.

If some of the couples tend to produce rotation in the opposite

direction to the others, we may represent this by regarding the

forces of these couples as negative. The same result follows as

before.

We thus obtain the following theorem ; the resultant of any

number of couples whose planes are parallel is a couple whose

moment is the algebraic sum of the moments of the separate couples

and luhose plane is parallel to those of the given couples.

96. Measure of a couple. We may use the proposition

just established to show that the magnitude of a couple regarded

as a single element is properly measured by its moment. To prove

this we assume as a unit the couple whose force is the unit of force

and whose arm is the unit of length. The moment of this couple

is unity. By this proposition a couple whose moment is n times

as gi'eat is equivalent to n such couples and its magnitude is

therefore properly represented by the symbol n.

97. Axis of a couple. A couple may tend to produce

rotation in one direction or the opposite according to the circum-

stances of the couple. One of these is usually called the positive

direction and the other the negative. Just as in choosing axes of

coordinates sometimes one direction is taken as the positive one

and sometimes the other, so in couples the choice of the positive

direction is not always the same. In trigonometry the direction

cf rotation opposite to the hands of a watch is taken as the positive

direction. In most treatises on conies the same choice is made.

In solid geometry the opposite direction is generally chosen.

Having however chosen one of these two directions as the positive

one it is usual to indicate 1 o direction of rotation of a given

couple in the following manner.

From any puint C in the plane of the couple draw a straight

line CD at right angles to the plane and on one side of it. The

straight line is to be so drawn that if an observer stand with his

feet at G on the plane and his back along CD, the couple will

appear to him to produce rotation in what has been chosen as

the positive direction. The straight line CD is called the positive

direction of the aods of the couple.

u
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To indicate the direction of rotation of a couple it is sufficient

to give the direction in space of CD as distinguished from DC.

This is effected by the convention usually employed in solid

geometry. A finite straight line having one extremity at the

origin of coordinates is drawn parallel to CD. The position of this

straight line is defined by the angles it makes with tne positive

directions of the axes of coordinates.

The position of the straight line CD, when given, indicates at

once the plane of the couple and the direction of rotation. We
may also use a length measured along CD to represent the magni-

tude of the moment of the couple, in just the same way as a straight

line was used in Art. 7 to represent the magnitude of a force.

We therefore infer that all the circumstances of a couple may
be properly represented by a finite straight line measured from a

fixed point in a direction perpendicular to its plane. This finite

straight line is called the axis of the couple.

98. To find the resultant of two couples tvhose planes are

inclined to each other.

Let the two couples be moved, each in its own plane, until they

have a common arm AB, which of course must lie in the intersec-

tion of the two planes. In effecting this change of arm it may
have been necessary to alter the forces of the couples, but the

moments of the couples mus.. remain unaltered. Let the forces

thus altered be P and Q.

At the point A we have two forces P and Q ; these are

equivalent to some resultant R found by the parallelogi'am of

forces. At the point B there are two forces equal and opposite

to those at A ; their resultant is equal, parallel and opposite to R.

Thus the two couples are equivalent to a single couple, each of
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whose forces is equal to R, and whose arm is AB. Let the length

of AB be b.

From any point C (which we may conveniently take in AB)
draw Gp, Cq in the directions of the axes of the given couples, and

measure lengths along them proportional to their moments, viz. to

Pb and Qb. These axes are perpendicular to the planes of the

couples, and their lengths are also proportional to P and Q. If

we compound these two by the parallelogram law we evidently

obtain an axis perpendicular to the plane of the forces ± R,

whose length is proportional to R. It is evident that the paral-

lelogram Cpqr is similar to that contained by the forces PQR,
but the sides of one parallelogram are perpendicular to the sides

of the other.

We therefore infer the following construction for the resultant

of any two couples. Draw two finite straight lines fy^om any point

C to represent the awes of the couples in direction and magnitude.

The resultant of these two obtained by the parallelogram law repre

sents in direction and magnitude the axis of the resultant couple.

The rule to compound couples is therefore the same as that

already given for compounding forces. It follows that all the

theorems for compounding forces deduced from the parallelogram

law also apply to couples. The working rule is that if we represent

the couples by their axes, we may compound and resolve these as if

they were forces acting at a point.

98. Ex. 1. A system of couples is represented in position and magnitude by

the areas of the faces of a polyhedron, and their axes are turned all inwards or all

outwards. Show that they are in equilibrium. Art. 47. Mobiits.

Ex. 2. Four straight lines are given in space, prove that four couples can be

found, having these for the directions of their axes, which are in equilibrium.

Find also their moments and discuss the case in which three of the given straight

lines are parallel to a plane, Arts. 40, 48.

Ex. 3. Three couples are represented in position and magnitude by the areas

of three faces OBC, OCA, OAB of the tetrahedron OABG, the axes of the first two

being turned inwards and that of the third outwards. Prove that the resultant

couple acts in the plane ODE bisecting the sides BC, CA and is represented by

four times the area of the triangle ODE.

Replace each couple by another one of whose forces passes through and the

other acts along a side of ABC. The forces represented by BC, CA and BA have

evidently a resultant 4D£.

100. A force P acting at any point A may be transferred

parallel to itself, to act at any other point B, by introducing a couple

m
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whose moment is Pp, where p is the perpendicular distance of B
from the line of action AF of P. This couple acts to turn the body

in the direction AFB.

Apply at B two equal and opposite forces P', P", each equal to

P. One of these, viz. P',

is the force P transferred

to act at B. The two

forces P'

j>1r B P'

and P then con-

stitute the couple whose moment is Pp.

F

101. Summing up the various propositions just proved on
forces and couples, we find that they fall into three classes. These
may be briefly stated thus

:

1. Forces may be combined together according to the paral-

lelogram law.

2. Couples may be combined together according to the paral-

lelogram law.

3. A force is equivalent to a parallel force together with a

couple.

The theorems in the subsequent chapters are obtained by

continual applications of these three classes of propositions. It

is therefore evident that theorem? thus obtained will apply also to

any other vectors for which these three classes of propositions are

true. Thus in dynamics we find that the elementary relations of

linear and angular velocities are governed by these three sets of

propositions. We therefore apply to these, without further proof,

all the theorems found to be true for couples a,nd forces.

lOa. Initial motion of tbe body. If a single couple act on a body at rest, it

is clear that the body will not remain in equilibrium. It is proved in treatises on

dynamics that the body will begin to turn about a certain axis. Since a couple can

be moved about in its own plane without altering its effect, this axis cannot depend

on the position of the couple in its plane. The dynamical results are (1) the initial

axis of rotation passes through the centre of gravity of the body, (2) the axis of

rotation is not necessarily perpendicular to the plane of the couple, though this

may sometimes be the case. The construction to find the axis is somewhat

complicated, and its discussion would be out of place in a treatise on statics.

We may show by an elementary experiment that the axis of rotation is

independent of the position of the couple in its plane. Let a disc of wood be

made to float on the surface of water contained in a box. At any two points

A, B attach to the disc two fine threads and hang these over two small puUies,

fixed in the sides of the vessel at C and D, with equal weights suspended at
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F

the other extremities. Let the utrings JC, BD be parallel so that their tensions

form a couple. Under the influence of this couple the body will begin to turn

round. However eccentrically the points A, B are situated the body begins to

turn round its centre of gravity. The body may not continue to turn round

this axis for, as the body moves, the strings cease to be parallel. For this and

other reasons the motion of rotation is altered.

108. Ex. 1. Forces P, 2P, 4P, 2P act along the sides of a square taken in

order ; find the magnitude and position of their resultant. [St John's, 1880.]

Ex. 2. A triangular lamina ABC is moveable in its own plane about a point in

itself : forces act on it along and proportional to BC, CA, BA. Prove that if these

do not move the lamina, the point must lie in the straight line which bisects BC
and CA. [Math. Tripos, 1874.]

Ex. 3. Forces are represented in magnitude, directiori, and position by the sides

of a triangle taken in order; prove that they are equivalent to a couple whose

moment is twice the area of the triangle.

If the sides taken in order repres..' .« the axes of three couples, prove that these

couples are in equilibrium.

Ex. 4. If six forces acting on a body be completely represented three by the

sides of a triangle taken in order and three oy the sides of the triangle formed by

joining the middle points of the sides of the original triangle, prove that they will

be in equilibrium if the parallel forces act in the same direction and the scale on

which the first three forces are represented be four times as large as that on which

the last three are represented. [Math. Tripos.]

Ex. 5. Four forces o . AB, /3 . BC, y . CD, d . DA act along the sides AB, BC,

CD, DA of a skew quadrilateral i4BCD ; show that (1) they cannot be in equilibrium,

(2) if a=/3=7= 5 they form a single couple whose plane is parallel to the diagonals

AG, BD, (3) if a7= /35 they reduce to a single resultant whose line of action

intersects the diagonals. Find also the magnitudes of the couple and resultant-

[CoU. Ex., 1892.]

The forces at the corners B and D have respectively resultants acting along

some lines BE, DF cutting AC in E and F. Since the planes ABC, ADC do not

coincide, these two partial resultants cannot act in the same straight line, and

therefore cannot be in equilibrium.

If the forces are equivalent to a couple, the sum of their resolved parts along

the perpendicular from B on the plane ADC is zero. This requires BE to be

parallel to AC and gives o=/3 ; similarly /3=7 and 7=5. The partial resultants at

B and D are ^a.. AC, and act parallel to ^IC and CA. The plane of the couple is

therefore parallel to A C, similarly it is parallel to BD. The moment of the couple

is 4a times the area of the parallelogram whose vertices are the middle points of

the sides.

If the forces are equivalent to a single resultant the points E and F on AC must

coincide ; but E is the mean centre of - a and /3 at /I and C, while F is the mean
centre of 5 and -7 at the same points, Art. 51, hence a7= /35. The partial re-

sultants now intersect in the point E on the diagonal AC and are represented by

(a - j3) EB and (7 - 5) ED. The single resultant therefore passes through E and

a point H on the other diagonal BD and its magnitude is (a - 13 + 7 - 6) . EH.

If the quadrilateral is plane the four forces are equivalent to a single resultant

W'. I.
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except when a, /3, 7, S are equal. The forces are in equilibrium when the partial

resultants are equal and opposite, i.e. when

ay= pd, a. AO + p. OC=0, /3.ZJO + 7 . OD= 0,

where O is the intersection of the diagonals.

Ex. 6. Forces are represented in magnitude, direction, and position by the

sides of a skew polygon taken in order ; show that they are equivalent to a couple.

If the corners of the skew polygon are projected on any plane, prove that the

resolved part of the resultant couple in that plane is represented by twice the area

of the projected polygon.

Ex. 7. AC, BD are two non-intersecting straight lines of constant length;

prove that the efifect of forces represented in every respect by AB, BC, CD, DA
is the same, so long as A C, BD remain parallel to the same plane, and the angle

between their projections on that plane is constant. [Coll. Ex., 1881.]

Ex. 8. If two equal lengths Aa, Bb, are marked off in the same direction along

a given straight line, and two equal lengths Cc, Dd along another given line, prove

that forces represented in every respect by AC, ca, CB, be, BD, db, DA, ad are in

equilibrium. [Trin. Coll.]

Ex. 9. Forces proportional to the sides «j, a.^... of a closed polygon act at

points dividing the sides taken in order in the ratios mj : »j, mjing, ... and each

makes the same angle in the same sense with the corresponding side ; prove that

there will be equilibrium if 2 a''*) = 4Acot^, where A is the area of the
\m + n J

polygon. [Math. Tripos, 1869.]

Resolve each force along and perpendicular to the corresponding side and

transfer the latter component, to act at the middle point by introducing a couple,

Art. 100. The couples balance the components along the sides, Ex. 3. The other

components are in equilibrium, Art. 37.

4^i



CHAPTER IV.
>i

FORCES IN TWO DIMENSIONS.

104. To find the resultant of any number of forces which act

on a body in one plane, i.e. to reduce these forces to a force and a

couple.

Let the forces P^, P.j&c. act at the points A^, A^ &c. of the

body. Let be any point arbitrarily chosen in the plane of the

forces, it is proposed to reduce all these forces to a single force

acting at and a couple.

Let the point be taken ar the origin of coordinates. Let the

coordinates of A^, A^ &c. be {oc^y^, i^-iy-i) &c. Let the directions

of the forces make angles a,, «„ &c. with the positive side of the

axis of X.

Referring to Art. lOO of the chapter on parallel forces, we ^e

that any one of these forces as P may be

transferred parallel to itself, to act at the

point 0, by introducing into the system a

couple whose moment is Pp, where p is

the length of the perpendicular ON drawn

from on the line of action of the force P.

In this way all the given forces P^ P^ &c.

may be transferred to act at parallel to their original directions,

provided we introduce into the system the proper couples.

These forces, by Art. 44, may be compounded together so as to

make a single resultant force. The couples also may be added

together with their proper signs so as to make a single couple

whose moment is 2P/J.

This method of compounding forces is due to Poinaot (Eliirients de Statique,

1803).

y



62 FORCES IN TWO DIMENSIONS. [chap. IV.

105. It should be noticed that the argument in Art. 101 is in no way restricted

to forces in two dimensionH. If we refer the system to three .rectangular axes

Oar, Oy, Oz, having an arbitrary origin 0, we may transfer the forces Pj, Pj Ac. to

the point by introducing the proper couples. The forces acting at may be

compounded into a single force, which we may call R. The couples also may be

compounded, by help of the parallelogram of couples, into a single couple which we
may call G. Thus the forces 1\ , P^ <^°- ^^^ always be reduced to a single force It,

acting at an arbitrary point, together with the appropriate couple O.

106. To find the magnitude and the line of action of the

resultant force we follow the rules given in Art. 44. The resolved

parts of the resultant force parallel to the axes are

X = SP COS a, Y = SP sin o.

Li ? "^he resultant force, and let 6 be the a,ngle which its

line of}. t.i,,v:. ;, nkes with the axis of a;, then

R' - (IP CO. ./ + (SP sin a)^ tan 6' = ^ i^/'^^l •

2, (P COS a)

107. To find the moment of the resultant couple, we must

find the value of Pp. By projecting the coordinates (xy) of A on

ON we have p = xcoa NOx — y sin NOx
= a' sin a — y cos a.

Let G be the resultant couple, estimated positive when it tends

to turn the body from the positive end of Ox to the positive end

of Oy. Then 'J- = IPp = S (xP sin a — yP cos a)

= S (xP^ - yP^),

where Px and Py are the axial components of P.

108. The arbitrary point to which the forces have been

transferred may be called the base of reference, or more briefly

the base. It need not necessarily be the origin, though usually it

is convenient to take that point as origin.

Let some point 0', whose coordinates are (^t;), be the base. The

resultant force and the resultant couple for this new base may be

deduced from those for the origin by writing x— ^ and y — 7f for

X and y.

The expressions in Art. 106, for the resultant force do not con-

tain X or y. Hence the resultant force is the sanui m magnitude

and direction lohatever base is chosen.

The expression for the resultant couple is

G' == SP {(x - ^) sin a~{y — rj) cos a}

^G-^Y + T^X.
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Thus the magnitude of the couple is, in general, different at

different bases.

109. To find the conditions of equilibrium of a rigid body.

Let the system of forces be reduced to a force R and a couple

G at uny arbitrary base 0. Since by Art. 78 the resultant force

of the couple G is a force zero acting along the line at infinity, a

finite force R cannot balance a finite couple 0. If it could, we

should have two forces in equilibrium, though they are not equal

and opposite. It in therefore necessary for equilibrium that the

resultant force R and the couple G should separately vanish.

110. Since R = in equilibrium, we have as in Art. 44,

SPcosa = 0, SPsina = 0.

These equations are necessary and sufficienL tc :aa R vanish.

But we may put this result into a more convenient f i.

In order to make the resultant force R zer^ it s necessary and

suMcient that the sum of the resolved parts or lest'^ te? of the forces

along each of any two non-parallel straight Ir^es should be zero.

It is obvious that these conditions aiv a cessary, for each

straight line in turn may be taken as the axis of x. To prove

that the conditions are sufficient, let one of these straight lines

be the axis of x, and let the other be Ox'. Let the angle xOx = /3.

Equating to zero the resolved parts of the forcej along these

straight lines we have

2Pcosa = 0, 2Pcos(a-/3) = 0.

These give Z = 0, Z' =Z cos /3 + Fsin /3 = 0.

Unless /8 is zero or a multiple of tt, these equations give Z =
and F= 0, and therefore R = 0.

The two equations of equilibrium obtained by resolving in any

two different directions are commonly called the equations of

resolution.

111. Again, it is necessary "or equilibrium that G = 0; this

gives SPp = 0. The product Pp is called the moment of the force

P about 0. In order then to make G = 0, it is necessary and suf-

ficient that the sum of the moments of all the forces {taken with

their proper signs) about some arbitrar'y point shoidd be zero. The

equation of equilibrium thus obtained is usually called briefly the

equation of moments.

I!
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i^'

112. Thus for forces in one pluno the conditions of equilibrium

supply three e(juations, viz. two equations of resolution and one of

moments. This will be better understood when we consider the

different ways in which a body can move. It may be proved that

every displacement of a body may be constructed by acoi.'bination

of the following motions. Firstly, the body may be moved, with-

out rotation, a distance h parallel to the axis of x. Secondly, the

body may be moved, also without rotation, a distance h parallel

to the axis of y. In this way some arbitrary point of the body

may be brought to another point 0' whose coordinates referred

to are any given quantities h and k. Thirdly, the body may
be turned round this point through any given angle. The two

eijuations of resolution express the fact that the forces urging the

body in the two directions of the axes are zero, and the equation

of moments expresses the fact that the forces do not tend to turn

the body round the origin.

113. As great use is made of moments of forces, it is import-

ant that the meaning of this term should be distinctly understood.

Suppose a force P to act at any point A along any straight line

AB, and let be the point about which we wish to take the

moment of P. To find this moment we multiply the force P by

the length p of the perpendicular from on its line of action, viz.

AB. The product has alreidy been defined to be the moment.

As we are now discussing' the theory of forces in one plane, the

line AB and the point are all in the plane of reference. But

when we speak of forces in three dimensions it will be seen that

what has just been defined is the moment of the force abovt a

straight line through perpendicular to the plane OAB.

When several forces act on the body, and the sum of their

moments is required, attention must be paid to their proper signs.

Exactly as in elementary trigonometry we select either direction

of rotation round as the standard direction. This we call the

positive direction. Thus in Art. 104 the direction opposite to that

of the hands of a watch has been chosen as the positive direction.

The moment of each force is to be taken positive or negative

according as it tends to turn the body round in the positive or

negative direction.

114. The three equations of equilibrium may be expressed in

other forms besides the three given above, viz. X = 0, F= 0, G = 0.
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Thus there will be equilibrium if the surn of the moments about

each o/jini/ two different points (say and C) is zero, and the sum

of the resolved parts of the forces in some one direction, not perpen-

dicular to OC, is zero. To prove this, take for origin, let Ox 1h'

parallel to the direction of resolution and let (f, j]) be the coordi-

nates of C. The given conditions are therefore

= 0, G'=^G-^V+vX = 0, A'=0.

These lead to G = 0, X = 0, and Y = 0, provided f is not zero.

In the same way it may be proved that there will be equili-

brium if the smn of the moments about three different points 0, 0, C,

not all in the same straight line, are each zero.

115. We may also notice that we cannot obtain more than

three independent equations of equilibrium by resolving in several

other directions or taking moments about several other points. All

the equations thus obtained may be deduced from some three

equations of equilibrium. Thus if X, Y and O are zero it follows

from Arts. 108 and 110 that J' and X' are also zero.

li

m

116. Varlgnon's Tlisorain. If a system of forces be transformed by the rules

of statics into any other equivalent system, then (1) the sum of the resolved parts of

the forces in any given direction, and (2) the sum of the moments of the forces

about any given point are equal, each to each, in the two systems.

This theorem follows easily from the results of Art. 110. Let the two systems

be Pj, Pj Ac. and I\', P./ &c. Let bo the point about which moments have to be

taken, and Ox the direction in which the resolution is to be made. Then we have

to prove (1) SPcosa = SP'co8a' and (2) G = G'. Since the two systems are

equivalent, there will be equilibrium if all the forces of either system are reversed,

and both systems, after this change, act simultaneously on the same body. Hence,

resolving in the given direction and taking moments about the given point, we

have, by Arts. 110 and 111

2 (P cos a -P' cos a') =0, G - G' = 0.

The result follows at once.

117. We may also give an elementary proof of this theorem, derived from first

principles.

According to the rules of statics one system of forces is transformed into

another by the use of three processes. (1) We may transfer a force from one

point of its line of action to another; (2) we may remove or add equal and opposite

forces, as in Art. 78; (3) we may combine or resolve forces by the parallelogram of

forces.

It is evident that neith(>r the sum of the resolved parts in any direction nor the

sum of the moments of the forces about any point is altered by the first t"'o

processes. We shall now prove in an elementary manner that they are not

altered by the third.

R. S. I. 5
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h

Let the forcen /', Q, aotitiK nt C, bo rupruuentod in direction and muKnituilu by

CA, Cli ruHpcctivoly, and let thiur rt'Hultant

li bo rcprt'Hi'nted by (7). (I) HccauHi; the

Huni (if tlie proji^ctionH of VA, AD on any

Ntraixht line (wa Cx) in oqiiiil to that of

CD {nev Art. (>!">), it followH that tlie sum

of tho roHolvcd partH of the forct'H /', Q
aloHK Cx is equal to t)io rcHolved part of

their rpHiiltant IL (2) Let U be thr point

about which inonicntH are to be taiien.

Draw OL, OM, ON perpendiculars on the

forces. We have to prove

V.OL + Q. (>M=Ii.UN (1).

If were on the other Hide of CA, say between CI) and CI, the siRn of the term

P . OL would have to be changed, see Art. 113. Dut thiw change is provided for by

the law of continuity, Hir'c the perpendicular from any point, as (), on a straight

line, as O.I, clian^eH Hi^n when () passes across the straight line. Much cases need

not tlierefore be separately considered.

Dividing tlie equation (1) by CO, wc see that it is equivalent to

PB\QACO+QHinJlCO = RainDCO (2).

This equation merely expresses that the sum of the resolved parts perpendicular to

CO of the forces 1\ Q is equal to that of li. But if we take the arbitrary line Cx
perpendicular to CO, this has just been proved true.

118. The single resultant. Any system of forces Pj, 1\ &c.

can be reduced to a single force R acting at an arbitrary base

together with a couple G. We shall now show that they can be

further reduced to either a single force or a single couple.

The force M is zero when

Z = SPcosa = 0, Y=1P Hma = 0.

When this is the case, the given system of forces reduces to a

single couple. It is evident that this single couple must be the

same in all respects, whatever base of reference is chosen.

Supposing R not to be zero, we may by properly choosing the

base of reference make the couple vanish, so that the whole system

is equivalent to a single force R. Taking any convenient axes Ox,

Oy, let 0' be a base so chosen that the corresponding couple G' is

zero. If (^77) be the coordinates of 0', we have by Art. 108,

G' = G-^Y+r^X = (1).

If then the base be chosen at any point of the straight line whose

equation is (1), the resultant couple is zero. This straight line

makes with Ox an angle whose tangent is F/X; it is therefore

parallel to the direction of the resultant force R. Since R acts at

the new base 0\ this straight line is the line of action of R.

I
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119. Summing up; if any set of forces be given by their

rt'sultiint force and oouplo, viz. ft and (f, at any assumed ba.se, we
have the following resulu :

(1) The cotidition that the forces can be reduced to a single

couple in I{ = 0. The coiid'tion that they can be reduced to a

single force is that R should not be zero.

(2) If li bo not zero, the given forces can b" rt;<luc(!d to a

single force who.se inatjnitude in e(jual to It, and whose line of

action is the straight line

The direction in which the force acts along this straight line is

indicated by the known signs of its components A' and V.

(3) Whatever system of co(»rdinate axes is chosen this single

resultant must be the same in magniMide and position. We there-

fore infer that this straight line is independent of all coordinates,

i.e. is invariable in space.

130. Ex. 1. Prove that a Riven Hyatem of forces can be reihiced to two forces

acting one at each of two ^iven points .-i and Ji, the force at A making a given angle

(not zero) with AH.

Ex. 2. Show that a system of forces in one plane can be reduced to three forces

which act along the sides of any triangle taken arbitrarily in that plane. Show
also how to find these three forces.

(1) This resolution is possible. Let /' be any one force of the system, and let

it out some one side, as AB, of the triangle AliC in M. Then 1' acting at M may
be resolved into two forces, one acting along Ali and the other along CM. The
latter may be transferred to (-' and again resolved into two other forces acting

along CA, Cli respectJ irely. Since every force may be treated in the same way, the

whole system may be replaced by three forces B\, F.j,, F.^ acting along BC, CA, AB.

(2) To find the forces /'', , F,,, F.^. Let Gj, G.^, O., be the sums of the moments
of the forces of the given system about the corners .-1, B, C respectively. Then if

PitPifPa ^^ ^^^ three perpiiuliculars from the corners on the opposite sides we

have ^'\/>i = <'i. i'\Pi'^Gi' F,,p.j=G3.

Ex. 8. Show that the trilinear equation to the single resultant of the forces

Fj, F„, F.J acting along the sides of a triangle taken in order is F^a + F„p + F^y = 0.

What is the meaning of this result when Fi, F.^, Fg are proportional to the lengths

9( the sides along which they act?

£x. 4. Two systems of three forces {P, Q, R), (P', Q', R') act along the sides

take* in order of a triangle ABC: prove that the two resultants will be parallel if

(QR' - Q'R) sin A + (RP' - R'P) sin B + (PQ' - P'Q) sin C = 0. [Math. Tripos, 1869.]

Ex. 5. Four forces in equilibrium act along tangents to at' ellipse, ^he direc-

tions at adjacent points tending in opposite directions round the ellipse. rr< /e

that the moment of each about the centre is proportional to tl.e area of the triarit;le

formed by joining the points of contact of the three other forcf s.

5—2
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Ex. 6. A rigid polygon AiA.,... is moved into a new position A^'An... and the

mean centres of masses a,, a.j,... placed at the corners in the two positions are

G, G'. Prove that forces represented in direction and magnitude by a^.A^A^',

a^. A„A.,', ... are equivalent to a force represented by 2a . tf G' together with a

couple sin<'2(o. GA-), where d is the angle any side of the polygon ^,.-<o... makes

with the corresponding side of A^'A.,' ....

m

y Solution of ProhleDis.

121. We shall now explain how the preceding theorems may

I

be used to determine the positions of equilibrium of one or more

rigid bodies in one plane. This can only be shown by examples.

After sorne general remarks on the solution of statical problems a

series of examples will be found arranged under different heads.

The object is to separate the difficulties which occur in these

applications and enable the reader to attack them one by one. A
commentary is sometimes added to assist the reader in applying

the same principles to other problems.

122. When the number of forces which act on a body is eithei-

three, or can be conveniently reduced to three, we can find thi^

position of equilibrium by using the principle that these forces

must meet in one point or be parallel. This is proved in Art. 34.

There are two advantages in this method, (1) the criterion that

the three straight lines are concurrent may often be conveniently

expressed by some geometrical statement, (2) the actual magnitudes

of the forces are not brought into the process, so that if these are

unknown, no further elimination is necessary. If the magnitudes

of the forces are also required, they can be found aftei wards from

the principle that each is proportional to the sine of the angle

between the other two. This is often called the geometrical method.

123. If there are more than three forces, or if we prefer to use

an analytical method of solution even when there are only three

forces, we use the results of Art. 109. We express the conditions of

et|uilibrium (1) by resolving all the forces in some two convenient

directions and equating the result of each resolution to zero, (2) by

taking moments about some convenient point and equating the

result to zero. Having thus obtained three equations, we must

eliminate the unknown forces. Finally we s hall obtain an eijuation

expressing in an algebraic manner the position of equilibrium.

11
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As we have to eliminate the unknown forces it will be con-

venient to make one of the resolutions in the direction perpendicular

to a force which ive intend to eliminate, and to take moments about

some j)oint in its line of action. This force will then aj)pear only

in the other resolution, which may therefore be omitted altogether.

Thus by a proper choice of the directions of resolution and of the

point about which moments are taken we may sometimes save

much elimination.

124. When there are several bodies forming a system, we

represent the mutual actions of these bodies by introducing forces

called reactions at the points of contact. We may then regard

each body as if it existed singly (all the others being removed) and

were acted on by these reactions in addition to the given forces.

We then form the equations for each body separately. Finally we

must eliminate the reactions, if unknown, and the remaining equa-

tions will express the positions of equilibrium of the several bodies.

These eliminations are sometimes avoided by expressing the con-

ditions of equilibrium for two bodies taken together. Afterwards we

may form the equations for either separately in such a manner as

to a.void introducing the mutual reaction.

When we come to the theory of virtual work we shall have

a method of forming the equations of equilibrium free from these

reactions.

125. Ex. 1. A thin heavy uniform rod Ali rents partly within anc] partly with-

out a hemispherical smooth bowl, which is^fi.ved in space. Find the position of equi-

librium.

Let G be the middle point of the rod, then the weight W of the rod may be

collected at G. This should be evident from the theory of parallel forces, but it is

strictly proved in the chapter on centre of gravity.

It follows from the remarks made in Art. 54, that, when two smooth surfaces

touch each other, the pressure (if any exist) between the surfaces acts along the

normal to the common tangent plane at the point of contact. If the rod be re-

garded as a very thin cylinder with its extremities rounded ofl, it is easy to see that

the common tangent plane at A to the rod and the sphere coincides with the

tangent plane to the sphere. The pressure at this point therefore acts along the

normal AO to the sphere. We obtain the same result if we regard the rod as

resting with a sinf e terminal particle in contact with the sphere ; it then follows

immediately from Art. 5-1 that the pressure between the terminal particle and the

sphere acts along the normal to the sphere.

Consider next the point (', at which the rod meets the rim of the bowl. The
common tangent plane to the rod and the rim passes through both the rod and tlie

tangent at C to the lim. The reaction is to be at right angles to both these, it

.ill
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therefore acts along a straight line CI drawn perpendicularly to the rod in the

vertical plane containing the rod.

It will be found useful to put these remarks into the form of a working rule.

Since the tangent plane at any point of a surface contains all the tangent straight

lines at that point, the pressure between two smooth bodies which touch each other

muf t be normal to every line on the two bodies which passes through the point

of contact. To find the direction of the reaction ice select two lines which lie ou

the bodies and pass through the point of contact ; the required direction is normal

to both these lines. Thus, at A, any tangent to the sphere passes through the

point of contact, the reaction is therefore normal to the bowl. At C both the

rod and the rim pass through the point of contact, the reaction is therefore normal

both to the rod and to the tangent to the rim.

Let a be the radius of the bowl, / half the length of the rod. Let the position of

equilibrium be determined by the angle AGO = 6 which the rod makes with the

horizon. It easily follows that CAO = d, CA —'2acosd.

Since the rod is in equilibrium under three forces, viz. li, li' and W, we use

the geometrical method of solution. We
have 10 express the condition that the three

forces meet in some point I. To effect

this we equate the projections of AG anr';

i^Z on the horizontal. Since ICA is a right

angle, I lies on the circumference produced,

hence AI— 2a. Equating the projections,

we have I cos 6 = 2a cos 20,

cos ^= 8^^\/(*^S^aO

I'' I 'i

If thp negative sign is given to the radical, cos 9 is negative and & is greater

than a right an);le. This is excluded by geometrical considerations. The position

of equilibrium is therefore given by the value of cos with the positive sign

prefixed to the radical.

There are however other geometrical limitations. Unless 2/ is greater than

2a cos 6 the rod will not be long enough to reach over the rim of the bowl, and

unless I is less than 2a cos the point G at whicli the weight acts will fall outside

the bowl. Unless the first condition is satisfied the rod will slip into the bowl,

and if the second be not true the rod will tumble out. These conditions require

that / should lie between a J^ and 2a. If the half-length of the rod is less than 2a,

it is easy to prove that the value of cos given above is never greater than unity.

For the sake of comparison, a solution of this problem by the analytical method

is given here. We have to resolve in some directions, and take moments about

some point. To avoid introducing the reaction II' into our equations, we shall

resolve along AC and take moments about C. The resolution gives

li cos = W sin 0.

Since the perpendicular from C on .-10 is a sin CO/, and CG = 2uco6 - I, the

equation of moments is lia sin 20=]V {2a cos 0-1) cos 6.

Eliminating E, we have the same equation to find cos as before.

The reader should notice that the value of cos given by the equation of

equilibrium depends only on the lengths a and I, and not on the weight of the

I
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rod. Thus all uniform rods of the same length, whatever their weights may be,

will rest in equilibrium in a given bowl in the same position. This result might

have been anticipated from the theory of dimensions, for a ratio like cos d could

not be equal to any multiple of a weight, though it could be equal to the ratio of

two weights. Now the only weight which could appear in the result is W. There

is therefore no other force to make a ratio with W. It follows that W could not

appear in the result.

Ex. 2. Show, by taking moments about the intersection / of the two reactions

J?, R' in example (1), that we arrive at the equation to find cos without introducing

any unknown force into the equation. Thence show that the equilibrium is stable.

If we sliglitly displace the rod by increasing its inclination d to the horizon,

the extremity A slides down the interior of the bowl and the rod mo'-os a little

outwards. The new position of I is therefore to the left of the vertical through the

new position of G. When therefore the rod is left to itself, we see, by taking

moments about the new position of I, that the weight acting at G will tend to

bring the rod back to its position of equilibrium. Similar remarks apply, if

the rod be displaced by decreasing 9. The equilibrium is therefore stable.

Ex. 3. A rod Ali, placed with one extremity ^-1 inside a fixed wine glass, whose

form is a right cone, with its axis vertical, rests over the riui of the glass at C:

show that in the position of equilibrium I ?.\vfi (d + /3) cos d= 2a sin- (3, where is the

inclination of the rod to the horizontal, a is the radius of the rim of the cone, j3 the

complement of the semi-vertical angle, and 21 the length of the rod.

Ex. 4. An open cylindrical jar, whose radius is a and weight iiW, stands on a

horizontal table. A heavy rod,

whose length is 21 and weight /f'

W, rests over its rim with one

end pressing against the vertical

interior surface of the jar. Prove

(1) that in the position of equi-

librium the inclination d of the

rod to the horizon is given by

Zcos3^^2«; (2) that the rod

will tumble out of the jar if the

inclination be less than this

value of d; (3) that the jar will

tumble over unless lcoH6<(n + 2)a

unstable ?

The rod will tumble out of the jar if G lies to the right of the vertical through /

in the figure. The jar will tumble over I) if the moment about D of the weight of

the rod acting at G is greater than that of the weight of the jar acting at its centre

of gravity.

Ex. 5. Prove that the length of the longest rod which can be in equilibrium

with one extremity pressing against the smooth vertical interior surface of the jar

described in the last example is given by 21- ^a"^ (11 + 2)'^.

Ex. 6. A heavy rod AB, of length 21, rests over a fixed peg at C, while the end

A presses against a smooth curve in the same vertical plane. The polar equation

to the curve, referred to C as origin, is r=f{9), $ being measured from the vertical.

Show that the equilibrium value of satisfies the equation (r- I) tan d = drjdd.

Show, by integrating this differential equation, that the form of the curve.

-.:^B

Is the position of equilibrium stable or

If'
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111!

Ill

when the rod rests against it in equilibrium in all positions, is (r-l)cosd = a.

Thence show that the middle point of the rod always lies in a fixed horizontal

straight line, and that the curve is the conchoid of Nicomedes.

If we attack this problem with the help of tli: principle of virtual work we
arrive first at the result that in equilibrium the middle point must begin to move
horizontally. From this geometrical fact we must then deduce the other resulte

given above.

126. Ex. 1. .-1 uniform heavy rod PQ restf inside a >imuotli bowl formed bij the

revolution of an ellipse about its major axis, jvhich is vertical. Show that in

equilibriuTn the rod is either horizontal or passes through a focus.

The reactions at P and Q act along the normals to the bowl. In the position of

equilibrium these normals must intersect in a point I which is vertically over the

middle point G of the rod.

The following geometrical property of conies is a generalization of those given

in Salmon\i Conies, chap. XI, on the normal.

See also the note at the end of this volume.

Let CA, CB be the semi-axes of the generating

ellipse and let these be the axes of coordinates.

Let (iy) be the coordinates of the middle point

G of any chord PQ of a conic, and let {(r)) be

the intersection / of the normals at P and Q.

Then if p, p' be the perpendiculars from the

foci on the chord and q the perpendicular from

the centre, we have

V "'^
(i"-

'

Hei*e p and p' are supposed to have the same sign when the two loci are on the

same side of the chord.

In oui 1 roblem we have in equilibrium ri = 'g. Hence we must have either, one

of the two p, p' equal to zero, or 17 = 0. In the first case the rod passes through a

focus, in the second case it is horizontal.

Ex. 2. Show that the position of " V'brium in which the rod passes through

the lower focus is stable.

This may be proved b> finding tr laouu-nt of the weight of the rod about /,

tending to bring the rod back to its potution of equilibrium when displaced.

Another proof of this theorem, deduced from the principle of virtual work, is given

in the second volume of the Quarterly Journal by H. G., late Bishop of Carlisle.

Ex. 3. If the bowl be formed by the revolution of an ellipse about the minor

axis, which is vertical, prove that the only position of equilibrium is horizontal.

To find the positions of equilibrium we make ^= J. Since the foci on the minor

axis are imaginary, we cannot immediately derive the corresponding formula for ^

from that for t] by interchanging a and b. Let the chord cut the axes in L and M,

then by similar triangles

r,-ij b^_ _GL^-a- + l-
.
i-xa-_ CiP-b- + a-

'

y a^~ CU "" ' •
X 'ifl"" 'cM" '

The tK ndition ^ = x gives i = since the right-hand side cannot vani.sh.

Ex. 4. A uniform heavy rod PQ rests inside a smooth bowl formed by the

re solution of an ellipse ^bout its major axis, which is inclined at an angle o to the

1
,
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vertical. If the rod when in equilibrium intersect the axes CA, GB of the generating

the

'

r

{ ^

ellipse in L and M, prove that
CM- + C"

h- sin tt =
CIJ

a- cos a, where c'^ = a- - b'^.CM CL
Ex. 5. Two wires, bent into the forms of equal catenaries, are placed so as to

have a common vertical directrix, and their axes in the same straight line. The

extremities of a uniform rod are attached to two small rings wliich can freely

slide on these catenaries. Show that in equilibrium the rod must be horizontal.

Ex. 6. A straight uniform rod has smooth small rings attached to its extre-

mities, one of which slides on a fixed vertical wire and the other on a fixed wire in

the form of a parabolic arc whose axis coincides with the former wire, and whose

latus rectum is twice the length of the rod : prove that in the position of equilibrium

the rod will make an angle of GO'^ with the vertical. [Math. Tripos, 1869.]

Ex. 7. AC, JIC are two equal uniform rods which are jointed at C, and have

rings at the ends A and li, wliich slide on a smooth parabolic wire, whose axis is

vertical ana vertex upwards
;
prove that in the position of equilibrium the distance

of C from AH is one fourth of the latus rectum. [Math. Tripos, 1871.]

Ex. 8. Two heavy uniform rods AH, BG whose weights are P and Q are

connected by a smooth joint at B. The ends A and C f iile by means of smooth

rings o 1 two fixed rods each inclined at an angle a to the Uorizon. If 6 and (p be

the inclinations of the rods to the horizon, show that Pcot 0=Qcot^=(P + (^)tano.

[Trin. Coll., 1882.]

Kesolve horizontally and vertically for the two rods regarded as one system

;

then take moments for each singly about B.

127. Ex. 1. Two smooth rods OM, ON, at right angles to each other are fixed in

space. A uniform elliptic disc is supported in the same I'ertical plane by resting on

these rods. If OM make an angle a itnth the i'ertical, prove that either the axes of the

ellipse are parallel to the rods, or the major axis makes an angle 6 with OM, given ?t/

a" tail? a - b'^

a- - b'^ tan'^ a

'

Let I', Q be the points of contact and let the normals at P, Q meet in 7.

be the centre, then in equilibrium either

C and I must coincide, or CI is vertical.

In the former case the tangents OM,

ON are parallel to the axes.

In the latter case, let D bisect PQ,

then OD produced passes through C ; but

because the tangents are at right angles

OPIQ is a rectangle, therefore OD passes

through I. Hence OGI is vertical.

These two results follow easily from a

principle to be proved in the chapter on

virtual work. As the ellipse is moved round,

always remaining in contact with the rods, we know by conies that C describes an

arc of a circle, whose centre is 0, and whose radius is ^(a^+b-). Hence when G is

vertically over O, its altitude is a maximum. When the axes are parallel t-j the

rods, G is at one of the extremities of its arc and its altitude is a minimum. It

immediately follows from the principle of virtual work that the first of these is a

position of unstable equilibrium, and that the other two are positions of stable

equilibrium.

tan"d=

Let C

Af
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Ex. 3. All i.s a uniform rod of lonRth ti ; a striiiK Al'lIC is fastonod to the end

.1 of the rod and pa.sacH throuj^h a smooth ring attaclied to tlie otiier end H ; the

end C of the string -is fastened to a peg (', and the portion API! is hunR over a

smooth peg P wiiich is in the same liorizontal plane as C at a distance '21) from

it (b'^(i). If AP is vertical, tind the angles which the otlier parts of the string

make with the vertical, and show that tlie string must have one of the lengths

^bV*i±v/(rt--6'-). [King's Coll., 18H9.]

Ex. 1. Two light elastic strings have their ends tied to a fixed point on the line

joinin); two small smooth pegs which are in the same horizontal plane, so that

when they are unstretched their ends just reach the pegs; they hang over the pegs

and have their other ends fastened to the ends of a heavy uniform rod ; show that

the inclination of the rod to the horizon is independent of its length, being e(iual to

tan~i (i/j - ?/m)/2(/, where //, and y., are the extensions of the strings when they singly

support the rod, and a is the distance between the pegs. Show also that the two

strings and the rod are inclined to the horizon at angles whose tangents are in

arithmetical progression. It may be assumed that the tension of each string is

proportional to the ratio of its extension to its unstretched length.

[Math. Tripos, 1887.]

139. Ex. 1. A xphere rests on a string fdstened at its extremities to two Jixed

points. Shojo that if tlie arc of contact of the sphere and pla7ie he not less than

'2tan~^ ij, the sphere may be divided into two equal portions by means of a vertical

plane without disturbing the equilibrium. [Math. Tripos, 1840.]

It may be assumed that tiie centre of gravity of a solid hemisphere is on the

middle radius at a distance f^hs of that radius from the centre.

Consider the equilibrium of the hemisphere ABD and the portion AD of the

string in contact with it. The mutual reaction? of

the string and the hemisphere may now be omitted.

This compound body is actod on by (1) the tensions

of the string, each oquol to T, acting at A and Z),

(2) the weight W of the hemisphere acting at its

centre of gravity G, (3) the mutual reaction 11 of

the two hemispheres. The reaction li is the re-

sultant of all the horizontal pressures between the

elements of the plane bases and must act at some

point within the area of contact. The two bases

will separate unless the resultant of the remaining forces also passes inside the

area of contact. The arc AD being as small as possible, this separation will take

place by the hemispheres opening out at B, for the mutual pressures are then

confined to the single point A at the lowest point of the sphere. The hemisphere

ABD is then acted on by the three forces, T at D, T - li at A, and K'at (I. These

must intersect in a point I. Hence CG = CA tan i^ACD, This gives tan iACD = ^
and tan/lC'DrrH-

Ex. 2. Two equal heavy solid smooth hemispheres, placed in as to look like one

sphere with tlie diametral plane vertical, rest on two pegs which .ae on the same
horizontal line. Prove that the least distance apart of the pegs, so that the

hemispheres may not fall asunder, is to the diameter of the circle as 3 to s/(73).

[Christ's Coll.]

Ex. 3. An elliptic lamina of eccentricity e, divided into two pieces along the

minor axis, is placed with its major axis horizontal in a loop of string attached

li

ni

^rti
i

-' >:
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to two fixed points, so that the portions of the strings not in contact with the

ellipse are vertical. Show that equilibrium will not exist unless

(Hire)- < (97r - 4)(3t + 4). [Coll. Ex., IHOO.]

Each semi-ellipse is acted on by two equal tensions along the tanRents at the

extremities A and B of the axes. Those have a resultant inclined at 4;j" to either

axis. Let it cut the vertical tlirough the centre of gravity G in the point //. The
reaction between the semi-ellipses must pass througli II. Hence the altitude of H
above li must be less than the axis minor. If C be the centre, this gives at once

a- Ga<.'2b. Granting that C'G = 4a/;j7r, this leads to the result.

Ex. 4. A circular cylinder rests with its base on a smooth inclined plane ; a

string attached to its highest point, passing over a pulley at the top of the inclined

plane, hangs vertically and supports a weight ; the portion of the string between

the cylinder and the pulley is horizontal : determine the conditions of equilibrium.

[Math. Tripos, 184;<.]

Show that the ratio of the height of the cylinder to the diameter of its base must

be less than the cotangent of the inclination of the plane to the horizon.

Ex. 5. A uniform bar of length a rests suspended by two strings of lengths

I and I' fastened to the ends of the bar and to two fixed points in the same
horizontal line at a distance c apart. If the directions of the strings being

produced meet at right angles, prove that the ratio of their tensions isal + cl' : aV + cl.

[Math. Tripos, 1874.]

Ex. (). A smooth vertical wall Ali intersects a smooth plane BC so that the

line of intersection is horizontal. Within the obtuse angle ABC a smooth sphere

of weight W is placed and is kept in contact with the wall and plane by the pressure

of a uniform rod of length I which is hinged at A, and rests in a vertical plane

touching the sphere. Show that the weight of the rod must be greater than

Wh cos a cos ^a

21 sin p sin i {a'-'efcoffih (a^ 0)
'

where a and d are the acute angles made by the plane and rod with the wall, and

k = AB. [Math. Tripos, 1890.]

Ex. 7. A set of equal frictionleis cylinders, tied together by a fine string in a

bundle whose cross section is an equilateral triangle, lies on a horizontal plane.

Prove that, if W be the total weight of the bundle, and n the number of cylinders in

W [ 1\~'
a side of the triangle, the tension of the string cannot be less than - ( ^^ + 7 )

will occur when there are no pressures between the cylinders in any horizontal row

above the lowest. [Math. Tripos, 1886.]

Ex. 8. A number n of equal smooth spheres, of weif;ht W and radius r, is

placed within a hollow vertical cylinder of radius u, less than 2r, open at both

ends and resting on a horizontal plane. Prove that the jeast value of the weight

W of the cylinder, in order that it may not be upset by the balls, is given by

aW = (»-!) (a - r) W or <;W = n (« - r) \\\

according as n is odd or even. [Math. Tripos, 1884.]

Ex. 9. The circumference of a heavy rigid circular ring is attached to another

concentric but larger ring in its own plane by n elastic strings ranged symmetrically

round the centre along common radii. This second ring is attached to a third in a

or

4^3

accordinjT as n is an even or an odd number, and that these values

sum I

Supjl

withJ

all tl
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ll

8i:nil(ir manner by 2)i strings, and this to a fourth by 3» atrinKH and ho on.

Supposing all the rings to have the same weight, and the strings at first to bo

without tcnHion, show that, if the last ring bo lifted up and held horizontal,

all the other rings will be on the surface of a right cone. [Pet. Coll., 181)2.

j

Ex. 10. Two spheres of densities p and <r, and whose radii are <i and h, rest in

a paraboloid of revolution whose axis is vortical cud touch each other at the focus ;

prove that p''(("'= <r3/j"*. [Curtis' problem. Educational Timcn, 54()().]

180. BqulUbrium of four repelling partlclas. Ex. 1. Four free particles

situated at the corners of a (juadrilateral are in e(|uilibriuni under their mutual

attractions or repulsions; the forces along the sides Ali, JtC, CD, DA being

attractive, those along the diagonals .IC^, JU) being repulsive. If the forces are

proportional to the sides along which they act, prove that the quadrilateral is a

parallelogram.

In this case the forces on the particle A are represented by the sides Ali, AD
and the diagonal AC, The result follow^ at once from the parallelogram of forces.

Ex. 2. If the quadrilateral formed by joi->ing the four particles can be inscribed

in a circle, show that the attracting force alon- .mj side is proportional to the

opposi*;e side, and the repelling force along a diu^^onal to the other diagonal.

Ex. 3. If the quadrilateral be any whatever, prove that when the particles at

the corners are in equilibrium

fum ^ fjiic) _ fjiiP) ^ f(AC)
AB.6C.0D BC.OD.OA ' AC .OB.OD BD . OA . OC

'

where is the intersection of the diagonals BD, AC, and the mutual force along

any line, as AB, is represented by /(AH).

To prove this, consider the equilibrium of the particle A.

f{AC ) _ sin DAB _ areoDAB AD.AO _ Dli AJ)

f{AB) ~ sin DAO ~ area DAO ' AD .AB~ DO'AB'
all the results follow by symmetry.

Ex. 4. Whatever be the form of the quadrilateral, prove t'jat (1) the moments

about of the forces which act along the sides are equal, and (2),

ABf(AB) + BCf{BC) + CDf(CD) + DAf(DA) = AGf(AC) + BDf{BD).

li

, ,1

* in

Reactions at Joints.

ilues
131. When two beams are connected together by a smooth

hinge-joint or are fastened together by a very short string, the

mutual action between them will be equivalent to a single force

acting at the point of junction. In some cases the directiim of

this force is at once apparent, in other cases its direction as well

as its magnitude must be deduced from the equations of equi-

librium.

There are two cases in which the direction is apparent. Firstly

let the body and the external forces be both symmetrical about

some straight line through the hinge. In this case the action and
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imctrically situ-roaction Detwecn the two Dcivius

utt'd. Since they are c(iual and opposite, they must each be

perpendicular to the line of symmetry.

tfecondly let the body be hinged at two points il and /^, and let

it be acted on by no other forces except the reactions at A and Ji.

Since the body is in i'(|uilibiiuin under these two reactions, thoy

must act along the straight line joining the hinges and be equal

and op])osite.

Ex. 1. Two equal beams ,-1.1', Jtii', without weight, are hinged together at

their common middle point C, nnd plaeed in a

vertical plane on a smooth horizontal table. The

upper ends A, U of the rods are connented by a

light string .•(/)/(, on which a small heavy ring

can slide freely. Show that in eciuilibrium a

horizontal lino through the ring /) will bisect A C

andHC. [Coll. Ex.]

The action at C is horizontal, because the

system is symmetrical about the vertical through

C. The action at ^
' is vertical because, when the end of a rod rests on a surface,

the action is normal to the surface (Art. 12")). The tension of the string acts along

Al>. These three forces keep the rod AA' in equilibrium. They therefore meet iu

some point /. By similar triangles DC is half lA'. The resi''., follows immediately.

Ex. 2. If the weight of each rod in the last example be n times the weight of

the ring, prove that in equilibrium a horizontal line through the ring will cut CA in

a point F such that CI' = ('2n + i) PA.

I'x. 3. Two equal heavy rods CA, CD are hinged at C, and their extremities

A, B 'est on a smooth horizontal table. A third rod, attached to their middle

points k , F by smooth hinges, prevents the rods CA, CB from opening out. Find

the reactions at the hinges (1) when the rod EF has no weight, and {'2) when it has

a weight W.

The reaction R a.t C is horizontal by the rule of symmetry. If the weight of

the rod EF is neglected, the reactions at E
and F act along EF ly the second rule of this

Article. Let this be A'. The reaction R' at

A is vertical. The weight of the rod CA acts

vertically at E. These are all the forces which

act on the rod CA. By resolving horizontally

and vertically, and by taking moments about E
we ea ily find that R and - A' are each equal to

IF tan o, where a is half the angle ACB.

When the roof of a house is not high pitched, the angle ACB between the beams

is nearly equal to two right angles, so that tan a is large. The reactions at C and E
become therefore much greater than the weig it of the beams. It is therefore

necessary to give great strength to the mode of attachment of the beams.

If the weight W of the beam EF cannot be neglected, the reactions at E and F
will not be horizontal. Let the components of the action at E on the rod EF be

I

I

Alt

A,

not

exi

tlU'

are

wh(

A,
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#

Tlit'He (our equations determine

A', y wln'n resolved liorizontally to tlie ri^lit and verticiilly downwards. It will he

noticed that they have been put in directions oi)j)()Hite to those in whieii we should

exi>ect them to act. This is done to avoid oonfusitiK the figure. They Hhould

therefore appear us negative (luantities in tiie result. The reactions on the rod AC
are of course exactly opijo.site. The equations of e(|uilibrium are us follows

;

IleKolve ver. for KF. 'J V + U" = 0,

Ues. ver. for the system, 2li'= U" + '2ir,

Mts. about K for .1 C, lia con a = li'n sin a,

Res. hor. for .1 C,

where 2« is the length of either VA or Vli.

X, Y, n, w.

Ex. 4. Two rods Ali, liC. of ecpiul weij^ht but of unequal length, are hinged

together at li, aiid their other extremities are attached to two fixed hinj^es A and C
in the same vertical line. Prove tluit the line of action of the reaction at the hinge

Ji bisects the straight line AC,

Ex. 5. Two uniform rods /I/?, AC, freely jointed at A, rest with A capable of

sliding on a fixed stuootli horizontal wire. li and C are connected by small smooth

rings with two vertical wires in the plaro AUC. If the rods are perpendicular

prove that <i^{l + V)=:li^l' + I'^l, where /, I' are the lengths of the rods and <i the

distance between the vertical wires. [Coll. Ex., 18<J0.]

133. Ex. 1. Four rods, jointed at their extremities .4, Ji, C, D form a parallelo-

gram. The opposite corners are joined by strings along the two diagonals, each of

which is tight. Show that their tensions are i)roportional to the diagonals along

which they act.

Let four particles be added to the figure, one at each corner. Let the sides

be jointed to the particles instead of to each other, and h't the strings also be

attaclit'd to the particles. By this arrangement each rod is acted on only by

forces at its extremities ; hence by the second rule of Art. 131 these forces act

along the rod. We now proceed as in Art. LSO, Ex. 1. The foi^es on the particle

A are parallel to the sides of the triangle ABC, hence, by the parallelogram of

forces, they are proportional to those sides. It follows that every side in the figure

measures the force which acts along it.

Another Solution. We may also arrange the internal forces otherwise. Let the

rods be jointed to each other, but let the strings be attached to the extremities of

the rods AB, CD. Since AD is now acted on only by the actions at the hinges,

these actions act along AD (Art. 131). In the same way the reactions at /} and

C act along BC. Thus the rod CD is acted on by the tensions T, T' along the

diagonals DB and CA, and by the reactions along AD and BC. Resolving at right

angles to the latter, we have T Bin OBC =T' sin UCB, where O is the intersection

of the diagonals. This gives T , UC= T' , OB, i.e. the tensions are as the diagonals

along which they act.

It should be noticed that the mutual reactions on the rods obtained in the two

solutions appear not to be the same. In the first solution, the conditions of equili-

brium of the rod CD and the particles at G and D are separately considered ; in the

second solution, they are treated as one body and the conditions of equilibrium of

this compound body are found to be sufficient to determine the ratio of the tensions

of the strings. Consider the reactions at the corner D. In the first solution there

are two reactions at this corner, viz. those between the particle at D and the two

i V
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rods A D, CI). These are proved to act along A 1) and CD ; let them be called

i{, and ii, roepectively. In the second solution the only reaction at the comer

D which is considered is /ij , the other reaction li.^ not being required. If it had

been asked, as part of the question, to find the reaction at the joint I>, it would

have been necessary to state in the enunciation how the rods were joined to each

other and to the string. It is only when this mode of attachment is given that

we can determine whether it is 72,, li.^ or some combination of both that can be

properly called the reaction at the corner D.

Ex. 2. A parallelepiped, formed of twelve weightless rods freely jointed together

at their extremities, is in equilibrium under the action of four stretched elastic

strings connecting the four pairs of opposite vertices. Show that the tensions of

the rods and strings are proportional to their lengths. [Coll. Ex., 1890.]

Ex. 3. Four rods are jointed at their extremities so as to form a quadrilateral

A BCD, ard the opposite corners A , C and B, D are joined by tight strings. If the

tensions are represented hy f{AC) and/(BD), prove that

where O is the intersection of the diagonals.

By placing particles at the four comers as in the first solution to the last

example, this problem is immediately reduced to that solved in Ex. 3, Art. 130.

The result follows at once. This problem is due to Euler, who gives an equivalent

result in Acta Academia Scientiarum Imperialis Petropolitana, 1779. I'rom this he

deduces the result given in ^x. 1 for a parallelogram.

Ex. 4. If the opposite sides AD, BC (or CD, BA) are produced to meet in A',

prove that the ^<>n8ions of the strings are inversely proportional to the perpendiculars

drawn from A' on the strings.

To prove this we follow the second method of solution adopted in Ex. 1. Let

the strings be attached to the extremities of the rods AB, CD. The reactions at D
and C now act along AD and BG. Considering the equilibrium of the rod CD,

the result follows at once by taking moments about A'.

Ex. 5. Four rods, jointed together at their extremities, form a quadrilateral

ABCD. Points E, F on the adjacent sides AB, BC are joined by one string and

points G, H on the adjacent sides BC, CD are joined by ano^ .er string. Compare

the tensions of tlie strings. This ia a modification of a problem solved by Euler in

1779. Acta Academics Petropolitana. The following solution is founded on his.

Lemma. We may replace the string EF by a string joining any other two points

E', F' taken in the same two sides AB, BC without altering any reaction except the

one at B, provided the moments about B of the tensions of EF, E'F' are equal. To
prove this, let the strings intersect in K. The tension T, acting at F on the rod BC,

may be transferred to A', and then resolved into two, viz. one U which acts along

KF', and which may be transferred to /<", and another V which acts along KB and

may be transferred to B. In the same way the tension T acting at E on the rod

AB may be resolved into IJ acting at A" along E'K, and V acting at B along BK.
Thus the equal forces T, T at E and F are replaced by the equal forces U, U at

E', F, i.e. by the tension U oi& string E'F'. At the same time the mutual reactions

at B are altered by the superposition of the two equal and opposite forces called V.

The other forces and reactions of the system are unaffected by the change. Since T
is the resultant of U and V, the moments of T and U about B must be equal.

I

f
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By using this lemma we may transfer the strings EF. GH until they coincide

with the diagonals AC, BD. Let T, T' be the tensions of KF, QH. Then V=nT
is the tension of A C, where n is the ratio of the perpendiculars from B on KF and

^' ^

AC. So V' = n'T' is the tension of BD, where n' is the ratio of the perpendiculars

from C on HG and BD. The ratio of the tensions along the diagonals has been

found in Ex. 3. Using that result we have

"'^U + ^) = "'^'(fo +^0
Ex. 6. Four rods jointed together at their extremities form a quadrilateral

ABCD. Points E, F on the opponite sides AB, CD are iciaed by one string, and

points G, // on the other two sides AD, BC are joined by a b>:cand string. If the

opposite sides AD, BC meet in .Y, and the sides CD, BA in Y, and p, p' are the

perpendiculars from X, Y on the strings EF, GH, prove that the tensions T, T' are

connected by the equation
Tp sin .Y T'p' sin Y
aeT.cd "^ adTbc

The perpendicular from X or Y on any string is to be regarded as positive when the

string intersects XY at some point between X and Y.

7 Pa e b
It follows) that in equilibrium one string must pass between X and Y and the

other outside both, contrary to what is represented in the diagram. It also follows

that, if one string as QH produced passes through Y, either the tension of the other

string is zero, or that string produced passes through X.

Let the reactions at each of the corners of the quadrilateral be resolved into

forces acting along the adjacent sides, viz. P', P at A along DA, AB
;

Q', Q at B

R. S. I. 6

fit
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i!

along AJi, BC ; R', R at C and S', S at D. The reaotions on the rods AD, BG are

sketched in the figure, those acting on the rods A B, CD are equal and opposite to

those drawn.

Considering the equilibrium of the rods .ID and BC, we have, by taking

moments about D aud C respectively,

P. FD8in}'=r.DHsin//, Q' . YC Lin Y=T' .CO sin O.

Consider next the equilibrium of the rod AB, taking moments about A',

{P-Q')XM=Tp,
where XM is a perpendicular from .V on AB.

Substituting, and remembering that sin //, sin G, and sin A' have the ratio of the

opposite sides in the triangle XHO, we find

DH .CY.XG-DY.CG. XH sin A' XU.T
'ainY

= Tp.

+ Tp=0,

YD . YC 'ainY' HG
Now the numerator of the first fraction on the left-hand side is minus the sum of the

products of the segments (with their proper signs) into which the sides of the

triangle DCX are divided by the points G, H, Y*. The equation therefore reduces to

[aHY].pC.CX.XD sin A' XM.T'
(bCX] .YD . YC sin Y " HO

where [GHY] and [DCX] represent the areas of the triangles GHY and DCX.
These areas are equal to ^HG .p' and ^DX . CA'sin A' respectively. Also AB . XM
is twice the area of the triangle AXB, and is therefore equal to XA . A7)sin A'. Again,

JYD AD YC _ BC XA _ AB _ XB
sin A ~ sin 1"

' sin B ~
sin

1'
' einB~ sin A'

~ sin /i
*

Substituting we obtain the equation connecting T, T' given in the enunciation.

* Let D, E, F be three arb'trary points taken on the sides of a triangle ABC.
If A, A' be the areas of the triangles ABC, DEF, it may be shown that

A' _ AF . BD . CE + AE . CD . BF
A
~

abc

To form the two products AF.BD.CE and AE .CD.BF, we start from any
comer, say A, and travel round the triangle,

first one way and then the other, taking on each
circuit one length from each side. The sum of

the two products so formed, each with its proper

sign, is the expression in the numerator.

The signs of these factors may be determined
by the following rule. Each length, being drawu
from one of the comers of the triangle ABC,
along one of the sides, is to be regarded as posi-

tive or negative according as it is drawn towards
or from the other corner in that side. Thus,
AF being drawn from A towards B is therefore

positive, BF being drawn from B towards A is also positive. If F were taken on
AB produced beyond B, AF would still be positive, but BF would be negative. If
F move along the side AB, in the direction AB, the area DEF vanishes and becomes
negative when F passes the transversal ED.

In the same way, if we draw any three straight lines through the corners of the
triangle, say AD, BE, CF, they will enclose an area PQR. If the area of the
triangle PQR is A", it may be shown that

A^'_ {AF

.

BD . CE -AE . CD.

B

Ff
~K ~ (ab- CE . CD) {be - AE . a'F) {ca -BF. BD)

'

The author has not met with these expressions for the area of two triangles

which often occur. He has therefore placed them here in order that the argument
in the text may be more easily understood.

I
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188. Ex. 1. A series of rods in one plane, jointed together at their extremities,

form a clo$ed polygon. Each rod is acted on at its middle point in a direction per-

pendicular to its length by a force whose magnitude is proportional to the length

of the rod. These forces act all inwards or all outwards. Show that in equilibrium

(1) the polygon can be inscribed in a circle, (2) the reactions at the comers act

along the tangents to the circle, (3) the reactions are all equal.

Let AB, BC, CD, «l-c. be the rods, L, M, N, <fco. their middle points. Let a/</3.

pCy, Sic. be the lines of action of the reactions at the comers B, C &o. Since each

rod is in equilibrium, the forces at the middle points of the rods must pass through

o, /3, y, Ac. respectively. Consider the rod BC ; the triangles BMfi, CMfi are equal

and similar, also the reactions along Bp and C/3 balance the force along it//3 which

bisects the angle B^C. Hence these reactions are equal. It follows that the

reactions at all the corners are equal in magnitude.

Draw BO, CO perpendicular to the directions of the reactions at B and C. These

muHt intersect in some point O on the perpendicular through M to BC. The sides

of ihe triangle OBC are perpendicular to the directions of the three forces which

act on the rod BC, and are in equilibrium. Hence CO represents the magnitude of

the reaction at C on the same scale that BC represents the force at M.

In the same way if CO', DO' be drawn perpendicular to the reactions at C and

D, they will meet in some point 0' on the perpendicular through N to CD. Also

CO' will meai^ ire the reaction at C on the same scale that CD measures the force at

its middle point. Hence by the conditions of the question CO = CO', and therefore

O and 0' coincide. Thus a circle, centre 0, can Ix drawn to pass through all the

angular points of the polygon and to touch the lines of action of all the reactions.

Ex. 2. A series of jointed rods form an undated polygon. The two extremities

of the system are constrained, by means- of two small rings, to slide along a smooth

rod fixed in space. If each moveable rod is acted on, as in the last problem, by a

force at its middle point perpendicular and proportional to its length, prove that

the polygon can be inscribed in a circle having its centre on the fixed rod.

Let A and Z be the two extremities. We can attach to A and Z a second

system of rods equal and similar to the first, but situated on the opposite side of

the fixed rod. We can apply forces to the middle points of these additional rods

acting in the same way as in the given system. With this symmetrical arrangement

the fixed rod becomes unnecessary and may be removed. The results follow at once

from those o))taiued in the last problem.

These two problems may be derived from Hydrostatical principles. Let a vessel

be formed of plane vertical sides hinged together at their vertical intersections, and

let this vessel be placed on a horizontal table. Let the interior be filled with fluid

6—2

Iff

I



M FORCEH IN TWO DIMENSIONS. [chap. IV.

which cannot escape either between the sides and the table or at the vertical

joinings. The presHureH of the fluid on each face will be proportional to that part

of the area of each which is immersed in the fluid, and will act at a point on the

median li. ". These pressures are represented in the two problems by the forces

acting on the rods at their middle points. It will follow from a peneral principle,

to be proved in the chapter on virtual work, that the vessel will take such a form

that the altitude of the centre of gravity of the fluid above the table is the least

pofifiible. Hence the depth of the fluid is a minimum. Since the volume is given,

it immediately follows that the area of the base is a maxintum.

By a known theorem in the differential calculus, the area of a polygon formed

of sides of given length is a maximum when it can be inscribed in either a circle

or a semicircle, according as the polygon is closed or unclosed. (De Morgan's Diff.

and Int. Caleulun, 1842.) The results of the preceding problems follow at once.

We may also deduce the results from tho principle of virtual work without the

intervention of any bydrostatical principles.

We may notice that both these theorems will still exiHt if a great many con-

secutive sides of the polygon become very short. In the limit these may be

regarded as the elementary arcs of a string acted on by normal forces proportional

to their lengths. // then a polygon be formed by rods and strings, and he in

equilibrium under the action of a uniform normal presmre from within, the sides

can be inscribed in a circle, and the strings will form arcs of the same circle.

The first of these two problems was solved by N. Fuss in M€moires de I'Aca-

dimie Impiriale des Sciences de St Pitersbourg, Tome viii, 1822. His object was to

determine the form of a polygonal jointed vessel when surrounded by fluid.

184. Ex. VolyBon of haavy rods, n uniform heavy rods A^^A^, A^A^ dr.,

•^n-i-^n <"* freely jointed together at A^, A.^ dx; .J„_j and the ttco extremities A^ and

^, are hinged to two points which are fixed in space ; it is required to find the

conditions of equilibrium.

At each of the joints A^, A^ &c. draw a vertical line upwards ; let 6^, 0, <&c. be

the inclinations of the rods A^^A^, A^A„ &c. to these verticals, the angles being

measured round each hinge from the vertical to the rod in the same direction of

rotation. Let the weights of these rods be Wq , Wi &o.

First Method. The equilibrium will not be disturbed if we replace the weight W
of any rod by two vertical forces, each equal to ^W, acting at the extremities of the

rod. In this way each rod may be regarded as separated into three parts, viz. the

two terminal particles, each acted un by half the weight of the rod, and the inter-

mediate portion thus rendered weightless. Let us first consider how these several

parts act on each other. At any joint the two terminal particles of the adjacent

rods are hinged together. Each particle is in equilibrium under the action of the

force at the hinge, the half-weight of the rod of which it forms a part, and the

reaction between itself and the intermediate portion of that rod. This last reaction

is therefore a force. Since the intermediate portion of each rod has been rendered

weightless, the reactions on it will act along the rod, Art. 131. Let the reactions

along the intermediate portions of the rods A^A^, A^ A^ &c., be Tg, T, &c., and let

these be regarded as positive when they pull the terminal particles as if the rods

were strings.

To avoid introducing the force at a hinge into our equations we shall consider

tht equilibrium of the two particles adjacent to that hinge as forming one system.
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ThiH compound particle is acted on by the haU-weighta of the adj loent rodn and the

reactionR along the intermediate portions of those rods. The renult of the argument is,

that we may regard all tlie rod* a* being without weight, and mtppoK them to be hinged

to heavy particlet placed at the joint$, the weight of each particle being equal to half

the sum of the weights of the adjacent rods.

A HyHtem of weights joined, each to the next in order, by weigbtlcHH rods or

strings and suspended from two fixed points is usually called a funicular polygon.

Consider the equilibrium of any one of the compound particles, say that at the

joint A.,. Resolving horizontally and vertically, we have

r, sin 01 = Tj sin 9^ )

T^cose.,-7\ooa0^ = i{Wi + H\)\
(!)•

i

We easily find
i(n\+w,) _
cot tfn - cot tf

= r, sin tf,

The right-hand side of this equation is the same for all the rods, being equal to the

honzontal tension at any joint, we find therefore

cot tfj - cot tf, cot tfJ - cot $2
(2).

It Ar, A be any two joints we see that each of these fractions is equal to

4>K,_i-Hr,-H 4ir._t + ^IF.
^

cot 0, - cot tfr_i

ISS. Second Method. In this method we consider the equilibrium of any two

successive rods, say ^(^4.,, A.,A3, and take moments for each about the extremity

remote from the other rod.

Let X,, Yq be the resolved parts of the reaction at the joint A., on the rod A^^A^.

The two equations of moments give

- Xj cos 0«+ Y'n sin »„ + i H'j sin tfj= »

-A'2costf, + yjsin»,-jjr,8intf,=oi
'

Eliminating Y., we find

X2(cotff4-ootff,)=i(iri + ir,) (4),

which is equivalent to equations (2).

lae. Let Iq, {, &c. be the lengths of the rods, h, k the horizontal and vertical

coordinates of A^ referred to A^ as origin. We then have

locoa 00 + 1^ cos $1

lf,s'\n$o + l-^aia0x

The equations (2) supply n - 2 relations between the angles 0„ , 0, &o. and the

weights U'q, Wi &o. of the rods. Joining these to (5) we have suflScient equations tc

find the angles when the weights are known. When the angles and the weights of

two of the rods are known, the n - 2 remaining weights may be found from (2).

9, + + i„_,8intf„_, = /j^

i
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1S7. It ia evident that either of theae methods may he uHed if the rods are not

uniform or if other forces hesideR the weights act on them. The two equations of

moments in the second method will be slightly more complicated, but they can be

easily formed. In the first methotl the transference of the forces parallel to them-

selves to act at the joints is also only a little more complicated, see Art. 70.

' %B. To find the react i(m» at the Joint*. If we use the second method, these are

easily found from equations (3). But if we use the first method we must transfer

the weights ^ir, and ^If^, back to the extremities of the rods which meet at A.,. In

the original arrangement of the rods when hinged to each other, let U^ be the action

at the joint A.^ on the rod A^y The terminal particle of the rod A.^A.^ is then

acted on by the three forces R^, ^W.^ and T.^. We therefore have

R*=T.i^-\-^W.^-W.il\coHe., (6).

The direction of the reaction is easily deduced from equations (2). Suppose

that the rods A^An, A,^^ are joined by a short rod or string without weight. The
position of this rod is clearly the line of action of 11, . Treating this rod as if it

were one of the rods of the polygon, we have, if ^ be its inclination to the vertical,

cot ^ - cot $1 cot tfj - cot ^

•• ("^1 + ^^i) cot 0= Il'jjcot tf, + ir, cot tf.j.

180. The tubmidiary polygon. The lines of action of tie reactions i7, , 7?., Sm.

at the joints will form a new polygon whose corners Ii^ , B., &c. are vertically under

the centres of gravity of the rods AiA.,, A-^A., Ac. The weights of the rods may be

supposed to act at the corners of this new polygon. Each weight will be in eiiui-

librium with the reactions which act along ' -adjacent sides of the polygon.

If we suppose the corners li^ , 11, <&c. med by weightless strings or rods

we shall have a second funicular polygon. funicular polygon may be treated

in the same way as the former one, except that we have the weights IK, , If'.. &o.

instead of J ( ir, + IK.), i (W., + W^) Ac.

140. Let Holt^P., &c. be any funicular polygon; IF,, H'o, Ac, the weights

suspended from the comers li^ , D^ Ac. From any arbitrary point O draw straight

lines 06], Obo, Oh^ Ac. parallel to the sides Pg^,, B^B.^, B.,B.j Ac. to meet any

vertical straight line in the points b. , b,,, h^ Ac. Since a particle at the point 7i, is

in equilibrium under the action of the weight }f\ and the tensions fi,, ii, acting

(7).

along the sides B^B^, B^Bo, it follows, by the triangle of forces, that the sides of the

triangle Ob^b^ are proportional to these forces. In the same way, the sides of the

triangle Ob^b^ represent on the same scale the weight '., and the tensions acting

along BjBj , B^B^. In general the straight lines 06, , Ob„ Ac. represent the tensions
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equation given

acting along the Hides of the funicular polygon to which they are reHpootively

parallel ; while any part of the vertical Htraight line an h.,b^ representH the num of

the weigbtn at li^, /^, and It^.

By using thin figure wc may find (feometrieally the relations between the tensions

and the weights. If ^,, (p.^ Ac. be the inclinations of the sides HqH^, liji^ &c. to

the vertical, we have O^V (cot 0, - cot ^.j) = b,b.j,

where OS is a perpendicular drawn from O on the vertical straight line. Since OS
represents the horizontal tension .Y at any point of the funicular polygon, this

'^« =iA- —'^ -- = Ac.
cot ^, - cot 03 cot 0.J

- cot 0,

In the same way other relations may be established.

The use of this diagram is described in Rankine's Applied Mechanics, Such

figures are usually called force diagmmn. We have here only considered the

simple case in which the forces are parallel to each other. In the chapter on

Graphics this method of solving statical problems will be again considered and
extended to forces which act in any directions.

141. Ex. 1. A chain consisting of a number of equal and in every respect

similar uniform heavy rods, freely jointed at their ends, is hung up from two fixed

points ; prove that the tangents of the angles the rods make with the horizontal are

in arithmetical progression, as are also the tangents of the angles the directions of

the stresses at the joints make with the same, the common difference being the

same for each series. [Coll. Ex., 1881.]

Ex. 2. OA, Oli are vertical and horizontal radii of a vertical circle, A being

the lowest point. A string A CDli is fixed to A and li and divided into three equal

parts in C and D. Weights W, W being hung on at C and Z), it is found that in

the position of equilibrium C and D both lie on the circle. Prove that \V=W tan IS**.

[Trin. Coll., 1881.]

Ex. 3. Four equal heavy uniform rods All, BC, CD, DA are jointed at their

extremities so as to form a rhombus, and the corners A and C are joined by a

string. If the rhombus is suspended by the corner A , show that the tension of the

string is 2W and that the reaction at either £ or I) is ^W tan iBAD, where W is the

weight of any rod.

^ Ex. 4. AB, BC, CD are three equal rods freely jointed at B and C. The rods

AB, CD rest on two pegs in the same horizontal line so that BC is horizontal. If

a be the inclination of AB, and /3 the inclination of the reaction at B to the horizon,

prove that 3 tan a tan /3= 1. [St John's Coll., 1881.]

Ex. 5. Three equal uniform rods are freely jointed at their extremities and rest

in equilibrium over two smooth pegs, in a horizontal line at a distance apart equal

to half the length of one rod. If the lowest side be horizontal, then the resultant

action at the upper joint is -f^iJsW and at each of the lower ^-JBIW, where W is

the aggregate weight of the rods. [Coll. Ex., 1882.]

1^ Ex. 6. Three rods, jointed together at their extremities, are laid on a smooth

horizontal table; and forces are applied at the middle points of the sides of the

triangle formed by the rods, and respectively perpendicular to them. Show that, if

these forces produce equilibrium, the strains at the joints will be equal to one

another, and their directions will touch the circle circumscribing the triangle.

[Math. Tripos, 1858.]
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J

Ex. 7. Threo pieces of wire, of the same kind, and of proper leiiffthH, are bent

into the form of the throe Hquares in the diaKram of Euclid I., 47, and the anglcH of

the iiquarcB which are in contact are hiuRed tORcthor, ro that the nmaller onoR are

Hupported by the larger square in a vertical plane. Hhow that in every position,

into which the figure can bo turned, the action, if any, between the angles of the

smaller uquarcs will be perpendicular to the hypothonuse of the right-angled triangle.

[Math. Tripos, 18«7.1

Ex. 8. Three uniform rods, whose weights are proportional to their lengths

a, b, c, are jointed together so as to form a triangle, which is placed on a smooth

horizontal plane on its three sides successively, its piano being vortical . prove that

the stresses along the sides a, b, c when horizontal are proportional to

(b + c) cosec 2A, (c +<i) ooaec 2/^ (a + 6) ooseo iC. [Math. Tripos, 1H70.]

Ex. {>. Three uniform rods AH, HC, CD of lengths 2c, 2b, 2<' respectively rest

sjrmmetricully on a smooth parabolic arc, the axis being vertical and vertex

upwards. There are hinges at It and C, and all the rods touch the parabola.

If \V be the weight of either of the slant rods, show that its pressure against the

parabola is equal to IV -y -ii l • where 4(i is the latus rectum of the parabola.

[Coll. Ex., 1H88.]

Ex. 10. ABCD is a quadrilateral formed by four uniform rods of equal weight

loosely jointed together. If the system be in equilibrium in a vertical plane with

the rod Ali supported in a horizontal position, prove that 2 tan 9 = tau a ~ tan /3,

where a, /3 are the angles at A and B, and 6 is the inclination of CD to the horizon

;

also find the stresses at C and D, and prove that their directions are inclined to the

horizon at the angles tan- ' ^ (tan /3 - Ian 0) and tan-' J (tan a + tan 6) respectively.

[Math. Tripos, 1879.]

Ex. 11. Four equal rods AB, BC, CD, DA, jointed &t A, B, C, D, are placed on

a horizontal smooth table to which BC is fixed, the middle points of AD, DC being

connected by a string which is tight when the rods form a square. Show that, if a

couple act on AB and produce a tension 2' in the string, its moment must be

ir . AB^2. [Coll. Ex., 1888.]

Ex. 12. A weightless quadrilateral framework AfA.^A^A^ rests with its plane

vertical and the side Ay4., on a horizontal plane. Two weights W, W are placed at

the comers A^, A^ respectively, while a string connecting the two corners A^A^

prevents the frame from closing up. Show that the tension T of the string is given

by nr sin $., sin 0^=W cos tf, sin tf., - W cos 0.^ sin 9^

,

where 0, , $.,, 0.^, 0^ are the internal angles of the quadrilateral, and n is the ratio of

the side on the horizontal plane to the length of the string.

Ex. 13. A pentagon formed of five heavy equal miform jointed bars is

suspended from one corner, and the opposite side is supported by a string

attached to its middle point of such length as to make the pentagon regular.

Prove that the tension of the string is equal to AWcob^-^w, where W is the

weight of any rod. Find also the reactions at the corners.

Ex. 14. A i-egnlar pentagon ABCDE, formed of five equal heavy rods jointed

together, is suspended from the joint A, and the regular pentagonal form is

maintained by a rod without weight joining the middle points K, L of BC
and DE. Prove that the stress at Jir or L is to the weight o.? a rod in the

ratio of 2 cot 180 to unity. [Math. Tripos, 1885.]
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^ Ex. 16. The twelve cdgoH of a regular octahedron lU'f formvd of rodH hinginl

together at the anglen, and the oppoHito aiigloH iire oonuuctod by olaHtiu HtringH ; if

the teuRions of the three RtringH arc X, Y, '/. roHpt!utivi>ly, Mhow thiit tht> proHHurc

along any of the rodn oonneoiing the cxtretiiitiftt of tlie HtringH wIiohc tonHiouH aro

r and / 18 (»' + ;? - .Y)/'2^2. [Math. Tripos, IK(J7.)

Ex. 16. Any number of equal uniform heavy rodn of longth (i are hinged

together, and rotate with uniform angular velocity w about a vertical nxix through

one extremity of the system, which Ih tlxcd ; if 0, O', B" bu ttm InclinationH to the

vertical of the n'\ (n + l)"*, (n + 'i)**" rodH counting from the free end. and <^w- = H^(;,

prove that

(2n + 8)tantf"-(4n + a)Un^' + (aH-l)tantf f K |8inr + 4 8in«' ^sinS; =0.

[Math. Tripos, 1877.]

Reactions at ngid connections,

142. Let >4fi be a horizontal rod fixt;d at the extremity A \\\

a vertical wall, and let it support a weight W at its other extremity

B. We may enquire what are the stresses across a section at any

point G, by which the portion Gli of the rod is supported.

It is evident that the react-on at G cannot consist of a single

force, for then a force acting at G would balance a force W to

which it could not be opposite. It is also

clear that the resultant action across the -I

section (/(whatever it may be) must be equal

and opposite to the force W acting at B. Let

us transfer the force W from B to any point

of the section G by help of Art. 100. We sec that the reaction

across the section is equivalent to a force equal to W, together

with a couple whose moment is W. BG.

If the portion GB of the rod is heavy, we may suppose its

weight collected at the middle point of GB. Let W be the weight

of this part of the rod. Then we must transfer this weight also to

the base of reference G. The whole reaction across the section of

the rod will then consist of (1) a force W { W and (2) a couple

whose moment is W.BG+^W. BC.

Various names have been given to the reaction force and

reaction couple at diflferent times. The components of the force

along the length of the rod and transverse to it have been called

the tension and shear respectively. The former being normal to a

perpendicular section of the rod is sometimes called the normal

stress. The magnitude of the couple has been called the tendency

of the forces to break the rod, or briefly, the tendency to break. It

O
=3z:

t

1::

I

1
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!'

Ik alNo culled the moment t>ffiexure, «>r hendinrj stren/i. See Raiikiiie'M

Applied AfechatiicM. In what follows we shall n'strict (mrsolvuM to

the cji«t! in which the rod is ho thin that wo may npeak of it as u

line in diH(!U«sin^ the ^'eoinetry of the Hgure.

143. CJcncmlizing this argutneut, we arrive ut the following

lesult: the action acruns a section at any point C of a nnl is equal

and opposite to the resultant of all the forces which act on the rod

on one side of that point C.

The action juiroHs C on OH balances the forces on Cli, The

etjual and opposite reaction on ilC across the same stfction balances

those on AC. Since the forces on one side of (7 balance those on

the other side when there is etjuilibriuni, it is a matter of indiffer-

ence whether we consider the forces on the one side or the other

of (' provided we keep them distinct.

Thus the bending couple at C is equal to the sum of the

moments of all the forces which act on one side of C. So also the

shear at C is e(jual to the sum of the resolved parts of these forces

along the normal to the rod at C.

If we regard the rod as slightly elastic we may explain other-

wise the origin of the force and couple. The weight W will

slightly bond the rod, and thus stretch the upper fibres and com-

press the lower ones. The action across the section at C will

therefore consist of an infinite number of small tensions aoro.s.s its

elements of area. By Art. 104 all those can be reduced to a single

force and a single couple at a base of reference at C,

144. Ex. 1. A rod AU, of given leiitjth I, in Kiipported in a horizonlul position

by two pegu, one at each end. A heavy particle aV, whose weight is W, traverses the

rod slowly from one end to the other. It is required to find the stresses at any point.

Let AM=i, BM=l- {. Let U and li' be the presHurea of the supports at .1 and

B on the rod. These are evidently given by

R'l = W.i, i?I= »'(<-{).

Jt,

L I
R'

B

W
Let P be the point at which the stresses are required, and let AP=x. To find

these we consider the equilibrium of either the portion AP ot the portion BP of

the rod. We choose the former, as the simpler of inv two, because there is only

I
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one fnroo, vi«, R, MtiiiK on it. Th<> nhrar at P im therefore equal in magnitude to

H, niid the moment of the iitrcHH couple Ih i><|ual to Ri,

If the {Miint at which the •treineii are ie«|uirc<I iH on the other Hide of .V an at /'',

wher<< /<i"=x', it ih more convonicnt to cunMidcr the (M|uilibriu<n of /{/*'. The

Hhear ii here e(|ual to R', and the licndiuK moment to W {I - x').

Ah the bending ooupio in K^'ncrally more effi'ctive in breakinx a ro<l than either

the shear or the tennion, we Hhnii at prvwnt turn our attention to tl e couple. If

ut every point 1' wo erect an ordinate I'Q proportional to the iH-ndinv couple at P,

the looua of V ^"1 rcprenunt to the eye the magnitude of the bending couple at

every point of the rod. In our oaHc the Iocuh of Q in clearly portionH of two

fltraight linen, represented in the tlgure by the dotted lineH. The maximum ordinate

ia at the iwint M, and is repreHented by cither Hi or JV (I - {), according as wu take

momeutH about M for the Hides AM or MH of the rod. Hubstituting for R or R',

the bending couple at M beconicH )>'((/-{)//. This iH a maximum wlion M is at

the middle point of AH.

ThiH roHult Hhows in a general way that, when a man stands on a HtilT plank

laid aoroHH a stream, the bending couple is greatest at the point of the plank on

which the man ntands. Also if he walks slowly along the plank, the beudini; couple

ifl greatest when he is midway between the two supports.

Ex. 2. A uniform heavy rod AR is supported at each end. If w be the weight

per unit of length, prove that the bending couple at any point /' will be Jir ..//'. PP.

146. When several forces act on a rod, the diagram by which the diHtribution

of bending stress is exhibited to the eye can be constructed in a similar niannei.

Let forces i{, , R.^ &c. act at the points <-l, , A., Ac. of a rod in the directions indicated

by the arrows. Let AyA.^ = a.^, A^A.^ = (l, and so on. Then the bending moment at

any point P, Hay between .-<., and .I4, is obtained by taking the momcntH of the

forces which act at .-!,, A.^, A.^, these being points on one side of /'. Putting

AiP=.r, the required bending moment is

ij = RiX- R.J {.r - «.j) + R.j{x- rtj).

Erecting an ordinate PQ to repreHent //, it is clear that the locus of Q between A,

and .<4 is a straight line.

n.

k ^̂ 1 iisf It,

f
in

I

m

.B

When the point P moves beyond A^ we must add to this expression the moment
of the force R^, i.e. -R^(x - (l^). The locus of Q is now a different straight line.

It intersects the former at the point x=a^,\.e. at the top of the ordinate corre-

sponding to the point .^4, but its inclination to the rod is different.

We infer that, xchen a rod in acted on only by force* at isolated points, the

diagram representing the bending couple will cofui»t of a »erie» of finite straight

lines. This indicates an easy method of constructing the diagram. Calculate the

ordinates representing the bending couples at these ibolated points, and join their

extremities by straight lines. In this cane there can be no maximum ordinate

between the isolated points .-I,, A.^ &c. at which the forces act. Hence the bending

couple can be a maximum or minimum only at one of these points.
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Jf the rod is heavy, its weight is distributed over the whole rod. The bendinx

coaple at P will contain not merely the moments of the forces which act at

A^, A^ Ac, but also that of the weight of the portion A^P of the rod. If v> be the

weight per nnit of length, the bending couple at P will be

y= ^22 (x - a) - Jtrx',

for the W3ight of ^,P will be wx, and it maybe collected at the middle point of AyP.

This is the equation to a parabola. Hence the diagram will contiat of a serie$

of arct of parabolas, each intersecting the next at the extremity of the ordinate

along which an isolated force acts. All these parabolas have their axes vertical.

If the different sections of the rod be of the same weight per unit of length, the

latera recta of the parabolas will be equai.

This expression gives the bending moment by which the forces on the left or

negative side of any point P tend to turn the portion of the rod on the positive side

of P in the direction of rotation of the hands of a watch.

Suppose that any portion CD of a rod ACDB has no weight, and that no point

of support lies between C and D. The remaining parts of the rod on each side of

CD may have any weights and any number of points of support. The bending

couple at any point between C and D is always proportional to the ordinate of

some straight line. But if y^ , t/,, and y are ordinates of any straight line at C, D
and P, and if the distances CP and PD are /j and L, it is easy to see that

This equation therefore must also connect the bending couples yj , y,, and y at the

points C, D, and any intermediate point P.

Let us next suppose that the portion CD of the rod is heavy. The bending

couple at any point of this portion of the rod is now proportional to the ordinate of

the parabola y=A+Bx- ^wx^ , where A= -^Ra and B — "ZR, If y-^ , y^ and y are

the ordinates at C, D and any point P, where CP—l^, PD=h, it is easy to prove

that y (?, + /j) =!/i^2 + Vih + i^^'a (^ + 'a)-

This equation connects the bending couples at any three points of a heavy rod

provided there is no point of support within the length considered.

Ex. If y^, y.2, yg be the bending couples at three consecutive points of support

of a heavy horizontal rod whose distances apart are Ij , 2o , then

yiUi + k)=yik+ ysh + i'^hh {li + la)-Rhh<

where R is the pressure at the middle point of support, and w is the weight of the

rod per unit of length.

146. Since the bending couple at any point P is the x'm of the moments of the

several forces which act on one side of P, it is clear thai each force contributes its

share to the bending couple as if it acted alone on the rod. In this way it is

sometimes convenient to consider the effects of the forces separately.

For example, if a heavy rod A B, supported at each end, has a weight W placed

at s. point M, the bending couple at any point P is the sum of the bending couples

found in Art. 144 for the two cases in which (1) the rod is light and (2) there

is no weight at M. The bending couple is therefore given by

ly=W.BM . AP+iiwl . AP .BP.

147. Ex. 1. A heavy rod is supported in a horizontal position on two pegs,

one at each ^nd. A heavy particle, whose weight is n times that of the rod, is placed
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at a point M, If C be the middle point of the rod, show that the bending couple

will be greatest either at some point between M and C or at M, according as the

distance of M from C is greater or less than n times its distance from the nearer

end of the rod.

Ex. 2. A semicircular wire ACB h rotated with uniform angular velocity about

a tangent at one extremity A. Show that the bending couple is zero r.i li, is a

maximum at the middle point C, vanishes at some point between C and A, and is

again a maximum with the opposite sign at A. Show also that the maximum at A
is greater than that at C.

It may be assumed that the effect of rotation is represented by supposing the

wire to be at rest, and each element to be acted on by a force tending directly from

the axis of rotation and proportional to the mass of the element and its distance

from the axis,

Ex. 3. A horizontal beam AB, without weight, supported but not fixed at both

ends A and B, is traversed from end to end by a moving load W distributed equally

over a segment of it, of constant length PQ. Show that the bending moment at

any point X of the beam, as the load passes over it, is greatest when X divides PQ
in the same ratio as that in which it divides AB. Show also that this maximum
bending moment is equal to W . AX . BX (AB - ^PQ)IAB^. [Townsend.]

Let AX = a, BX=b, AB = a + b, PQ=l, AP=x, BQ=^. Let JR be the shear at

X, and y the bending moment. Since the weight of PX, viz. w{a-x), may be

"ollected at its middle point we have by taking moments about A for the portion AX
of the beam ^lo {a-x) (a + x)-y + Ba= 0, similarly, taking moments forBX about B,

iw (b- €) (b + e) -y - Rb=0.

Eliminating B, 21 {a + b)y=W {ab (a + b)- bx^ - af }

.

Making y a maximum with the condition x+^—a^-b-l, the results follow

at once.

Ex. 4. A uniform horizontal beam, which is to be equally loaded at all points

of its length, is supported at one end and at some other point ; find where the

second support should be placed in order that the greatest possible load may
be placed upon the beam without breaking it, and show that it will divide the

beam in the ratio 1 to iJ2-l. [Math. Tripos.]

Let ABC be the beam supported at A and B. Let wdx be the load placed on

dx; wR, wR' the pressures at A, B. Let I be the length of the beam, ^—AB, then

2i>l. We easily find ^ = i-- '" ''

2|-
''-^'

Let P and Q be two points in CB and BA respectively, x=CP, x'= AQ. By
taking moments about P and Q respectively the bending couples y, y' at P and

Q are found to be y= - iw*S y'= wRx' - ^wx'^.

The first parabola has its maximum ordinate at B, the second has a maximum
ordinate at a point x'=R which must lie between A and B. The bending couples

at these points are numerically equal to ^u) (i - ^)^ and i"' { ^ ~ ot ) • ^^ these are

onequal, the support B can be moved so as to diminish the greater. The proper

position is found by making these equal ; hence ^.(l-()= l- l-j2^. Since 4 must

be greater than ^l, this gives ^J2= L

Ex. 5. Three beams AB, BC, CA are jointed at A, B, C, B being an obtuse angle,

and are placed with AB vertical, and A fixed to the ground, so as to form the

Jil

m

m
%

'11
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framework of a crane. There is a pulley at C, aud the rope is fastened io AB
near D and passes along BC and over the pulley. If it support a weight ir, large in

comparison with the weights of the framework and rope, tind the couples which

tend to break the crane at A and B. [Mati.. Tripos.]

Ex. 6. A gipsy's tripod consists of three uniform straight sticks freely hinged

together at one end. From this common end hangs the kettle. L'he other ends of

the sticks rest ou a smooth horizontal plane, and are prevented from slipioing by a

smooth circular hoop which encloses tbem and is fixed to the plane. Show that

there cannot be equilibrium unless the sticks be of equal length ; and if the weights

of the sticks be given (equal or unequal) tiie bendiug moment of each will be greatest

at its middle point, will be independent of its length, and will not be increased on

increasing the weight of the kettle. [Math. Tripos, 1878.]

Ex. 7. A brittle r.-Kl AB, attached to smooth hinges at A and B, is attracted

towards a centre of force C according to the law of nature. Supposing the absolute

force to be indefinitely augmented, prove that the rod will eventually snap at a

point E determined by the equation sin
||
(a+j3)cos0 = sin^(a-)3), where a, /3

denote the angles BAC, ABC, and the angle AEC. Math, iripos, 1854. See also

the solutior.s for that year by the Moderators and Examiners.

Indeterminate Problems.

148. When a body is placed on a horizontal plane, the pressure

exerted by its weight is distributed over the points of support.

When there are more than three supports, or more than two in

one vertical plane, this distribution appears to be indeterminate.

Thus suppose the body to be a table with vertical legs, and let

these legs intersect the plane horizontal surface of the table in the

points Ai,A« &c. Let the projection on this plane of the centre of

gravity of the body be G. The weight W of the table will then be

8 pported by certain pressures Ri, R2 &c. acting Sit Ai, A^ &c. Let

Ox, Oy be any rectangular axes of reference in this plane and let Oz

be vertical. Let {^ociy^), {x-^y^) &c, be the coordinates of A^, A^ &c.

and let {xy) be those of G. Since W is supported by a syt;tem of

p.irallel forces we have by Arts, llo and 111

Wx = RxX^-\-RzX^-\-...

^y = R\yx-\-R^y2-\---

These three equations suffice to determine ^i, R^ &c. if there are

but three of them and these not all in one vertical plane, but if

there are more than three, the problem appears to be indeterminate.

In this solution we have replaced the supporting power of the

floor by forces Ri, R^ &c. acting upwards along the legs. What we
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have really proved i.s that the table could be supported by such

forces in a variety of different ways. Suppose there were four logs

;

we could choose one of these forces to be what we please, tht'*

others could then be found from these three equations. It is

therefore evident that the problem of finding what forces could

support the table must be indeterminate.

The actual pressures exerted by the table on the floor are not

indeterminate, for in nature things are necessarily determinate.

When anything appears to be indeterminate, it must be because

we have omitted some of the data of the question, i.e. some property

of matter on which the solution depends.

We notice that the elementary axioms relating to forces, which

have been enunciated in Art. 18, make no reference to the nature

of the materials of the body. We have found in the preceding

Articles that the equations supplied by these axioms have in

general been sufficient to determine all the unknown quantities

in our statical problems. In all these problems therefore the

magnitudes of the reactions and the positions of equilibrium of

the bodies depended, not on the materials of the bodies, but on

their geometrical forms and on the magni+ ades of the impressed

forces. It is evident, however, that these axioms must be insuf-

ficient to determine any unknown quantities which depend on the

materials of the bodies. In such cases we must have recoui-se to

some new experiments to discover another statical axiom. Thus,

when we study the positions of equilibrium of rough bodies, another

experimental result, depending on the degree of roughness of thp

special body considered, is found to be necessary. In the same

way the mode of distribution of the pressure over the legs of the

table is found to depend on the flexibility of the materials.

However slight the flexibility of the substance of the table may
be, yet the weight W will produce some deformation however

small. The magnitude of this will influence and be influenced by

the reactions i2i, R.^ &c. The amount of yielding produced by the

acting forces in any body is usually considered in that part of

mechanics called the theory of elastic solids. No complete solution

of the special problem of the table has yet been found. But when

any assumed law of elasticity is given, it is easy to show by

some examples, how the problem becomes determinate. Poinsot's

Miments de Statique and Poisson's Traitd de Mdcanique.

\l
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.(1).

140. Ex. 1. A rectangular table has the leu» at the four corners alike in all

respects and slightly compressible. The amount of compression in each leg is

supposed to be proportional to the pressure on that leg. Supposing the floor and the

top of the table to be rigid, atid the table loaded in any given manner, find the pressure

on the four legs. Show that when the resultant weight lies in one of four straight

lines on the surface of the table, the table is supported by three legs only. [Math.

Tripos, 1860, Watson's problem, see also the Solutions for that year.]

Let the two sides AB, AD he the axes of x and y. Let the resultant weight W
act at a point O whose coordinates are {xy). Let

AB=a, AD = b. Since the top of the table is rigid,

the surface as altered by the compression of the legs

is still plane. Also, since the compression is slight,

we shall neglect small quantities of the second order,

and suppose the pressures &t A, B, C, D to remain

vertical. We have the usual statical equations

Wx=(R^ + R^)a, Wy^{R3 + R^)b]

Because a diagonal of the table remains straight, the middle point descends a

space which is the arithmetic mean of the spaces descended by its two ends. It

follows that the mean of the compressions of the legs A and C is equal to the mean
of the compressions of the legs B and D. But it is given that the pressures are

proportional to these compression^. Hence

Ri + Rs=R„ + R^ (2).

These four equations determine the pressures.

If we put i?3=0, we easily find that 2x/'7, + 2y/b=l, i.e. the table is supported on

the three legs A, B, D when the weight W lies on the straight line joining the

middle points of AB, AD, Joming the middle points of the other sides in the

same way, we obtain four straight lines represented by the dotted lines. When
the weight W lies wit.'iin this dotted figure all the four legs are compressed ; when
without this figure three legs on?y are compressed. The equations above written

are then correct, only if we suppose that some of the reactions are negative. As

this cannot in general be possible, we must amend the equations (1) by puttir^ one

reaction equal to zero. The equation (2) must then be omitted.

Ex. 2. A and C are fixed points or pegs in the same vertical line, about which

the straight beams ADB and CD are freely moveable. AB is supported in a hori-

zontal position by CD and has a weight W suspended at B. Find the pressure at G

(1) when there is a hinge joint at D, and (2) when CD forms one piece with AB, the

weights of the beams being in each case neglected. [Math. Tripos, 1841.]

In the first part of the problem the action at D is a single force, in the secoud

part it is a force and a couple, Art. 142. In both

parts of the problem the action at C is a force.

In the first part, the actions at G and D are equal

and act along CD by Art. 131. Taking moments

about A for the rod AD, we easily find that this

action is equal to W. ABjAN where AN is a perpen-

dicular on CD.

In the second part there is nothing to determine the direction of the action

at C. We only know it balances an unknown force and a couple. If we write
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down the three equations of equilibrium for the whole body, it will be seen that

we cannot find the four oomponents of the two pressures which act at A and C.

The problem is therefore indeterminate.

Ex. 3. A rigid bar without weight is suspended in a horizontal position by
means of three equal vertical and sUgbtly elastic rods to the lower ends of which
are attached small rings A, B, and C through which the bar passes. A weight

is then attached to the bar at any point O. Show that, on the assumption that

the extension or compression of an elastic rod is proportional to the force applied

to stretch or compresb it, and provided the rods remain vertical, then the rod at B
will be compressed if O lie in the direction of the longer of the two arms AB, BC,

AB^+ BC^
and be at a greater distance from B than -j^— . [Math. Tripos, 1883.1AB *** BO

Ex. 4. ABCD is a square; six rods AB, BC, CD, DA, AC, BD are hinged

together at the angular points, and equal and opposite forces, F, are applied at

B and D in the directions DB and BD respectively. The rods are elastic, but the

extensions or compressions which occur may be treated as infinitesimal, e^ is the

ratio of the extension per unit length to the tension (or of the compression to the

corresponding force) for the rod AB, and is a constant depending upon the material

and the section of the rod. ^,, e.2) .eg are similar constants for the other rods

in the order written above. Prove that the tension of the rod BD is

f 1 ^^^?^«-^ ) F. [Coll. Exam. 1886.1
\ Ci + e2 + e3+e4 + 2\'2(e5 + ?g)/

The rods being only slightly elastic we form the ordinary equations of equi-

librium on the supposition that the figure has its undisturbed form, i.e. that ABCD
is a square. We then find that the thrust along every side is the same. If the

thrust along any side be P and those along the diagonals BD, AC he T and T', we

have also P^2 + 2"=0, PJ2 + T+F=0.

We next seek for a geometrical relation between the six lengths of the figure

after it has been disturbed by the action of the forces F, F. If the lengths of the

sides taken in the order mentioned in the question be a(l+x), a{l + y), a (1 + 2),

a(l + u), o^2(l + p'). a^2(l + p), we find that 2{p + p')=x + y+z + u, when the

squares of the small quantities are neglected. Using the law of elasticity, this

geometrical condition is equivalent to 2 {efT+e^T') = (ei + e2 + e3 + ei) P.

We have now three equations to find P, T and T ' in terms of F.

150. Bturrramawork*. Let Ay, A^ &o. be n particles connected together by

straight rods hinged to these particles. We shall suppose that all the forces which

act on the system are applied to these particles, so that the reactions at the

extremities of every rod are forces, both of which act along the rod. It is proposed

to ascertain whether the ordinary statical equations are or are not sufficient in

number to find all these reactions, i.e. to ascert .in whether the problem of finding

these pressures is determinate or indeterminate. In the latter contingency it

is further proposed to ascertain whether the equatiotis of elasticity are sufficiently

numerous to enable us to complete the solution.

i

* The reader may consult on the subject of frameworks two papers by Maxwell
in the Phil. Mag., 1864 and the Edinburgh Transactions, 1872, also the Statique

Graphique, by Maurice Levy, 1887.

B. 8. I. 7
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161. Let iM fint enquire what number of connecting rod* could make the

framework itiff. Assuming n not to be less than 2, we start by stiffening two

particles A^ and A^hy means of one connecting rod. The remaining n - 2 have

to be jointed to these. In order that a third particle A^ should be rigidly connected

to these two, it must be joined to both A^ and A^, thus requiring two more connect-

ing rods. If a fourth A^ is to be rigidly connected with these, it must be joined to

any two out of the three particles already joined. Proceeding in this manner we

see that for each particle joined to the system two additional rods are necessary.

Thus to make a tyntem of n particles rigid, a framework of 2 (n - 2) + 1, i.e. 2n - 3,

connecting rods it sufficient.

When any particle, as A^, is joined by two rods to two other particles as Ai, A^,

there must be some convention to settle on which side of the base A^A, the vertex

of the triangle A^A^A^ is to be taken. If not, there may be more than one polygon

having sides equal to the given lengths.

We must also notice that when the particle A^ is joined to the fixed particles

J,, A^ by two rods, if A^ should happen to be in the same straight line with A^A^,

the connection is not made perfectly rigid. The particle A^ could make an infinitely

small displacement perpendicular to the straight line A^A^A^ on either side of it.

This is an imaginary displacement, to be taken account of when the circumstances

of the problem require that we should neglect small quantities of the second order.

If the particles are not all in the same plane, and n is not less than 3, we start

with three particles requiring three rods to stiffen them. Each additional particle

of the remaining n - 3 must be attached to three of the particles already connected.

Thus to make a system of n particles rigid, a framework o/ 3 (n -- 3) + 3, i.e. 3n - 6,

connecting rods is sufficient.

It is not necessary that the connections between the particles should be made in

the precise way just described. All we have proved is that the system could be

stiffened by 2n - 3 or 3n - 6 rods properly placed. These may be arranged in

several different ways * so as to stiffen the system. On the other hand if the rods

are not properly placed the system may not be stiff ; thus one part of the system

may be stiffened by more than the necessary number of rods, and another part may
not have a sufficient number.

A system of particles made rigid by just the necessary number of bars is said to

be simply stiff or just stiff. Whan there are more bars than the necessary number,

the system may be called over stiff. When the number of bars is less than the

number necessary to stiffen the system, the framework is said to be deformable.

The shape it will assume in equilibrium is then unknown and has to be deduced,

along with the reactions, from the equations of equilibrium.

163. We may infer as a corollary from this that a polygon having n corners in

in general given when we know the lengths of 2n - 3 sides. If m be the number of

sides and diagonals in the polygon, there must be m - (2n - 3) relations between

their lengths. It appears that 2n - 3 of the m lengths are arbitrary except that

* The argument may be summed up as follows. Taking any fixed axes, a figure

is given in position and form when we know the 2n or 3n coordinates of its n corners.

These are the arbitrary quantities of the framework. If only its form is to be deter-

minate we refer the figure to coordinate axes fixed relatively to itself, and the

coordinates required to determine the position of a free rigid body are now no longer

at our disposal. We therefore have 2n - 3 or 3n - 6 arbitrary quantities according

as the body is in one plane or in space. Art. 206.
R,
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they mutt »ati»fy tuch condition* a» will permit a figure to be formed ; for instance

if three of the arbitrary lengths form a triangle, any two of the lengths must

together be greater than the third. The exceptional case referred Lo above occurs

when some of these necessary conditions are only just satisfied.

If all the corners are joined, each to each, the number of lengths will be }n (n - 1).

There will therefore be ^(n - 2) (n - 3) relations between the sides and diagonals of

a polygon of n corners. In the same way there will be i (n - 3) (» - 4) relations

between the edges of a polyhedron.

158. Let u< next enquire how many statical equations we have. Let us

suppose the system to be acted on by any given forces whose points of application

are at some or all of the particles. These we may call the external forces.

Since each particle separately is in equilibrium, we may, by resolving the forces

on each parallel to the axes, obtain 2n or 8n equations of equilibrium according as

the system is in one plane or in space.

However numerous the reactions along the rods may be, we can always eliminate

them from these equations and obtain either three or six equations, according as

the system is in one plane or in space. To prove this, we notice that, taking

all the particles together is one system, the internal reactions balance each other.

Resolving then the external forces in some two directions in the plane of the

system and taking moments about some point, we obtain * three equations of equi-

librium free from all internal reactions (Art. 112). And it is clear that no

resolutions in other directions and no moments about other points will give more

independent equations than three (Art. 115). In the same way, if the system is in

space, it will be shown that we can obtain six equations free from internal reactions

by resolving in some three directions and taking moments about some three axes.

On the whole then we have either 2n - 3 or 3n - 6 equations to find the reactions.

In a simply stifi framework we have just this number of independent reactions.

Thus iw a framework, simply stiff, withou, any unknown external reactions, we have

a sufficient num f of equations to find all the 2n - & jt 3n - 6 reactions.

If the framework is subject to external constraints, for example if some points

are fixed in space, the number of barrt necessary to stiffen the system is altered.

Whether stiff or not let there be 2n - 3 - A: or 3n - 6 - i bars. It follows easily

that the equations of statics will supply k + 3 or k + & equations (after elimination

of the internal reactions) to find the external reactions and the position of

equilibrium. If these are sufficient the problem is determinate.

154. Although the equations in statics may be sufficient in number to de-

termine the internal reactions, yet exceptional cases may arise. The equations thun

obtained may not be independen , or they may be contradictory.

* If it is not clear that t'lese three equations must follow from the 2n or 3n
equations of equilibrium of the separate particles, we may amplify the proof as

follows. If any particle ^j is acted on by a reaction /?jo tending to Ao, then the

particle A^ is acted on by an equal and opposite reaction R„ tending to Ai . The
resolved parts of R^^ ^^^ ^'21 parallel to x will therefore also be equal and opposite.

If then we add together all the equations obtained from all the particles separately

by the resolution parallel to x, the sum will yield an equation free from all the it's.

In the same way the resolution parallel to y ot z will each yield another equation

free from all the internal reactions.

Next since the forces on each particle balance, the sum of their moments about
any straight line is zero. But by the same reasoning as before the moment of

the reaction R^^ which acts on A^ must be equal and opposite to that of the reaction

i?2j which acts on A^. Hence if we add all the equations obtained from all the

particles by taking moments, the sum will yield an equation free from all the R's.

7—2
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As an example consider the case of three rods, AiA^, A^A^, A^A^ jointed at

A^, Af, /(], and let the lengths be suoh that

all three are in one straight line. Let the -^J ^ ^«
F<~ \

-> '

\-->Fextremities A^, A^he acted on by two opposite

forces each equal to F. Let i?],, Ji^g, /<„ be

the reactions along A^A,, A^^, A^A^ respectively. Here we have a simply Bti£f

framework and we should therefore find sufficient equations to determine the

reactions. The equations of equilibrium for the three corners are however

R,. + R,.=F, i«lS= ^!B. /Jlj + lJj3= i'',

which are evidently insufficient to determine the three reactions.

The conditions under which these exceptional cases can arise are determined

algebraically by the theory of linear equations. The 2n-3 or 3n-6 equations

to find the reactions at the corners of the framework are all linear. If a certain

determinant is zero, one equation at least can be derived from the others or is

contradictory to them. In the latter case some of the reactions are infinite ; this

of course is impossible in nature. In the former case one reaction is arbitrary,

and all the others can be found in terms of it and the given external forces. In

a similar manner we can find the condition that two reactions are arbitrary. These

conditions can be expressed in a more definite way, but as this part of the theory

follows more easily from the principle of virtual work, we shall postpone its con-

sideration until we come to the chapter on that subject.

156. Let us next suppose that the system of n particles has more than the

nuuiber of bars necessary to stiffen it. In thia case there are not enough equations

to find the reactions unless something is known about them besides what is given

by the equations of statics. The rods connecting the particles are in nature elastic,

and the forces acting along them are due to their extensions or compressions.

Supposing the law connecting the force and the extension to be known, we have to

examine whether the additional equations thus supplied are sufficient to find the

reactions. The framework, being acted on by external forces, will yield, and this

yielding will continue to increase until the reactions thus called into play are of

sufficient magnitude to keep the frame at rest. For the sake of brevity we shall

suppose that the amount of the yielding is very slight. In this case we shall assume,

in accordance with Hooke's law, that the reaction along any rod is some known
multiple of the ratio of the extension to the original length. This multiple depends

on the nature of the material of which the rod is made.

Let the framework have m rods, where m exceeds 2n - 3 or 3n - 6 by k. Takinp

the case in which the framework is not acted on by any external reactions, we shall

require k additional equations (Art. 153). By Art. 152 there are k relations between

the lengths of these rods. Let any one of these be

/(;,,ij,&o.)=0 (1),

where {], 2, &c. are the lengths of the rods. Differentiating this we have

Midl^ + M2dli + &e.=0 (2),

where M^, M^ &e. are partial differential coefficients, and dl^, dl^ &o. are the

extensions of the sides. If R^ , R^ &e. are the reactions along the sides we may,

by Hooke's law, write this equation in the form

MiXiijiii + il/jXjJjRj + Ac.= 0,

"where Xj , Xg &o. are the reciprocals of the known multiples.
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Jt appear$ therefore that each equation etuh at (1) tupplitt one relation between

the reactiont. Thut the requisite number of additional equatiom can be deduced

from the theory of elasticity.

In thb case of the three rods mentioned in Art. 164 we notice that the relation

corresponding to (1) is Ij, + /2a~ 'i3=0< where /i^si!,/!,, t&c. It follows by differentia-

tion that the three reactions are equal in magnitude if all three rods are made of

the same material and are of equal sectional areas.

Asiatics.

166. Let a rigid body he acted on at given points Ax, A^&c. by

forces Pi, Pj d'c. whose magnitudes and directions in space are given.

Let this body be displaced in any manner : it is required to find how

the resultant force and coupce are altered.

Choosing any base of reference and any rectangular axes Ox,

Oy fixed in the body, we may imagine the displacement made by

two steps. First, we may give the body a linear displacement by

moving to its displaced position 0,, the body moving parallel to

itself; secondly, we may give the body an angular displacement, by

turning the body round Oj as a fixed point until the axis Ox comes

into its displaced position. Then every point of the body will be

brought into its proper displaced position, for otherwise the several

points of the body would not be at invariable distances from the

base and the axis Ox.

Since the forces P,, Pj &c. retain unaltered their magnitudes

and directions in space, it is clear that the linear displacement does

not in any way affect the resolved parts of the forces, or the

moment about 0. We may therefore disregard the linear dis-

placement and treat and 0, as coincident points.

Consider next the angular displacement. It is clear that we

are only concerned with the relative positions of the body and

forces, for a rotation of both together will only turn the resultant

force and couple through the same angle. Ins'cead of turning the

body round through any given angle 6 keeping the forces un-

altered, we may turn each force round its point of application

through an equal angle in the opposite direction, keeping the body

unaltered. See Art. 70.

157. We are now in a position to find the changes in the

resultant force and couple. Let Ox, Oy be any axes fixed in the

body. Let P be any one of the forces Pi , Pj &c. and let A be its
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point of application. Let a be the angle its direction makes with

the axis of x. Let this force be turned round A through an angle

6 in the positive direction, so that it now acts in the direction

indicated in the figure by AP".

Let X, Y, be the resolved parts of the forces, and the moment
about before displacement ; X', Y, 0' tV

ment. Then, as in Art. 106,

.Y' = SP cos (o + ^) = Z cos ^ - Fsin d,

Y' ^XP fim(a+ 0) = X sine + Ycose,

0' = IP [a: Bin (a + 6) -y cos (a + 6)}

= Ocosd+ Fsin^,

where (? = S (xPy - yP»\ F= S {xP^ + yPy).

..ne after displace-

/P'

N

The symbol O represents the moment of the forces before ditplacement about the

centre of rotation. If the angle of rotation round O is a right angle, d=^ir and
(i'= V. Thus the symbol V reT^etenti tlie moment of the force$ about after they

Jtave been rotated through a right angle *. If it is permitted to alter slightly a name
given by Clausius (see Phil. Mag., August 1870), F" might be called the Virialof the

force*. After a rotation through an angle 6 let V be the new value of the virial,

then F'= 2P{a;co8(o + ff) + y8in(a + fl)}

ssFcosd-Osintf.

Thus it appears that the moment G is also what the virial becomes (with the sign

changed) when the forces have been rotated through a right angle.

We may find another meaning for the virial V. Let us suppose the components

P,, Py to act at O, and let their point of application be moved to N, where ON=-x.
The work of P, is xP^, that of Py is zero. Let the point of application be further

moved from iV to ^ , where NA = y. The additional work of P, is zero, that of Py is

yPy. The sum of these two for all the forces is V. Thus V is the work of monmg
the forces from the base of reference O to their respective points of application, the

forces being supposed unaltered in direction or magnitude.

158. If the body is in equilibrium before displacement, we
have X = 0, Y=0, G = 0. Hence after a rotational displacement

through an angle 6 we have X' = 0, F = 0, G' = Fsin 6. We
therefore infer that the only other position in which the body can

be in equilibrium is when ^ = tt, i.e. when the position of the body

has been reversed in space. If the body is in equilibrium in any

two positions which are not reversals of each other, the body must

be in equilibrium in all positions. Lastly, the analytical condition

that there should be equilibrium in all positions is that F= in

some one position of equilibrium.

* Darboux, Sur Viquilihre astatique, p. 8.

ART
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!••. Ex. 1. A body is placed in any poiition not in equilibrium, and the

foroes are nuch that the component! .Y, Y are both zero. Find the an^le through

which the body must be rotated that it may come into a position of equilibrium.

Ex. 3. If a body be in a position of equilibrium under the action of forces

whose magnitudes and directions in space are given, show that the equilibrium

is stable or unstable according as V is positive or negative in the position of

equilibrium.

160. Centre of the foroei. It has been shown in Art. 118,

that, provided the components of the forces (viz. X and Y) are not

both zero, the whole system can be reduced to a single resultant at

a finite distance from the base of reference. In any position of the

forces, the equation to this single resultant is

i. e. {0 - ^Y + vX)coHe + iV- ^X - T}Y)Hm6=0.

Thus it appears that, as the forces are turned round their points of

application, this single resultant always passes through a fixed

point in the body, whose coordinates are given by

G-^Y+vX = 0,

V-^X-vY=0.
This point is called the centre of the forces. The first of these

equations represents the line of action of the sir »le resultant when

^ = 0, the second represents its line of actio» after a rotation

through a right angle, i.e. when ^ = ^7r.

As every force in this theory has a point of application fixed in

the body, it will be found convenient to regard the central point as

the point of application of the single resultant. Thus the single

resultant, like the other forces, has a fixed magnitude, a fixed

direction in space, and a fixed point of application in the body.

The centre of the forces may be defined in words similar to those

already used in Art. 82 for parallel forces. If the jyoints of applica-

tion of the given forces are fixed in the body, the point of application

of their resultant is also fiaed in the body, however the body is

displaced, provided the given forces retain their magnitudes and

directions in space unaltered. This fi^ed point is called the centre

of the forces.

Taking any one relative position of the body and forces, and

any rectangular axes, the coordinates (fiy) of the centre of the

forces are given by »

^R^=VX + GY, r}R'=VY-GX,
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whoro X, Y, V, are referred to the origin on baao, and R is the

resultant of X and Y.

161. Ex. 1. If *.he foroM of a ayatom are reducible to k lingle resultant oouple,

how that the centre of the forcea ia Ht infinity.

Ex. 3. Show that, aa the forcea are rotated, the value of 0/F at any aaaumed

baae ia alwaya equal to the tangent of the angle which the atraight line joining ()

to the centre C of the forcea makes with the direction of the resultant force R, while

the value of 0'+ V* ia invariable and equal to R* . CO*.

Since the ayatem ia equivalent to a aingle force /{ acting at C, it ia evident that

G = R. ON, where ON ia a perpendicular on the line of action of 7?. Turning R
through a right angle, we have V=R, CN. The leaultH follow at once.

162. There Ih another method* of finding the aatatic reanltant of a given

ayatem which ia aometimea useful. The body having been placed in any poaition

relative to the forcea which may be convenient, let two ax <a Ox, Oy be chosen ao

that the resolved parts of the forces in these directions, viz. A' and 1', are neither of

them zero. Consider first the resolved parts of all the forces parallel to x. By the

theory of parallel forcea these are equivalent to a single force, viz. X=XPg, which

acta at a point fixed in the body whoae ooordinatoa are (x,!/,), where

.T,.Y=2xP„ i/,A'=2(//',.

Conaider next the reaolved parte parallel to y, Theae also form a system of parallel

forces and are equivalent to a single force Y=XPy, which acts at a point fixed in

the body whose coordinates are (x^y,), where

XjF=SxP^, 7j^Y=XyPy.

Since the axes of coordinates are arbitrary and need not be at right angles, the

forces have thus b<>en reduced to two forces acting at two points fixed in the body

in directions arbitrarily chosen but not parallel. The positions of these points

depend on the directions chosen.

166. Let the fixed points thus found be called A and B. In any one relative

position of the body and forces, let the two forces A' and Y intersect in /, and

let their resultant act along IF. Let IF intersect the circle described about the

triangle ABI in C, Then, by the astatic triangle of forces, C is a point fixed in

the body, and the resultant of X and Y may be supposed to act at C. The
point C is therefore the centre of the forces.

Conversely, when the resultant force and the centre of the forces are known,

that force may be resolved into two astatio forces by using the triangle of forces

in the manner already explained in Art. 73.

* The method explained in this Article has been used by Darboux, Sur V€quilibre

astatique, and by Larmor, Metsenger of Mathematics.



CHAPTER V.

E

H
^

FRICTION.

164. When one body slides or rolls on another under pressure,

it is found by experience that a force tending to resist motion is

called into play. In order to discover the laws which govern the

action of this force we begin with experiments on some simple

cases of equilibrium, and then endeavour by a generalization to

extend these so as to include the most complicated cases.

Let us consider the case of a box A resting on a rough table

BC. A string DEH attached to the box at D passes over a small

pulley E and supports a .scale-pan

H in which weights can be placed. 1

~
1 7)

By putting weights into the box A
and varying the weight at H, all B~
cases can be tried. Supposing the

box loaded, we go on increasing the weight at H by adding sand

(which can be afterwards weighed) until the box just begins to

move. The result is that the box, whatever load it carries, does

not move until the weight at ff is a certain multiple of the

weight of the box and load. Of course the experiment must

be conducted with much greater attention to details than is

here described. For example the friction at the pulley E must

be allowed for.

166. Laws of firiction. The results of this experiment

suggest the following laws.

1. The direction of the friction is opposite to the direction in

which the body is urged to move.

2. The magnitude of the friction is just sufficient to prevent
|j

1.

II
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motion. Thus there is no friction between the box and the table

until a weight applied at H begins to act on the box, and then the

amount of the friction is equal to that weight.

3. No more than a certain amount of friction can be called

into play, and when more is required to keep the body at rest,

motion will ensue. This amount of friction is called limiting

friction.

4. The magnitude of limiting friction bears a constant ratio fi

to the normal pressure between the body and the plane on which it

rests. This constant ratio fi depends on the nature of the mate-

rials in contact. It is usually called the coefficient offriction.

We do not here assert that the friction actually called into play

is in every case equal to /* tiinco ulie normal pressure, but only

that this is the greatest amount which can be called into play^

For smooth bodies fi
-- 0. For a great many of the bodies we

have to discuss fi lies between zero and unity.

5. The amount offriction is independent of the area of that

part of the body which presses on the rough plane, provided that

the normal pressure is unaltered.

6. When the body is in motion, the friction called into play is

found to be independent of the velocity and proportional to the

normal pressure. The ratio is not exactly the same as that found

for limiting friction when the body is at rest.

It is found that the friction which must be overcome to set the

box in motion along the table is greater than the friction between

the same bodies when in motion under the same pressure. If the

box has remained on the table for some time under pressure the

friction which must be overcome is greater than if the bodies were

merely placed in contact and immediately set in motion under the

same pressure by the proper weight in the pan H. In some

bodies this distinction between statical and dynamical friction is

found to be very slight, in others the difference is considerable.

The coefficient of friction fi for bodies in motion is therefore

slightly less than for bodies at rest.

It should be noticed that friction is one of those forces which

are usually called resistances. This follows from the second of

the laws enunciated above. When a body is pressed against a

wall, a reaction or resistance is called into play and is of just the
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magnitude necessary to balance the pressing force. If there is no

pressure there is no reaction. In the same way friction acts only

to prevent sliding, not to produce it.

166. There is another method of determining the laws of

friction by which the use of the pulley and string is avoided and

which therefore presents some ad-

vantages. Imagine the box A
placed symmetrically on an inclined

plane BC. Let the inclination of

BC to the horizon be 6. If W be

the weight of the box we easily

find that the normal reaction is R = W cos 6, and the friction

J'=Fsin^. Hence ^ = tan 6.
si

Let us now suppose the inclina-

tion 6 of the plane to the horizon to be gradually increased until

the box ^1 begins to slide. The friction F is then the limiting

friction. It is found by experiment that this inclination is the

same, whatever the weight of the box may be. It follows that

the ratio of the limiting friction to the normal pressure is inde-

pendent of that pressure.

This experiment supplies us with an easy method of approxi-

mating to the value of fi for any two materials. Place a body A
constructed of one of these materials on an inclined plane BC
constructed of the other material. Supposing A to be at rest,

increase the inclination 6 until A just begins to slide, then fi is

slightly less than the value of tan 6 thus found. Next supposing

the inclination of the plane to be such that the body A slides, we

might decrease it until the box is just stationary, then fi is

slightly greater than the value of tan 6 thus found. In this way

we have found two nearly equal numerical quantities between

which the coefficient of friction, viz. /*, must lie. The value of 6

which makes tan 6 = fi is often called the angle offriction.

Ex. Assnming that limiting friction consists of two parts, one proportional to

the pressure and the other to the surface in contact, show that if the lebst forces

which can support a rectangular parallelepiped whose edges are a, b, and c on

a given inclined plane be P, Q, and R when the faces be, ca, and ab respectively

rest on the plane, then (Q- R)bC'\-{R-P)ca + (P- Q)ab=0. [Trin. Coll., 1884.]

167. The fHction couple. When a wheel rolls on a rough

plane the experiment must be conducted in a different manner.

i
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Let a cylinder be placed on a rough horizontal plane and let

its weight be W. Let two weights P and P4-^ be suspended

by a string passing over the cylinder

and hanging down through a slit in

the horizontal plane. Let the plane

of the paper represent a section of

the cylinder through the string, let —
be the centre, A the point of contact

with the plane. Imagine p to be at first

zero and to be gradually increased until the cylinder just moves.

By resolving vertically the reaction at A is seen to be equal to

W+2P + p. By resolving horizontally we see that there can be

no horizontal force at A. Thus the friction force is zero. Taking

moments about A we see that there must be a. friction couple at

A. whose magnitude is equal to pr.

P+P

168. The Theplanation of this couple is as follows,

cylinder not being perfectly rigid yields slightly at A and is

therefore in contact with the plane over a small area. When the

cylinder begins to roll, the elements of area which are behind the

direction of motion are on the point of separating and tend to

adhere to each other, the elements in front tend to resist

compression. The resultant action across both sets of elements

may be replaced by a couple and a single force acting at some

convenient point of reference. The yielding of the cylinder at A
also slightly alters the position of the centre of"gravity of the whole

mass, but this change is very insignificant and is usually neglected.

The cylinder is treated as if the section were a perfect circle

touching the plane at a geometrical point A. The whole action

is represented by a force acting at A and a couple. The resolved

parts of the force along the normal and tangent at A are often

called respectively the reaction and thefrictionforce. In our experi-

ment the latter is zero. The couple is called the frictio7i couple.

The results of experiment show that the magnitude of p
when the cylinder just moves is proportional to the normal

pressure directly and the radius of the cylinder inversely. We
therefore state as another law of friction that the moment of the

friction couple is independent of the curvature and proportional to

the normal pressure. The ratio of the couple to the normal

pressure is often called the coefficient of the friction couple. The

AR'

the
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magnitude of the friction couple is usually very small and its

oiFects are only perceptible when the circumstances of the case

make the frictior force evanescent.

The weight p is commonly spoken of as the friction of cohesion,

which is then said to vary inversely as the radius of the cylinder.

But we have preferred the mode of statement given above.

169. It should be noticed that the laws of friction are only

approximations. It is not true that the ratio of the limiting

friction to the pressure is absolutely constant for all pressures and

under all circumstances. The law is to be regarded as representing

in a compendious way the results of a great many experiments

and is to be trusted only for weights within the limits of the

experiments. These limits are so extended that the truth of

the law is genex-ally assumed in mathematical calculations. If

we followed the proper order of the argument, we should now

enquire how nearly the laws of friction approximate to the truth,

so that we may be prepared to make the proper allowance when

the necessity arises. We ought also to tabulate the approximate

values of /* for various substances. But these discussions would

occupy Loo much space and lead us too far away from the theory

of the subject.

170. The experimenters on friction are so numerous that only a few names
can be mentioned. The earliest is perhaps Amontons in 1699. He was followed by

Muschanbroek and NoDet. But the most famous are Coulomb (Savants etrarigers

Acad, des Sc. de Paris x. 1785) ; Xim^n^s (Teoria e pratica delle resistenze de' soHdi

ne' hro attriti. Pisa 1782) ; Vince {Phil. Trans, vol. 75, 1785) and Morin {Savants

Strangers Acad, des Sc. de Paris iv. 1833). Besides these there are the experiments

of Southern, Rennie, Jenkin and Ewing, Osborne Reynolds &c.

171. One of the laws of friction requires that the direction

of the friction should be opposite to the direction in which the

body under consideration is urged to move. When, therefore,

the body can begin to move in only one way, the direction of

the friction is known and only its magnitude is required. But

when the body can move in any one of several ways, if properly

urged, both the direction and the magnitude of the friction are

unknown. It follows that problems on friction may be roughly

divided into two classes. (1) We have those in which the bodies

rest on one or more points of support, at all of which the lines

of action of the frictions are known, but not the magnitudes.

(2) There are those in which both the direction and magnitude

of the friction have to be discovered.

I
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We shall begin by using the laws of friction enunciated above

to solve some problems of the first class. Afterwards we shall

consider how the directions of the friction forces are to be dis-

covered when the system is bordering on motion.

172. A particle is placed on a rough curve in two dimensions

under the action of any forces. To find the positions of equilibrium.

Let X, Y be the resolved forces in any position P of the

particle. Let R be the reaction measured inwards of the curve

on the particle, F the friction called into play measured in the

direction of the arc s. Let yjr be the angls the tangent makes

with the axis of x. The particle is supposed to be on the proper

side of the curve, so that it is pressed against the curve by the

action of the impressed forces. Taking the figure of the next

article, we have, by resolving and taking moments,

Z cos 1^ + F sin 1^ + ^= 0,

-Z sin 1^ + F cos i/r + iJ = 0.

Now if fM be the coefficient of friction F must be numerically less

than fiR. The required positions of equilibrium are therefore

those positions at which the expression

X cos yjr + Yainyjt

—Z sin >/r + F cos 1^

is numerically less than /a. This expression is a function of the

position of the particle on the curve. Let uu represent i^; by /(a;).

The positions of equilibrium in which the particle borders on

motion are found by solving the equations f{^) = ± fJi" Since this

equation may have several roots, we thus obtain -several extreme

positions of equilibrium. Wo must, then examine whether equi-

librium holds or fails for the intermediate positions, i.e. whether

f{x) is < OT > fi numerically.

We may sometimes determine this last point in the following manner. Suppose

an extreme position, say a;=a;i, to be determined by solving the equation flx)=n.

If equilibrium exist in the positions determined by values of x slightly less than x,

,

f(x) must be increasing as x increases through the value x=Xi. On the en '.rary

if equilibrium fail for these values of x, f(x) must be decreasing. Thus equilibrium

fails or holds for values of x slightly greater than x^ according as /' [x) is positive or

negative when x= Xj. Let us next suppose that an extreme position, say x=X2, is

determined by solving the equation /(a;) = - /x. If equilibrium exist in the positions

determined by values of x slightly less than x.,
, f{x) must be algebraically decreasing

as X increases through the value x=X2, and therefore /'(x,,) is negative.

If therefore any exireme position of equilibrium is determined by the value «

i
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x=Xiot the independent variable, equilibrium fails or holds for values of x slightly

greater than x, according as/'(X]) has the same sign as ^ or the opposite. It is

clear that this rule may also be used in the case of a rigid body whose position in

space is determined by only one independent variable.

173. Cone of ftictlon. There is another method of finding

the position of equilibrium which is more convenient when we

wish to use geometry. Let € be the angle of friction, so that

fi = tan €. At any point P draw two

straight lines each making an angle e

with the normal at P, viz. one on each

side. Let these be PA, PB. Then the

resultant reaction at P (i.e. the resultant

of R and F) must act between the two

straight lines PA,PB. These lines may
be called the extreme or bounding lines

of friction. If the forces on P were not restricted to two dimen-

sions, we should describe a right one whose vertex is at P, whose

axis is the line of action of the reaction B, and whose semi-angle

is tan~*/Li. This cone is called the cone of limiting friction or

more briefly the cone of friction.

Since the resultant reaction at P is equal and opposite to the

resultant of the impressed forces on the particle we have the

following rule. The pa7'ticle is in equilihrium at all points at

which the impressed force acts within the cone offriction. In the

extreme positions of equilibrium the resultant of the impressed

forces acts along the surface of the cone.

I
Si

tM

I

«'2»

174. A particle is placed on a rough curve in three dimensions

under the action of any forces. To find the positions of equilihrium.

Let X, Y, Z be the resolved parts of the impressed forces.

Let R be their resultant, T their resolved part along the tangent

to the curve at the point where the particle is placed. Since T
must be less than /* times the normal pressure in any position of

equilibrium we have T^< fji^ (i2* — T^). If ds be an element of

the arc of the curve, this may be put into the form

(^S
dx „ dy „dzV /j?

(X-'+Y' + Z^).

value

ds ' " dsJ " 1 + /x*

Here X, Y, Z and s are functions of the coordinates x, y, z. The

particle will be in equilibrium at all the points of the curve at
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which this inequality holds. If we change the inequality into

an equality, we have an equation to find the limiting positions of

equilibrium.

176. A particle rests on a rough surface under the action of
any forces. To find the positions of equilibrium.

Let /(a?, y, z) = be the surface, let Q be the normal component

of the impressed forces at the point where the particle is placed.

In equilibrium we must have i2* — Q* < /**Q*. We have therefore

Here X, Y, Z and / are functions of the coordinates. If we
change the inequality into an equality, we have a surface which

cuts the given surface /= in a curve. This curve is the

boundary of the positions of equilibrium of the particle.

176. Ex. 1. A heavy bead of weight W can slide on a rough circular wire

fixed in Fipace with its plane vertical. A centre of repulsive force is situated at one

extremity of the horizontal diameter, and the force on the bead when at a distance

r is j)r. Find the limiting positions of equilibrium.

If 20 be the angle the radius at the bead makes with the horizon, the tangential

and normal forces are (frcos2tf-j>r sint/; and (Wsin20+prco8 5). Putting the

ratio of the first to the second equal to ± tan e, we find sin (7 =f e - 20) = ± cos 7 sin e,

where W^i^a tan 7 and a is the radius. Discuss these positions.

Ex. 2. A heavy particle rests in equilibrium on a rough cycloid placed with

its axis vertical and vertex downwards. Show that t"ae height of the particle above

the vertex is less than 2a sin^ e, where a is the radius of the generating circle.

Ex. 3. A rigid framework in the form of a rhombus of side a and acute angle

rests on a rough peg whose coefficient of friction is /x. Prove that the distance

between the two extreme positions which the point of contact of the peg with any

side can have is ap. sin o. See Art. 173. [St John's Coll., 1890.]

Es. 4. Two uniform rods AB, BG are rigidly joined at right angles at B and

project over the edge of a table with AB in contact. Find the greatest length of AB
that can project; and prove that if the coefficient of friction be greater than

-—;;-TTii the system can hang with onlv the end A resting on the edge.

[Math. Tripos, 1874.]

- Ex. 5. Three rough particles of masses m-^, m^, nu, are rigidly connected by

light smooth wires meeting in a point 0, such that the particles are at the vertices

of an equilateral triangle whose centre is 0. The system is placed on an inclined

plane of slope a, to which it is attached by a pivot through ; prove that it will

rest in any position if the coefficient of friction for any one of the particles be not

less than

(mi" + vi^ + in^- mjWtj - m^m^ - vi^vi^ . [Math. Tripos, 1877.]
77l| T WloT Wig

Ex. B. A particle rests on the surface xyz= c^ under the action of a constant

if
!
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force parallel to the axis of « : prove that the ounre of intersection of the surface

1 I u?
with the cone -5 + -j = -j will separate the part of the surface on whjch equilibrium

X y

is possible from that on which it is impossible
; n being the eoefiicient of friction.

[Math. Tripos, 1870.1
x"* v" i^

Ij^ Ex. 7. The ellipsoid -j + ra + 'a^^ '^ placed with the axis of x vertical, its

surface being rough. Show that a heavy particle will rest on it anywhere above its

intersection with the cylinder p( 1+ -jp) +
-» I 1+nra ) = 1' f^ being the coeflS-

cient of friction. [Trin. Coll., 1885.]

177. The following problem is regarded from more than one aspect to

illustrate some different methods of proceeding.

Ex. 1. A ladder is placed with one end on a rough horizontal floor and the other

against a rough vertical wall, the vertical plane containing the ladder being perpen-

dicular to the wall. Find the positions of equilibrium.

Let AB be the ladder, 21 its length, w its weight acting at its middle point C.

Let d be its inclination to the horizon. See the figure of E?. 2.

Let R, R' be the reactions at A and B actii.g along AD, BD respectively; fi, n'

the coefficients of friction at these points. The frictiors at A and B are ^R and

ii)R', where ^, r; are two quantities which are numerically less than /u and /t'

respectively. In many problems {, i) may be either positive or negative. In this

case however, since friction is merely a resistance and not an active force, we may
assume that the frictions act along AL and LB. We may therefore regard (, 1; as

positive. This limitation will also follow from the equations of equilibrium.

By resolving and taking moments we have

^R= R' r,R' +R = w
2y)R 'I cos d-\-2R'lB.me = wl cos 0.

Eliminating R, R' vie find tan d=
2f

•

Any positive value of tan given by this

equation, where f, 17 are less than /x, /u', will indicate a possible position of

equilibrium. If the roughness is so slight that ixn' <!, the minimum value of tan 9

is given by tan0=
2m

If the roughness is so great that mm'>1i the ladder will

rest in equilibrium at all inclinations.

Ex. 2. The ladder being placed at any given inclination d to the horizon, find

what weight can be placed on a given rung that the ladder may be in equilibrium.

Let M be the rung, W the weight on it, ^M — m. Let /*= tan e, n'= tan e'.

Oeometrical Solution. If we make the angles DAE=e, DBE = e', the resultant

reactions at A and B must lie within these angles and must meet in some point

which lies within thf" quadrilateral EF DH,
Let G be the centre of gravity of the weights

W and w. If the vertical line through G
pass to the left of E, the weight {W+xo)

may be supposed to act at some point P
within the quadrilateral above mentioned.

This weight may then be resolved obliquely

into the two directions PA, PB. These

may be balanced by two reactions at A and

B each lying within its limiting lines.

ii

,;:;|

I
I

R. S. I. 8



114 FRICTION. fCHAP. V.

The result is that there will be equilibrium if the vertical through O passes to the

left of E.

It is evident that this reasoning is of general application. Wo may use it to

find the conditions of equilibrium of a body which can slide with a point on each of

two given curves whenever the impressed forces which act on the body cau be

conveniently reduced to a single force. We draw the limiting lines of friction at

the points of contact, and thus form a quadrilateral. The cojidition of equilibrium

is that the reniltant impregscd force shall pass through the quadrilateral area.

The abscissoB of the points E and G measured horizontally from A to the right

are easily proved to be respectively

x= 2l{nti''coB$ + nB\nO) - _ (
^^"^ + wi) cos

/x/i'+i ' ' yy+w

It C lie to the right of the vertical through E, (i.e. lcoB0>x) there cannot be

equilibrium unless the given rung lie to the left of that vertical (mcosd<x). Also

the weight W placed on the rung must be sufficiently great to bring the centre of

gravity G to the left of that vertical (x<x).

If C lie to the left of the vertical through E, (lcosd<:x) there is equilibrium

whatever W may be if the given rung is also on the left of that vertical (mcostf <a:).

But if the given rung is on the right of the vertical (j»ooBtf>x), the weight W
placed on it must be sufficiently small not to bring the centre of gravity to the right

of that vertical.

Lastly, if the vertical through E lie to the right of B, (tan~i ju>iir- S) there is

equilibrium whatever W may be, and on whatever rung it may be placed.

Another problem is solved on a similar principle in Jellett's treatise on

friction, 1872.

Analytical solution. Following the same notation as in Ex. 1 we have by

resolving and taking moments

iR= R', r,R' +R=W+w,
2r)R'l cos d + 2R'l sin tf= (Wm + wl) cos $.

Eliminating R, R', we find

21 (f77 cos g + f sin g) _ ( Wm + wl) cos

I^Tl ~ W+w ^
''

The condition of equilibrium is that it is possible to satisfy this equation with

values of ^, i} which are less than /x, n' respectively. By seeking the maximum
value of the left-hand side we may derive from this the geometr'jal condition that

the centre of gravity of W and m; must lie to the left of a certain vertical straight

line. But our object is to discuss the equation otherwise.

Let us regard ^, rj as the coordinates of some point Q referred to any rectangular

axes. Then (A) is the equation to a hyperbola, one branch of which is represented

in the figure by the dotted line. If this

hyperbola pass within the rectangle NN' y
formed by |= ±/t, 7;= ±/i', the conditions

of equilibrium can be 3utisfied by values

of I, y\ less than their limiting values. If

the curve does not cut the rectangle, there _
cannot be equilibrium without the assistance

of more than the available friction. The "
right-hand side of (A) is the quantity already

N
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(A).

called X. Let it be transferred to the left-hand nide and let the equation thus

altered be written z = 0. We notice that z is negative at the origin. In order that

the hyperbola may cut the rectangle it iH sutHcient and necessary that z should

be positive at the point N, i.e. when ^ = fi, 7;=^'. The required condition of

equilibrium is therefore that --^— -r—: -x should be a positive quantity.
MM +1

This is virtually the same result as before and may be similarly interpreted.

Ex. 3. Let the ladder AD he placed in a given position leaning against the

rough vertical face of a large box whioh stands on the same floor, as shown in the

figure of Ex. 2. Determine the conditions of equilibrium.

We have now to take account of the equilibrium of the box DLL'. Let W be

its weight. Let li" be the reaction between it and the floor, f/{" the friction. We
have then, in addition to the equations of Ex. 1,

R"=W' + r,R', ^R" = R'.

Eliminating R" we find ('f ' + to)f'?f+ lK'f-u)f =0.

We have also by Ex. 1, fTj + Q^tanS- 1=0 (A).

Eliminating i), so as to express both 17 and i in terms of one variable ^, we find

2(IF' + u))tan«fi-+wf-(2ir' + «;)f=0 (B).

The conditions of equilibrium are that the two equations A and B can be

simultaneously satisfied by values of f, j>, f less than /x, ft!, n" respectively.

Regarding f , rt, j" as the coordinates of a representative point Q, these equations

represent two cylinders. These cylinders intersect in a curve. If any part of this

curve lie within the rectangular solid bounded by f = =t m. »?==*= m'> f= ^ m" the

conditions of equilibrium are satisfied.

But instead of using solid geometry we may represent (A) and (B) by two

hyperbolas having different ordinates ?;, I; but the

same abscissa |. The frictions being resistances, we
shall assume that they act so that {, 77, f are all

positive. It will therefore be necessary only to draw

that portion of the figure which lies iu the positive

quadrant. Take OM=n, OM'=ix', O.V"=fi". Let

OB and AH represent the hyperbolas (B) and (A).

Then we easily find

1 „„„ (2ir' + io)M"
M'A=- M"B =

"/t' + 2tand' 2(W' + w)iJ."ia.r\6-\-w'

The condition of equilibrium is that an ordinate can be found intersecting the

two hyperbolas in points Q, Q' each of which lies within the limiting rectangles.

The necessary conditions are therefore found by making an ordinate travel across

the figure from OM' to N'N". They may be summed up as follows.

(1) The hyperbola AH must intersect the area of the rectangle ON'; the

condition for this is that M'A<ifi.

(2) If the hyperbola 08 intersect 3I"N" on the left-hand side of N", i.e.

if M"B<n, then M'A must be <M"B, for otherwise the ordinate QQ' would not

cut both curves within the prescribed area. But this condition is included in (1)

if M"B>ix.

If the ladder is so placed that the inequality (2) becomes an equality while

(1) is not broken, the frictions 77 and f attain their limiting values while ^ is

8—2

i

I

11

\k

4,i ft

If
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not limiUng, the ladder will therefore be on the point of RlippinK at its upper

extremity, and the box will be just nlipping along the plane.

If the ladder is bo placed that the inequality (1) becomes an equality while

(2) is not broken, ^ and ri have their limiting values while j; is less than its limit.

The box is therefore fixed and the ladder slips at both ends.

X7S. Ex. 1. A ladder AH rests against a smooth wall at li and on a rough

horizontal plane at ^. A man whose weight is » times that of the ladder climbs

np it. Prove that the frictions at A in the two extreme cases in which the man
is at the two ends of the ladder are in the ratio of 2n + 1 to 1.

Ex. 2. A boy of weight w stands on a sheet of ice and pushes with his hands

against the smooth vertical side of a heavy chair of weight nw. Show that he can

incline his body to the horizon at any angle greater than oot~'2/u or cot~*2^n,

according as the chair or the boy is the heavier, the coefficient of friction between

the ice and boy or the ice and chair being /u. [Queens' Coll.]

Ex. 3. Two hemispheres, of radii a and b, have their bases fixed to a horizontal

plane, and a plank rests symmetrically upon them. If ju be the coefficient of friction

between the plank and either hemisphere, the other being smooth, prove that, when

the plank is on the point of u.'pping, the distance of its centre from its point of con-

tact with the smooth hemisphere is equal to (a~ b)/ju. [St John's Coll., 1885.]

Ex. 4. A heavy rod rests with one end on a horizontal plane and the other

against a vertical wall. To a point in the rod one end of a string is tied, the

other end being fastened to a point i . the line of intarsection of the plane and

wall. The string and rod are in a vertical plane perpendicular to the wall. Show
that, if the rod make with the horizon an angle a which is less than the complement

of 2e, then equilibrium is impossible unless the string make with the horizon an

acute angle less than a + e, where c is the angle of friction both with the wall and

the plane. [Math. Tripos, 1890.]

Ex. 6. A parabolic lamina whose centre of gravity is at its focus rests in a

ver oal plane upon two rough rods of the same material at right angles and in the

same vertical plane ; if ^ be the inclination of the directrix to the horizon in one

extreme position of equilibrium, prove that tan^(a-0) tan(a + e-<>)=tan(a-e);

where e is the angle of friction, a the inclination of one rod to the horizon.

[Trin. Coll., 1882.]

Ex. 6. Two rods AC, BC with a smooth hinge at G are placed in a given

position with their extremities A and B resting on a rough horizontal plane. The
plane of the rods being vertical, find the conditions of equilibrium.

Let 0, 0' be the inclinations of the rods to the horizon, W and W their weights.

Let (R, ^R), {R', 7iR') be the reactions and frictions at A and B. Resolving and

taking moments in the usual way, we find

W+W^ _ W' + W
* ~ Tr tan 0' +l2W+ W) tan

«
' ^~W'te.n0 + (2W ' + W) tan 0'

'

If the value of | thus found is > m the system will slip at ^ ; if j; > m it will slip

at B. If the system slip at A only, then f > »; ; this gives W tan <W tan 0'.

Ex. 7. A groove is cut in the surface of a flat piece of board. Show that the

form of the groove may be so chosen as to satisfy this condition, that if the board

will just hang in equilibrium upon a rough peg placed at any one point of the

groove, it will also just hang in equilibrium when the peg is placed at any other

point. [Math. Tripos, 1859.]
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Ex. 8. A lamina is Hunpended by three BtriuHs from a point 0; if the lamina

be rough, and the coefficient of friction between it and a particle P placed upon it

be oonHtant, show that the boundary of poBsible ponitionb of equilibrium of the

particle on the lamina in a circle. [Math. TripoH, 1880.]

Let ON be a perpendicular on the lamina. Let D be the centre of gravity

of the lamina, O that of the lamina and particle. Then in equilibrium OG is

vertical and NO ia the line of greatest slope. The angle NOG is equal to the

inclination of the plane to the horizon and is constant because the equilibrium

is limiting. The locus of G is a circle, centre N. Since DP : DG is oonHtant the

locus of P is also a circle.

Ex. 0. Spheres whose weights are W, W rest on different and differently

inclined planes. The highuHt points of the spheres are connected by a horizontal

string perpendicular to the common horizontal edge of the two planes and above it.

If fi, ft' be the coefficients of friction and be such that each sphere is on the point of

Flipping down, then ft,W=n'lV'. [Math. Tripos.)

Consider one sphere : the resultant of T and nR balances that of W and R. By
taking moments about the centre T=tiR. Hence, by drawing a figure, R=}V.
Thus T=iiW and the result follows.

Ex. 10. A uniform rod passes over one peg and under another, the coefficient

of friction between each peg and the rod being /x. The distance between the pegs

is h, and the straight line joining them makes an angle /3 with the horizon. Show
that equilibrium is not possible unless the length of the rod is >b {l + (tan/3)/fi}.

[Coll. Ex.]

Ex. 11. A uniform rod ACB, length 2a, is supported against a rough wall by a

string attached to its middle point C: show that the rod can rest with C at any

point of a circular arc, whose extremities are distant a and a cos c from the wall,

where e is the angle of friction. [Take moments about C]

Ex. 12. Two uniform and equal rods of length 2a have their extremities

rigidly connected, and are inclined to each other at an angle 2a. These rods rest on

a fixed rough cylinder with its axis horizontal, and whose radius is a tan a. Show
that in the limiting position of equilibrium the inclination & to the vertical of the

line through the point of intersection of the rods perpendicular to the axis of the

cylinder is given by sin' a sin 0= cos (9 -e) sine, where tane is the coefficient of

friction. [Coll. Ex.]

Ex. 13. Three equal uniform heavy rods AB, BC, CD, hinged at B and C, are

suspended by a light string attached to D from a point E, and hang so that the

end A is on the point of motion, towards the vertical through E, along a rough

horizontal plane (coefficient of friction /i=tanc): show that

cos (a - e) _ 008(3- e) _ cos (y - c) _ fj. cos {0 - e)

cos o ~ 3 cos /9
~ 5 cos 7 ~ 6 cos

'

where a, /3, y are the inclinations of the rods to the horizon beginning with the

lowest, and that of the string. [Coll. Ex., 1881.]

Take moments about B, C, D, E in succession for the rods AB, AB and BC,

and BO on. Subtracting each equation from the next in order, the results follow at

once.

i
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Ex. 14. A sphere rests on a rough horizontal plane, and its highest point ia
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joined to a pcK flxod in the piano by a ti^lit oord parallnl to thn plane Hliow that,

if the plane be gradually tilted alxMit a line in it ptirpemliculai' tu thn direction

of the cord, thn Hph*>ro will not slip until the inclination beoomuH equal to tan'' i/x.

where /• W the coetlioient of (riotiun. [Math. TrijMJH, 1880.

)

, Ex. IT;. A uniform heniiHphore, placed with itH baHo roHtiiiK on a ronnh inclined

plane, in just on the point of HlidinK down. A li^ht Htrin^, attached to the point of

the heminpherc fartheHt from the plane, id then pulled in a direction parallel * i and

directly up the plane, if the tension of the Htrinn bo gradually increased until

the Hphore bcf^inu to move, it will HJido or tilt aocordin»{ an Hi tan Ih Ichh or

greater than H, where Ih the inclination of the plane to the horizon. The centre

of (rravity of the hemisphere i» at a diHtance from the centre e(iual to threeeiKhtliH

of the radiuH. [Coll. Kx., 1888.]

Ex. 10. A circular diHC, of radiutt a, whoHo centre of gravity in distant c from

itfl centre, in placed on two rough pegs in a hori/.ontal line distant 'ia sin a apart.

Show that all poHitionn will be posHiblo positionH of o(iuilibrium, provided

a sin a sin (\, + \,) > c sin (2a 7 Xi =<: X^),

where X|, X.j are the angles of friction at the two pegs. [St John's Coll., 1880.]

Ex. 17. A number of equally rough particles are knotted at intervals on a

string, one end of which is tixed to a point on an inclined plane. Show th tt, all

the portions of the string being tight, the lowest particle is in its highest possible

position, when they are all in a straight line making an angle sin"' (tanX/tan ';;)

with the line of greatest slope, X being the angle of friction and a the inclination

of the plane to the horizon. Show also that, if any portion of the string make
this angle with the line of greatest slope, all the portions below it must do so too.

[Math. Tripos, 188G.]

Ex. 18. A rough paraboloid of revolution, of latus rectum 4a, and of coefficient

of friction cot/3, revolves with uniform angular velocity about its axis which is

vertical: prove that for any given angular velocity greater than (gl'2ay cot ifp or less

than {gl2ay tan ^/S a particle can rest anywhere on the surface except within a

certain belt, but that for any intermediate angular velocity equilibrium is possible

at every point of the surface. [Math. Tripos, 1871.]

Let mg be the weight of the particle. It i'< known by dynamics that we may
treat the paraboloid as if it were fixed in space, provided we regard the particle as

acted on by a force mufir tending directly from the axis, where r is the distance of

the particle from the axis, and u the angular velocity of the paraboloid.

We may prove that the ordinates in the limiting positions of equilibrium are

given by nw'^y^-(2au^-g)y + 2ang = 0. That a belt may exist, the roots of this

quadratic must be real,

Ex. 19. A rod rests partly within and partly without a box in the shape of a

rectangular parallelepiped, presses with one end against the rough vertical side of

the box, and rests in contact with the opposite smooth edge. The weight of the

box being four times that of the rod, show that, if the rod be about to slip and the

box about to tumble at the same instant, the angle the rod makes with the vertical

is i X + i cos-' (i cos X), where X is the angle of friction. [Math. Tripos, 1880.]

Ex. 20. A glass rod is balanced partly in and partly out of a cylindrical tumbler

with the lower end resting against the vertical side of the tumbler. If a and /3 are
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tbf anKlo of friction Ih J tan~ [Math. TripoH, 187/).]

tho ((I't'Att'st and leaHt aiiglvfi which the rod can make with the vortical, prove that

»in*o - HJn^/i

Hin" a ooH a + Mn' (i coh /S

'

. Kx. '21. A heavy rod, of length 2/, -^Hts horizontally nn the inHido roiiffh

aurfaoe of a hollow circular cone, the axis o( which in vertical and the vertex

downwardH. If '2a in the vertical an«li! <>f the cono, and if the coeftlcitmt of friction m
iH lesH than cot a, prove that the groatOHt height of the rod, when in eqnilibriuiu.

above the vertex of the cone ia I cot a
(1 + 0O8' a + nin a ^(Hin''' a + V'*)!'

•2(l-M''tan'^a)

[Math. Tripos, 1885.1

Ex. 22. A heavy uniform rod AH in placed innide a rough curve in the form

of a parabola whonu focuM Ih .S' and axiH vertical. Prove that, when it ia on the point

of Blipping downwards, the angle of friction la J (SAH- SBA). [Coll. Ex., 18811.

)

Ex. 28. A rod MS' rcHtn with ita enda in two fixed atraiglit rough groovoa OA,

OH, in the same vertical plane, which makea anglea a and /3 with the hori/un : prove

that, when the end M ia on the point of slipping down AO, the tangent uf the

inclination of 3/Ar to the horizon ia . . ,„ > , ^v [Math. Tripoa, 1870.1
2am(/3 + «)am(a-«) i-

> j

Ex. 21. A uniform rectangular board AIICD rt'Hts with the corner A againat

a rough vortical wall and ita aide HC on a amooth peg, the plane of tliu board being

vertical and perpendicular to ibat of the wall. Show that, without diaturbing tli9

equilibrium, the peg may be moved through a apace
fj.
coa a {a coa o4- J> ain a) along

the aide with which it ia in contact, provided the coeilicient of friction (/u) lie

between certain limita; a being the angle HC makea with the wall, and a, b the

lengths of Ali, JiC respectively. Also find the limita of /x. [Math. T., 1880.]

Ex. 25. An elliptical cylinder, placed in contact with a vertical wall and a

horizontal plane, is juat on the point of motion when ita major axia is inclined at an

angle a to the horizon. Determine the relation between the coefficienta of friction

of the wall and plane ; and ahow from your result that, if the wall be amooth, and

a be equal to 45", the coefficient of friction between the plane and cylinder will be

equal to ^ e^, where e ia the eccentricity of the transverse section of the cylinder.

[Math. Tripoa, 1883.]

Ex. 26. A rough elliptic cylinder resta, with its axia horizontal, upon the ground

and against a vertical wall, the ground and the wall being equally rough; ahow that

the cylinder will be on the point of alipping when ita irujor axia plane ia inclined at

an angle of 7r/4 to the vertical if the square of '.he eccentricity of its principal

section be 2 sine (sin 6 + cos e), where e is the pugle of friction. [Coll. Ex., 1885.]

^ Ex. 27. Three uniform rods of lengths a, b, c are rigidly conned ,J to form

a triangle ABC, which is hung over 'jk rough peg so that the side BC may rest

in contact with it ; find the length of the portion of the rod over which the peg

may range, showing that, if ju

:

a(a + b + c)
cosec C + tan i(C-ZJ), where C > 2J, the

b(b + c)

triangle will rest in any position. [Math. Tripos, 1887.]

Ex. 28. A waggon, with four equal wheels on smooth axles whose plane

contains the centre of gravity, rests on the rough surface of a fixed horizontal

circular cylinder, the axles being parallel to the axia of the cylinder; investigate

the pressures on the wheels, and prove that the inclination to the horizontal of the

plane containing the axles is tan~' {t&na{w -w')IW}, where w, w' are the weights

^i'll
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on the two axles, W that of the whole waggon, and 2a is the angle between the

tangent planes at the points of contact. [Math. Tripos, 1888.]

Ex. 29. Three circular cylinders A, B, C, alike in all respects, are placed with

their axes horizontal and their centres of gravity in a vertical plane ; A is fixed, B
is at the same level, and C at a lower level touches them both, the common tangent

planes being inclined at 45*> to the vertical. B and C are supported by a perfectly

rough endless strap uf suitable length passing round the cylinders in the plane

containing the centres of gravity. Show that equilibrium can be secured by making

the strap tight enough, provided that the coefficient ( f friction between the cylinders

is greater than 1 - 1/^/2 ; and find how slipping will first occur if the strap is not

quite tight enough. [Math. Tripos, 1888.]

Ex. 30. Two uniform rods AB, BC, of equal length, are jointed at B. They

are at rest in a vertical plane, equally inclined to the horizon, with their lower ends

in contact with a rough horizontal plane. Prove that, if they be on the point of

slipping both at A and C, the frictional couple at the joint is Wa (sin a - 2/x cos a),

where W is the weight of each rod, a the inclination of each rod to the horizon,

2a the length of each rod, and n the coefficient of friction. [St John's Coll., 1890.]

Ex. 31. Six uniform rods, each of length 2a, are joined end to end by five

smooth hinges, and they stand on a rough horizontal plane in equilibrium in

the form of a symmetrical arch, three on each side
;
prove that the span cannot be

greater than 2ay/2 {^+>Ji + >J^), if the coefficient of friction of the rods and plane

bei. [Coll. Ex., 1886.]

Consider only half the arch. The reaction at the highest point is horizontal,

and equal to half the weight of one rod. Take moments (1) for the upper, (2) for

the two upper, (3) for all three rods. We find that their inclinations to the vertical

are |ir, tan"' i, tan-' i . The result follows easily.

170. Friction iMtwaan wheel and axle. Ex. 1. A gig is so constructed that

when the shafts are horizontal the centre of gravity of the gig and the shafts is over

the axle of the wheels. The gig in this position rests on a perfectly rough ground.

Find the direction and magnitude of the least force which, acting at tJie extremity

oftM shaft, will just move the gig.

When an axle is made to fit the nave of a wheel, the relative sizes of the axle

and hole are so arranged that the wheel can turn easily round the axle. The axle

is therefore just a little smaller than the hole. Thus the two cylinders touch along

some generating line and the pressures act at points in this line. Even if the axle

were somewhat tightly clasped at first, yet by continued use it would be worn away

so that it would become a little smaller than the hole.

It is possible that the axle may be so large that it has to be forced into the hole.

When this is the case, besides the pressures produced by the weight of the gig,

there will be pressures due to the compression of the axle. These last will act

on every element of the surface of the axle and their magnitudes will depend

on how much the axle has to be compressed to get it into the hole. If the axle

and hole are not perfectly circular, these pressures may be unequally distributed

over tie surface of the axle. When these circumstances of the problem are not

given, the pressures on the axle are indeterminate.

Let ^, F be the required horizontal and vertical components of the force applied

at the extremity S of the shaft.
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Consider the equilibrium of the wheel. Since it touches a perfectly rough ground

at A, the friction at this point

cannot be limiting. Let R and F
be the reaction and friction. It is

evident that the friction F must act

to the left, if it is to balance the

force X which is taken as acting

to the right.

The axle will touch the circular

hole in which it works at some one

point B. At this point there will

be a reaction R and a friction F",

which is limiting when the gig is on the point of motion. Thus I'"'=fiR'. The
resultant of R' and fiR' must balance the resultant of R and F and the weight of

the wheel. It therefore follows that the point B is on the left of C, i.e. behind the

axle. Let 6 be the angle ACB, let a and b be the radii of the wheel and axle.

Taking moments about A we have

R'a sin 0=ixR' (a cos d - b).

Putting ju= tan e, this gives sin (c • 0) = - sin e.
a

Since b is less than a, we see that is positive and less than e.

Consider next the equilibrium of the gig. The forces R' and fiR' act on the gig

in directions opposite to those indicated in the figure. Let W be the weight of the

gig, then resolving and taking moments about C we have

X= -R' Bind+fiR'coad,

Y=:-R'coB$-fiR'ame+W,
Yl= fiR'b,

where I is the length of the sh These equations give X and Y.

Ex. 2. A light string, suppoi i..ai^ two weights W and W, is placed over a wheel

which can turn round a fixed rough axle. Supposing the string not to slip on the

wheel, find the condition that the wheel may be on the point of turning round the

axle. If a, b be the radii of the wheel and axle, and /x=:tan e, prove that

(yV-W')a=:(W+W')bBine.

Ex. 3. A solid body, pierced with a cylindrical cavity, is free to turn about

a fixed axle which just fits the cavity, and the whole figure is symmetrical about

a certain plane perpendicular to the axle. The axle being rough, and the body

acted on by forces in the plane of symmetry, find the least coefficient of friction

thp.t the body may be in equilibrium.

The circular sections of the cavity and axle are drawn in the figure as if they

were of different sizes. This has been

done to show that the reaction and

friction act at a definite point, but in

the geometrical part of the investigation

they should be regarded as equal.

Let the plane of symmetry be taken

as the plane of xy, and let its intersection

O with the axis be the origin. Let X, Y, O
be the components of the forces, and let

these urge the body to turn round the

axis in a direction opposite to that of the hands of a watch.
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The axle will touch the cavity along a geuerating line, let B be its point of

intersection with the plane of xy. Let be the angle BOx. Let R and F be

the normal reaction and the friction at B ; when the body borders on motion we

have F=u,Ii.

By resolving and taking moments we find

i?(co8fl + M8intf) + A'= 0,

B. (sin d-nco&d)+Y = 0,

-fdia +G =0,

where a is the radius of the cavity. Putting ^= tan c, we deduce from these equations

tan(e-e)=y/X, R'i=:{X-^+Y')coe,''e.

These determine the point B and the reaction R. The least value of the coefficient

of friction is then given by

180. Iiemma. If a lamina be moved from any one position

to any other in its own plane, there is one point rigidly connected to

the lamina whose position in space is unchanged. The lamina may
therefore be broughtfrom its first to its last position by fixing this

point and rotating the lamina about it through the proper angle.

Let A, B he any two points in the lamina in its first position,

A', B' their positions in the last position. Then \{ A, B can be

brought into the positions A\ B' by rotation about some point /,

fixed in space, the whole lamina will be brought from its first to

its last position. Bisect AA\ BB' at

right angles by the straight lines LI,

ML Then LA==LA', and LB==LB'.

Also, since AB is unaltered in length

by its motion, the sides of the triangles

ALB, A'LB' are equal, each to each. It

follows that the angles ALB, A'LB' are

equal, and therefore that the angles ALA' and BLB' are equal.

If then we turn the lamina round /, as a point fixed in space,

through an angle equal to ALA', A will take the position A',

and B will take the position B'. Thus the whole body has been

transferred from the one position to the other.

If the body be simply translated, so that every point moves

parallel to a given straight line, the bisecting lines LL, ML are

parallel, and therefore the point 7 is infinitely distant.

If the angle ALA' is indefinitely small, the fixed point / of

the lamina is called the instantaneous centre of rotation.
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181. Frictions in unknown directions. We arc now

prepared to make a step towards the generalization of the laws

of friction. Let us suppose a heavy body to rest on a rough hori-

zontal table on 7i supports. Let these points be A^, A.2,...An, and

let the pressures at these points be P,, P2,...Pn. We shall also

suppose the body to be acted on by a couple and a force applied at

some convenient base of reference, the forces being all parallel to

the table. To resist these forces a frictional force is called into

play at each point of support. The directions and magnitudes of

these frictional forces are unknown, except that the magnitude of

each is less than the limiting friction, and the direction is opposed

to the resultant of all the external and molecular forces which act

on that point of support. If the pressures Pi,...P„ are known,

there are thus 2n unknown quantities, and there are only three

equations of equilibrium. The frictions at the points of support

are therefore generally indeterminate.

By calling the frictions indeterminate we mean that there are

different ways of arranging forces at the points of support which

could balance the given forces and which might be frictional

forces. Which of these is the true arrangement of the frictional

forces depends on the manner in which the body, regarded as

partially elastic, begins to yield to the forces. Suppose, for

example, a force Q to act at a point B of the body, and to be

gradually increased in magnitude. The frictions on the points

of support nearest to B will at first be sufficient to balance

the force, but, as Q gi'adually increases, the frictions at these

points may attain their limiting values. As soon as they begin

to yield, the frictions at the neighbouring points will be called

into play, and so on throughout the body.

When the external forces are insufficient to move the body as

a whole, the directions and magnitudes of the frictions at the

points of support depend on the manner in which the body yields,

however slight that yielding may be. Even if the external forces

were absent, the body could be placed in a state of constraint

and might be maintained in that state by the frictions. Thus the

frictions depend on the initial state of constraint as well as on

the external forces. It is also possible that the body, though

apparently at rest, may be performing small oscillations about

some position of stable equilibrium. This might cause other

changes in the frictions.
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182. Limiting Equilibrium. Let us now suppose that

the external forces have been gradually increased according to

some given law until the whole body is on the point of motion.

By this we mean that the least diminution of roughness or the

least increase of the forces will cause the body to move. We may
enquire what is the condition that these forces may be just great

enough to move the body, or just small enough not to move it.

When the body is just beginning to move, the arrangement of

the frictional forces 's somewhat simplified. We suppose the

body to be so nearly rigid that the distances between the

several particles do not sensibly change. Thus their motions

are not independent, but are sensibly governed by the law proved

in the lemma of Art. 180. The directions of the frictions, also,

being opposite to the directions of the motions, are governed by

the same law.

It will be seen from what follows that, when a rigid body turns round an

instantaneous axis, the friction at every point of support acts in the direction which

is most effective to prevent motion. If, therefore, the frictional forces thus arranged

are insufficient to prevent motion, there is no othar arrangement by which they

can effect that result.

If the body move on a horizontal plane, no matter how
slightly, it must be turning about some vertical axis ; let this

vertical axis intersect the plane in the point /. There are then

two cases to be considered, (1) the point / may not coincide with

any one of the points of support, and (2) it may coincide with

some one of them.

Let us take these cases in order. The position of / is un-

known ; let its coordinates be f, tj referred to any axes in the plane

of the table. The points A^,...An are all beginning to move each

perpendicular to the straight line which joins it to the point /.

The frictions at these points will therefore be known when / is

known. Their directions are perpendicular to lAi, lA^, &c., and

they all act the same way round /. Their magnitudes are /ttiPi,

ftjPj, &c., if /*!, /i2, &c. are the coefficients of friction. Since the

impressed forces only just overbalance the frictions, we may r-^gard

the whole as in equilibrium. Forming then the three equations of

equilibrium, we have sufficient equations to find both ^, i) and

the condition that the body should be on the point of motion.

It may be that these equations do not give any available values
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of ^, 7}, ana in such a case the point / cannot lie away from one of

the points of support.

183. Let us consider next the case in which / coincides with

one of the points of support, say A^. The coordinates ^, 17 of / are

now known. Just as before the frictions at ilj,...-4„ are all known,

their directions are perpendicular to -4 1^2. -4,^43, &c. and their

magnitudes are /XaPj, &c. Since Ai does not move, the friction

at Ai is not necessarily limiting friction. It may be only just

sufficient to prevent Ai from moving. Let the components of

this friction parallel to the axes cc and y be Fi and F/. Forming

as before the three equations of equilibrium, we have sufficient

equations to find F^, F^ and the required condition that the body

may be on the point of motion. If, however, the values of ^j , Fi

thus found are such that Fi^ + F/^ is greater than fi^^P^, the

friction required to prevent A^ from moving is greater than the

limiting friction. It is then impossible that the body could begin

to turn round A^ as an instantaneous centre. We can determine

by a similar process whether the body could begin to turn round

A 2, and so on for all the points of support.

184. We shall now form the Cartesian equations from which the coordinates

{, 11 and the condition of limiting equilibrium are to be found. These however are

rather complicated, and in most cases it will be found more convenient to find the

position of I by some geometrical method of expressing the conditions of equi-

librium.

Let the impressed forces be represented by a couple L together with the

components X and Y acting at the origin. Let the coordinates of ^j, A^ &o.

^ (^i2/i)> (^22/2)> "fee. Let the coordinates of I be (I17). Let the distances lA^,

lA^ &G. be ri, r^ &o. Let the direction of rotation of the body be opposite to that

of the hands of a watch. Then since the frictions tend to prevent motion, they act

in the opposite direction round J.

The resolution of these frictions parallel to the axes will be facilitated if we turn

each round its point of application through an angle equal to a right angle. We
than have the frictions acting along the straight

lines lAi, lA^ &c., all towards or all from the

point 7. Taking the latter supposition, their

resolved parts are to be in equilibrium with X
acting along the positive direction of the axis

of y and Y ulong the negative direction of x.

We find by resolution

2,jiP^—^-+Y--
r

0\

S/*P^—^-X=0|
.(!)•

ii^

:
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The equation cf moments must be formed without changing the directions of the

frictions. Taking moments about I, we have

XfiPr+Y^-Xr}-L = (' ).

If the instantaneous centre I coincide with A^, the equations are only slightly

altered. We write (x^y^) for (^t;), Fj and - F,' for fXiPi ^'f-^ and ^^P^
*' "

^ , and

finally omit the tenn Afi^i**! in the moment.

185. The munlmnin Mettaoi. There is another way of discussing these

equations which will more clearly explp'n the ci x^nection between the two cases. If

the body is just beginning to turn about some instantaneous axis, it would begin to

turn about that axis if it were fixed in space. Let then / be any point on the plane

of xy and let us enquire whether the body can begin to turn about the vertical

through I as an axis fixed in space. Supposing all the friction to be called into

play, the moment of the forces vound I, measured in the direction in which the

frictions act, is u=:^iJ.Pr+Y^- Xrj-L.

If, in any position of I, u is negative, the moment of the forces is more powerful

than that of the frictions ; the body will therefore begin to move. If on the other

hand u is positive, the moment of the frictions is more powerful than that of the forces,

and the body could be kept at rest by less than the limiting frictions. Let us find

the position of 1 which makes u a minimum. If in this position u is positive or

zero, there is no point I about which the body can begin to turn.

To make u a minimum we equate to zero the di£Ferential coefficients of u with

regard to f , tj. Since H= (x - f )* + {y - rj)^, the equations thus formed are exactly

the equations (1) already written down in Art. 184.

The statical meaning of these equations is that the pressures on the axis which

has been fixed in space are zero when that axis has been so chosen that u is a

minimum. If this is not evident, let Rj. and Ry be the resolved pressures on the

axis. The resolved parts parallel to the axes of the impressed forces and the

frictions together with Rg and Ry must then be zero. But the equations (1) express

the fact that these resolved parts without Rj. and R^ are zero. It evidently follows

that both Rji and Ry are zero.

That this position of I makes u a minimum and not a maximum may be shown

analytically by finding the second differential coefficients of u with regard to | and

7). The terms of the second order are then found to be

^^P{(ri-y)di-(^-x)dr,\^l2i-3,

where the Z implies summation for all the points Ai, A2, &o. Since each of these

squares is positive, u must be a minimum.

It appears therefore "ihat the axis about which the body will begin to turn may be

found by making the moment (viz. u) 0/ the forces about that axis a minimum; and

the condition that the forces are only just sufficieut to move the body is found by

equating to zero the least value thus found.

186. The quantities r^, r^, &o. are necessarily positive, and therefore not

capable of unlimited decrease. Besides the minima found by the rules of the

differential calculus, other maxima or minima may be found by making some one

of the quantities r^, r„, &o. equal to zero.

Suppose u to be a minimum when ri = 0, i.e. when the point I coincides with A^.

Take A^ as the origin of coordinates. Let I receive a small displacement from
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the positiou A^, and let its coord iuatea become ^ = r^cosdi, i7 = r, sin^,. Let the

coordinates of A,^, &c. be (r^O^), &c. The vahie of w, when the first powc . only of

the small quantity r^ is retained, becomes

u

=

MiPir, + iJ^Pj
{
Tj

-

Ti cos (di-e^))+&o. + Yi\ C06 ^1
- Xvi sin tf, - L

.

The condition that u should be a minimum is that the increment of u should

be positive for all small displacements of I. This will be the case if the coefficient

of rj , viz. jLtj P, - M-jPa cos (9^ - 62) - &c. + Y cos ^•^ - X sin By ,

is positive for all values of 0^ . We may write this in the form

fly Py + A cos 01 + B sin 0^ ,

where A and B are quantities independent of 0^ . It is clear that if this is positive

for all values of 0^, tt^P\ must be numerically greater than {A^ + B"^)^.

We notice that since A= - A4P2 cos 02-&O. + Y,

B= - ix^P^sin 0„ - itc. - X,

the quantities A and - B are the resolved parts parallel to the axes of the external

forces and of all the frictional forces except that at .-(j. If F be the friction at the

point ^j, the resultant pressure on the axis will be (A^ + B'^Y -^F. This can be

made to vanish by assigning to the friction F a value less than the limiting friction.

See Art. 183.

It appears therefore that, if we include all the positions of I which make the

moment m a minimum, viz. those which do, as xoell as those which do not coincide

with a point of support, that position in lohich u is least is the position of the

instantaneous axis.

187. It will be observed that, if the lamina is displaced round the axis through

I through any small angle d0, the work done by the forces and the frictions is ud0,

where d0 is measured in the direction in which the frictions act. To make u a

minimum is the same thing as to make this work a minimum for a given angle of

displacement.

188. Ex. 1. A triangular table with a point of support at each corner A, B, G
is placed on a rough horizontal floor. Find the least couple which will move the

table.

It may be shown that the pressure on each point of support is equal to one third

of the weight of the triangle. The limiting frictional forces at ^, £, C are therefore

each equal to J/t^r.

Let the triangle begin to turn about some point I not at a corner. Since

the frictions balance a couple, these frictions when rotated through a right angle so

as to act along AI, BI, CI must be in equilibrium. Hence I must lie within the

triangle. Also, the frictiCiS being equal, each of the angles AIB, BIG, GIA must
be -120°. If then tio angle of the triangle is so great as 120°, the point I is the

intersection of the arcs described on any two sides of the triangle to contain 120°.

The least couple which will move the triangle is therefore ^fxW(AI+BI+ CI).

The triangle might also begin to turn about one of its corners. Suppose I

to coincide with the corner G. Rotating the frictions as before, the magnitude of

the friction at G must be just sufficient to balance two forces, each equal to ^filF,

n
acting along AG and BG. The resultant of these is clearly i^W. 2cos „ . Unless

II i

lii

4\

the angle C is > 120° this resultant is > ^nW and is therefore inadmissible. Thus
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the table cannot tvm round an axii at any comer unlesi the angle at that comer it

greater than 120\ If the corner is C, the magnitude of the least couple is

ifiW{CA + CB).

This statical problem might also be solved by finding the position of a point /

such that the sum of its distances AI, BI, CI (all multiplied by the constant inW)
from the corners is an absolute minimum.

Ex. 2. Four equal heavy particles A, B, C, D are connected together so as to

form a rigid quadrilateral and placed on a rough horizontal plane. Supposing the

pressures at the four particles are equal, find the least couple which will move the

system.

The instantaneous centre I is the intersection of the diagonals or one of the

corners according as that intersection lies inside or outside the quadrilateral.

Ex. 8. A heavy rod is placed in any manner resting on two points A and B of

a rough horizontal cur\'e, and a string attached to the middle point C of the chord

is pulled in any direction so that the rod is on the point of motion. Prove that the

locus of the intersection of the string with the directions of the frictions at the points

of support is an arc of a circle and a part of a straight line. Find also how the

force must be applied that its intersection with the frictions may trace out the

remainder of the circle.

Firstly let the rod be on the point of slipping at both A and B, and let F, F' be

the frictions at the two points. Then F, F' uio both known, and depend only on

the weight and on the position of the centre of gravity of the rod. Supposing the

centre of gravity to be nearer B than A, the limiting friction at B will be greater

than that at A. Since there is equilibrium, the two frictions and the tension must

meet in one point; let this be P. Then since AC=CB, it is evident that CP is half

the diagonal of the parallelogram

whose sides are AP, BP. Hence, by

the triangle of forces, AP, BP and

2PC will represent the forces in those

directions. Hence AP : PB :: F : F',

and thus the ratioAP : PB is constant

for all directions of the string. The

locus of P is therefore a circle.

Let the point C be pulled in the direction PC, so that the line CP in the figure

represents the produced direction of the string.

The string CP cuts the circle in two points, but the forces can meet in only one

of these. It is evident that the rod mnst be on the point of turning round some one

point I. This point is the intersection of the perpendiculau drawn to PA, PB at A
and B. Now the frictions, in order to balance the tension, must act towards P, and

therefore the directions of motion of A and B must be from P. This clearly cannot

be the case unless the point I is on the same side of the line AB as P. Therefore

the angle PAB is greater than a right angle. Thus the point I cannot lie on the

dotted part of the circle.

Secondly. Let the rod br on the point of slipping at one point of support only.

Supposing as before that the centre of gravity is nearer B than A, the rod will slip

at A and turn round £ as a fixed point. Thus the friction acts along QA and the

locus of P is the fixed straight line QA.

But P cannot lie on the dotted part of the straight line, for if possible let it be
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at R. Then if AR represent F, Rli must be less than F', becauBe there is no slippinR

at B. But, because R lies within the circle, the ratio AR : RB is less than the ratio

AP : PB, i.e. is less than F : /<", and therefore RB is greater than F'. But this is

contrary to suppositior

,

Thus the strinK beiu); produced will always cut the arc of the circle and the part

of the straight line in oi.e point and one point only. The frictions always tend to

that point when the rod is on the point of motion.

In order that the locus of P may be the dotted part of the circle it is necessary

that the frictions should tend one from P and the other to P and the tension must

therefore act in the angle between PA and PB produced. By the triangle of forces

APB we see that the tension must act parallel to AB, and be proportional to it.

Ex. 4. A lamina rests on three small supports A, B, C placed on a horizontal

table; one of these, viz. C, is smooth and the other two, A and B, are rough. A
string attached to any point D, fixed in tlie lamina, is pulled hori^'.^ntally so that the

lamina is on the point of motion. If the position of the centre of gravity and the

coefficients of friction are such that the limiting frictions F and F' at A nnd B are

in the ratio BD : AD, prove that the locus of the intersection P of the string and

the frictions F, F is (1) a portion of the circle circumscribing A BD, (2) a portion of

a rectangular hyperbola having its centre at the middle point of A B and also cir-

cumscribing ABD, (3) a portion of two straight lines.

Let AD = b, BD= a, then Fb= F'a.

Di.^w LAL', HBH' perpendiculars to A B. If the lamina slip at one point only

of the supports A , B, the point P lies on these perpendiculars.

If the lamina slip at both A and B, we find, by taking moments about D, tha

sin PAD = iinPBD. The angles

PAD and PBD are therefore either

supplementary or equal. The locus

of P is therefore the circle circum-

scribing the triangle ABD, and a

rectangular hyperbola also circum-

scribing ABD. The first locus

follows also from the triangle of

astatic forces considered in Art. 71.

The second locus may be found by

taking ^J3 as axis of x and equating

the tangents of the angles PBA
and PAB-y, where y is the difiference of the angles DAB and DBA.

To determine the branches of these two curves which fcrm the true locus of P
we consider the relative positions of P and the instantaneous oentre I. These two

points lie at opposite ends of a diameter of a circle drawn round ABP. Hence, if P
lie outside the perpendiculars LL', HIV, I also must lie outside. The frictions

cannot then balance the tension T unless the straight line PD passes inside

the angle APB. Similarly, if P lie between the perpendiculars, PD must be

outside the angle APB.

The straight lines LL', HH', DA, DB divide space into ten compartments.

Several of these compartments are excluded from the locus of P by the rules just

given. It will be convenient to mark (by shading or othorwise) the compartments

in which P can lie. We then sketch the circle and the hyperbola and take only those

R. S. I. 9
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branohea which lie on a marked compartment. The figureH are diflerent aocording

as D UsB between or outside the lines LL', IIII',

Ex. 5. If in the laat example the limiting frictionH are in any ratio, the locua of

the interBection of the string and frictions is a portion of a curve of the fourth

degree and of two straight lines. The proper portions, as before, are those branohea

which lie in the marked compartments.

180. Ex. 1. A uniform »traiglit rod Ali i» placed on a rough tnhlc, and nil its

elements are equally supported hij the table. Find the leant force which, acting at one

extremity A perpendicular to the rod, will move it.

Let I be the length of the rod, w its weight per unit of length. Each element dx

of the rod presses on the table with a

weight wdx. The limiting friction at

this element is therefore fiiodx. If / be

the centre of instantaneous rotation, the

friction at each element acts perpendi-

cular to the straight line joining it to I,

and all these are in equilibrium with

the impressed force P at ^.

The point I must lie in the length of the rod. For suppose it were on one side

of the rod, then, rotating (as already explained) the frictions through a right angle

BO that they all act towards I, these should be in equilibrium with a force P acting

parallel to the rod. But this is impossible unless I lie in the length of the rod.

Next, let I be on the rod, and let AI=z. The friction at any element H or H'
acts perpendicular to the rod in the direction shown in the figure. The resultant

frictions on AI and BI are therefore fiwz and fiw {I - z). These act at the centres of

gravity of AI and BI. Resolving and taking moments about A, we have

fiioz- nw (l-z)=P, nioz'=nw (l^-z-).

The last equation gives Zi^2 = l, and the first shows that P=/jiW (y/2-1), where

W is the weight of the rod.

Ex. 2. Show that the rod could not begin to turn about a point I on the left of

A or on the right of B.

Ex. 3. If the pressure of an element on the table vary as its distance from the

extremity A of the rod ; and P, Q be the forces applied at ^, ii respectively which

v/ill just move the rod, prove that the ratio of P to Q is 2 (4/2 - 1).

Ex. 4. Two uniform equally rough rods AB, BC, smoothly hinged together

at B, are placed in the same straight line on a rough horizontal table, and the

extremity A is acted on by a force P in a direction perpendicular to the rods.

If P is gradually increased until motion begins, show that the rod AB begins to

move before BC or both begin to move together according as 2{iJ2-l)W' is

greater or less than W, where W, W are the weights of the rods AB, BC
respectively. If both rods begin to move together, prove that the instantaneous

centre of rotation of AB is at a distance z irom A where -j^= l + 2 (^2 - 1) -jj^ and I

is the length of AB.

Ex. 5. A heavy rod AB placed on a rough horizontal table is acted on at

some point G in its length by a force P, in a direction making an angle a with the

rod, and the force is just sufficient to produce motion. If the instantaneous centre

lie in a straight line drawn through B perpendicular to the rod and be a distance
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Findfrom A equal to twice the lennth .17*, prove that tiina=2(2 -^3)/^/3 log 3.

the poHition of C.

Kx. 6. A hoop in laid upon a rou^h horizontal piano, and a Htring fastened

to it at any point in pulled in the direction of the taiiKont line at tho point.

Prove that the hoop will begin to move about the other end of tlio diameter through

the point. [Math. TripoH, 1873.]

Let A bp tho point, Alt tho diameter through A. If we rotate euch force round

its ])()int of application through a right angle the friotional forces will act towards

the centre I of rotation Art. 184. The point / \h therefore so nituated that the

rcBultant of the frictioual forcoH (regarded as acting towards / from the elements

of the hoop) is parallel to the diameter AJi, It easily follows that / must lie

on the diameter AH.

Let UP uext consider the equation of moments. The point I must be so situated

m the diameter Ali that the moment about A of the frictions at all the elements of

the hoop is zero. This condition is Ratisfied if / is at the end li of the diameter

AB, for then the line of action of the friction at every element passes through A.

It is, perhaps, unnecessary to prove that no point, other than li, will satisfy this

condition. It may however be shown in the following manner. If possible let

Hie on Ali within M^e circle. Whatever point P i» taken on the hoop the angle

IPA is less than a right angle. Hince the friction at P acts in a direction at right

angles to IP, it will become evident by drawing a figure that the friction at every

element tends to produce rotation round A in the same direction. The moment
therefore of the frictions about A could not be zero. In the same way we can prove

that / cannot lie outside the (circle.

Ex. 7. A uniform semicircular wire, of weight IV, rests with its plane horizontal

on a rough table, AB is the diameter joining its ends, and G is the middle point of

the arc ; a string tied to G is pulled gently in tlie direction CA, and the tension

increased until the wire begins to move. Show that the tension at thic instant is

equal to 2^/2nWlir. [The instantaneous axis is at B.] [St John's Coll., 1880.]

Ex. 8. A uniform piece of wire, in the form of a portion of an equiangular

spiral, rests on a rough horizontal plane ; show that the single force which, applied

to a point rigidly connected with it, will cause it to be on the point of moving

about the pole as instantaneous centre, is equal to the weight of a straight wire

of length equal to the distance between the ends of the spiral, multiplied by the

coefficient of friction. Show how to find the point. [Math. Tripos, 1888.]

Ex. 9. Three equal weights, occupying the angles A, B, C oi an equilateral

triangle, are rigidly connected and placed upon a rough inclined plane with the base

AB of the triangle along the line of great^it slope, and the highest weight A is

attached by a string to a point in the line jf the base produced upwards ; if the

system be on the point of moving, prove that the tangent of the inclination of tho

plane is (2 + ^3)/t/v/3, where /j. is the coefficient of friction. [Math. Tripos, 1870.]

Suppose I not at a corner, the three frictions are then equal. Since A can only

move perpendicular to 0^1, / must lie in OAB. Unless I lie between A and B and

at the foot of the perpendicular from C on AB, the three frictions will have a

component perpendicular to AB. Taking moments ahout I, we find the result given

in the question. Next suppose I to be at the corner A. The frictions at B and C
when resolved perpendicular to AB are then too great for the limiting friction at A.

This supposition is therefore impossible.

9—2
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Ex. 10. A throo-lcKR<'(l Htool Htuiidn on ii hori/ontiil plani>, tho cofHlcient of

friction beiPK tlio HUinu for tho tlirt'o fo(!t ; a hiiiiiII liori/.ontiil forco ii4 tipplieil to

one of the foot in a t{ivcn diruotion, ami iH Kradnully iticrt'tiHcd until tho Htool hcKinn

to move ; hIiow that thix forou will bu ^rnatoHt whun itH direction intt'rHcctH the

vertical through the centre of gravity of the Htool.

Show alno that if tho forco when equal to twice the whole friction of the foot on

which it actH, applied in a direction whoHo normal at the foot pasHcs between tho

two other feet, cauHes tho foot to bo^in to move in itH own direction, the centre of

gravity of tho stool Ih vertically above the centre of the circle inBcri.'^d in tho

trianftle formed by tho feet. [Matli. Trii)os.J

Kx. 11. A flat circular heavy diwo Hoh on a rough inclined plane and can turn

about a pin in itH circumference ; Hhow that it will rest in any ponition if

82/x > Oirtan /, where i ih the inclination of the plane to tho horizon. The weight

is Bui)po8ed to be equally diHtributed over its area. [I'et. Coll., iHu?.]

Let Jr be the weight of the disc. The origin being at the pin the friction at any

element rdOdr in fnW ooi^ i , rdOdrjiraK Taking mouients about the pin the result

follows by integration.

Ex. 12. A right cone, of weight H' and angle 2a, is placed in a circular hole cut

in a liori/.ontal table with its vertex downwards. Show that the least couple which

will move it is ^Wr cosec o, where r is the radius of the hole.

The pressure lids on each element da of the hole acts normally to the surface of

the cone, hence, resolving vertically, \Iidii sin a= ir. The limiting friction on each

elemeut is ultds, hence, taking moments about the axis of the cone, the result follows.

Ex. 18. A heavy particle is placed on a rough inclined plane, whose inclination

is equal to the limiting angle of friction ; a thread is attached to the particle and

passed through a hole in the plane, which is lower than the particle but not in the

Hue of greatest slope; show that, if the thread be verif slowly drawn through the

hole, the particle will descritu i straight line and a semicircle in succession.

[Maxwell's problem, Math. Tripos, 1860.]

Let IF** be the weight resolved along the line of greatest slope, F the friction,

then F-. W. As the particle moves very slowly, the forces F, W and the tension T
are always in equilibrium. As long as the hole O is lower than the particle, T is

infinitely small and just disturbs the equilibrium. The particle therefore descends

along the line of greatest slope. Wlien the particle P passes the horizontal line

through 0, T becomes finite. Hence 2' bisects the angle between F and W. The

path is therefore such that the radius vector OP makes the same angle with the

tangent (i.e. F) that it makes with the line of greatest slope. This, by a differential

equation, obviously gives a semicircle having O for one extremity of its horizontal

diameter.

Ex. 14. If, on a table on which the friction varies inversely as the distance

from a straight line on it, a particle is moved from one given point to another,

80 that the work dond is a minimum, the path described is a circle. [Trin. Coll.]

This result follows at once from Lagrange's rule in the Calculus of Variations.

190. Ex. 1. Two heavy particles A, A', placed on a rough table, are connected

by a string without tension and very slightly elastic. The particle A is acted on

by a force P in a given direction AC making with A'A produced an angle /3 less

than a right angle. As P is gradually increased from zero, will A move first or

will both move together?

-V.
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SuppoHo /' to incroaHc from zero:

^^'

Ii«tt F, I'" be the limiting frictlono at A, A'

while /' JH leHH tlinn /•' it Ih entirely

balniiccd by the friction at A. The
Htriiin, however nearly inelawtic it may
be, haH no tennion until .1 liaH Miovcd,

Lot /' l)c a little j^reator than /•'; take

A I. to reprexent 7' and draw I.MM'
parallel to AA'\ with centre A and

radiuH /'' dcHcribo a circle cutting LMM'
in ,1/ and M', then 7^.1/ repreHentfl the tenHion of the Htrin^. Of the two inter-

HectionH M, M', the ncarcnt to /, in ohoRen, for this maken the friction at .1 act

oppofiite to /' when i' = 7''.

Ah P gradually increaHCH M travels alonR the arc CII. The equilibrium of the

particle A becomes impoHsible when LMM' does not cut the circle, i.e. when M
reaches //. The particle .(' borders on motion when the tension LM bc'comcs

<'<|ual to F '. Now HK=F cot (i. Hence the particle /( moves alone if F cot /3 < F'

but both move together if F cot /3 > /•
".

When the limiting frictions F, t" arc ecjual, and /3 is less than half A right

angle, both particles move together. One friction acts along A A' and the other

makes an angle /S with the force /'. Also 7'= 2Fcos (i.

In this solution the point M' has been excluded by the principle of continuity,

though statically A would be in equilibrium undt'r the forces represented by

AL, LM', M'A. If the string I' had a proper initial tension, but balanced by

frictions at A and A' together with an initial force P along AC, then M' would

be the proper intersection to take.

Ex. 2. Two weights A and li are connected by a string and placed on a

hoiizontal table whose coefficient of friction is fi. A force 7', wltich is less than

fxA-\-tt.B, is applied to A in the direction 7^'!, and its direction is gradually turned

round an angle d in the horizontal plane. Show that if P be greater than

IX Ja^ + H-, then both A and 1! will slip when cob 6= l^i^^lf^ - A-) + P^]l2ixl}P, but

if P be less than fi^A'^ + Ii'^ and greater than fxA, then A alone will slip when

sin e=ixAlP. [Math. Tripos.]

Ex. 3. The n particles .-In' -^i - •••! -"'ii 1
1 of equal weights, are connected together,

each to the next in order, by « - 1 strings of equal length and very slightly elastic.

These are placed on a rough horizontal plane with the striui-^s just stretched but

without tension, and are arranged along an arc of a circle less than a quadrant.

The particle /I „_j is now acted on by a force P in the direction ^„_, yl„, where /1„

is an imaginary (jt + l)th particle. Supposing P to be gradually increased from

zero, find its magnitude when the system begins to move.

Let us suppose that any two consecutive particles iJ,„ and /I ,,,4.1 both border on

motion. Let ^,„ be the angle the friction at J„, makes with the chord •^ro+i'^m-

Let 2'„, be the tension of the string ^^^tn+i- Let j3 be the angle between any

string and the next in order. Let 7'' be the limiting friction at any particle.

Kesolving the forces on the particles A^ and A^^+x perpendicularly to ^m-i'^m
and .^ni+i .^m+a respectively, we find

r,„ sin ^ = F sin (<^„^ + /3), 7',,, sin p = F sin 0,„+,

.

Resolving the same forces perpendicularly to the frictions on the two particles,

we have 2'^, sin 0„.= 7'„,_i sin (<^„, + /3), ^m+i sin «^m+i = T^ sin (<^„+i + /3).

•I
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Comparing the ant two equations, we see that <t>m + ^ and <t>jn+\ ^^^ either equal

or supplementary. The other two equations show that the second alternative

makes T„+, = T„-i- Both these alternatives are statically possible, and thus forces

which might be friction forces could be arranged at the several particles in many
ways so that equilibrium would be preserved.

We shall take the alternative which agrees with the supposition that the strings

are initially without tension. When P is less than F the friction at A^_^ acts in

the direction opposite to P, and all the tensions are zero. When P has become

greater than F, the failing A^-^^n-i ^^ slightly stretched and the tension i4„_2^„_i

is called into play. The friction at ^„_3 acts opposite to this tension, and all the

other tensions are zero. Thus, as P continually increases, the tensions and frictions

are one by one called into play. Supposing the tensions to be initially zero, we

shall assume that the tensions produced by P are such that their magnitudes

continually increase from the string with zero tension up to the string yJ„_, A^-

Any other supposition would lead to the result that by pulling a string at one end

we could produce, after overcoming the resistances, a greater tension at the other

end. Since then 7'..,., must be greater than r„_i, we have <t>,n+i
—

<l>m + P-

Suppose that nil the particles from Ap to ^„_i border on motion and that

Tp_i=0; we have ihen ^^=0, <pp+i=P, and in general

<pp+K= Kp, Tp+„ sin /3= i<' sin (/f + l)/3.

Since Tn^i=P, we see that the force P required to make all the particles from

Ap to A^_i border on motion is

P=i'^ sin (tt -p) )3 . cosec j3.

When P becomes greater than the value given by this equation, a tension in the

string Ap_iAp will be called into play. The tension of ApAp^^ required to move Ap
without Ap_i is i^ cosec ,3, while tliat required to move both is i^sin 2/3. cosec /3.

Since the latter is less than the former tension, the friction at /lp_j will become

limiting before Ap begins to move. Thus we see that, as P continues to increase,

the successive particles border on motion, but no one begins to move without the

others.

If nj3 be less than a right angle, we conclude that all the particles begin to move
together, and that the force required to move them is P=F sin ji/3 cosec /3.

If n/3 be greater than a right angle, we have shown that, without destroying the

equilibrium, P can increase up to Psin^/3.ccstj/3, where p^ is less and (p + l)p

greater than a right angle. We have then r„_p_i = 0. When P becomes greater

than this value, the particle ^„_i will begin to move alone. For the tension

required to move /t„_i is F cosec /3, and the tension r„_2 is then Foot/3. Since

this is less than F sin p/3 cosec /3, the system A^-o, A„_3, Ac. is not bordering on

motion.



CHAPTER VI.

-i^„. THE PRINCIPLE OF VIRTUAL WORK.

191. Ix a former chapter the principle of virtual work has

been established for forces which act on a particle. It is now

proposed to consider this principle more fully, and to apply it to a

system of bodies in two and three dimensions.

The principle itself may be enunciated as follows. Let any

number offorces Pi, P., &c. act at the points Ai, A.^ &c. of a system

of bodies. Those bodies are connected together in any maimer so as

either to allow o"^ exclude relative motion, and they therefore exert

mutual actions and reactions on each other. Let the system be

slightly displaced so that the points A^, A.^ dx. assume the neighbour-

ing positions A/, A.^' d'C. Let dpi, dpi dx. be the projections of the

displacements A^A/. A.,A2 dc. on the directions of the forces Pi, P^

&c. respectively, and let dW= Pidpi + P^dp^ + dtc. Then the system

is in equilibrium ifdW=^ for all displacements consistent with the

geometrical conneocions between the bodies of the system.

Also the system is not in equilibrium, if one or more displacements

can befound for which dW is not equal to zero.

Strictly speaking we should say, not that dW xs zero, but that

d W, in the language of the differential calculus, is a small quantity

of the second order. This will be understood in what follows.

192. These displacements are to be regarded as imaginary

motions which the system might, but does not necessarily, take.

The principle of virtual work supplies a test, whether a given

position of the system is one of equilibrium or not. We first

consider what are the possible ways in which the system could

begin to move out of the given position. If for any one of these
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the sum 'S,Pdp is zero, then the system will not begin to move in

that mode of displacement. In this way all the possible displace-

ments are examined, and if '^Pdji is zero for each and every one,

the given position is one of equilibrium.

These small tentative displacements of the system are called

virtual displacements. The product Pdp is called, sometimes the

virtual moment, and sometimes the virtual work of the force P.

The sum "^Pdp is called the virtual moment or virtutjl work of all

the forces.

193. A proof of the principle of virtual work for forces acting

on a single particle has been already given in Chap. II. No satis-

factory method has yet been found by which the principle for

a system of bodies can be deduced directly from the elementary

axioms of statics. Lagrange has made a brilliant attempt which

will be discussed a little further on.

There is another line of argument which may be adopted.

The system is regarded as composed of simpler bodies, each acted

on by some of the forces, and connected together by mutual

actions and reactions. Thus Poisson regards the system as a

collection of points in equilibrium connected together as if by

flexible strings or inflexible rods without weight. To avoid

making any assumptions concerning the molecular structure of

bodies, we shall regard the system as made up of rigid bodies of

such size that the elementaiy laws of statics may be applied to

them.

The principle will first be proved for the simpler body, assuming

the composition and resolution of forces. The principle will there-

fore be true for the general system, provided we include amongst

the forces Pj , Pj &c, all the mutual actions and reactions of the

bodies of the system.

Lastly, these actions and reactions are examined, and it will be

proved that they do not iDut in an appearance in the general

equation of virtual work. It follows that the principle may be

used as if Pi, Pj &c. were the only forces acting on the system.

The chief objection to this mode of proof is that the mutual

actions and reactions must be sufficiently known to enable us

to prove that their s'^^^arate virtual works are either zero or cancel

each other.
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111 this mode of proof we have in part followed the lead of

Fourier. See Journal Polyteclniique, Tome il.

To prove the converse theorem we shall examine how a system

could begin to move from a position of rest. We shall show that

every such displacement is barred if for taat displacement the

virtual work of the forces is zero.

194. Proof of the principle for a fVee rigid body. We
begin by proving that the virtual work of any system of finite

forces Pi, Pi d'c. is equal to that of their resultants provided the

points of appli')ation of all the forces are connected by invariable

relations. See Art. 19.

The general process by which these resultants are found may
be separated into three steps; (1) we may combine or resolve

forces acting at a point by the parallelogram of forces
; (2) we

may transfer a force from one point A of its line of action to

another B; (8) we may remove from or add to the system,

equal and opposite forces. By the repeated action of these steps

we have been able in the preceding chapters to change one set of

forces into another simpler set, which we called their resultant.

See Art. 117.

It has been proved in Art. 66 that the virtual work is not

altered by the first of these processes. We shall now show that

the virtual work of a force is not altered by the second process.

It follows that the sum of the virtual works of two equal and

opposite forces introduced by the third process is zero, and cannot

aftect the general virtual work of all the forces.

Let A'B' be the displaced position of A Is. Draw A'M, B'N
perpendiculars on AB. Let F be the force whose point of appli-

cation is to be transferred from A to B. Before and after the

^'

M V 1 >
B N F

transference its virtual works are F . AM oxid. F . BN respectively.

Since A'B' makes with AB an infinitely small angle whose cosine

may be regarded as unity, we have MN equal to A'B'. Hence, if

the distance between the two points of application remain unaltered,

\.e. AB = A'B' , we \\n,\Q BN = AM. It immediately follows that

F.AM=F.BN.
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P 1^

\^

li/^

Thus in all changes of forces into other forces consistent with

the principles of statics, the work of the forces due to any given

small displacement is unaltered.

195. We may now apply this result to a system of forces

Pi, Pa &c. acting on a free rigid body.

All these forces can be reduced to a force R acting at an

arbitrary point 0, and a couple G, Art. 105. By what precedes

the virtual work of the forces Pj, P^ &c. due to any displacement

is equal to the virtual work of R and G.

If the forces Pj, Pj &c. are in equilibrium, both R and G
are zero, Art. 109. Hence the virtual work of Pj, Pa &c. for any

displacement is zero.

Conversely, if the virtual work of Pj, Po &c. is zero for all

displacements, then the virtual work of R and G is zero. We
shall now show that this requires that R and G should each

be zero. First let the body be moved parallel to itself through

any smnl) space 8r in the direction in which R acts. The virtual

work of the force R is RSr. Let AB he the arm of the couple

and let the forces act at A and B. Since equal and parallel

displacements AA', BB' are given to A and B, while the forces

acting at A and B are equal and opposite, it is evident that

the works due to the two forces cancel each other. The work

of the couple G is therefore zero. Hence the sum of the works

of R and G cannot vanish unless R = 0.

Next let the body be turned through a small angle Sw round a

perpendicular drawn through to the plane of the couple, and

let this rotation be in the direction in which the couple urges

the body. Let bisect the arm AB and let the forces of the

couple be + Q. Each of the points A and B receives a displace-

ment equal to ^ABB(o in the direction of the force acting at that

point. The sum of the works due to these two forces is therefore

AB.QBco, i.e. G8co. Since the point of application of R is not

displaced, the virtual work of R (even if R were not zero) is

zero. Hence the sum of the virtual works of R and G cannot

vanish unless G = 0. It immediately follows that the body is in

equilibrium.

196. On the forces which do not put in an appearance
in the equation of virtual work. When the body is not free

but can move either under the guidance of fixed constraints or

do

mj

th
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under the action of other rigid bodies it becomes necessary (as

explained in Art. 193) to determine what actions and reactions

do not appear in the general equation of virtual work. We cannot

make an exhaustive list, but ve may make one which will include

those cases which commonly occur.

I. Let ttvo particles A, B of the system act on each other by

means of forces along AB, then if the distance AB remain invari-

able for any displacement, the virtual works of the action and the

reaction destroy each other. For example, if the points A, B are

connected by an inelastic string, the tension does not appear in

the equation of virtual work.

This follows at once from Art. 194, for the force at A may
be transferred to B. The two equal and opposite forces acting at

B have then the same displacement. Hence their virtual works

are equal and opposite.

II. If any body of the system is constrained to turn round a

point or an axis fixed in space, the virtual ivork of the reaction at

this point or axis is zei'o. This is evidently true, for the displace-

ment of the point of application of the force is zero.

III. Let any point A of a body be constrained to slide on a.

surface fixed in space.

If the surface is smooth, the action R on the point A of the

body is normal to the surface. Let A move to a neighbouring

point A', then AA' is at right angles to the force. The work by

Art. 68 is therefore zero.

If the surface is rough, let F be the friction. This force acts

along A'A, and its work is — F. AA'. This is not generally zero.

IV. // any body of the system roll without sliding on a fixed

surface, the work of the reaction is zero.

If this is not evident, it may be proved as follows. In the figure the boJy

DAE rolls on the fixed surface MABN and takes a neighbouring position D'BE'.

The plane of the paper represents a section of the surfaces drawn through

their common normal at A, ana contains

the elementary arc AB oi rolling. In

this displacement the point A of the body

begins to move along the common normal

and arrives at A'. If we replace the

curves DAE, MAD by their circles of

curvature, we know (since the arcs AB,

A'B are equal) that AA' : AB"^ is half the

sum of the opposite curvatures. Assuming

1
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*he8e curvatures to be finite, it follows that A A' is of the same order of small

quantities as AB'^, i.e. A A' is of the second order of small tiuantities. Hence, when
we retain only terms of the first order, as in the principle of virtual work, we may
treat the rolling body as if it were turning round a point A fixed (for the instant) in

space. It follows therefore from the result of the last article that, when a body

rolls on a fixed surface, which may be either rough or smooth, the virtual work of

the reaction is zero.

V. If the surface on which the body rolls is another l)t)dy

of the system, the surface is moveable. But we may show that, if

both bodies are included in the same equation of virtual tvork, the

mutual action does not appear in that equatiov.

To prove this we notice that we may construct any such

displacement of the two bodies (1) by moving the two bodies

together until the body MABN assumes its position in the given

displacement, and then (2) rolling the body DAE on the body

MABN, now considered as fixed, until DAE also reaches its final

position. During the first of these displacements the action and

reaction at A are equal and opposite, while their common point of

application A has the same displacement for each body. Their

virtual works are therefore equal and opposite, and their sum is

zero. During the second displacement the body DAE rolls on a

fixed surface, and the virtual work of its reaction is zero. See

Art. 65.

X97. "WotVL. of a bent elastic string. If the points A, B are connected by an

elastic string, it may be necessary to know what the work of the tension is when the

length is increased from ltol + <U. We shall show that, whether the string connecting

A and B ig straight, or bent by pausing through smooth rings fixed or moveable or over

a smooth surface, the work is - I'dl.

For the sake of greater clearness we shall consider the cases separately.

(1) Let the string be straight. Referring to the figure of Art. 194, the virtual

work of the tension a,t A is + T . AM. The positive sign is given because the tension

acts at A in the direction AB and the displacement AM is in the same direction,

Art. 62. The work of the tension at B is - T . BN. The sum of these two is

-T{A'B'-AB)i.e. -Tdl.

If the action between A and B is a push R instead of a pull T, the same argu-

ment will apply but we must write - R for T, so that the virtual work is Rdl.

If the action between A and B is due to an attractive or repulsive force J^ the

result is still the same ; the virtual works are - Fdl or + Fdl according as the force

F is an attraction or a repulsion.

(2) Suppose the string joining .-1 and B is bent by passing through any number

of small smooth rings C, D &c. fixed in space.

Taking two rings only as sufficient for our argument, let these be G and D. Let

AyBha displaced to A', B', and let A'M, B'N be perpendiculars on ^1 C and D B. The

to

. m^im^^»^.i u
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whole length I of the string is lengthened H BN and shortened by ^^1/, hence

dl=UN - AM. The tension T being the flame throughout the string, the work at A

I

is T .AM, that at 7? is - T .BN. Exactly as before, the whole work is the sum of

these two, i.e. - Tdl.

(3) Suppose the rings C, D Ac, through which the string passes, are attached

to other bodies of the system. The rings themselves will now be also moveable.

Supposing all these bodies to be included in the same equation of virtual work,

the system is acted on by the following forces, viz. T at A along AC, T fit C along

GA, r at C along CI), T at D along DC and so on. By what has just been proved,

the woi-k of the first and second of these taken together is - Td {AG), the work of the

lird apd fourth is - Td (CD) and so on. Hence, if I be the whole length of the

string, viz. AC + GD+&(i., the whole work is - Tdl.

In all these cases we see that, if the length of the string is unaltered by the dis-

placement, the tension does not appear in the equation of virtual work.

(4) Let the string joining A and B pass over any smooth surface, which either is

fixed in space, or is one of the bodies to be included in the equation of virtual work.

Each elementary nrc of the string may oe treated in the manner just explained.

The work done by the tension is therefore as before equal to - Tdl.

In order not to interrupt the argument, we have assumed that the tennion of

a utritig is unaltered by pasning over a nmooth pulley or surface. To prove this,

let US suppose the string to pass over any arc LC of a smooth surface. Any element

PP' of the string is in equilibrium urider the action of the tensions at P, P' and

the normal reaction of the smooth surface?. The resolved part of these forces along

the tangent at P must therefore be zero. Let T, T' be the tensions at P, P', 'p

the angle between the tangents at these points, and let ds be the length of PI''.

Supposing the pressure per unit of length of the string on the surface to bo finite

and equal to li, the pressuie on the arc PP' is lids. The resolved part of this

along the tangent at P is less than lidssiad\j/, and is therefore of the second

order of small quantities. The difference of the resolved parts of the tensions is

T-'T' cos d\l/, which, when small quantities of the second order are neglected,

reduces to T-T'. Since this must be zero, we have T—T', Taking a series of

elements of the string, viz. P^^', P'P" &c., it immediately follows that the tensions

at P, P', P" &c. are all equal, i.e. the tension of the string is the same throughout

its length. If the surface were lOugh, this result would not follow, for the frictions

must then be included in the equation of equilibrium formed by resolving along the

tangent. We may also prove the equality of the tensions by app'i/ing the principle

of virtual work to the string BC. Sliding the string without change of length along

the surface, we have T . BB'= T' . CC. Hence T=T'.

When the surface is a rough circular pulley which can turn freely about a

smooth axis, and the string lies in a plane perpendicular to the axis, wc can prove

the equality of the tensions by taking moments about the axis. Let the string be

ABCD and let it touch the cyhnder along the arc BC. Let T, T' be the tensions

r-\
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of AB, CD, r the radius of the cylinder.

Tr=T'r. This gives T = T'.

Taking moments about the axis, we have

. If, !f

198. In the preceding arguments we have tacitly asHumed

that the pressures which replace the constraints are finite in

magnitude. If this were not true it is not clear that the virtual

work would be zero. It is not enough to make a product P . dp

vanish that one factor viz. dp should be zero, if the other factor P
is infinite. Such cases sometimes occur in our examples when we

treat the body under consideration as an unyielding rigid mass.

But in nature the changes of structure of the body cannot be

neglected when the forces acting on it become very great. The

displacements are therefore different from those of a rigid body.

199. Converse of the principle of virtual work. We
shall now prove the converse principle of virtual work for a system

of bodies. The system being placed at rest in some position, it

is given that the work of the external forces is zero fw all small

displacements which do not infnnge on the constraints. It is

required to prove that the system is in equilibrium.

If the system is not in equilibrium it will begin to move. Let

us then examine all the ways in which the system could begin to

move from its position of rest. Some one way having been selected,

it is clear that by introducing a sufficient number of smooth con-

straining curves we can so re;, train the system that it cannot

move in any other way. Thus if any point of one of the bodies

would freely describe a curve in space, we can imagine that point

attached to a small ring which can slide along a rigid smooth wire,

whose form is the curve which the point would freely describe.

The point is thus prevented from moving in any other way. The
reaction of this smooth curve has been proved to have no virtual

work. It is also clear that these constraining curves in no way
alter the work of the external forces during the displacement

of the body.

In order to prevent the system from moving from its initial

position it will now only be necessary to apply some force F to

some one point J. in a direction opposite to that in which A would

move if F did not act. The forces of the system are now in equili-

brium with F. Let the system receive an arbitrary virtual dis-

placement along the only path open to it. In this displacement

let the point A come to A'. Then the work of the forces plus the

woi
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work of F is zero. But it is given that the work of the forces is

zero for every such displacement, hence the work of F is zero.

But this work is —F.AA', ani since AA' is arbitrary it im-

mediately follows that F must be zero. Thus no force is required

to prevent the system from moving from its place of rest along any

selected path. The system is therefore in equilibrium. Treatise

on Natural Pliilosoplii/, Thomson and Tait, 1879, Art. 290.

200. Initial motion. Let uh imagine a system to be placed at rest, and yet

not to be in equilibrium uuder the action of the given external forces. We shall

show that the system loill so begin to move* that the work of tlie forces in the initial

displacement is positive.

The proof of this is really a repetition of the argument already given in Art. 199.

If the system begin to move from the position of rest in any given way, we constrain

it to move only in that way. If F be the force acting at .-1 which will prevent

motion, we find as before that the work of the forces plus that of F is zero. But F
must act opposite to the direction in which A would move if F were not applied,

hence its work is negative; and the work of the impressed forces iu this displacement

is therefore positive.

201. It follows from this result, that it is sufficient to ensure equilibrium that

the work of the forces should be negative instead of zero for all displacements, for then

there is no displacement which the system could take from ito state of rest. If

however the work of the forces is negative for any one displacement, it must be

positive for an equal and opposite displacement, i.e. one in which the direction of

motion of every particle is reversed. To exclude therefore all displacements which

make the work positive, it is in general necessary that the work should be zero for

all displacements.

In some special cases of constraint it may happen that one displacement is

possible while the opposite is impossible. It is then not necessary that the work

should be zero for this displacement. For example, a heavy particle placed inside a

cone with the axis vertical is clearly in equilibrium, yet the work done in any

displacement is negative and not zero.

202. Method of using the principle. Let us suppose

that points A^, A^, &c. of a system are constrained to move on

fixed surfaces. We have then two objects, (1) to form those

equations of equilibrium which do not contain the reactions, (2)

to find the reactions. To effect the former purpose we give the

system all necessary displacements which do not separate Ai, A^,

&c. from the constraining surfaces, and e luate the sum of the

* Dijnamical proof. When a system starts from a position of rest, it is proved

in dynamics that the semi vis viva after a displacement is equal to the work done

by the external forces. Now the vis viva cannot be negative, because it is the sum
of the masses of the several particles multiplied by the squares of their velocities.

It is therefore clear that the system cannot begin to move in any way which makes
the virtual work of the forces negative.
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virtual moments for each displacement to zero. To effect the

latter purpose we give tbe system a series of displacements such

that each of the points Aj, A^, &c. in turn is alone moved off the

surface on which it rests. Including the work of the correspond-

ing reaction and still equating the sum of the virtual works to

zero we have an ocpiation to ftnd that reaction.

203. To deduce the equations of eqnilibnumfrom the priuciple

of work.

The equations of equilibrium of a system are really equivalent

to two statements, (1) the sum of the resolved parts of the forces

in any direction for each body or collection of bodies in the system

is zero, (2) the sum of tlie moments about any or every straight

line is zero.

The equatioDs of equilibrium of a Hystem in one plane bave been obtained

in Chap, iv., kri». lO'J—HI. The corresponding equations of a system in space

will be given at length in a later chapter. But to avoid repetition they are included

in the following reasoning. See also Arts. 105 and 11.S.

We have now to deduce these two results from the principle of

work. As before, let Pi, Pa &c. be the forces, Ai, A^ &c. their

points of application, (ai, /Sj, 71), (ag, /8.j, 72) &c. their direction

angles. Let the body or collection of bodies receive a linear

displacement parallel to the axis of x through a small space dx.

H

y

Fig. 1.

Then if ^ be moved to A', AA' = dx, (Fig. 1), and the projection

AN on the line of action of P is dxcos a. Hence, by the principle

of work, Pi cos «! dx + Pj cos oUidx + ... =0.

Dividing by dx, this gives the equation of resolution, viz.

Pi cos ai + Po cos a-j + . . . = 0.

In this equation all the reactions on the special body considered

due to the other bodies are to be included.

To find the sum of the moments of the forces about any straight
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me, say th axis

axis

of z, let us displace the special body considered

round that axis through an angle rfw.

First let the forces act in the plane of xy, and let y),, p.^ &c he

the perpendiculars from the origin on their respective lines of

actions. Thus in Fig. 2 OM= p. The displacement A A' of A due

to the rotation is OA . da). The projection of this on the line of

action of P is OA rfco sin 0AM, i.e. pdw. Hence by the principle

of work Pi/)i d(a +• P^Pi d(o + ... -=0.

Dividing by dco, we have the equation of moments, viz.

PlPl+P.iPn+ ... =0.

Next, let the forces act in space. We first resolve each force

parallel and perpendicular to the axis about which we take moments.

The resolved parts of P are respectively P cos y and P sin 7. The

displacement AA' oi its point of application due to a rotation

round z is perpendicular to the axis of z. The work of the first of

these components is therefore zero. The second component is

parallel to the plane of xi/, and its work is found in exactly the

same way as if it acted in the plane of xy. If p be the length of

the perpendicular from on the projection on x;/ of its line of

action, the work is P sin ypdco. We therefore find as before

Pi sin jipi + P2 sin y.p^ + , . . = 0,

which is the usual equation of moments.

a04. Combination of eqaatlons. The equations of eq<iilibrium of each of

the bodies forming a system having been found by resolving and taking moments,

we can combine these equations at pleasure in any linear manner. For example we

might multiply by \ an equation obtained by resolving parallel to some straight

line X, and multiply by /j. another equation obtained by taking moments about some

straight line z. Adding the results, we get a new equation which may be more

suited to our purpose than either of the original ones.

We shall now show that this derived equation might be obtained directly from

the principle of work by a suitable displacement. Suppose both the equations

combined as above to be equations of equilibrium of the same body. Let these be

written in the form 2P cos a= 0, SPp= 0.

If we displace the body parallel to x through a small space dx and rotate it

round z through an angle dw, the work of any force P due to the whole displacement

is, by Art. 65, equal to the sum of the works of P due to each displacement. The

equation of work obtained by this displacement is therefore

(SP cos a) dx + (:S^Pp) du = 0.

If then we take dx : dw in the ratio X : fi, the derived equation follows at once.

If the equations to be combined are equations of equilibrium of different bodies,

these different bodies are to be displaced, a linear displacement corresponding

R. S. I. 10
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alwayH to a rcHolution and an angular diHplaucinont to a moment. If Reveral

cquatiunH are coiiibinod together the corrcHpondinK diHplacoraontH are to be taken in

any order, and the resulting dinplacoment regarded aH the Hinglu dinphicemont which

given the correnponding work equation.

Ah in forming the ctjuationH of c<iuilibrium by renolving and taking momentfl

we Buppose tlio constraintH removed and replaced by corrcHponding reactionH, ho in

forming these work equationw the same HuppoHition miiHt be made.

It furtlier appcurn that, if wo ran eliminate any unknown roaottonn from th«

cquatiouH of equilibrium by chooHing the multipliurB X, n &c. properly and adding

the equationn, then the name resulting equation can alwayH be obtained (equally free

from the name reactions) from the principle of work by giving the system a suitable

displacement or series of displacements.

905. Bxampl** on Virtual VTork. Ex.1. A flat »emicirculiir hoard with it*

plane vertical and curved cdije upmirdK rcHtu on a »mooth horizontal plane, and in

pressed at two given points of its circumference by two beams which slide in smooth

vertical tubes. Find the ratio of the weights of the beams that the hoard may be in

equilibrium. [Math. Tripos, 1858.]

Let W, W be the weights of the beams Ali, A'11'; 0, </>' the angles which the radii

CA, CA' make with the horizontal diameter

Cx. Let a be the radius of the sphere, b the

distance between the tubes. If y, y' be the

altitudes above Cx of the centres of gravity

of the rods, we have by the principle of

work, - Wdy - W'dy'= 0.

The negative sign is used because the y'a are

measured upwards opposite to the direction

in which the weights are measured. Since .

y and y' differ from a sin
<f>
and a sin <p' by

constants, viz. half the lengths of the rodn, we find

W'cos <pd<p +W cos <(,'d4>'= 0.

But by geometry acos^ + a co8^'= i».

Differentiating the latter equation, and eliminating dip : dip', we find

Waoiip-W'Qctip',

which gives the required ratio.

Ex. 2. Three heavy rods, which can slide freely through three vertical tubes

fixed in space, rest with one extremity of each on a smooth hemisphere. The
hemisphere rests with its plane face on a smooth horizontal plane. If Cx be any

horizontal line through the centre C, d^, ff.,, 6.^ the angles which the planes

through Cx and the lower extremities of the rods make with a horizontal plane,

and ir,, W„, Wg the weights of the rods, prove that in equilibrium SJTcot tf =0.

Ex. 3. Eight rods perfectly similar and uniform are jointed together in the

form of an octahedron, and being suspended from one of the angles are supported

by a string fastened to the opposite angle, the string being elastic and such that the

weight of all the rods together would stretch it to double its natural length, viz. that

of one of the rods. Prove that in the position of equilibrium the rods will be

inclined to the vertical at an angle cos~* 3. [Coll. Ex., 1889.]
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Ut the ei(?ht rodn bo AK, UK, CE, DK ; AF, BF, CF, DF and lot KF be the

elantio Htring. Let H' be the weight o( any rod,

2a itH length, ami the inclination to the vertical.

The octahedron boiuK in itH poHition of equili-

brium, let the systeni receive a Hymnintrioal

diHplncenient ho that the nn^le Ih incruaRod by

do. Taking K for origin, the depth i ' the centre

of gravity of any one of the four upper rods ia

acoH0, the virtual work of the weightH of thcHe

rodH in therefore 4 Wd (a coh 0). The depth of the

centre of gravity of any one of the four lower

rodH is 8a ooh 0, the virtual work of their weights

isiWd(9(icoii0).

Since the unstretched length of the string is 2a and its stretched length is

i(,'f'=4a oostf, the tension is, by Hooke's law, r=K(4acoHtf - 2r()/2a, where 7'.' is

the weight which would Htretoh the string to twice its natural length, i.e. K = H}V.

The virtual work is - Td (4a cosfl), Art. 197. Adding nil these several virtu*! works

together wo have 16 Wd {a cos 0) - Td (4a cos 0) = O. Substituting for T we easily find

that 008 = $.

' Ex. 4. Show that the force necessary to move a cylinder of radius r and weight

tV up a plane inclined at angle a to the horizon by a crowbar of length /, inclined at

B to the horizon, is -p- . , , - ,

.

[Math. Tripos, 1874.]^
I 1+C08(o+|3) *• I

'
J

^ Ex. 5. A smooth rod passes through a smooth ring at the focus of an ellipse

whose major axis is horizontal, and rests with its lower end on the quadrant of the

curve which is furthest removed from the focus. Show that its length must be at

least ^a + ^ai^(l + 8e^), where a is the semi-major axis and e the eccentricity.

[Math. Tripos, 1883.]

-" Ex. 6. An isosceles triangular lamina with its plane vertical rests vertex

downwards between two smooth pegs in the same horizontal line; show that there

will be equilibrium if the base make an angle sin~> (cos^a) with the vertical; 2a

being the vertical angle of the lamina, and the length of the base being tliree times

the distance between the pegs. [Math. Tripos, 1881.]

,^ Ex. 7. Three rigid rods AD, BC, CD, each of length 2a, are smoothly jointci

at B, C. The system is placed so that the rods AB, CD are in contact with two

smooth pegs distant 2c apart in the same horizontal line, and the rods AB, CD
make equal angles a with the horizon. Prove that the tension uf a string ia AD
which will maintain this configuration is ^ITcosec a sec'' o {?c/a - (3 -f 2 cos' a)},

where W is the weight of either rod. [St John's Coll., 1890.]

Ex. 8. Four rods, equal and uniform, rest in a vertical plane in the form of a

square with a diagonal vertical and the two upper rods resting on two smooth pegs

in a horizontal line. Show that the pegs must be at the middle points of the rods,

and find the actions at the hinges. [Coll. Ex., 1884.]

Ex. 9. Three equal and similar uniform heavy rods AB, BC, CD, freely jointed

at B and C, have small smooth weightless rings attached to them at A and I) : the

rings slide on a smooth parabolic wire, whose axis is vertical and vertex upwards,

and whose latus rectum is half the sum of the lengths of the three rods : prove that

in the position of eauilibrium the inclination ot AB or CD to the vertical is given

by the equation cos - sin + sin 20 = 0. [Coll. Ex., 1881.]

10—2
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Ex. 10. A smooth hemispherical bowl of radius r is fixed with its rim horizontal.

A uniform heavy rectangle ABCD rests with two points A, B on the internal surface

of the bowl, and its sides AD, BC resting on, and reaching beyond, the edge of the

bowl. If d be its inclination to the horizontal, show that

4 (r' - 62) cos'-' 25 - a" cos^ d~0,
where AB= 2h, BCTz2a. [Coll. Ex., 1891.]

Ex. 11. n equal uniform rods, each of weight W and length I, are jointed

BO as to form symmetrical generators of a cone whose semi-vertical angle is a,

the joint being at the vertex of the cone. The rods are placed with their other ends

in contact with the interior of a sphere whose radius is r, so that the axis of the

cone is vertical, and a weight W is hung on at the joint. Show that

P (<inW^ + 4nW'W) coa^ o= (r^ - P) (nh" + 2W)"-, f
and find the action at the joint on each rod. [Coll. Ex., 1884.]

Ex. 12. A conical tent resting on a smooth floor is made of an indefinitely great

number of equal isosceles triangular elements hinged at the vertex, and kept in

shape by a heavy circular ring placed on it as a necklace. Show that in equilibrium

the semi-vertical angle of the cone is sin-^ )t
( i7> <>iV»)( > where W, W are

respectively the weights of the cone and the ring and r, h are in like manner the

radius of the ring and the slant side of the cone. [St John's Coll., 1885.]

Ex. 13. A smooth fixed sphere supports a zone of very small equal smooth

spherical particles, and the v.'hole is prevented from slipping off the sphere by an

elastic ring occupying a horizontal circle of angular radius a. Show that in the

position of equilibrium the tenrion of the band is T, where 2^1'= H'^tano, and W is

the whole weight of the ring and particles together. [St John's Coll., 1885.]

It may be assumed that the centre of gravity of such a zone is half way between

the bounding planes.

The work function.

206. Coordinates of a system. Our general object in statics

is to find the positions of equilibrium of a system. To solve this

problem we require some quantities which when given will deter- _

mine the position of the system in space. Thus the position of a |
particle in geometry of two dimensions is defined when we know

its coordinctes x, y. In the same way if a body is free to move in

the plane of an/, its position is fixed when we know the coordinates

x, y of some point in it and also the angle 6 some straight line fixed

in the body makes with the axis of x. These three quantities, viz.

X, y and 6, are called the coordinates of the body.

If the body is in space we define its position by giving (1) the

coordinates x, y, z of some point A fixed in the body, (2) the two

angles some straight line AB fixed in the body makes with the

axes of X and y. If no more than thi*^^ 's given, the position of the

body is not fixed, for it could be turned round AB as an axis. We
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therefore require (3) the angle some plane drawn through AB and

fixed in the body makes with some plane fixed in space. These

six quantities, or any other six which fix the place of the body, are

called its coordinates.

If the body be under constraint the case is a little altered.

Thus suppose the extremities of a rod of given length are constrained

to rest on two given curves in a vertical plane ; its position is defined

simply by its inclination to the horizon or by the abscissa of one

extremity. Either of these, or any other quantity which defines

the position of the rod, is called its coordinate.

207. In the general case of a system of bodies, any quantities

which, when given, determine the positions of all the members of the

system are called the coordinates of that system. Just as the

Cartesian coordinates of a point are connected by one or more

equations when the point is constrained to lie on a given surface

or curve, so the coordinates of a system are connected by equation.s

when the system is subject to constraints. By help of these equa-

tions we can eliminate as many coordinates as there are equations,

and thus make the position of the system depend on a smaller

number of coordinates. There being now no equations of constraint,

these remaining coordinates are independent of each other.

Let us suppose that the system is referred to independent

coordinates. Since each may be varied without altering the others,

there are as many ways of moving the system as there are co-

ordinates. Any small displacement, indicated by varying simul-

taneously several coordinates, may be constructed by varying first

one of the coordinates and then another, and so on. The numhei'

of independent coordinates is therefore called the number of degrees

offreedom of the system.

208. The work ilinction. Let a system of bodies be placed

in any position, and let it receive any indefinitely small displace-

ment which the constraints imposed on the system permit it to

take. Let X, Y, Z be the components of any force P, and let (xyz)

be the rectangular Cartesian coordinates of its point of application.

The work of P is the same as that of its components, so that the

general expression for the work is

tPdp = %iXd.T+Ydy + Zdz) (1),

where the 1 implies summation for all the forces of the system.
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Let the independent coordinates of the system be 6,
<f),

-i/r &c.

Then since these determine its position, the coordinates x, y, z

of every point of each body can be expressed in terms of 6, ^ &c.

Thus X, y, z and X, F, Z are all known functions of d, ^ &c.

Substituting, the equation (1) takes the form

lPdp = ®d0 + <Pd<f> + kc (2),

where 0, <E> &c. are all known functions of the coordinates 6,
<f>

&c.

309. The coefficients 9, *, <£c. have sometimes an elementary statical meaning.

Suppose for example that the change in the coordinate 6 (the others remaining

constant) had the effect of turning the body about some straight line through the

angle d6. Then Odd is the work of the forces when this displacement is given to

the body. But, by Art. 203, this work is Mdd, where M is the moment. It follows

that 6 is the moment of the forces about the straight line.

Again, suppose that the change of some abscissa
<f>
had the effect of moving the

body parallel to the axis of x, then by the same article, ft> is the resolved part of the

forces parallel to that axis.

210. In most cases the expression for the work is found to he

a perfect differential of some quantity ivhich we may call W. For

example, suppose the force P which acts on the point {xyz) to be

due to the repulsion of some centre of force C, i.e. let P be a force

whose line of action always passes through a point C fixed in space.

If r be the distance from G to the point of application, the work of

such a force for any small displacement is Pdr. If then the

magnitude of P is some function of the distance r, the part

contributed by such a central force to the expression 1,Pdp is a

perfect differential.

To take another case, let a force T acting between two points

A, A' which move with the system be caused by such an elastic

string as that described in Art. 197 or in any other way, so only

that the force is some function of the distance between A and A'.

The work of such a force is + Tdr, and as T is a function of r, this

again is a perfect differential.

The system may be under the action of a variety of central

forces, attracting many pointb of the system ; or again there may
be any number of actions between different sets of points, yet in

all these cases the share contributed by each force to the virtual

luork is a perfect differential.

These two typical cases represent the forces which in most

cases act on the system. The external forces are generally central

forces, and the internal forces either do not appear in the equation
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of virtual work or appear as forces between one point and another

such as those just described.

211. Since the expression (2) in Art. 208 represents the work

of the forces due to any general small displacement, the integral of

that expression when taken between any limits is the work of the

forces as the system makes a finite displacement, i.e. as the system

moves from any position I. to another II. The lower limit of the

integral is found by giving the coordinates 0,
<f)

&c. their values in

the position I., and the upper limit by giving the same coordinates

their values in the position It.

When the expression (2) is a perfect differentia], this integration

can be effected without knowing the route by which the system

travels from the one position to the other. The integral Tf is a

function of the upper and lower limits, and will thus depend on the

initial and final position of the system and not on any intennediate

position. It follows that the work due to a displacement from one

given position to another is the same, whatever route is taken by

the system, provided ahvays none of the geometrical constraints

are violated.

When ilie forces are such that the expression SPdp is a perfect

differential, they are said toform a conservative system.

Suppose we select any one position of the system of bodies as a

standard, and let this position be defined by the values of the

coordinates 6 = di, </> = <^i, &c. Then taking this standard position

as the lower limit of the integral and any general position as the

upper limit, we have

W = JXPdp = F(d, </>, kc.)-F{d„ <f>„
&c.);

when it is not necessary to make an immediate choice of a standard

position we write the integral in its indefinite form, viz.

W= F{e,cf>,kc.)-\-0.

The function W, particularly when used in the indefinite form, is

often called the force function, or work function.

Sometimes the upper limit is made the standard position and

the general position the lower limit. If this standard is deter-

mined by the values 6 = 6^, (f)
=

(f),,
&c.; the integral becomes

V = F(e,, 02, &ic.)-F(e, </), &e.).

This is usually called the potential energy of the forces luith

reference to the position defined by 6 = 6.,, <^=<^2, &c.
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If the two standards of reference were identical, we should have

W = — V. But both these standards are seldom used in the same

problem. In every case that standard of reference is generally

chosen which is most suitable to the particular problem under

discussion. We notice that W + V is the work of the forces as the

system moves along any route from the position (^i, 0i, &c.) to the

position (^o,
<f>2,

&c.), and these being fixed, the sum is constant

for all positions of the system of bodies.

212. Maximum and Minimum. Suppose the system to be

in a position of equilibrium. We then have dW = for every

virtual displacement, so that TT is a maximum, a minimum, or

stationary. The last alternative represents the case in which the

evanescence of the first differential coefficients does not indicate a

true maximum or minimum.

We have therefore another method of finding the positions of

equilibrium of a system. We regard the work function as a known

function of the coordinates, 0,
(f>

&c. of the system, say

To find the positions of .equilibrium we use any of the rules given

in the differential calculus to find the values of 6, &c. which

make W a maximum or minimum.

313. If the coordinates 6, (f>,
&c. are all imlepeudent, we make the differential

coefficient of IF with regard to each of the variables equal to zero. This is equiva-

lent to giving the system the geometrical displacements indicated by varying ti,
<f),

&c. in turn, and equating the virtual work in each case to zero. But the process is

analytical instead of geometrical, and this has fiometimes great advantages.

When we cannot expressthe position of the system by independent coordinates,

we may yet reduce the inoblcm to the solution of equations by using Lagrange's method

of indeterminate multipliers. Let the n coordinates ^, , d.,, &c. be connected by the m
geometrical relations

/, (^1 , e., , Ac. ) = 0, /_. (^, , e.,, &c.) = 0, &c. = 0,

80 that n - m of the coordinates are independent. Differentiating and using the m
multipliers \j, Xo, &c. we have

^/dW , dj\ ^ df., \j^ n

-[je^''^de'-'^^d'e^-T='''
where 2 implies summation for ^, , $.,, &c. Since there are m multipliers at our

disposal we choose these so that the coefficients of the differentials of the dependent

coordinates are zero. The remaining ^'s being independent we can make each vary

separately and it then follows from the equation that the corresponding coefficient

is zero. The coefficient of every dd being zero, we obtain n equations of the form

dW dt\ ^

dd'^^'de'^^^
df.

dS'
-0.

Joining these to the m given geometrical relations we have m + n equations to find

the /( coordinates and the m multipliers.
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214. Stable and Unstable equilibrium. It should be

noticed that it is necessary and sufficient for equilibrium that the

work function IT is a maximum, a minimum, or stationary. There

is however an important distinction between these cases.

Suppose the system is in equilihriuin in such a position that

W is a true mawimum, i.e. W is decreased if the system is moved

into any neighbouring position which is consistent with the con-

straints. Let the system be actually placed at rest in any one of

these neighbouring positions. Not being in equilibrium in this

new position it will begin to move. By Art. 200 it must so move

that the initial work of the forces is positive, i.e. it must .so move

that W increases. The system therefore tends to approach closer

to its original position of equilib: am. The original position is

therefore said to he stable.

Suppose next the si/stem is in equilibrium in such a position

that W is a true minimum, i.e. W is increased if the system is

moved into any neighbouring position. Let the system be placed

at rest in one of these neighbouring positions, then, by the same

reasoning as before, it will begin to move on some path which will

take it further off from its original position of equilibrium. The

equilibrium is then said to be unstable.

Lastly, suppose the system is in equilibnum in such a position

that W is neither a true maximum nor a true minimum, i.e. W
is decreased when the system is moved into some neighbouring

positions and increased when the system is moved into some otb' s.

By the same reasoning as in the two preceding cases the equili-

brium is stable for some displacements and unstable for others.

According to the definition given in Art. 75 this state of equilibrium

is to be regarded as on the ivhole unstable.

215. We have only considered how the system begins to move,

and not whether it may afterwards approach or recede from the

position of equilibrium. As explained in Art. 75, this is a dynam-

ical problem. The general result however agrees with what has

been proved above.

216. Instead of using the work function we may use the

potential energy. Since their sum TT-h F" is constant, the general

results are just reversed. When the system is placed at rest in

any position other than one of equilibrium, it begins to move so
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that the potential energy decreases. In a position of equilibrium

the potential energy is a maximum, a minimum, or stationary.

The e(|uilibrium is stable or unstable according as the potential

energy is a true minimum or maximum.

217. We have supposed in what precedes that none of the

neighbouring positions are also positions of ecpiilibrium. It is

of course possible that W should be constant for two consecutive

positions of the system of bodies, and yet (say) greater than when

the system is moved into any other neighbouring position. In

such a case the ecpiilibrium is neutral for the displacement from

one of the consecutive positions to the other and stable for all other

displacements. Various cases may occur. For example, the equi-

librium may be neutral for more than one or for all displacements

from a given position of equilibrium ; or again W may be constant

for all positions defined by some relations between the coordinates,

and yet (say) a maximum for all displacements from this locus.

We then have a locus of positions of equilibrium, each of which is

stable for all displacements which do not move the system along

the locus.

In a system with two coordinates 6, <p, we could regard W as

the ordinate of a surface whose x and y coordinates are 6 and <^.

Every geometrical peculiarity connected with the maximum and

minimum ordinates of such a surface has a corresponding statical

peculiarity in the positions of equilibrium of the system,

218. Altitude of the centre of gravity a maximum or

minimum. There is one important application of the theorem on

virtual work of which much use is made. Let gravity be the only

external force acting on the system. Let Zi, z.^ &c. be the altitudes

above any fixed horizontal plane of the several heavy particles, and

z the altitude of their centre of gravity. If m-^ , m^ &c. be the masses

of these particles, we have ls1,m — Xmz, If (/ be a constant, so that

mg represents the weight of the mass m, the virtual work of the

weights is dW = — %mgdz = — g'S.mdz.

The work function is therefore W ~ — zg'S,m + G.

This is a true maximum or a true minimum, according as z is at

the least or greatest height.

We deduce the following theorem. Let a system of bodies be

under the influence of no forces but their weights, together with such
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mutual reactions as do not appear in the equation of virtual work,

and let it be supported by frictionless reactions with other Jived

surfaces, or in some other way by forces which do not appear in the

equation of virtual work ; the possible positions of equilibrium may
be found by making the altitude of the centre of gravity of the

system above any fixed horizontal plane a maximum, a mininnun, or

stationary. The equilibrium will be stable or unstable according as

the altitude of the centre of gravity is or is not a true minimum.

219, Alternation of stable and unstable positions. Suppose

the constraints are such that the system moves with one degree of

freedom. Then as the system moves through space the centre of

gravity will describe some definite curve. The positions in which

the ordinate is a true maximum and a true minimum must evidently

occur alternately. It follows that the truly stable and truly un-

stable positions of equilibrium occur alternately.

220. Analytical method of determining the stability of

a system. To show how this theorem may be used to find positions

of equilibrium in an analytical manner, let us suppose, as an example,

that the system has one degree of freedom. We first choose some

convenient quantity by which the position of the system is fixed,

and which is therefore called its coordinate. Let this be called 6.

Then the value of 6 when the .system is in equilibrium is the

quantity to be found. Liet z be the altitude of the centre of

gravity of the system above some fixed horizontal plane. From
the geometry of the question we now express z in terms of 6. The

required value of 6 is then found by making dzjdd = 0. To deter-

mine whether the equilibrium is stable or unstable, we differentiate

again and find d"z/dO-. If this second differential coefficient is

positive, when has the value just found, the equilibrium is stable.

If negative, the equilibrium is unstable. If zero we must examine

the third and higher differential coefficients of z, following the

rules given in the differential calculus to discriminate whether a

function of one independent variable is a maximum or minimum.

If the coordinate cannot vary from ^ = — aoto 6 = + x , it

may itself have maxima and minima. It must be remembered

that these values of 6 may lead to maxima and minima values of z

other than those given by the ordinary theory in the differential

calculus.
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931. Bzamplas. Ex. 1. A uniform heavy rod AB rests against a smooth

vertical well and over a smooth peg G. Find the position of equilibrium, and deter-

mine whether H is stable or unstable.

Let the Irngth of the rod bo 2a and let the distance of G from the wall be b.

Let the inclination of the rod to the wall be d. Taking

the horii^ontal throuf{h G for the axis of x, we find for

the iiltitude z of the centre of gravity

2 = acos ^-6 cot 9,

dz/de= - n sin B + b {ain 0)--,

d-zjdd-= -acose- 2b (sin tf)"' cos 0.

Putting dzldff 0, we " 1 that in the position of

equilibrium si. r = . Since d^ldO^ is negative

the equilibrium . jr

'

Ex. 2. A fiuH: '>, 1 jibt cone is suspended from a smooth vertical wall by a

string, having one exiremity at' 'xed to a point in its base, and the frustum is in

equilibrium with one point of the oase in contact with the wall. If the length / of

the string is equal to the diameter of the base and the centieof gravity is at a

distance kl from the base, show that the tangent of the inclination of the string to

the vertical is § A;. Is the equilibrium stable ?

Ex, 3. A body is kept in equilibrium by three forces P, Q, R acting at certain

points A, B, G in it. When the body is disturbed the forces continue to act at these

points parallel to directions fixed in space and their magnitudes are unaltered. If

rt, b, c be the distances of A, B, G from 0, the point of intersection of the three lines

of action when the body is in equilibrium, show that the equilibrium is stable,

neutral, or unstable, for dit ^'lauements in the plane of the forces, according as

Pa + Qb + Rc is positive, zero, or negative; a, b, c being counted positive if drawn

from in the directions of the forces. [Coll. Ex., 1892.]

An elementary solution of this problem has been given in Art. 77. To use the

test given by the principle of work we turn the body round through an angle

and place it at rest in this new position . The work done in returning to its old

position is A' versin 6 where X= Pa + Qb + Rc, If A' is positive, the equilibrium is

stable by Art. 200 or 214.

333. Ex. A heavy body can move in a vertical plane in such a manner that

two of its points, viz. A and B, are con-

strained to slide, one on each of two equal

and similar smooth curves whose equations

are respectively .t =/(?/) and x= ~f(y), y
bring vertical. The perpendicular on the

chord AB draicnfroru the centre of gravity

G bisects AB in E. Show how to find the

po-iitions of equilibrium, and determine

whether the position in %vhich AB is horizontal is stable or not.

Let AB=2a, GK — h. Let 6 be the inclination of AB to the horizor. and (xy) the

coordinates of G. Then since the points A, B lie on the given curves we find

x + h sin 6 + a cos e=f(y-h cos O + a sin 6)

X + h aind-a cos 6= -f(y - h cos ^ - a sin 0)

Elimir.ating ar, we have

2a cos =f (y - h cos d + a

— X

.(1).
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.(3).

Differentiating this and putting dyjdd=Q, we find

- 2a sin =/' (ij-h cos d + a sin 0) {h sin tf + a cos S) |

+/' (y - '' cos 5 - a Bin ^) (/j sin d-aco9 0) )
"

Joining this equation tc (1) and (2) we have three equations to find ,r, y, 6. It is

clear that (3) if satisfied by ^ = 0, this therefore is one position of equilibrium.

To determine if this horizontal position is stable, we differentiate (2) twice to

find dhjjdd *. We easily find after reduction

_^_a + ar'{y-h)
dff^- f'(y-h) ^^ t4>.

The position of equilibrium is btable or unstable according as the right hand side is

negative or positive.

We may obtain a geometrical interpretation for the equation (4) in the following

manner. The straight line AB being in its horizontal position, let n be the length

of the normal to the curve at either A or li intercepted between the curve and the

axis of y. Let p be the radius of curvature at A or li, estimate lositive when
measured from the curve in the direction of ?t, and let f be the ii. hm \ of the

tangent &i A or B to the axis of y. We know by the differentit 1 calc " that if

x=f{y) be the equation to a curve, tan ^=/' {y), while n and pf. "ven jy

remembering that a and y ~h are the equilibrium coordinates ' 4 '"o find

d^j

dff-'

ri3_ a-p
-h (5).

A^

ap tan
\f/

The horizontal position of equilibrium is therefore stable or unstable according as

the right baud side of this equation is positive or negative.

If in the position of equilibrium d^yjdd' should be zero, the equilib'-ium is said

to be neutral to a first approximation. We must then continue our differentiations

of (2) to ascertain if ?/ is a true maximum or minimum, or neither. We find that

d?yldff^=Q, and

_d^y_ -a+ (3fe''-4a°) /" (y-h) + QaW'" (V - ^ +aT" (V - h) _
dd*-

'""
f'(y-h)

"•

The equilibrium is therefore stable or unstable according as the right hand side

is negative or positive. If this again vanish we proceed to higher differential

coefficients.

asa. Ex. 1. A prism whose cross section is an equilateral triangle rests with

two edges on smooth planes inclined at angles a, /3 to the horizon. If 6 be the

angle which the plane containing these edges makes with the vertical, show that

_ 2 ;^3 sin a sin /3 + sii. (a + /3)

,^3 sin (a ~ ^)

Ex. 2. The form of a bowl of revolution is such that every rod resting horizon-

tally in it is in neutral equilibrium to a first approximation. Show that the

differential equation to the generating curve is [dxjdyf= 2 log afx where y is vertical.

Show also that the equilibrium is stable or unstable according as the length of the

rod is less or greater than 2a/e , where e is the base of Napier's logarithms.

Ex. 3. A uniform square board is capable of motion in a vertical plane about a

hinge at one of its angular points ; a string attached to one of the nearest angular

tan tf=- [Coll. Ex., 1889.]
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pointR, and passinf? over a pulley vertically above the hinge at a difltance from it

equal to a Hide of the square supportR a weight whoRe ratio to the weight of the

board is 1 : mJ2. Find the positions of equilibrium, and determine whether they are

rcBpectively stable or unstable. [Math. Tripos, 1855.]

Ex. 4. The extremities of a rod without weight are capable of sliding o,' a

smooth fixed vertical wire bent into the form of a circle. A weight is suspended

from the extremities of the rod by two strings, which pass through a small smooth

fixed ring, vertically below the centre of the circle. Show that the weight will be in

stable equilibrium when the rod passes through the middle point of the polar of the

ring with respect to the circle. [Math. Tripos, 1839.]

Ex. 5. A uniform regular tetrahedron has three corners in contact with the

interior of a fixed hemispherical bowl of such magnitude that the completed sphere

would circumscribe the tetrahedron ; prove that every position is one of equilibrium.

If r, Q, R be the pressures on the bowl, and W the weight of the tetrahedron, prove

th&t 3 (F' + Q- + R-)- 2 (QR + RP + PQ) = 3W\ [Math. Tripos, 1869.]

Ex. 6. A right cone rests with its curved surface in contact with two smooth

equal cylinders whose axes are parallel, in the same horizontal plane, and distant d

apart, and whose cross sections are circles of radii a. Show that the cone can rest

in equilibrium with its axis in a plane perpendicular to the axes of the cylinders

and inclined at an angle to the vertical given by 4(icos ^= 3rco8*a4-4a cosa,

where 2a is the vertical angle of the cone and r is the radius of its base; and

determine whether the position is one of stable equilibiium. [Math. Tripos, 1890.]

Ex. 7. A conical plug of height h and semi-vertical angle a is at rest in a

circular hole of radius a. Show that the vertical position of equilibrium is one of

stability or of instability according as 16o is greater or less than 3/t sin 2o.

[St John's Coll., 1887.]

224. Ex. One end A of a straight l-avi AB rests against a smooth vertical

wall, and the otlier B rests on an unknown carve. If I be the length of the beam, h

the altitude of the centre of gravity, find ihe form of the curve that the relation

4c/j-P= c* may hold in the position of equilibriwa whatever values I and h may

have. [Boole's problem.]

Let (0, y') (.T, y) be the coordinates of A and B. Then

2h = y + y' (1), x' + i(y-h)^=P (2).

We notice that a curve could be found such that a rod of given length I could

rest on it in equilibrium in the manner described in the question. Such a curve is

found by making the altitude /( constant.

The curve is therefore the ellipse (2) where h and I have any constant values which

satisfy the given relation. The envelope of all these ellipses must also satisfy the

mechanical problem, because the envelope touches every ellipse and the reaction will

suit either curve. The envelope found in the usual way is the parabola x'^=4cy.

We might find this parabola without using the theory of envelopes. Since in

equilibrium dh = when I is constant, we have by differentiating (2)

xdx + i{y-h) dy = 0.

But (2) is satisfied when h and I both vary ; .-. xdx + 4 (?/ - h) (dy - dh) = Idl,

also since ich - P=c', 2cdh=ldl.

Eliminating the differentials we find 2 (h -y) = c. Joining thi-; to the given relation

we can express h and I in terms of y. Substituting these in (2) the required

relation between a- and y is found. It reduces to the parabola already found.

AKi
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99S. Ex. A heavy body can move iu a vertical plane in such a manner that

two Btrai^ht linen CA, CH fixed in it are

constraint'd to slide on two equal and

Himilar curves fixed in npace. The eiiua-

tions to the curve are^=/(«) and q=f(u'),

where p, q are the perpendiculars drawn

from the origin on the tangents, and w, u'

are the angles which these perpendiculars

make with opposite sides of the axis of .r,
//

being vertical as before. The centre of

gravity G lies in the bisector of the angle C
at a distance h from either of the straight

lines CA, Cli. Show how to find the incli-

nation of CO to the vertical when the body

is in equilibrium, and determine whether the position in which CO is vertical is

stable or unstable.

Let o be the angle CO makes with either CA or Cll, and d the inclination of CG
to the vertical. Let ?/ be the altitude of G. We lirst show by geometrical con-

siderations that y sin 2a = (p -h)coa(d -a) + {q - /i)cos (d-t-a).

Remembering that p=f{0 + a) and q=f{a-6) we have, by equating dyjdO to zero,

an equation to find $.

In the position in which CG is vertical = 0, hence p= q. Differentiating a

second time, we have

sin 2a d'^y

i = ('-'<^) cos a -f- 2 ~sma.
do2 dff^ \" '

' de-

We may obtain a geometrical interpretation of this value of d^yjdd-. The body

being in the position in which CG is vertical, the straight line CA will touch one

of the curves in some point P. Let p be the radius of curvature of the curve at P,

^ the horizontal abscissa of P. We may then show that

d-'v
am a

dff-
:/i + /)-2f seca.

The equilibrium is stable or unstable according as the value of d-yjdd'- is positive or

negative. If the value is zero, we must differentiate a second time.

336. Bxamples of atoms. Some good examplas of the method of using the

work function to determine questions of stability are supplied by Boscovich's theory

of atoms. Almost all the following results are enunciated by Sir W. Thomson in

an interesting paper contributed to Nature, October 1889.

It is enough for our present purpose to say that Boscovich supposed matter to

consist of atoms or points between which there is repulsion at the smallest distance,

attraction at greater distances, repulsion at still greater distances, and so on, ending

with attraction according to the Newtonian law for all distances for which this law

has been proved. Boscovich suggested numerous transitions from attraction to

repulsion and vice versa, but for the sake of simplicity, we shall here consider

problems which involve only one change from repulsion to attraction.

Suppose then that the mutual force between two atoms is repulsive when the

distance between them is less than p, zero when it is equal to p, and attractive when

greater than p. With this supposition we shall consider the stability of the equili-

brium of some groups of atoms.

n

;i

^m
;'(
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997. Ex. 1. Thrco particloH, whose maHHca aro m, m', m" repel each other ho

that the force between m and m' is F= - mm' (r - p)'^'* where n is an even intoKer.

The particleH are in equilibrium wlicn placed at the coriiorH of an equilateral triangle

each of whoHc Hides ia e \a\ to p. Hhow that the eciuilibriuin is Htable.

mm
The term of the work function ir correspondinf? to F la jFdr= - (» -/»)'*.

When the atonia are diHp.'aced, Kt the three sidcH of the trian^jle be p + x,p + y, p + z.

Ve Imve by Art. 211, n(C - U') = in'm".i ' + iii"my'* + iiim'z'*.

The equilibrium ia atablc or unutablo according aa W is a maximum or a minimum,
i.e. according aa the right hand aide ia a minimum or a maximum. But, aince n is

even, the right hand aide ia a minimum when x, //, z are each zero; for theae values

make the right hand aide zero and all others make it greater than /.ero. The
equilibrium ia therefore stable.

We have taken the law of forci to be a single power of r - p, but it ia clear that

the same reasoning will apply if the law of force is expressed by several terma with

different odd powers. Even greater generality may bo given to the law, for it is

suflicient that the lowest power should be odd.

In just the aame way we may prove that a group of four particles placed at the

cornera of a regular tetrahedron, each of whose edges ia equal to p, ia a atable

arrangement.

Ex. 2. Three equal atoms A, B, C are placed in equilibrium in a straight line.

Supposing the force of repulsion to be F= -m (''-/>)""') where k ia even, determine

if the configuration is stable or unstable.

It is clear thrt in the position of equilibrium the distances AB, BC are each less

than the critical distance p, while AC ia greater than p. Let AB and BC be each

equal to a. As we are only concerned with ^—r"
relative diaplacemeuta, let A be fixed. Let

B', C be the displaced positions of B, C ; let ^
(xy) be the coordinates of B' referred to B,

and (x'y') those of C referred to C. If r=AB', we have

r={(a + x)- + y-\^ = a + x +^ + &o.
2a

:. (r -!>)"= (o - p)» + ^^ (a -;))»-! ^x + ^^+m".^^ (a -ij)»-2x3 + &c.

If we replace (xy) by (x' -x,ij' -y), this expression gives the value of (r" -p)" where

r"=B'C'. If instead we replace (xy) by {x'y') and write 2a for a, the eipression

gives the value of (''-jp)", where r'=AC'.

Taking all these expressions, we have as before

" (C - JP^) = (r -p)» + (r' - i))» + (?•" -2))"

= n (a-p)n-r jx'+ <y - ^pJL'l + „'lzi (a _^)»-2 1.^2 + (,,. _ ^)3|

+ n(2rt-p)"-» U'+\-l +n'^(2a-2>)»-=,r'2 + &c.,

where all the constant terms have been absorbed into one constant, viz. C.

To find the position of equilibrium, we make W a maximum or a minimum, i.e.

These give (a-p)^-^ + (2a - p)"-i = 0.we put ^ = 0,
dW „ dW „

dy dy'
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Hi'iico, Hince ii~l in odd and p Vwh lit'twucn <i and 2(i, we flml - {n - p) = '2a - /) and

ttuTflfurt! (irr.'j^i). T)iiH rcHult nii^ht )iavc been inorf Hiinply obtainiid by I'tiuatiiiK

the forocH on thu particle .1 duo to tho repiilHion uf 11 and the attraction of C.

To diHtinKoiHh whether W u a maximum or a minimum, we cxamino tliu teriuH

of the Heuond order. \Vu thul that thutto on ttie ri^ht-hand Hide are

ill i

It ifl elonr that thiH cxpreHHion cannot keep one Hign for nil valiicH of j, ;/, x', »/'

for the teriHH witli (;/, \j') are negative and thowe witli (x, x) ponitive. We tlierefore

infer that \Y is neither a maximum nor a minimum. Ttie eiiuilibriuni w Htablc for

all diHplaeementH in which the particleH remain in tlie original HtraiKht line. It in

unstable for all diHplaeementH in which they arc moved perpendicular to that

(itrai(,'ht line. On the whole the eijuilibrium in unHtable.

Tiiis method of solution has been adopted in order to show how the rules of the

differential calculus may be used in making W a iiaximum or minimum. The

result may be more simply obtained by displacini,' one particle perpendieuli.rly to

the straight line AUC and calculating the normal force of repulsion on it. The

equilibrium in then seen to be unstable for this dinplacemont.

Ex. .H. Hhow that the following configurations of four equal atoms are unstable.

(1) Three atoms at the corners of an e(|uiluteral triangle and one at the centre.

(2) Tho four atoms at the corners of a square. (3) The four atoms iu one straight

Hue.

Ex. 4. Three equal particles repelling each other according to the Hth power of

the distance are connected together by three equal eluHtic strings. Find the

position of equilibrium and show that it is stable if n-<pl(p~a), where a is the

unstretched, and p the stretched length of any string.

238. Ex. Three fine rigid bars, coinciding with the diagonals of a regular

liexagon, are each freely moveable about their common centre in the plane of the

hexagon ; six equal particles at the extremities of the bars repel one another with a

force varying inversely as any power of the distance. Show that the equilibrium of

the system is stable. [Matli. Tripos, 185!).]

229. On Frameworks. The determination of the forces

which act along the rods of a framework supply .some good

examples of the use of the theory of work. The general method

of proceeding may be described as follows. If we remove such

of the connecting rods as we may choose, and replace these by

forces acting at their extremities, we so loosen the constraints that

the framework admits of displacement. The principle of work

then gives equations connecting the forces which act on the

system but omitting all those reactions which act between the

rods not removed. We thus form equations to find the reactions

on any one or more rods we choose to select.

230. Ex. A framework, consisting of any number of rodi, nof^ necessarily

in one plane, is acted on by forces at the corners. If R be the iG;i';tion along any

rod regarded as positive when in a state of thrust, /• the length of that rod, and it

R. S. I. 11

.! 1
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A', Y, Z he the components of the forces at that corner whose coordinates are

.r, y, 2, prove that S/Jr + S (Xx + Yy + Zz) = 0,

where the S implies summation over the whole framework. Maxwell, FAlinbiirgh

Transactions, 1872, Vol. 26, p. 14.

Let us remove all the rods and apply the corresponding reactions at particles

placed at the comers. We now displace the system by giving it a slight enlarge-

ment, so that the displaced figure is similar to the original one. The principle of

work gives I,Ii<lr + ^{Xd.r+ i'dy + Zdz) = 0. But, since the figures are similar,

drlr=dxjx= &o. Substituting, the result follows at once. As an example of this

theorem see Art. 130, Lx. 5.

231. When we apply the principle of work to a frame, we

have to displace the corners. It will be found convenient to

distinguish the e displacements by different names.

If the frame is not stiffened by the proper number of rods

(Art. 151) the angles may receive finite changes of magnitude

without altering the length of any side. When this is the case

any change is called a normal or ordinary deformation. The

actual displacement given may be infinitely small, but in a

normal deformation the change of angle may be increased until

it becomes finite.

If the framework is stiffened by the proper number of rods,

the connecting rods may possibly be so arranged that the angles

can receive infinitely small changes in magnitude, but not finite

changes, without altering the length of any side (Art. 151). Such

a displacement is called an abnormal or singular deformation.

This is an imaginary displacement, which could be a real one only

when small quantities of the second order are neglected.

If the frame is stiffened by only just the proper number of

rods so that there are no relations between the lengths of the

rods, any side of the frame can be increased in length without

breaking its connection with the others. Such a frame is said to

be simply stiff or freely dilatable.

If there are more rods than are necessary to stiffen the frame,

so that there are relations between the lengths of the sides, one

rod cannot be altered in length without altering some of the others.

Such a frame is said to be indilatable or dilatable under one or

more conditions.

These names are due partly to Maxwell, Phil. Mag. 1864, and parUy to

M. L6vy, Statique Graphiqxie.

232. A simply stiff'frame of rods connected I y smooth hinges at

the corners A^, A.,d;c. is in equilibrium under the action of anyforces.
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It is required to find the stress along any side AiA., which is not acted

on hy the external forces.

Let 7ii2 be the reaction along this rod, and let it be regarded as

positive when the rod is in a state of thrust. Let /12 be the length

of the side.

Since the exterual forces are in equilibrium the work due to

any virtual displacement of the frame which does not alter the

length of any side is zero. Let us remove the rod A^A^ from' the

frame and replace its effects by applying to the particles at its

extremities forces each equal to Ry.. If we now tix in space any

other side, say the adjoining side A^A^, the polygon will have one

degree of freedom. It may be deformed, and each corner will

describe a curve fixed in space. Supposing a small deformation

given, let the length ly, be increased by dl^,, and let dW ha the

work of the external forces. Then, since the other reactions do

not put in any appearance in the equation of work, we have

R,4lv, + dW = Q (1).

If in addition to this deformation we give the side A^A^ any

virtual displacement, the frame moving with it as a whole, the

work dW m not altered. We see therefore that the mode of

displacement is immaterial. It is not even necessary to remove

the side l^.,, we simply let its length increase by dl^... If dW be

the resulting work of the forces, the reaction R^, is given by

«.==-X (^)-

It appears that, ifthe length ofany rod,not acted on hy the e.cternal

forces, can he Increased ivithout undoing theframe the reaction along

that rod is determinate. For example, if there are no external forces

acting on the frame, the reaction along any such side is zero.

233. If the rod AiA, is acted on by some of the external forces

the reactions at the corners ^1, A„ do not necessarily act along the

length of the rod. We may reduce t.' case to the one already

considered in the last article by replacing each of these forces by

two parallel forces, one acting at each extremity of the rod. This

method has been ej )lained in Art. 134. We may also find the

reactions by a more direct process.

Let ii,2, (Sjo be the components of the action at the corner Ai

of the rod A^A.,, resolved along and perpendicular to the length of

the rod. In the same way R.,^, S.^ are the components at the

11—2

1 1
1'
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comer yl„ of the same rod. Let us remove the rod AiA^ and

replace its effects on the rest of the frame by applying at its

extremities the forces 7?,2, S^.^ and R^i, S,2v Let 7i,o, R.,^ be regarded

as positive when the rod is in a state of thrust.

Let the system be so deforraed that the length of the side AiAn
is increased by dly^, while the corner A.^ and the direction in space

of that side are unaltered. The virtual work of the reactions i^a,, ^S'ji

and /S',2 in this displacement is evidently zero. Let dW he the

virtual work of the external forces which act on the system,

excluding the rod A^A.,, then

R,.dlv2+dW=0.

To find the reaction Sjn a different dif^placement must be

given to the system. The external forces which act on the rod

AjA^ having been removed, the remaining external forces are not

in equilibrium. Their virtual work for a displacement of the

frame as a whole is not necessarily zero. Keeping A„ as before

fixed in space and not altering the length ijo, let us turn the frame

round an axis perpendicular to the plane containing A^ and the

force Si2- If dd be the aiigle of displacement and dW the work

of the forces, we have
,%dd+dW=0.

By giving the frs me these two deformations the reactions R^.,

and >S'io at the corner A^ can be found. If the frame be perfectly

free, the deformation necessary to find Sy^ can always be given. The

deformation necessary to find R^^ requires that the length of the

rod can be altered. It follows that both these reactions are deter-

minate if the length of the rod A^A., can he altered without

destroying the connections of the frame.

If the frame is subject to any external constraints, these may
be replaced by pressures at the points of constraint. When the

magnitudes of these pressures have been deduced from the general

equations of equilibrium, we may regard the frame as perfectly

free and acted on by known forces. The reactions at any corner

may then be found as if the frame were free.

It is not meant that in every case exactly these displacements

must be given to the system, for these may not suit the geometrical

conditions of the problem. Other displacements may recommend
themselves by their symmetry rr by the ease with which the

virtual work due to those displacements can be found. Any two
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displacements which introduce only Ri-, and S^., into the equations

of virtual work will supply two equations from which these two

components may be found.

If the system be in three dimensions, the direction of aS'io may
be unknown as well as its magnitude. In this case the components

of >Si2 in two convenient directions may be used instead of S^^.

Three displacements to supply three equations of virtual work will

then be necessary.

334. Examples. Ex. 1. Six equal lieavy rods, freely hinged at the ends, form

a regular hexagon AliCDKF, which when

hung up by the point .-1 is kept from altering its

shape by two light rods liF, CE. Prove that

the thrusts of the rods BF, CE are as 5 to 1,

and find their magnitudes. [Math. T., 1874.]

Let the length of any side be 2a, and let

be the angle which either of the upper sides

makes with the vertical.

To find the thrust T of liF, we suppose

the length of BF to be slightly increased.

The inclinations of AB and AF to the vertical

are therefore increased by dO. The work of

the thrust T is Td (4a sin 0) . The work of the

weights of the two upper rods is 2Wd{a cos d).

The centre of gravity of each of the four other rods is slightly raised, and the work

of their weights is ^Wd {2a cos 0). We have therefore

2'(Z(4asin<?) + 2fr(Mrtcos^) + 4m/('2acos^) = 0, .-. 2r=5Jr'tan^.

To find the thrust V of the rod CE, we suppose the length of CK to be slightly

altered. No work is done by the weights of the four upper rods. The centres of

gravity of the two lower rods are however slightly raised. If be the angle either

of tlie lower rods makes with the vertical, we easily find

2'ti(4asin^)+2Jrrf(aco8e)=0, .-. 2r'=IF'tautf.

The result given in the question follows at once.

Ex. 2. A tetrahedron, formed of six ecjual uniform heavy rods, freely jointed at

their extremities, is suspended from a fixed point by a string attached to the middle

point of one of its edges. It is required to find the reactions at the corners.

The tetrahedron is regular, hence the upper and lower rods, viz. AB and CD, are

horizontal. Let L and M be their middle

points, then LM is vertical; let LM=z. Let

P, P' be the thrusts along these rods and »•

the weight of any rod.

Without altering the direction in .°pace of

the upper rod, or the position of its middle

point, let us increase its length by dr. Since

the transverse reactions at its extremities will

do no work in this displacement, the equation

of virtual work is

~^^

Pdr -)- 4(C . idz + wdz - . (1).

•
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In the same way, if we increase the length of che lower bar by dr without alteriuf;

'ts direction in space or the position of its middle point, the equation of virtual

work is P'dr - Aw . ^dz - wdz + Tdz = (2),

where T is the tension of the atring. Since T= iiio, and the ratio dr : dz is the

same for each rod, these two equations give at once P = P'.

To find the relation between dr and dz we require some geometrical considera-

tions. From the right-angled triangles BLC, LCM we have

BC^-BL-=CU=CM'^ + z^ (3).

In obtaining equation (1), the half side BL is altered by hh\ the other lengths CM
and BC being unaltered ; we therefore have

- BL . dBL = zdz, .: dr= - 2^'2dz.

In obtaining (2) the opposite half side is altered by ^dr, we therefore have as before

dr— -2ij2dz. Substituting these values of dr in (1) and (2) we find that each of

the thrusts P and P' is equal to ^^2w.

We have now to find the other reactions. Since three rods meet at each corner,

it is necessai'y to specify the arrangement of the hinges. We as.sume that each of

the rods which meet at any corner is freely hinged to a weightless particle situated

at that corner. Since this particle may afterwards be considered as joincrl to the

extremity of any one of the three rods, we thus include the case in which two of the

rods at any corner are hinged to the third.

The reaction between a particle and any one of the rods which meet it v iJi be a

single force. By taking moments for the i"od about a vertical drawn lhrou^:h one

end, we may show that the reaction at the other end lies in th" vertical plane

through the rod. The reaction may therefore be obliquely resolved into a force

acting along that rod and a vertical force. Let Q and Z be the components at

A on either of the rods AC, AD, Q being positive when it compresses the red and

Z when acting upwards. In the same way Q' and Z' will represent the components

on either of these rods at their lower extremities.

Let us now lengthen each of the four inclined rods by dp, keeping the upper rod

fixed. The equation of virtual work for the '-^ver bar together with the two par-

ticles at each end is then iQ'dp + H' fi. -r wd -0 (4).

Since the rod CD has here rtyived simp!/ .< ..itical displacement, this equation

might have been obtained by resolving vertically the forces on the rod and equating

the sum to zero, Art. 204.

To find the relation between dp and dz we recur to (3). In obtaining the

equation (4), BC is altered by dp while BL and CM are unaltered, hence

BC.dBC^zdz, :.dz = ^2dp.

We therefore have 2^I2Q' + AZ' vw = Q (5).

Resolving the forces on the particle at C in the direction CD, we find

-P' = 2g'cos(50° (6).

The value of P' having been already found, we have Q'= - ^>J2w, Z'= ^w.

In the same way, if we lengthen each of the inclined rods by dp keeping the

lo 'or ro''. fixed, the equation of virtual work for the upper rod and the two particles

at each end becomes - iZdz + iQdp - wdz + Tdz = (7).

Resw ing the forces on the article at A along AB, we have

-P:^2Vco860° = ^, :.ii=-i^2w., Z= \xv.

.w<**>MV^S% .a,^'- -JL
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^ Ex. 3. Two rods CA, Cli, freely jointed at C, are placed in a vertical plane, and

rest with the points A, li on a smooth horizontal table, A and B being connected

by a weightless string AQl'B passing through smooth rings at P and Q, the middle

points of CA, Cli. Prove that the tension T of the string is given by

T .AB.i
jjp + Jo + 4T{)~

'^ '^^^ '^ ^°^ ^ '^°^^^ *^''

where W is the weight of the two rods. [Coll. Kxam. , 1890.]

^ Ex. 4. A frame ABCI) is formed of four light rods, each of length a, freely

jointed together; it rests with AC vertical and the rods BC, CD in contact with

tixed frictionless supports K, F in the same horizontal line at a distance c apart, the

joints B, 1) being kept apart by a light rod of length b. Show that, when a weight

W is placed on the highest joint .-1, it produces in BD a thrust of magnitude li, where

lih- (4rt2 - b^)i = W {2a-c - h^). Examire the case when h = {2a\-)^. [Math. T., 1886.]

Ex. 6. Four equal rods ARB, CRD, ESB, FSD form with each other a rhombus

RBSD ; A and C are fixed hinges at a distance a from R ; R, B, S and D are free

hinges, and at E and F forces, each equal to P, are applied perpendicular to the

rods. If a be the angle which the reactions at .1 and C mnk'^ with AC, 26 the

angle ARC, and h a side of the rhombus, show that a cot a -=2 (a + h) tan + ii cot 0.

[Coll. Exam., 1889.]

Take AC as axis of ,r, its middle point as origin. Let X, Y be the reactions at

A ; x — asin0, y = 2{a + b)eos0 the coordinates of £. Increasing the length of AC
without altering its direction in space, or the position of its middle point, we have,

by the principle of virtual work, Xd (a ain d) + P Bin ddy - PcosiOdx— 0. Also by

resolution F+ P8in^ = 0. The result follows at once.

Ex. 6. Four equal rods AB, BC, CD, DA are freely jointed at the ends so as to

form a square and are suspended by the corner .-1. The rods are kept apart by a

single string without weight joining the middle points of AB, BC. Show that the

tension of the string and the reaction at the lowest point C are respectively iW and

i H^v/5, where W is the weight of any rod.

Ex. 7. .\ succession of n rhombus figures of equal sides, each being b, are

placed having equal diagonals in a straight line and one angular point common to

two successive figures, and the extreme sides of the first and last rhombus are produced

through equal lengths a in opposite directions to points A, B, C, D respectively.

Consider now all the straight lines in the figure to be rods hinged fi ly where they

intersect and having tixed hinges at C and D. At A and B, V free ends, are

applied equal forces perpendicular to the rods ; show that the reii ms at C and D
make an angle <p with CD, where acot<f>=2{a + nb)ta,u6-{ acot6, being the angle

which the common diagonal makes with any side, [Coll. Exam., 1889.]

Ex. 8. A tripod stand is constructed of three equal uniform rods connected by

means of a universal joint at one extremity of each; the wl'ole rests on a smooth

floor, and is prevented from collapsing through having the iwer extremities con-

nected by strings equal in length to the rods. Find the tensions of the strings. In

particular, if a weight W equal to that of each rod be suspended from this joint, then

the tension is Av/fiir. [St .lohn's Coll., 1882.]

Ex. 9. Six uniform rods, each of weight W, are jointed together to form a

regular hexagon, which is hung up from a corner. The two middle rods are con-

nected by a light horizontal rod. Show that, if they rest verticHy, the horizontal

rod divides them in a ratio which is independent of its length If the horizontal i'

I
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rod be beuvy, and uniform in length and material witli the others, hIiow that the

ratio is G : 1, and that the Ktress in tho horizontal rod ia \]V^'A. Find also the

stresseH at the jointH. [Coll. Exam., IHHH.]

235. Abnormal deformations. Retening to the general

theorem considered in Art. 232 we notice that there is a peculiar

case of exception. Let ns suppose that the forces which act on

the frame are applied at the corners so that the reactions act aU)ng

the sides of the polygon.

The side A^A.. being removed, the polygon may be deformed;

the principle of virtual work then gives

R,,,dh., + dW=^Q (1).

Supposing the side A^A^ to be fixed in space, it is po.ssible,

when the frame is deformed, that the corner ^4^. may begin to move

perpendicularly to the side A^A... In this case dly, = 0. If the side

AnA^ is also displaced in any manner, by the frame moving as a

v/hole, the quantity dl^., is unaltered and is therefore still zero.

When the rod A^A., is replaced, it is now possible to give the

fro me a small deformation without altering the length of any side,

provid'^d we neglect small (juantities <jf the second order. Since

the frame is now titiff, this deformation is of the kind called

ahionind. Art. 231.

The erternal forces acting on the frame arc in equilibrium,

hence their virtual work for every displacement of the frame as a

whole is zero. If it be not zero for this abnormal deformation also,

the reaction Rj.^ must be infinite. But if it be zero the equation

(1) becomes nugatory, since both dl-^., and dW are zero. The

reaction R^^ ma} now be finite.

In order, then, to deform the frame so that the reaction R^.^ may
do work, we must remove, or lengthen, Uvo or more sides. Let

these be the given side li., and any other say /^,. We now have

R,.,dl,. + R.Jil.:^^- dW = {) (2).

To u"o thi> equation we must know the ratio between, the

corresponding inorements of any two sides, The equation (2) will

then give the relation between the corresponding reactions. Thus

the reactiov^- are indftenidnate ; one is arbitrary but the others

may be fouiid in terms of this one.

a-'^Q, In mr *: cases the relation between the increments of any two sides may

be fcund by inKpect>oa c.c by ditlerentiati'ig some known relations between the sides

of tht< polyt^on. lu more difficult cases we may proceed in the following manner.

Foe L6vy, Statique Gruphique.

I

'
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Regarding tbe stiff framework as a general polygon with undetermined sideH, we

can find as many angles as may be convenient in terms of the sides. Let us

suppose, as an example, that two equations have been found connecting, aay, the

two angles 0^ , 0., with the sides. Let these be

/i (cos e, , cos 6. , /,2 , /^i , &c. ) - 0^

/„(co8»,, cos(?o, /,„, /o;,, &c.) = Of ^
'

Since this particular polygon can have a slight deformation without altering the

sides we must have

f rftf,+'^'</(^,=u, l?''^.+;^^'^.=o w-
do, (W.2 dOi dd„

These give d0i=O and rfft,= 0, unless the special polygon under consideration is

such that the determinant J= dfjdd^ d/JdO.,
^

=0 (5).

i df.Jde., d/Jde.,
I

If we vary the lengths of tlie rods, the corresponding changes of the angles <?,, 0.,

aregivenby
^/j d0,+ f de.,= -l^''',] dA
dOi ' d0.. - dl I

(6).

w,'^'^+d0:f-^=--7ii"n

Multiplying these equations by the minors of the first row of the determinant J,

and adding the results, the left-hand side will vanish. We thus obtain a relation

between the increments of length of the rods of the form

Piod;i2+ i'i.,rf/.j3+...=0.

This relation must be satisfied by any assumed changes of length of the rods.

237. Indeterminate tensions. It i.s generally more con-

venient to consider these indeterminate reactions apart from any

external forces. To make this point clear, let us suppose that two

sets of external forces in all respects the same can produce two

different sets of internal stress when they act separately on the

frame. Then, reversing one set of the external forces and making

them act simultaneously, we have the frame in a self-strained state

with no external forces. If then we can find all the internal stresses

when no forces act, we can superimpose them on any one set of

stress produced by a given set of forces, to find all the states

of stress consistent with those forces.

In the tenth volume of the Proceedings of the Mathematical Society, 1878, Mr
Croftou discusses some cases of hexagons and octagons in a state of self-strain.

His theory was afterwards enlarged by M. Levy in 1888 in his Statique Graphiqtie.

238. Ex. 1. A plane framework, havinp an even number n of corners, han for itn

bars the n sideitjoiiiinn these corners and the in diagomiU joining the opposite corners.

Show that it may be in a state of stress without any external forces if the ^n points

of intersection of opposite sides lie in one straight Um. [Levy's theorem.]

ii: i
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The following proof applies i^cnerally though the figure is drawn for a hexagon.

To fix the ideaH, let the Hides be in a utate

of thrust and the diagonals in tension.

First. If the reactions li^n &c. are in

equilibrium, the forces ii,.,, ii'^o balance /fo,,

and are therefore equivalent to Ji^^ and

li^. Hence by transposition Ji,,j and li^^

are e(iuivalent to /i.j., and ii',,,,. Each pair

by synnnetry is equivalent to i.'j, and 7?,,

.

The resultants of these act respectively at

L, M, N, and are equivalent. Hence L,

M, N, i.e. the intersections of opposite

sides of the hexagon, lie in a straight line.

Convenely. If L, M, N lie in a straight

lint', apj)ly two opposite I'orces, each equal to an arbitrary force F, at L and 31. Let

the components along the sides which meet in J. and .1/ be (Ry,, R^_^) and (iJj.,, Rg^)

respectively. Then these four forces are in equilibrium, i.e.
7?i..

and Rj, actiris* nt

A., are in equilibrium with R^^ and ifg, acting at A^. Hence the two forces on A^

have a resultant acting along A.,Ar,, and the twoforceson Jj have a resultant along

.-Ig.loand these two resuliants are equal. The other diagonals may be treated in

the same way. It follows that the forces at each corner are in equilibrium. Also

the ratio of each reaction to the arbitrary force F has been found. Another proof

will be indicated in the chapter on graphical statics.

This theorem is the more remarkable because the number of connecting rods

viz. Jn (being less than 2ii - 8 when n is greater than (>) is not sufficient to define

the figure, Art. 151.

By making one side infinitely small we obtain the corresponding theorem for a

framework with an odd number of corners.

Ex. '^. The bars of a framework are the sides of a hexagon and the diagonals

joining ,•;. le opposite corners, prove ;,hat it may be in a state of internal stress if it is

inscribed in a conic. Find also the ratio of the reactions. [Crofton's theorem.]

Ex. 3. The bars of a frame are the sides of a hexagon Ai...Ag, a diagonal A^.i^

and the lines A.^Ag, A.^A^. Show that it may be in stress if corresponding bars on

each side of the diagonal -^1.^4 intersect two and two on that diagonal. [Crofton.]

239 Geometrical method of determining the stability

of a body. When a body moves in any way in two dimensions,

the motion or displacement during a time dt may be constructed

by turning the body round some point / through an infinitesimal

angle; see Art. 180. The position of this point is continually

changing, so that it describes (1) a curve fixed in space, and

(2) a curve fixed in the body. Let a series of infinitesimal

arcs //', /'/" &c. be taken on the first curve, and let equal

ares IJ\ J'J" &c. be measured off on the second curve. After

the body has rotated round / through some angle d6, the point
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th(come into the position /'. This point then become,

instantaneous centre, and the tlisplacement during the next

element of time may be similarly constructed by turning the

body round /'. Let the arc //' = ds.

Since the angle between the tangents //', /./' to the two curves

is infinitely small, these curves touch each other at the point l.

The motion of the body nutij therefore be constructed by making the

second curve roll without sliding on the first, carrying the body with

it. It is also clear that ds : dd r'.v tlie ratio of the velocity with

which the instantaneous centre describes eithei' curve to the angular

velocity of the body.

At the beginning of the first elen."nt of time let P be the

position of any point of the body, then sun.^- P begins to move

in a direction perpendicular to PI, PI is a normal to the path

of P. Let P' be the position in space of P at the end of the

time dt; then the angle PIP' = dd. Since the body now begins

to turn round /', P'l' is a consecutive normal to the pfth of P.

If then P be so placed that the angle IP'I' is also eijual to dO,

two consecutive normals to the path of P will be parallel, and

hence the radius of curvature of the path of P will be infinite.

If therefore we describe a circle passing through / and /', so as

to contain an angle equal to dd, then every point on the circum-

ference of this circle is at a point of its path at luhich the radius of
curvature is infinite. For statical purposes we shall refer to this

circle as the circle of stability. To construct this circle, we draw

/' Pi

i 1

I,

iv

a normal at the instantaneous centre of rotation / to the path of /

in space and measure along this normal a length JS — ds/d6. The
circle described on IS as diameter is the circle of stability.
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240. A body moves in lui// vuinnei' in one plane, and in any

jtositiuu the circle of stability is known. Tu find the radius of

curvature R nf the path of any point uttached to the moving body.

Lt't G bo any point of the body not on the circle of stability,

and let P be that point in the straight line 10, at which the

radius of curvature is infinite. As before GPI is a normal both

to the locus of G and to that of P. See the figure of the last

article. If we now turn the body round / through an angle dd,

the points G and P will assume the positions G' and P' where the

angles GIG' and PIP' are each etjual to dd, and I'P' is parallel

to IPG. Also GT is the consecutive normal to the locus of G
;

and if (/'/' intersect GI in 0, will be the required centre of

cui'vature. We have by similar triangles

GP : GI = G'F .G'I=G'r : G'O.

In the limit the throe points, P, P', and the inter.section P,

of the circle with GO, coincide. We then have R . GP^ = GI-.

We have therefore the following rule*; to find the radio '• of

curvature R of the path of G, let GI intersect the circle of jiability

in P, ; then R . GI\ = GI-.

In the standard figure, lines drawn from towards / have been

taken as positive : it follows that R is positive or negative according

as GP is positive or negative. We therefore infer that the path of

every point G is concave or convex towards I according as G lies

without or withiii the circle of stability.

241. Statical rule. In a position of equilibrium the tangent

to the path of the centre of gravity G is horizontal, hence the

position of equilibrium is such that IG is vertical. The equilibrium

is stable or unstable according as the alti' ude ofthe centre of gravity

is a minimum or a maximum, i.e. according as the concavity of the

path is upwards or downwards. But this point is settled at once

by the rule that the path of G is concave towards / except when

G lies withni the circle of stability.

342. Ex. 1. Two points A, B of a moving body desci.be known curves. Show

how to find (1) tlie position of the instantaneous centre /, (2) the circle of stability.

* This formula for 7i is practically equivalent to that given by Abel Transon in

Liouville\^ Journal, 1845, x. p. 148, tliough he uses the diameter IS of the circle

instead of the circle itself. His object is tt> find the radius of curvature of a roulette.

See also a paper by Chasles on the radius of curvature of the envelope of a roulette

in the same volume.
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The nornmU at A and // to the two curves meet in I ; honcc / ifl found. Art. ISO.

If Pi, p., be the radii of curvatures of tho curves at .( and li, nieaHure alon^ A I and

BI rcHpectively the ien>?thH .-17', = .-!/' /p, and llV.,= UPjp.,\ the circle circuniHcribinn

the trianKle Il'\l\ >« the circle of stability.

Ex. 2. A body moves in one plane and the instantaneous centre of rotation is

known. Hliow that a straipibt line attached to tiie inoviuK body touches its envelope

in a point a which is found by drawing a perpendicular IG on the Htraight line.

Since 01 is normal to the locus of G, an element 00' of the path of O lies on

the straight line. Thus the straiKht liuc intersects its consecutive |i(isiiiiin in 0\
i.e. C»" or (f is a point on the envelope. [Uobirval's rule.]

Ex. 'A. A body moves in one plane and the instantaneous position <>f the circle

of stability is known. Prove the following construction to find the radius of

r

\

m

i:J

curvature of the envelope of a straight line attached to the moving body : draw a

perpendicular IQ on the straight line from the instantaneous centre I and let it cut

the circle of stability in P,. Take IO = IP^ on QP^l produced if necessary, then O

is the required centre of curvature.

By the last example, 10 is a normal at V to the envelope. If we now turn the

body and the attached straight line round / through an angle dd, and -^raw from V
a perpendicular I'Q' on the straight line thus displaced, it is clear that QT is the

consecutive normal to the envelope. Let Q'l' intersect Ql in O, then O is the

required centre of curvature.

Since 10 and I'O are perpendiculars to two consecutive positions of the same

straight line, the angle 101' is equal to dO. Draw I'P' parallel to IP^ to intersect

the circle of stability in P', then as in Art. 239 the angle P'JPj is also equal to dd.

Thus ro is parallel to P'l and P'O is a parallelogram. Therefore 10 is equal

to J'P', and in the limit 10 and lP^ are equal.

Ex. 4. The corners of a triangle ABC move along three curves, the normals

tki A, B, C meet in 1 and o, |3, 7 are the angles at 1 subtended by the sides. If

Pi 1 P2> P3 ^^ *^^ radii of curvature of the curves, prove that

^J-sina iil^sinS C/*sin7 .^ . ,yr a . m •— + —"+ '=^Isina+yj/sm/3 + CJsm7.
Pi Pi Pa

243. Ex. 1. .-1 homogeneous rod AB, of length 21, rests in a horizontal position

inside a bowl formed by a surface of revolution with its axis vertical. Shoiv that the

equilibrium is stable or unstable according as Pp is less or greater than n^, where p is

the radius of curvature at A or B and n is the length of the normal. [See Art. 222.]
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it I

El I

If I

The norn-als at A and If meet in a point / on the axifl of revolution. Take AL

and HM bo that each in equal to Al^fp.

The circle described about ILM is the

circle of stability. Let the circle drawn

through / touching the rod at G cut AI

in a point H, then AH.AI=AG-. The

equilibrium is unstable if G is within the

circle ILM, i.e. if AL is less than AH,
i.e. if n*/p is less than i'/n.

If the extremities of the rod terminate

in small smooth rings which slide on a

curve symmetrical about the vertical axis,

the position A'li', in which tho normals at

A'H' meet in a point / below the rod, is also a position of equilibrium. Following the

same reasoning the concavity of the path of G is turned towards / when P/xn*.

The conditiom of gtability are therefore revemed, the equilibrium is therefore stable

or unstable according as l^p is ^ or < li*.

Ex. 2. The extremities of a rod are constrained by small rings to be in contact

with a .smooth elliptic wire. If the major axis is vertical prove that the lower

horizontal position is unstable and the upper stable if the length of the rod is

greater than the latus rectum. These conditions are reversed if the length is less

than the latus rectum. If the minor axis is vertical the lower horizontal position

is stable and the upper unstable.

In an ellipb„ p(b^la)- = n^, where 2a and 26 are respectively the vertical and

horizontal axes. Using this prope'cy, the results follow from those of Ex. 1.

It has been shown in Art. 126, that when the major axis of the ellipse is

vertical the rod is in equilibrium only when it is horizontal or pa ,scs through one

focus. The condition of stability in the latter case follows easily from the principle

that the altitude of the centre of gravity must be a minimum. Let the rod AB he

in any position and let .S' be the lower focus. Let AM, BN be perpendiculars on the

lower directrix. The altitude of the centre of gravity above the lower directrix is

^{AM+BN) =^(SA + SD). Since SA and SB are two sides of the triangle SAB,

this altitude is a minimum when S lies on the rod A B. In the same way if S is

the upper focus, the depth of the centre of gravity below the upper directrix is

represented by the same expression. IVhen therefore the rod passes through the

lower focus the equilibrium is stable, when it passes through the upper focus the

equilibrium is unstable.

Ex. 3. The extremities A, B oi a rod are constrained by two fine rings to slide

one on each of two equal and opposite catenaries having a common vertical directrix

and a common horizontal axis. Pro^e that the lower horizontal position of the

rod is stable, see Ait. 126, Ex. 5.

By drawing a figure it will be seen that the paths of A and B are convex to /.

Hence A and B lie inside the circle of stability. Heuce G also lies inside the circle

and its path also is convex to I. The equilibrium is therefore stable.

Ex. 4. A rod rests in a horizontal position with its extremities on a cycloid with

its axis vertical. Prove that the equilibrium is stable.

i
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244. Rocking Stones. A perfectly rough heavy body rests

in equilibrium on a fixed surface: it is required to determine whether

the equilibrium is stable or unstable. We shall first suppose the

body to be displaced in a plane of symvietry so that the problem may

be considered to be one in two dimensions.

The geometrical method explained in Art. 241 supplies in most

cases an easy solution. Let / bo the point of contact of the two

bodies, then / is the centre of instan-

taneous rotation. Let C'lC be the com-

mon normal in the position of equilibrium,

C, C the centres of curvature. We shall

suppose these curvatures positive when

measured in opposite directions. If the

upper body is slightly displaced so that /'

becomes the new point of contact, the

angle viz. dd turned round by the body

is equal to the angle between the normals

GJ' and GT, and this is evidently equal to the sum of the angles

J'GI, I'G'I. We therefore have

ds ds ,^—+-, = de,
P P

where //' = IJ' = ds as before. See also Salmon's Higher Plane

Garves, Art. 312, or Besant's Roulettes and Glissettes, Art. 33.

To construct the circle ofstability we measure along the common
normal IG in the position of equilibrium a length IS = dsjdO.

Writing z for this length, we see that - = -- + -. The circle de-
z p p

scribed on IS as diameter is the circle of stability. Let IG cut this

circle in P.

If the centre of gravity G lie without this circle, the concavity

of its path is turned towards /. Hence the equilibrium is stable or

unstable according as G is beloiv or above the point P. If G coincide

with P the equilibrium is neutral to a first approximation.

The critical altitude IP which separates stability and instability

is clearly IP = z cos a = "~
, , where a is the inclination to the

vertical of the common normal in the position of equilibrium.

246. Ex. 1. A solid hemisphere (radius p) rests ou the summit of a fixed sphere

(radius p') with the curved surfaces in contact. If the centre of gravity of the

Lii!

III
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I

hemittpliere in at a diHtancu ^p from the centre, prove that the equilibrium is

Htablc or uiiHtable according as p is lesft or i;rcater than Ip'.

ill this example a=0 and therefore /(/ i.e. ip must be leas than z if the equi-

librium is to be stable.

Ex. 2. A Holid hemisphere rests on a rounh plane inclined to the horizon at iin

an^le /3. Find tht> inciiiiation of the plane base to the horizon and show that the

equilibrium is stable.

The centre of ^'ravity must lie in the vertical through /, and CO is also perpen-

dicular to the base. Hence the required inclina-

tion of the base is the supplement of the angle

C'dl. The vortical through / cannot pass through

G if C'/sin/S is greater than CO. Since C(r = ^p,

it is necessary for equilibrium that sin /3< J.

To find the circle of stability we notice that

p'=ao , and therefore z=p. The circle described

on IC ia therefore the circle of stability. Since

the angle C(il is greater than a right angle, it is

obvious tliat G lies inside the circle. The con-

cavity of the path of G is therefore upwards, and

the equilibrium is stable.

Ex. 3. A solid homogeneous hemisphere, of radius a and weight W, rests in

apparently neutral equilibrium on the top of a fixed sphere of radius b. Prove that

5a = '6h. A weight P is now fastened to a point in the rim of the hemisphere. Prove

that, if o5i' = 18 W, it still can rest in apparently neutral equilibrium on the top of

the sphere. [Math. Tripos, 1869.]

Ex. 4. A heavy hemispherical bowl, of radius a, containing water, rests on a

rough inclined plane of angle a ; prove that the ratio of the weight of the bowl to

that of the water cannot be less than . -
. , where Trrt-cos'* A is the area ofsm 0-2 sin a

the surface of the water. [Math. Tripos, 1877.]

When the bowl is displaced the water is supposed to move in the bowl so as to be

always in a position of equilibrium. Its statical effect is therefore the same as if it

were collected into a particle and placed at the centre of the bowl. The weight of

the bowl may be collected at its centre of gravity, i.e. at the middle point of the

middle radius.

Ex. 6. A parabolical cup, the weight of which is W, standing on a horizontal

table, contains a quantity of water, the weight of which is nlV: if h be the height of

the centre of gravity of the cup and the contained water, the equilibrium will be

stable provided the latuc rectum of the parabola be >2 (n + 1) h.

[Math. Tripos, 1859.]

Let H be the centre of gravity of the water when the axis of the cup is vertical.

Let the cup and the contained water be placed at rest in a neighbouring position

with the surface of the water horizontal ; Art. 215. It may be nhown that the

vertical through the centre of gravity 77' of the displaced water intersects the axis

of the paraboloid in a point M, where 77iV is half the latus rectum. The point M
is called the m4;tac{'ntre. As in the last example the weight of the fluid may be

collected into a particle and placed at the metacentre. The weight of the cup may
be collected at the centre of gravity G of the cup. The equilibrium is stable if the
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altitude of the common centre of gravity of the two weiRhta at .1/ and G satisfies

the criterion given in Art. 24'!.

246. When a cylindrical body rests on a fixed horizontal plane, it easily follows

from what precedes that the e<iuilibrium is stable or unstable according as the centre

of gravity of the body is below or above the centre of curvature at the point of contact.

There is one case however which requires a little further consideration. Let us

suppose that the evolute has a cusp O which points

vertically downwards when the point of contact is

at some point A. Let us also suppose that the

centre of gravity G of the body is at a very little

distance above O. The position of the body is

unstable, but a stable position exists in immediate

proximity on each side in which the tangent from

G to the evolute is vertical. That these positions

are stable is clear, for since the cusp points down-

wards either tangent from G will touch the evolute

at a point L or 51 which is above G when that

tangent is vertical. When G moves down to O these two flanking stable positions

come nearer to the unstable position and finally come up to it. Wlien therefore

the centre of gravity is at the cusp of the evolute, the equilibrium is stable.

In the same way, if the cusp point upwards and G be situated at a very

short distance below 0, the equilibrium is stable with a near position of instability

on each side. In the limit when G coincides with 0, the equilibrium becomes

unstable. The reader may consult a paper by J. Larmor on Critical Equilibrium

in the fourth volume of the Proceedings of the Cambridge Philonophical Society, 1883.

247. Spherical bodies, second approximation. When
the equilibrium is neutral it is necessary to examine the higher

differential coefficients to settle the stability or instability of the

equilibrium. The geometrical method is not very convenient for

this purpose. When both surfaces are spherical we can investi-

gate all the conditions of equilibrium by the method of Art. 220.

Let the body, as represented in the figure of Art. 244, be dis-

placed so that J' comes into the position /'. The position of the

body is then represented in the adjoining

figure, where J represents that point of

the upper body which in equilibrium co-

incided with /. Let JG=r. Letyfr' = ICrr,

^ = JCr, then p'slr' = pyfr. Let y be the

altitude of G above C The inclinations

to the vertical of C'C, CJ and JG are

respectively a + -^', a + yfr + yjr' and -^ + yfr'.

Projecting these three lines on the vertical,

we have

y = {p + p) cos (« + -v/r') — /o cos (a -I- -^/r -I- y^') + r cos {y\t + yjr').

R. s. 1. 12
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We now substitute for >/r its value p'yjr'jp and expand the

exprcssic, - in powers of yjr'. The coefficients of yjr', ^yfr'^ &c. are the

successive differential coefficients of y, hence the stability is deter-

mined to any degree of approximation by the rule of Art. 220.

The coefficient of yfr' is zero, that of i^yfr''^ is (z cos a — r) p-/z-,

where z has the same meaning as before. T)ie ecjuilibrium is

stable or unstable according as this coefficient is positive or

negative, i.e. according as r is less or greater than ^cosa.

If this coefficient also vanish the equilibrium is neutral to

a first approximation. We then examine the coefficient of yfr'^.

Unless this also vanishes the equilibrium is stable for displace-

ments on one side of the position of equilibrium and unstable for

displacements on the other. Supposing however that the coefficient

of '\/r'* does vanish, we examine the terms of the fourth order. The

equilibrium is then stable or unstable according as the coefficient

of "^Ir'* is positive or negative.

348. Ex. 1. A spherical surface rests on the summit of a fixed spherical

surface, the centre of gravity being at such a height above the point of contact that

the equilibrium is neutral to a first approximation. If the lower surface is convex

upwards as in the diagram, prove that, whether the upper body has its convexity

upwards or downwards, the equilibrium is unstable. If the lower surface has its

concavity upwards, the equilibrium is stable or unstable according as the radius of

curvature of the lower body is greater or less than twice that of the upper body.

The coefficient of ^'' is here zero. The coefficient of f* after elimination of r

reduces to - p' (p' + 2p) (p' + p)/24p-. Since the equilibrium is therefore stable or un-

stable according as this coefficient is positive or negative, the results follow at once.

Ex. 2. A body, whose lower portion is bounded by a spherical surface, rests in

apparently neutral equilibrium within a fixed spherical bowl with the point of

contact at the lowest point. If the radius of one surface is twice that of the other,

show that the equilibrium is really neutral.

349. Hon-spherieal bodies, Mcond approximation. If the boundaries of

the bodies in contact are not spherical we may adopt the following method.

Suppose the upper body has rolled away from its position of equilibrium into

that represented in the figure of Art. 247. Then it is

clear that, if G in that figure is to the right of the vertical

through /', the body will roll further away from the

position of equilibrium, but if G is on the left of the

vertical, the body will roll back. Let i be the angle GI'

makes with the vertical ; our object will be to find /.

Let <p be the angle GI' makes with the common
normal at /', viz. I'C. and let GI'=r. Let I'J" be any

further arc 5* over which the body may be made to roll.

Let p, p' be the radii of curvature of the upper and lower

dr
bodies at /'. Then we have

d»
=sm0

i
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Mho CI 'O + I'G.I"= I'OJ"= CJ"0 + I'CJ" tf>+
"^ = + ,/04._,

> p

(2)'
f/0 COB 1

'
(l»

~
r p

Lnstly, let ^' be the inclination of the normal CC to the vertical, then i = ^' - and

dflda = llp'. Hence by (2) I'l = ^ + A, _ £2?> (»).
(ill p p r

Thene three equations supply all the conditionn of otnbility. In the pv>. 7t!on of

equilibrium the centre of Rravity w vertically over the point of Hupport. Hence

1=0. In any other ponition the value of i is given by Taylor's Heries, viz.

. di . rf«/ 8«» ^

If in this series the first differential coefficient which does not vanish is positive

and of an odd order, it is clear that the straight line IG will move to the same side

of the vertical as that to which the body is moved. The equilibrium will therefore

be unstable for dinplacements on either side of the position of equilibrium. If the

coefficient is negative the equilibrium will be stable. If the term is of an even

order, it will not change sign with Sx, the equilibrium will therefore be stable for a

displacement on one side and unstable for a displacement on the other side.

The first differential coefficient is given by (3). The second may be found by

differentiating (3) and substituting for rf^/rf/i and drjd* from (2) an;l (1). The
third differential coefficient may be found by repeating this process. In this way

we may find any differential coefficient which may be required.

Firstly. Suppose the body such that dijdx is not zero in the position of

equilibrium. The condition of stability is therefore that + -, ^ is negative.
p p r

This leads to the rule already considered in Art. '244.

Secondly, Suppose the body such that in the position of equilibrium the centre

of gravity lies on the circle of stability. We then have difda = 0. Differentiating

(3) and substituting for (cos0)/r its value Ijp+ljp' we find

S=,i^C%^)--G%^)C-?) <^'-

unless this vanishes the equilibrium will be stable for displacements on one side

and unstable for displacements on the other side of the position of equilibrium.

Thirdly. Suppose the second ditterential coefficient given by (4) is also zero in

the position of equilibrium. We find by differentiating (3) twice and substituting

for r as before

dH d^ n 1\ /I 1\ f/1 2\1 , dl .^^ ..^/l 1\/1 2\)

* The equation (2) is useful for other purposes besides that of finding the con-

ditions of stability. For example it may be very conveniently used in the differential

calculus to find the conic of closest contact at any point / of a curve. If be the

angle between the central radius and the radius of curvature p at any point P of

a conic, it may be shown that tan <p= - i . i
where is positive when measured

behind the normal as P travels along the conic in the direction in which the arc g

is measured. Suppose G to be the centre of the conic, then assuming this value of

0, the distance r of the centre of the conic from / is given by the equation (2) in

the text.

Generally the equation (2) is useful to find the point of contact with its envelope

of a straight line IG drawn through each point of a curve making with the normal
an angle <p which is a given function of s.

12—2
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The equilibrium i8 stable or unstable according as this expreaaiou is negative or

poHitive.

asO. Ex. 1. A body rests in neutral equilibrium to a first approximation on

the urface of another, and both are symmetrical about the common normal. Show

that the equilibrium cannot be stable unless either the point of contact is the

summit of the fixed surface or p'= - 2p.

Ex. 2. A body rests in neutral equilibrium to a second approximation on a rough

inclined plane. Show that the equilibrium is stable or unstable according as iPpld»*

is positive or negative.

Ex. 3. A body rests in equilibrium on the surface of another body fixed in space,

and the centre of gravity a of the first body is acted on by a central force tending

to some point O in GI produced and varying as the distance therefrom. If G' be

taken on 10 ho that
IG'

. + y-: , the equilibrium is stable or unstable according

as G' lies within or without the circle of stability.

251. Booking Stonos In tliroo dimonslona. The upper body being in its

position of equilibrium, let the common tangent plane at the point of contact O be

taken as the plane of xy. Let the equations to the upper and lower bodies be

respectively 2z = ax^ + 2bxii + cy- + &c. \

-2/ = a'xa + 2i'xy +cy + «S:c.i ^
''

In the standard case, therefore, the two bodies have their convexities turned

towards each other. We shall now suppofl" Uie upper body to be displaced from its

position of equilibrium by rolling over t^ ' along the axis of x through a small

arc ds. Take OP- OP' = d*.

We have first to determine how the upper body must be rotated to bring the

tangent plane at P into coincidence with that at P'. Referring to equations (1), we

AH

refll

anc

sari

by

y'/.v

see that the tangents at P and P' to OP and OP' make angles with the plane of xy

which are dzldx= ads and dz'Idx= -a'dx. To make these tangents coincide we
must rotate the upper body round Oy through an angle wj= (a + a') ds. Consider

next the tangents at P and P' which are perpendicular to OP and OP' ; these make
angles with the plane of xy which are dzldy=bd8 and dz'ldy= -b'ds. To make
these tangents coincide we must rotate the upper bodv round Ox through an angle

w,= -{b + b')di. Taking both these rotations either simultaneously or one after

the other, the upper body will be rolled along the arc OP=ds.

The two rotations Wj and u^ about the axes of x and y are equivalent to a
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reHultant rotation about Romu axis Oy', If the an^lo TOij' = i, we have Ooos i = w,

and UbId 1 = 10.^, The arc of rolling Ox and the axiR of rotation Oy' are not necen-

sarily at right anKlus to each other ; either being given, the other can be found

by these relations.

953. The body bcin^ placed at rest in its new position, the centre of Rrnvity

iu no longer in tlie vertical through the point of contact. The weight will therefore

make the body begin to move. Let uk Kuppone that the body in constrniiwd cither

to go back to it» position of equilibrium by the way it came or to recede further on

that ctmrse. The equilibrium will then be stable or unstabla according as the

moment of the weight about a parallel to Oy' through the new point of contact

tends to bring the body back to or further from the position of equilibrium.

It will be found more convenient to refer the displacement of to the rectangular

axes Ox', Oy', Oz instead of the oiiginal axes. Let x', y', ," be the coordinates of G
in the position of equilibrium, let r = OG and let a', /3', 7 be the direction angles of

00. Then x' = r cos a', y'=r cob (f, z = r cos 7.

If we draw ON a perpendicular on Oy', the point G will be displaced by the

rotation along a small arc 00' of a circle whose plane is parallel to x'z, whose

centre is N and radius NO. The displacements of O parallel to x' and 2 are

therefore (Iz and - Ox'. The resolved forces on O parallel to the axes x', y', z are

A'= - U'cosa', Y=- ircos/3', Z=- WcoBy,

where W is the weight of the body. The moment of these about a parallel to Oy'

drawn through the new point of contact P is

M= (z - n.r') .Y - (x' JrUz-ds sin 1) Z
= {rO (cos'' o' + cos* 7') - ds sin i cos 7} W.

The equilibrium is therefore stable or unstable according as the sign of M is

negative or positive.

358. We oboerve that and i do not depend on the curvatures a, a' or b, b'

but on their sums a + a', b + b'. If, then, we replace the rocking body by another

having the curvatures of its normal sections equal to the relative curvatures of the

given bodies, and make this new body roll on a rough plane inclined to the horizon at

an angle 7, the conditions of stability are unaltered. The equation of this new

body is

2z= (a + a')x- + '2(b + b')xy + (c + c')y"- + &c (2).

The indicatrix is obtained by rejecting the terms included in the &c. , and giving z

any constant value. This conic may be called the relative indicatrix of the solids

given by (1). It mist be an ellipse for otherwise rolling would be impossible. The
equation of the axis of y' is w,jX= w,j/, i.e. (a + a') j; + (6 + 6')y= 0, which is the

conjugate of the axis of x. It follows that the axis of rotation Oy' and the tangent

Ox to the arc of rolling are conjugate diameters in the relative indicatrix.

Let p, p' be the radii of relative curvature of the normal sections drawn through

the arc of rolling Ox and the conjugate Oy'
; pj , pj ^^^ principal radii of curvature.

Since each p is proportional to the square of the corresponding diameter of the

indicatrix, it follows from a property of conjugates that pp' sin* i=piP3.

364. To discuss the sign of the moment M, we substitute for fl sin 1 its value

(a + a') ds, i.e. dsjp. The expression then becomes

PiP-i

^

m

.V=frsin*^'-^4='co8 7') "?'. (3).
\ p J pBini ^ '
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I*;

The eqailibrium ib stable or unHtable for any givmi diHplawiuent according an the

firit factor is negative or poHitivu.

//' tlu rocking body reit on the lummit of the fixed body, the centre of gravity Q
lieH in ibe common normal Oz and therefore /K' = iir and 7 = 0. Wu then have

M=(r-I>^'^AJL;'±_ (4).

CoHHidering diBplaoements in all direotionH, wu Bee that i/ (>Q, i.e. r, in leu* thtin the

letut riidiu» of relative cvrvature 0/ the arc of rolliiiji, the equilibrium ii wholly

ttable, if 00 i» greater than the greatett radius of relative curvature the equilibrium

i» wholly ututable. If 00 lies between these limits the e(iuilibrium is stable for

some displacnmeutH and unstable for others, the separating displacumei^t being that

one in which the radiuH of curvature p' of the conjugate arc is equal to Pxp.Jr.

Ex. A solid paraboloid of revolution it, bounded by a plane perpendicular to

the axis at a distance from the vertex equal to nine-eighth's of the latus rectum.

Prove that it will rewt in stable equilibrium with one end of the latus rectum of the

generating parabola in contact with a horizontal plane. [Coll. Ex., 1891.]

ass. Iiasransc'd inroof of the prlnolpl* of Ttrtual work. Let a body i4£(7

be acted on by any commensurable forces P, Q, R &o. at the points A, It, C &c.

Let these forces be multiples /, m, n Ac. of some force 2A'. At the point A of the

body let a small smooth pulley be attached, and opposite to it at some point A' fixed in

space let an equal pulley be hxed bo that AA' is the direction of the force P. Let a

fine string be wound round thcHe two paileys so as to go round each / times. It is

clear that, if the tension of this siring were A', the force exerted at A would be

equal to the given force P and act in he same direction. Imagine similar pulleys

to be placed at H, C &o. and opposite to

them at li', C &c. Let the same string

go round the pulleys B, li' m times, and

round C, C n times, and so on. Let

one extremity of this string be attached

to a point O fixed in space. Let the

other extremity of the string after

passing over a smooth pulley D fixed in

space be attached to a weight A'. By
this arrangement, all the forces P, Q,

R (&c. of the system have been replaced

by the pressures due to the tension K
of the string.

Suppose now the body receives aay small displacement so that the pulleys A,B,C
&o. are made to appruacii A', B', C &c. respectively by small spaces o, /3, 7 &c.

which may be posUive or negative. Since the string passes round each of the

pulleys A, A' I times, the string is shortened by 2/a when these pulleys are

brought nearer by a distance a. Similarly the string is shortened by 2m/3 when B
and B' are brought closer, and so on. As the lengths DA', A'B', &c. are all invariable

it is clear that by this displacement the weight K will descend a space 8 where

»= 2(la+mp + &c.). It is also clear that, since P=21K, Q =2mK &c., their work is

2K{la + mp+&(i.) i.e. the work of the forces due to the displacement is equal to Kn.

Lagrange reasons thus: if there were any displacement of the system which

would permit the weight to descend, the weight A', always tending to descend, would

necessarily descend and produce that displacement. It follows that, if the system

IB
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UK
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ia in equilibrium, no poiwible dlRplAccment can permit the weight K to deioend.

Hence « = and the virtual wori< of all the forces in eijual to zero.

Lagrange Koca on to remark that, if the quantity /a -t- >n/9 + Ao. inatoad of zero

were negative, thin condition would appear to be Hullicient for equilibrium, 'or it ia

impoHaible that the weight A' would ntrend of itaolf. But he pointa out tliat, if in

any diaplacemcnt the value of la + fic. ia nc(;ative, it will become poaitive by Kivin>{

the ayatem a displacement in an exactly opposite direotiou. This diaplacement

would cauBU the weight A' to descend, and thus equilibrium would be deatroyud.

The argument concerning the descent of A' haa been admitted aa sound by

many eminent mathematioiaus. Yet it docs not appear to bo so evident and

elementary as to entitle the principle of virtual work (thus proved) to become

the basis of a science. It has also been objected that it is not true without further

limitations, for if a heavy particle were placed in unstable equilibrium at the

highest point of a fixed smooth sphere, a amtill displacement would enable the

particle to dexcend notwithstanding that it is in equilibrium.

356. Conversely, if the equation /a f •&c. = holds for all possible infinitely

small displacements of the system, the system will be in equilibrium. For the

weight remains immoveable in all these diaplacementa so that there is no reason

why the forces which act on the system should act so as to move the system in any

one direction or its opposite. The pvstem therefore will be in equilibrium.

The mode in which Lagrange proves this converse is certainly open to many
objections. For these we refer the reader to De Morgan's criticism in the article

Virttuil Veloeitieg in Knight's Knglinh Cyclopadia. The writer of that article

suggests another mode of arranging Lagrange's proof which obviates some of

the objections usually made to it. But this new method ia itself not free from

objection.

I i'l

i'i'
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FORCES IN THREE DIMENSIONS.

267. To find the venultauta of any uiDtiber offorces act in[/ on a

body ill three dimensions. Poinsot's method.

Let the forces be P,, Pj, &c., uud let them act at the pointn

u4,, Ai, &c. Let be any point arbitrarily chosen. It is proposed

to reduce these forces to a single force

acting at and a couple.

Let the point be taken as the origin

of a .system of rectangidar coonlinates.

Let P be any one of the forces, let y^
X = liM, y = MN, z = NA be the coord i- ^
nates of its point of application A.

We begin by resolving P into its three uxial components P^.

P„, Pt\ we shall then transfer each of these (as in Art. 104) to act at

the point by introducing into the system the appropriate couple.

At M apply two opposite forces each eciual and parallel to P^, and

at apply two other opposite forces each also equal and parallel to

Pj. Then since P^ may be supposed to act at iV, the force P^ is

equivalent to a force P^ acting at 0, and two couples whose

moments are yP^ and —nPz, and whose planes are respectively

parallel to yz and xz. The signs + and — are given according as

they tend to rotate the body in the positive or negative directions

of the coordinate planes in which they act. In the same way, by

drawing a perpendicular from A on the plane yz, we can prove

that the component P^ may be replaced by an equal force acting

at the point together with two couples zP^ and - yP^ acting in

the planes xz, xy respectively. Lastly, the component Py may be

replaced by an equal force at 0, and the two couples xPy and

— zPy acting in the planes xy, yz. Sumi.:'ng up, we see that the

force P may be replaced by the three axial components P^, Py, Pg

ThJ
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acting at 0, and throe cotiplcH wIiomo inonu^nts nro yPf — zl\,

zPg — xJ*,, aPy — yl'x, and whoso planes are i/z.zr, ay respectively.

Repeating this tor all the given t'orees, we see that tliey may

be H'placed by tlireo forct's A', 1', Z acting along the axes of

coordinates, and three couples whose moments are L, M, N, and

whose axes uro the axes (»f coordinates, where

X = 1I\, L = ^{yl\-zl\\
Y=lJ>y, i]/ = S(W',-.r7',),

These are called the fdx compoiieiits of the furcett.

The three components A', V, Z may be compounded into a

single force. Let R be its magnitude, and {I, in, ii) the direction

cosines of its positive direction, then

7^/ = A', Hm = y, n„ = z,

W = A'^ + y + Z\

This force is called by Moigno the principalforce at the point 0.

The three components L, M, N in the same way may bo

compounded into a single couple whose moment G and the

direction cosines (\, fi, v) of whose axis are given by

GK = L, Gfi = M, Gv = N,

The couple G is called the principal couple at the point 0. The

components L, M, N of the principal couple are also called the

moments of the forces about the axes.

268. The base of reference to which the forces have been

transferred, has been taken as the origin of coordinates. But when

it is necessary to distin^fuish between these points we nuist modify

the expressions for the components. Let some point 0' whose

coordinates are f, rj, ^ be the base of reference. The expressions

for the six components for this new base may be deduced from

those for the origin by writing x — ^,y — v,z — ^ for x, y, z.

The expressions for the components of the force R do not contain

X, y, z, hence the principal force R is the same in magnitude and

direction whatevei' base is chosen.

The expressions for the components of the couple G become

L':=^^{{y-v)P^-{z-OP,] = L-vZ+^V,
M' = l[{z-OP,-{x-^)P,\=M-;;X + ^Z,

N' = t{{x-^)Py-(y-r,)P,] = iy-^V+vX.

ii
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u

Thus the magnitude and the axis of the principal couple G are in

general different at different bases.

259. Conditions of equilibrium. It has been proved in

Art. 105 that the forces on a body can be reduced to a single force

R and a single couple G. By the same reasoning as in Art. 109 it

is necessary and sufficient for equilibrium that these should

separately vanish. We therefore have R = and G = 0.

If the axes of reference are at right angles, these lead at once

to the six conditions

Z = 0, F = 0, Z=0, Z = 0, .l/=0. iV=0;

we may, however, jnit these results into a more convenient form.

In order to make the resultant force R zero, it is necessary and

sufficient that the sum of the resolutes of all the forces along each of

any three straight lines (not all parallel to the same plane) should

be zero. To prove this, let OA, OB, OC be parallel to the three

straight lines. If the resolute of R along OA is zero, it is evident

that either R is zero, or the direction of R is perpendicular to OA.

If R is not zero, its direction is perpendicular to each of three

straight lines meeting in 0, not all in one plane, which is impossible.

In frhe same way, since couples are resolved according to the

same laws as forces, we infer that to make the principal couple G
zero, it is necessary and sufficient that the component couple of

all the forces about each of any three straight lines intersecting in

the base but not all in one plane, should be zero. It will be

presently seen that the moment of the component couple for

any axis through is also the moment of the forces about that

axis. Art. 263.

Since a couple may be moved into a parallel plane without

altering its effect, it is clear that, when the force R is zero, the

moments about all parallel straight lines are equal. It is therefore

sufficient for equilibrium that the moment of the forces about each of

any three straight lines (whether intersecting or not) should be zero,

but all three must not be parallel to the same plane, and no two must

be parallel to each other. The method of finding these moments

will be more fully explained a little further on.

260. Components of a force. Usually we suppose a force

, to be given when we know its magnitude and the equations of its

{line of action. We see from the results of the proposition in Art.

AHl

251

P
yP\

sen\

foi

froi

of

det

{l>

coc

the



ART. 262.] COMPONENTS OF A FORCE. 187

257 that it will sometimes be more convenient to determine a force

P by the values of its six components, viz. Px, Py, Pt, and

yPg — zPy, zPx-xPty xPp — 7/Px. The advantage of this repre-

sentation is tfint the resulting effect of any number of forces is

found by adding their several corresponding components.

If we wish to represent the line of action of the force apart

from the force itself, we may regard the straight line as the seat

of some force of given magnitude, and suppose the line itself

determined by the six components of this chosen force. Let

(I, m, n) be the direction cosines of the straight line, (x, y, z) the

coordinates of any point on it. Then, if the force chosen is a unit,

the six components or coordinates* of the line are

/, ni, n,\ = yn — zm, fi — zl— am, v = xm — yl,

with the obvious relation

l\-\- mfi + nv = (1).

If a force P act along this straight line, its six components or

coordinates are PI, Pni, Pn ; P\, Pfi, Pv.

If we compound several forces together, the six components become

X = ^Pl, Y= ^Pm, Z=='S.Pn; L = tP\, M=XPfi, iV= SPi/,

but the relation

XL + YM+ZN = (2)

is not necessarily true.

261. We have seen in Art. 257 that all these forces may be

joined together so as to make a single force R and a couple G.

This combination of a force and a couple has been called by

Pliicker a dyname. The six quantities X, Y, Z, L, M, N &xq the

components of the dyname. The three former components are

multiples of some unit force, the three Utter of some unit couple.

It will be shown further on that when the coordinates of the

dyname satisfy the condition (2), either the force R or the couple

of the dyname is zero.

aea. Ex. l. The six components of a force are 1, 2, 7; 4, 5, - 2. Show that

the magnitude of the force is ^/5-l, and that the equations to its line of action are

(ly - 2z)li = (z- lx)l5 = (2.r - »/)/( - 2) = 1.

Ex. 2. The six components of a dyname are 1, 2, 3 ; 4, 5, 6. Show that the

magnitude of the force is ,^14, and that its direction cosines are proportional to

1, 2, 3. If this force act at the origin the magnitude of the couple is ,^77, and the

direction cosines of its axis are proportional to 4, 5, 6.

* The six coordinates of a line are described in Salmon's Solid Geometry (fourth

edition, Art. 51) from an analytical point of view. See also Cayley, Quart. Journal,

1860; Gamb. Trans. 1867; Plucker, Phil. Tram. 1865 and 1866.
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263. Moment of a force. It has already been stai "d that

the expressions for L, M, N in Art. 257 are usually called the

moments of theforces about the iixes of x, y, z respectively. These

expressions aie

Z - S (yP, - zPy\ M=S {zP, - xF,), N= 1 {wF„ - yP,).

To show how far this definition agrees with that already given

in Art. 113, let us examine how the expression for N has been

obtained. The force P has been resolved into its components

P.,i, Py, Pz', the Dwo former act in a plane perpendicular to the

axis of z, hence by the definition given in Art. 113, the expressions

yPx and — xPy are respectively equal to their moments about that

axis. The latter Pz acts parallel to the axis of z, and if the

moment of this component is defined to be zero, the expression.iV

will bc\.nne the moment of the forces about the axis of z. Let Q
be the resultant of the two components Px, Pz, then the moment
of Q about the axis of z is equal to the sum of the moments of P^
and Pz, Art. 116.

Since any straight line niay be taken as the axis of z, this

explanation applies to all straight lines. It appears therefore

that the moment of the component couple for any axis is the

same as the moment of all the forces about that axis.

We thus arrive at the following definition of the moment of a

force about any straight line. Let the straight line be called CD.

Resolve the force P into two components, one parallel and the other

J.
rpendicular to the straight line CD. The moment of the former

is defined to he zero. The moment of the latter is obtained by

multiplying its magnitude by the shortest distance between it and the

given straight line CD.

It is evident that this shortest distance is equal to the shortest

distance between the original force P and the straight line CD,

each being equal to the distance between CD and the plane of

the components. Let r be the length of this shortest distance.

Jet 6 be the angle between the positive directions of the force

P and the line CD, then the resolved part of the force P
perpendicular to CD is P sin 6. We therefore find that the

moment of the force P about CD is equal to Prsind.

When the moments of several .forces round the same straight

line CD are to be added together, we must take care that these

have their proper signs. Any direction of rotation round CD
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having been chosen as the positive direction, the moment of any

force is to be taken as positive when the force acts round CD in

the positive direction.

264. It follows from Art. 263 that, if two equal forces act

along the positive directions of two straight lines AB, CD, the

moment of the former about CD is equal to the moment of the

latter about AB.

The product r sin 6 is sometimes called the moment of either of

the straight lines AB, CD about the other. Let i be the moment of

one straight line about the other, and let either line be occupied

by a force P. Then the moment of P about the other line is Pi.

365. In some cases it may be necessary to take account of the signs of r and 0.

Supposing the positive direction of the common perpendicular to AB and CD to

have been already determined, the shortest distance r must be measured in that

direction. The angle must then be measured in any plane perpendicular to r

from the projection of one line to the projection of the other in such a direction

that when r and sin are positive, a positive force acting along either line will tend

to produce rotation round the other in the positive direction. See Art. 97.

260. Geometrical representation ofi. The volume of a tetrahedron is known*
to be equal to one-sixth of the continued product of the lengths of two opposite

edges, the shortest distance between the edges and the sine of the angle between

them. Let AB, CD be any lengths conveniently situated on -he two straight lines.

The mutual moment of the ttvo lines is equal to ^,,—y,j: , where V is the volume of
Alt . KjL)

the tetrahedron whose opposite edges are AB, CD.

Analytical representation of i. Let (fgh), (f'g'h') be the coordinates of A, C,

and (Imn), (I'm'n') the direction cosines of the positive /-/', a-n', h-h'

directions of AB, CD. The mutual moment of AB, CD, is

the determinant in tlie margin. The order of the terms in

the determinant is as follows ; if /, g, h precede /', g', h' in the first row, then

I, m, n precedes V, m', n' in the order of the rows.

To prove this we take C as origin, and let x=f-f', y=g-g', z= h-h'. The

required moment is then W + fim,' + vn' , where X, /it, u have the meanings given in

Art. 260.

* To find the volume of a tetrahedron. Pass a plane through CD and the

shortest distance EF between CD and the opposite edge. Then since the tetrahe-

dron ABCD is the sum or difference of the tetrahedrons

whose vertices are A and B and common base is DEC,
its volume is one third the area DEC multiplied by
AB . sin 6, where is the angle AB makes with the

plane DEC.
If a straight line AB cut a plane in E and be at right

angles to a straight line EF in that plane, its inclina-

tion to the plane is the angle it makes with a straight

line drawn in the plane perpendicular to EF. Euc. xi, 11.

But CD lies in the plane and is perpendicular to EF,
hence d is equal to the angle between the opposite edges

AB, CD. The volume is therefore equal to ^AB . CD . EF . sin d.

f-r,
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967. Ex. 1. Two straight lines are given by their six coordinates (ImnXftv),

{I'm'n'X'n'v'): show that their mutual moment is i= l\' + mij.' + nv' + i\ + m'n + n'v.

This quantify is therefore invariable for the same two lines, to whatever rect-

angular axes their coordinates are referred. If i = 0, the lines intersect.

Other theorems on the moments of lines are given in Scott's Determinants.

Ex, 2. If {xytu), {x'y'z'u') are the tetrahedral coordinates of any two points H,
K on the line uf action of a force P, show that the moment of the force about the

er
M,

edge AB of the tetrahedron, is P.UK . Ali

If the force, when positive, acts from // towards K and ihe terms in the

determinant are taken in the order shown, this expression gives the momeut of

the fo/ce round AB m the direction from the corner C to the corner D.

Ex. 3. If in a tetrahedron the mutual moments of the opposite edges are equal,

prove that the product of their lengths are also equal. If (r, s, t) are the lengths of

the lines joining the middle points of opposite edges and (a, /3, y) are the angles at

which they intersect, prove also that

r«-2rVco8-i7 + «*= s^-2f>"<-'cos2a + «'«=f«-2«Vcos2/3 + r*. [St John's, 1891.]

Ex. 4. Two triangles ABC and A'B'C are seen in perspective by an eye placed

at O; forces P, Q, R act in BC, f\4. and AB, another set P', Q', R' in C'B', A'C
and B'A' respectively, and the whole system is in equilibrium. Show that

A. P.OA' _ A' . P'.OA ^ A.Q.OB' _ A' . Q' OB _ A .R. PC _ A' .R'.OC
lie. AA' ~ B'C'.AA' ~ CA .BB' ~ C'k' . BB' ~ AB.CC ~ A'B' .CC '

where A and A' are the volumes of the tetraliedra OABC and OA'B'C respectively.

[Math. Tripos, 1883.]

The six lines OA, OB, OC, AB, BC, CA form a tetrahedron. If we equate to

zero the sum of the moments of the six forces about the edge OA, we find that the

first and second of the above given expressions are equal. In the same way taking

moments about the edge AB, we find that the second and fourth are equal. It

follows by symmetry that all the six expressions are equal. The moments m ,y be

found by using the rule given in Art. 266.

368. Problems on BquiUbrlum. Ex. 1. A body, free to turn about a straight

line as a fixed axis, is acted on by any forces. It is required to find the condition of

equilibrium and the pressure on the axis.

Let the straight line be the axis of z, and let x, y be two perpendicular axes.

The pressures on the elements of length of the axis constitute a system of forces.

If the body is free to slide smoothly along the axis, each of

these pressures will act perpendicularly to the axis. But

as this limitation does not simplify the result, we shall

suppose the direction of the pressure to be perfectly

general. Taking any arbitrary point B on the axis as a

base of reference, each pressure may be transferred to act

at 2i, by introducing a couple whose plane passe 'j through

the axis. All the pressures are therefore equivuient to a

resultant pressure which acts at B together with a resultant

couple whose plane passes through the axis. Let one of the

forces of this couple act at B and let the arm be so altered

(if necessary) that the other force acts at some other arbitrary point C of the axis.

Then compounding the forces which act at B, we see that the pressures on all the

Q.
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elements of length of the axu are equivalent to two pressures xchich may he made

to act at any two arbitrary points B, C of the axis. We may suppose the body

attached to its axis at these two points by smooth hinges.

Let fj., Fi,, P, and O,, Cf^, G, be the resolutes of the preHSures at li and C re-

spectively. Let 6, c be the ordinates of these points. Let X, 1', Z, L, M, N be the

six components of the given forces. Then resolving parallel to the axes and taking

moments as in Art. 257,

F,+ G,+ Z = o\

-Fyb (T!^c + L =
FJ) + G,c + M=(i\

N=Ci)

The last equation determines the condition of equilibrium, and shows that the

body will turn about the axis unless the moment of the given forces about it is zero.

We have therefore five equations to determine the six component pressures on

the axis. The pressures F,, Fy, G,, Gg are obviously determinate, but only the sum

of the components F^, G, can be found.

The solution of these equations will be simplified by a proper choice of the

arbitrary points B and C. The position of the origin is generally determined by

the circumstances of the problem. If we place B at the origin we have h— 0, and

the values of Gy, G, become evident by inspection.

Suppose for example the body to be a heavy door constrained to turn round an

axis inclined at an angle a to the vertical. In this case, since the moment of

the forces about the axis must be zero, the centre of gravity of the door must lie in

the vertical plane through the axis. Let us take this plane as the plane of crz, the

axis of the door being as before the axis of z. Let x, 0, z be the coordinates of the

centre of gravity, and let W be the weight of the door. To simplify the moments
we resolve W parallel to the axes ; we therefore replace W by the two components

IF sin o and - W cos a acting at the centre of gravity parallel to the axes of x and z.

We shall choose the arbitrary point B to be at the origin, while the other C is at

a distance c from it. Resolving and taking moments as before, we have

F^+G,+ Jr8ino= 0|

F„ + G„ =0,-,

i'',+ G,-ircosa= 0)

It follows from these equations that Fy and Gy are both zero, so that the resultant

pressures act in the vertical plane through the axis. The values of F^, G, and

fj + G, may be easily found.

Ex. 2. Three equal spheres, whose centres are A, B, C, are placed on a smooth

horizontal plane and fastened together by a string which surrounds them in the plane

~G„c=0
G c+ir?sina+ lFicoso= Ol

11
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of their centre*, and is jimt not tiffht, A fourth equal sphere, whose centre is D, i«

placed on the top of these touching all three. Prove that the tention of the string is

T= »73^/G.

Let li be the reaction of any one of the lower Hpheres on the upper, DN a

perpendicular from D on the plane AliC, then 37i cos ADN= W. Consider next the

sphere whose centre is A ; the other two of the lower spheres exert no pressure on it.

The resolved part of Ji in the direction NA balances the two tensions of the parts

of the string parallel to AD and AC. Hence li cos DAN=2T coa BAN. The angle

liAC = (JO'', and
. ,^^, AN ,^AM 2r8in60°

We now easily find T in terms of W.

Ex. 3. Four equal spheres rest in contact at the bottom of a smooth spherical

bowl, their centres being in a horizontal plane. Show that, if another equal sphere

be placed upon them, the lower spheres will separate if the radius of the bov;l be

greater than (2jl'6 + 1) times the radius of a sphere. [Math. Tripos, 1883.]

Ex. 4. Six thin uniform rods, of equal length and equal weight Jr, are

connected by smooth hinge joints at their extremities so as to constitute the six

edges of a regular tetraliedron ; one face of the tetrahedron rests on a smooth

horizontal plane. Show that the longitudinal strain of each of the rods of the

lowest face is n'12^6. [Coll. Ex.]

Ex. 5. A heavy uniform ellipsoid is placed on three smooth pegs in the same

horizontal plane, so that the pegs are at the extremities of a system of conjugate

diameters. Prove that there will be equilibrium, and that the pressures on the pegs

arc one to another as the areas of the conjugate central sections. [Coll. Ex.]

Ex. 6. Four equal heavy rods are jointed to form a square. One side is held

horizontal and the opposite one is acted on by a given couple whose axis is vertical.

Show that in a position of equilibrium the lower rod makes an angle 2 sin~' GjWl

with the upper, G being the couple, and W and { the weight and length of a rod.

Find the action at either of the lower hinges. [Coll. Ex., 1880.]

Ex. 7. An equilateral triangular lamina, weight W, hangs in a horizontal

position with its angles suspended from three points by vertical strings each equal in

length to the diameter 2a of the circle circumscribing the triangle. Prove that the

couple required to keep the lamina at a height 2 (1 - 7i) a above its initial position is

Wa J{1 - n^). [Coll. Ex., 1886.

]

Ex. 8. A weightless rod, of length 22, rests in a given horizontal position with

its ends on the curved surfaces of two horizontal smooth circular cylinders, each of

radius a, which have their axes parallel and at a distance 2c. The rod is acted on

at its centre by a given force P and a couple. Find the couple when there is

eq lilibrium, and prove that the magnitude of the couple will be least when P acts

vertically, provided that c<l8m<j) + ^a^/2 sec^^, where (/> is the angle between the

rod and the axes of the cylinders. [Math. Tripos, 1889.]

Ex. 9. A solid circular cylinder, of height h and radius a, is enclosed in a rigid

hollow cylinder which it just fits, and is formed of an infinite number of parallel

equally elastic threads, which will together support a weight W when stretched to

a length 2/t. The ends of these strings are fastened firmly to two discs, one of which

is then turned through an angle a in its own plane : assuming each thread to form

'
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a helix, prove that there is a force exerted in the direction of the axis of the cylinder

equal to-^^- (^ -
-^, ^/'i'' + "'<«'^ + ^j) . [Math. Tripos, 1871.]

Ex. 10. Three equal heavy spheres, of weight W and radius a, are suspended

from a fixed point by three equal strings each of length I. A very light smooth
spherical shell of radius b is placed symmetrically on the top of them, and water is

poured very gently into it. Show that the greater the amount of water poured in

the closer must the three lower spheres be to one another in order that equilibrium

may be possible, and that equilibrium will be impossible if the weight of the water

poured in exceed nW, where n is the positive root of the equation

v?(l-h)(l-ir2n + h) + (2»i + 3) («- - &ab - 36») = 0,

it being assumed that b is so small as to admit of the strings being straight.

[Math. Tripos, 1890.]

360. Ex. 1. A heavy rod OAJi can turn freely about a fixed point O, and restit

over the top CAD of a rough wall. If OC be a perpendicular from on the top of the

wall, prove that tlie anylc 6 which the rod niake» with OC when the equilibrium in

limiting in given by fi— tan^sin 6, where /3 is the angle OC makes with the per-

pendicuUir OE drawn from O to the vertical face of the xoall.

To assist the description of the figure, let OA li be called the axis of r. Let z be

normal to the plane AOC, and let y be perpen-

dicular to .r and z. The weight W of the rod

acting at G is equivalent to W cos /3 parallel to

z, and )rsin/3 acting parallel to CO. This latter

is equivalent to W sin j3 cos and IF sin /3 sin

parallel to r and y respectively.

The react; 'm R&tAia perpendicular to both Ci
and CD, and is li . irefore parallel to z. The point

A of the rod can only move perpendicularly to OA.

The friction therefore acts, not along the top of the wall, but opposite to the

direction of motion, i.e. parallel to y.

Taking moments about y and z respectively, we have

W COB p. OG = :i . OA, W sin /3 sin . OG= fiR . OA.

These give n= tan /3 sin 0.

Ex. 2. Three equal hea\y spheres, each of weight W, are placed on a rough

ground just not touching ea( h other. A fourth sphere of weight 7iW is placed on

the top touching all three. Show that there is equilibrium if the coefficient ot

friction between two sphries is greater than tan ^a, and that between a sphere

and the ground is greater than tan ^a.n/(n + 3), wheie a is the inclination to the

vertical of the straight line joining the centres of the upper and one lower sphere.

Ex.3. A pole of uniform section and density rests with one end A on the ground

(which is sufficiently rough to prevent any motion of that e-ia) and with the other

against a rough vertical wall whose coefficient of friction is /x. If AB be the limiting

position of the pole for any position ot A, AN the perpendicular from A on the wall,

a the angle BAN, and the inclination of BN to the vertical, prove that tan a tan

is constant, and find the whole friction exerted at B. Find also the equation

to the locus of B on the wall, N being fixed, and prove that the deviation of B from

the vertical through N is greatest when a= &=tan~^ ^J^. [Coll. Ex., 1886.]

R. S. I. 13
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Ex. 4. A narrow uniform rod of length 2a rests in an oblique position with one

end on a rough horizontal table anl the other against a rough vertical wall, the

eoefiicients of friction at the table and wall being ^, and /Xg, and the distance of the

foot of the rod from the wall being k ; show that the rod is on the point of slipping

at the lower end if the vertical plane in which it lies makes an angle with the wall

given by fc/*,(/i2*8in''fl -coB*tf)*=fc-2/i,(4tt»8in'-' tf-A:«)*, and that the inclination

of the tangential action at the upper end to the horizon is then 8ec~' (/Xotan 0).

[Math. Tripos, 1887.]

Ex. 5. A curtain is supported by an anchor ring capable of sliding on a

horizontal cylinder by means of a hook fixed at that point of the ring which is lowest

when the curtain is hanging. Hhow (1) that the ring may touch the cylinder at one

or two points but not more, (2) that if there be double contact and the weight of

the ring can be neglected the ring will not slip along the cylinder however it bo

pulled unless the coelKcient of friction be less than ,„ ,, . - ,, in which << is the^
(2a + h)tiiii0-b

radius of the generating circle, a that of the circle described by its centre and the

inclination of the plane of this latter circle to the axis of the cylinder. [Math. T.]

For the sake of the perspective take the axis of the anchor ring as axis of z, and

let the plane of the circle whose radius is a be the plane of xy. Let the axis of x

pass through the book. Let li, B' be the two points of contact of the cylinder and

ring, B' being nearest the hook. Let (ii, nR) (R', nR') be the reactions at these

points, then these four forces lie in the plane xz. Taking moments about an axis

through the hook and solving, we find

_ (2(1 + b) cos - pb cos
'*

~ (2a + b) sin fli -¥+pb (1+ sin^
j

'

where p is the ratio of R' to R. As long as there is double contact R and R' are

both positive. But if /jl is greater than the value given in the question, this equation

shows that p must be negative.

Ex. 6. A solid heavy cone, placed with a generating line in contact with r.

rough vertical wall, can turn freely about its vertex which is fixed, and is acted on

by a couple whose moment is L and whose plane is parallel to the base. Prove

that in equilibrium the inclination to the vertical of the generating line in contact

\vith the wall is given by L= i^Wh sin tf tana, where a is the semi-vertical angle of

the cone and h its altitude. If the rim only of the cone is rough, prove that the

least value of the coefficient of friction is 2 tan . cosec 2a.

The central axis and the invariants.

270. Poinsot's Central Axis. Any base having been

chosen, the forces of a system have been reduced to a force R
acting at and a couple G. We shall now examine whether

this representation of the forces can be further simplified by a

proper choice of the base.

Let 6 be the angle between the direction of the force R
and the axis of the couple G. We may resolve G into two

couples, one G cos 6 whose plane is perpendicular to R, and

AHI
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the other G pin 6 whose plane contains that force. This latter

couple together with the force R may be replaced by a single

force in its plane equal and parallel to R, but situated at a

distance Q sin djR from 0.

We have therefore reduced the system to a force R (actiiig in a

direction parallel to the principal force at any base) together with

a couple whose plane is perpendicular to the force. The line of

action of this force R is called Poinsot'a central axis.

To conKtruct geometrically the central axis when the couple G
and the force R at any b;"e of reference are given, we notice

that (1) the central axis is parallel to R, (2) it is at a distance

G sin 6IR from R, (3) the perpendicular from on the central axis

is at right angles both to R and the axis of G,{i) the perpendicular

from must be so drawn that its foot is moved by the couple

G sin 6 in the same direction as that in which R acts.

271. Screws and wrenches. A body is said to be screwed

along a straight line when it is rotated round this straight line as

an axis through any small angle dO, and at the same time trans-

lated parallel to the axis through a small distance ds. The ratio

dsjdd is called the pitch of the screw. If the pitch is uniform, it

may also be defined as the space described along the axis when

the angle of rotation is a radian, i.e. a unit of circular measure.

The pit-^h of a screw is therefore a length. For the sake of brevity

the axis of the screw is often called the screw.

The term turench has been applied by Sir R. Ball to denote a

force and a couple whose axis coincides with or is parallel to the

force. The phrase wrench on a screio denotes a force directed

along the axis of the .screw and a couple in a plane perpendicular

totlie screw, the moment of the couple being equal to the prodtict

of the force and the pitch of the screw. Th-i force is called the

intensity of the wrench. When the pitch of the screw is zero the

wrench is simply a force. When the pitch is infinite the wrench

reduces to a couple. The phrase wrench on a screw is sometimes

abbreviated into the single word, wrench.

A wrench is a dyname in which the direction of the force

is perpendicular to the plane of the couple.

To determine a screw five quantities are necessary. Four are

required to determine the position of the axis, for example the

coordinates of the points in which it cuts two of the coordinate

13-2
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planes. One more is necessary to duterniine the pitch. To

determine a wrench on a screw »v sixth (juantity is required, viz.

the magnitude of the force.

272. Screws are distinguished as right < .u-handed according

to the direction in which the body is rotate ohe suinc translation.

Let an observer stand with his back along the axis, so that the

translation is called positive when it is in the direction from the

feet to the head. The screw is then called right or left-handed

according as the rotation appears to be opposite to or the same

as that of the hands of a watch ; see Art. 97.

As an example, the common corkscrew is a right-handed

screw. As another example, let the reader push his two hands

forward horizontally, turning at the same time his right thumb to

the right and his left thumb to the left. The motion of the right

hand will illustrate a right-handed screw, that of the left a left-

handed screw.

In this chapter the figures are •irawn in agreement with the system of coordinates

usually adopted in solid geometry. The left-handed screw will therefore represent

the conventions adopted to distinguish the poHitive and negative directions of

rotation and translation. By interchanging the positions of the axes of x and y the

figures may be adapted to the other system.

273. The equivalent wrench. A system of forces is given

by its six components X, Y, Z, L, M, N referred to any rectangular

axes with the origin as the base of reference. It is required to

find analytical expressions for the equivalent wrench.

It is obvious that the axis of the equivalent wrench is Poinsot's

central axis, and that it is parallel to the principal force R at any

base of reference. Hence

(1) the direction cosines of the central axis are

l = XIR, m=Y/R, n = Z/R,

(2) the force or intensity of the wrench is R.

(3) Let r be the required couple of the wrench. Then

by Poinsot's theorem all the forces are statically equivalent to

R and F, so that the moment of all the forces of the system about

any straight line is equal to that of R and F about the same line.

If this straight line be parallel to the central axis, the moment of

R is zero and that of the couple is F, It follows that the moment

of the forces of a system about all straight lines parallel to the

central axis are equal to the moment about the central axis.
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The principal forco H, at the origin is piinvllel to the central

axis, hence, if be the angle the axis of (f makes with H,

V = G cos 0=LU Mm + Nn.

.-. rR = LX + MY+NZ.
The pitch of the screw ou which the wrench acts is therefore

r LX + MY+NZ
^~ H" R'

(4) Let (^r)^) be the coordinates of any point on the central

axis. When this point is chosen as the b»use, the componentH

L\ M', N' of the couples are given in Art. 258 and th<jae com-

ponent.^ are proportional to the direction cosines ot the axis of

the principal couple. We have therefore by (1)

X ~ y z
These are therefore the ecjuations to the central axis.

If we multiply the numerator and denominator of each fraction

by X, Y, Z res])ectively and add them together, we see that each

fraction is equal to the expression found above for the pitch p.

274. If X, Y, Z are each equal to zero the )rinciple on which

these equations have been obtained becomes nugatory. But in

this case the given system is equivalent to a resultant couple.

Any straight line parallel to its axis is the central axis.

If the couple F = 0, the given system is equivalent to a single

force R. Since the components U, M', N', at any point (^vO on

this force are zero, we have

L-vZ + 0^= O, M-^X + ^Z=0, N-^Y + vX = 0.

Any two of these are the equations of the single resultant.

975. We may obtain the equations to the central axis in another way. The

moments of the force R and the couple r about the axes are L, M, N. Hence the

moments of the force R alone are L-Vl, M—rm, N-Vn, i.e. they are L-Xp,

M- Yp, N- Zp. The six components of the force R are therefore X, Y, Z, L- Xp,

M- Yp, N- Zp. These are the six coordinates of the central axis.

276. Conversely, the equivalent wrench being given, we may

find the six components of the forces at any base of reference.

Let Oz be the given axis of the wrench, and let 0' be any

point at which the components are required. Let G'O be a

perpendicular on Oz and let 00' = r. Let O'C be parallel to Oz

and O'B perpendicular to the plane O'Oz.

^1 ,'ij
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The force R iictinjf alon^ ()z may be tninHferred to act along

O'C by introducing the couph! Jir with Oli tor axis. The couple

r may also be transferred from ita axis Oz

to O'C. Compounding these two couples

we have a resultant couple (/ whose axis

O'A lies in the plane B0'(' and makes an 0.

angle with O'C, where

G' = P -»- JPr^ tan 6 = Rr/T.

^0'

277. From these values of R and we may draw several

obvious conclusions.

(1) We see that is always numerically greater than F,

80 that the principal couple is least when the base of reference

is on the central axis.

(2) Since 00' may be drawn in any direction from Oz, it

follows that the loois of the base at which the principal couple G
has a given value is a right circular cylinder whose axis is the

central axis.

/^ (3) The locus of the axis, viz. O'A, of i
''^ trincipal couple of

given magni' ide is a system of hyperbcie''' .i lovolution.

278. Bxamplaa. Ex. 1. The oquivalent wrench being given, show that the

base on a giveu Htraight line at which the principal couple is least is the point at

which the straight line is intersected by the shortest distance between itself and the

central axis. Find also the base at which the axis of the principal couple makes

the least angle with the given straight line.

Ex. 2. The base being the origin of coordinates, show that the plane containing

the force R and the axis of G is giveu by the determinantal
! { r) 1^=0.

equation in the margin. Show also that the minors of the first X Y Z \

row, after division by R^, are the coordinates of the foot of the
i

L M N
\

perpendicular from the origin on the central axis. Thence find the equations to the

central axis regarding it as a straight line drawn through this point parallel to R.

Ex. 3. Twelve equal forces occupy the edges of a cube, the parallel forces acting

in the same direction : prove that their central axis is a diagonal. If the forces

are replaced by twelve equal couples whose axes occupy the edges, prove that

their central axis is parallel to a diagonal.

Ex. 4. Six equal forces act along the edges AB, DC, CA, DA, DB, DC of a

regular tetrahedron : show that their central axis is the perpendicular from the

corner D of the tetrahedron on the face ABC.

Ex. 5. Six forces act along the edges AB, BC, CA, AD, BD, CD of a tetra-

hedron, each force being proportional to the length of the edge along which it acts.

Show that their central axis is parallel to DG and is at a distance %Aco8 tpjDG

from it, where A is the area of the face ABC, G its centre of gravity, and <p the

angle DG makes with the face.
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;t along

' couple

Kx. 0. Any nunilwr of forccn aru ruprcHontud in magnituile, direction, and

C

poflition by the ntraiKht lincH, /I,./,', /I.^^,/.. A,A, and (i, d' are the controH of

j,'ravity of equal partioioH placed at /!,....'(„ and ,(,'....1,' rcHiHictivoly. Prove that

the central axin of thcHe forccH in parallel to (Id'. If thcHe fnrcen intcrnect any

plane drawn perpendicular to <lfl' in /?, , Rj, ../>„ prove that the central axin

interiecta thiH plane in the centre of K'avity of particlcn placed at /),, //,,.. ./{^

whoHe wei^htH are proportional to the resolved parts of the forcen parallel to (IG'.

[Coll. Ex., 188».)

Ex 7. A HyHtem of forceH interscctit the plane of xif and a parallel plane z = h

in the pointM /l|.(,j..., A^'A„'... respectively; their inaKnitudeB are o, . AfA,', a.j..l.j.4./,..

and the pitch of the ccjuivalent wrench in p. Prove that the central axJH intersoots

thene plancH in the points //, //' whose coordinates ((, ri), ((', r;') are Kiven by

{' - x' = { - x = (i/' - I/) />//», 7,' - y' = 7, - ;/ = - ( jr' - j) p/h,

where (.ry) are the coordinates of the centre of gravity (I of masses o, , o, ,... placed

at A^Af... and x'//' those of the centre of gravity (i'of the same n'las.ses placed at

A^Aj ....

Hhow also that (1) (rll is perpendicular to GK' and equal to GK' .pjh where A"

is tlie projection of G' on the plane of .r;/, and (2) ////' is parallel to GG'.

Ex. 8. Prove that the trilinear coordinates afiy of the point in which the

central axis of a syrtem of forces cuts the plane of any triangle AliC are givitn by

Xa = Mi- XiP, Z^-M.^- X.,p, /y = M^- X.,p,

where 3/,, M,^, M^ are the moments of the forces about the sides, .Yj, .Yj, A';,, the

resolutcs along the sides of the triangle, X the resolute perpendicular to its plane,

and p is the pitch.

Regarding Ali as the axis of x and the plane of the triangle as that of xy, the

ordinate ij, found by putting ^=0 in the equation of the central axis. Art. 273, is

the trilinear coordinate 7.

279. Invariants of a system. It follows from the third

result of Art. 273 that, whatever base is chosen and whatever

the directions of the rectangular axes may be, the ijuantity

I =LX + MY + NZ is invariable and equal to VR. The square

of the resultant force, viz. R- = X'^ + Y- + Z"^ is also invariable.

These tivo quantities, viz. I and R-, are called the invariants.

When the invariants / and R- are known, a third invariant, viz.

the pitch J)
= I/R\ can be immediately deduced.

If the forces of the system are such tli.it the first of the.se

invariants is zero, it follows that either Ji -0 or F = 0. The

condition that the forces should be equivaleni to either a single force

or a single couple is therefore 1 = 0. We may distinguish between

these two cjises by examining the second invariant. If the forces

are to be equivalent to a single force ive must have as a second con-

dition R not equal to zero.

280. When two systems of forces P,, P., &c. and Qi, Q2 &c.

are given we form the two expressions

IPQr sin (P, q\ ^PQ cos (P, Q),

Ml

I
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where r is the shortest distance between the forces P, Q, and

(P, Q) is the angle between these forces, the products being

taken with their proper signs. Then each of these expressions

is invariable when we change either system into any equivalent

system of forces. This theorem is given by Chasles, LiouviUe's Journal, 1847.

To prove this consider both systems as one, then however

the forces may be changed, the invariant / of the united systems

remains the same. Hence

lP,P,r,, sin (P„ P,) + SQ.Qy,, sin (Q, , Q,) + XPQr s.n (P, Q)

is invariable. But each of the two first terms is invariable.

Hence the last term is also invariable.

In just the same way by considering the invariant R- we may
show that IPQ cos (i

', Q) is also invai'iable.

381. To find the itivariants of a system of forces. To find the invariants of

two forces Pj, P„ we refer to the figure of Art. 276. Let the line of action of the

force Pi be the axis of z, let the line of action of P., be O'A, and let the shortest

distance 00' between these forces be the axis of .v. The components of the fjices

are A'=0, y=2\sin5, Z = Pi + P.,coBe,

L = 0, M= - P.<r cos e, N- Pj- sin d.

Since the invariants are independent of all axes, we have

J=L.Y+.l/r+iVZ= PiP„rsin6>,

ZJ-*= Pi'J + P.:- + 2PiP.i cos e.

Since 1= P^N, it follows that the invariant of two forces is equal to either force

multiplied by the moment of the other force about the first.

Let the positive direction of a straight line be determined by the signs of the

direction cosines of the line. The positive direction of rotation round that line

is then determined by the rule in Art. 272 or Art. 97. Tlie sign of the invariant

of two forces is positive or negative according as the sign of either force and that of

the moment of the other are like or unlike.

The forces P, , Po bemg represented by two 'engths measured along their

respective lines of action, the invariant I is equal to six times the volume of the

tetrahedron havinn these lengths for opposite edges. This tetrahedron is sometimes

called the tetrahedron constructed on two forces. See Art. 266.

'To fird the invariant I of any number of forces P, , P^ &c. Taking any rect-

angular axes, the six components are given in Art. 257. It follows that J is a

quadratic function of P, , P., Ac. of the form

1= ^iiPi" + A .jJV + 2A y,PiP., + &c,

where /!,, &o. are all independent of the magnitudes of the forces. When cU the

forces except Pj , P.j are put zero this expression should reduce to P^Pnry, sin (Pj , Po),

where (Pj , P..) expresses the angle between the directions of the forces. Hence

Aii=0, A^=0; applying the same reasoning to the other forces, we infer that

2 = SPiP./„sin(Pi,P.j).

It
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It follows that / is half the mim of each force multiplied bij the num of the moments^ of

all the other forces about it, each inoment beiiip taken with i.s proper sign.

It also follows that the invariant of any number of foreen is the sum of their

invariants taken two and two loith their proper signs.

Any number of systems of forces being given the invariant I of the whole is the

sum of the invariants of each separate system plus the invariants of each two systems.

For in this summation any one force is taken in combination with every other

force in the partial invariant in which they both occur.

283. The invariant I of a force R and a couple whose moment is G is RGcosO,

where d is the angle the direction of the force makes with the axis of the couple.

For by detinition I=Iir = BG cos 0.

The invariant I of two couples G, G', i^ zero. To prove this 've move the couples

in their own planes until each has a force acting parallel to the intersection of the

planes. The four forces being now parallel, the invariant of every two is zero, and

therefore their sum is zero.

The invariant of two wrenches ichose jorces are P, 1", and pitches p, p', is

P^p + F"ip' + PP' {(p +p') cos e -1- r sin d j

.

This is seon to be true by adding together the six invariants of the forces P, P',

and the couples Pp, P'p\ taken two and two, Art. 281.

Ex. If the system is equivalent to the forces A', Y, Z, acting along oblique

axes and the couples L, M, N, whose axes coincide with the oblique axes, show

that the invariant I is

I=LX+MY + NZ + { YN+ ZM) cos (//, z) + (ZL + XN) cos {z, .r) + (XM + L Y) cos (r, y).

283. Bxamples. Ex. 1. Forces la, mb, nc act in three non-intersecting edges

of a parallelepiped, where a, b, c are the lengths of those edges. Prove that, if the

system be reduced to a wrench, the product of the force and couple of that wrench

is (Im + mn + nl) V, where V is the volume of the parallelepiped. [St John's, 18i)0.]

Ex. 2. A system of n given forces is combined with another force P, which is

given in magnitude and passes through a tixed point; prove that, if the n+l forces

have a single resultant, P must lie on a right circular cone, and that, if their least

principal moment be constant, it must lie on a cone of the fourth degree. In the

second case, prove that if the n forces reduce to a couple, the central axis of the

« + l forces lies on a hyperboloid of revolution. [Math. Tripos, 1871.]

Ex. 3. If a system, consisting of two forces whose lines of action are given

and a couple whose plane is given, admit of a single resultant, prove that the

direction of this resultant lies upon a certain hyperboli ! paraboloid. [Math. Tripos.]

Ex. 4. A rigid body is acted upon by three forces 2P tan A, - P tan li, 2P tan C
along three edges of a cube which do not meet, symmetrically chosen with respect

to the axes of coordinates drawn parallel to them through the centre of the cube.

Prove that the forces are equivalent to a single force acting along the line whose

equations are 2a cot B -x cot .1 = 2y cot B + a cot A= -z cot C, where 2A , 2B, 2C are

the angles of a triangle whose sides are in arithmetical progression, find 2a is the

edge of the cube. [Math. Tripos, 1807.]

Ex. 5. If the rectangle under the three pairs of opposite edges of a tetrahedron

are equal to each other, show that four equal forces acting along the sides taken in

order of the skew quadrilateral formed by leaving out one pair of opposite edges are

equivalent to a single resultant force ; and that the lines of action of the three

single resultants obtained by leaving out different pcirs of opposite edges in

succession are the three diagonals of the complete quadrilateral in which the

faces of the tetrahedron are cut by a certain plane. [Coll. Ex., 1889.]
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-X

Substituting for sin 7, cos 7, &c. from (1) we have

iJ^I = ^h{P'- P'"-) - PP' sin d (p -p').

This equation determines the distance ^ of the central axis of

the two 'Wrenches from the middle point of the shortest distance

measured positively towards P. A formula equivrJent to this

was given in the Math. Tripos, 1887.

Ex. Prove that the central axis of two given forces P, P' divides their shortest

AA' distance in the ratio P' (P' + Pcos 6) : P{P + P' cusO) which is independent of

the length of AA', the angle between the forces being 0.

288. To find the resultant wrench of two wrenches whose axes inter»ect in some

point A. The magnitudes of T and R are found by the same invai'lanis as in the

last proposition, but the determination of the position in space of the resultant

axis is much simplified.

Let the resultant R of the forces P, F, act at A in the direction AD and

make angles 7, 7' with AF, AF'. Then ic sin 7 = P' sin ^,

Rsiny'—PBinO. Following the rule given in Art. 270 to

construct the central axis we find the component of the

couples about a straight line AD drawn perpendicular to R
in the plane of the forces. This component is

Pp sin 7 - P'p' sin 7' = PP' sin e{p- p')IR.

We now measure a distance AO in a direction normal to

the plane of the forces equal to PP' sin (p-p')IR'^, and draxo

a parallel Oz to tlie direction of R, Then Oz is the central

axis.

To determine on which side of the plane of the forces A(> should be drawn, we

notice that the couple Pp sin 7 should turn A O round A towards the direction of R.

^ 287. The Cylindroid. This surface has been used by

Sir R. Ball for the purpose of resolving and compounding

wrenches. Following his line of argument we shall first exaiirne

a special case, and thence deduce the general solution.

To find the resultant oftwo wrenches of given intensities on screws

of given pitches which intersect at right angles. Let the axes of

these screws be the axes of x and

y. Let X, Fbe their forces; p,p'

their pitches. Let R be the resul-

tant of the forces A'^, Y, and let OA
be its line of action. Let G be the

resultant of the couples Xp, Yp'

and let OB be its axis. Let the

angle AOB = «^. By resolving G y
into G cos ^ about OA and G sin <^

I
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about a perpendicular to OA, it is clear (as in Art. 270) that G
and R are together equivalent to a wrench having for its axis a

straight line CD parallel to OA such that 00 = (G sin <f>)/R. The

force along the axis is equal to R and the couple round it is equal

to G cos
<f).

Since G cos
<f>

and G sin ^ are the moments about OA and a

perpendicular to OA, we see that, if 6 be the angle xOA,

Gcos(f) = Xp cos e^-Yp'sine=R{p cos'' 6+p' sin'^ 6)

G sin <j> = — Xp sill 6 + Tp' cosd = R (p' —p) sin ^ cos 6.

Let p be the pitch of the resultant wrench and z = 00, then

=pcos='^+/sin"^ ) ,

= (p'-p)sin^cos^j ^
^'

Also Z = /2 cos e^, F = i£ sin 6.

If the wrenches on the axes Ox, Oy, have given pitches but

varying forces, the locus of the axis CD of the resultant wrench

will be found by writing tan 6 = yjx and eliminating 6 from the

second of equations (1). We thus find

z{x^^hy-')-{p'-p)xy = (2).

This surface is called the cylindroid.

Describe a cylinder who.^'' axis is the axis o{ z; as CD travels

round Oz beginning at Ox and ending at Oy, thus generating one

quarter of the cylindroid, its intersection with the cylinder traces

out a curve which is represented in the figure by the dotted line.

In the next quarter of the surface, the dotted curve (not drawn)

is below the plane of xy, in the third quarter above and so on.

388. Each generating line of the cyHndroid, such as CD, is the axis of a screw

whose pitch is pco%-d+p' siri-0. Let us then descrihe ths cylinder whose base ir.

the conic px^+ v'ij^ = If, where H is any constant. Let the jenerating line CD
intersect the surface of the cylinder in D. Then the pitch of the screw whose axis

is CD is obviously HjCD'^, The base of this cylinder has been called by Sir R.

Ball the pitch conic.

289. Theforces ofany number ofwrenche on a given cyliintroid

being given, it is required to find the residtant wrench and the con-

ditions of equilibriiuu.

Let Pi , Pi &c. be the forces, ^, , d« &c. their inclinations to the

axis of X. Referring to the figure of Art. 287, let CD be the axis

of a wrench whci c force is P and whose pitch is the pitch appro-

priate to the axis CD. If 6 be the inclination of CD to the axis

of X, the resolved parts of P along the axes of x, y and z are



ART. 292.] WORK OF A WRENCH. 205

axis a

and a

Pcosd, PsinO and zero respectively. The process of resolving

the wrench into its components on the axes being the exact

reverse of the process in Art. 287 of compounding the wrenches

on the axes, it is clear that the moments of the force P about the

axes are P cos 6 .p, P sin . p' and zero.

Taking all the wrenches, the six components are

X = tPcos0, Y=tPsmd, Z=0,
L = 1P cos e.p = Xp, M=1P sin 0.p'=Yp', N=0.

These constitute two wrenches on the axes of x and y, with the

same two pitches as before.

By the definition of a cylindroid the axis of the resultant wrench

lies on the same cylindroid. The pitch p and the altitude z of the

resultant wrench are given by equations (1) of Art. 287.

^^ 290. The necessary and sufficient conditions of equilibrium

are SP cos ^ = 0, SP sin ^ = 0, fc • when these vanish all the six

conditions of equilibrium are satisfied. It immediately follows

that if the forces of wrenches on the same cylindroid when trans-

ferred to act at any one point are in equilibrium, then the wrenches

themselves luill he in equilibrium.

For example, the wrenches on any three screws in the same

cylindroid are in equilibrium if the force of each is proportional to

the sine of the angle between the other two.

To find, also, the resultant wrench of two given wrenches in

the same cylindroid we first find the resultant of their forces.

The axis of the required wrench is parallel to this resultant and

has the pitch appropriate to that axis.

291. We may use this theorem to find the resultant wrench

of any two wrenches if we show that a unique cylindroid can be

described so as to contain any two given screws.

To prove this, let CD, CD' be the axes of the two given screws, and let CC be

the shortest distance between them, then GC must be the z-axis of the cylindroid.

Let CC'= h, let a be the inclination of the axes CD, CD' to each other, and ,o, p'

the pitches of the screws. These four quantities being given, we have to prove

that one set of real values can be found for p, p', {z, 0), {z', d'). Taking the values

given for p, z, p', z' in equations (1) of Art. 287 and joining to them the two

equations z-z'= h, 6-0' -a, we can solve the six resulting equations. The result

is that we find unique values for p, p', &e.

U 292. Woi'k of a wrench. To find the work done by a wrench

on a given screw when the body receives a virtual displacement on

any other given screw.
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Let us first find the work done when a given couple is moved

in its own plane from one position to another. This displacement

may be constructed by first translating the couple parallel to itself

until one extremity A of its arm AB assumes its new position and

then rotating the translated couple about A until the other ex-

tremity B assumes its proper position. The work donr, by the

two equal forces during the translation is clearly zero. The work

done by the force at A during the rotation is also zero. It remains

to find the work done by the force at B.

Let F be the force, a the length of the arm AB, d(f> the angle

of rotation. The work done by the force at B is evidently Fad(f).

If the angle of displacement is finite, the work done is found by

integrating Fad(f>. Thus the work done hy a couple of given

moment is the product of the moment by the angle of rotation in

its own plane. See Art. 203.

Next let a couple be rotated about an axis in its own plane

through any small angle d<l>. It is clear that the extremities A, B
of the arm begin to move perpendicular to the plane of the forces.

The virtual work done by each force is therefore zero.

^ 293. Let us apply these two results to find the work done by

a wrench twisted about any screw.

Let p, p be the pitches of the screw and wrench respectively.

Let 6 be the angle between their re-

spective axes and let h be the shortest

distance between them. We suppose

that in the standard case, when 6 and

h are positive, the positive direction of

each axis is such that a force acting

along it would produce rotation about

the other axis in the positive direction
;

see Art. 265. Let M be the force of the wrench.

Take the axis of the screw as the axis of 2 and the shortest

distance OH as the axis of x. Let HC and HB be drawn parallel

to the axes of z and y respectively. The force R may be resolved

into R cos d, R sin 6 along HC and HB. When the body is

translated a space pd(f> parallel to the axis of z and rotated an

angle d(f> about it, the work of the former force is R coa 6, pd^;
the work of the latter is ^ sin ^ . hd(f).

The couple Rp' of the wrench may be resolved into two

X
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couples Rp' cos 6 r.:id Rj> sin 6 whose axes are HC and Hli.

tht thtThe work of the former is Rp cos di

zero. The whole work dune is there/ore

dW= Rd<f> {(p + p) cos e + h sin 6]

.

We notice that this is a symmetrical function of p and p', so

that if the two screws are interchanged the work is unaltered.

^ 294. Reciprocal screws.* Two screws are said to be reci-

procal when a wrench acting on either does no work as the body

is twisted about the other. The analytical condition that two

screws are reciprocal is therefore

{p +p') cos d-\-h sin 6=0.

Thus, two intersecting screws are reciprocal when either they

are at right angles or their pitches arc equal and opposite.

It follows from the principle of virtual work that a body free

to move only on a screw a is in equilibrium if acted on by a

wiench on any screw reciprocal to a.

295. If a screiD a is reciprocal to each of two given screwn, mij a and /3, it in

also reciprocal to every screw on the cylindroid containing a and (i. For a wrench

on any third screw 7 on this cylindroid may be replaced by two wrenches on the

screws a and /3, if the forces on a and /3 are the components of the force on 7
(Art. 289). Since the virtual work of each of these when twisted along a is zero,

the screws 7 and o- are reciprocal. We may say for brevity that the screw a- is

reciprocal to the cylindroid.

996. A screio a if reciprocal to a cylindroid must intersect one of the generators

at right angles. The cylindroid, being a surface of the third order, will be cut by

the screw a in three points, and one screw of the cylindroid passes through each of

these points. Each of these three screws intersects the screw cr and is reciprocal to

it. It follows by Art. 29i that each of these is either perpendicular to <r or has a

pitch equal and opposite to that of cr. But since the pitch p of a screw on the

cylindroid is pcoa^d+p'sin-d there are only two different screws on the same

cylindroid of the same pitch, viz. those given by supplementary values of 9. Hence

the screw a- must intersect one of the three screws at right angles. Also, as it

cannot be perpendicular to more than one screw on the cylindroid (unless it is the

nodal line or z axis), the pitches of the two remaining screws must be each equal

and opposite to that of a.

397. Ex. 1. Show that the locus of a screw reciprocal to four screws (no

three of which are on the same cylindroid) is a cylindroid.

Since a screw is determined by five quantities it is clear that, when the four

conditions of reciprocity are fulfilled, the screw must in general be confined to a

certain ruled surface. If this surface be not a cylindroid, pass a cylindroid

* The theory of reciprocal screws is due to Sir R. Ball and the substance of
Arts. 294 to 297 is taken from his book on Screws. To this work the reader is

referred for further development.
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through any two of its generators, then any screw on this oylindroid will also be

reciprocal to the four given screws. The locus therefore would be, not a single

ruled surface, but a system of cylindroidb.

Ex. 2. Prove that there is in general but one screw reciprocal to five given

screws. [As there are five conditions to be satisfied the number of screws is finite.

But if there were as many as two there would be a cyliudroidal locus of screws.]

Ex. 3. Prove that any two reciprocal screws on the same oylindroid are parallel

to conjugate diameters of the pitch conic.

Let p, p' be the pitches, z, z' the altitudes. Let z>z' and 0>d'; Art. 293. It

will be seen that a force acting along the positive direction of the axis of either

screw would tend to produce rotation round the axis of the other in the negative

direction. We therefore put h=iz -z', (f>= -(6~ 6'). The condition that the screws

are reciprocal is (p + p') cos ^ + /« sin = 0, Art. 294. Substituting for p,p',z,z' their

values given in Art. 287, this reduces to pcoBdcosd' +p' s,\nO sind' = 0. This is

the condition that the axes of the screws are parallel to conjugate diameters of the

pitch conic, Art. 288.

On Conjugate Forces

298. The nul plane. The locus of all the straight lines,

drawn throxigh a given point 0, and such tliat the moment of the

system about each vanishes is a plane.

This plane is called the md plane of and the point is

called the nul point of the plane. Any line about which the

moment of the forces is zero is called a nid line.

To prove this proposition let us represent the system by a

couple G and a force i2 at as base. It is at once evident

that the moment about a straight line through cannot be

zero unless it lies in the plane of the couple. The md plane

may therefore also he defined as the plane of the principal couple

at 0.

The names nul-point and nul-plane are due to Moebius, Lehrbuch der Statik,

1837. Instead of these the terms pole and polar plane have been used by Cremona,

Reciprocal Figures, 1872, translated into French, 1885, into English, 1890. The
term focus has also been used by Chasles, Comptes Rendtis, 1843.

299. If any straight line in the nul plane of and not

passing through were a nul line, the moment of R about it

would be zero. This requires that R should either be zero or lie

in the nul plane. In the former case the system of forces is

equivalent to a single couple, and the nul plane is parallel to

the plane of the couple. In the latter, the sy«tem is equivalent

to a single force, and the nul plane passes through its line of

action. In both cases the invariant / of the system is zero.
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of action is parallel to OB and distant 0/F' from it. It follows

that all the forces of the system are equivalent to some force F
acting along any assumed straight line OA together with a second

force F' which acts in the nul plane of the point 0. The forces are

given by FninAOB = R sin ROB, F' sin AOB=RHin ROA.

The forces F, F' are called conjugate forces, and their lines of

action conjugate lines,

304. Since is any point on the straight line OA, it follows

that when travels along a straight line, the nv I plane of always

passes through the conjugate and turns round it as an axis.

309. Vanishing of the Invariant I. When the force R is zero or lies in the

nul plane BOC, the system reduces to either a single couple or a single force. In

both these cases every point; 'n the plane BOC is a nul point.

If the system is equivalent to a single couple R = 0, and if the assumed line OA
is inclined to the plane of the couple the force F along it is zero ; the conjugate is

at infinity and its force also is zero. If OA is in the plane of the couple, the force

along it forms one force of the coU|.'e while the conjugate is the other force, the

distance between the conjugates, i.e. the arm of the couple, being arbitrary.

If the system is equivalent to a single resultant, OR lies in the plane BOC. If

the assumed line OA does not intersect the single force, the force F along OA is

zero, the conjugate being the single resultant. If OA intersects the single resultant,

the conjugate is any line in their plane passing through that intersection, the

conjugate forces being found by resolving the single resultant in their directioris.

Conversely, since J=Fi^'r sin tf, (Art. 281) we see that ivhen the invariant is zero

either one conjugate force is zero, or the two conjugates lie in one plane.

306. To find the conjugate of a nul line. In this case OA lies

in the nul plane o^ 0, and if R is not zero and does not also lie in

that plane the straight lines OA, OB, are opposite to each other,

Art. 303. The components of R, viz. F and F', are therefore both

infinite so that the two forces F, F' act in opposite directions

along the same straight line OA. Such lines may therefore be

called self-conjugate. They have also been called double lines by

Cremona.

In the limiting case when the invariant I is zero, any line lying in the plane of

the single couple or intersecting the single resultant is a line of nul moment. We
have seen above that their conjugates are indeterminate.

307. It has been proved that the conjugate of every line

passing through a given point lies in the nul plane of 0, we

shall now show that the conjugate of every straight line in that

plane passes through the nul point.

It is evident that if one conjugate intersect a line of nul
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moment, the othor conjugiito mnst either intersoct that line or its

force must be zero. Now thi' nul lines of the plane liOC radiate

from and are intersected by any eiios«'n line D/'J in that plane.

It follows that the conjugate of D/i! must also intersect them or

its force mnst bo zero. If / is finite the conjugate force caimot

also lie in that plane or be zero, it must therefore pass through

the nul point 0. If 7 = every point in the plane is a iml point

and the theorem is again true.

308. To find the equation of the conjugate of the given line

{x-f)ll = {y-g)lm^{z-h)!n (I).

It follows from Art. 304, that if any two points 0, 0' are

chosen on the given line OA, their nul planes intersect on the

conjugate. The nul planes of the point {fgh) and of another

point at infinity whose coordinates are proportional to I, m, n are

(Art. 301) respectively

{L-gZ-¥hY)x+{M-hX+fZ)ij-^{N-fY-^gX)z=Lf+Mg+Nh

{-mZ+nY)x-\-{-nX+lZ)>j+{-lY-¥mX)z=Ll^-Mm + Nn.

These are the etiuations to the conjugate. They also take the

form

= L(f-.r) + M(o-y) + t^{h-z),

X, Y,

I, m,

2
\

= Ll + Mm + Nn.

Z
n

X, y, z

X, Y, Z

The line of action of the force i'' being given as above by the

equations (1), an analytical expression for the magnitude of F
can be found which may be used when the position and magni-

tude of the conjugate force i?" are not required. If we reverse

the force F and join it to the given system, the compound system

will be equivalent to a single force. The invariant of the com-

pound system is therefore equal to zero. If I, m, n are the actual

direction cosines of the given line of action of the force F, the

components of the compound system are

X' = X-Fl, L'=L+ Fmh - Fng,

Y'=Y- Fm, M'=:M + Fnf - Flh,

Z' = Z-Fn, N' = N+Flg - Fmf
Equating the invariant L'X' + M'Y' + N'Z' to zero, we find

/ g> h
LX + MY + NZ

F
= Ll + Mm + N'n - X, Y,

I, m.

Z
n

U—

2
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In this manner a unicnu; vuluc of F Ims been found. The
valuo of F can be iiiHnite when the right-hand side is zero ; thin

occurs when the given line is a nul line, Art. 801.

The value of /' being known, all the six components of th(»

compound system are known. The magnitude and lino of acti(m

of the single resultant F' may then be found by tM|uations (4) of

Art. 278, whence F''' = A"'' -f 1"^ + Z* and T = 0.

309. To deterviine the iirrangement of the conjugate forces

about the central auns.

We know by Art. 285 that the central axis intersects at right

angles the shortest distance between

any two conjugates. Let Oz be the

central axis; R, F, the given force

and couple. Let F, F', be two con-

jugate forces acting along AF, A'F'
;

AA' being the shortest distance be-

tween them. Let OA=a, OA' = a'

measured positively from in oppo-

site directions, A = a -f- a.

The force R may be replaced by two parallel forces acting at

A, A', respectively equal to Ra'/h and Ra/h, Art. 79. The

couple r is equivalent to two forces acting at the same points

parallel to the axis of y equal to ± T/h. Since the forces acting

a,t A, A' have F, F' for their resultants, we find

r = Ra' tan y, i' h- = P -|- R^a'^
"

r = i^a tan y, F'%^ = T' -f- R'a'

When any arbitrary line AF 19 chosen as the seat of one force, a

and 7 are given ; these equations then determine F, F', y, a'.

We notice also that since the resolved parts of F, F' in the plane

xy are equivalent to the couple F, jPsin 7 = F' sin y = F/h.

8X0. If the figure is turned round Oz as an axis of revolution, the conjuKates

AF, A'F' describe co-axial hyperboloids of revolution whose real axes a, a' are

connected by the equations (1). The imaginary axes are a cot y and a' cot 7'; it is

easily seen from (1) that each of these is equal to aa'jp where 2» = r/ii is the pitch

of the wrench.

311. It may be a simpler classification to arrange the conjugate forces in a

series of planes rather than in hyperboloids. If the force F' is turned round . . so

as to describe a plane normal to OA, the angle y varies while a is constant. The
formuljB (1) then show that y' is constant, so that the conjugate F' moves parallel to

itself and generates a second plane which passes through OA. The two planes

(1).
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interxoot in a mil line, whoHo Iocuh when a varies in the para)>oIoid pz" -xy where

p in the pitch of the wrench.

Ex. Any two iiyiterafl of forces boiiiK Kivt-n show that they will have one

common Hyutem of conjunato lincH real or iniaKinary. If 00' = 2c is the HhortcHt

diHtancu between tlie axes of thv e(iuivalent wrcneheH, C the miiliUe point of (>()',

prove that the diHtaiices of the common conjuKaten from C arc given by the

quadratic J* + {/)-/>') cot Sj: I/)/)'- c*- (p+;>')c cots = whore p, p' aro the pitchcH

and the angle between the axes.

aia. Ex. 1. If two HtraJKht lines intersfct in a point (), their conjugates also

intersect, and lie in the nul j)lanii of (). Art. 308.

Ex. 2. A transversal intersects a force and its conjugate. Prove that each

intersection is the nul point of the plane which contains the transversal and the

other force.

For every straight line drawn through one intersection to cut the other force is

a nul line, see also Art. <503.

Ex. 8. The locus of a straight line drown through a given point O so that

the moments about it of two conjugate forces F, F' have a given ratio ^i is a plane,

which becomes the nul plane of U when n= -1, Whatever the forces and fi may
be, this plane passes through the intersection of the two planes drawn from I) to

contain the forces, and makes angles <p, <p' with these two planes such that the

given ratio /x is equal to Fp sin (p : F'p' sin tp'. Here p and p' are the perpendicular

distances of O from the given straight lines.

813. Ex. 1. Two arbitrary points A, li are taken on a nul line. Prove that

the system can be reduced to two conjugate forces acting at A and II, the force at

A making a given angle <p with A IK Prove also that if <p is varied, the locus of the

force at each point is the nul plane of the other point.

If <p, <p' are the angles the conjugate forces make with AZ, prove that

O cot(p'±G' cot
(l>
= aX, where G, G', are the principal couples at A, li, X the force

along AB and a = AIi.

To prove this take A as base (Art. 257) and change the couple G into another

.vhose forces pass through A and B.

Ex. 2. Two planes being given which intersect in a nul line, show that the

system can be reduced to two conjugates, one in each ^lane. [Take A, B of Ex. 1 at

the nul points of the planes.]

Ex. 3. If AM, BN are two nul lines, sliow that the system can be reduced to

two finite conjugate forces intersecting boch AM, BN.

Let A be any point on AM, the uul plane of A will pass through AM and cut

BN in some point B, The rest follows from Ex. 1.

S14. The characteristic of a plane is the conjugate of the normal at the nul

point, Chasles, Comptes Rendus, 1843.

Ex. 1. Any two conjugates intersect a plane in ^1/ and .V: show that MM'
passes through the nul point of that plane. Show also that the projections of

these conjugates on the plane intersect in the characteristic. [Chasles' theorem.]

Ex. 2. The locus of the axes of the principal couples at all bases situated on a

given straight line is a hyperbolic paraboloid. This paraboloid is a plane when the

straight line can be a characteristic, and in this case the envelope of the axes of the

principal couples is a parabola whose focus is the pole of the plane. [Chasles.]

il I

' if
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U

Let AE be the straight line, CD its conjugate. The axis of the principal couple

at any point on AB is perpendicular to the plane OCD, Art. 303. If the straight

line AB were turned round CD as an axis of rotation through any small angle dd,

each point on AB would move a fmall space perpendicular to the plane OCD,
i.e. it would move a small space along the axis of the principal couple. Hence

these axes all intersect two straight lines, viz. AB and its consecutive position, and

are all parallel to a plane which is perpendicular to CD. The locus is therefore a

hyperbolic paraboloid.

Theorems on forces.

315. Three forces. If three forces are in equilibrium, they

must lie in one plane.

Let A and B be any two points on two of the forces. Since

the moment about the straight line AB is zero, this straight line

must intersect the third force in some point C. Let A be fixed

and let B move along the second line ; the straight line AB will

describe a plane, and the second and third forces must lie in

this plane. If we fix C and let B move as before, we see that the

first force must also lie in the same plane.

Ex. 1. The forces of a system can be reduced to three forces i^j, Fo, Fj which

act along the sides of an arbitrary triangle ABC together with three other forces

Z^, Z^, Zj which act at the corners A,B,C at right angles to the plane of the

triangle.

Resolve each force P of the system into two, one in the plane ABC and the

other perpendicular to that plane. The former can be replaced by three forces

acting along the sides (Art. 120, Ex. 2), and the latter by three parallel forces at

the corners (Art. 86, Ex. 1). If P is parallel to the plane ABC we can transfer it

to act in the plane by introducing a couple. Turning the couple round in its own

plane we can include its forces among those normal to ABC.

Ex. 2. The forces of a system can be reduced to three forces which act at the

corners of an arbitrary triangle and satisfy three other conditions.

Replace Fj by Fj + u at B and - w at C ; F2 by Fj + r at C and - r at ^ ; F.^ by

F3 + U' at A and -w &i B. Compounding the forces at the corners, the arbitrary

quantities u, v, w may be used to satisfy three conditions.

Ex. 3. A system of forces is reduced to three acting at fixed points A, B, C.

If the force at A is fixed in direction, prove that each of the other two lies in a

fixed plane. Show also that these planes intersect along the side BC.

[Coll. Ex., 1891.]

316. Four forces. If four non-intersecting forces are in.

equilibrium, they must be gei^erators of the same system of a

hyperboloid. Mcebius, Lehi'bi(ch der Statik.

If a straight line move so as always to intersect three given

straight lines, called directors, the locus is known to be a hyper-

boloid and the different positions of the moving straight line form
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one system of generators. An infinite number of transversals can

be drawn to cut three of the forces, but each must intersect the

fourth force also, for otherwise the moment of the four forces

about that transversal is not zero. Taking any three of these

transversals as directors, the four forces lie on the corresponding

hyperboloid.

The following theorems will serve as examples, as the proofs

are only briefly given.

Ex. 1. If n forces act along generators of the same system and have a single

resultant, prove by drawing transversals that the resultant acts along another

generator of the same system.

Ex. 2. When two of the forces P, P', act along generators of one system and

two Q, Q', along generators of another system, they form a skew quadrilateral.

The properties of such a combination of forces have been already considered in

Art. 103. Their invariants are given in Arts. 317 and 323.

Prove, by drawing transversals through the intersection of P and Q', that the

forces cannot be in equilibrium except when they lie in one plane.

Ex. 3. When three of the forces Pj , P^, Pg, act along generators of one system

and the fourth Q along a generator of the other system, prove that they cannot be

in equilibrium except when all the forces lie in a plane. For if every transversal

of Pj, Po, P-i could intersect ''^ this last would intersect all the generators of its

own system.

Ex. 4. Four forces act along generators of the same system of a hyperboloid.

Their magnitudes are such that if transferred parallel to themselves to act at a

point they would be in equilibrium. Prove that they are in equilibrium when

acting along the generators.

Let Q be any generator of the other system, which therefore intersects the four

forces. Transfer the forces to act at any point of Q, then the transferred forces are

in equilibrium and the axes of the four couples thus introduced are perpendicular

to Q. The four forces are therefore equivalent to a resultant couple such that

either its moment is zero or its axis is perpendicular to every position of Q. The

latter supposition is impossible. Pliicker and Darboux.

Ex. 5. If four forces Pj, Pj, Pj, P^ are in equilibrium, prove that the invariant

of any two is equal to that of the remaining two (this theorem is due to Chasles).

Also the invariant of any three of the forces is zero.

Reversing the directions of P3, P^, the forces Pj, Pj become equivalent to

P.^, P^. Their invariants are therefore equal.

Ex. 6. Four forces acting along the straight lines a, b, c, d are iu equilibrium.

If the symbol ab represent the product of the shortest distance between a, b into

the sine of the angle between them, show that the forces acting along these lines

are proportional to {be . cd . dby, {cd . da . ac)', (da . ab . bdy, (ab . be . cay.

[Cayley, Comptes Rendus, 1865.]

We have by Chasles' theorem P^P.2.ab = P.iP^. cd and P^Pj. ac = PjP^. bd.

Multiplying these together we have the ratio of Pj* : P^^.
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r= *C.

Ex. 7. Forces act along generators of the same system and admit of a single

resultant, which intersects the plane of xy in D. Prove that OD and the projection

of the resultant force are parallel to conjugate diameters.

Ex. 8. Forces act upon a rigid body along generators of the same system of a

hyperboloid. Prove thit the necessary and sufficient condition of their being

reducible to a single resultant is that their central axis should be parallel to one of

the generating lines of the asymptotic cone. [Math. Tripos, 1877.]

Ex. 9. A system of forces have their directions along any non-intersecting

generators of a hyperboloid of one sheet ; show that the resultant couple at the

centre of the hyperboloid lies in the diametral plane of the resultant force, and the

abcR
Last principal moment is Dj and D^ being the semi-axes of

tetrahedron perpendicularly to the

Prove that they are in equilibrium

[Math. Tripos, 1881.]

a2 + 62-c«-I>i2-Z)„2'

the section of the hyperboloid by the plane of the couple, and a, b, c the semi-axes

of the surface, and R the resultant force. Explain the difficulty in the geoaietrical

interpretation of these results for a single force. [Math. Tripos, 1880.]

•< S18. Relation of four forces to a tetrahedron. Ex. 1. Forces act at the

centres of the circles circumscribing the faces of a tetrahedron perpendicular to

those faces and proportional to their areas. Prove that they are in equilibrium if

they act either all inwards or all outwards.

Ex. 2. Forces act at the corners of a

opposite faces and proportional to their areas,

if they act either all inwards or all outwards.

Let ABCD be the tetrahedron, AK, BL &c. the perpendiculars. Since the

product of each perpendicular into the area of the corresponding face is equal to

three times the volume of the tetrahedron, the forces are inversely proportional to

the perpendiculars along which they act. Let the forces be ixjAK, ixIDL &o.

Let us resolve the force n/AK into three components which act along the edges

AB, AC, AD. The component F which acts along AB is found by equating the

resolutes perpendicular to the plane ACD. This gives F —- = ~ cos 6, where 6 is
AU AK

the angle between the perpendiculars AK and BL. In the same way we resolve

the force /ifBL into components along the edges. The component F' which acts

along BA is found from F' . ,—• = t(> costf. Hence F and F' are equal and oppo-
AB BLi

site forces. In the same way it may be shown that the forces along all the other

edges are equal and opposite. The system is therefore in equilibrium.

Ex. 3. Forces act at the centres of gravity of the four faces of a tetrahedron

perpendicularly to those Iiices and proportional to them in magnitudCi all inwards

or all outwards. Prove that they are in equilibrium.

Joining the centres of gravity we construct an inscribed tetrahedron, the faces

of which are parallel to those of the former and proportional to them in area. The

given forces act at the corners of this new tetrahedron and are therefore in equili-

brium by Ex. 2.

Ex. 4. Forces act at the centres of gravity of the faces of a closed polyhedron

in directions perpendicular to the faces and proportional to their areas in magni-

tude. Prove that they are in equilibrium,

Divide each face into triangles by drawing a sufficient number of diagonals.

By joining any internal point P to the several corners we divide the polyhedron

f !i.
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into tetrahedra. Forces acting at the centres of gravity of the faces of each tetra-

hedron are in equilibrium by Ex. 3. Removing the equal and opposite forces

which act at the centre of gravity of each internal face, tlie forces which act at the

external faces must be in equilibrium.

Ex. 5. Forces act at the middle points of the edges of a closed polyhedron, in

directions bisecting the angles between the adjacent faces, and having magnitudes

proportional to the product of the length of the edge by the cosine of half the angle

between the feces. Prove that they are in equilibrium.

Let forces act at the mie'ile points of the sides of each face in the piano of the

face perpendicularly to and proportional tc the sides. These ars in equilibrium by

Art. 37. Compounding the forces at each edge the theorem follows.

aiO. Normal forces on surfaces. Ex.1. Forces act normally at every element

of a closed surface. Prove that they are in equilibrium if oach force is either

(1) proportional to the area of the element, or (2) proportional to the product of the

area by - + - where p, p' are the principal radii of curvature.
P P

Since the surface may be regarded as the limiting case of a polyhedron, the

first theorem follows from Ex. 4.

By drawing the lines of curvature the surface may be divided into rectangular

elements which may be regarded as the faces of a polyhedron. The second

theorem then follows from Ex. 5. Let ABGD be any element, the external angle

between the faces which meet in BC is ABIp. The force across this edge is

therefore \BC .ABfp and ultimately acts perpendicularly to the element.

M. Joubert deduces the second of these theorems from the first. He also

deduces from the second that normal forces proportional to the quotient of each

elementary area by pp are in equilibrium. Liouville's J. vol. ziii., 1848.

Ex. 2. One-eighth of an ellipsoid is cut off by the principal planes, and along

the normal at any point a force acts proportional to the element of surface at that

point. Show that all these forces are equivalent to a single force acting along

the line a{x- ial3ir)= b{y - 4t/37r) = c (2 - 4c/37r), where 2a, 2b, 2c are the principal

axes of the ellipsoid. [June Exam.]

^ 320. Five forces. Iffive finite non-intersecting forces are in

equilibrium, they must intersect two straight lines which may he

real or imaginary. Mcebiiis.

First, we shall prove that any four straight lines a, h, c, d can

be cut by two transversals. For, describing the hyperboloid

which has a, b, c for directors we notice that the line d cuts this

hyperboloid in two points real or imaginary. One generator of

the system opposite to a, b, c passes through each of these points

and therefore intersects the straight lines a, 6, c as v/ell as d.

Assuming this lemma we draw the two transversals of any four of

the forces. Each of these must intersect the fifth force, for other-

wise the moments about them would not be zero. These two

transversals may be called the directors of the five forces.
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t^' 321. Let the shortest distance between two straight lines be

taken as axis of z. Let any fve forces intersect these straight

lines at distances (r,?'/) (nr/) &o.froni that axis, and let Z^, Z., d'c.

be the z resolutes of these forces respectively. Prove that the condi-

tions of equilibnum are SZ=0, SZr = 0, 1.Zr' = 0, '^Zrr =0.

Let the origin bisect the shortest distance between the two

directors of the forces, and let this shortest distance be 2c. Let 2d

be the angle between the directors, and let the axes of x and y be

its bisectors. The equation to any force may then be written

{x — r cos 6)l{r — r') c '^d = {y — r sin 6)j{r + r') sin d = {z- c)J2c.

Writing l/fjJ' = (r - r'y cos^ 6 + (r + rj sin** 6 + 4c',

and representing the forces by P1...P5, the equations of equilibrium

formed by resolving alonpf the axes are

tPfi(r-r') cos 6=0, SP/* (r + r') sin (9 = 0, 2SP/ac = 0.

The equations of moments are

'^(yZ-zY)= XPfjL{r-r')c sin 6 = 0,

S (zX -xZ) = - IPn (/• + r') ccos6 = 0,

X(xY- yX)= 21Ptirr' sin ^ cos ^ = 0.

When c and sin 26 are not zero, these six equations reduce to the

four given above. These four equations determine the ratios of

the five forces P1...P5 when the intersections of their lines of

action with the directors are known.

I

aaa. Let the two directors be moved so that either their mutual inclination 29

or their distance apart 2c is altered, but let them continue to intersect the axis of z

at right angles. It follows from thc^io results that equilibrium will continue to

exist provided (1) the forces always intersect the directors at the same distances

from the axis of z, and (2) the z component of each is unchanged.

When five forces in equilibrium are given in one plane, which besides the three

conditions of equilibrium also satisfy the condition I,Zrr'=0, we may by this

theorem construct five forces in space which are also in equilibrium.

398. Ex. 1. Any number of forces intersect two dirtiv tovs in the points

ABC..., A'B'C'..., prove that the invariant l=s,m2e2,Z^Z^. AB . A'B'l^c.

Ex. 2. Four forces act along the sides of a skew quadrilateral taken in order

and their magnitudes are respectively a, /3, 7, 5 times the sides along which they

act, as in Art. 103, Ex. 5. Prove that the invariant /=2c8in2^ (a7-/35) JDT)'

where D, D' are the lengths of the diagonals, 2c their shortest distance and 2d the

angle between them.

Ex. 3. Any number of forces intersect two directors and a plane is drawn

through each parallel to the other. Find the coordinates of the points in which

the central axis intersects these planes. The result is given in Art. 278, Ex. 7.
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Ex. 4. Five forces in equilibrium intersect their two directors in the points

AliCDE and A'B'C'D'E', and their magnitudes are a.AA', p.BB', &c. P;ove

(1) that the sum of the coefficients o, /3, &e. is zero and (2) that

= &c. [Cu'l. Ex., 1892.]
1 CD.BE, DB.CE i_lj DE.CA,EC.DA
a CD' . B'E', D'B' . C'E' \~p\ D'E' . C'A', E'C . D'A'

Ex. 5. Show that the force along AA' is zero when the other four lines cut the

two directors iu the same anharmonic ratio. T^'s is also a known property of any

four generators of a hyperboloid intersected by two fixed lines.

Ex. 6. Show that, if the algebraic suras of the moments of a system of forces

about (1) three, (2) four, (3) five straight lines are zero, the central axis of the

system (1) lies along one of the generators of a system of concyclic hyperboloids,

(2) intersects a fixed straight line at right angles, (3) is fixed. [Math. Tripos, 1888.]

Replace the system by two conjugate forces, one of which cuts the three given

straight lines. Then the other force also cuts the same three lines. They are

therefore rectilinear generators of a fixed hyperboloid. The first result follows at

once by Art. 317, Ex. 6.

Choose one <;/ the conjugates to cut the four given straight lines as in Art. 320.

The other also cuts the same four lines. Both these forces are therefore fixed in

position. By Art. 285 the central axis cuts the shortest distance between these

at right angles.

If the moments about five straight lines are zero, we can by taking two sets of

four forces obtain two straight lines each of which is cut at right angles by the

central axis. The central axis is therefore fixed.

324. Six forces*. Analytical view. Forces acting along

six straight lines are in equilibrium. Shoiu that, five of. these lines

and a point on the sixth being given, the sixth line must lie on a

certain plane.

Let a force P be given by its six components PI, Pm, Pn\

P\, Pfi, Pv, Art. 260. If {fgh) be any point on its line of action,

then \ = gn — hm, fi = hi —fn, v =fm — gl.

Let us suppose that each of the six forces P1...P6 is given in this

* The theorem that the locus of the sixth force is a plane is due to Moebius,

Lehrhuch der Stafik, 1837. But he omitted to give a construction for the plane.

This defect was supplied by Sylvester "sitr V Evolution des lignes droites dans
Vespace comideries comme des axes de rotation." Gomptes Rendus, 1861. He gives

several theorems on the relative positions of the fifth and sixth lines. The terms
"involution" and "polar plane" are due to him. In a second paper in the same
volume he states as the criterion for the involution of six lines the determinant
given in Art. 327, the moments (12) &c. being replaced by secondary determinants
when the equations of the straight lines are given iu their most general form. He
mentions that Cayley had found a determinant which is the square root of that

given by himself and which would do as well to define involution. A proof of this

is given by Spottiswoode, Gomptes Rendiis, 1868. See also Scott's Theory of
Determinants. Analytical and statical investigations connected with involution

are given by Cayley, " On the six coordinates of a line," Gaubridge Transactions,

1867. The extension of the determinant of Art. 327 to six wrenches is given by
Sir R. Ball, Theory of Screws, 1876.
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= 0.

way, so that (li, wij, ?i,, Xj, /i,, f,) (Li, &c.) &c. may be regarded as

the coordinates of their several lines of action.

Since the six forces are in equilibrium, they must satisfy

the six necessary and sufficient equations given in Art. 259.

We have therefore

These six equations will in general require that each of

the forces P1...P9 should be zero. But if we eliminate the

ratios of these foices we obtain a determinantal equation which

is the condition that the forces should be finite. This determi-

nant has for its six rows the six coordinates of the six given

straight lines, viz.

^1, mi, rii, giih-hyfriu hJi -fini,fimi-gJi

li, &c.

Let us suppose that five of the lines are given a^id that

the sixth is to pass through a given point (/g, g^, /*«). Let

(x, y, 2) be the current coordinates of the sixth line, then

writing for (Ig m^ rig) in the last row their ratios sc —/«, y—g^,
z — hg this determinantal equation becomes the equation to the

locus of the sixth line. It is clearly of the first degree and

this proves that the locus of the sixth line is a plane.

325. When six lines are so placed that forces can be found to

act along them and be in equilibrium, the six lines are said to be

in involution. The plane which is the locus of the sixth line when

a point in the line is given is called the polar plane of with

regard to the five given lines.

When five lines are so placed that forces can be found to act

along them and be in equilibrium, they are in involution with

every line taken as f^ sixth and the force along that sixth is zero.

This is briefly expressed by saying that the five lines are in

involution.

When lines are in involution any force acting along one of

them can be replaced by finite components acting along the

remaining lines, provided these remaining lines alone are not in

involution.

326. If the six straight lines are the seats of six wrenches

of given pitches, instead of six forces, tue may by an extension

I

i{',
:

!
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of tJiiff determinant form the condition that these wrenches may
he in equUibnam.

Let P be the force of any wrench, ]) the pitch of its screw.

Let (l, m, n, \, fi, v) be the six coordinates of its axis. Then,

resolving parallel to the axes of coordinates and taking moments

as before, we have

2PZ = 0, tPm = 0, SPw = 0.

%P(\+pl) = 0, ^P(fji+pm)=0, %P(v+pn) = 0.

Eliminating the forces, we have the following six-rowed deter-

minantal equation in which the first line only is written down.

^1, Wi, ?ii, K+Pik, /ii+Pimu Vi+p^n^ = 0.

The other lines are repetitions of the first with different suffixes.

This determinant has been called the sexiant by Ball.

By giving to the pitches p^. . .p^ of these ccrews values either zero

or infinity we can express the condition that m forces and n couples

(ni + n= 6) connected ivith six given straight lines should be in

equilibrium.

327. If we take moments in turn for the six forces P,...Pg

about their lines of action, we obtain six equations of the form

P,.0+P,(12) + P3(13) + P4(14)+P.(15) + P,(16) = 0,

where (12) represents the mutual moment of the lines of action of

Pi, Pa (Art. 264). Eliminating the six forces, we obtain a deter-

minant of six rows equated to zero. This is the necessary condition

that the six lines should be in involution.

Taking any five of these equations, we can find the ratios of

the six forces. Thus, if I^^ represent the minor of the constituent

in the first row t^nd second column, we have

P,IIu==P./I,, = P^IIu=&C.

Since by Salmon's higher algebra /n/22 = Pi2> we may deduce

the more symmetrical ratios

This symmetrical form for the ratios of the forces is given by

Spottiswoode in the Comptes Rendus for 1868.

328. We have thus tivo determinants to define involution. One

expresses the condition m terms of the coordinates of the six lines,

the other in terms of their mutual moments. These are not
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independent, for one determinant is the square of the other.

This may be shiwn by squaring the first and remembering tiie

expression for the mutual moment of two lines given in Ex. 1 of

Art. 267.

329. Let A, B, C, D, E, F be siv lines not in involution, then

any given force R may be replaced by six components acting along

these six lines.

Let I'm'n'X'^'v be the six coordinates of the line of action of

R. If Pi.,.Pg are the six equivalent forces on the given lines, we
have by Art. 324 ^Pl = Rl', &c., ^PX = R\', ^c. These six

equations will determine real values for Pi... Pa. They will be

finite if the determinant of Art. 324 is not zero, i.e. if the given

lines are not in involution.

We notice that the value of p, is zero if the determinant

formed by replacing ^j, ?«], &c. in the first row by I'm' &c. is zero,

i.e. if the line of action of R is in involution with BCDEF.
L... Show that in general there is only one way of reducing a syHtem of forces

to six forces which act along six given straight lines. If the lines of action of fiv

of the forces be given and the magnitude and point of application of the slxt'i,

prove that the line of action of the sixth will li'3 on a certain right circular cojie,

[Coll. Exam., 1887.]

330. If the moments of a system of forces ahout six straight

lines not in involution are ze. o, the forces are in equilibrium.

If they are not in equilibrium let (F, R) be their equivalent

wrench. Let the axis of this wrench be taken as the axis of z, and

let the six lines make angles (^j, 0,, yfri), (0„, <f)n, yfr^), &c. with the

axes of z, x, y. Let (r,, r/, r/'), {7\, r/, r^') &c. be the shortest

distances between the six lines and the axes of z, x, y.

Since each of the six lines must be a nul line with regard to

the wrench, we have for each F cos ^ + Br sin ^ = 0. We shall

now prove that, if these six equations can be satisfied by values

of r and R other than zero, the six lines are in involution.

If forces Pi...Pa can be found acting along these six lines in

equilibrium, they must satisfy the six necessary and sufficient

equations of equilibrium. These are

SPcos^ = 0, 2Pcos0=O, 2Pcosr/r = 0,

XPr sin (9 = 0, ^Pr' sin
(f>
= 0, tPr" sin >/r = 0.

These six equations in general require that each of the forces

Pi...Pa should be zero. But when the six conditions given above

mil

,

!i

i';
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are satisfied the two equations SPco.s^ = and SPrsin^ =
follow one from the other. There are therefore only five necessary

and sufficient equations connecting the six forces. The ratios of

the forces can be found. Hence the lines must be in involution.

If the lines are not in involution, they cannot all six be nul

lines of a wrench, i.e. F and R must both be zero. It follows that

six equatimis of moments about six straigid lines are insufficient to

express the conditions of equilibrium of a system if those six lines

are in involution.

331. If a system of forces is such that its moment about each

of m lines is zero, and its resolute along each of n lines is also

zero, whei'e m +n = Q, the system is in equilibrium, provided the

six lines are such that forces acting along the m lines and couples

having their axes placed along the n lines cannot be in equilibrium.

The forces and couples are not to be all zero.

For the sake of brevity, let us suppose that the moments of

the system about each of the four lines 1, 2, 3, 4 is zero, and that

the resolute along each of the lines 5 and 6 is zero. If the system

is not in equilibrium, let (F, R) be the equivalent wrench. Let

the axes of coordinates and the notation be the same as in

Art. 330. We thus have given the four equations

F cos 01 + Rr^ sin 6^ = 0, F cos 6^ + Rr., sin 0^ = 0, &c. = 0,

and the two resolutions R cos ^8 = 0. R cos 0^ = 0.

These six equations may be called the equations (A).

Let four forces P1...P4 act along the four lines 1,...4 and let

two couples Mf, Ma have their axes placed along the lines 5, 6.

If these can be in equilibrium, they must satisfy the equations

Pi cos ^1 + ... + P4 cos ^4 = 0,

Piri sin ^1 + ... + P4?-4 sin 0^ + M^ cos 0^ + i/g cos 0^ - 0,

with four other similar equations obtained by writing </> and i^

for 0. These six equations may be called the equations (B).

The equations (B) in gen "al require that the four forces

P1...P4 and the two couples J/g, M^ should be zero. But if the

equations (A) can be satisfied by values of F and R which are not

both zero, the six equations (B) are not independent. If we

multiply the first by F and the second by R and add the products

together the sum is evidently an identity by virtue of equations

(A). The equations (B) are therefore equivalent to not more than

I!
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and A^

five equations, and thus forces Pi...P^ and couples M^, M^, not all

zero, may be found to satisfy them.

It follows that, if the six lines are such that the forces /*,... i*4

and the couples M^, M^ cannot be in equilibrium, the values of T
and R given by e(j[uations (A) must be zero, i.e. the given system

is in equilibrium.

332. If four of the six given lines aio occupied by the axes of

couples, the remaining two having only zero couples or zero forces,

it is possible to so choose the four couples that equilibrium shall

pi.'io'v, Art. 99. It follows that m equations of moments and n

equations of resolution are insuficient to express the conditions of

equilibnum if m is less than three.

888. We may altio deduce the theorem of Art. 331 from that of Art. 330 by

plaoiiig some of the lines at infinity.

The expressioi. for the moment of a system of forces about a straight line,

drawn in the plane of xz parallel to x and at a distance I from it, is by Art. 258,

L' = L + IY. If i be very great the condition L' — O leads to Y=0. It follows that

to equate to zero the resolved part of the forces along y is the same thing aH to

equate to zero their moment about a straight line perpendicular to y but very

distant from it. Now a Zbro force along such a line at infinity is equivalent to a

couple round the axis of y. Since the axis of y is any straight line, it follows that,

if a system be such that its moments about m lines are each zero and its resolutes

along n lines are also each zero, where m + n=Q, then the system will be in equi-

librium provided the six lines are such that m forces along the m lines and n couples

round the n lines cannot be found which are in equilibrium.

334. Geometrical view. Six forces are in equilibrium. When

the lines of action ofJive are given, the possible positions of the sixth

are the ntd lines of two determinate forces acting along the two

transversals of any four of the five. From this we can deduce

another proof of Mcebius' theorem.

Let us represent the lines of action of the forces Pj . . . P« by

the numbers 1 ... 6 and the mutual moments of the lines by the

symbols (12), (34), &c. Art. 264.

Let a, b be the two transversals which intersect the four

straight lines 1, 2, 3, 4 (Art. 320). Since the six forces Pi...}\

are in equilibrium, the moment of P^ and Pg about each of these

transversals is zero. Hence

PB(5a) + Pe(6a) = 0, P,{5b) + P,(Qb) = (1).

Eliminating the ratio Ps/Pe, we have

(56) (6a) - (5a) (66) = (2).

Thus the sixth line is so situated that the sum of the moments

I
I

iir
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about it of two forces proportional to (56) and (— 5a) acting along

a and 6 is zero. Let us call these forces Pa and Pt, ; hence

P„(()«)4-P6(66) = (n).

We notice that the positions of the transversals a and b depend

on the positions of the lines 1, 2, 8, 4, and are independent of the

magnitudes of the con-esponding forces. The ratio of the forces

applied to these transversals depends on the position of the Une 5

relatively to a and b. The transversals a, b and the lines 5, 6

are so related that a, b are nul lines of the forces P^, P„ and 5, 6

are nul lines of Pa, Pb-

It follows from this reasoning that when the forces P, . . . P«

are varied, so that equilibrium always exists, the sixth line is

always a nul line of Pa, P^. Hence if any point in the line of

action of Pg is given, that force must lie in the nul plane of

taken with regard to these two forces.

885. Any conjugate forces equivalent to P^ , Pi, may also be used. AHSuming,

for example, any two points A and B, their nul planes with regard to these two

forces will intersect in some straight line CD which in the conjugate of AB,

Art. 308. Any utraight line intersecting AB and CD will be a nul line and is a

possible position of the sixth force.

886. The sixth line will remain in involution with the five given straight

lines 1... 5 as it revolves round O in the polar plane of O. The ratios of the forces

Pi...Pg will however change.

Let the straight line join<^g to the intersection of its polar plane with the

transversal a be taken as the sixth line. Then since the sixth line is a nul line of

the forces which act along the transversals, it will also intersect the transversal b.

Thus the polar plane of intersects the transversals a and b in two points which lie

in the same straight line with O,

The position in space of this straight line may be constructed when the four

straight lines 1, 2, 3, 4 and the point O are known. Let it be called the line c of

the point O with regard to the four lines 1, 2, 3, 4. To construct this line, we

first find the two transversals a and b, we then pass a plane through and each of.

these transversals. The intersection of these
i
lanes is the line c.

If we had begun by finding the two transversals a', b' of some other four of the

five given lines say 1, 2, 3, 5, we must have arrived at the same plane as the polar

plane of 0. Thus by combining the forces in sets of four, we may arrive at five

such lines as c. All these lie in the polar plane of 0, and any two will determine

that plane.

When the four lines 1, 2, 8, 4 and the point are given, the fifth line being

arbitrary, the polar plane of O passes through the fixed straight line c.

887. Since the forces P^..,Pg are in equilibrium the moment of P^ and Pg

about each of the transversals a, b is zero. Hence as in Art. 334

P,{5a) + Pg{6a)= 0, P,{5b) + P,{(yb) = (1).

When the sixth line is in the position c, the moment of the sixth force about each

of the transversals a and 6 is zero. When the sixth line has revolved in the polar
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plane of O from thin poHition tlirouKh an anKlo 0, the moment of the nixth force

may be found by reHolvinK I\ into two forccH, one along the line c and the other

aUmn a line il drawn por])endicular to c in the polar plane of 0. The moment of

the rtrHt irt zero, that of the Hccond iB (i](i) = /', nin . (da) or ((>6) = /', win 6 . {dh). It

foUowH from either of the cciuationH (1) that the ratio I\ : /', i< proportional to ninB

Hud i» therefore greate»t whtn the Hixth line in perpendicular to c.

We have asHumed that the momentH {tin) and (6/;) are not both zero, i.e. that the

tivc Kiven Htraight linen are not ho placed that they all interHect the ftamo two

Htraight lineH ; sec Art. 3'20. When this happenn the lines 1, 2, 8, 4, 5 alone arc in

involution. The equations (1) then show that tlie force /'„ is zero when its line of

action does not interHect the nanie directorH.

888. Ex. 1. If A, li, C, I), K, F be Hix lines in involution, the polar plane of

O with reKard to A, li, C, I), K w the Hame as the polar plane of O with regard to

A, /?, C, Z), F, the forces along R, F not being zero.

For let M be any straight line through O in the firnt polar plane, then a forco

acting along M can be replaced by five forces along A, li, C, 1), K. But the force

along E can be replaced by forcen along A, li, C, 1>, F, hence the force along .V is

equivalent io forces along A, li, C, D, F, i.e. M lies in the second polar plane. The
two polar planes therefore coincide.

Ex. 2. Supposing two transversals, say a and h, to be known, we may take with

regard to these the convenient system of coordinates used in Art. 321. Let 2c be the

shortest distance between tli> transversals, 26 the angle between their directions.

Let (l+M)/(i-M) be equal .> the known ratio (/>«) : (.5/;), i.e. to the ratio of the

moments of the fifth force about the transversals a and b (Art. 834). Show that

the polar plane of is

.r sin e (/n- /«,•) + 1/ cos {/jlU + c) - 2 (/ sin ^ + np cos 0) = c (/u/sin B + gcoa 0).

This is obtained by substituting in (2) of Art. 334 the Cartesian expression for a

moment given in Art. 266.

Tetrahedral Coordinates.

339. Shoio tfuit the forces of any system can he reduced to six

forces which act along the edges of any tetrahedron offinite voliune.

Let ABCD be the tetrahedron, let any one force of the system

intersect the face opposite D in the point D'. Resolve the force

into oblique components, one along DD' and the other in the piano

ABC. The former can be transferred to B and then resolved along

the edges which meet at D. The second can by Art. 120 be

resolved into components which act along the sides of ABC.

We shall suppose that the positive directions of the edges are AD, liC, CA, AD^

BD, CD ; the order of the letters being such that a positive force acting along any

edge tends to produce rotation about the opposite edge in the same standard

direction. See Art. 97. We shall represent the forces which act along these sides

by the symbols F^^, F.^, F.^^, F^^, F.,^, F^i- The directions of the forces, when

positive, are indicated by the order of the suffixes. When we wish to measure the

forces in the opposite directions, the suffixes are to be reversed, so that i''j2= "^'n'

15—2
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The ratios of the forces F,2 &c. to the edges along which they act will be represented

by /j2 &c. The volume of the tetrahedron is V.

Ex. 1. Show that the six straight lines forming the edges of a tetrahedron are

not in involution. For, if forces acting along these could be in equilibrium we see,

by taking moments about the edges, that each would be zero.

Ex. 1. A force P acts along the straight line joining the points H, K, whose

tetrahedral coordinate, .re (x, y, z, u) (.r', i/, z', u') in the direction // to K. If this

force is obliquely resolved into six components along the edges of the tetrahedron

ABCD, show that the component F^^ acting in the direction AB is P ^^ . ,' ,

where the terms in the leading diagonal follow the order indicated by the directions

HK, AB, of the forces.

To prove this we equate the moments of Fy^ and P about the edge CD. The

result follows from the expression for the moment given in Art. 267, Ex. 2.

Ex. 3. Two un: forces act along the straight lines HK, LM in the directions

H to K and L to il/. It the tetrahedral coordinates of H, K, L, M are respectively

u

W
X, y, z,

x', y', z'

a, p, y, 5

a', /3', y, 5'

(.r, ?/, z, u), {x' Ac), (o, /3, 7, 5), (a', &'0.), prove that the moment of

either about the other in the standard direction is ,v,y—;,.r where AHK . MN
is the determinant in the margin. The order of the rows is deter-

mined by the directions HK, LM in which the forces act ; the order of the columns

by the positive directions of the edges. This follows from Art. 2G6. Notice also

that this expression is the invariant I of the two unit forces.

Ex. 4. The nul plane of the point whose tetrahedral coordinates are (a, /3, y, d)

with regard to the six forces Fy2 ^^- ^^

/u 2, M



CHAPTER VIII.

GRAPHICAL STATICS,

Analytical view of reciprocal figures.

340. Two plane rectilineal figures are said to be reciprocal*,

when (1) they consist of an equal number of straight lines or

edges such that corresponding edges are parallel, (2) the edges

which terminate in a point or corner of either figure correspond

to lines which form a closed polygon or face in the other figure.

If either figure is turned round through a right angle the

correspondiiijT' lines become perpendicular to each other but the

figures are still called reciprocal.

Any figure being given, it cannot have a reciprocal unless

(1) every corner has at least three edges meeting at it, (2) the

figure can be resolved into faces such that each edge forins a base

for two faces and two only.

The edges meeting at a corner in one figure correspond to the

edges which form a closed polygon in the other. Since a closed

polygon must have three sides at least, it follows at once that

three edges at least must meet at each corner.

The edges of a figure can sometimes be combined together in

different ways so as to make a variety of polygons. Only those

* The following references will be found useful. Maxwell, On reciprocal fi<iure.i

and diagrams of forces, Phil. Mag, 1864; Edin. Tram. vol. xxvi. 1870. The three

examples mentioned in Arts. 317 and 349 are given by him. Maxwell was the first

to give the theory with any completeness. Cremona, Lf figure reciprorhe nella

statica grajica, 1872; a French translation has been published and an English
version has been given by Prof. Beare, IH'JO. Fleeming Jenkin, On the practical

application of reciprocal figures to Jie calculation of strains on frameworks a)id some

forms of roofs. He also notices that this method of calculating the stresses had
been independently discovered by Mr Taylor, a practical draughtsman. He dis-

cusses the Warren girder, Kdin. Trans, vol. xxv. 18(59. Rankine's Applied
Mechanics, eleventh edition, 188.5. Manrice Levy, Statiqne Graphique, second
edition, 1886. He treats the subject at great length in several volumes. Culnmnn,
Die graphische statik, Zurich, second edition, 1875. Major Clarke's Principles of
graphic statics, second edition, 1888. Graham's Graphic and analytic statics,

second edition, 1887. Eddy, American Journal of Mathematics, vol. i. 1878.
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polygons which correspond to corners in the reciprocal figure are

to be regarded as faces. The figure is then said to be resolved

into its faces. The side of any face corresponds to an edge

terminated at the corresponding corner of the reciprocal figure.

Since an edge can have only two ends, it is clear that two faces

and only two must intersect in each edge.

341. MazweU'a Tbeorem. If the sides of a plane figure are the orthogonal

projections of the edges of a closed polyhedron, that plane figure has a reciprocal

which can be deduced by the following method.

Let one polyhedron be given and let its polar reciprocal be formed with regard

to the paraboloid x- + y^ = 2hz. Then we know that each face of either polyhedron

is the polar plane of the corresponding corner of the other. Smith's Solid

Geometry, Art. 152.

We shall now prove that the orthogonal projections of these two polyhedra on

the plane of xy are reciprocal figures with their corresponding sides at right angles.

The intersection of two faces is an edge oi one polyhedron, and the straight line

joining the poles of these faces is an edge of the other. These edges correspond to

each other. Consider the edges which meet at a corner A of one polyhedron ; the

corresponding edges of the second polyhedron lie in the polar plane of A and are

the sides of the face which corresponds to that corner. Thus for every corner in

one polyhedron there corresponds a face with as many sides as the comer has edges.

We shall next prove that the projection of each edge of one polyhedron is at right

angles to the projection of the corresponding edge of the other. To prove this we
write down the equations to the faces of one polyhedron which are the polar planes

of the two corners (fijf), (^'ij'f') of the other. These are

h{z+i:)=xi^yn, h(z-¥t')=xi'+yn''

Eliminating z, we have the equation to the projection of an edge of the first

polyhedron, viz. ft(i"- f')=^ (!-*') + V ('?-'?')• The equation to the projection of

the edge joining the two corners is {y-m) (f-D-(a;-|) (t7-7;') = 0. These two

projections are evidently at right angles.

It is useful to notice that the pole of the plane z= Ax + By + C is the point

whose coordinates are ^= hA, r)=hB, f= -C.

Ex. Show that Maxwell's reciprocal is not altered (except in position) by

moving the paraboloid parallel to itself, and remains similar when the latus rectum

of the paraboloid is changed. What is the effect on the reciprocal figure of moving

the corners of the primitive polyhedron so that its projection is unchanged ?

343. Cremona'a Theorem. Another construction has been given by Cremona.

Let one polyhedron be given and let a second be derived from it by joining the

poles of the faces of the first. The Cremona-pole of a given plane is a certain

point which lies on the plane itself. If the edges of these two polyhedra are

orthogonally projected, these projections are reciprocal figures with their corre-

sponding edges parallel.

Supposing the projection to be made on the plane of xy, the Cremona-pole may
be defined in any of the following ways. Statically, the Cremona-pole of a plane

is the nul point of that plane for a system of forces whose equivalent %vrench is

situated in the axis of z and whose pitch is h. Analytically, the Cremona-pole of

the plane z=:Ax + By + C is the point ^=-hB, r, = hA, f=C; see Art. 302.

i
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Geometrically ; let the plane intersect the axis of z in C and make an angle (p with

that axis. The pole lies on a straight line CO drawn in the given plane perpen-

dicular to the axis of z so that GO= h cot <(>.

We easily deduce Gremomi's construction from tluit of Maxwell. If we turn

Maxwell's reciprocal figure round the axis of z throu/ 'i a right angle, the coordi-

nates of the pole used by him become f= - hli, -n^hA, f= - C. If we also change

i| the sign of
f^,

the coordinates become the same as those of the pole used in Cremona's

construction. The effect of the rotation is that the corresponding lines in the

projections of the two polyhedra become parallel, instead of perpendicular. The
effect of the change of sign in i" is that we replace the reciprocal polyhedron by its

image formed by reflexion at the plane of ry as by a looking-glass. Since this last

change does not affect the orthogonal projections on the plane of xy, it follows that

the two constructions lead to the same reciprocal figures, except that the corre-

sponding lines are in one case perpendicular to each other, in the other parallel.

343. Example of a reciprocal figure. The fig. 2 is composed of 8 corners,

18 edges and 12 triangular faces each having an angular point at or O'. The
hexagon enclosed by the six edges marked 1...6 not being included as a face, the

figure may be regarded as the orthogonal projection of a polyhedron formed by

placing two pyramids on a common base ABGDEF with their vertices on the same

or on opposite sides. The figure therefore has a reciprocal.

To construct this reciprocal we draw the two polar planes of 0, 0'; these

intersect in some line LMN... whose orthogonal projection is by Maxwell's theorem

at right angles to that of 00'. In fig. 1, the projection has been turned round

through a right angle so that corresponding lines are parallel. Accoi lingly the

projection of the intersection LMN... has been drawn parallel to that of 00'.

Since 6 edges meet at and 0', their polar planes give the two hexagons 1...6,

1'...6'. Since four edges meet at each of the other corners, the polar planes of

these corners supply six quadrilateral faces to the reciprocal figure, the edges 11',

22', 33', Ac. of fig. 1 being parallel to the edges 1, 2, 3, &c. of fig. 2.

The two edges 12, 1'2', lie in the planes of the two hexagonal faces and also in the

planes of the quadrilaterals, they therefore intersect in the straight line LMN.
Fig. 1 will represent the general form, either of the reciprocal polyhedron, or its

projection. The reciprocal figure thus constructed has 8 faces, 12 corners and

18 edges.
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844. In the same way, when any plane figure is given, the polyhedron of

which it is the projection can generally be found by erecting ordinatea at the

comers and joining the extremities. We must however take care that the faces

thus constructed are planes. When the faces of the given figure are triangles, this

condition is satisfied whatever be the lengths of the ordinates because a face

bounded by three straight lines must be plane. It is also clear that when a figure

is the projection of a polyhedron the area enclosed in that figure must bo covered

twice (or an even number of times) by the faces.

346. Reciprocal figures are usually constructed by drawing straight lines

parallel to the edges of the given figure, assuming of course the properties already

proved. To sketch fig. 1, we first draw from an assumed point L, the straight

lines LMN, L21, L2'V, parallel respectively to 00', OA, O'A. Assuming another

point 2 on LI we draw 22', 21/ parallel to AB, OB, then in the figure of Art. 343

2'M is parallel to O'B, The same is therefore true by similar figures (or by the

properties of co-polar triangles) for all positions of the point 2 on LI. A point 3

being taken on 2M we draw 33', 3N, S'N parallel to BC, 00, O'C, and so on for

the corners 4, 5, 6, the point 1 being known as the intersection of 726 and L2. If

any one of these comers were chosen differently, say if 6 were moved nearer Q, we

obtain a new triangle 7»'ll' having its vertices on the straight lines LM, L2, L2',

and two sides Rl, RV, parallel to their former directions. Hence by the properties

of copalar triangles the third side 11' is also parallel to its former direction.

346. Mechanical property of reciprocal figures. Let

two equal and opposite forces be made to act along each edge of a

framework, one force at each end. If their magnitudes are pro-

portional to the corresponding edges of the reciprocal figure, the

forces at each corner are in equilibrium.

This theorem follows at once from the fact that the edges

which meet at any corner in one figure are parallel to the sides of

a closed polygon in the other figure.

For example, let figure 1 of Art. 343 represent a framework of 18 rods freely

hinped at the corners, and let some of the rods be tightened so that the whole

figure is in a state of strain. The stress along each rod is then determined by

measuring the lenp;th of the corresponding edge of the reciprocal figure when that

figure has been drawn. See also Art. 354.

347. Since each corner of a framework is in equilibrium

under the action of the forces which meet at that corner, a

corresponding polygon of forces can be drawn. There will thus

be as many partial polygons as there are corners. When a

reciprocal figure can be drawn, these polygons can be made to

fit into each other .so that every edge is represented once and

once only in the complete force polygon. But if either of the

conditions in Art. 340 were violated, so that a reciprocal diagram

is impossible, the partial polygons may not fit completely into

each other. The result woviid tiicrefore be that one or more of

c
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the forces would be represented by equal and parallel lines

situated in different parts of the figure. Nevertheless some of

the partial polygons may be made to tit, just as a portion of the

framework may be regarded as the projection of a portion of some

closed polyhedron. The force diagrara thus imperfectly con-

structed may yet be of use to calculate the stresses.

Fig. 1.

Fig. 2.

As an example of this, consider the framework represented in fig. 1, in which

the rods F, G; L, M; &c. are supposed to cross without mutual action. If one

rod is tightened, the resulting stresses along the others are determinate, yet a

complete reciprocal figure cannot be constructed. The rod N forms an edge of four

faces, viz. NFII, NGI, NJL, and NKM, so that if there could be a reciprocal figure,

the line corresponding to N would have four extremities, which is impossible. In

this case we can draw a diagram, represented in fig. 2, in which each of the forces

H, I, J, K are represented by two parallel lines.

348. External forces. Let us remove the six bars which form the outer

hexagon of fig. 1 in Art. 343 and also the connecting bars 11', 22', &c. We now

apply at the corners 1...6 of the remaining hexagon forces Pi...Pg to replace the

8tre3ses along the bars which have been removed. We thus have a framework

consisting only of the bars 12, 23, &c. hinged at the corners and acted on by the

now external forces P^.-.P^. This figure resembles the funicular polygon described

in Art. 140, except that the forces which act at the corners are not necessarily

vertical. When the external forces are given we modify the polygon in figure 2 to

suit their magnitudes, see Art. 352. When therefore the stresses of a framework

are caused by the action of external forces acting at the corners, these stresses can

be graphically deduced when we can complete the figure in such a manner that a

reciprocal can be drawn. It is however not usual actually to complete the figi.'e,

for the stresses which would exist in these additional bars if supplied are roi

required. It is sufficient to draw only so much of the figure as may be necest^a.y

to determine the stresses in the given framework.

349. A different mode of lettering the two figures is sometimes used, by which

their reciprocity is more clearly

brought into view. Since the lines

which terminate in a corner of

either figure correspond to lines

which form a closed polygon in the

other, it is obviously convenient to

represent the corner in one figure
^

and the polygon in the other by the

same letter. In this wav, the sides

ik

'I

'

i
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.1 '

which meet in any corner A of tig. 3 are parallel to the sideR which bound the

space A in fig. 4, and the sides whicli bound the space P are parallel to those

which meet at the corner marked F. Any side in one figure such as CD is

bounded by the spaces P and Q and is therefore parallel to the straight line PQ in

the other figure. This method of lettering the ligures is called Bow's system. On

the economicit of comtruction in relation to framed structures (Spon, 1873).

l\

lil.
; »

; ft S':

.

Another method of lettering the two figures has been used by Maxwell. Cor-

responding lines are represented by the same letter, but with some distinguishing

mark; thus large letters may be used in one figure and small ones in the other.

This method is illustrated in the diagram, which ropreaents two reciprocal figures.

350. A rectilinear figure being given, show how tojiid a reciprocal. This may
be best explained by considering an example. In the case of fig. 3 or 4, where all

the faces are triangles, the reciprocal of either can be found by circumscribing

circles about the faces. The straight lines which join the centres, two and two,

are clearly perpendicular to the six sides of the given tigure. One reciprocal figure

having been thus constructed, any similar figure will also be recipiocal.

In more complicated cases such circles cannot be drawn. Let us consider

how the reciprocal of fig. 5 in Art. 349 may be constructed. In drawing the

reciprocal of a figure, it is generally convenient to begin with a corner at which

three sides meet, for the reciprocal triangle corresponding to this corner will

determine three lines of the reciprocal figure. By drawing the lines «, b, c parallel

to .-1, B, G we construct the triangle reciprocal to the corner at which A, B,

meet. Through the intersection of b and c we draw a paiallel e to E ; because

B and C form a triangle with E. In the same way d is drawn parallel to D
through the intersection of a and b. We next notice that, since D, E, F, G form

a polygon in one figure, the lines / and g may be constructed by drawing parallels

to F and G through the intersection of e and d. Again the lines A, C, K, L, H
form a closed polygon, hence the lines k, I, h must all pass through the intersec-

tion of a and c. The line i is drawn parallel to I through the intersection h,f.

Lastly the line j is drawn parallel to / through the intersection g, k, and unless it

passes through the intersection of I and i, a reciprocal figure cannot be formed, it

follows however from the theorem in Art. 341 that this condition is satisfied.

Ex. 1. Two points are taken within a triangle, and the lines joining them to

the corners are drawn. Construct the reciprocal tigure.

Ex. 2. Three straight lines AA', BB\ CC, if produced, meet in a point; AB,
BC, CA, A'B', B'C, C'A' are joined, thus forming three quadrilaterals and two

triangles. Construct the reciproci.1 figure.
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351. Let G be the number of corners in t^^e given figure, E the number of

sides or edges, F the number of faces rr polygons. Let C, K', F be the number

of corners, edges and faces in the reciprocal polygon. It follows from the definition

in Art. 340 that F= E', C = F', F=C'.

The sides of the reciprocal figure are formed by drawing straight lines parallel

to those of the given figure. Taking any straight line AB parallel to one of the

lines of the figure for a base, we construct two new sides by drawing through A and

B parallels to the corresponding lines in the given figure. Continuing this process,

every new corner is determined by the intersection of two new sides. As in

Art. 151, the assumption of the first line AB determines two corners, and the

remaining C"-2 corners are determined by drawing 2(C'-2) lines in addition

to the assumed line AB. Hence if E' = 2C'-3 every corner is determined, and

the figure in stiff. This is the condition that a diagram can be drawn in which

the directions of the lines are arbitrarily given. If E' is less than 2C' - 3, the

form of the figure is indeterminate or deformable. If E' is greater than 26" - 3,

the construction is impossible unless E'-2C' + 3 conditions among the directions

of the lines are fulfilled.

'n the first figure represented in Art. 349, there are four corners, four

triangular faces and six edges; we have therefore in this figure G + F=E + 2,

Let another rectilinear figure be derived from this by drawing additional lines.

The effect of drawing a line from a corner P to a point Q unconnected with

the figure is to increase both C and E by unity. If we complete a new polygon

by joining Q to another corner P', we increase both F and E by "nity. If we
divide any face into two parts by joining two points on its sides, we again

increase equally C7+ ''' and E. It follows, that if the relation C' +F=E + 2 hold

for any one figure, the same relation * holds for all rectilinear figures derived from

that one.

Considering both the given figure and the reciprocal, we have the relations

E = E', C= F', F=C', C-'-F=E + 2, C' + F'= E' + 2.

If the given figure is such that C= F, we have E = 2C-2, E'= 2G' - 2. In this case

the number of corners in either figure is equal to the number of faces, and each

figure has one edge more than is necessary to &:tiffen it. That either figure may be

possible, a geometrical condition for each must txist connecting the edges. "When

the given figure can be regarded as the projection of a polyhedron, it then follows

tiom Maxwell's theorem that a reciprocal figure car^ be drawn. The conditions

just mentioned must therefore be satisfied.

If C < F as in Art. 343, we have E>2G -2, E'<2C' -2; on the same supposition

the reciprocal figure is indeterminate. If C > F we have E<2G-2, E'> 2C" - 2 ; in

this case the construction of t^e reciprocal figure is impossible unless G-F+1
conditions are satisfied.

* This is the same as the relation (first given by Euler) which connects the
number of corners, faces and edges of any simply connected polyhedron. We
notice that in any polygon G=E and F=l, so that G + F=E + 1. Assuming
any polygon as a base we construct the polyhedron by joining other polygons
successively to the edges. It may easily be shown that, at each addition, we
increase C +F and E equally. Hence the relation G +F=E + 1 holds for unclosed
jwlyhedrons. When the final face is added, closing the figure, F is increabed by
unity, C and E remaining 'mchanged, we therefore nave G +F=E + 2for closed

polyhedrons. The limiting case of a polyhedron, all whose corners are in one
plane, is a rectilineal figure having two faces only on each side. In such a figure

Euler's relation must Pe true.

I: !l
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Statical view.

362. 77ie Zt/je« o/ action and the magnitudes of the forces

Pj, Po. ..P„ 6ein<7 given, it is required to find their resultant.

The magnitude and direction of the resultant can be found by

constructing a diagram or polygon of forces in the manner ex-

plained in Art. 36. We draw straight lines parallel and pro-

portional to the given forces and place them end to end in any

order. The straight line closing the polygon, taken in the proper

direction, represents the resultant. Let the forces P1...P5 be

represented by the lines 1...5, the line 6 then represents the

resultant in magnitude and reversed direction.

In constructing this polygon no reference has been made to

the points of application of the forces, so that the forces are not

fully represented. It will therefore be necessary to use a second

diagram. This second figure is sometimes called the framework

and sometimes the funicidar polygon.

From any point taken arbitrarily in the force diagram we
draw radii vectores to the corners. These radii- vectores divide

the figure into a series of triangles, the sides of which are used to

resolve the forces Pj &c. in convenient directions by the use of

the triangle of forces. The side joining to any corner occurs in

two triangles, and thei'efore I'epresents two forces acting in opposite

directions. No arrow has therefore been placed on that side.

The arbitrary point is usually called the pole of the polygon.

The corners are represented by two figures ; thus the intersection

of the sides 1 and 2 is called the corner 12 and the straight line

joining to this corner is called the polar radius 12.

We are now in a position to construct the funicular polygon.

Taking any arbitrary point L as the point of departure, we draw a

straight line LA^ parallel to the polar radius 61 to meet the line

of action of P in A^. From A^ we (kraw A^A., parallel to the

polar radius 1^ to meet P. in ^o; then A^A^ is drawn parallel to

the polar radius 23 to meet P3 in A3 ; then J-3/I4 and J.4^5 are

drawn parallel to the polar radii 34 and 45. Finally A^A^ is

drawn parallel to 56 to meet A^L (produced if necessary) in A,f.

Then A^ is the required point of application of the resultant force.

To understand this, we notice that the force P, at A^ is re-

solved by one of the triangles of the force polygon into two forces

acting along LA^ and -4 0^1 respectively. The latter combined

w
w
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with P., is equivalent to a force acting along A-^At. This combined
with P-i is equivalent to one along A^A;^, and so on. We thus see

that all the forces P^, &c. P., are equivalent to two, one along LA^
and the other along A^A,,. These two must therefore intersect in

a point on the resultant force. In the figure Pg. drawn parallel

to the line 6, represents a force in equilibrium with Pi...P^.

Pi ' Fig. 1. /*. Fip. 2.

If we take some point, other than L, as a point of departure

we obtain a different funicular polygon having all its sides parallel

to those of AiA.i...Ag. In this way by drawing two funicular

polygons we can obtain (if desired) two points on the line of action

of the resultant.

If we take some point other than as the pole in the force

diagram, but keep the point of departure L unchanged, we obtain

another funicular polygon whose sides are not parallel to those

of AiA^-.-Ag. A few of these sides are represented by the dotted

lines. But the resulting point Ag must still lie on the resultant.

We thus arrive at a geometrical theorem, that for all poles with

the same force diagram the locus of Ag is a straight line.

353. Conditions of equilibrium. In this way \ve see that,

whenever the force polygon is not closed, the given system of forces

admits of a resultant whose position can be found by drawing any

one funicular polygon.

When the force polygon is closed the .esult is different. In

order to use the same two figures as before let us suppose that the

six forces Pi...Pa form the given system. Taking any arbitrary

point L, we begin as before by drawing LAi parallel to the polar

radius 61. Continuing the construction for the funicular polygon,

we arrive at a point A^ on the now given force P«. To conclude

I
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the construction wo have to dniw a straight line from A^ parallel

to the same polar Gl with which we began. This last straight

line may be either coinci<lent with, or parallel to, the straight line

LAi with which we began the construction. The whole system of

forces has thus been reduced to jWO equal and opposite forces, one

along AiL and the other along its parallel drawn from A^.

If these two lines coincide, the equal and opposite forces along

them cancel each other. The si/stent is therefore in eqitililyrinm.

In this case the funicular polygon drawn (and therefore every

funicular polygon which can be drawn) vi a closed polygon.

If these two straight lines are parallel, the forces have been

reduced to two equal, parallel, and opposite forces. The system is

therefore equivalent to a couple. In this case the funicular polygon

is unclosed. The moment of this resultant couple is the product

of either force into the distance between them.

354. If we suppose the straight lines A^A^, .4a^;,,&c., joining

the points of application of the forces to represent rods jointed at

A^, -4a, &c., the forces by which these press on the hinges act

along their lengths, Art. 181. The figure has been so constructed

that the reactions at each hinge balance the external force at that

point. The combination of rods therefore forms a framework each

part of which is in equilibrium under the action of the external

forces, and the stresses in the several rods may be found by

measuring the corresponding lines in the force diagi-ani.

We notice that any set of forces acting at consecutive corners

of the funicular polygon (such as P^, Pg, P«) are statically equiva-

lent to the tensions or reactions along the straight lines at the

extreme corners (viz. A-^A^ and 1^4^). These sides must therefore

intersect in the resultant of the set of forces chosen. Hence,

whatever pole is chosen and whatever point of departure L is

taken, the locus of the intersection of any two corresponding sides

of the funicular polygon (such as AsA^ and AiA^) is a straight

line. In a closed funicular polygon this straight line is the line of

action of the resultant of either of the two sets of forces separated

by the sides chosen. Thus the sides A^^At, A^A^ meet in the

resultant either of P^, Pg, Pg or of P., P«, Pj.

366. It may be noticed that fig. 1 does not admit of a reciprocal because the

lines representing the forces Pj...Pq do not form the edges of any face. Neverthe-

less a force diagram has been constructed. The reason is that fig. 1 is a part of a

more complete figure which does admit of a reciprocal, Art. 343. It follows from
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Art. 848 that if we complete the fiRuro by drawing another funicular polynon

corresponding to some other pole O, the whole figure becotneR the projection of a

polyhedron and therefore admitfl of a reciprocal. And so it will oo found kbat the

figures drawn to calculate the Htrebaes of a framework <\re, in Kcneral, incomj iete

reciprocal flguruH. The parts essential to the problem in hand are sketched and

the rest is omitted. The im^jrtance of the theory of reciprocal flKures is that it

enables us to investigate the relations of the several parts of the figure by pure

geometry.

When the forces are parallel, both

6

366. Parallel forces.

the force diagram and the

funicular polygon are sim-

plified, see Art. 140. Thus

let AgAi, AiA.i, A.jA3,

AjAi be light bars hinged

together at A^, A,, A3.

Also let the weights Pj,

P-i, P;, act at Ai, Ai, A^.

Here the force diagram is a straight line ab divided into seg-

ments representing the forces P,, P„, P,. If Oa, Ob be parallel to

the extreme bars AoAi, A^A^, then these lengths represent the

tensions of these bars, and the lengths drawn from to the corners

12, 23 represent the tensions of the intervening bars.

To find the resultant of three given forces Pi, Pj, P;, we assume

any arbitrary pole in the force diagram and draw the corre-

sponding funicular polygon ^o-4,... -4 4. The extreme sides .4 o-<4i,

.44.^3 produced meet in a point on the line of action of the

resultant. The magnitude is obviously the sum of the given

forces, and its direction is parallel to those forces.

867. The force polygon being given, and the point L of departure, let the pole

move from any given position along any straight line 00'. Prove (1) that each

side of the funicular polygon turns round a fixed point, and (2) that all these fixed

poifits lie in a straight line, lohich is parallel to the straight line 00'. This theorem

follows from the ordinary polar properties of Maxwell's reciprocal polyhedra,

Art. 343. The following is a statical proof.

Referring to the figure of Art. 352, let L, M, N &c. be the points of intersection

of corresponding sides of two polygons constructed with 0, 0' respectively as poles.

Let (R^i , 2?2i) (^'ai ' •'^'ai) ^^ ^^^ reactions along the sides which meet on the force Pj

on the two polygons. Since these have a common resultant Pj, the four forces

iJgi, R'lg, JRoj and R'^^ are in equilibrium. Hence the resultant of i?^] , JJ'ig acting at

L must balance the resultant of R„^, R'^^ acting at M. Each of these resultants

must therefore act along LM. But looking at the force polygon, the forces R^^ , R'^^

are represented by the polar radii drawn from O, 0' to the comer 61. Hence the

resultant of Pgi , R'^g is parallel to 00'. Similarly MN is parallel to 00'. Hence

LMN is a straight line. [Levy, Statique Graphique.]

i
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Lt't a third funicular polyKoo ^o drawn oorrenpondinK to a third pole 0"

situated on OO'. If thiH funicular polygon be^inninK at // interHcot the tlrnt in

A/', N'.&o., both LMNiSio. and LM'X ikc. are parallel to OO'O", honce M
ooincidt'H with M', iV with N', and so on. The points M, N, &c, are thoreforo

oommon to all the funicular polyRoua.

Find the locus of the pole I) of a given force polygon that tlw corresponding

funicular polygon starting from one giren point M may pass through another given

point S. The locus is known to be a straight lino parallel to MNi the object is

to cont<triict the straight line.

Case 1. If th(! given points .1/, N lie between any two oonseoutivo forces (say

P,, Pj,), wo may take .1/iV as the initial side A^A.^. The pole must therefore lie

on the straight lino drawn through the corner 12 of the given force polygon parallel

to the given lino A^A^ (see Art. 'Art2).

Case 2. Let the point M lio between ivny two forces (say Pj , I\) and N between

any other two (say P.,, P^). We can remove the intervening force P.^, and replace

it by two forces acting at .1/ and X each parallel to P.y, let these be Q.^, Q.^', Art. B60.

Similarly we can replace tlie other intervening force P^ by two forces, each parallel

to P3, acting also at M ami N ; let these bo V3. Qj- If we now adapt the given

force polygon to these changes, the sides 2 and 3 only have to be altered. We have

to draw forces parallel to Q.^, Q^, Q.,', Q/, beginning at the terminal extremity of

the force 1 and ending (nccussanly) at the initial extremity of the force 4. The

points .V, N now lie between the two consecutive forces Q^Q^', honce by Case 1 the

locus of O is the straight line drawn parallel to MN through the intersection of

these forces in the force diagram. [L^vy, Statique Graphique.]

With given forces, show how to describe a funicular polygon to pass through any

three given points L, M, N.

We lirst And the locus of the pole O when the funicular polygon has to pass

through L and M, and then the locus when it has to pass through L and N. The
intersection is the required point.

With given forces show how to describe a funicular polygon so that one side may

be perpendicular to a given straight line.

Suppose the side A^A^ is to be perpendicular to a given straight line, then the

polar radius 12 is also pt.~'-f ndicular to that line. Art. 3o2. Hence the pole must

lie on the straight line drawn through the corner 12 of the force polygon per-

pendicular to the given straight line.

Ex. Prove that, if the resultant of two of the forces is at right angles to the

resultant of one of these and a third force of the system, a funicular polygon can be

drawn with three right angles. [Coll. Ex., 1887.]

368. If we remove any set of consecutive forces from a funicular polygon, and

replace them by other forces statically equivalent to them, show that the sides

bounding this set offorces remain fixed in position and direction though not in length.

Suppose we replace P^, P^ by their resultant, then in the force diagram we replace

the sides 4, 5 by the straight line joining 34 to 56. The polar radii 34 and 66 are

therefore unaltered. But the bounding sides A^A^, A^A^ are drawn parallel to these

bounding radii from fixed points ^3, A^, hence they are unaltered in position and

direction.

360. If the forces are not in one plane, show that in general there is no

funicular polygon. Let the resultant of Pj, P2,...P„ be required, and if possible

let A^A^-.-An be a funicular polygon. Then this polygon must satisfy two

conditions
; (1) since any one force P can be resolved into two components acting
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ftloiig the adjoining Hi'loB, oach forco and tho two adjoining nidos must lie in one

plane, (2) the componcnta of two consecutive forcefl along the side joining their

points of application must i)e eiiual and oppoHite. When tho forces lie in one

plane, the flrst condition is satisfied already and tiie second condition alone has to

be attendc<l to, and this one condition suflioes to find all the possible polygons.

If any one side A^A.i of tho polygon is chosen, the firnt condition in general

determines all tho other sides. To s' ow this we notice that tho plane through A^i^

and /'j must cut /'.^ in A.,; thus A.^A.f is determined and so on round the polygon.

Thus there arc not Kuniciont constants h'ft to satisfy the second condition, tliough

ot course in tiomc special cases all the conditions might be satisfied together.

860. Ex. 1. Prove tho following construction to resolve a given force P^

acting at a given point A^ into two forces, each parallel to /', and acting at two

other given points ,1,, ,(.,. Lot a length ac represent i'.j in direction and magni-

tude on any ijiren »c<ile. Draw tiO, cO parallel to A.^A.,, Ay-t,, respectively, and

from their intersection O draw OJi parallel to .1,.^., to intersect <ic in b. Then ah

and be represent the re(|uired components at A.^ and A^.

Another coiiitrnction. Produce Pj to cut .d,/!,, in N. Then AiN and NAj
represent the forces at /!., and /I, respectively on the same scale that AiA^ represents

the given force P.j. These would have to be reduced to the given scale by the

method used in Euclid vi. 10.

Ex. 2. Show that a given force P can be resolved in only one way 'nto three

forces which act along three given straight lines, the force and the given straight

lines being in one plane. Prove also the following construction. Let the given

straight lines form the triangle A BC, and let the given force P intersect the sidefl

in L, M, N. To find the force S which acts along any side AB, take Np to

represent the force P in direction and magnitude, draw pa parallel to CN to

intersect AB in «, then Ns represents the required force S. See Art. 120, Ex. 2.

Let Q, R, S be the forces which act along the sides. The sum of their moments

about C must be equal to that of P. The moment of S about C is therefore equal

to that of P. Since ps is parallel to GN, the areas CNp and CNn are equal, and

therefore the moment of Na about C is equal to that of P, Hence Ns represents S.

Ex. 3. Show how to resolve a couple by graphic methods into three forces

which shall act along three given straight lines in a plane parallel to that of

the couple. Prove also the following construction. Move the couple parallel to

itself until one of its forces passes through the corner C of the given triangle, and

let the other force intersect AB in N. Take Np to represent tbi« second force, and

draw ps parallel to CN to meet ^B in ^-1, then the required force along the side AB
is represented by Ns.

361. A light horizontal rod A^A^ is supported at its two ends Aq, A^ and has

weights IFj, W^^, TFj, W^, attached to any given points A^, A^, A^, A^. It in

required to find by a graphical method the pressures on the points of support.

Here all the forces are parallel, and the force diagram becomes a straight line.

Let the line ab be divided into four portions representing the four weights 1^1... 1^4,

while he and ca represent the pressures R' and R at A,, and A^,. We have to

determine the position of c.

Taking any pole O, we draw the polar radii joining to the extremities of the

lines which represent the forces. Drawing parallels beginning at A^ we sketch a

R. S. I. 16
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funicular polygon represented by A„I!i...B^. The polar radius Oc must be parallel

to the line £5^0 closing the funicular. Thus c has been found and therefore the

two pressures R, R'.

If the rod is heavy, the pressures R, R' are not affected by collecting the weight

at the centre of gravity. Drawing any funicular, with this additional weight taken

into account, the pressures on the points of support can be found as before.

363. A light horizontal rod A^,A^ being supported at its two ends and loaded

with iDcights Wi...W^ at the points ^i...^4, it is required to find the stress couple at

any point M. Art. 145.

Tlie pressures at the two ends having been determined, we describe a funicular

polygon of these six forces, such that it passes through A^ and A^. We shall now
prove that the stress couple at M is Hy, where y is the ordinate of the funicular at

M and H is the horizontal tension.

Supposing the funicular polygon to be Af)Ci...CiA^, we notice that the system

of rods represented by ^o^n C^G.2...G^A^ are in equilibrium under the action of the

weights Wi...U\, the vertical pressures R, R\ and the horizontal thrust H of

AiAf,, Art. 354. Taking moments about P, the extremity of the ordinate through

M, for the portion Aq...P, we have Hy equal to the sum of the moments of the

pressure R and the weights Wi, &o. on one side of P, i.e. Hy is the bending

moment of the rod at M, Art. 143.

To draw the funicular polygon which passes through the points A^ and A^, we
take a pole 0' at any point on a horizontal line through the point c in the force

diagram and then construct the polygon fts before. Since cO is parallel to A^B^

it follows that, when lies in cO', B^ must coincide with A^. It is evident that

O'c represents the horizontal tension.

If 0' is moved along cO', the funicular polygon and therefore both the horizontal

tension cO' and the ordinate MP change. The product however, being equal to

the bending moment at M, is not altered ; a result which may be independently

verified.

If the rod is uniform and heavy, the moments about M of the weights of the

portions A^M, MA^ are not altced by replacing those weights by half weights

placed respectively at A,^, M and M, Ag, see Art. 134. If the stress couples at all

the points A^..^^ are required, we can replace the weight of each segment by two

half weights attached to its extremities. I^ lis way the same funicular will

determine all the stress couples.
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363. Frameworks. To show how the reactions along the bars

of a framework may he found by graphical methods, the external

forces being supposed to act at the corners.

Let the given framework consist of a combination of three

triangles, such as frequently occurs in iron roofs. Let any forces

P,, Pa, Pi, Pi, Pa act at the corners Ay, A.., Aj, A^, A^, and let

the whole be in equilibrium. If these forces were parallel three

34

of them might represent weights placed at the joints, while the

structure is supported on its two extremities Ai, A^.

The five forces are in equilibrium, hence the five lines 1...5

which represent them in the force diagram form a closed pentagon.

We shall now sketch the lines corresponding to the stresses of the

framework.

The framework, as described above, does not admit of a

reciprocal ; let us assume for the present that it can be completed

by drawing the pentagon ai.-.as; Art. 3.55. The proper form of

this addition to the figure is discu kI in Art. 305*.

The side A^A^ forms part of a quadrilateral AiA^a^iai. This

quadrilateral corresponds to four lines in the reciprocal figure

which meet in a point. Hence the reciprocal of the straight line

* If we do not refer to the theory of reciprocal figures the argument must be

somewhat altered. As there are more than three forces at several corners of the

framework, it will then require some attention to discover the force diagram, though
when once known it can be drawn without difficulty to suit the numerical relations

of the bars in any like structure.

To discover the line corresponding to AyAr, we notice that the forces at A^ must
be represented by a triangle two sides of which are parallel to Pj and AyA^, those

at Ar, by a quadrilateral two sides of which are parallel to Pg and AyA^. As a trial

construction we can satisfy these conditions by adopting the rule in the text. The
success of the drawing will test the correctness of the hypothesis, Art. 347.

16—2
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A^A^ is a straight line drawn through the intersection of the

consecutive forces 1, 5 parallel to AjA^. The same argument

applies to every bar of the frame AiA.i...Ai; each is represented

in the reciprocal by a straight line which passes through 'he

junction of the consecutive forces at its extremities. This easy

rule enables us to draw the reciprocal figure without difficulty.

Thus the reciprocal of the side A^A., is a straight line drawn

parallel to A^A., through the point of junction of the consecutive

forces marked 1 and 2. These straight lines are marked in the

force diagram with the suffixes of the straight lines to which they

correspond in the framework.

The triangle representing the forces at Ai naving now been

constructed, we turn our attention to those at the next corner Af.

These will be represented by a quadrilateral. Following the rule,

we draw 45 parallel to A^A^ through the point of junction of the

consecutive forces 4, o. Thus three sides of the quadrilateral are

known, viz. o, 15, 45. Through the known intersection of 12 and

15 we draw a parallel to A.,As completing the quadrilateral. The

sides are 5, 15, 25, 45.

Turning our attention to the corner A^, we draw 34 by the

rule and again we know three sides of the corresponding (|uadri-

lateral, viz. 34, 4 and 45. The fourth side is completed by drawing

24 through the known intersection of 45 and 25. The four sides

are 4, 45, 24, 34.

The triangle corresponding to the corner A3 is completed by

joining the known intersection of 84 and 24 to the point of

junction of the consecutive forces 2, 3. By the rule this line

should be parallel to the side A,,As. This serves as a partial

verification of the correctness of the drawing.

Lastly the forces at the corner A2 must be represented by a

pentagon, but looking at the figure we find that all the sides of

this pentagon, viz. 2, 23, 24, 25, 12, have been already drawn.

The magnitudes of the reactions along the bars of the given

frame may now all be found by measuring the lengths of the

differf^nt lines in the diagram.

364. The directions of the reactions along the bars of the

framework are not usually marked by arrows in the force diagram

because two equal and opposite forces act along each bar. It is

more convenient to mark them as bars w tension or in thrust.
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The former are called ties and the latter tJwusts. Consider the

corner A^, the bars are parallel to the sides of the triangle 1, 12

and 15. The direction of the forces being known, those of 12 and

1,5 follow the usual rule for the triangle of forces. Hence at the

point Al the forces act in the direction 1-5, 21. Therefore A^A^ is

in a state of compression, i.e. it is a thrust, while AiAf, is in a

state of tension and is a tie. We may represent these states by

placing arrows in the framework at -(4i,^2 pointing towards Ai,A.^

respectively and arrows at Ai, A^ pointing fvo7}i Ai, A^ respec-

tively. Another method has been suggested by Prof R. H. Smith

in his work on Graphics. He proposes to indicate ties by the

sign + and struts by —. These marks may be placed on either

diagram.

3QA. We should notice that the figure thus constructed, though sufficient to

find the stresses in the rods, is not a complete reciprocal figure. To enable us to

complete the figure we must first draw such a polygon Oi...a^, cutting the lines of

action of the forces, that the whole figure may admit of a reciprocal. Statiailly,

we see that this polygon must be a funicular of the given forces, for otherwise the

forces at the cor..ers ai...a^ would not be in equilibrium, Art. 35-1. Geometrically,

the polygon should be such that the five quadrilaterals iiiU^AiA^, &o. are the pro-

jections of plane faces of a polyhedron. This polyhedron is constructed by drawing

ordinates at the corners. We know that, if vve draw two funiculars (Ii-.m^ and

bi..\of the forces P1...P5, the five intersections of a^a.^, b^b.^; a^a^, b,Jj.y, &c. lie in

a straight line LMN, Art. 357. Referring to Art. 343 (where these funiculars are re-

presented by 1...C and 1'...6') we see that the five quadrilaterals njaoh,&^, &c. may
therefore be made the projections of plane faces. We construct the polyhedron by

keeping a^-.M^ fixed and erecting ordinatp'-' at ^j.-.tg proportional to their distances

from LMN. Since the sides A^A.^ &c. lio in the planes a^iuhib^, &c. it follows

that the five quadrilaterals a^anA^A.^, &c. are also the projections of plane faces.

The ordinates at Ai...A^ may then be drawn.

Taking «i...«5 to be a funicular polygon of the forces P1...P5 the corresponding

lines on the force diagram are the dotted lines drawn from the corresponding polo

to the points of junction of the forces. It is evident that these lines are

practically separate from the rest of the figure. Unless therefore we wish to

assure ourselves that the forces P1...P5 are in equilibrium, it is unnecessary to

draw either the funicu':;r polygon (jj..,ag or the corresponding lines in the force

diagram. /( is mtual to omit titis part of the figure.

366. Method of sections. We shall now show how the reactions are found

by the method of sections. Lot it be required to

find the reactions along the rods A^A^, A.,An,

Ay-li- Let these reactions be called Q, li, S

respectively. Draw a section cutting tlie frame

along these rods, and let the points of intersection

be J), C, D. If we imagine the whole structure on

one side of this section to be removed, the re-

mainder will stand if we apply the forces Q, E, S

il

i-i
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to the points li, C, D along the three rods respectively. Let us remove the strwcture

on the right hand as being the more complicated, we have now to deduce the forces

<^, R, S from the conditions of equilibrium of the remaining structure.

In our example not more than three bars were cut by the section. Since there

are only three forces the problem is determinate. By Art. 360, Ex. 2, each force of

any system can be replaced by three forces acting along three given straight lines,

and this resolution can be effected by a graphical construction.

These reactions may also be easily found by the ordinary rules of analytical

statics, as in Art. 120, where this problem is solved by taking moments about the

intersections of these lines.

When the figure is so little complicated as the one we have just considered,

either the method of the force diagram or the method of sections may be used

indifferently. In general each has its own advantages. In the first we find all the

reactions by constructing one figure with the help of the parallel ruler, but if there

be a large number of bars the diagram may be very complicated. In the method of

sections when only three reactions are required we find these without troubling

ourselves about the others, provided these three and no others lie on one section.

867. In these frameworks, each rod, when its own weight can be neglected, is

in equilibrium under the action of two forces, one at eacli extremity. These forces

therefore act along the length of the rod, and thus the rods are only stretched or

compressed. This is sometimes a matter of importance, for a rod can resist,

without breaking, a tensional or compressing force when it would yield to an equal

transverse force. The structure is therefore stronger than when rigidity at the

joints is relied on to produce stiffness.

In actual structures some of the external forces may not act at a corner, for

instance, the weight of any rod acts at its centroid. In such cases the resultant

force on any bar must be found either by drawing a funicular polygon or by the

rules of statics. This resultant is to be resolved into two parallel components

acting one at each of the two joints to which the rod is attached.

This transformation of the forces which act on a rod cannot affect the distri-

bution of stress over the rest of the structure, so that when these components are

combined with the other forces which act at those joints the whole effect of the

rest of the structure on each rod has been taken account of. So far as the rod

itself is concerned, it is supposed to be able to support, without sensible bending,

its own weight, or any other forces which may act on it at pointb intermediate

between its extremities.

368. Sndeterminate Tensions. Let Pj, P.,,..,Pn be a system of forces in

equilibrium. Let J,...i4„, A\...A'„ be two funicular polygons of this system.

the corresponding corners A^, A\ ; A^, A'^ &e.

be joined by rods. Let us also suppose that

the external polygon is formed of rods in a

state of tension and the internal polygon of

rods ir thrust. It is clear from the properties

of a funicular polygon that the framework

thus constructed will be in equilibrium. It

is also evident that the thrusts along the

cross rods A^A'^ &c. will be equal respectively

to the original forces P,, P^f.-.Pn- In this

Let
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way a frame has been constructed with tensions along the rods apart from all

external forces. See Art. 237. From the property of funicular polygons proved

in Art. 357 the correapondimj sides of this frame intersect in j)oints all of which lie

in a straight line.

If there are only three forces the polygons become triangles. Since the forces

I",, Po, Pj are in equilibrium the three straight lines A^A'^, A.,A'.,, A^A'^ which JLiu

the corresponding angular points must meet in a point. Such triangles are called

co-polar. We see therefore that co-polar triangles admit of indeterminate tensions.

Levy's theorem, given in Art. 238, follows also from this proposition. Taking

only six forces, because the figure has been drawn for a hexagon, let {1\, PJ,
(P„, I'j), (P3, P„) be three sets of equal and opposite balancing forces. Let AyA^^
be any funicular polygon, but let the second funicular polygon be constructed so

that Aj' coincides with ^14, and let the pole be so chosen that A.,' and A^' coincide

with Af and ^„, Art. 357. It then follows that the second funicular coincides

throughout with the first. The cross bars '14, A^A^, AyA,,^ become the diagonals

of the hexagon. Thus a frame of any even number of sides has been constructed

in which the diagonals are in a state of thrust and the sides in tension.

369. The line of preunre. Let us suppose a series of connected bodies,

such as the four represented in the figure, to be in equilibrium under the action of

any forces, say the three P, Q, R. We suppose these bodies to be symmetrical

about a plane which in the figure is taken to be the plane of the paper. The first

body is hinged to some fixed support at A and also hinged at B to the body BCC .

This second body presses along its smooth plane surface CC against a third body

CC'D. This third body is hinged to a fourth body at D, and this last is hinged at

E to a fixed point of support.

The pressure at A acts along some line Ap and intersects the force P at 2>-

The resultant of these two must balance the action at the hinge B, and must

therefore pass through B. This force acting at B intersects the force Q at q, and

their resultant must balance the pressure at CC . This resultant must therefore

If

J I

4,
ill

cut CC at right angles in some point M. Also the point M must lie within the area

of contact, and the resultant must tend to press the surfaces at CC together. This

pressure on the third body acts along qMD and intersects II at D. Finally the

resultant of these two must pass through E.

It is evident that the line ApqDE is a funicular polygon of the forces P, Q, R.

When therefore such a series of bodies as we have here described rests in equili-

brium with its extremities supported it is sufficient and. necessary for equilibrium

that some one funicular polygon can he drawn which passes through all the hinges

«
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and cnU at riijht anglcK the surface ofprasurc. This particular funicular polygon

is called the line of pressure.

870. Let us take an ideal section, such as xy, which separates the whole

system into two parts, and let it be required to find the resultant action across this

section.

This action is really the resultant of the forces across each clement of the

sectional area. But since each portion of the system must act on the other portion

in such a way as to keep that portion in equilibrium, we may also find the resultant

from the general principle that it balances all the external forces which act on

either of the two portions of the system : see also Art. 143. It immediately follows

that the resultant action across xy is the force already described which acts along

pq. Similar remarks apply to every section ; we therefore infer that the renultant

action ficro>!S any Hection h the force which acts along the corresponding side of the

line ofpressure.

If we move the section xy from one end A of the system to the other B, there

may be some difficulty in determining which is the " corresponding side of the line

of pressure " when the section passes the point of application of a force. Suppose

for example a to be the point of application of F. If a section aa x'y' is ever so

liUle to the left of a, the corresponding side is Ap, but when the section is ever so

little on the right of a, the corresponding side is pq. If the section is parallel to

the force P, the side corresponding to any section is the side of the line of pressure

intersected by that section. When therefore the forces are all vertical it will be

found more convenient to consider the actions across vertical sections than across

those inclined.

The resultant action across any section such as x'y' does not necessarily pass

within the area of that section. The reason is that this action is the resultant of

all the small forces across all the elements of area. As some of these elementary

forces across the same sectional area may be tensions and some pressures, the line

of action of the resultant may lie outside the area. If the forces all act in the

same direction like those across the section CC (where two bodies press against

each other), the resultant must pass within the boundary of the section. Some-

times it is more useful to move the resultant parallel to itself and apply it at any

convenient point within the boundary ; we miist then of course introduce a couple.

This is often done when the body AB is a thin rod. See Art. 142.

371. When the bodies are heavy we may find the action at any hinge or

boundary between two bodies by the same rule. The weight of each body is to be

collected at its centre of gravity and included in the list of external forces. The

resultant action at any boundary is the force along the corresponding side of the

funicular polygon.

But if the accioii across some section as xy is required, this partial funicular

polygon will not suffice. We must now consider the body BCC to be equivalent to

two bodies separated by the plane xy. The weights of each of these portions may
be collected at its own centre of gravity, and a fiinicular polygon may be drawn to

suit this case. Thus, if Q is the weight of the body BCC acting at its centre of

gravity /3, we remove Q and replace it by two weights acting at the respective

centres of gravity of the portions Bxy and xyCC. The funicular polygon will

therefore have one more side than before. It also loses the corner on the force Q
and gains two new corners which lie on the lines of action of these new weights.

But since the action at B must still balance the external forces whose points of
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application are on the left of li, and the action at M must still balance the forces

on the right of CC, it is clear that the sides pli and MD of the funicular polygon

are not altered. Therefore the two corners of the new funicular polygon must lie

respectively on liq and qD, 'Thus the new polygon is inscribed in the former partial

funicuUir polygon.

If we continue this process of separating the bodies into parts, we go on increasing

the number of sides in the funicular polygon, but the side which passes through any
real section is unchanged in position. Finally, when the bodies are subdivided into

elements, the line of pressure becomes a curve. This cmitc will touch all the partial

polygons of pressure at each hinge and at each real surface of separation.

EXAMPLES.
873. Ex. 1. A framework is constructed of eleven equal heavy bars. Nine

of them form three equilateral triangles ABC, DDE, DIG with their bases AD,
BD, DF hinged together in a horizontal straight line. The vertices C, E, G are

joined by the remaining two bars. The Warren girder thus formed is supported at

its two lower extremities A , F and loaded at the upper points C, E, G with weights

ir, , w, , lOi . Construct a force diagram showing the stresses in the bars.

Ex. 2. A horizontal girder has four bays Ali, liC, CD, DE each 5 feet ; it is

stiffened by three vertical members BB', GC, DD' each 3 feet, by horizontal

members B'C, CD' and by oblique members AB', B'C, CD', D'E. Find by a

graphical construction the tensions and thrusts produced in the members when a

uniformly distributed load W is supported by the girder. [St John's Coll., 1893.]

Ex. 8. ABCDEFG is a jointed frame in a vertical plane, constructed as

follows. ABCD and GFE are horizontal, A being vertically above G ; ABFG,
BCEF are squares; CD is equal to CE\ also BG, CF, DE are three diagonal

stiffening bars. The frame is supported at the points A and G, while a weight is

hung at D. Supposing the weights of each bar to act half at each of its ends,

exhibit in a diagram the stressesu in the various bars of the frame. Show that

those i'l GF and BC are equal, likewise those in FE and CD, and determine which

bars are struts and which are ties. The supporting force at A may be taken to be

horizontal. [Coll. Ex., 1894.]

Ex. 4. A roof ABCD is of the form of half a regular hexagon ; it is stiffened

by two cross-beams AC BD; and it rests on the walls at A and D. Find, by a

stress diagram, the tensions and thrusts in its members produced by a uniform

load of tiles. [St John's Coll., 18'J2.]

Ex. o. A framework is composed of six light rods smoothly jointed so as to

form a regular hexagon ABCDEF whose centre is at 0. The points BF, OA, OC,

OE are also connected, without disturbing the regularity of the hexagon, by light

rods of which the first two are to be regarded as having no contact with one

another. If the framework be suspended from A and a weight W be attached to D,

show by graphical methods that the thrust in BF will be W^'i, and find the force

along each of the other bars. [Trin. Coll., 1895.]

Ex. 6. A regular twelve-sided framework is i'ormed by heavy loosely jointed

rods and each angular point is connected by a light rod to a peg at the centre.

The whole rests on the peg in a vertical plane with a diagonal vertical. Show that

the stresses in the rods are indeterminate ; and assuming that the horizontal rods

are not under stress, draw a diagram in which lines are parallel to and proportional

to the stress in each rod and calculate the stresses. [Coll. Ex., 1893.]
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Ex. 7. The lines of action of six forces in equilibrium arc known. One force

is known, one other pair of the forces are in one known ratio, a second pair are in

another known ratio. Find a Rraphio construction determininf,' the magnitudes of

tho five undetermined forces. [Math. Tripos, 1895.]

Ex. 8. AliCI) is a rhombus of jointed rods, and OB, OD are two equal rods

jointed to the rhombus at Ji and 7> and jointed at O. Supposing all the joints

smooth and parallel forces, not in the same line, applied to the framework at O, A,

C ; construct a force diagram. Show that for equilibrium the directions of the

forces must be parallel to I)D. [Math. Tripos, 1891.]

Ex. 9. For : forces pv in ti e sides Ali, IW, CD, DA of a quadrilateral ABCD,
and are propo. > a) i ose sides. Construct the funicular, one of whose sides

joins the middl , /. t , .,f AB and BC, when the thrust in that side is represented

by CA on the bw ' w-y;, s the given forces are represented by the sides of the

quadrilateral. [St John's Coll., 1893.]

Ex. 10. Prove that if the lines of action of (« - 1) forces be given, it is always

possible to adjust their magnitudes so that the system of (k-1) forces and their

resultant reversed can hold in equilibrium a framework of jointed bars in the form

of an equiangular polygon of n sides, a force acting at each corner.

[St John's Coll., 1890.]

Ex. 11. Four points A, B, C, D are in equilibrium under forces acting between

every two : prove the following construction for a force diagram of the system.

With focus D a conic is described touching the sides of the triangle ABC, and !>'

is its second focus ; D'A', D'B', D'C are drawn perpendicular to the sides of the

triangle ABC ; then D'A'B'C is a force diagram in which each side is perpendicular

to the force it represents. [Math. Tripos.]

Let AD cut B'C in P; we notice (1) that AD, AD' make equal angles with the

tangents drawn from A, hence the angles PAC, B'AD' are equal; (2) that a circle

can be described about D'B'C'A , hence the angles A C'P, A D'B' are equal. It follows

that the triangles PA C, B'AD' are equiangular. Hence ^D is perpendicular to B'C.

Ex. 12. Nine weightless rods are jointed together at their ends ; six of them

form the perimeter of a regular hexagon, and the other three each join one angular

point to the opposite one ; to each joint a weight W is attached, and the frame

is hung in a vertical plane by strings attached to adjacent angles A, B, so that AB
is horizontal, and the strings bisect the hexagon angles externally. Find or show

by a diagram the forces in all the rods. [Coll. Ex., 1887.]

Ex. 13. Two points P, Q are taken within a hexagon ABCDEF, the point P is

joined to the corners A, B, C. D, and Q to the corners D, E, F, A. Construct the

reciprocal figure.

\



CHAPTER IX.

CENTRE OF GRAVITY.

373. The centre of parallel forces. It has been proved

in Art. 82 that the resultant of any number of parallel forces

Pj, Pg, &c., acting at definite points J.,, ^a> &c., rigir^ ennccted

together, is a force SP.

Let the rigid system of points be moved about u ny manner

in sproe; let the forces Pj, P^, &c. continue to act ai these points,

and let them retain unchanged their magnitudes and v^irections in

space. It has also been proved that the line a tion of the

resultant always passes through a pomt fixed relatively to the

points .4i,^o,&c. This point is therefore regarded as the point of

application of the resultant. It is called the centre of the parallel

forces. The chief property of this point is its fixity relative to

the system of points A^, A^, &c.

When the forces Pj, P«, &c. are the weights of the particles of

a body, the centre of parallel forces is called the centre of gravity.

Thus the centre of gravity is a particular case of the centre of

parallel forces.

374. Definition of the centre of gravity. We take as a system

of parallel forces the weights of the several particles of a body.

Each particle is supposed to be acted on by a force which is

parallel to the vertical. This force is called gravity. The

resultant of all these forces is the weight of the body. We
infer from the theory of parallel forces that there is a certain

point fixed in each body (or rigid system of bodies) such that

in every position the line of action of the weight passes through

that point. This point is called the centre of gravity *.

* The first idea of the centre of gravity is due to Archimedes, who flourished

about 250 b.c. In his work on Centres of gravity or aequiponderants he determined
the position of the centre of gravity of the parallelogram, the triangle, the ordinary

rectilinear trapezium, the area of the parabola, the parabolic trapezium, &o. See

the edition of his works in folio printed at the Clarendon Press, Oxford, 1792.
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It is evident from this definition that if the centre of gravity

of a body is supported the body will balance about it in all

positions.

874. A body hai but one centre of ifravitij. This is evident from the demon-

Htration in the article already v|uoted. The following is an independent proof.

If poHHible let there be two such points, say A and U. As we turn the system

into all positions, the resultant keeps its direction in space unaltered. Place the

body so that the straight line AH is perpendicular to the direction of the resultant

force. Then the line of action of that force cannot pass through both A and Ji.

376. Let {xi, y,, 2j), (ajj, y.^, z.^) &c. be the coordinates of the

points of application of the parallel forces Pj, Pj, &c. respectively.

Let these coordinates be referred to any axes, rectangular or

oblique, but fixed in the system. By what has been already proved

in Art. 80, the coordinates of the centre of parallel forces are

x =
tPx

z =
^Pz

IP' "^

" SP '
''

~ SP
It is important to notice that, if all th: forces were altered in

the same ratio, the magnitude of the resultant would also be

altered in the same ratio, but the coordinates of its point of

application would not be changed.

377. When the weight of ani/ two equal volumes of a

substance are the same, the substance is said to be homogeneous

or of uniform density. In such bodies the weights of dilferent

volumes are proportional to the volumes. The weight of any

elementary volume dv may therefore be measured by the volume.

Hence by Art. 87 G we have

^_jdv.x __^dv.y ^_Jdv.z
^~

Jdv '
'^~

Jdv
' ^~

Jdv~-

We have here replaced the 2 by an integral, because the parallel

forces we are considering are the weights of the elements of the

body.

From these equations all trace of weight has disappeared.

We might therefore call the point thus determined the centre

of volume.

When the body is not homogeneous the weights of the

elements arc not proportional to their volumes. Let us represent

the weight of a volume dv of the substance by pdv. Here p will

be different for each element of the body, and will be known as a

function of the coordinates of the element when the structure of
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the body is given. For our present purpose the body is given

when We know p ai) n function of x, i/, z. We therefore have

_ jpdv . X _ Jpdv ,y _ _ jpdv . z

jpdv' ' ^ "^
~J^iv * ^ ~ Jpdv '

In those equations we may replace p by xp, where k is any quantity

which is the same for all the elements of the body. All that is

necessary is that pdv should be proportional to the weight of dv.

We may therefore define p to be the limiting ratio of the

weight of a small volume (enclosing the ])()int {jyz)) to the weight

of an equal volume of some standard homogeneous sub.«;tance.

For the sake of brevity we shall speak of p as the density of the

body. If the body is homogeneous the product of the density into

the volume is called the mass. If heterogeneous, then pdv is the

mass of the elementary volume dv, and jpdv is the mass of the

whole body. If we write dm = pdv, the equations become

- _ Z^^'' •
* - _ /^ '^'' y - _ Z^^'*" • ^

^ ~ jdm ' 2/ - 0^ ' 2 -
j^,,^

•

When we wish to regard the mass of an element as a quality

of the body apart from its weight, we may speak of the point

determined by these equations as the centre of mass.

378. Equations similar to these occur in other investigations besides those

which relate to parallel forces. In such cases the quantity here denoted by P or vi

has some other meaning. Accordingly the point defined by these coordinates has

had other names given to it, depending on the train of reasoning by which the

equation has been reached. This may appear to complicate matters, but it has the

advantage that the special name adopted in any case helps the reader to understand

the particular property of the point to which attention is called.

We here arrive at the point as that particular case of the centre of parallel

forces in which the forces are due to gravity. There may therefore be some

propriety in using the term centre of gravity. There are also obvious advantages

in using the short and colourless term of centroid. Another name, much used,

is the centre of inertia. This expresses a dynamical property of the point which

cannot be properly discussed in a treatise on statics.

379. The positions of the centres of gravity of many bodies

are evident by inspection. Thus the centre of gravity of two equal

particles is the middle point of the straight line which joins them.

The centre of gravity of a uniform thin straight rod is at its middle

point. The centre of gravity of a thin uniform circular disc is at

its centre. Generally, if a body is symmetrical about a point, that

point is the centre of gravity. If the body is symmetrical about

an axis, the centre of gravity lies in that axis, and so on.

' iiii
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380. Working rule. To Hiid tho centre of gravity of any

body or systom of hodii^s, wo procood in tin? following manner.

Wo divide the bod^ or systiun into portions which nuvy be either

finite in size or elententari/. But thi'y must he such that we know

both the mass and position of the centre of gravity of each. Let

rn,, wtj, &c. be the masneH of these portions, and let the coordinates

of their respective centres of gravity be (a?,, y,, ^,), (.fj, y.j, z,^, &c.

The weight of each portion is the resultant of the weights

of the elementary particles, and may be supposed to act at tho

centre of gravity of that portion (Art. S2). We may therefore

regard the whole body as ncted on by a system of parallel forces

whose magnitudes are proportional to 7/t,, jn^, &c., and whose

j)oints of application are the centres of gravity of 7n,, m^, &c.

The position of the centre of gravity of the whole system is

therefore found by substituting in the formula'

2wa;
x =

Sm '

Smy
2/= V '2,m

2wi^

2,m

381. In using this rule it is important to notice that some of

the masses may be negative. Thus suppose one of the bodies is

such that its mass and centre of gravity would be known if only a

certain vacant space were filled np. We regard such a body as the

difference of two bodies, one filling the whole volume of the body

(including the vacant space) whose particles are acted on by gravity

in the usual manner, the other filling the vacant space but such

that its particles are acted on by forces equal and opposite to that

of gravity. To represent this reversal of the direction of gravity

it is sufficient to regard the mass of the latter body as negative.

Since in the theory of parallel forces the forces may have any signs,

it is clear that we may use the same formulae to find the centre of

gravity of this new system.

883. Ex. 1. A painter's palette is formed by cutting a small circle of radius b

from a circular disc of radius a. It is required to find the distance of the centre of

gravity of the remainder from the centre of the larger circle.

Let O and G be the centres of the larger and smaller circles respectively. Let

00 =c. We take as the origin and OC as the axis of .r. The masses of the two

circles are proportional to their areas; we therefore put mi = ira\ 111^= -vb^. The

latter is regarded as negative because its material has been removed from the larger

circle. The centres of gravity of the two circles are at their centres, hence Xj = 0,

X.,=:C. We have therefore 5=
Sm.T va' . - irb^ . c -b^e

2m va" - irW d^ - b'^
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Tliu iicKativG Hi^n in tho roHult implioH that tho ocntro of gravity of tlic |)alottu in

on tho Hidu of O oppoHitu to C,

Ex. 'J. If any niitiibor of bodiuR hnvo thoir contreR of gravity ou the flame

KtraiKlit liiiu, tliu curitru of gravity of thu whole of tlium lien ou that utraight liiif.

Take the Htraight lino an the axiM of 2, then the ;/ and z of each centre of

gravity are both zero. Hence by Art. 880 y = 0, and J = 0.

Kx. S. Two partioles of maHsefl m,, w.^ are placed ai A, II reHpcotively. Prove

that their centre of gravity G divideH tlie dirttance Alt iuvoruely ia the ratio of tlie

masHea. Art. 58, Ex. 1.

Ex. 4. Three particles arc placed at tho corners of a triangle ; if their weights,

«?,, w.,, tt»3, vary ho that they satisfy tlio linear equation lWy-\-mir.^ + nw^ = 0, show

that tho locus of their centre of gravity is a straight line. What is the area!

equation to the straight lino? Art. 68, Ex. 2.

Ex. 5. Four weights are placed at four given points in space, the sum of two of

the weights is given, and also the sum of tiio other two: prove that their centre of

gravity lies on a fixed plane. [Math. Tripos, 186!).J

Ex. 6. Water is poured gently into a cylindrical cup of uniform thickness and

density ; prove that the locus of the centre of gravity of the water, tho cup, and its

handle, is a hyperbola. [Math. Tripos, 1859.]

Ex. 7. Water is gently poured into a vessel of any form ; prove that, when so

much water has been poured in that the centre of gravity of the vessel and water is

in the lowest possible position, it will be in the surface of tho water. [Math. T., 1859.]

Ex. 8. In the figure of Euclid, Book i. Trop. 47, if tlui perimeters of the

squares be regarded as physical lines uniform throughout, prove that the figure

will balance about the middle point of the hypothenuse with that line horizontal,

the lines of construction having no weight. [Math. Tripos, iHliO.]

If we take the hypothenuse as the axis of x and its middle point as origin,

it follows immediately that x = 0.

383. Area of a triangle. To find the centre of gravity

of a uniform triangular area ABC.

Let us divide the area of the triangle into elementary portions

or strips by drawing straight

lines parallel to one side of

the triangle. Bisect BC in

D and join AD, and let AD
intersec* any straight line

PNQ dra.vn parallel to BC
in iV. Then by similar

triangles

PN-.NQ^BD-.DC;
but BD - DC, hence PNQ is bisected in lY. Thus every straight

line drawn parallel to BC is bisected at its intersection with AD.

Since we can make each strip as narrow as we pleaso, it follov/s

that the centre of gravity of each (like that of a thin rod, Art. 379)

S 'I,
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is at its midflle point. The centre of gravity of each strip therefore

lies in AD. Hence the centre of gravity of the whole triangle lies

in AD; see Art. 382, Ex. 2.

In the same way, if we draw BE from B to bisect AC in E, the

centre of gravity lies in BE. The centre of gravity of the triangle

is therefore at the intersection G oi BE and AD.

Since D and E are the naddle points of CB and CA, the

triangle CED is similar to the triangle CAB. Hence ED is

parallel to AB and is equal to one half of it. The triangles DEG,
ABG are therefore also similar, and DG : GA = ED : AB. Thus

DG is one half of AG, and therefore DG is one third of AD.

384. We have thus obtained two rules to find the centre

of gravity of a uniform triangle.

(1) We may draw two median straight lines from any two

angular points to bisect the opposite sides. The centre of gravity

lies at their intersection.

(2) We may draw one median line from any one angular

point, say A, to bisect the opposite side in D. The centre of

gravity G lies in ^D so that AG = ^AD.

It will be found useful to observe that the centre of gravity of

the area of the triangle is the same as that of three equal particles

placed one at each angular point of the triangle.

Let the mass of each particle be m. The centre of gravity of

the particles at B and C is the point D The centre of gravity of

all three is the same as that of 2//t at D and m at A ; it therefore

divides AD in the ratio 1 : 2 (Art. 382). But the point thus

found is the centre of gravit}^ of the triangle.

If the mass of each of these three particles is equal to one-

third of the mass of the triangle, the resultant weight of the three

particles is equal to the resultant weight of the triangle. And
these two resultants have just been shown to have a common
point of application. Hence these three particles are equivalent to

the triangle so fur as all resolutions and moments of weights

are concerned.

Also, when we use the method of Art. 380 t o find the centre

of gravity of any figure composed of triangles, we may replace

each of the triangles by three equivalent particles whose united

mass is equal to that of the triangle. The centre of gravity of the
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whole figure may then be found by applying the rule to this

collection of particles.

385. Ex. 1. The centre of gravity of the area of a triangle is the same as the

centre of gravity of three equal particles placed one at each of the middle points of

the sides.

Ex. 2. Lengths AP, EQ, CR are measured from the angular points of a triangle

along the sides taken in order so that each length is proportional to the side along

which it is measured. Show that the centre of gravity of three equal particles

placed one at each of the points P, Q, R is the same as that of the triangle.

Prove also that the centres of gravity of the triangles APR, BQP, CRQ, lie on

the sides of a fixed triangle, which is similar and equal to ABC.

Ex. 3. Lengths AP, BQ, &c. are measured from the corners of a polygon along

the sides taken in order so that each length is proportional to the side along which

it is measured, the sides not being necessarily in one plane. Show that the centre

of gravity of equal particles placed at P, Q, &c. coincides with that of equal

particles placed at the curners. Art. 79.

Ex. 4. Similar triangles ABP, BCQ, &c. are described on the sides AB, BC,
&c. of a plane polygon taken in order. Show that the centre of gravity of equal

weights placed at P, Q, &o. coincides with that of equal weights placed at A, B, &o.

Ex. 5. The perpendiculars from the angles A, B, C meet the sides of a triangle

in P, Q, R: prove that the centre of gravity of six particles proportional respec-

tively to sinM, sin^B, sin' C, cosM, cos^B, co8*C, placed at A, B, C, P, Q, R,

coincides with that of the triangle PQR. [Math. Tripos, 1872.]

Ex. 6. A point G is taken inside a tetrahedron A BCD. Find by a geometrical

construction the plane section which having its cornerG a the edges DA, DB, DC,

has its centre of gravity at G. Find also the limiting positions of G that the

construction may be possible.

386. Perimeter of a triangle. Ex. 1. A triangle ABC is formed by three

thin rods whose lengths are a, b, c. If H be the centre of gravity, prove that the

areal coordinates of H are proportional to b + c, c + a, a + b.

Ex. 2. The centre of gravity of the perimeter of a triangle ABC is the centre of

the circle inscribed in the triangle DEF, where D, E, F are the middle points of the

sides of the triangle ABC. [Lock's Statics.']

Ex. 3. If H be the centre of gravity of the perimeter of a triangle, G the centre

of gravity of the area, I the centre of the inscribed circle, prove that //, G, / are in

one straight line, and that GH is one half of IG. If O be the centre of the circum-

scribing circle, and P the orthocentre, show also that the triangles IGP, HGO are

similar.

Ex. 4. The sides of a polygon are of equal weight. Prove that the centre of

gravity of the perimeter coincic s with that of equal particles placed at the corners.

Art. 38.5, Ex. 3.

387. Quadrilateral areas. To find the centre of gravity of

any quadrilateral area ABCD.

Using the rule in Art. 380, we replace the triangle ADC by

throe particles situated at ^, i), C respectively, each equal to

R. s. I. 17
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one-third of the mass of ADC. In the same way we replace the

triangle ABC by three masses at A, B, C, each one-third of the

mass of ABC. Each of the masses at A and C is therefore ^M,

if Al be the mass of the whole quadrilateral.

Consider next the masses at B and D; call these wtj and Wj-

Their united mass is also ^M, but this total mass is unequally

divided between the particles in the ratio of the triangles

ABC : ADC, i.e. in the ratio BE : ED. To obtain a more

convenient distribution, let us replace these two masses by three

others placed at B, D, and E. If the masses placed at B and D are

each ^M and the mass placed at J5^ is — ^M, the sum of the masses

is the same as before. It is also clear that their centre of gravity

is the same as that of the masses mi and ma. For by Art. 380 the

distance of their centre of gravity from E is given by

_ _ Imcc _ p/. BE - IM . DE + p/ .

'^" Sm
~

iM
'

•

But the distance of the centre of gravity of the masses mj, m^

from E is given by

BE'- DE'-

BE + DE '

_ _ m, . BE - :m . DE
Vli -f ma

which is the same as before.

The centre of gravity of the area of the quadrilateral is therefore

the same as that offour equal particles, placed one at each angular

point of the quadrilateral, together luith a fifth particle of equal hut

negative mass, placed at the intersection of the diagonals.

We rnay put the result of this rule into an analytical form.

Let (xi, 2/]), (x,, go), &c. be the coordinates of the four angular

points and of the intersection of the diagonals, then clearly

with a similar expression for y. See the Quarterly Journal of

Mathematics, vol. XI. 1871, p. 109.

The reader is advised to use the rule of equivalent points

i* i
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partly because the analytical result follows at once, and partly

because these equivalent points are used in rigid dynamics to

enable us to write down the moments and products of inertia of a

quadrilateral.

We may replace the four particles at the angular points by four others, equal to

these, placed at the middle points of the sides, or in any of the equivalent positions

described in Art. 385.

38S. Ex. 1. Prove the following geometrical construction for the centre of

gravity of a quadrilateral area. Let P, Q be points in BD, AC such that QA, PB
are equal respectively to KG, ED; the centre of gravity of the quadrilateral coincides

with that of the triangle EPQ. Quarterly Journal of Mathematics, vol. vi. 18(54.

Ex. 2. A quadrilateral is divided into two triangles by one diagonal BD, and

the centres of gravity of these triangles are M and N. Let MN cut BD in 7, from

the greater NI take NG equal to MI the lesser. Prove that G is the centre of

gravity of the area of the quadrilateral. [Guldiu.]

Ex. 3. A trapezium has the two sides AB = a and CD = b parallel. Prove that

the centre of gravity G of the quadrilateral area lies in the straight line joining the

middle points ^1/ and N of AB and CD. Prove also that G divides MN so tliat

MG : GN=a + 2b : 2a + b. [Archimedes and Guldin.]

Notice that the ratio MG : GN does not depend on the height of the trapezium

but only on the lengths of the parallel sides. [Poinsot.]

Ex. 4. Show that the centre of gravity of the quadrilateral area ABCD
coincides with that of four particles placed at the corners whose weights are

respectively ^ + 7 + 5, 7-!-5 + a, 5 + a + /3, a + p + y where a, /3, y, 5 are the

reciprocals of EA, EB, EC, ED and E is the intersection of the diagonals.

[CaiusCoU. 1877.]

Ex. 5. Any corner C of a pentagonal areu ABCDE is joined to the corners A,

E, and the joining lines intersect EB, AD in F, G. Prove that the ordinate z of

the centre of gravity of the pentagonal area is given by

32=6 + c + d-
f+g-a-e

71 =
(h-f){d-g)

1-n ' {b-e)(d-a)

where a, b, c, d, c, f, g are the ordinates of A, B, C, D, E, F, G, referred to any

plane of xy.

389. Tetrahedron. To find the centre of gravity of a tetra-

hedron ABGD.

Let us divide the tetrahedron into elementary slices by drawing

planes parallel to one face. Let ahc be one of these planes.

Bisect BG in E and join DE, then, exactly as in the case of the

triangle, DE win bisect all straight Hues such as he which are

parallel to EC. Join AE and ae, then these arc parallel to each

other. Take AF='^AE, then F is the centre of gravity of the

base ABC. Join DF and let it cut ae in /, then by similar

triangles af : AF — Da : DA =ae : AE. Hence o/=§«e, that is/

17—2

I
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's the centre of gravity of the triangle abc. It therefore follows

that the centre of gravity of every elementary slice lies in DF.

Hence the centre of gravity of the whole tetrahedron lies in DF.

Thus the centre of gravity of a tetrahedron lies in the straight line

which joins any angular point to the centre of gravity of the opposite

face.

Let K be the centre of gravity of the face BCD
;
join AK.

The centre of gravity also lies in

AK. Now both DF and AK lie

in the plane DAE, they therefore

intersect and the intersection is

the required centre of gravity.

Exactly as in the corresponding

theorem for a triangle, we have FK
parallel io AD and = ^AD. Hence

from the similar triangles AGD,
KGF, we see that FQ = ^GD. Thus

DG = IDF.

To find the centre of gravity of

a tetrahedron we join any corner

(as D) to the centre of gravity (as F)

of the opposite face. The centre of gravity G lies in DF so that

DG = IDF.

As in the case of a triangle, we may fix the position of the

centre of gravity of a tetrahedron y neans of some equivalent

points. The centre of >j. avity of - ie' Jiedron is the same as that

of four equal particles placed one at each angular point. The
proof is exactly similar to that for a triangle.

390. Pyramid and Cone. To find the centre of gravity of
the volume of a pyramid on a plane rectilinear base.

Proceeding as in i^he case of the tetrahedron, we divide the

pyramid into elementary slices by drawing planes parallel to the

base. These sections are all similar to the base. The centre of

gravity of each slice, and therefore that of the whole pyramid, lies

hi the straight line joining the vertex of the pyramid to the centre

of gravity of the base.

Next, we may divide the base into triangles. By joining the

an^ilr'v po"iits of the.se triangles to the vertex, we divide the whole

p/.ii'iid into tetrrhedra having a common vertex. The centre

Im
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of each tetrahedron, and therefore that of the pyramid, lies in a

plane parallel to the base such that its distance from the vertex is

f of the distance of the base.

Joining these two results together, we have the following rule

to find the centre of gravity of a pyramid. Join the vertex V to

the centre of gravity F of the base and measure along VF from
the vertex a length VG equal to three quarters of VF. Then is

the centre of gravity of the pyramid.

When the base of the pyramid is curvilinear we regard the

base as the limio of a polygon with an infinite number of elemen-

tary sides. We have therefore the following rule. To find the

centre of gravity of the volume of a cone on a circular or on an

elliptic base ; join the vertex V to the centre of gravity F of the

base, and measure along ] F from the vertex a length VG equal to

three quarters of VF, then G is the centre of gravity of the cone.

3&1. Ex. 1. A cone whose semivertical angle is tan"' l/V^ is enclosed in the

circumscribing sphere ; show that it will rest in any position. [Math. T., 1851.]

Sx. 2. A r)yramid, of which the base is a square, and the other faces equal

isosceles triangles, is placed in the circumscribing spherical surface ;
prove that it

will rest in any position if the cosine of the vertical angle of each of the triangular

faces be I [Math. Tripos, 1859.]

Ex. 3. A frustum of a tetrahedron is bounded by parallel faces ABC, A'B'G'.

Prove that its centre of gravity G lies in the straight line joining the centres of

gravity E, E' of the faces ABC, A'B'C and is such that
EG 1 + 2/1 + 3JI'-'

where
EE' 4(l+ra + n-')

re ia the ratio of any side of the triangle A'B'C to the corresponding side of the

triangle ABC. [Poinsot.]

Ex. 4. A frustum of a tetrahedron ABCD is bounded by faces AUC, A'B'C
not necessarily parallel. Find its centre of gravity.

Let DA, DB, DC be regarded as a system of oblique axes, let thi .istances of

A, B, C, A', B', C from D be a, b, c, a', b', c'. Then

5= 1
a^bc-a'^b'c' a'b'^'c'

z = i
abc^-a'b'c'^

abc-a'b'c' ' " ^abc-a'b'c'' " *abc-a'b'c'

To prove these results, we regard the tetrahedra as the 'Hfference of two

tetrahedra whose volumes are as abc : a'b'c'.

Ex. 5. The top of a right cone, semivertical angle a, cut off by a plane making

an angle /3 with the axis, is placed ou a perfectly rough inclined plane with the

major axis of the base along a line of greatest slope of the plane ; in this position

the cone is on the point of toppling over : prove that the tangent of the inclination

4 sin 2a ± sin 2^
of the plane to the horizon has one of the values [Math. T., 187(5.]

cos 2a ~ cos 2/3

393. Faces and edged of a tetrabodron. Ex. 1. Prove tha he ccnire of

gravity of the edges coincides with th<it of four weights placed at the corners equal

respectively to the sum of the weights of the three edges which meet at that

<M

} :

i

'-<^r..
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corner. Prove also that the same theorem is true if we read faces for edges, Arts.

7'J and 86.

Ex. 2. The centre of gravity of the four faces of a tetrahedron is the centre of

the sphere inscribed in a tetrahedron whose corners are the centres of gravity of

the faces of the original tetrahedron.

Ex. 3. If H be the centre of gravity of the faces of a tetrahedron, G the centre

of gravity of the volume, / the centre of the inscribed sphere, then H, G, I are in

one straight line and HG is equal to one third of GI.

Ex. 4. The straight lines which join the middle points of opposite edges of a

tetrahedron are called the median lines. Show that the medians pass through the

centre of gravity G of the volume and are bisected by it.

Place particles of equal weight at the corners A, B, C, D. The centres of

gravity of the particles at A,B and C, D are respectively at the middle points 31, N
of the edges AB, CD. Hence the centre of gravity of all four is at the middle

point G of MN.

Ex. 5. A polyhedron circumscribes a sphere ; show that the centres of gravity

of the volume and of the surface, viz. G and H, and the centre lie in the same

straight line and that OG-^OH. [Liouville's J., 1843.]

303. The isosceles tetrahedron. An isoticeles tetrahedron is one whose

opposite edges are eqxud. It follows from this definition that the sides of any two

faces TkYfi equal each to each.

Ex. ?.. Show that the following five points are coincident, viz. (1) the centre of

gravity of the volume, (2) the centre of gravity of the six edges, (3) the centre of

gravity of the four faces, (4) the centre of the circumscribing sphere, (5) the centre

of the inscribed sphere. Let this point be call" \ G.

Ex. 2. Show that the medians pasR through G, are bisected by it and are

perpendicular to their corresponding edges. Show also that the three medians are

at right angles and form a system of three rectangular axes. See Casey's Spherical

Trigonometi-y, 188i), Art. 127.

Let M, N, P, Q, R, S be :he middle points of the edges AB, CD, BD, AC, ADy

BC. Then PR, QS are parallel to AB and each is half AB ; similarly PS, QR
are parallel and equal to half CD. Since the opposite edges AB, CD are

equal, it follows that PQRS is a r^ombus, and therefore that the diagonals or

medians PQ, RS are at right angles. The median MN being perpendicular

to the plane containing PQ, RS is perpendicular to PR, QS and therefore to the

edge AB.

394. Doul'l? tetrahedra. To find the centre of grovitrj of the solid bounded bif

dx Iriangulc'frcc^, i.e. contained by two tetrahedra having a common face.

Let the Pom?3io'j. buf "^ be ABC and D, D' the vertices. Join DD', and let it cut

the base in E. W<i oeplitce the tetrahedron A BCD by four particles, each one-fourth

its mass tptnateu at tho points /., B, C, D.

Treating the other ietrahf;,''on in the same way,

we have at each of the pcintr. A, B, C a particle

whose mass is eqnal to one-fourth of the solid,

and at D. D' two particles whosie united mass

makes v\j the remaii.ug fourth of the solid, and

whose separate masses art in the ratio of the

tetra' cidra, i.e. in the ratio DE : ED'. Following

exai;ay the steps of the reasoning in the case of a

quadrilateral, it is easy to see thut we can replace these two masses by two other
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/

B

two other

To find the centre of gravity of an arc

Let the radius OC bisect

A

masses situated at D and !>', and each one-fourth that of the whole solid, together

with a third particle situated at E of the same mass but taken negatively. The

centre of gravity of the whole solid is the same as that of Jive equal particles placed

at A, li, G, D, D' together tvith a sixth particle equal and opposite to any of the Jive

placed at the intersection of DD' with the common face ABC.

395. Ex. The centre of gravity of a pyramid on a plane quadrilateral base

. is the same as that of five equal particles placed at the five apices, and a sixth

equal but negative particle placed at the intersection of the diagonals of the base.

[To prove this draw a plane through the vertex and a diagonal of the base ; the

solid then becomes two tetrahedra joined together at a common face.]

396. Circular arc.

of a circle.

Let ACB be the arc, its centre

the arc, let 00 = a, and the angle

AOB= 2a. Let PQ be any element

of the arc, and let the angle POO = 6.

Then in the fundamental formula of

Art. 380 tn --= add, x = a cos 6. If x be

the distance of the centre of gravity

of the arc from 0,

_ _ Itinx _ jadO . a cos 6 _ sin a

2??i ladB a '

since the limits of Q are d = — a and

6 = + a. As this result is frequently

used, it will be convenient to put it into a form which will be

convenient for reference.

Distance of C. G.
] _ sin (half angle) , _ chord ,

of arc from centre
j

half angle * ' arc '

This result was given by Wallis.

307. Ex. A series of 2« straight lines are inscribed in a circular arc, each

straight line subtending an angle 26 at the centre. Prove that the distance of their

centre of gravity from the centre is r cos 6 sin 2ndl2n sin 6. Thence deduce the

centre of gravity of a circular arc of any angle. [Guldin'a Problem.]

398. Centre of gravity of any arc. The coordinates of

the centre of gravity of the arc of any uniform plane curvi- are

given by the formulae

_ _ 'Emx Jscds _ _ fyds
"''" 2m ^

Ids'
''^~

j'd^'

Avhere we write for the elementary arc ds its value given in the

differential calculus. Thus we have

ds = a + (l)T
dx or ds = \r'^ + i -jtA - dd,

II

! ill

i
1
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according as the equation to the curve is given in the C.irtesian

form 1/ =-f{x) or the polar form r = F (6). If the curve be in three

dimensions we have an expression for z similar to those written

above. The corresj)onding expressions for ds are given in works

on the differential calculus.

800. The process of finding the centre of gravity of an arc is merely that of

subBtituting for ds from the given equation to the curve and then integrating. It

seems unnecessary to give at length examples of what is merely integration, we

shall therefore state only the results in a few cases likely to be useful.

Ex. 1. The coordinates of the centre of gravity of an arc of the catenary

x = x
c)

y=h{y+'''")y = i.
(e' + e' '«) from x = to x = x are

These admit of a geometrical interpretation. Let PQ be any arc of the

catenary. Let the tangents at P and Q meet in T and the normals at P and Q
meet in N. If x, y be the coordinates of the centre of gravity of the arc PQ, then

x= abscissa of T, and y = half the ordinate of N.

Ex. 2. Find the centre of gravity of the arc OP of a cycloid between the vertex

O where ^ = and the point P, the equations to the curve being x = 2a<p + a sin 20,

y=a-a cos 20, and the arc OP being « = 4a sin 0.

COB <t>Y (2 + cos 0)T, ,. - ,, 2a (1
Result x= 2a0--^ —

, and y = ij/.sin0

Ex. 3. If G be the centre of gravity of any arc AP of the lemniscate

r*=a'-co8 2d, prove that OG bisects the angle AOP. One case of this is given in

Walton's Problems on Theoretical Mechanics.

Ex. 4. The centre of gravity of any arc PQ of the crurve r' sin 39 = a* lies in

the straight line joining the origin to the intersection of the tangents at P and Q.

Ex 5. If the density at any ooint of the arc vary as r"~'*, prove that the centre

of gra.ry of any arc PQ of the c.rve r^amnO = a'^ lies in the straight line joining

the origin to the intersection of the tangents at P and Q.

Ex. 6. The locus of the centre of gravity of an arc of given length of the

lemniscate r^=a'^ con 20 is a curve which is the inverse ol a concentric ellipse.

[R. A. Robert's theorem.]

400. Sectors of circles. To find the centre of gravity of a

sector of a circle.

Let ACB be the arc of the sector, its centre. As in Art. 896

let the radius OC bisect the arc, OC = a and the angle AOB = 2'x.

We divide the sector into elemen-

tary triangles of equal area. Let

OPQ be any one of these triangles

;

following the rule of Art. 380 we

collect its mass into its centre of

gravity, i.e. into a point p where

Op = '{OP. Repeating this process

for every triangle, we have a series of particles of equal mass
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arranged at equal distances along an arc ab of a circle. These are

represented in the figure by the row of dots. In the limit when

the triangles are infinitely small this becomes a homogeneous arc

of a circle. The distance of the centre of gravity of the sector

from is therefore given by the result in Art. 396, viz.

_ sin a
,, „ chord AB ,. .,„

X = 4a = « .'n • radius OU.
a ^ ^ arc AB

This result was given by Wallis.

4Q1. Ex. To find the coordinates of the centre of gravity of the area of a

quadrant of a circle AOB.

This is a particular case of the last article, viz. when a= Jtt. If x, y be the

coordinates of G referred to OA, OB as axes, we have x= oG co8a=;
4a _ 4rt

37r' Hw

4oa. Ex. The distance of the centre of gravity of the area of a segment

(I sin ct

of a circle measured from the centre is § ^^^
—---

, where a is the semiangle
a - siu a cos a

of the segment. [Guldin.]

403. Projection of areas. If any plane area is orthogo-

nally projected oa any other plane, the centre of gravity of the

projection is the projection of the centre of gravity of the primitiv".

area.

Let the plane on which the projection is made be the plane of

xy, and let a be the inclination of the two planes. Let dS be any

element of the area of the primitive, dVL the area of its projection.

Then by a known theorem in conies dYl = dS cos a. We also notice

that the x and y coordinates of dS and dll are the same because

the projection is orthogonal. The coordinates of the centre of

y= ^
Zmx

gravity of either area are known from x= ^

where the ni for one area is dll and for the other is dS. Since

these are in a constant ratio, the values of x and y are the same

for each area.

In order to use eftectively the method of projections we join to

it the two following well known theorems which are proved in

books on conies: (1) the projections of parallel straight lines are

parallel, (2) the ratio of the lengths of two parallel straight lines

is unaltered by projection. We then use the following rule.

Suppose we had any geometrical relation between the lengths

of lines in the primitive figure, and that we require the corre-

sponding relation in the projected figure. We first expre^ s the given

iiiii

' M
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relation in the form of ratios of lengths of parallel .straight lines.

To do this it may be nece.ssary to draw parallels to .some of the

lines in the primiti\(' if there are no parallels to them mentioned

in the given relation. Having pnt the geometrical relation into

the form of ratios, the same relation is triii' for the projected

tigure.

404. Elliptic areas. vSince an elliptic area is well known to

be the orthog(jnal projection of a circle, we oan deduce the centres

of gravity of the various parts of an ellipse from those of the

corresponding parts of a circle. The circle used for this purpose

is sometimes called in conies the auxiliary circle.

405. To find the centre of gravity of an elliptic area.

The coordinates of the centre of gravity of a quadrant AOB of

a circle, referred to OA, OB as axes, may be written in the form

OA OB Stt ^
'

since OA OB are both radii. But x and OA are parallel straight

lines, and so also are y and OB. Hence these relations hold in the

projected figure also.

If ti.o.n OA, OB are the major and minor semiaxes of an

ellipse, the coordinates of the centre of gravity of the area of the

quadrant are given by (1).

If we make the plane on which we project intersect the

quadrant of the circle in any straight line not one of the bounding

radii the circular quadrant projects into an elliptic quadrant

bounded by two conjugate diameters.

If then OA, OB are any two semiconjugates of an ellipse, the

coordinates of the centre of gravity of the contained area are given

by equations (1).

The position of the centre of gravity of a semi-ellipse was fi:rst

found by Guldin.

406. Ex. 1. A chord PQ of an ellipse, centre C, passes always through a fixed

point 0. Prove that the locus of the centre of gravity of the triangle CPQ is a

similar ellipse. [Coll. Exam.]

Ex. 2. The centre of gravity G of any elliptic sector bounded by the semi-

diameters OP, OP' lies in the diameter OA' bisecting the chord PP', and is such

that—-, = ,5 — . , where sin d is the ratio of half the chord PP' to the semiconjugate
OA

of OA'.
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Ex. .H. The area A of any elliptic sector POP' is A=)tith {tp' - ,p), and the

coordinates of tlie centre of gravity referred to the principal diameters, are

5_ 8in0'-Hin0 i/ _. co8^-co8 0'

where <p, <(>' are the eccentric angles of /' and /',

Ex. 4. yiiow that the centre of gravity <;' of the elliptic segment bounded by

any chord PP" is given by 00'=
1( ^

',-"'" '^
, where OA' is the conjugate of PP'

' <p-Hin<pcoH p
' ^

and sin^ is the ratio of PP' to the parallel diameter.

Ex. 5. The centre of gravity G of the area included between an ellipse and the

two tangents drawn from any point T in the diameter OA' produced is given by

OG _ tan*0sin0

OA' ~ * Ian 0"^ '

where sin is the ratio of half the chord PP'oi contact to the semiconjugato of OT.
Show also that the coordinates of G referred to the tangents TP, TP' as axes are

-?-- _L -1 _L_ /i _i tan^ sin'.^N

TP TP'~^8in=</)V tiiii^ -'<(>)'

In the parabola, we have by rejecting the higher powers of
<f>,

x = JTP, ysz^TP".

Ex. 6. The coordinates of the centre of gravity of the quadrilateral space
bounded by arcs of four concentric and coaxial ellipses are

~ - a ^\^hS-—'^LZ '^in 0i)j- «jA (sin <^.j' - sin 0.^) + (fee.~
a^bJ(p^'-<Pi) + a^lj,(<p.j!-,p.,)+&e."

""

and a similar expression for y.

407. Analytical Aspect of Projections. The geometrical method which has

just been used in projecting the ellipse into the circle, or conversely, is ^ally equi-

valent to a change of coordinates. We write x = x', y=yy', where y is & quantity

at our disposal, which we so choose that the equation to the ellipse reduces to the

simpler form of a circle. We can obviously extend this principle and apply it to

any curve. Let us write x=fx', y=yy' ; we thus have two constants instead of one

to choose as we please.

Geometrically this is equivalent to two successive projections. By writing

y = jy' we project the primitive on a plane passing through the axis of x, and

then by writing x=fx' we project the projection on another plane passing through

the axis of y'. We may therefore in this generalized projection assume the two

theorems of projection already mentioned, and transform all formula relating to

ratios of parallel lengths from one figure to the other.

Analytically, let the equations to the several boundaries of any area A be

changed into those of A' by writing x-fx', y=yy'. Let (x, y), {x', y') be the co-

ordinates of the centres of gravity of A and A'. Then we have

A=\jdxdy=fgj\dx'dy'=fyA'.

In the same way x-fx' and y — gy'. In these integrals the limits extend over

corresponding areas.

Ex. Show that we may further generalize the method of projections by

writing x = a + bx' -\-cy', y = e+fx' + py'. If A, A' be the areas of corresponding

spaces, prove that ^=^'{i)i;-c/), x— a + bx' + cy', y = e+fx' + yy'.

Notice that this is equivalent to a transformation to a new origin with oblique

axes, followed by the projections.

I

I
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408. The method of projection does not apply ao conveniently to find the

centres of gravity of hyperbolic areas because we have to use imaginary projections.

By projecting the rectangular hyperbola instead of the circle we may find the centre

of gravity of any hyperbolic area.

We may however infei from any general proposition proved for the ellipse the

corresponding theorem for the hyperbola by using the law of continuity. For

example, (see Ex. 2, Art. 40C) the centre of gravity of a sector of an ellipse from

x=x to x=ais given by x=f aA/8in~'A:, where k has been written for (1 -ip-ya*)* for

the sake of brevity. This must be true also for the imaginary branches of the

ellipse which originate in values of x>a. Put k = k'J-l and use the formula in

analytical trigonometry, &;,/(- 1^ = log (cos 0+ 1^/ -laind), where 6= ain'^k ; we find

for the centre of gravity of a hyperbolic sector

X 2 k'

« ^\og{k'+Jk-^ + l)'
where k

H(0'-4'

409. Ceutreof gravity ofany area. After having obtained

the fundamental formuhe of Art. 380 the discovery of the centres

of gravity of any area is reduced to two processes. (1) We have

to make a judicious choice of the element m, and (2) we have to

eflfect the necessary int(3gi'ations. The latter process is fully dis-

cussed in treatises on tiie integral calculus, in fact it is a part of

that science rather than of sta^jics. It will thus be unnecessary to

do more here than make a few remarks on the choice of vi with

special reference to centres of gravity.

If the centre of gravity of the area bounded by two ordinates Aa, Bb be required,

we put the equation of the curve into

the form y=/(x). We choose as our

element the strip PQM. Here PAf= y
and m=ydx. The coordinates of the

centre of gravity of m are x and i^y.

Hence, Art. 380, the formula; tc be

used are

2ot lydx ' *
Ji/(ic

'

If the centre of gravity of the

sectorial area AOB is wanted, we put the equation into the form r=/(9). We
choose as our element the triangular strip POQ. Here OP=r, and ni = ir*dtf. The
Cartesian coordinates of the centre of gravity of m are J r cos and § r sin 0. The
formulas to be used are

__|ir«cWjTC08tf . l^r'dg.fr sing

Sometimes the equation to the curve is given with an auxiliary variable t, thus

x= <()(t), y=i\l/{t). It is in this form for example that the equation to the cycloid is

generally given. See Ex. 2, Art. 399. In this case when the polar area is required

we quote from the differential calculus the formula r-dO= xdy - ydx.

Substituting half of this for m in the standard ex;Tessions for x and y, we have

a convenient formula to find the centre of gravity.
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410. If the figure whose centre of gravity is required is a triangle or quadri-

lateral whose sides are curvilinear, the proper choice for the element m will depend

on the form of the curves.

If we join the angular points to the origin we have three or four sectors whose

areas and centres of gravity may be separately found and thence, by Art. 380, the

centre of gravity of the figure. Sometimes the bounding curves are of the same
species so that when the process has been gone through for one sector the results

for the other sectors may be inferred. In such cases the method is very advanta-

geous. For example, we have already seen how the area and centre of gravity of a

quadrilateral bounded by four elliptic arcs could be immediately deduced from the

area and centre of gravity of an elliptic sector. See Ex. 6, Art. 406.

Putting this in an analytical form, we have for a curvilinear triangle whose sides

arer=/,(e), r' =/,(<?'), r"=/,(r),

'^r'ooB Odd + i l\'^ cos $'dd' + i fV'* cos $" dO"Zmx= i rr" COS tfd«-fW^r'»

2n« = i» r^de + li
'r^de' + ij r"He",

where a, /3, 7 are the inclinations of the radii vectores of the angular points to the

axis of X. In forming these integrals we travel round the triangular figure taking

the sides in order.

It might appear at first sight that we are adding together all the three sectors

instead of adding some together and subtracting the others. But it will be clear

after a little consideration that in those sectors which should Lo "subtracted from the

others the dd is made negative by taking the limits in the same order as we travel

round the triangle.

Instead of joining the angular points to the origin we might draw perpendiculars

on the axis of x. We then have

Sttut= Pxj/rfx+ l''x'y'dx'+ f%"j/"dx".

where a, b, c are the abscisssB of the angular points,

limits we travel round the sides in order.

As before, in taking the

411. Sometimes we may use double integration. Suppose we can express the

equations to both the opposite sides of a curvilinear quadrilateral in one form by

using an auxiliary quantity u. That is, let the one equation represent one

boundary when u-a, and let the same equation represent the opposite boundary

when u=b. Let this one equation be
<f>

{x, y, m) = 0. It is always possible to do

this, for let /, {x, y) =% fi(x, y)=0 be the boundaries, then

<f>
= {u-a)fi (x, y) + (u - b)f„ {x, y) =0

represents one or the other according as u = a or m = b*. But this particular form

is not always a convenient mode of expressing 0. In the same way let ^ (x, y,v)=0

represent the other two boundaries whea v = e and v =/.

When this has been accomplished we have only to follow the rules of the

integral calculuG. By giving u and v all values between u=a and u = b,v= e and

V =/, we obtain a double series of curves dividing the space into elements. Let m
be the area of one of these elements and J the Jacobian determinant of x, y with

regard to m, v, then m=Jdudv, Hence

_ iJJdudv .X __ JlJdudv . y
j^Jdudv' ^~ jjJdudv '

x='

ill

if

iji

1

This is adapted from De Morgan's Diff. Calc. p. 392.
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To find the Jacobian it may be necessary to solve the equations ^=0, ^=0, so as

to e'ipress x, y in terms of ti, v. We then have J=t- ^ - -r -t-' Unless we have
du dv dv du

been able in the first instance to express <ft and ^ so conveniently that this Jacobian

takes a simple form when expressed in terms of u, v, this method may lead to com-

plicated analysis. The advantage of the method is that the limits of integration

» = a to &, V= e to / are constants, so that the integrations may be performed in any

order or simultaneously.

41 a. Ex. 1. An area is cut off from a parabola by a diameter ON and its

ordinate PN: prove that x=f.r, y^iy.

Ex. 2. Two tangents TP, TP' are drawn to a parabola : show that the co-

ordinates of the centre of gravity of the area between the curve and the tangents

are x=irP, y= J TP' referred to TP, TP" as axes. Art. 406, Ex. 6. [Walton.]

Regard the area as the difference between a triangle and a parabolic segment.

Ex.3. The equations of a cycloid are a; = a (1 - cos tf), y=a(C -f-BinO). Show

that the centre of gravity of half the area is given by x= Ja, y^a \ir - rr-]

.

'i \ air J

[WalHs.]

Ex. 4. Find the centre of gravity of the half of either loop of the lemniscate

r^sza^ cos 29 bounded by the axis. The result is

_ iro _ 31og(V2 + l)-v/2

'=V2'
''=

6^2
«•

Ex. 5. Four parabolas whose equations are t/'=a'.T, y^=lfix, x^ = ehj,

x^=py intersect and form a quadrilateral space. Find the centre of gravity.

We take as the equations to the opposite sides y^=u^x and x^=v*y. Solving,

we find x=uv^, y = ifiv and J=3u*w*. This gives by substitution

(
M-««)(/»-e»

)

Ex. 6. The centre of gravity of the space bounded by two ellipses and two

hyperbolas all oonfocal lies in the straight line

_y_ (flg - fli) («2' ~ "/) (<'»" + "i"a + ^i" ~ ^'a'' ~ '^/"a' ~ "i'")

X ~ (6j - 6j) (6a'
- 6/) (b^^ + hib[+ b{^ + 6^'* + fej'6,/ + b^'*)

'

where the unaccented letters denote the semiaxes of the ellipse and the accented

letters those of the hyperbola.

We take as the equation to the opposite sides — + V'

h
= 1,

x^ w»

V v-h 1.

where u>h and v<.h. These give lix^=uv, -hy^= (u-h)(v-h), as shown in

Salmon's Conies. The result then follows easily enough.

Ex. 7. If the density at any point of a circular disc whose radius is a vary

directly as the distance from the centre, and a circle described on a radius as

diameter be cut out, prove that the centre of inertia of the remainder will be at a

distance ^_— ,-x from the centre. [Math. Tripos, 1876.]
loir— 10

Ex. 8. A circular disc of radius r, whose density is proportional to the distance

from the centre, has a hole cut in it bounded by a circle of diameter a which passes

through the centre. Show that the distance from the centre of the disc of the

6a*
centre of gravity of the remaining portion is

ISirrS-lOa"'
[Coll. Ex., 1888.]
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Ex. 9. The curve for which the ordinate and absoissa of the centre of gravity of

the area included between the ordinates x=a and x = x are in the same ratio as the

bounding ordinate y and abscissa x is given by the equation a*y* - 6»j' = j»)/*.

[Math. Tripos, 1871.]

413. Pappus' Theorems. Before treating of the centres of

gravity of surfaces or volumes it seems proper to discuss a method
by which the centres of gravity of the arcs and areas already

found may be used to find the surface or volume of a solid of

revolution. The two following theorems were first given by
Pappus at the end of the preface of his seventh book of Mathe-

matical Collections.

Let any plane area revolve through any angle about an axis in

its own plane, then

(1) The area of the surface generated by its perimeter is equal

to the product of the perimeter into the length of the path described

by the centre of gravity of the perimeter.

(2) The volume of the solid generated by the area is equal to

the product of the area into the length of the path described by the

centre ofgravity of the area.

In both these theorems the axis is supposed not to intersect

the perimeter or area.

414. Let il5 be an arc of the curve, and let it lie in the plane

xz. Let it rrvolve about the axis of z through any elementary

angle dd. Any element PQ = ds of the perimeter is thus

brought into the position P'Q, and the area traced out by

PQ is ds.PP' = ds .xdd. The whole area or surface traced

out by the finite arc AB is ddjxds. But this is dO.xs, if s be

the arc AB and x the distance of its centre of gravity from

the axis of z. If the arc now revolve again about Oz through

a second elementary angle dO, an equal surface is again traced

out. Hence, when the angle of rotation is 6, the area is s.xO.

But xd is the length of the path traced out by the centre of

gravity of the arc. The first proposition is therefore proved.

Next, let any closed curve in the plane of xz revolve as before

about the axis of z through an angle dd. By this rotation any

elementary area dA at R will describe a volume which may be

regarded as an elementary cylinder. The base is dA, the altitude

xdO, the volume is therefore dA . xd$. The volume traced out

ii
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by the whole area of ilie closed curve is dOfxdA.

dd.xA, if A. be the area

of the curve and x the

distance of its centre of

gravity from the axis of

revolution. Integrating

again for any finite value

of 0, we find that the

volume generated is

A . x0. This as before

proves the theorem.

In both these proofs

we have assumed that

the whole of the curve

lies on the same side

[chap. IX.

But this is

For supposeof the axis of rotation.

P, and Pa were two points on the curve on opposite sides of the

axis of z, then their abcissae a?i and x, would have opposite signs.

Thus the elementary surfaces or volumes (having the factor xd6)

would also have opposite signs. The integral gives the sum of

these elementary surfaces or volumes taken with their proper

signs. It follows that, when the axis cuts the curve, Pappus'

two rules give the difference of the surfaces or volumes traced out by

the two parts of the curve on opposite sides of the axis of revolution.

415. Ex. 1. Find the surface and volume of a tore or anchor-ring.

This solid may be regarded as generated by a complete revolution of a circle

about an axis in its own plane. Let a be the distance of the centre from the axis,

b the radius of the generating circle. Then a>& if all the elements are to be

regarded as positive. The arc of the generating circle is 2irb, the length of the path

described by its centre of gravity is 2ira. The surface is therefore iv^ab. The area

of the circle is irb\ the length of the path described by its centre of gravity is 2ira.

The volume is therefore 2ir^ab^.

Ex. 2. Find the volume of a solid sector of a sphere with a circular rim and

also the area of its curved surface.

This solid may be regarded as generated by a complete revolution of a sector of

a circle about one of the extreme radii. Let 2a be the angle of the sector, its

centre. The arc of the sector is 2aa. The length of the path described by its

centre of gravity G is 27r . OG sin a, where OG = (a sin o)/o. I'he spherical surface is

therefore 4ira'' sin' a. The area of the sector is a'^a. The length of the path of its

centre of gravity G' is 2ir . OG' sin o, where OG'= iOG. The volume is therefore

^ira^ sin* a. It appears that both the surface and the volume vary as the versine

of the sector.

Ex. 3. A solid is generated by the revolution of a triangle ABC about the side

AB: prove that the surface is v(a + b)p and the volume is ivcp^, where p is the

perpendicular from C on AB.
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416. It should be noticed that for any elementary angle dd

the axis of rotation need only be an instantaneous a.xis. Suppose

the plane area to move so as always to be normal to the curve

described by the centre of gravity of the area. Then as the centre

of gravity describes the arc ds, the area A may be regardc' ;is

turning round an axis through the centre of curvature of the path.

Hence the elementary volume is Ads, and the volume described is

the product of the area into the length of the path described by

the centre of gravity of the area.

In the same way, if the area move so as always to be normal to

the path described by the centre of gravity of the perimeter, the

surface of the solid is the product of the arc into the length of the

path of the centre of gravity of the perimeter.

417. When tlie axis of rotation does not lie in the plane of the curve, we can

use a modification of Pappus' rule to find the voluvie generated by the motion of

any area.

Let us suppose that the axis of rotation is parallel to the plane of the curve.

Referring to the figure of Art. 414, let CL be the axis, and let RL be a perpendicular

to it fi'um any point it within the closed curve. The elementary area dA at R will

now describe a portion of a thin ring whose centre is at L. The length of this

portion is . RL. The area of the normal section of this ring is dA cos 0, where ^
is the angle the normal RL to the ring makes with the area dA. The volume

traced out is therefore RL . cos ip . 0dA . But this is the same as xddA. This is

the same result as we obtained before when the axis of revolution was Oz.

If the element were to revolve round Oz it would trace out a ring of less radius

than it actually does in its revolution round CL, and these rings would be differ-

ently situated in space. But the normal section of the larger ring is so much less

than tuat of the smaller ring that the two volumes are equal.

We infer that Pappus' rule will apply tc Iri the volume if we treat the projection

of the axis on the plane of the curve as if it were the actual axis of rotation. The

angle of rotation is to be the same for both axes.

If the area does not lie wholly on one side of the projection, it must be remem-

bered that the volumes generated by the two parts on opposite sides of the projection

will have opposite signs.

Ex. 1. If the axis of revolution is inclined to the plane of the area at an angle

a, show that Pappus' rule will give the volume generated if we treat the projection

of the axis on the plane as if it were the axis of revolution and regard the angle of

rotation as d cos a instead of 0.

Ex. 2. A quadrant of a circle makes a complete revolution about an axis

passing through its centre and making a right angle with one of its extreme radii

and an angle a with the other. Show that the volume generated is J ira' cos a.

Ex. 3. An arc A^A^ of a plane curve revolves about an axis perpendicular to its

plane through an angle 0. Show that the area traced out is i0(r2^-r{^), where

f], r^ are the distances of A^, Aj from the axis.

It is supposed that the radius vector r is not a maximum or minimum at any

R. s. I. 18

i
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point between Aj and A^. If it is either, the areas traced out by arcs on opposite
sides of that point will have opposite signs.

Ex. 4. A solid is generated by the revolution of an area about the axis of z

which lies in its own plane. The density D at any point P of the solid is a given
function of x and p, where p is the distance of P from the axis. Prove that the mass
may be found by Pappus' rule if we regard D as the surface density at any point P
of the generating area where the coordinates of P are z and p.

418. Areu on the gurfhce of a right cone. To find the

centre of gravity of the whole surface of a right cone excluding the

base. Guldin's Theorem.

Let be the vertex, C the centre of the base, then OC is

perpendicular to the plane of the

base. The required centre of gra-

vity lies in OG.

Divide the surface of the cone

into elementary triangles by draw-

ing straight lines from the vertex

to points a, h, c &c. in the base.

The centre of gravity of each tr'

angle lies in a plane parallel to t

base and dividing the sides Oa, (

&c. in the ratio 2 : 1. The centre

of gravity of the whole surface is

therefore at the intersection of this plane with OC.

The centre of gravity of the surface of a right cone is two-thirds

of the wayfrom the vertex to the centre of the base.

Ex. Show that the oame rule applies to find the centre of gravity of the

whole curved surface of a right cone on an elliptic base or more generally on any

base which is symmetrical about two diameters at right angles.

419. To find the area and centre of gravity of a portion of the

surface of a right cone on a circidar base.

Referring to the figure of Art. 418, let PQ= dS be an element

of the surface of the cone, P'Q' = dU its projection on the base.

The angle between PQ and P'Q' is the same as the angle between

the triangle Oab and the plane of the base, and this angle is the

complement of the semi-angle of the cone. We therefore have

dn = d8 . sin a, if a be the semi-angle of the cone. Since this is

true for every element of area, it follows that to find the surface of

any portion of a right cone we simply divide the area of its projec-

tion on a plane perpendicular to the axis by sin <x.
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have z =

If we take the axis of the cone for the axis of z, it is clear that

dS and dll have the same coordinates of x and y. Hence, proceed-

ing exactly as in Art. 403, we see that the projection of the centre

of gravity of any portion of the surface of the cone on a plane

perpendicular to the axis is the centre of gravity of the projection.

We have yet to find the z coordinate of the centre of gravity.

Taking any plane perpendicular to the axis as the plane of xy, we

_ ^mz _ fdSz fzdH
.

~ fm " JdS " JdU
'

thus the distance of the centre of gravity of any r)rtion S of the

surface from any plane perpendicular to the axis is equal to the

volume of the cylindrical solid between S and its projection 11 on

that plane divided by the area 11.

These three results depend on the fact that the area of any element dS of the

surface bears a constant ratio to its projection dU on the plane of xy. This again

requires that every tangent plane to the surface should make a constant angle with

the plane of xy. Other surfaces besides right cones and planes possess this pro-

perty. Any developable surface which is the envelope of a system of planes making

a given angle with the plane of xy will obviously satisfy the conditions.

Ex. 1. A cone of any form is intersected by a plane AD, and any straight line

is drawn from the vertex to meet the section in H. Prove that the conical volume

between the plane of the section and the vertex is equal to the product of ^ OH into

the projection of the area AB on & plane perpendicular to OH.

Ex. 2. A right cone, whose semi-angle is a, is intersected by a plane AB cutting

the axis in H and making an angle /3 with the axis. Show that, (1) the surface H

of the cone between the elliptic section AB and the vertex is equal to the product

of the area of the section AB into sin /3 cosec a ;

(2) the centre of gravity of the surface S lies in a straight line drawn parallel

to the axis of the cone from the centre C of the section AB ;

(3) the distance of the centre of gravity of the surface S from C = ^ OH.
Since both the surface S and the section AB project into the same elliptic area

A'B', the two first results follow from what has been proved above.

To prove the third result we divide the surface into elementary triangles by

drawing straight lines from the ver-

tex to the base AB. It follows, as

in Art. 418, that the centre of gravity

of the surface lies in a plane drawn

parallel to the base through a trisec-

tion of OH.
Ex. 8. A right cylinder stands

on a plane base A'B' of any form,

and is intersected by any other plane

AB. Show thaii (1) the surface of

the cylinder between the plane AB
and the base is equal to the product

of the perimeter of the base into the

ordinate (or altitude) of the plane at the centre of gravity of the perimeter, (2) the

18—2
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volume of the cylinder between the plane AB and the base Ir equal to the product

of the area of the base into the ordinate of the plane at the centre of gravity of tlie

area.

By considerinR part of the perimeter of the bane to be rectilinear and part

curved, this gives the surface and volume of the portion of the cylinder cut off by

two planes parallel to the axis and two transverse to the Axit

Ex. 4. A right cylinder stands on the base Ax' + Iiy^^ 1, and is intersected by

the plane i = h+px + qy. Prove that the coordinates of the centre of gravity of the

volume are given by 4Ahx=p, iBhy = q, 2i = h + px + qy.

420. Spherical SurtVicei. There arc two projections of the

spherical surface which have been found useful. We can project

any portion of the surface on the circumscribing cylinder and on a

central plane. We shall consider these in order.

Let the origin be at the centre of the sphere, and let the

rectangular axes x, y, z cut the surface in A, B, C. Let the

polar coordinates of any point P be as usual OP = a, the angle

ZOP — 6 and the angle NOA = <^. Let PL = p be a perpendicular

on the axis of z, then OL = z.

Let a cylinder circumscribe the sphere and touch it along the

circle of which AB is a quadrant. Any point P on the sphere is

projected on the cylinder by

producing LP to meet the

cylinder in P'. According

to this definition any point

P and its projection P' are

so related that their ^'s and

<^'s are the same.

The area of any element

PQR on the sphere is

PQ . QR, and this is equal

to a sin 6d<f) . add. The area

of the projection oz> the

cylinder, viz. P'Q'R' is

P'Q'.Q'R', and this is

ad^ . dz', where z' = CL = a- a cos 0. Substituting for z', we see

that these two areas are equal. Hence any elementary area on

a sphere and its projection on the cylinder are equal*.

* The relation of the sphere to the cylinder in regard to their measurement was
first discovered by Archimedes. He wrote two books on this subject. He investi-

gated both their surfaces and volumes, whether entire or cut by planes perpendicular
to their common axis. He was so pleased with these discoveries that he directed a
cylinder enclosing a sphere to be engraved on his tombstone in commemoration of
them.
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It follows from this result that the area of any Hnite portion

of the spherical surface is equal to the area of its projection on at>y

circumscribing cylinder. This rule enables us to find many areas

on the sphere which are useful to us. Thus the area cut ott' from

the sphere by any two parallel planes whose distance aj)art is h is

equal to the area of a band on the cylinder whose breadth is h.

The area on the sphere is therefore 27rtt/t. We notice that this

result is independent of the position of the planes, except that they

must be parallel. Thus the area of a segment of a sphere whose

versed sine is h is 27ra/t.

421. This important theorem is used also in the construction of maps. The
places on a terrestrial globe are projected in the manner just described on a circrim-

scribing cylinder. The cylinder is then unrolled on a plane. In tiiis way the whole

earth may be represented on a map of a rectangular form. The advantage of thi$

cunttruction i» that any equal areas on the ijlohe are represented by equal areas on the

map. This is true for large or small areas in whatever part of the globe they may
be situated. The disadvantage of the cant, 'action is that any small figure on the

map is not similar to the corresponding figure on the globe. If the figure is situated

near the curve of contact of the cylinder, the similarity is suflicicntly close for

practical purposen, but if the figure is situated nearer the pole of this curve of

contact, the dissimilarity is more striking. Thus a small circle very near the pole

is represented by an elongated oval. In some other systems of making maps, as

for example Mccator's, any small figure on the map is made similar to the cor-

responding figure on the globe, but in that case equal areas on the map do not

correspond to equal areas on the globe.

Ex. A map is made on the following principle. A''.y poi/it O on the Hurface of

a globe of radius unity, and a corresponding point 0' on a map being taken, the

points P', Q' corresponding to the two points P, Q on the globe are found by taking

the lengths 0'P' = a tanJOP, 0'Q' = a tan ^OQ, the angle F&Q,' being made equal

to POQ. Prove that any infinitely small corresponding portions on the sphere and

map are similar. Show also that the scale of the map in the neighbourhood of any

point P' varies as o> + 0'P'».

If the tangents are replaced by sines in the relations given above, prove that

the areas of corresponding portions have a constant ratio.

These are called the stereographic projection and the chordal construction.

422. The altitude of the centre of gravity of any portion of the

sphere above the plane of contact is equal to the altitude of the centre

of gravity of its projection on the circumscribing cylinder. To

prove this it is sufficient to quote the formula z = linzj'^m, and to

remark that for the surface and its projection the wi's and «'s are

equal, each to each.

From this we infer that the centre of gravity of the band on

the sphere between any two parallel planes is the same as that for

iii!
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the corrcHponding bund on the cylinder, and in therefore half way
between the parallel planen, nnd lies on the perpendicular radius.

In the some way the centre of gravity of a hollow thin hemi-

82>here of xiniform thickness bisects the middle radius.

4as. Ex. 1. A Hegtnent of a sphere of height h restii on a plane base : nhow

that the centre of gravity of the surface including the plane base is at a diHtance

equal to ahl{4a - h) from the base, where a is the radius of the sphere.

Ex. 2. The distance of the centre of gravity of the surface uf a lune from the

axis is -7
, whore '2a in the angle of the lune.

Ex. 8. A bowl of uniform thin material in the form of a segment of a sphere is

closed by a circular lid of the same material and thickness, which is hinged across

a diameter. If it be placed on a smooth horizontal plane with one half of the lid

turned back over tbo other half, show that the plane of the lid will make with the

horizontal plane an angle
(f>

given by Sir tan = 4 tan ^a ; a being the angle any

radius of the lid subtends at the centre of the nphere. [Math. Tripos, 1881.]

494. To find the centre of gravity of any spherical triangle.

Let us begin by projecting any portion of the surface of the sphere on a central

plane. Let this be the plane of xy. Let dS be any element of area, dll its projec-

tion, let be the angle the normal at dS
makes with the axis of z. Then

dn = dS cos 0=:dS.zla.

Hence, integrating, we have an = Si.

It follows that the distance of the centre

of gravity of any portion S of the surface of

a sphere from a central planer— a, where

n is the projection of S on that plane*.

This result follows from the equality

cos $=zla. Other surfaces besides spheres "

possess this property. These surfaces are

generated by the motion of a sphere of constant radius, whose centre moves in any

manner in the plane of xy. As an example an anchor ring or tore may be mentioned.

Let UB now apply this Lemma to the spherical triangle. Let A, B, C he the

angles, a,b, c the sides, let be the centre of the sphere, p its radius. Let CN be

a perpendicular from C on the plane AOB, let AN, BN be the two elliptic arcs

which are the projections of the sides AC, BC of the spherical triangle.

By the lemma, i : p= area ANB : area ABC. Also

(area ANB)=(&re& AOB) - (area AOC) cos A - (area BOC) cos B
= ^(? {c-b ocaA-a cos B).

If E be the spherical excess of the triangle, i.e. it E=A + B-k-C-ir, we know by

Spherical Trigonometry that the area ABC=f?E. Hence

? _ c - 6 cosA-a COB B
--4 £ .

* We have here followed the method proposed by Prof. Giulio, chiefly because

the lemma on which it depends is of general applicatioi^ ^-nd may be useful in other

cases. His memoir was published in the fourth volume of Liouville's Journal de

MathSmatiques. An English version is also given in Walton's Mechanical Problems.
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This formula gives the distance of the centre of gravity from the plane AOH
containing any side All of the triangle. The distances from th« planus HOC, COA

containing the other sides are expressed by similar formulae.

Ex. 1. If p, q, r bo the perpendicular arcs from the angular points .1, H, C on

the opposite sides, and G the centre of gravity of the spherical triangle, prove that

cos /(00 _ cos /mo COS COO _ 1

(J sin p b sin q e sin r "" iK
'

This is equivalent to the result given in Moigno's Statique.

Ex. 2. A surface is generated by the revolution of the catenary about its axis.

Let this be the axis of z and let the plane generated by the directrix be that of xy.

Any portion .S' of its surface is projected orthogonally on the plane xy, and V is the

volume of the cylindrical solid formed by the perpendiculars from the perimeter of

S. Prove that the x and y of S and V are equal each to each, but the i of the first

is double that of the second. [Uiulio, also Walton.]

426. Any lurDEicei and lolidt of revolution. A known

plane curve revolves round an axia in its own pUno wh' "h we shall

take as the axis of z, and the angle of revolution is 2a. It is

required to find the centres of gravity of the surface and volume

thus generated.

It is clear that every poir.t desri'ibes an arc of a circle whose

centre is in the axis of z Thus the whole solid is symmetrical

about a plane pa-ssing through z and bisecting all these arcs. Let

this be the plane of xz. The

centres of gravity lie in this

plane. Let PP' be half the

arc described by P, the other

half being behind the plane xz

and not drawn in the figure.

Let PQ = ds be any arc of

the generating curve, then the
''d/

area of the elementary band

described by ds is m = 2xads by Pappus' theorem. Its centre] of

gravity lies in MP at a distance from M equal to (a;sin«)/a.

Hence the coordinates of the centre of gravity of the surface are

Xmx _ fields sin a _ _ Jwzds

2w Jxds ' a ' jxds
'

In the same way the coordinates of the centre of gravity of the

volume are

_ _ Xma: _ fx^da- sin a _ _ Jxzda

2m Jxdff ' a ' jxda
'

where d<T is any element of the area of the given curve. We may

X =
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write for d<T either dxdz or rdOdr according as we choose to use

Cartesian or polar coordinates, replacing the single integral sign

by that for double integration.

It is evident that these integrals are those used in the higher

Mathematics for the moments and products of inertia of the arcs

and areas. When therefore we have once learnt the rules to find

these moments of inertia, we seldom have to perform any integra-

tion ; we simply quote the results as being well known. These

rules are usually studied in connection with rigid dynamics, as a

knowledge of them is essential fur that science, but they are now
given in some of the treatises on tne integral calculus, for example

in that by Prof Williamson.

Ex. 1. A portion of an anchor ring is generated by the complete revolution of

a quadrant of a circle (radius a) about an axis parallel to one of the extreme radii

and distant h from it. Prc^e that the distances of the centres of gravity of the

curved surface and volume from the plane described by the other extreme radius are

a(26±a) a(8fej=3a
)

ir~6 ±2a 2 (3ir& ± 4a)
*

The axis of revolution is supposed not to cut the quadrant.

Ex. 2. A semi-ellipse revolves through one right angle about the bounding

diameter. Show that the distance from tho axis of the centre of gravity of the

volume generated is 3a&/4^2r, where 2r is the length of the diameter.

Ex. 3. A triangular area makes a revolcMon through two right angles about an

axis in its own plane. Prove that the distance of the centre of gravity of the volume

2 a' + fi'+'y'
from the axis is ^——

, where o, /3, 7 are the distances of the middle points of
ir a + p + 7

the sides from the axis.

Ex. 4. A circular area of radius a revolves about a line in its plane at a distance

c from the centre, where c is greater than a. If 2a be the angle through which it

revolves, find the volume generated and prove that the centre of gravity of the solid

is at a distance from i>he line equal to (4c* + a^) sin ajica. [Coll. Ex., 1887.]

426. To find the centre of gravity of a solid sector of a sphere

with a circular rim.

Referring to the figure of Art. 400, let OC be the middle

radius of the solid sector, N the centre of the rim, G the centre of

gravity of the sector, V its volume, Vq the volume of the whole

sphere, a the radius, then

OG = f
ON+OC F=F„

CN
[Wallis.]

2 '
' '" 2a

•

To prove this we follow the same method as that adopted

to find the centre of gravity of a sector of a circle. Let PQ be

an elementary area of the surface, then OPQ is a tetrahedron whose
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PQ be

n whose

centre ofgravity is at p where Op = |0P. Hence, if 0' be the centre

of gravity of the surface, 00 = ^00'. But 00' = ^ (ON + 00) by

Art. 422. Hence the result follows. The volume V has been

already found in Art. 415.

The centre of gravity of a solid hemisphere follows immediately

from this result. Putting 0N=0, we see that the centre of gravity

of a solid hemisphere lies on the middle radius and is at a distance

I of that radiusfrom the centre.

The centre of gravity of a solid octant also follows at once.

There are four octants on one side of any central plane and the

centre of gravity of each of these is at the same distance from that

plane. Hence the centre of gravity of all four must be also at the

same distance, and this has just been proved to be |a. Hence, /or

any octant, the distance of the centre of gravity from any one of the

three plane faces is | of the radius.

437. Ex. 1. The centre of gravity and volume of a solid segment of a sphere

bounded by a plane distant z from the centre are given by

OG=i^''±'^'- V=l(a-z)^(2a + z).
2a + z

'

Ex. 2. Prove that in a sphere, whose density varies inversely as the distance

from a point in the surface, the distance of the centre of gravity from that point

bears to the diameter the ratio 2 : 5. [Math. Tripos, 18(37.]

Ex. 3. Prove that the centre of gravity of a solid sphere, whose density

varies inversely as the fifth power of the distance from an external point, is

at the centre of the section of the sphere by the polar plane of the external

point. [Math. Tripos, 1872.]

428. Centres of gravity of volumes connected with the

ellipsoid. In oi-der to deduce the centre of gravity of any portion

of an ellipsoid from that of the corresponding portion of a sphere,

we shall use an extension of that method of projections by which

we passed from the areas of circles to those of ellipses.

One point (xyz) is said to be projected into another (x'y'z)

when we write x=ax', y==hy', z = cz. The points are then said

to correspond. Volumes V, V correspond when their boundaries

are traced out by corresponding points. If (xyz), (x'y'z') be the

centres of gravity of V, V we have

V=-fJfdx dy dz — abc JJdx' dy' dz' = ahc V.

In the same way x = ax', y = by', z = cz'.

It appears from these equations that any corresponding volumes

have a constant ratio, and the centre of gravity of one corresponds

to the centre of gravity of the other.

Ii!i{

I

'IJ
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We may also show* that (1) parallel straight lines correspond

to parallels, and (2) the ratio of the lengths of parallel straight

lines is unaltered by projection. Thus the rule already explained

in Art. 403 for areas is true also for solids.

We may apply these principles to an ellipsoidal solid. The

equation to an ellipsoid of semi-axes a, b, c is changed into that of

a concentric sphere by writing x = aa;', y = by', z = cz'. It follows

that all projective theorems may be transferred from the sphere to

the ellipsoid.

420. Ex. 1. Find the centre of gravity of a solid sector of an ellipsoid with an

elliptic rim.

Let O a-id N be the centres of the ellipsoid and of the rim. Then ON is the

conjugate diameter of the plane of the rim. Let it cut the ellipsoid in C. The

correspcac'ing theorem for a spherical sector is given in Art. 426. Since the

values of OG and V there given depend on the ratios of parallel lengths, we

may trans^fer them to the ellipsoid. The ;'>entre of gravity O of the ellipsoidal

sector therefore lies in ON, and we have

OG= S
ON + OG V- ^^ V

Ex. 2. The coordinates of a solid octant of an ellipsoid bounded by three

conjugate plane'- are x=fa, y~%h, 2=Jc.

Ex. 3. The centre of gravity and volume of any solid segment of an ellipsoid

are given by ^^=^
2c + z

' ^ 4^ ^o'

where 2c is the conjugate diameter of the plane of the segment, ;; its ordinate

measured along c, and Vq the volume of the whole ellipsoid.

4SO. Let us construct two concentric and coaxial ellipsoids forming between

them a thin solid shell. Let (a, b, c), [a + da, Ac.) be the semi-axes of these

ellipsoids, jD and p + dp the perpendiculars on two parallel tangent planes. Then
t = dp is the thickness of the shell at any point. Let do- be an element of the

stirface of one ellipsoid, dH its projection on the plane of xy, then dU-da-.^.

Ex. 1. Show that the ordinate z of the centre of gravity of any portion of the

shell is given by JF=c* 1 - dll, where V is the volume of that portion of tha shell.

Ex. 2,

prove that 5 : u = Ildc : V,

It the shell is bounded by similar ellipsoids, so that — = -;-=.— =—
,

a b c p

* Let the straight line AB project into A'B' by v/riting x= ax' leaving y, z

unaltered. Geometrically we construct A'B' by producing the abscissp^e (viz. LA,
MB) of A and B in the given ratio a : 1. This gives LA'=a . LA and MB'=a . MB.
Repeating this process for a straight line CD parallel tc AB, it is easy to see, by
similar triangles, that CD' is also parallel to A'B', and that the ratio CD' : A'B'

=the ratio CD : AB. Having written x=ax' we repeat the process by writing

y = by' and finally z=cz'. The theorems are obviously true after the third projection

as well as after the first.
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ordinate

dp

If two parallel planes out off a portion from this thin shell, prove that its

centre of gravity lies in the common conjugate diametci and is equidistant from

the planes. Art. 428.

Ex.3. If the abell is bounded by oonfocal ellipsoids, so that ada= bdb= ede =pdp,

provethat
c
= "F j'" (^ "a^ ^ " ('"p) ^J

'

where \lk{* and Uk^ arc the mo.nents of inertia of 11 about the axes of x and y
respectively, Art. 425.

Ex. 4. If the density of a shell bounded by concentric, similar, and similarly

situated ellipsoids vary inversely as the cube of the distance from a point within

the cavity, that point is the centre of gravity.

If the shell be thin, and the density vary inversely as the cube of the distance

from an external point, the centre of gravity is in the polar plane of the point.

At what point of the polar plane is the centre of gravity situated? [Math. T., 1880.]

Let the shell be thin, and VA O be the point within the cavity. With for

vertex describe an elementary cone cutting off from the shell two elementary

volumes. Let v and v' be these volumes, and r, r' their distances from 0. By the

properties of similar ellipsoids, we may show that vlr^=v'lr'^. Let D, D' be the

densities of these elements. Since D— fijr^, D'= nlr'^, we find vDr=v'D'r', i.e.

the centre of gravity of two elements is ut O. It easily follows that the centre of

gravity of the whole thin shell is at 0. Joining many thin shells together, it also

follows that the centre of gravity of a thick shell is at ^

.

Next, let O be an external point, and let the elementary cone whose vertex is at

intersect the polar plane of O in an element whose distance from is p. Since p

is the harmonic mean of r and r', we easily find vDr + u'/^V= (dD + t''I>') p, i.e. the

centre of gravity of the two elementary volumes v and v' lies in the polar plane of

0. It follows that the centre of gravity of the shell lies in the polar plane of O,

Lastly, let any number of particles m,, m^, i&c, attract the origin according to

the Newtonian law, and let the resultant attraction be a force X acting along the

axis of X. If the coordinates of the particles be (^iViZi) &c., we find by resolution

.y mx S™'=0, 2^= 0.

The two latter equations show that, if the masses m^ , m^ &c. are divided by

numbers proportional to the cubes of tbei** distances from the origin, the centre of

gravity of the masses so altered lies in the line of action cf the force X, The first

equation shows the distance of the centre of gravity from the origin.

In this way many propositions on attractions may be translated into propositions

on c autre of gravity, and vice versa.

It will be shown in the chapter on attractions that the resultant attraction of a

thin homogeneous shell bounded by similar ellipsoids at an external point is

normal to the confocal ellipsoid passing through 0. The centre of gravity of the

heterogeneous shell is the intersection of this normal with the polar plane of O.

431. Centres of gravity of the volume and surfkce of

any solid. The fundamental formulae are in all cases those

already found in Art. 380, viz.

2m
__ Smi/
y=

S»i
z — Sm

'

f
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-_ iii^ ^'^^ ^ ^'^ <t>drded<l> __ lllr* sin ^cos tf drd0d((>

the differences we have to indicate arise only from the varying

choice which we may make for the element m.

Let us first find the centre of gravity of a volume. For

Cartesian coordinates we take vi — dxdydz, and replace the S by

the sign of triple integration. We have then

- _ Hjdxdydz .x _ _ ffjdxdydz .y _ _ Jffdxdydz . z

JJJdxdydz ' JJJdxdydz
' ~

JJfdxdydz

These formulae evidently hold for oblique axes also.

For polar coordinates we take m = rdd .dr.r sin 6d<f>, and

x = rsind cos
(fy, y = r sin d sin

(f>,
z = r cos 0, and replace 2 by the

sign of triple integration. These relations are proved in treatises

on the integral calculus. We find

- _ J//'^
3'"" ^ <'°8 <^drd0d</>

"'
JJJr» sin tfdrd(W0 '

For cylindrical coordinates we have m = pd^ . dp .dz, and

X = p cos 4>, y = p sin <^. Hence

_ _ J JJp*
cos <ptl<pdpdz

Or again, if x, y, z be given functions of three auxiliary

variables xi, v, lo, we can use the Jacobian form corresponding

to that of Art. 411. We have then m = Jdudvdw.

432. To find the centre of gravity of the surface of a solid we

find the value of m suitable to the coordinates we wish to use

If the equation to the surface is given in the Cartesian form

z =f{x, y), we project the element of surface on the plane of xy.

The area of the projection is dxdy. If (a/37) ^^ the direction

aLgles of the normal to the element, the area of the element must

be sec y dxdy. This therefore is our value of m. We find

__ jjjp^ sin (pd<l>dpdz

^~
"jfjpdHpdz

- _ jjjpzdipdpdz

jjjpdipdpdz

- _ //^®° ydxdy.x JJsecydxdy.y^^
//sec 7 dxdy

sec 7-H£)'

//sec 7 dxdy '

Taking the equation to the normal, we find

fdzY .
/dzV^

In a similar way, if the equation to the surface is given in

cylindrical coordinates z =f(p, <f)),
we find

fdzV / dz yl i

dp) \pd^)
m = pd<f>dp -1 1 +
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If the surface is given in polar coordinates r =f(6, (f)),
we have

m ='•'*''''*
Kip"

+^'"'''
(I)'

+'•""''"'

433. In some cases it is more advantageous to divide the

solid into larger elements. We should especially try to choose as

our element some thin lamina or shell whose volume and centre of

gravity have been already found. Suppose, for e.vample, we wish

to find X for some solid. We take as the element a thin slice of

the solid bounded by two planes perpendicular to x. If the

boundary be a portion of an ellipse, triangle, or some other figure

whose area A is known, we can use the formula

fAdxx
X =

jAdx

In this method we have only a single instead of a triple sign of

integration. If the centre of gravity of A is known as well as its

area, we can find y und z by using the same element.

To take another exaniple, suppose the solid heterogeneous.

Then instead of the thin slice just mentioned we might take

as the element a thin stratum of homogeneous substance. If

the mass and centre of gravity of this stratum be known, a

single integration will suffice to find the centre of gravity of

the whole solid. This method xoill he found useful whenever the

boundary of the whole solid is a stratum of uniform density, for in

that case the limits of the integral ^vill be usually constants.

Ex. 1. Find the centre of gravity of an octant of the solid484.

(iMi)"^ ()"-•

From the symmetry of the case it will be sufficient to find 1. It will also

evidently simplify matters if we clear the equation of the quantities a, 6, c ; we

therefore put a; =aa;', y = by', 2= cz', Art. 428.

If we take as our element a slice formed by

planes parallel to xy, we shall require the ar^a A

of the section PMQ. This area is

1

A=jj/dx'= j{l - 2'" - a:'»)»dx',

1

where the limits of integration are to (1 - r'")"

.

If we write x'"=(l - z'")^, this reduces to

?1 -1 }., ?

i4 = (l-2'»)'»-|(l-{)"^ df=(l-/V'B,

wh€ 3 the limits of the integral have been made to 1, so that B can be expressed

in gamma functions if required.

i
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We have now,
fAdz'.t'

""
jAdz'

J(l-2'")"d2'.z' jz'= to^ J2'
=

? • \z' = l •

If we put z'"=:( and write m for l/», this reduces to

X _ J(l-{)am^8m-idg _ r (2m + l)r(2m ) r(3>n + l)

c J{l-{)'»™r'~'df r(4m+l)

using the equation T (x + 1) = xr (x), this becomes

r(2m + l)r(m)'

c * I (m) r (4m) n

Ex. 2. Find the centre of gravity of a hemisphere, the density at any point

varying as the nth power of the distance from the centre.

Here we notice that any stratum of uniform density is a thin hemispherical

shell, whose volume and centre of gravity are both known. We therefore take tliis

stratum as the element. We have the further advantage that the limits are

constants, because the external boundary of the solid is homogeneous.

Let the axis of z be along the middle radius, let (r, r+dr) be the radii of any

shell, and let the density D=ixr". Then m= 2irr'dr. fir", also the ordinate of its

centre of gravity is ^r, see Art. 422. Hence

__ /2y»-»<irAtr»^r _ n + 3 o»+* - b»+*
' ~

jiirr'drixr" ~^n + 4 a»+3 -TftS+s

•

The limits of the integral have been taken from r=6 to r=a, so that we have found

the centre of gravity of a alull whose internal and external radii are b and a. For

a hemisphere we put b=0. If n + 3 is positive, we then have 5=- .

.

2 n+ 4
In other

cases we find z = 0. If either n + 3 or n + 4 is zero the integrals lead to logarithmic

forms, but we still find 7=0.

Ex. 3. Find the centre of gravity of the octant of an ellipsoid when the density

at any point is D= /udy^z".

To e£Fect this we shall have to find the values of Zmz and Zm, which are both

integrals of the form jjj.'tfy^z"dxdydz

for all elements within the solid. To simplify matters, we write (x/o)*=f, &c. The
limits of the integral are now fixed by the plane ^ + ^+ ^=1. But these are the

integrals known as Dirichlet's integrals, and are to be found in treatises on the

Integral Calculus. The result is usually quoted in the form

'^^^
' * * ' * r{l + m+n+l)

though Liouville's extensions to ellipsoids and other surfaces are also given. Here

r{p + l)= 1.2.3...p when p is integral, and in all cases in which p is positive

r{p+l)=pT(p). AlBOT(i)=:Jw.

The result now follows from substitution ; we find

l_Ti{n + 2).Ti(l +m+n + 5l
c ~ ri (n+'l) . I'i (r+'m +n+ 6)

'

When I, m, n are positive integers there is no difficulty in deducing the values of these

gamma functions from the theorems just quoted.

In this way we can find Zmz and Zm and thence z whenever the density D is a

function which can be expanded in a finite series of powers of x, y, z.

hHl



ART. 436.] Lagrange's theorems. 287

If the density Rt any point of an octant of an ellipsoid is Z> = /u-ryz, show that

J = 16c/36.

Ex. 4. If the density at any point of an octant of an ellipRoid vary as the

square of the distance from the centre, show that ?=r^—. . .,
,

. .

16 a^ + b^ + c*

Ex. 5. To find the centre of gravity of a triangular area whose density at any

point is D = /u;'i/"».

To determine x and g we have to find 2m, Snix and Zmy. All these are integrals

of the form jjx'y'^dxdy. If t/i , 2^3 , 1/3 are the ordinates of the comerH of the triangle

and A the area, it may be shown that

2A
/|y»dxdy==^-^^-j-jj-^2)<J'i"+yi""'y2 + 2'i"~'j'3 + "} (1).

where the right hand side, after division by A, is the arithmetic mean of the homo-

geneous products of 2/11 Vi, Va- Thus when the density is D^ny^ the ordinate y
may be found by a simple substitution.

If we take y + fex=0 as a ^ew axis of x, (1) may be written in the form

2A

the coe

^\nxy^~^dxdy=
^

(n+l)(n + 2)

Equating the coefficient of k on each side, we find

2A

{ (yi + *^i)"+ (yi + fc^i)*"' (^2 +kx.,)+...\.

le, we find

{na!ij/i»-i + (n - l)yi"~*2/ipri + Ac. }

.

(n+l)(n + 2)

In general, if H„ be the arithmetic mean of the homogeneous products of

!/!• J/a.ys' we have

jjxP^,rdxdj/ = A(^x,^,^ .x,^^ + a-3^J i/,.

One corner of :. ^^'angle is at the origin ; if the de>isity vary as the cube of the

2 U " — M '

distance from the axis of x, show that 5= - "-^——. . Also write down the value of S.

The same method may be used to find the centre of gravity of a quadrilateral, a

tetrahedron or a double tetrahedron, when the density is D=ta:'y^z''. See a paper

by the author in the Quarterly Journal of Mathematics, 1886.

435. Lagrange's two Theorems. Def. If the mass of a

particle be multiplied by tbe square of its distance from a given

point 0, the product is calif d the moment of inertia of the particle

about, or with regard to, the point 0. The moment of inertia of a

system of particles is the sum of the moments of inertia of the

several particles.

436. Lagrange's first Theorem. The moment of inertia of a

system of particles about any point is equal to their moment of

inertia about their centre of gravity together with what would be

the moment of inertia about of the whole mass if it were collected

at its centre of gravity.

Let the particles vii, m^ &c. be situated at the points AiyA^kiC.

Let (xiyiZi), {Xiy^z^, &c. be the coordinates of Ai, A^ &c.

'iii|

>i\.



288 CENTRE OF GRAVITY. [chap. IX.

^i !

1

i

I

i!

r fi

referred to as origin. Let x, y,
'•. be the coordinates of the centre

of gravity 0. Also Xai x = x -^ x\ y =^y \- y', &c. Now

S (m . 0^') = 27n ((S + a:')' + (2^ + yj + {z + zj]

= 2m . 0G» + 2s£wj;' + 2y2wiy' + 252m/ + 2 {mOA^).

Since the origin of the accented coordinates is the centre of

gravity, we liave Ivix' = 0, 2my' = 0, l,mz' = 0. Hence putting

M = 2m, we have 2 (w . Oil') = M . 00' + 'S,(m. OA^) (A).

This equation expresses Lagrange's theorem in an analytical form.

We notice that the moment of inertia of the body about any

point is least when that point is at the centre of gravity.

An important extension of this theorem is required in rigid

dynamics. It is shown that, if/ (x, y, z) be any quadratic function

of the coordinates of a particle, then

2m/ (a?, y, z) = M/(x, y, z) + 2m/(a;', y\ z').

437. Lagrange's second Theorem. If m, m' be the masses of

any two particles, AA' the distance between them, then the

theorem may be analytically stated thus

2(mm'.ilvl'') = il/2(m.r?il^) (B).

The sum of the continued products of the masses taken two

together and the square of the distance between them is equal to

the product of the whole mass by the moment of inertia about the

centre of gravity.

This may be easily deduced from Lagrange's first theorem.

We have by (A)

2m„0^«''= M, OG'+lmaOAa',

where 2 implies summation for all values of a. Putting the

arbitrary point successively at -4,, A^ &c. we have

ImaA^Aa' = M.A,G' + XmaGA,\

2m.^j4a» = M.Afi-" + 2maGila^

&c. = &c.

Multiplying these respectively by Wj, wij &c. and adding the

products together, we have

tmo.mpAfiA^' = M Xm^AfiO' + Imp . tmaGAa'.

The 2 on the left hand side implies summation for all values of

both o and /9. Each term will therefore appear twice over, once

in the form mpm^ . Ap Aa^, and a second time with a and ^ inter-

changed. If we wish to take each term once only, we must take

,
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the

lesof

once

Inter-

take

half the right hand side. But the terms on the right hand side

are the same. Hence

488. Ex. Let the Rymbol [ABC] represent the area of the triangle formed

by joining the three points A, li, C. Let [AUCD] represent the volume of the

tetrahedron formed by joininf; the four points in space /I, B, C, D. We may extend

the analytical expression for the area und volume to any number of points by the

same notation. We then have the following extensions of Lagrange's two theorems

2m,0/l 'J =M . OG^ + I.maA^^a a a a

^m^m^[OAJpP=My ',[OGAJ + lmjn^[GA^A^Y

^rrijn^m^[0A^ApA^]' = MZm^mp[OGA^A^Y + lmjnpm^[GA^A^A^Y

&o. = ito.

^m^mpAJp' = Mi:m^GAj

Zm^mpVi^[AJpA^f = M7:mjHp[GAJpf

^mjnpm^vii[A^A^A^A^f=Mi:injn^m^[GAJpA^Y

&c. = &c.

The first of each of these sets of equations is of course a repetition of Lagrange's

equations. The remaining equations are due to Franklin.

[American Journal of Mathematics, Vol. x., 1888.]

439. Application to pure geometry. The property that

every body has but one centre of gravity* may be used to assist

us in discovering new geometrical theorems. The general method

may be described in a few words. We place weights of the proper

magnitudes at certain points in the figure. By combining these

in several different orders we find different constructions for the

centre of gravity. All these must give the same point. The

following are a few examples,

Ex. 1. The two straight lines which join the midaie points of the opposite

sides of a quadi'ilateral and the straight line which joins the middle points of the

two diagonals, intersect in one point and are bisected at that point. [Coll. Exam.]

Ex. 2. The centre of gravity of four particles of equal weight in the same plane

is the centre of the conic which bisects the lines joining each pair of points.

[Only one chord of a conic is bisected at a given point, unless that point is the

centre. Since, by the last example, three chords are bisected at the same point, that

point is the centre.] [Caius Coll.]

Ex. 3. Through each edge of a tetrahedron a plane is drawn bisecting the angle

between the planes that meet in that edge and intersecting the opposite edge : prove

that the three lines joining the points so determined on opposite edges meet in a

point. [St John's Coll., 1879.]

• In Milne's Companion to the weekly problem papers 1888, a number of ex-

amples will be found of the application of the "centroid" and of "force" to

geometry.

R. S. I. 19
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Plaoo woiKlitH at tho oornorH proportional to tho arean of tho oppoHitn faooH.

Thu contro of Kravity of thoHe four wuiKhtn liuH in uach of tho throo HtraJKlit linoH.

440. The thoontniH on tho centre of gravity are alno uHofiil in hclpinK an to

remoinbor the rolationn of certain pointx, much UHed in our koo" ••trical HKuren, to

the other pnintH and lineH In the cooHtruution. For inHtan tien the lemiltn of

Ex. 1 have b(>en noticed, tlie diHtance of the centre of the ed oonic from any

BtraiKht line can be written down at onoe by taking moment., about that lino.

Ex. 1. The areal e<iiiation to tho conio inHorihcd in tho triangle of roferenoo

U ^lx+ ^mij + Jiiz-0 ; whow that tho centre of tho conio in the contro of gravity

of thr(H! particleH placed at the middle pointn of the Hiden, whoHo woightH aro

proportional to /, m, n. It is alno the centre of gravity of three particleH whoHO

weightH are proportional to m + n, n + /, I + m, placed either at the iKtints of contact

or at the cornern of tho triangle.

Let the conio touch tho HidoH in D, K, F, then D and E divide liC and A C in tlie

ratioH m : n and / : n. Let (, rt, ^ Im the wcightn placed at .-I, li, C whoHo centre of

gravity in the centre. Then {, rj are rexpoctively ecpiivalent to $ {/ + n)/n and

rj (m + n)/H placed at K and /) together with Rome weight at C, Art. 7U. Hut since

tho straight line joining (' to the centre (> bisects DF, we see by taking moments

about CO that the weights I) and K are equal. Hence ( and rj aro proportional to

m + n and w + /.

If the conio is a parabola l + m + n = 0, bocausD tho weights must reduce to a

couple. Hence the far extremity of the principal diameter, ard therefore the far

focus, is the centre of gravity of weights /, m, n placed at the oorners A, li, G.

Since the product of the perpendiculars from tho foci on all tangents are equal, the

near focus is the centre of gravity of three weights a^jl, b^jm, c'^/n placed at the

corners.

Ex. 2. The areal equation to the conic circumscribed about a triangle ia

lyz + mzx + nxy^O. Show that its centre is the centre of gravity of six particles,

three placed at the corners whose weights are proportional to P, m*, n'-*, and three

at the middle points of the sides whose weights are - 2mn, - 2m/, - 2lm.

Ex. 3. Three particles of equal weight are placed at the corners of a triangle,

and a fourth particle of negative weight is placed at the centre of the circumscribing

circle. Show that the centre of gravity of all four is the centre of the nine-points

circle or the orthooentre, according as the weight of the fourth particle is numeri-

cally equal to or double that of any one of the particles at the corners.

Ex. 4. The equation to a conic being Ap^ + Bq^ + Cr'^ + 2I)qr + 2Erp + 2Fpq=
in tangential coordinates, show that the centre of the conic is the centre of gravity

of three weights proportional to A +E + F, B + F + D, C ¥ D + E placed at the comers.

For other theorems see a paper by the author in the Quarterly Journal, Vol. viii.

1866.

44 1. Theorems concerning the resolution and composition of forces may be used,

as well as those relating to the centre of gravity, to prove geometrical properties.

Ex. 1. A straight line is diawn from the corner D of a tetrahedron making equal

angles with the edges DA, DB, DC. Show that this straight line intersects the

plane ABC in a point E such that AEjAD, BEjBD, CEjCD are proportional to the

sines of the angles BEC, CEA, AED. Show also that -77^+ i>T> + Ttt,
~

AD JjD \jD

where is the angle DE makes with any edge at D.
ED
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Kx. '2. AUCI) \h a qnadrilatnriil, whow> opponito Hidtm nusot in .Y and )'. Hhow
that tlie hiHi'ctnrH of the unxluH A', Y, the liiM>otnrH of tliu anKldH H, I> and thi*

biHcctorH of tilt) iiiikImh A, (' int*>rHt>ot on a Ktrai^ht liix', cortuin rcHtrictioiiH Ix'in^

niudu aH to which piiirH of himtirtorH uru tatccn. Huu H^iiru iit Art. lli'i.

[Apply four <«|iiiil forcoH lo act alonK tho NideH of thu <|iiadriliit«!riil, and find tlicir

rcHultunt hy cotnhininx them in difTon^nt ordcrn.] [Math. TripoH, lHH'2.
|

Kx. i\. I'rovn, hy nu'clianicul conHiderutionH, that tlio Iocuh of thn contrtm of all

oUipHUH inHcribcd in tho Hanio quadrilatoral in tiio HtraiKht Unu joining tho iniddli'

pointH of any two diaxonalH. [Coll. Kxain.]

Let A, B, C, I) he tho cornorH taken in order. Apply forcoH alonj? All, Al>, CH,

CI) proportional to thoHc lenKthH. The tan^entH nioaHiiriul from each corner to tho

adjacent points of contact rG)ireNent forceH whose rcHiiltant paHHOH through tin* centre.

Since those einht forcen make up tho four forcoH All, AD, Cll, Clt, ihe reHultaut

paHW'H thro;i({h tho centre. A^ain the roHultant of A H, AD and also that of Cll, ('D

bisoct tho dia><onal IID. Hiniilarly tlio resultant foicu bisoctH the other diaKonal.

Ex. 4. If A', Karc tho intersections of tlie opposite sides of a quadrilateral AlK'D,

prove that tlic ratio of tho p(-rpendiculars drawn from A' and Y on tho dianonal A C
is e<]ual to tlie ratio of the perpendiculars on the diagonal liD. Hhow also that

each of these ratios is o(iual to the ratio of All . CD sin Y to AD . IIC sin A'. Bee

figure of Art. l'A'2.

19—2
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CHAPTER X.

ON STRINOS.

! <;-
w

442. The Catenary. The strings conHidored in this chapter

are supposed to bo perfectly flexible. By this we mean that the

resultant action across any section of the string consists of a single

force whose line of action is along a tangent to the length of the

string. Any normal section is considered to be so small that the

string may be regarded as a curved line, so that we may speak of

its tangent, or its osculating plane.

The resultant action across any section of the string is called

its tension, and in v nat follows will be represented by the letter T.

This force may theoretically be po.sitive or negative, but it is

obvious that an actual string can only pull. The positive sign is

given to the tension when it exerts a pull on any object instead

of a push.

The weight of an element of length ds is represented by wds.

In a uniform string w is the weight of a unit of length. If the

.string is not uniform, w is the weight of a unit of length of an

imaginary string, such that any element of it (whose length is ds)

is similar and equal to the particular element ds of the actual

string.

443. A heavy unif<yrm string is suspended from two given

points A, B, and is in equilibrium in a vertical plane. It is

reqtdred to find the equation to the curve in which it hangs. This

curve is called the common Catenary*.

• The following short account of the history of the problem known under the

name of the " Chainette " is abridged from Montucla, Vol. ii., p. 468. The problem
of finding the form of a heavy chain suspended from two fixed points was proposed
by James Bernoulli as a question to the other geometers of that day. Four
mathematicians, viz. James Bernoulli and his brother, Leibnitz and Huyghens, had
the honour of solving it. They published their solutions in the Actes de Leipsick
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given

It is

This

er the
roblem
oposed
Four

8, had
ipiick

Let C bo the lowest point of the catenary, i.e. the point at

which the tangent is horizontal. Take .some horizontal straight

line Ox oh the axis ol' j;, who.se distatce hom C we iimy altorwanls

choo.se at pleasure. Draw (>0 perpendicular to it, and let bo

the origin. Let ^ bo the angle the tangent at any point P
makes with Ox, Let Tn and T be the teuHions at C and P, and

let GP=i8. In the figure the axis of a;, which is afterwards taken

to represent the directrix, has been placed nearer the curve than

it really is in order to save space.

The length CP of the string is in equilibrium under threr

forces, viz. the tensions T^ and T acting at C and P in the direc-

tions of the arrows, and its weight W8 acting at the centre of

gravity of the arc GP.

Resolving horizontally, we have T cos -^ = T,

Resolving vertically, we have T sin >^ = tvs .

Dividing one of these equations by the other,

dy ^ , ws

i = ^^"^=r„

(2).

(3).

(Act. Erud. 1691) but without the annlysis, apparently wishing to leave some laurels

to be gathered by those who followed. David Gregory published a sobi. .n Bome
years after in the Phil. Tram. 1G97.

It is the custom of geometers to rise from one difficulty to another, and even to

make new ones in order to have the pleasure of surmounting them. Bernoulli was
no sooner in possession of the solution of his problem of the chainette considered
in its simplest case, than he proceeded to more difficult ones. He supposed next
that the string was heterogeneous and enquired what should be the law of density

that the curve should be of any given form, and what would be the curve if the

string were extensible. He soon after published his solution, but reserved his

analysis. Finally he proposed the problem, what would be the form of the string

if it were acted on by a central force. The solutions of all these problems were
afterwards given by John Bernoulli in his Opera Omnia. See also Ball's Short

History of Mathematics, 1888.

Montucla remarks that the problem of the chainette had excited the curiosity of

Oalileo, who had decided that the curve is a parabola. But this accusation is stated

by Venturoli to be without foundation. Oalileo had merely noticed the similarity

between the two curves. See Venturoli, Elements of Mechanics, translated by Cresswell,

p. 69, where the problem of the chainette is discussed.

i

u
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]V'

4y

dy=± 2/ + yl = vV(s'+c'=).

If the string is uniform w is constant, and it is then con-

venient to write T^=iwc. To find the curve we must integi-ate

the differential equation (3). We have

sds

We must take the upper sign, for it is clear from (3) that, when

X and s increase, y must also increase. When s = 0, y + A=c.
Hence, if the axis of x is chosen to be at a distance c below the

lowest point G of the string, we siiall have ^ = 0. The equation

now takes the form
T/2 = S2 + C= (4).

cds
Substituting this value of y in (3), we find 77-^ gx = dx,

where the radical is to have the positive sign. Integrating,

c log [s + \f{s'' + c'')) = X + B.

But X and s vanish together, hence B = c log c.

From this equation we find \J{s'^ + c") + s = ce^.

Inverting this and rationalizing the denominator in the usual

manner, we have \/{s^ \-c-) — s — ce

Adding and subtracting we deduce by (4)

.(5).
c f - ~-\ c f - ---^

y = ~[e<'-he «j , s = ^\e''-e "
"j

The first of these is the Cartesian equation to the common
catenary. The straight lines which have here been taken as the

axes of X and y are called respectively the directrix and the axis

of the catenary. The point G is called the vertex.

Adding the squares of (1) and (2), we have by help of (4)

T" = w^ (s- + c^) = w-y-
;

.-. T= wy (6).

The equations (1) and (2) give us two important properties of

the curve, viz. (I) the horizontal tension at every point of the curve

is the same and equal to wc ; (2) the vertical tension at any point

P is equal to ws, where s is the arc measuredfrom the lowest point.

To these we join a third result embodied in (6), viz. (3) the

§: \-
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then con-

integi-ate

lat, when

+ A = c.

)ulow the

equation

,.(4).

Ix,

ig.

e usual

..(5).

ommon
as the

he aicis

.(6).

'ties of

! curve

point

point.

3) the

resultant tension at any point is equal to wy, whe"e y is the ordinate

vieasured from the directrix.

444. Referring to the figure, let PN be the ordinate of P,

then T = w. PN. Draw NL perpendicular to the tangent at P,

then the angle PNL = yjr. Hence

PL==PN.sin^jr = shy{2),

NL = PN . cos yjr = c hy (1).

These two geometrical properties of the curve may also be

deduced from its Cartesian equation (5). Ey differentiating (3)

1 dyjr 1 c

cos- y(r ds
we find P = (7).

c
'

' cos* '\^

We easily deduce from the right-angled triangle PNH, that

the length of the normal, viz. PH, between the curve and the

directrix is equal to the radius of curvature, viz. p, at P.

It will be noticed that these equations contain only one

undetermined constant, viz. c ; and when this is given the form of

the curve is absolutely determined. Its position in space depends

on the positions of the straight lines called its directrix and axis.

This constant c is called the parameter of the catenary. Two arcs

of catenaries which have their parameters equal are said to be

arcs of equal catenaries.

Since p cos^ \fr = c, it is clear that c is large or small according

as the curve is flat or much curved near its vertex. Thus if the

string is suspended from two points A, B in the same horizontal

line, then c is very large or very small compared with the distance

between A and B according as the string is tight or loose.

The relations between the quantities y, s, c, p, ^ and T in the common catenary

may be easily remembered by referring to the rectilineal figure PLNII. We have

PN=y, PL= s, NL = c, PH=p, T=ziv.PN and the angles LNP, NPH are each

equal to yp. Thus the important relations (1), (2), (3), (4), and (7) follow from the

ordinary properties ot a right-angled triangle.

445. Since the three forces, viz., the tensions at A and B and the weight are in

equilibrium, it follows that their lines of action must meet in a point. Hence the

centre of gravity G of the arc must lie vertically over the intersection of the tangents

at the extremities of the arc. This is a statical proof of one part of the more general

theorem given in Art. 399, Ex. 1, where it is also proved that the vertical ordinate

of the centre of gravity is half that of the intersection of the normals at the extremi-

ties of the arc.

440. Ex. 1. Show that it is impossible to pull a heavy string by forces at its

extremities so as to make it quite straight unless the spring is vertical.

I

Tfl

i;;^!

r**,-..^^;:^"
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If it be straight let ^ be the incIinatioD to the horizon, W its weight. Then,

resolving perpendicularly to its length, Wcos ^=0, which gives f equal to a right

angle. This proof does not require the string to be uniform.

Ex. 2. If a string be suspended from any two points A and B not in the same

vertical, and be nearly straight, show that c is very large.

Let \//, ^' be the inclinations at A and B, and { the length of the string. Then

l=8-s'=c (tan ^ - tan ^'). Since ^ and xj/' are nearly equal, c is large compared

with I.

Ex. 3. A heavy uniform string AB of length I is suspended from a fixed point

A, while the other extremity B is pulled horizontally by a given force F= wa. Show

that the horizontal and vertical distances between A and B are a log——

and iJ(P+a^) — a respectively.

Ex. 4. The extremities A and £ of a heavy string of length 21 are attached

to two small rings which can slide on a fixed horizontal wire. Each of these rings

is acted on by a horizontal force F=wl. Show that the distance apart of the rings

is 2nog (1 + ^/2).

Ex. 5. If the inclination ^ of the tangent at any point P of the catenary is

taken as the independent variable, prove that

x=clogtan (^ + ^), y= , «= ctan^, p= ^ .

\4 2J " cos^' ^ '^ cos^^

If X, y be the coordinates of the centre of gravity of the arc measured from the

vertex up to the point P, prove also that x=x-c tan
_ 1

y 2Vc
+ X cot ^2

' " 2 Vcos i/'

447. If the position in space of the points A and B of suspension &nd the

length of the string or chain are given, we may obtain sufficient equations to find

the parameter c of the catenary, and the positions in space of its directrix and axis.

Let the given point A be taken as an origin of coordinates, and let the axes be

horizontal and vertical. Let {h, k) be the coordinates of B referred to A, and let I

be the length of the string AB. These three quantities are therefore given. Let

(x, y), {x + h, y + k) be the coordinates of A, B referred to the directrix and axis

of the catenary. Then x, y, c are the three quantities to be found. By Art. 443

c ~

y + k=^{e c

x+h _*+*

+ e «') .(A).

Also by Art. 448, since I is the algebraic difference of the arcs CA, CB,

^ x+h x+h ^ X _x

~)l=:^(e ' -e )-^{e''-e •(B).

If G lie between A and D, x will be negative.

Tb3se three equations are sufficient to determine x,

howe\er be solved in finite terms. We may eliminate

X, y in the following manner.

X A

"Writing u^e", v=e'', we find from (A) and (B)

k=i(u--]{v-l)]
2 \ uvj ^

•

2 \ uvJ ^ ' I

(C).

tl

c

t

c

e

(

(
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We notice that v contains only c and ilie known quantity h. Hence, subtracting

the squares of these equations in order to eliminate u, we find

•P).

This agrees with the equation given by Poisson in his TraitS de MScanique.

The value of c has to be found from this equation. It gives two real finite

values of c, one positive and the other negative but numerically equal. A negative

value for c would make y negative and would therefore correspond to a catenary

with its concavity downwards. It is therefore clear that the positive value of a is to

be taken.

To analyse the equation (D), we let c= I/7, and arrange the terms of the equation

in the form z= e^y -e-'^y -ay=0 (E),

so that a and m are both positive. We have a^=zP-k^, and 2m =h. Since the

length { of the string must be longer than the straight line joining the points of

suspension, it is clear that a must be greater than 2m. By differentiation,

ay
,-my

)-a.

Thus dzjdy is negative when 7=0, so that, as 7 increases from zero, z is at first

zero, then becomes negative and finally becomes positive for large values of 7.

There is therefore some one value of 7, say 7=1, at which 2=0. If there could

be another, say y= i', then dzjdy must vanish twice, once between 7=0 and

7= t, and again between 7= / and 7 = i '. We shall now show that this is impossible.

By differentiating twice we have

thus dhjdy- is positive when 7 is greater than zero. Hence dzjdy continually in-

creases with 7 from its initial valne 2m -a when 7=0. It therefore cannot vanish

twice when 7 is positive. It appears from this reasoning that the equation gives

only one positive value of c.

The solitary positive value of c having been found from (D), we can form a

simple equation to find u by adding one of the equations (C) to the other. In this

way we find one real value of x. The value of y is then found from the first of the

equations (A). Thus it appears that, token a uniform string is suspended from ttro

fixed points of support, there is only one position of equilibrium.

The equation (D) can be solved by approximation when hjc is so small that we

can expand the exponentials and retain only the first powers of hjc which do not

disappear of themselves. This occurs when c is large, i.e. when the string is nearly

tight. In such cases, however, it will be found more convenient to resume the

problem from the beginning rather than to quote the equations (D) or (E).

/ 4'18. Ex. 1. A uniform string of length I is suspended from two points A and

B in the same horizontal Hue, whose distance apart is h. If h and I are nearly

equal, find the parameter of the catenary.

Referring to the figure of Art. 443, we sec that 8= ^?, x-^h. Hence using one
h h

of the equations (5) of that article, we have l= c(e^ -e '^).

Whatever the given values of h and I may be, the value of c must be found from

this equation. When h and I are nearly equal, we know by Art. 44G, Ex. 2, that hjc

^

I '>l

1^
I
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errors. Takiug the logarithmic differential we have

Hence, expanding the exponentials and retaining only the lowest powers

of hlc which do not disappear, we have c^=^-r-r,—rr •

24(t-rt)

Since the string considered in this problem is nearly horizontal, the tension of

every element is nearly the same. If the string be slightly extensible, so that the

extension of any element is some function of the tension, the stretched string will

still be homogeneous. The form will therefore be a catenary, and its parameter

will be given by the same formula, provided / represents its stretched length.

In order to use this formula, the length { of the string and the distance h

between A and li must be measured. But measurements cannot be made without

error. To use any formula correi ily it is necessary to estimate the effects of such

28c _3dh _ ±Si±8/t

c ~ h l-h '

Here Sh and 51 are the errors of h and I due to measurement. We see that the

error in c might be a large proportion of c if either /« or I- h were small. In our

case l-h is small. Hence to find c we must so make our measurements that the

error of l-h is small compared with the small quantity l-h, while the length h

need be measured only so truly that its error is within the same fraction of the

larger quantity h. Thus greater care must be taken in measuring l-h than h.

Suppose, for example, that /t = 30 feet and 1 = 31 feet, with possible errors of

measurement either way of only one thousandth part of the thing measured.

The value of c given by the formula is 33 -5 feet, but its possible error is as much
as one thirtieth part of itself.

Ex. 2. A uniform measuring chain of length I is tightly stretched over a river,

the middle point just touching the surface of the water, while each of the ex-

tremities has an elevation k above the surface. Show that the difference between

8 fc'

the length of the measuring chain and the breadth of the river is nearly - y .

Ex. 3. A heavy string of length 21 is suspended from two fixed points ^, L' in

the same horizontal line at a distance apart equal to 2a. A riji,7 of weight W can

slide freely on the string, and is in

equilibrium at the lowest point. Find A E B
the parameter of the catenary and the

position of the weight.

Let Z) be the position of the heavy

ring, then BD and AB are equal por-

tions of a catenary. Produce BD to

its vertex C, and let Ojt, OC be the

directrix and axis of the catenary BB.
Let X be the abscissa of D. Then
since I is the difference of the arcs

x+«

CB, CD.wehave i=.7(<'" -e ')-i^(e°-e') (1).

Also, since the weight of the ring is supported by the two vertical tensions of the

X z

"")
(2).string. W=2w^{e^

The equations (1) and (2) determine x and c. Thence the ordinates of D and B
may be found, and therefore the di)ith of I) below AB.

r3Br--.^:ijfe
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3:

...(1).

of the

If the weight of the ring is much greater than the weight of the string, each

string is nearly tight. Thus a\c is small, but x\c is not necessarily small, for the

vertex C may be at a considerable distance from D. If we expand the terms con-

taining the exponent a\c and eliminate those containing x\c, we find

c = Wal2w^f{P - a^) nearly.

The contrary holds if the weight of the ring is much smaller than the weight of

the string. If W were zero the two catenaries DD and DA would be continuous,

and the vertex would be at D. Heace when W is very small, the vertex will be

near D aud therefore x/a will be small. But ajc is not necessarily small. Ex-

panding the terms with small exponentials, we find from (2) that x=WI2w. Then

(1) gives l= l(e^ =)+2^{i(«^+« •)-l}.

If the weight W were absent thi;^ equation would reduce to the one already dis-

cussed above. If 7 be the change produced in the value of c there found by adding

the weight W, we find, by writing c -f 7 for c in the first term on the right hand side,

that [I )7+v-(fc-c) = 0, where k is the ordinate of D before the addition of W.
\ c J 2w

If the xceight W had been attached to any point D of the string not its middle

point, AD, BD would still form catenaries, whose positions could be found in a

similar manner. We may notice that, however dififerent the two strings may appear

to be, the catenaries hare equal parameters. For consider the equilibrium of the

weight W\ we see by resolving horizontally that the wc of each catenary must be

the same.

If the string he passed through a fine smooth ring fixed in space through which

it could slide freely, the two strings on each side must have their tensions equal.

Hence the ttvo catenaries have the same directrix. The parameters are not neces-

sarily equal, for the difference between the horizontal tensions of the two catenaries

is equal to the horizontal pressure on the ring, which need not be zero.

Ex. 4. A heavy string of length I is suspended from two points A, A' in the

same horizontal line, and passes through a smooth ring D fixed in space. If DN
be a perpendicular from D on AA' and NA = h, NA'=:h', DN=k, prove that the

parameters c, c' may be obtained from

ic^=P |cosh|, cosech (i + ^'-)[-k^- (cosech A)",

and a similar equation with the accented and unaccented letters interchanged.

Ex. 0. A portion AC oi & uniform heavy chain rests extended in the form of a

straight line on a rough horizontal plane, while the other portion CD hangs in the

form of a catenary from a given point B above the plane The whole chain is on

the point of motion towards the vertical through B. If I be the length of the whole

chain and h he. the altitude of B above the plane, show that the parameter c of the

catenary is equal to fi (l + ixh) - //.^/{{/ji' + l) li- + 2ij.hl].

Ex. 6. A heavy string hangs over two small smooth fixed pegs. The two ends

of the string are free, and the central portion hangs in a catenary. Show that the

free ends are on the directrix of the catenary. If the two pegs are on the same level

and distant 2a apart, show that equilibrium is impossible unless the length of

the string is equal to or greater than 2ae. [Coll. Exam.]

Ex. 7. A heavy uniform chain is suspended from two fixed points A and B in

the same horizontal line, aud the tangent at A makes an angle 45° with the horizon.

i
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Prove that the depth of the lowest point of the chain below Ali is to the length of

the chain as sj(2) -1:2.

Ex. 8. A uniform heavy chain is fastened at its extremities to two rings of

equal weight, which slide on smooth rods intersecting in a vertical plane, and

inclined at the same angle a to the vertical : find the condition that the tension at

the lowest point may be equal to half the weight of the chain ; and, in that case,

show that the vertical distance of the rings from the point of intersection of the rods

is i cot o log (^2 + 1), where 21 is the length of the chain. [Math. Tripos, 1856.]

Ex. 9. A heavy string of uniform density and thickness is suspended from two

given points in the same horizontal plane. A weight, an 7tth that of the string, is

attached to its lowest point ; show that, if $, tp be the inclinations to the vertical of

the tangents at the highest and lowest points of the string, tan = (1 + n) tan 6.

[Math. Tripos, 1858.]

Ex. 10. If a, /3 be the angles which a string of length I makes with the vertical

at the points of support, show that the height of one point above the other is

Uosi(a + /3)/oosi(a-/3). [Pet. Coll., 1855.]

Ex. 11. A heavy endless string passes over two small smooth fixed pegs in the

same horizontal line, and a small smooth ring without weight binds together the

upper and lower portions of the string : prove that the ratio of the cosines of the

angles which the portions of the string at either peg make with the horizon, is equal

to that of the tangents of the angles which the portions of the string at the ring

make with the vertical. [Math. Tripos, 1872.]

Ex. 12. A and B are two smooth pegs in the same horizontal line, and C is a

third smooth peg vertically below the middle point of AB ; an endless string hangs

upon them forming three catenaries AB, BC, and CA : if the lowest point of the

catenary AB coincides with C, prove that the pegs AB divide the whole string into

two parts in the ratio of 2w + tv' to 2h;-?o', where lo and w' are the vertical com-

ponents of the pressures on A and C respectively. [Math. Tripos, 1870.]

Ex. 13. An endless uniform chain is hung over two small smooth pegs in the

same horizontal line. Show that, when it is in a position of equilibrium, the ratio of

the distance between the vertices of the two catenaries to half the. length of the

chain is the tangent of half the angle of inclination of the portions near the pegs.

[Math. Tripos, 1855.]

Ex. 14. A heavy uniform string of length il passes through two small smooth

rings resting on a fixed horizontal bar. Prove that, if one of the rings be kept

stationary, the other being held at any other point of thj bar, the locus of the

position of equilibrium of that end of the string which is the further from the

stationary ring may be represented by the equation x= 2,J {ly) log- . [Coll. Ex.]

Ex. 15. A heavy uniform string is suspended from two points A and B in the

same horizontal line, and to any point P of the string a heavy particle is attached.

Prove that the two portions of the string are parts of equal Catenaries.

Prove also that the portion of the tangent at A intercepted between the verticals

through P and the centre of gravity of the string is divided by the tangent at B in

a ratio independent of the position of P.

If 6, <p be the angles the tangents at P make with the horizon, a and /3 those

made by the tangents at A and B, show that

tions of P.

tan + tan <p

tan a + tan /3

is constant for all posi-

[St John's Coll.]
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Ex. 16. A heavy uniform siring hangs over two smooth pegs in the same

horizontal line. If the length of each portion which hangH freely be equal to

the length between the pegs, prove that the whole length of the string is to the

distance between the pegs as ^/(.3) to log;y/(3). Compare also the pressures on

each peg with the weight of the string.

Ex. 17. A uniform endless string of length / is placed symmetrically over a

smooth cube which is fixed with one diagonal vertical. Prove that the string vill

slip over the cube unless the side of the cube is greater than J Z ^2 log (1 + ^2).

[Emm. Coll., 1891.]

Ex. 18. An endless inextensible string hangs in two festoons over two small

pegs in the same horizontal line. Prove that, if 6 be the inclination to the vertical

of one branch of the string at its highest point, the inclination of the other branch

at the same point must be either or <^, where ^ has only one value and is a function

of e only. If cot .je= e*^*, then <p=0. [Coll. Ex.]

Ex. 19. Four smooth pegs are placed in a vertical plane so as to xorm a square,

the diagonals being one vertical and one horizontal, iiound the pegs an endless

chain is passed so as to pass over the three upper and under the 7 jwer one. If the

directions of the strings make with the vertical angles equal to a at the upper

peg, j3 and y at each of the middle and 5 at the lower peg, prove the following

relations sin /3 log cot j^a tan ^/3 = sin y log cot ^7 tan ^5,

sin /3 sin 8 + sin a sin 7 = 2 sin a sin 5. [Caius Coll.]

^ Ex. 20. A bar of length 2a has its ends fastened to those of a heavy string of

length 21, by which it is hung symmetrically over a peg. The weight of the bar is n

times, and the horizontal tension ^ni times the weight of the string. Show that

7)1- + m'= \(n + 1) coseoh - ttcoth
a )

-

mi
[Coll. Ex., 1889.]

Ex. 21. One end of a heavy chain is attached to the extremity of a fixed rod,

the other end is fastened to a small smooth ring which slides on the rod : prove that

in the position of equilibrium log {cot^dcot{^Tr -
^\f/)}

=coid{ae(i\l/ - coaead),

6 being the inclination of the rod to the horizon, and \(/ that of the chain at its

b;-]he8t point. [Coll. Ex.]

Ex. 22. A string of length ira is fastened to two points at a distance apart equal

to 2a, and is repelled by a force perpendicular to the line joining the points and

varying inversely as the square of the distance from it. Show that the form of the

string is a semi-circle. [Coll. Ex., 1882.]

Ex. 23. A chain, of length 21 and weight 2 IF, hangs with one end A attached to

a fixed point in a smooth horizontal wire, and the other end B attached to a smooth

ring which slides along the wire. Initially A and B are together. Show that the

work done in drawing the ring along the wire till the chain at A is inclined at an

angle of 45° to the vertical is Wl (1 - sJ2 + \og 1 + J2). [Coll. Ex., 1883.]

Ex. 24. Determine if the catenary is the only curve such that, if AB be any arc

whose centre of gravity is G, and AT, BT tangents at A and B, then GT is always

parallel to a fixed line in space.

Ex. 25. A uniform heavy chain of length 2a is suspended from two points

in the same horizontal line; if one of these points be moveable, find the equation

of the locus of the vertex of the catenary formed by the string; and show that

the area cut off from this locus by a horizontal line through the fixed point is

ia« (7r2 - 4). [Math. Tripos, 1867.]

' m
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Jwds = To tan yfr, IV = Oi),

»=^.g^:=^'^>-

This problem may be solved in a maimer similar to that used

in Art. 443 for a homogeneous chain. Since tlir equations (1)

and (2) of that article are obtainud by simple resolutions, they

will be true with some slight modihcations when the string is not

uniform. In our case the weight of the string measured from the

lowest point is Jiuds between the limits s = 0, s = s, Art. 442. We
have therefore by the same resolutions

Tcos^|r=To (1), Tsmyfr=lwds (2).

Dividing one of these by the other as before, we find

T

p cos'* i/r

substituting for p and tan yjr, their Cartesian values

(l)]"'S <^>

Conversely, when the law of density is known, say w=f(s),
the equation (3) gives a relation between s and dijjdx which we

may write in the form dyjdx =J\ (s). We easily deduce from this

^ =/{i

+

(A (s)y]-^ds, y=i{i+{A (s)y}-V^ (.s-) ds,

whence x and y can be expressed in terms of an auxiliary variable

which has a geometrical meaning.

Ex. 1. Prove that the tension at any point P of the heterogeneous catenary is

equal to the weight of a uniform chain whose lengtti is the projection of the radius

of curvature on the vertical and whose density is the same as that of the catenary

at P.

Ex. 2. A straight line BR is drawn through any fixed point B in the axis of )/

parallel to the normal at P to the curve, cutting the axis of j; in R. Prove that

(1) the tension at P is (TJc) times the length BR and (2) the weight of the arc OP,

measured from the lowest point 0, is {TJc) times the length OR, where OB = c and

Tj is the horizontal tension ; Art. 35.

451. Cydoldal chain. A heterogeneous chain hangs in the form of a cycloid

under the action of gravity : find the law of density.

In a cycloid we have p=4acosi/' and s= 4asin\^, where a is the radius of the

rolling circle. Substituting, we find
4« '^ (16a2-^'-!; i'

It appears from this result that all tlie lower part of the chain is of nearly

uniform density; thus the density at a point whose distance from the vertex

measured along the arc is equal to the radius of the rolling circle is about ten

ninths of the density at the vertex. The density increases rapidly higher up the

chain and is infinite at the cusp. If then the chain when suspended from two

points in the same horizontal line is not very curved, the chain may be regarded as

nearly unifoim.

i\
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The chief interest connected with this chain is that, when nliKhtly disturbed from

its poHition of equiUbrium, it makeH Rniall ascillutionH whose periods and amplitudes

can be investiKated.

Ex. Drawing the usual figure for a cycloid, let O be the lowest point of the

curve, li the middle point of the ''ne joining the cusps. Let the normal at any

point P of the curve intersect the line joining the cusps in M, and let HR be drawn

through Ji parallel to MP to intersect the horizontal through O in li. Prove that

the centre of gravity of the arc OP is the intersection of HR with the vertical

through M. We find i= 2rt^, y = '2a\f/ cot xp, if H is the origin.

453. Parabolic obaln. A heavy chain AOD is suspended from another

chain DCE by vertical strings, which are

so numerous that every element of A OH is

attached to the corresponding element of

/ 1)CK. If the weights of DCE and of the

vertical strings are inconsiderable com-

pared with that of AOli, find the form of

the chain BCE that the chain AOli may

be horizontal in the position of equi-

librium.

The tensions at 0, 3/ of the chain AOH being equal and horizontal, the weight of

the length OM is supported by the tensions at G and P of the chain DCE. Thus DCE
may be regarded as a heterogeneous heavy chain, such that the weight of any length

PC is mx. Resolving horizontally and vertically for this portion of the chain, we have

Tco8^ = rQ, T8in^ = m.r.

Dividing one of these by the other,

mx = 2'o tan ^= 2\dyldx, :. ^nix-= 2'q (ij - c).

The form of the chain DCE is therefore a parabola.

One point of interest connected with this result is that the chain AOB might be

replaced by a uniform heavy bar to represent the roadway of a bridge. The tensions

of the chains due to the weight of th? bridge would not then tend to break or bend

the roadway. It is only necessary thut the roadway should be strong enough to bear

without bending the additional weights due to carriages. But this would not be

true if the light chain DCE were not in the form of a parabola.

The results are more comp'icated if the weight of the chain DCE is taken into

account, and if the chains of support, instead of being vertical, are arranged in

some other way.

This problem was first discussed by Nicolas Fuss, Nova Acta Petropolitance,

Tom. 12, 1794. It was proposed to erect a bridge across the Neva suspended by

vertical chains from four chains stretched across the river. He decided that the

chains of his day could not support the necessary tension without breaking.

Ex. 1. Prove that in the parabolic catenary the tension at any point P is

(TJ2a) times the length of the normal between P and the axis of the parabola,

where 2a is the semi-latus rectum. Prove also that the line density w at P is T^

divided by the length of the normal.

Ex. 2. Prove that the weight of the chain OP measi;red from the lowest point

of the curve is (TJ2a) times the distance of P from the axis of the parabola; and

deduce T^=2avi.
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w{(l$ + ndx), Bhow that the catenary in given by x where z in the

Ex. 8. The centre of .gravity d of an arc bounded by any chord hcH in the

diameter bi8ectinK the chord, and l'(J = Jil'N where the diameter outH the puraboUi

in /' and the chord in N.

F.x. 1. Ucferrin^ to the tigure, we notice that, Hince the tensionn at (' and P
support the weiglit of the roadway OM, the tanKeiitH at C and /' must inteiHoct in a

point vertically over the centre of gravity of OM. Thence deduce that the curve CP
in a parabola.

Ex. 5. If the weight of any element (In of the string DCPK itt repreHented by

edt

tangent of the inclination of the tangent to the horizon, and c ia a constant. [Fuhh.]

Ex. 6. Prove that the form of the curve of the chain of a suspension bridge

when the weight of the rotln is taken into account, but the weight of the rest of the

bridge ueglecied, is the orthogonal projection of a catenary, the rods being supposed

vertical and etiuidistant. [Math. Tripos, 1880.]

458. Tbo Catenary of equal Btrangtli. A heavy chain, suspended from two

fixed points, is such that the area of its section is proportional to the tension.

Find the form of the chain.

If wdii be the weight of an element d», the conditions of the (]uestiou require

that T= cw, where c is some constant. The equations (1) and (2) of Art. 45U now

J n + .

become rcosfrrTj, T8in\f/= jTds.

Substituting in the second equation the value of T given by the first, we have

ctan ^= j8ec \f/d». Differentiating, we find c sec* ^= sec \j/dxjd\p and .•. pcos\J/ = c,

This result also easily follows from the intrinsic equation of equilibrium (2) given

in Art. 454. We have Tdslp=wdH cos \j/. liut when the string is equally strong

throughout T= cw, hence p cos ^ = c. The projection of the radiun of curvature on

tite vertical is therefore constant and equal to c.

To deduce the Cartesian equation we substitute for p and cos ^,

\^dxj ) dx- c

'

dx c

If the origin be taken at the lowest point, the constant A is zero.

M
We then find

y = c log sec -

Tracing this curve, we see that the ordinate y increases from zero as x increases

from zero positively or negatively, and that there are two vertical asymptotes given

by j;= ± Jttc. When x lies between ^irc and ^trc, the ordinate is imaginary; when

.r lies between Jttc and fn-c, the curve is the same as that between x= ±iir(;. For

greater values of x, the ordinate is again imagir-.-'ry and so on. The curve therefore

consists of an infinite number of branches all equal and similar to that between

3;=±^7rc. This is therefore the only part of the curve which it is necessary to

consider. Since the ordinates of the bridge must be finite, the values of x are

restricted to lie between ^^ire. The span therefore cannot he no ureal as irc.

Let O be the lowest point of the curve, C the centre of curvature at any point P,

and P/f a perpendicular on the vertical through C. Then CII = c. The sides of

the triangle PCH are perpendicular and proportional to the forces which act on the

arc OP, viz. the tension at P, the weight of OP and the horizontal tension 7'^ at 0.

It follows that (1) the tension at P is (T^jc) times the length of the radius of

I

R. S. 20
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cunuitiire und (2) tlif welnht of the arc OP in (T,Jc') tintfi the projection of the ritdlnt

of curvnture on the horizontal.

This curve whh ciiUud tho catenary of equal Htront^th by DaviuH (iilbert, who
invciiUvl it ou tliu ucciiHiun of the ercctiuii uf thu HUH|M>ni*ion bridge iicroHH the

Meiiii StraitB. Hco Phil. Tran». IH'20, part iii., pano '/()2, In the (irnt volume of

LlouvUle'* Journal, 18HK, tlicre in a note by G. Coriolis on the " ohalnutte" of e([ual

rcHiHtaiioe. CorioliH docH not aptn-ar to have been aware that tluH form of chain had

already been discuHHed several yearn before.

Ex. 1. Trove (I) jr = cf, (2) (i = f log tan j (ir + 2f ).

Ex. 2. Prove that the depth of the centre of gravity of any arc below the

incefHection of the nornialu at itH extreniitieH Ih conntant and equal to r. Prove alHo

that ita abHciHna is equal to that of the intersection of the taiiKcnts at the samo

pointH.

Ex. 8. The distance between the points of support of a catenary of uniform

strength is a, and the length of the chain is /. Show that the parameter c must be

Show also that this equation gives a positive valuefound from tanh , =tan , ,

4c 4c

of c greater than ajir,

Ex. 4. Show that the horizontal projection of the span is in every case less

than TT times the greatest length of uniform chain of the same material that can be

hung by one end. Assume the strength of any part of the chain to be proportional

to the mass per unit of length. [Kelvin, Math. Tripos, 1H74.]

If L be tho length of uniform chain spoken of, the tension at the point of

support is its weight, i.e. icL, Agoin, tho tension at any point of the heterogeneous

chain is cio, hence c must be less than L. Hence the span must be less than wL.

454. String under any Forces. To form the (general in-

trinsic equations of equilibria in of a string under the action of any

forces. Let A be any fixed point of reference on the string,

AP = s, AQ = s -\ ds. Let T be the tension at P; then, since T i.s

a function of s, T+ dTin the tension at Q*.

Let the impressed forces on the element PQ be resolved along

the tangent, radius of curvature, and binormal at P. Thus Fds is

the force on ds resolved along the tangent in the direction in

which s is measured ; Gds is the force on ds resolved along the

radius of curvature p in the direction in which p is measured,

i.e. inwards ; Hds is the force on ds resolved perpendicular to the

plane of the curve at P, and estimated positive in either direction

of the binormal. These three directions are called the principal

directions or principal axes of the curve at P.

Let dyjr be the angle between the tangents at P and Q. Hence
also the angle PGQ = dyfr. The element ds is in equilibrium under

* It should be noticed that, if « were measured from B towards ^, so that BQ — n,

then T would be the tension at Q, T+dT that at F.
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BQ= s,

the forcoH T, T-^dT acting along tlu> tangents ut J\ Q and tho

forces Fdfi, Gds, Hds. Rosolving q ,

along the tangent at J\

i T+ dT) COM dy^ -T-k- Fds = 0,

which reduces to

dT+Fds = (1).

Resolving along the radius ui

curvature at P, we have

(T + d2')iiiudylr+Gd,s = 0,

T- + Ods =
P

(2).

We have now to resolve perpendicular to tho osculating plan*;

at P of tho curve. Since two consecutive tangents to a curve

lie in the osculating plane, the tensions have no component

perpendicular to this plane. Wo have therefore

Hds = Q (3).

The three equations (1), (2), (3) are the general intrinsic

ecjuations of equilibrium.

The density of the string is supposed to be included in the

expressions Fds, Gds, Hds for the forces on the element. The
equatitms of e([uilibrium therefore apply, whether the string is

uniform, or whether its density varies from point to point.

From these equations we infer that the tensions 7' and T + dT,

acting at the extremities of any element, are equivalent to two

(Is .

other forces, viz. d'P and T—, acting respectively along the
r

tangent to, and the radius of curvature of, the curve at either

extremity of the element. In problems on strings it is often

convenient to replace the tensions by these uwo forces. The
advantage of this change is that the direction cosines of the

tangent and of the radius of curvature are known by the differ-

ential calculus. When therefore we form the equations of statics,

we can easily resolve these two forces and the given impressed

forces in any directions we may find convenient.

Ex. Show that the form of the string is suoh that at every point the resultant

of the applied forces lies in the osculating plane, and makes with the principal

normal to the string an angle tan-^ - .

20—2
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455. To form the general Cartesian equations of equilihnum of
a stHng*.

Let ds be the length of any element PQ of the string. Let

the forces on this element when resolved parallel to the positive

directions of the axes be Xds, Yds, Zds. The element is in

equilibrium under the action of the tensions at P and Q and these

three impressed forces.

Let us resolve all these parallel to the axis of oc. The resolved

tension at P is T-^- , and pulls the

element PQ towards the left hand.

At Q, s has become s + ds, the hori-

zontal tension at Q is therefore

,dx\ d fr;dx\

(4>s('ds}^-
'II

X

and this pulls the element PQ to- ""^

wards the right hand side. Taking

both these and the force Xds, we have

^^(T^^ds + Xds = Q.

Treating the other components in the same way, we find

^fr^Uz=o\
ds \ ds,

d^frpdy

ds \ ds

ds \ ds

456. Ex. 1. Show that the polar equations of equilibrium of a string in

one plane under forces Pds, Qds, acting along and perpendicular to the radius

vector, are

d T
:t- (rcoB <^)

- -8in«(A + P=0,
d T— {Ts,\n<p)+ — sin0co8^+Q= O,
Wo /

where cos<p= drlds and sin (p= rdOlds. Thence deduce the equations of equilibrium

of a string \r- space of three dimensions, referred to cylindrical coordinates.

* The equations of equilibrium of a string under the action of any forces in two
dimensions were given in a Cartesian form by Nicolas Fuss, Nova Acta Petropolitance,

1796. He gives two solutions, one by moments, and another by considering the

tension. In this second solution, after resolving parallel to the axes, he deduces
algebraically equations equivalent to those obtained by resolving along the tangent

and normal. He goes on to apply his equations to the chalnette and other similar

problems.
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Ex. 2. A string is in equilibrium in the form of a helix, and the tension is

constant throughout the string. Show that the force on any element tends directly

from the axis of the helix.

Ex. 3. The extremities of a string of given length are attached to two given

points, and each element dn of the string is acted on by a repulsive force tending

directly from the axis of z and equal to 2ixrds. If (rOz) be the cylindrical coordinates

of any point, prove that T= A-fir^,

Show how the five arbitrary constants are determined. Explain how a helix

is, in certain cases, the solution.

Ex. 4. A heavy chain is suspended from two points, and hangs partly immersed

in a fluid. Show that the curvatures of the portions just inside and just outside

the surface of the fluid are as D - D' to D, where D and D' are the densities of the

chain and fluid. [St John's Coll.]

The weights of the elements just above and just below the surface of the fluid are

proportional to Dds and (D - D') ds. If T be the tension, the resolved parts of these

weights along the normal must be Tdsjp and Tdnjp'. Hence Dl{D - D')= p'lp.

Ex. 5. A heavy string is suspended from two fixed points A and B, and the

density is such that the form of the string is an equiangular spiral. Show that the

density at any point P is inversely proportional to r cos- x//, where r is the distance of

P from the pole, and \j/ is the angle which the tangent at P makes with the horizon.

[Trin. Coll., 1881.]

Ex. 6. A heavy string, which is not uniform, is suspended from two fixed points.

Prove that the catenary formed of a r ' uniform string which touches at any

point the curve in which the string hau^ and has the same tension at that point

will be of invariable dimensions.

457. Constrained Strings. A string rests on a curve of

any form in one plane, and is acted on hy forces at its extremities.

It is required to find the conditions of equilibrium and the tension

at any point.

Til ere are four cases of this proposition which are of con-

siderable importance ; we shall consider these in order.

Let us first suppose that the weight of the string is so slight

that it may be neglected compared with the forces applied at the

two extremities of the string. Let us also suppose that the curve

is perfectly smooth. The forces on an element ds arc merely the

tensions at its ends and the reaction or pressure of the curve.

Let Rds be this pressure, then R is the pressure per unit of length

of the string. For the sake of brevity this is usually expressed by

saying that R is the pressure at the element. It is usual to

estimate the pressure of the curve on the string as positive when

it acts in the direction opposite to that in which the radius of

curvature is measured.
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Resolving along the tangent and normal to the string, we have

by Art. 454, dT=0, T--Iids = 0.

P

V

We infer from these equations that, tvhen a light string rests

on a smooth curve, the tension is constant, imd the pressure at any

point varies as the cui'vature.

468. This theorem has a wider range than would perhaps appear at first sight.

Since the curve may be of any form, the result includes the case of a string in

equilibrium under any forces which are at every point normal to the curve.

Supposing the normal forces given, the form of the curve can be found from the

result just proved, viz. that at every point the curvature is proportional to the

normal force.

As an example we may consider Bernoulli's problem ; to find the form of a

rectangular sail, two opposite sides of which are fixed so as to be parallel to each

other and perpendicular to the direction of the wind. The weight of the sail is

neglected compared with the pressure produced by the wind. Let us enquire what

is the curve formed by a plane section of the sail drawn perpendicular to the fixed

sides.

Two answers may be given to this question according as the wind after acting on

the sail immediately finds an issue, or remains to press on the sail like a gas in

equilibrium. On the former hypothesis we assume as the law of resistance, that

the pressure of the wind on any element of the sail acts along the normal to the

element and is proportional to the square of the resolved velocity of the wind. We
have therefore R = to cos* i/-, where \j/ is the angle the normal to the section of the sail

makes with the direction of the wind, and jo is a constant. This gives c/p= cos- ^.

By Art. 444 we infer that the curve is a catenanj, whose axis is in the direction of

the wind, and whose directrix is vertical.

If the air presses on the sail like a gas in equilibrium, the pressure on each side

of the cail is equal in all directions by the laws of hydrostatics, but the pressure is

greater on one side than on the other. We have therefore R equal to this constant

difference, hence also p is constant, and the required curve is a circle.

Ex. 1. A " square sail" of a ship is fastened to the mast by two yard-arms, and

is such that when filled with wind every section by a horizontal plane is a straight

line parallel to the yards. Show that, assuming the ordinary law of resistance, it

will have the greatest effect in propelling the ship when Ssin (a-2(/)) -sin a=0,
where a is the angle between the direction from which the wind comes and the ship's

keel, and
<f>

is the angle between the yaid and the ship's keel. [Caius Coll.]

Ex. 2. A light string has one end fixed at the vertex of a smooth cycloid
; prove

that as the string, while taut, is wound on the curve, the line of action of the

resultant pressure on the cycloid envelopes another cycloid of double parameter.

[Coll. Ex., 1890.]

[The resultant pressure of the curve on an arc of the string balances the tensions

at the extremities of the arc. It therefore passes through the intersection of the

tangents at those extremities and bisects the angle between them.]

459. Heavy smooth string. Let us next suppose that the

yjeight of the string cannot he neglected. Let wds be the weight

«i*ii>i^:.;i*iilttii|1t iTiifi ^i.i
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of the element ds. Let -(/r be the angle the tangent PK at P
makes with the horizontal.

The element PQ is in equilibrium under the action of wds

along the ordinate PN, Jids along

the normal PG, and the tensions at

P and Q. Resolving along the tan-

gent and normal at P, we have

dT-wds8inyfr = 0) (1),

dt \

T—-wdscosy}r-Rds = (){ (2).

^



!i|ii

312 INEXTENSIBLE STRINGS. [chap. X.

In the same way the tension is a maximum at the highest point.

Also no point of the string, such as C or 6", can be beneath the

horizontal line joining the free extremities.

To determine the pressure at any point P (see fig. of Art. 459)

we write the equation (2) in the form

Rp = T— wp cos yfr,

where the pressure R of the curve on the string, when positive,

acts outwards, i.e in the diref Jon opposite to that in which the

radius of curvature p is measured, Art. 457. If T^ be the tension

at any fixed point A, and z the altitude of any point P above A,

we have by (.S) T=T^ + wz. It therefore follows that

Rp = Ti + w{z — p cos yfr).

If we measure a length PS = p along the normal at P out-

wards, the point *S' may be called the anti-centre. It is clear that

z — p cos i/r is the altitude of *Si above A. Hence, if a heavy string

rest on a smooth curve, the value of Rp at any point P exceeds the

tension at A by the weight of a string whose length is the altitude

of the anti-centre of P above A.

If the extremity A be free, as in the figure of this article, then

Rp at any point B is equal to w multiplied by the altitude of the

anti-centre of B above A. If part of the string is free, as at

and C, the pressure R is zero. Hence the anti-centres of curva-

ture all lie in the straight line joining the free extremities A and

D. This is the common directnx of all the catenaries.

In these equations Rds is the pressure outwards of the curve

on the string. It is clear that, if R were negative and the string

on the convex side, the string would leave the curve and equilibrium

could not exist. At any such point as B, the anti-centre is above

B and R is clearly positive. But at such a point as E the anti-

centre is below E, and if it were <''.>' below the straight line AD,
the pressure at E would be n yafive. If the string rest on the

concave side of the curve, these conditions are reversed. In

general, it is necessary for equilibrium that Rp should be positive

or negative according as the string is on the convex or concave

side of the curve.

Summing up the results arrived at in this article, we see that

a horizontal straight line can be drawn such that the tension at

each point P of the string is wy, where y is the altitude of P above

the straight line. This straight line may be called the statical
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directrix of the string. No part of the string can be below the

statical directrix, and the free ends, if there are any, must lie on it.

If R he the outward pressure of the curve on the st7'ing, Rp is equal

to wy', where y' is the altitude of the anti-centre of P above the

directrix. It is therefore necessary that at every point of the

string the anti-centre should be above or below the directrix

according as the string is on the convex or concave side of the curve.

Ex. 1. Show that the locus of the anti-centre of a circle is another circle.

Ex. 2. Show that the coordinates of the anti-centre at any point P of an ellipse

referred to its axes are given by ax — 2a^ cos
<f>
- c'^ cos* <j> bij = W^ sin + c- sin • (p,

where c'^-=u'^ - h-, and <t> is the eccenti angle of P.

Ex. 3. If S be the anti-centre at any point P of a curve, show that the normal

to the locus of S makes with PS an angle d given by tan d — hdpjds.

461. It should be noticed that at the points where the string leaves the con-

straining curve, both the curvature of the string and the pressure R may change

abruptly. Thus in the figure of Art. 460 at a point a little below F the radius of

curvature of the string is infinite and li is zero. At a point a little above F the

curvature of the string is the same as that of the body N, and the pressure R is equal

to Tip. At such a point as E the abrupt change if any in the value of the product

Rp (in accordance with ths rule of Art. 460) is equal to the weight of a string whose

length is the vertical distance betweeu the anti-centres on each side of the point.

When the external forces which act on the string are such that their magnitudes

per unit of length are finite, an abrupt change of tension cannot occur. If the

tensions on each side of any point could differ by a finite quantity, an infinitesimal

length of string containing the point would be in equilibrium under the influence

of two unequal forces acting in opposite directions. In the same way there can be no

abrupt change in the direction of the tangent except at a point where the tension is

zero, for if the tangents on each side of any point made a finite angle with each

other, the element of string at that point would be in equilibrium under the action

of two finite tensions not opposed to each other.

462. Ex, 1. A heavy string (length 2/) passes completely round a smooth

horizontal cylinder (radius a) with the two ends hanging freely down on each side.

The parts of the string on the upper semi-circumference are close together, so that

the whole string may be regarded as lying in a vertical plane perpendicular to the

1
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dT-fiRds = (1),

Eliminating R, we find,

463. Rough curve, light strik.g. To consider the case in

which the lueight of the string is inconsiderable, hut the curve is

7'ough. Rei'eiring to the figure of Art. 459, we shall suppose the

extremities A and B to be acted on by unequal forces F, F'. Our

object is to find the conditions of limiting equilibiium; let us then

suppose the string is on the point of motion in the direction AB.

The friction on every element PQ is equal to fiRds, where fi is

the coefficient of friction. This force acts in the direction opposite

to motion, viz. from B to A.

Introducing this force mto the equations obtained in Art. 459

by resolving the forces along the tangent and normal, and omitting

the terms containing the weight of the element, we have

T--Rds = (2).

P

dT ds , ,—=^ — =fxdy\r\

.-. \ogT = nf + A, :. T^Be''*,

where A and B are undetermined constants. If T,, T^ be the

tensions at two points at which the tangents make angles i/r, , y^.,

with the axis of x, this equation gives

T,= T,e''(^-'-'^^^ (3).

It will be found useful to put the result in the form of a rule.

If a light stnng rest on a rough curve in a state bordering on

motion, the ratio of the tensions at any two points is equal to e to

the poiuer of fi times the angle between the tangents or between the

normals at those points.

The sign to be given to /j, in this equation depends on the direction in which

the friction acts. In using the rule, however, no difficulty arises from this

ambiguity; for (1) it is evident that that tension is the greater of the two which

is opposed to the friction, and (2) it must be the ratio of the greater tension to the

lesser (not the lesser to the greate' ' which is equal to the exponential with the

positive index.

To determine the angle between the tangents ; let a straight line, starting from

a position coincident with one tangent, roll on the string until it coincides with the

other tangent ; the angle turned round by this moving tangent is the angle

requiied.

The pressure at any point is given by (2), and we see that Rp
at any point is equal to the tension at that point.

464. If the forces F, F' which act at the extremities A, B
are given, and if the length I of the string is also given, we may

I
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find the limiting positions of cMniilibrium in the following manner.

Put the equation to the curve in the form yfr=f(s). Let s

be the required arc-coordinate of A, then s+ Z is that of B. The
^'s of A and B are therefore /(.s) and f(s + I). Hence, by taking

the logarithms of equation (8),

log i^,- log i?', = ^{/(.s-+0 -/(*)}.

From this equation s must be found. The other limitnig position

may be found by writing — fj, for fi.

465. It should be noticed that the equation (3) of Art. 4G3 is

independent of the size of the curve. Suppose a heavy string to

pass through a small rough ring or over a small peg, and to be

in a state bordering on motion; the weight of the portion of string

on the pulley ma}^ sometimes be neglected compared with the

tensions of the string on either side. If the strings on either side

make a finite angle with each other, the pressures and therefoi-e

the frictions will not be small, and cannot be neglected. We
infer that, ivhe^i a heavy tight string passes through a small rough

ring, the ratio of the tensions on each side is given by the same rule

as that for a light string.

4ed. Ex. 1. A rope is wound twice round a rough post, and the extremities

are acted on by forces F, F'. Find the ratio of F -. F' when the rope is on the

point of slipping. [Here the angle between the tangents is 47r, hence the ratio of

the greater force to the other is e*'''*.]

Ex. 2. A circle has its plane vertical, and is pressed against a vertical wall by a

string fixed to a point in the wall above the circle. The string sustains a weight P,

the coefficient of friction between the string and circle is fx, and the wall is perfectly

rough. When the circle is on the point of sliding, prove that, if W be the weight of

the circle and the angle between the string and the wall, P (1 + cos 0) e** = ir+ 2P.

[Coll. Exam.]

Ex. 3. A light string is placed over a rough vertical circle, and a uniform heavy

rod, whose length is equal to the diameter of the circle, has one end attached to each

end of the string, and rests in a horizontal position. Find within what points on

the rod a given mass may be piaced, without disturbing the equilibrium of the

system : and show that the given mass may be placed anywhere on the rod, pro-

vided the ratio of its weight to that of the rod does not exceed ^ (e'*" - 1), where /u is

the coefficient of friction between the string and the circle. [Coll. Exam., 1880.]

Ex. 4. A string, whose weight is neglected, passes over a rough fixed horizontal

cylinder and is attached to a weight W; P is the weight which will just raise IF, and

P' the weight which will just sustain W\ show that, if R, R' are the corresponding

resultant pressures of the string on the cylinder, P : P' '.: R"^ : R"^. [Math. T., 1880.]

Ex. 5. A band without weight passes tightly round the circumference of two

unequal rough wheels. One wheel is fixed while the other is made to turn slowly

round its centre. Show that the baud will slip first on the smaller wheel.
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-^ Ex. <3. On the top of a rough fixed sphere (radius c) is placed a lieavy particle,

to which are tied two equally heavy particles by li^ht striiiKS each of length cd ; show

that, when the latter particles are as near together as possible, the planes of the

strings make with one another u»i angle ^, where 2 8in (tf- X)cos ^-=sin \ .^ ''""^,

and \ is the angle of friction betwt ^n the particles and the sphere, and between the

strings and the sphere. [Coll. Exam., IHH?.]

Ex. 7. A uniform heavy string of length 2/ passes through two given small fixed

rings A, li in the same horizontal line. Supposing the string to be on the point of

slipping inwards at both A and /}, find the position of equilibrium.

If 2it be the portion of the string between the pegs, y the ordinate of the catenary

at either peg, the tensions at tlu* two sides of either ring are proportional to ij and

l-s. Referring to the triangle PLN in the figure of Art. 443, we see that the

angle through which the string has been turned is the supplement of the least angle

whose sine is c/*/. Hence we have by (3) log • = (
" - sin"' -

) n. Also if 2(t be

the known distance between the rings, we have x-n. Substituting for y and « their

values in terms of x or a given in Art. 443, we have an equation to find c. Hence

y and s may be found.

Ex. 8. A, li, C are three rough points in a vertical plnne ; P, Q, R are the greatest

weights which can be severally supported by a v.'eiKht W when connected with it by

strings passing over A, B, C, over .4, B, and over B, C respectively. Show that the

coefficient of friction at B is log ^ . [Math. Tripos, 1851.]
TT IrrV

Let a, /3, y be the angles through which the string is bent at ABC, their sum is tt.

By Art. 4()3 logP/Jf', log ^/ IF, logi?/ir are respectively equal to ;ua + //S + ^"7,

(1mi + /a'(/3 + 7), m' (a + /3) + /'7. The result follows by subr/dtutiou. It is supposec'

that B lies between the verticals through A and C.

, Ex. 9. A string, whose length is i, is hung over two rough pegs at a di!itance« apart

in a horizontal line. If one free end of the string is as much as possible '.owor than the

other, the inclination to the vertical of the tar ent to the striuglat either peg is given

[a John's Coll., 1881.]by the equation - sin fl . log cot ,3
= cos Q + cosh /i (tt - e).

Ex. 10. An endless uniform heavy chain is passed round twj rough pegs in the

same horizontal line, being partly supported by a smooth peg situated midway in

the line between the other pegs, so that the chain hangs in three festoons. If o, /3

are the angles which the tangents at one of the rough pegs make with the vertical,

and /x is the coefficient of friction, prove that the limiting values of o and /3 are given

^filT-a+P) „ sin a log cot Aa r,i. ., r^ .

by the equation e =2 -^ ^ - . [Math. Tripos, 187!).]

467. Rough curve, heavy string. We shall nu,v consider

the general case in which both the weight of the string and tli£

roughness of the curve are taken account of \
,

Referring to the figure of Art. 459, and introducing both the
"

weight and the roughness into the equations (1) and (2), we have

dT — wds sin y^r — fiRds = ( 1 ),

Tds — ivds cos ifr — Rds = (2).

P

I!

I

r..:

r ibLi
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I ir

In applying these ecjuntions to other forma of the string we

must remember that the friction is /* times the pressure taken

positively. Thus as the string is heavy it might lie on the

concave sMe of the curve. We must then change the sign of R
in the second eijuation, but not in the first.

We shall presently have occasion to write p = ds/dyjr. If the

figure is not so drawn that a and yjr increase together, we shall

have p = — cls/dylr. To solve th( se equations, we eliminate /i,

dT
.'. , — yur=W/3(sin-v|r — /tiCOS-v/r) (3).

ityfr

This is one of the standard forms in the theory of dififerential

equations. According to rule we multiply by e"*** and integrate

;

. ^g-M'/' = Jiop (sin yjf-fj. cos >/r) e"'"!' d-^ + C (4).

We cannot effect this integration until the form of the curve

is given. By using the rules of the differential calculus we first

express p as a function of yfr. Then substituting and integrating,

we find Te-''*=/(V^)+C (r>).

The value of T having been found by this equation, M follows

from either (1) or (2). It should be noticed that toe have not

assumed that the string is necessarily uniform.

The pressure at any point is given by the equation

Rp =T — wp cos yfr.

It may be noticed that this is the same as the corresponding

ecpiation for a heavy string on a smooth curve. Art. 460.

If the string is not on the point of motion, we replace the term

— fiRds in (1 ) by — Fds, where F is the friction per unit of length.

Ex. If the string is uniform and of finite length, and if the extremities are

acted on by i'orces Pj, Pj, prove that the whole friction called into play is

jFih-l\- 1^^-jcz, where 2 = j/o - ?/i
, so that z is the vertical distance between the

extremities of the string.

468. It appears from the last article that the determination of the circumstances

of the equilibrium of a heavy string on a rough curve depends on the integral

I=|«;pe~ (sin ^- /It cos ^)(i^.

This integral can be found in several cases.

If the curve is a circle and the string homogeneous, w. 'lave p = a. We easily find

/= -~\ {(m= - l)cosv«' - 2m sin ^|/} e"'"''.

If the curve is an equiangular spiral and the string homogeneous, we have

r=ae *'° ". Since psina = r and \j/ — d + a, the integral may be obtained from the

last by \ riting /t - cot a for /x, and ae"" " cosec a for a.
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If the curve is a cycloid witli ita baHo inclined to the hori/on at any an^le,

we have p= 4aco«(f - o), where a is the radius of the generating circh'. More
Renerally, if the curve is such that icp can be expanded in a series o{ pout lire inti'i/nil

poivem of sin ^ and cog
\f/,

wo can exi>reHH irp (sin ^ - m cos
\f/)

in a series of sines and
cosines of multiple angles. In this case the integral can be found by a method
siniilar to that used for the circle.

If the curve is a catenary we have pcos'-^ = r and / =i«c sec ^i;
"'*'''. More

generally, if tho curve is such that p = (iC()H"^, where n is a ponitive or nefiative

integer, we may find / by a formula of reduction. We easily see that

{M* + («+ir^!/,-(n-l)(« + 2)/„_,

= wa (cob f
)"

~
,'"'*'''

j n i- 2 - ^ (« + 2) sin ^ cos ^ - (h + 1 - pfl) cos'-* i/-
j

.

400. Ex. 1. A heavy string occupies a quadrant of the upper half of a rough

vertical circle in a state bordering on motion. Prove that the radius through the

lower ext'T.r'.y makes an angle a with the vertical given by tan (a - 2e) = e~ , where

/(=i,ane.

Ex. 2. A heavy string, resting on a rough vertical circle with one extremity at

the highest point, is on the point of motion. If the length of the string is equal to

a quadrant, prove that Jtp tan e - log tan 2e. [Coll. Ex., 1881.]

Ex. 3. A single moveable nulley, of weight W, is just supported by a power 1\

which is applied at one end of a cord which goes under the pulley and is then fastened

to a fixed point ; show that, if <p be the angle subtended at the centre by the part of

the string in contact with the pulley, <}> is given by the equation

P (1-26'"''' cos (/) + e-'*''')^= ir. [Coll. Ex., 1882.]

Ex. 4. If a heavy string be laid on a rough catenary, with its vertex upwards

and its axis vertical, so that one extremity is at the vertex, the string will just rest

if its length be equal to the parameter of the catenary, provided the coeflicient of

friction be (21og2)/7r. [Coll. Ex., laSf).]

y.' Ex. 5. A heavy string AB is placed on the concave side of a rough cycloidal

curve whose base is inclined at an angle a to the horizon, with one extremity A at

the lowest point and the other B at the vertex. Prove that the string will be in a

. . , , . .. .- tane-2tana atane , , ...
state bordering on motion if ^ /,--.. ^, r^ =e , where tane is tlie

tan e + (1 - 3 cos* e) tan a

coeflBcient of friction.

Ex. 6. A heavy string rests on a rough cycloid with its base horizontal and

plane vertical. The normals at the extremities of the string make with the verticiil

angles each equal to o, which is also the angle of friction between string and

cycloid, If, when the cycloid is tilted about one end till the base makes an angle a

with the horizontal, the string is on the point of motion, show that

8o „„„9 —2a tan a- 2 sec' a= e

[It is assumed that no part of the string hangs freely.] [Coll. Ex., 1883.]

Ex. 7. A heavy uniform flexible string rests on a smooth complete cycloid, the

axis of which is vertical and vertex upwards, the whole length of the string exactly

coinciding with the whole arc of the cycloid
;
prove that the pressure at any point

of the cycloid varies inversely as the curvature. [Math, Tripos, 18G5.
]

Ex. 8. A heavy string AB is laid on a rough convex curve in a vertical plane,

and the friction at every point acts in the same direction along the curve. Show

il
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that it will rent if tlie inclinntioii of thi; chord A Jl to the horizon be 1(<hh thnn

tan ' n, whore n Ih the coelHcicnt of friction. [Juno V.x., 1S7M.]

*70. The lollowinK propoHJtion will be found to include a number of problemn

wliich lead to known intoKralH.

flit the form be known in which a hetcroKonoouM unconRtraincd Htrinu. Hupported

at each end, reHtH in equilibrium in one plane under the action of any forceH. Let

thiH known curve be y=j'{x). Let uh now HuppoHe thiH Htring to be placed in the

Banie poHition on a roii;ih curve Jlri'it in j»/w(V whoHe equation in alno //=/{.r). If

the extremitieH of the string be acted on by forceH hucIi that the Htring ih ou the

point of HlippiuK, then

(7'+«p),.-''* = C, Iipe'''*=G (1),

where C Ih conntunt throuKhoul the length of the string. Here, aH in Art. 454,

Giln ia the renoived normal force inwardn ou the element ih. The Htaudard cane

is tiie same uh that taken in Art. 407. The Htriiig in juHt Hlipping in that direction

along tlie curve in which the ^ of any point of the Htring increasen. Also the

presHure /{ of the curve on the Htring, when positive, acts outwards. If either

of these assumptions is reversed, the sign of /x must be changed. In order that

the string may not leave the curve, the sign of C should be such that R acts from

the curve towards that side on which the string lies.

To prove these results, we refer to equations (1) and (2) Art. 454. Introducing

the pressure It into these equations, we have

Tils
dT+Fdn-ixI{(h = 0, + Gds-lidH = .(2).

Eliminating It, as in Art. 467 2V~'"''= -^(F - ixG)pe~'^'^ d^+C (3).

When the string is hanging freely, iJ = 0; by eliminating T between the equa-

tions (2) we find that Fp- j (Op) is true along the curve. When the string is

constrained to lie on a curve which pc ''Besses this property, we can substitute this

value of Fp in the equation (3). We then find Te "'*'''= -e~'^'^Op + C. The first

result to lie proved follows immediately, the second is obtained by substituting this

value of T in the second of equations (2).

471. Ex. 1. A uniform heavy string Ali is placed on the upper side of a rough

curve whose form is a catenary with its directrix horizontal. If the lower extremity

is at the vertex, find the least force F which, acting at the upper extremity, will

just move the string.

At the upper end of the string we have T= F, G= -r/cos^, at the lower T= 0,

G=-g, i/' = 0. Hence by Art. 470 (i<' - f/p cos i/-)
e*'"''

-gc, :. F=g(y-ce^'^'^).

The upper sign of /x gives the larger value of F, i.e. the force which will just move
the string upwards, the lower sign gives the force which will just sustain the string.

Instead of quoting equation (1), the reader should deduce this result from the

equations of equilibrium.

Ex. 2. A uniform string A3 rests on the circumference of a rough circle under

the action of a central force tending to a point O situated at the opposite extremity

of the diameter through A. If the force of attraction vary as the inverse cube of

the distance, prove that the force F acting at A necessary to prevent the string

— 2 B 2fc
from slipping is F=k (sec^^c - 1), where /3 is the angle AOB, — the force at

A, and a is the diameter.
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479. Bndlcsa and oUicr BtsinsB' Wht'ii a heavy in*>xtoiiHtblc strinK rests in

equilibrium in contact with u smooth curve without singulariticH in a vertical plane,

the presMuro and tension can be found as in Art. 4>'>{), with one undetermined

constant. This constant is usually found by e(|uating to /.oro the ttmsion u^ the

free extremity. If, however, the string is either endless or has both its extremities

attached to tlie curve and is tiglitened at pleasure, there is nothing to determine the

constant.

Let us suppose the string to be in contact along the under side of the curve. Lot

the string be gradually loosed until its length exceeds the length of the arc in contact

by an infinitely small (luantity. The string is then just on the point of leaving tlie

curve at some unknown point Q, and is then said to Just Jit tite curve. If the

length of the string were still further increased a finite portion of the string would

be off the curve and hang in the form of a catenary. In the same way if the portion

of the string under consideration rest with its weight supported on the upper and

concave side of the curve, we may conceive the string to be gradually tightened

until it separates from the curve ut some point Q. If still further tightened or

shortened a finite part of the string would hang in the form of a catenary, while

the remainder would still rest on the curve.

To determine the position of the point V we notice that the pressure of the curve

on the string measured towards that side on which the string lies must be positive

at every point of the curve and zero at <J. The pressure thus measured is therefore

a minimum at Q.

Ileferring to Art. 4(30, the outward pressure R is given by

/lp=To-i (ij-pocs\p) (1).

Differentiating, and remembering that tioth li and dlljdH are zero at V« we find

r, dy , dp . , dff/

except when p is infinite at the point thus determined. Since dylds=:sin\f/ and

p = dsld\l>, this gives at once 2 tan \j/=
dp

d»
.(2).

This equation determines the points at which lip is a maximum, a minimum,

or stationary. When both R and dRjds are zero, we have

d»/i dHip
P-XT =

1 dp

The sign of this expression determines whether Ji is a maximum or a minimum.

^Vhen the length of the string is finite, some of these maxima or minima may be

excluded as being beyond the given limits. But we must then also take into

consideration the extremities of the string, for it is manifest that the pressure at

either end may be lesg than that at any point between the limits of the string. T}ie

required point Q ix that one of all these pointx at which the pressure measured towards

the string is least. The undetermined constant T^ is then found by making the

pressure zero at this point.

If the string leave the curve at the lowest point we have dp/rf«=0, i.e. tlie radius

of curvature p must be either a maximum, a minimum, or stationary at that point.

Since Rp musv be a minimum or a maximum according as the string is outside or

inside, it is also necessary that d^Rpjds'^ should be positive in the first case and

negative in the second.

We may express these conditions in a geometrical form. Consider a portion of

the string on the under and convex side of a curve, and let it be gradually loosened

R. S. I. 21
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n

until it leaves the curve. Let Q be the point whose anti-centre is lowest, and let

the constant T^ be determined by making the statical directrix pass through that

anti-centre, Art. 460. If R represent the outward pressure on the string, Rp is then

positive at every point of the string and equal to zero at Q. The string therefore

leaves the curve at Q.

Next, let the string rest on the upper and concave side of a curve. If gradually

tightened it will leave the curve at the point Q whose anti-centre is highest. For,

choosing the constant 7'^ so th»f the statical directrix passes through the anti-

centre, and assuming that the wnole string is still above the directrix (Art. 460),

the value of Rp is negative at every point of the string and equal to zero at Q.

473. Ex. 1. A heavy string just ^ts round a vertical circle: show that the

tension at the highest point is three times that at the lowest.

Let Tq, Tj be the tensions at the lowest and highest points, and let a be the

radius. Then Tj- ro= 2ioa. Since p is constant the only solution of (2) is ^ = 0,

and this makes the outward pressure R a minimum. The pressure is therefore zero

at the lowest point. The weight, viz. rcdn, of the lowest element is therefore

supported by the tensions at (ach end, i.e. iods='l\dslit. These equations give

TQ= wa, and .-. 'l\ = Zwa.

We may obtain the result more simply by using the gminytrical rule given in

the last article. The locus of the anti-centre is obviously another circle of radius

2o and concentric with the given circle. Taking the tangent at its lowest point for

the statical directrix, the altitudes of the highest and lowest points of the given

circle are as 3 : 1, Art. 460. The tensions at these points are therefore also in the

same ratio. We see also that if the string be slightly loosened, it will begin to

leave the curve at the lowest point.

Ex. 2. A heavy string (length 21) rests on the inner or concave side of a segment

of a smooth sphere (radius a, angle 2^) and hangs down symmetrically over the

smooth rim which is in a horizontal plane. Find the conditions of equilibrium.

Since every point of the string must be above the statical directrix, it will be

seen on drawing a figure that Z>a(j3-t-l -cos/3). Since the string rests on the

concave side, the outward pressure R must be negative and therefore every point of

•the anti-centric curve must be below the giatical directrix, hence Z<o(/3-|-cos/3).

These two conditions require that ^ should be less than ^tt. If the second inequality

be reversed the string will leave the spherical segment at the highest point.

Ex. 3. A heavy string is attached to two points of the arc of a catenary with

its axis vertical, and rests against its under surface. If the string is gradually

loosed, show that it will leave the curve at every point at the same instant.

Ex. 4. A heavy string has one end fastened to the lowest point of the arc of a

cycloid with the axis vertical and the vertex at the lowest point. The string

envelopes the arc outside up to the cusp, and passing over a small smooth pulley

has the other end hanging freely. Prove that the least length of the string hanging

down which is consistent with equilibrium is equal to six times the radius of the

generating circle. Find also ia this case the resultant pressure on the cycloid.

[Queens' Coll.]

Ex. 5. A heavy string just fits the under surface of a cycloidal arc, the extremi-

ties of the string being attached to the cusps. Show that the pressure is zero at the

point Q given by the negativv"". root of the equation 3 sin (2^ -t- a) = -sino, where <j)

is the inclination of the normal at Q to the axis of the cycloid, and a is the inclina-

tion of the axis to the vertical. Find also the tension at the vertex.
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Ex. 6. A heavy string surrounds an oval curve, and is so much longer than tlie

perimeter that a finite portion hangs in the form of a catenary. If the string is

gradually shortened until the arc of the catenary is evanescent, show (1) that the

curve and the catenary have four consecutive points coincident, and (2) that the

evanescent arc is situated at a point of the curve determined by 2 tan
\f/
= dpids.

Ex. 7. A string is bound tightly round a smooth ellipse, and is acted on by a

central repulsive force in the focus varying directly as the square of the distance.

Find the law of variation of the tension, and prove that, if the string be slightly

loosened, it will leave the curve at the points at a distance from the focus equal to

7/4 times the semi-major axis, provided the eccentricity be greater than 3/4. If

the eccentricity be less than 3/4, where will it leave the curve? [Coll. Ex,, 1887.]

474. Central forces. A string of given length is attached to

two fixed points, and is under the action of a central force. Find

the relation between the form of the curve and the law of force.

Let the arc be measured from any fixed point A on the string in

the direction AB, and let s = AP.
Let be the centre of force, and ^^^

let Fds be the force on the ele-

ment ds estimated positive when
acting in the positive direction of

the radins vector, i.e. when the

force is repulsive.

The element PQ is in equilibrium under the action of the

tensions T and T + dT and the central force Fds. Resolving

along the tangent at P, we have

dT-^ Fds cos
<f)
= 0,

where (p is the radial angle, i.e. the angle OPA. Since cos
(f>
= dr/ds,

dT
this reduces to

dr
+ F=0 (1).

We might obtain a second equation by resolving the same

forces along the normal at P, but the result is more easily found

by taking the moment of the forces v/hich act on the finite portion

of string A P. This portion is in equilibrium under the action of

the tensions T^, T and the central force tending from on each

element. Taking moments about 0, these latter disappear ; we

have therefore Tp = A (2),

where p is the perpendicular from on the tangent at P, and A
is the moment about of the tension T^.

Let the tangents at any two points ^, J3 of the curve meet in C. Then the are

AB is in equilibrium under the action of the tensions at A and B and the resultant

21—2
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R of the central forces on all the elements. This resultant force must therefore act

along the straight line joining tlie centre of force O to the intersection C of the

tangents at A and B, Also if OY, OZ are the perpendiculars from on the

tangents at A and B, we see by compounding the tensions that R= A. j^r^^-yr^ •

As the point P moves from A to B, the foot of the perpendicular on the tangent

at P traces out the pedal curve. This curve, when sketched, exhibits to the eye

the magnitude of the tension at all points of the catenary.

475. Two cases have now to be considered.

First. Suppose the form of the string to be given, and let the

force be required. By known theorems in the differential calculus

we can express the equation to the curve in the form p = '^ (r).

The equations (1) and (2) then give

T- ^ rT_^f'(^) /ox

The constant A remains indeterminate, for it is evident that

the equilibrium would not be affected if the magnitude of the

central force were increased in any given ratio. The tension at

any point of the string and the pressures on the fixed points of

suspension would be increased in the same ratio.

Secondly. Suppose that the force is given, and that the form

of the curve is required. Eliminating T between (1) and (2), we

find - = B-fFdr (4).

This differential equation has now to be solved. Put u = 1/r

and JFdr=f(u); we find by a theorem in the differential calculus

^'h{%)]-(^-fi^>' <•')•

Separating the variables, we have

jj(Bzr%y^-^i = ^+^ (6)-

When this integration has been effected the polar equation to

the curve has been found.

There are three undetermined constants, viz. A, B, C, in this

equation. To discover their values we have given the polar

coordinates (t<o^o). («i^i) of the points of suspension. After inte-

grating (6) we substitute in turn for (ud) these two terminal

values, and thus obtain two equations connecting the three con-
an

lit



I'

CHAP. X.

erefore act

I C of the

on the

YZ
Y.OZ'

;he tangent

to the eye

id let the

I calculus

p = i/r (r).

(«)•

dent that

de of the

teiiBion at

I points of

t the form

md (2), we

...(4).

>ut u = 1/r

.al calculus

....(5).

...(6).

equation to

(, G, in this

the polar

After inte-

m terminal

three con-

ART. 476.] CENTRAL FORCES. 32i

I

I

stants. We have also given the length of the string. To use

this datum we must find the length of the arc. We easily find

(dsy = (dry + (rdey = -- [(duy + {udey}.

Substituting from {h), we have

_[ (B-fu)du
.(7).

{{B -fuY - A'u^]^

Taking this between the given limits of u, and equating the

result to the given length of the string, we have a third equation

to find the three constants.

The equation (6) agrees with that given by John Bernoulli, Opera Omnia, Tomiis

Quartus, p. 238. He applies the equation to the case in which the force varies

inversely as the nth power of the distance, and briefly discusses the curves when

tt=0 and 71=2,

476. Ex. 1. A string is in equilibrium under the action of a central force.

If F be the force at any point per unit of length, prove that the tension at that

point= 2" X, where x is the semi-chord of curvature through the centre of force.

Show also that F=:A -.J-, where ^ is a constant.
p-p

Ex. 2. A uniform strint/ is in equilibrium in the form of an arc of a circle under

the influence of a centre of force nituated at any point O. Find the laic of force.

Let C be the centre,OC=c,CP=a. Then 2ap = r- + a^ - c^,

•'• P= -A .—= \aA 7-5 ;;

—

-r-r,

.

drp (r^+a^-cY

If the centre of force is situated at any point of the arc not occupied by the

string the law of force is the inverse cube of the distance.

Since Tp = A, A is positive, hence F is

positive, i.e., the force must be repulsive. If the

centre of force is outside the circle, p is negative

for that part of the arc nearest O which is cut off

by the polar line of 0. If the string occupy this

part of the arc, A is negative and the force F
must be attractive.

We have tdken r or tt as the independent

variable. If the centre of force be at the centre

of the circle, this would be an impossible sup-

position. This case therefore requires a separate

investigation. It is however clear that the string

will be in equilibrium whatever the law of force may be, provided it is repulsive.

Ex. 3. A uniform string is in equilibrium in the form of the curve r"= «"cos nO

under a central force F in the origin : prove that F= /iu"+'-.

Ex. 4. A string of infinite length has one extremity attached to a fixed point ^4,

and passing through a small smooth fixed ring at B stretches to infinity in a straight

line, the whole being under the influence of a central repulsive force =;uu", where

'

>;

I;
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n>l. Show that the form of the string between A and B is r'*~-=b^~^eoB (n

-

2) d.

If n= 2 the curve is an equiangular spiral.

Ex. 5. A closed string surrounds a centre of force = /xu", where n>l and <2.

Show that, as the length of the string is indefinitely increased so that one apse

becomes infinitely distant from the centre of force, the equilibrium form of the string

tends to become r"~''= 6"~* cos (n - 2) $. If J^= J the form of the curve is a parabola.

Ex. 6. A uniform string of length 21 is attached to two fixed points A, B at equal

distaTices from a centre of repulsive force = ixu-. If OA = OB = b and the angle

A0B= 2p, prove that the equation to the string is
M , cosfffsino)—=1+ 5^ '-,

r cos a

where the real and imaginary values of M and a are determined from the equations

M , cos (3 sin a)- = 1+ —^^

cos a
sin a = ± - sin (/3 sin a).

The equations (1) and (2) of Art. 474 become here

Proceeding as explained in Art. 475, we find ± I

J \

dT=
Adu

; iJidu, Tp-

= e+c.

.A.

{(B + fiuf - Ahi^\^

This integral is one of the standards in the integral calculus, and assumes

different forms according as A'^-y? is positive, negative or zero. Taking the first

assamption, we have after a slight reduction

4!_ii'„ =^±^C08(^l-^^) (^+C).

This formula really includes all cases, for when A^ - y? is negative we may write

for the sine of the imaginary angle on the right-hand side its exponential value.

Proceeding to find the arc in the manner already explained, we easily arrive at

Bs=±{(Br+ fif-A'^)^ + D,

where the radical must have opposite signs on opposite sides of an apse.

The conditions of the question require that the string should be symmetrical

about the straight line determined by ^= 0. We have therefore C=0 and Z)=0.

cos (d sin a)jutan^o 1W r'
:1±

cos a
Putting A— usee o, the equation to the curve reduces to

We also have BH- =(Bh-\- tif - p? sec^ a

.

Eliminating B between these equations, we find Z sin a = ± 6 sin (/3 sin o). We now
put M fc- the coefficient of 1/r and include the double sign in the value of a.

Since r=h when 6= J^p the three results given above have been obtained,

Ex. 7. A string is in equilibrium in the form of a closed curve about a centre

of repulsive force= uu-. Show that the form of the curve is a circle.

Referring to the last example, we notice that, since r is unaltered when 6 is

increased by 2jr, r must be a trigonometrical function of d. Hence sin o= l or 0.

Putting Jl/coso=il/', tho first makes M'lr=CQad, which is not a closed curve, the

second gives M=r, which is a circle.

Ex. 8. If the curve be a parabola, and the centre of force at the focus, and if

the equilibrium be maintained by fixing two points of the string, find the law of

force, and prove that the tension at any point P is 2/r, where r=SP and /is the

force at P per unit of length. [St John's Coll., 1883.]

Ex. 9. An infinite string passes through two small smooth rings, and is acted

on hy a force tending from a given fixed point and varying inversely as the cube of

the distance from that point. Show that the part of the string between the rings

assumes the form of an arc of a circle. [Coll. Ex., 1884.]

i'. -
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Ex. 10. If a string, the particles of which repel each other with a force varying

as the distance, bo in equilibrium when fastened to two fixed points, prove that the

tension at any point varies as the square root of the radius of curvature.

[Math. Tripos, I860.]

Ex. 11. Show that the catenary of equal strength for a central force which varies

as the inverse distance is r" cos n^= a", where 1 -n is the ratio of the line density

to the tension. Show also that this system of cu:-ves includes the circle, the rect-

angular hyperbola, the lemniscate, and when n is zero the ).>quiangular spiral.

[0. Bonnet, Liouville's J., 1844.]

Ex. 12. A string is placed on a smooth plane curve under the action of a central

force F, tending to a point in the same plane; prove that, if the curvo be such

that a particle could freely describe it under the action of that force, the pressure

of the string on the curve referred to a unit of length will be equal to
Fainip c

2 *-.•

where <p is the angle which the radius vector from the centre of force makes with

the tangent, p is the radius of curvature, and c is an arbitrary constant.

If the curve be an equiangular spiral with the centre of force in the pole, and if

one end of the string rest freely on the spiral at a distance a from the pole, then

.

,

. , , /t sin ^ / 1 1 \
the pressure is equal to - -- ( — + -^ I

,

[Math. Tripos, I860.]

Ex. 13. A free uniform string, in equilibrium under the action of a repulsive

central force F, has a form such that a particle could freely describe it under a

central force F' tending to the same centre. Show that F=kpF', where A is a

constant. If v be the velocity of the particle and T the tension of the string, show

also that T=kjpv\ See Art. 476, Ex. 1.

Ex. 14. It is known that a particle can describe a rectangular hyperbola about

a repulsive central force which varies as the distance and tends from the centre of

the curve. Thence show that a string can be in equilibrium in the form of a

rectangular hj'perbola under an attractive central force which is constant in

magnitude and tends to the centre of the curve. Show also that the tension

varies as the distance from the centre.

For a comparison of the free equilibrium of a uniform string with the free

motion of a particle under the action of a central force, see a paper by Prof.

Townsend in the Quarterly Journal of Mathematics, vol. xiii., 1873.

^ 477. When there are two centres of force the equations of equilibrium are best

found by resolving along the tangent and normal. Let r, r' be the distances of any

point P of the string from the centres of force ; F, F' the central forces, which are

to be regarded as functions of r, r' respectively. Let |>, p' be the perpendiculars

from the centres of force on the tangent at P. We then have

(jr + Fdr + F'(/r' = 0...(l), ?'_ir?_ii"?.'=o...(2).
P r r

The first equation gives T= B - \FAr - \F'dr' (3).

We may suppose the lower limits of these integrals to correspond to any given point

Pfl on the string. If this be done B will be the tension at P^. Substituting the

value of T thus obtained from (1) in (2) and remembering that p=rdrldp,

^piPim + ~(p'iF'dr') =B

It.

(4);
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on the other hand, if we find T from <2) and substitute in (1), we find after reduction

^(T)-^(^O- '^>-

Thus of the four elements, viz. (1) the force F, (2) the force F', (3) the tension T,

(4) the equation to the curve, if any two are given, sufficient equations have now
been found to discover the other two.

Ex. 1. A string can be in equilibrium in the form of a given curve under the

action of each of two different centre, of force. Show that it is in equilibrium

under the joint action of both centres of force, and that the tension at any point is

equal to the sum of the tensions due to the forces acting separately.

Ex. 2. Prove that a uniform string will be in equilibrium in the form of the

curve r^= 2a*cos25 under the action of equal centres of repulsive force situated at

the points, (a, 0), ( - a, 0), the force of each per unit of length at a distance R being

fijE. Prove also that the tension at all points will be the same and equal to 4/u.

[Coll. Ex., 1891.]

478. String on a surfiice. A string rests on a smooth

surface under the action of any forces. To find the position of

equilibrium.

Let the equation to the surface be f{x, y, z) = 0. Let Rds be

the outward pressure of the surface on the string. Let (/, m, n)

be the direction cosines of the inward direction of the normal.

By known theorems in solid geometry, I, m, n arc proportional to

the partial differential coefficients of / (x, y, z) with regard to

X, y, z respectively.

If the equations are required to be in Cartesian coordinates, we

deduce them at once from those given in Art. 455 by including R
among the impressed forces. We thus have

d

ds
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I, than we

n, viz. the

tring. Let

Let APB
gles to PA.

le radius of

curvature of the string, then PC lies in the plane BPN. Let x
be the angle CPN, then x i^ ^^so the angle the osculating plane

CPA of the string makes with the nci.nal PN to the surface.

The element PQ is in equilibrium under the action of (1) the

forces Xds, Yds, Zds acting parallel to the axes of coordinates,

which are not drawn in the figure, (2) the reaction Rds along NP,

(3) the tensions at P and Q, which have been proved in Art. 4.54

to be equivalent to dT along PQ and Tdsjp along PC.

Resolving these forces along the tangent PA, we have

dT+Xds^+Yds^ + Zds^ = 0,
as as CIS

.-. T + J{Xdx+ Ydy + Zdz) = A (1).

The forces are said to be conservative, when their components

X, Y, Z !' "e respectively partial differential coefficients with regard

to X, y, z, of some function IT which may be called the work function.

Art. 209. Assuming this to be the case, the integral in (1) is equal

to the work of the forces. It

follows from this equation that

the tension of the string plus the

work of the forces is the same at

all foints of the string. Taking

the integral between limits for

any two points P, P' of the string,

we see that the difference of the

tensions at two points P, P' is in-

dependent of the length or form of the string joining those points

and is equal to the difference of the works at the points P\ P taken

in reverse order.

We shall suppose that, while p is measured inwards along PC,

the pressure R of the surface on the string is measured outwards

along NP, Art. 4-57. We shall f>lso suppose that (l, m, n) are the

direction cosines of the norinal PN measured inwards. With this

understanding we now resolve the forces along the normal PN to

the surface ; we find

Tds— cos y + Xds I + Ydsm + Zds n — Rds = 0.

P ^

By a theorem in solid geometry, if p' be the radius of curva-

ture of the section of the surface made by the plane NPA, i.e. by

i
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.... (3).

loth ellipsoid,

which acting

i string in its

and b is the

Coll., 1890.1

)t acted on

= 0, Z=:0.

string is

any point

ring. The

ine) shows

f the curve

is called a

3 form of a

they must

art perpen-

tion of forces,

ngent plane at

ages sign as I"

I

moTes along the string the concavity changes from one side of the string to the

other. Sach a point may be regarded as a point of geodesic inflexion. ,It follown

from the equation (3) that a string utretched on a surface can have a point of ijeodesic

infiexion only when the force transverse to the strinij and tangential to the surface

is zero.

481. A string on a surfkce of revolution. When the

surface on which the .string rests is one of revolution, we can

replace the rather complicated
y

equation (3) of Art. 479 by a /?

much simpler one obtained by

taking moments about the axis

of figure. If also the resviltant

force on each element is either

parallel to or intersects the

axis of figure, there is a further

simplification. This includes

the useful case in which the

only force on the string is its weight, and the axis of figure of the

surface is vertical.

Let the axis of figure be the axis of z, and let (r, 0,
<f))

be the

polar coordinates and (r', <^, z) the cylindrical coordinates of any

point on the string, so that in the figure / = ON, z = PN, and

= the angle NOx. Then from the equation to the surface we

have z =f(r'). Let the forces on the element ds be Pds, Qds, Zds

when resolved respectively parallel to r', r'd<^, and z.

We shall now take moments about the axis of figure. The

moment of R is clearly zero. To find the moment of T, we

resolve it perpendicular to the axis and multiply the result by the

arm r'. Ii this way we find that the moment is Tr sin i/r, where

y^ is the angle the tangent to the string makes with the tangent

to the generating curve of the surface, i.e. -v/r is the curvilinear

angle OPA. The equation of moments is therefore

d(r/sin-^) + Qr'rf5 = (4).

We aL«o have by resolving along the tangent as in Art. 479,

dT+Pdr-vQrd(^ + Zdz = Q (5).

We have also the geometrical equation expressing sini^ in

terms of the differentials of the coordinates of P. Let the gene-

rating curve OP turn round Oz through an angle d^ and then

intersect the string in P' and a plane drawn through MP parallel
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to xy in Q. Then PQ = PP' sin a/t, i.e. r'd^ = (Z« . sin >/r. We
therefore have

(r'd<t>y = {(dry + {r'd(f>y + (dzy) sin' -^ ((}).

Eliminating T and smyjr between (4), (5) and ((>) we have an

equation from which the form of the tring can be deduced.

If the only force acting on the Rtring in gravity, ahd if the axis is vertical, the

equations take the simple forms

Tr'Bin\l/= wB, T = w{z + A) (7).

Eliminating T and sin i/-, by help of (6), we have

,».,,..=..|uQ%
(;;;)}

(8,.

Substituting for ,:: from the equation of the surface, viz. i=/(r'), this becomes the

polar differential equation of the projection of the string on a horizontal plane.

TJie outward normal pressure of the surface on the string may be deduced from

equation (2) of Art. 479.

483. Hflavy string on a spliere. Using polar coordinates referred to the

centre as origin, the fundamental equations take the simple forms

T sine sin ^= io/i', T=w(a(iOie + A),

(sin eil<p)-= [(sin ed<p)- + {dO)-} sin'-'i/', I!a=w {2a coad + A),

where
\f/

is the angle the string makes with the meridian arc drawn through the

summit and B = aD'. These give as the differential equation* of the string

f<'^\' , 2o i^/acose +AV

The tension at any point P=wz where z is the altitude of P above a fixed hori-

zontal plane called the directrix plane, and every point of the string must be above

this plane. The plane is situated at a depth A below the centre of the sphere. At

each point P let the normal OP be produced to cut in some point ,S' a coucentric

sphere whrse radius is twice that of the given sphere. The point S is the anti-centre

of P, and the outward pressure on the string is wz'ja where z' is the altitude of S
above the directrix plane. As already explained every anti-centre must lie above or

below the directrix plane according as the str ; lies on the convex or concave side

of the sphere, Art. 460.

The values of the constants A, B depend on the conditions at the ends of the

string. We see that 7i' = 0, (1) if either end is free, for then T vanishes at that

end, (2) if the string pass through the summit of the sphere, for then sin d vanishes,

(3) if a meridian can be drawn from the summit to touch the sphere, for sin^=
at the poiut of contact. In all these cases, sin ^ vanishes throughout the string,

i.e. the string lies in a vertical plane.

If the string form a closed curve, the three quantities T, sin 9, sin \{/ cannot

m
111 i'

* The reduction of the integral giving cp in terms of 6 to elliptic functions is

given by Clebsch in Crelles J., vol. 57. A model was exhibited at the Royal
Society, June 1895, by Greenhill and Dewar of an algebraical spherical catenary.

By a proper choice of the constants the projection of the chain on a horizontal
plane became a closed algebraical curve of the tenth degree ; see also Nature,
Jan. 10, 1895.

iii:
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vanish or change sign at any point of the string. The highest and lowest points of

the string are therefore given by '/' = iTr, hence .it these points

TBiae = ion', T=w(aco>ie + A), .. sme{aooaO + A) 'i'.

These eciuations yield only two available values of coaO ; for traci.ig the two curves

whose common abscissa is ^ = coaO and whose ordinates are the n'ciprnaiU of the

two values of T, we have an ellipse ai d a rectangular hyperbola, which, since T must
be positive, give only two intersections. Let d = a, d = ^ be the meridian distances

of the highest and lowest points of the string, both being positive. Tlien

iA

a

sin 2a - sin '2/3

sin o - sin (i
'

li . . , cos o - cos ti

=smasin/8 . . .

a sino-Hin^

It follows that the directrix plane passes through the centre of the spMcre when a

and /3are complementary. In general the tensionn, and therefore the depths of the

directrix plane below the highest and lowest points, are inversely as the distances

of those points of the string from tlie vertical diameter.

It has been proved in Art. 480, that the string can have a point of geodesic

inflexion when the transverse tangential force is zero. This re(iuires that the

meridian drawn from the summit should touch the string, and this, we have

already seen, cannot occur. It follows that the Hiring inunt be concave throughout

its length on the same side.

If the form of the string is a circle its plane must be either horizontal or vertical,

and in the latter case it must pass through the centre of the sphere. To prove this

we give the string a virtual displacement without changing its form, it is easy to

see that the altitude of the centre of gravity can be a max-min only in the cases

mentioned. In both cases the altitude is a maximum and the equilibrium is

therefore unstable. Art. 218. In the same way it may be shown that any ponition

of equilibrium of a heavy free string oh a smooth sphere is unstable.

Ex. 1. A heavy uniform chain, attached to two fixed points on a smooth

sphere, is drawn up just so tight that the lowest point just touches the sphere.

Prove that the pressure at any point is proportional to the vertical height of the

point above the lowest point of the string. [Coll. Ex., 1892.]

Ex. 2. A string rests on a smooth sphere, cutting all the sections through a

fixed diameter at a constant angle. Show that it would so rest if acted on by a

force varying inversely as the square of the distance from the given diameter, and

that the tension varies inversely as that distance. [Coll. Exam., 1884.]

Ex. 3. A string can rest under gravity on a sphere in a smooth undulating

groove lying between two small circles whose angular distances from the highest

point of the sphere are complementary, without pressing on the sides of the groove.

If x// is the acute angle at which the string cuts the vertical meridian prove that the

points at which yj' is a minimum occur at angular distances ^ir from the highest

point and find the value of ^ at these points. [Math. T., 1889.]

483. String on a Cylindrical Surface. Ex. 1. A heavy string is in equili-

brium on a cylindrical surface whose generators are vertical, the extremities of the

string being attached to two fixed points on the surface. Find the circumstances of

the equilibrium.

Let FQ= (ls be any element, ivds its weight. Let the axis of z be parallel to the

generators, and let z be measured in the direction opposite to gravity. Resolving

I

.

i

li
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along a tangent to the Htring, we have an in (1) Art. 470, T-wtsA. liesolving

vertically, we have by Art. 478, '
( 7''^j-ic = 0. ThcHe are the Hamo an the

equations to determine the equilibrium of

a heavy Htring in a vertiual plane. The

conHtantB, aluo, of integration are deter-

mined by the Haine conditiouH in each

case. We wee therefore that if tin: cijliiider

if devehpt'd on a vrrtical pliitw, the equi-

librium of the slriiuj is not dinturhed. The

circuniHtances of the equilibrium may
therefore be deduced from the ordinary

properties of a catenary.

To find the presHure on the cylinder,

we either resolve along tbe normal at P to the surface, or quote the general result

found in Art. 479. We thus Hnd R = Tip', also -, = °^^ +
""' ^ =

°°'*'' ^
, by

P Pi 00 Pi

Euler's theorem on curvature, where />, is the radius of curvature at M of the

section AMN of the cylinder made by a horizontal plane, and ^ is the angle the

tangent at P to the string makes with thn horizontal plane.

Ex. 2. If a string be suspended symmetrically by two tacks upon a vertical

cylinder, and if Zi, z„, z.^... be the distances above the lowest point of the catenary

at which the string crosses itself, then z^Zin+i = (^n+i ~
^n)"' [Math. Tripos, 1859.]

Ex. 3. If an endless chain be placed round a rough circular cylinder, and

pulled at a point in it parallel to the axis, prove that, if the chain be on the point

of slipping, the curve formed by it on the cylinder when developed will be a parabola;

and find the length of the chain when this takes place. [Math. Tripos.]

Ex. 4. A heavy uniform string rests on the surface of a smooth right circular

cylinder, whose radius is a and whose axis is horizontal. If (a, d, z) bo the cylindrical

coordinates of a point on the string, 6 being measured from the vertical, prove that

r= u>(i* + rtC08 $), z= [ , , where b and c are two constants.

J \{b + acoBt,,^-c^]^

It is clear that the tension resolved parallel to z is constant, i.e. Tdzlds— wc.

Combining this result with the value of T found in Art. 483, Ex. 1, we obtain the

second result in the question.

Ex. 5. Tbe extremities of a heavy string are attached to two small rings which

can slide freely on a rod which is placed along the highest generator of a right

circular horizontal cylinder, and are held apart by two forces each equal to wa. The

lowest point of the string just reaches to a level with the axis of the cylinder. If 1)

be the distance between the rings and L the length of the string, prove that

D _ [ dxj/ L _ { df 1

4a 8a j,V{3 + sin* vt) 1 + sin''' ^

'

the

V(3 + 8in2,/-)'

the limits of integration being to ^tt.

These follow from the results in the last question. The conditions of

question give a — b= c. The integrals are reduced by putting tan i^ = 8in yp.

Ex. 6. A uniform string rests on a horizontal circular cylinder of radius a with

its ends fastened to the highest generator and its lowest point at a depth a below it

;

prove that the curvature at the lowest point is 1/a, and that the inclination of the

sv
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string at any point to the axiH in sec' (1 +z/a), where 2 is the height of the point

above the axiu, Huppouing the Hiring' uutM the highoiit generator at an angle of <>0 '.

[.lune KxRin.l

Ex. 7. A heavy uniform string has its two cndn fastonod to pointn in the

highest gonorator of a Kuiooth horizontal cylinder of radius a, and is of sucli

a length tliat its lowest point just touches tlie cylinder. Prove that, if the

cylinder be develo()ed, the origin being at one of the fixed points, the curve on

cos!*' t'iaccos". [Math. T., 188:i.]which the string lay is given by c'^
( y^ ) ="'

484. Strlns on a rtght oon*. Ex. 1. A string has its extremities attached

to two fixed points on the surface of a right cone, and is in equilibrium under the

action of a centre of repulsive force F at the vertex. Show that the eciuilibrium is

not disturbed by developing the cone and string on a plane passing through the

centre of force.

Let the vertex be the origin, (r', 6', z) the cylindrical coordinates of any point

P on the string. Let ()P=r. Talting moments about the axis and resolving along

the tangent, we have as in Art. 481,

Tr'iiiQ\l>= B, T + jl'\lr = C (1).

We may imagine the cone divided along a generator and togetlier with the

string on its surface unwrapped on a plane. Let (r, 6) be tlie polar coordinates of

the position of P in this plane. Let p be the perpendicular from O on the tangent

to the unwrapped string, then p = r sin ^. The equations (1) become

rp = Ii', T + jFdr=C (2).

These are the equations of equilibrium of a string in one plane under the

action of a central force, and the constants of integration are determined by the

same conditions in each case. We may therefore transfer the results obtained

in Art. 474 to the string on the cone. In transferring these results we notice that

the point (r, 6) on the plane corresponds to {r'd'z) on the cone, where r'= rsiua,

0' sin a= 5, i = rco8a.
£cosa

The pressure R is given by Ji =—, = ^
1 co8''0 sin'^rf)

since -. = + ,
—--

r' sin' o p 00 r sec a

by Euler's theorem on curvature. Art. 479.

Ex. 2. The two extremities of a string, whose length is 21, are attached to the

same point A on the surface of a right cone. The equation to the projection of

the string on a plane perpendicular to the axis is 7rr' = icos (^'sin a), the point

A being given by ff = ir. Show that the string will rest in equilibrium under the

influence of a centre of force in the vertex varying inversely as the cube of the

distance.

Ex. 3. A heavy uniform string has its ends fastened to two points on the

surface of a right circular cone whose axis is vertical and vertex upwards, the

string lying on the surface of the cone. Prove that, if the cone be developed

into a plane, the curve on which the string lay is given by p{a + br) - 1, the

origin being the vertex, p the perpendicular on the tangent, and «, h constants.

[Coll. Ex., 1890.]

485. String on a rough surfkoe. A string rests on a

rough surface under the action of any forces, and every element

borders on motion; to find the conditions of equilibrium.

i
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The required conditions may be deduced from the equations

for a smooth surface by introducing the limiting friction. The

pressure of the surface on the element ds being Rds, the limiting

friction will be fiRds. This friction acts in some direction PS
lying in the tangent plane to the surface. See figure of Art. 479.

Let ^fr be the angle SPA. Resolving along the principal axes at

any point of the string exactly as in Art. 479, we have

dT + Xdx + Ydy + Zdz + fiRds cos a/t = 0\

T
> + Zi + Ym + Zn - R =

T
7 tan x-^X'^+Yfi + Zv\- fiR sin i/r =

These three equations express the conditions of equilibrium.

486. The simplest case is that in which the applied forces

can be neglected compared with the tension. We then have,

putting zero for X, Y, Z,

-,- + jjiK cos y =0

T
P

T

= iJl

-; tan X + H'^ sin i/r =
r

It easily follows from these equations that tan ;^ + /i sin i/r = 0.

This requires that tan x should be less than /x ; thus equilibrium

is impossible if the string be placed on the surface so that its

osculating plane at any point makes an angle with the normal

greater than tan~^ (i. Eliminating \/r and R from these equations,

dT T

.-. logr=0-ft(^'-tan=x)»-

Thus, when the string is laid on the surface in a given form and

is bordering on motion, the tension at any point can be found.

It also follows from the equations of Art. 486 that, if % = 0,

then \/r = 0. If therefore the string is placed i.long a geodesic

line on the surface, the friction must act along a tangent to the

string. Putting >/r = 0, we have from the two first equations

fd'i
hi

ill
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Since along a geodesic p = p, we may deduce from this

equation the following extension of the theorem in Art. 463.

If a light string rest on a rough surface in a state bordering on

motion, and the form of the string he a geodesic, then (1) the

friction at any point acts along the tangent to the string, and (2)

the ratio of the tensions at any ttvo points is equal to e to the power

of ± fi times the smii of the infinitesimal angles turned through by a

tangent tvhich movesfrom one point to the other.

The conditions of equilibrium of a string on a rough surface are given in Jellett's

Theory of Friction. He deduces from these the equations obtained in Art. 486.

487. Ex. 1. A fine string of inconsiderable weight is wound round a right

circular cylinder in the form of a helix, and is acted on by two forces F, F' at its

F' cos'

a

extremities. Show that, when the string borders on motion, log -=-==*=/* «.
J" a

where s is the length of the string in contact with the cylinder, a the angle of the

helix and a the radius of the cylinder.

Since the helix is a geodesic, this result follows from the equations of Art. 486

by writing for 1/p' its value cos' aja given by Euler's theorem on curvature.

Ex. 2. A heavy string AB, initially without tension, rests on a rough hori-

zontal plane in the form of a circular arc. Find the least force F which, applied

along a tangent at one extremity B, will just move the string.

Let be the centre of the arc, let the angle AOP—O, the arc AP=:s, Let the

element PQ of the string begin to move in some

direction PP\ where P'PQ=
\f/;

then by the nature

of friction the angle i// must be less than a right

angle. The friction at P therefore acts in the

opposite direction, viz. P'P, and is equal to fxwds.

The equations of equilibrium are

dT - fitvds cos V*
=

(

Tdd-nicds Bin <p= 0\

Substituting in the first equation the value of

T given by the second, we have, since ds^^add,

d^= de, and therefore \p=e + C (2).

We have by substituting in (1) T =niva Bin {$ + C).

If every element of the string border on motion, the equations (1) hold through-

out the length. Since T must be zero when ^ = 0, wp id that C=0. Hence, if

aa be the given length of the string AB, the force reqiiued to just move it is given

by F=tiioa sin a. It is evident that this result does not hold if the length of the

string exceed a quadrant, for then \{/ at the elements near B would be greater than

a right angle.

Supposing the arc A P' to be greater than a quadrant, let the force F acting at B
increase gradually from zero. When F—nicaa\na., where a<^w, it follows from

what precedes that a finite arc EB, terminating at B and subtending at an angle

BOB equal to «., is bordering on motion, and that the tension at E is zero. When
F=ft,wii the resolved part of the tension at B along the normal is /xwadd, and is just

balanced by the friction. When F increases beyond the value M'^ai the whole

friction is insufficient to balance the normal force.

(1).

R. S. I.
oo
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Summing up, the force required to move the string is F=naw sin a if the length

is less than a quadrant. If the length exceed a quadrant, the force is imw, and the

string begins to move at tho extremity at which thti force is applied. See Art. 190.

Ex. 3. If a weightless string stretched by two weights lie in one plane across a

rough sphere of radius a, show that the distance of the plane from the centre

cannot exceed a sin e, where e is the angle of friction. [St John's Coll., 1889.]

488. Virtual Work. The equations of equilibrium of a string may be

deduced from the principle of virtual work by taking each element separately, and

following the general method indicated in Art. 203. In fact' the left-hand side of

the X equation given in Art. 455, after multiplication by ds . dx, is the virtual

moment resulting from a displacement dx. This method requires that the tensions

at the ends of the element should be included as part of the impressed forces. The

principle may also be expressed as a max-min condition (Art. 212) in a form

which includes only the given external forces. As an example of this let us

consider the following problem,

A heterogeneous string of given length I, fixed at its extremities A, B, is in

equilibrium in one plane in a field of force whose potential is V. It is required to

find theform of the string.

Supposing m=f(s) to be the line density at a point whose arc distance from A
is «, the work function for the whole string is \Vmds, the limits being to I. We
shall take the arc s as the independent variable and regard x, y as two functions of

s connected by the equation

(syHir- «
Following Lagrange's rule we remove the restriction (1) and make

«=/h-((£)^ri)'-')H <^).

a max-min for all variations of x and y, the quantity X being an arbitrary function

of 8, afterwards chosen to make the resulting values of x, y satisfy the condition (1)*.

As the limits are fixed, there is no obvious advantage in varying all the coordi-

nates. We shall therefore take the variation of u on the supposition that x, y are

variable and s constant. We have

n (dV^ dV^\ „^/dxdSx dyddy\]^

Integrating the third and fourth terms by parts and remembering that Sx, dy

vanish at the fixed ends of the string, we find

-=/{(»-S-^^(4^))-(»f-i(40)'4-
At a max-min, this must be zero for all values of 8x, dy, hence

y, and \

Su:

dx ds \ ds J dy

Restoring the condition (1) we have now three equations from which x

* We regard « as the abscissa, x, y as the two o'dinates of an unknown curve,

which is to be found by making u a max-min for all variations of x, y. The rules

of the calculus of variations then enable us to write down the equations to find the
curve. The equation of this curve contains X and is made to satisfy (1) by a proper
choice of this quantity. Then since (2) is a max-min for all variations of x, y, it

follows that \Vmdx is a max-miu for those variations of ;i:, // which satisfy the
condition (1).

\v
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may be determined as functions of s. It is evident that these agree with the

equations already found in Art. 455, with - •2X written for 2'.

We may also deduce the value of \ by multiplying the equations (3) respectively

by dxjds and dyjds and adding. We then find

dV
m-;- = : x> i(^y^(X)>

d\1 d ^

da ~ \ da WdaJ^ \da J f
~ " da^

which agrees with the equation to determine the tension in Art. 479.

If the string is in three dimensions and constrained to rest on a smooth surface,

we make jVmds a max-min subject to the two conditions

x'» + j/'2 + 2-2-1=0, F(x, y, z)=0 (I),

where accents denote differentiations with regard to a. Following the same

method as before we make

u=j{Vm + \{x'^+y'- + z'^-l) + fiF(x, y, z)} ds

a max-min. Varying only x, y, z and integrating by parts exactly as before, we
find on equating the coefficients of 5x, Sy, dz to zero

dl
m
dV ^ d / dx\ dF ^ . ,v - /^ /»,,

rx-^da[^lsr''Tx=''' *''•=«• *«•=« W'
the two latter equations being obtained from the first by writing y and z respec-

tively for X, These three equations joined to the conditions (I) determine x, y, -., X,

/* in terms of a. These agree with the equations obtained in Art. 478, when - 2X

and -
fj.
{F^ + Fy^ + F^^)^ are written for T and R.

489. Elastic Strings. The theory of elastic strings depends

on a theorem which is usually called Hooke's laiu. This may be

briefly enunciated in the following manner. Let an extensible

.string uniform in the direction of its length have a natural length

/j. Let this string be stretched by the application of two forces

at its extremities, and let these forces be each equal to T. Let

the stretched length of the string be I. Then it is found by

experiment that the extension l — li bears to the force T a ratio

which is constant for the same string.

If the natural or unstretched length of the string were

doubled so as to be 2^j, the force T being tha same as before, it

is clear that each of the lengths /i would be stretched exactly as

before to a length I. The extension of this string of double length

will therefore be twice that of the single string. More generally,

we infer that the extension must be proportional to the natural

length when the stretching force is the same.

Joining these two results together, we see that

T
1 — 1—1" n— h pt

where E is some constant, which is independent of the natural

length of the string and of the force by which it is stretched.

oo 9
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It is clear that, if two similar and equal strings are placed

side by side, they will together require twice the force to produce

the same extension that each string alone would require. It

follows that the force required to produce a given extension is

proportional to the area of the section of the unstrctched string.

The coefficient /v' is therefore proportional to the area of the

section of the string when unstretched. The value of E when

referred to a sectional area equal to the unit of area is called

Young's inodulus.

To find the meaning of the constant E, let us suppose that the

string can be stretched to twice its natural length without violat-

ing Hooke's law. We then have l = 2li, and therefore E=T,
Thus E is a force, it is the force which would theoretically stretch

the string to twice its natural length.

490. This law governs the extension of other substances

besides elastic strings. It applies also to the compression and

elongation of elastic rods. It is the basis of the mathematical

theory of elastic solids. But at present we are not concerned

with its application except to strings, wires, and such like bodies.

The la\v is true only when the extension does not exceed

certain limits, called the limits of elasticity. When the stretching

is too great the body either breaks or receives such a permanent

change of structure that it does not return to its original length

when the stretching force is removed. In all that follows, we
shoU suppose this limit not to be passed.

The reader will find tables of the values of Young's modulus

and the limits of elasticity for various substances given in the

article Elasticity, written by Sir W. Thomson, now Lord Kelvin,

for the Encyclopcvdia Britannica.

401. Ex. 1. A unifonn rod AB, suspended by two equal vertical elastic strings,

rests in a horizontal line; a fly alights on the rod at C, its middle point, i.nd the

rod is thereupon depressed a distance h; if the fly walk along the rod, then when

he arrives at P, the depression of P below its original level is 2/i {AP- + BP^)lAB^,

and the depression of Q, anj other point of the rod, is 2/t {AP .AQ + BP. BQ)jAB\
[St John's Coll., 1887.]

Ex. 2. A heavy lamina is supported by three slightly extensible threads, whose

unstretched lengths are equal, tied to three points forming a triangle ABC. Show
that wheti it assumes its position of equilibrium the plane of the lamina will meet

what would be its position in case the threads were inelastic in the line whose areal

equation is x.rJE + yi/olF+ zzJG = 0, where E, F, G are the moduli, and x^, y^, «„

the areal coordinates of the centre of gravity of the lamina referred to the triangle

ABC. [St John's Coll., 1886.]

I-*
-
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492. A uniforiii heavy elastic string is suspended hi/ one ex-

tremity and has a weight W attached to the other extremity. Find

the position of equilibria in and the tension at any point.

Let OAi be the unstretched string, P,Qi any element of its

length. Let OA be the stretched string, PQ the corresponding

position of PiQj. Let w be the weight of a unit of

length of unstretched string, li- OA^, a;, = 07^

;

1 = A, xr=OP. The tension T at P clearly sup-

ports the weight of PA and W. Hence

T=w{l,-w,)+W , (1).

If PA were equally stretched throughout wo

could apply Hooke's law to the finite length PA.
But as this is not the case we must apph^ the law

to an elementary length PQ. We have therefore

dx — dxi = dx^ eT

where e has been written for the reciprocal of E.

Pi
Qi

I P
Q

.(2),

Eliminating T,
di

dxi
= l+e{w(l,-x,)+W].

Integrating, x = Xi + € {w (liX^ — ^x^") + Wxi] + C.

The constant C introduced in the integration is clearly zero, since

Xi and X must vanish together. Putting Xi = l^ , we find

l-li = ^e.iuli- heWli.

If the string had no weight, the extension due to IF would be

eWli. If there were no weight W at the lower end, the extension

would be ^etuli^. Hence the extension due to the weight of the string

is equal to that due to half its weight attached to the lowest point.

We also see that the extension due to the weight of the string and

the attached weight is the sum of the extensions due to each of these

treated separately.

Ex. 1. A heavy elastic string OA placed on a rough inclined plane along

the line of greatest slojie is attached b_, one extremity to a fixed point, and has a

weight W fastened to the other extremity A. Find the greatest length of the

stretched string consistent with equilibrium.

When the string is as much stretched as possible, the friction on every element

acts down the plane and has its limiting value. Let o be the inclination of the

plane to the horizon. Let /x, /x' be the coefficients of friction between the plane and

the string and between the plane and the weight respectively. If /'= sin a + m cos a,

then fw replaces zo in Art. 492. We therefore find for the whole elongation

V - l= ^efwl^' + ef'Wl, where/' is what.^" becomes when fi' is written for /u.

Ex. 2. A heavy elastic string AA' is placed on a rough inclined plane along the

' 1
ii \

it:
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',t

), ;:

line of greatest slope. Supposing the inclination of the plane to bo less than tan~'M.

find the greatest length to which the string could be stretched consistent with

equilibrium. Compare also the stretching of the different elementn of the string.

The frictions near the lower end A of the string will act down the plane, while

those near the upper end A' will act up the plane. There is some point O separating

the string into two portions OA, OA' in which the frictions act in opposite directions.

Each of these portions may be treated separately by the method used in the last

example. An additional equation, necessary to find the unstretched length z of OA,

is obtained by equating the tensions at O due to the two portions. The results are

Z, / tana\ ,
, , ,n/, tan'-a\

2=^(1 1 . l-l-^- \iixw cos oX^ (1 J- 1

.

Ex. 3. A series of elastic strings of unstretched lengths /,, l^, l^... are fastened

togethf^r in order, and suspended from a point, /j being the lowest. Show that the

total extension is

i(eii<7,/i- + fjj('2;.r+...) + U'i/,{e3?o + £3/5+...) + it-Jo (e3?3+...)+&c.,

where Wj , «„, &c. are the weights per unit of length of unstretched string, ti, tji &c.

the reciprocals of the moduli of elasticity. [Coll. Exam., 1888.]

493. Work of an elastic string. If the length of a light

elastic string be altered by the action of an external force, the

work done hy the tension is the product of the compression of the

string and the arithmetic mean of the initial and final tensions.

In the standard case let the length be increased from a to a',

then a — rt' is the shortening or compression of the string. As
before, let l^ be the unstretched or natural length.

By referring to Art. 197, we see that the work required is

-JTdl = -JE ^~^'dl =-E (^^-^1)— (^^-^i)-'
^

the limits of the integral being from l = a to l = a'. This result

may be put into the form ^{T^-\-T^{a- a'), where T^ and T^

represent the values of T when a and a' are written for I, The

rule follows immediately. See the author's Rigid Dynamics 1877.

This rule is of considerable use in dynamics where the length of the string may
undergo many changes in the course of the motion. It is important to notice that

the rule holds even if the string becomes slack in the interval, provided it is

tight in the initial and tinal states. If the siring is slack in lither terminal state,

we may still use the same rule provided we suppose the string to have its natural or

unstretched length in that terminal state.

Ex. 1. Show that the depth below the point of suspension of the centre of

gravity of the elastic string considered in Art. 492 is i/i + e^i [l^ + ^W), where S is

the weight of the string. Show also that the work done by gravity as the string

and weight are moved from the unstretched position OA^ to the stretched position

OA., is eZi {\S-^ + SW+W^) where e=l/£.

Ex. 2. Let one end of an clastic string be fixed to the rim of a wheel sufficiently

rough to prevent sliding, and let the other be attached to a mass resting on the
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ground, so that when the string (of length a) is just taut it shall be vertical. Show
that the work which must be spent in turning the wheel so as just to lift the mass

off the ground is Mga + Ea log EI(E + M(j), where E is the tension which would

double the length of the string, neglecting the weight of the string. [Math. Tripos.]

Ex. 3. A disc of radius r is connected by n parallel equal elastic strings, of

natural length /j , to an equal fixed disc ; the wrench necessary to maintain the

discs at a distance x apart with the moveable one turned through an angle 6 about

the common axis, consists of a force X and a couple L given by

X =nExQ-^Y L = 2n£r2sinfl(i-^V

where f=a;2 + 4r2sinn«. [Coll. Exam., 1885.]

One disc being moved to a distance x from the other and turned round through

an angle 0, we first show that the length of each string is changed from l^ to {.

Using the rule above, the work function is W= n . h T (Ij - l^) = nE(^- /i)'/2/i

.

Xdx + Ldd= i- dx + -r„ de.
dx de

By Art. 208 we have

Effecting the differentiations X=dTF/rfa;, I, = dlF/d^, we obtain the results given.

494. Heavy elastic string on a smootta curve. Ex. 1. A heavy elastic

string is stretched over a smooth curve in a vertical plane : show that the difference

between the values of T + T^I2E at any two points of the string is equal to the

weight of a portion of the string whose unstretched length is the vertical distance

between the points. It follows from this theorem that any two points at which

the tensions are equal are on the same level.

If dsi is the unstretched length of any element ds of the string, we have by

Hooke's law dH^ — dsEI(T + E). If then w is the weight per unit of unstretched

length, the weight of any element ds of the stretched string is equal to w'ds, where

w'= wEI{T + E), Let us now form the equations of equilibrium, using the same

figure and reasoning as in Art. 459, where a similar problem is discussed for an

inextensible string. We evidently arrive at the same equations (1) and (2) with

w' written for v . Substituting for w' and integrating, we find that (1) leads to the

result given above.

Ex. 2. A heavy elastic string is stretched on a smooth curve in a vertical plane

:

show that

rp2

where T is the tension at any point P, R the outward pressure of the curve on the

string per unit of length of unstretched string, ic the weight of a unit of length of

unstretched string, a\id y, y' the altitudes of P and its anti-centre above a fixed

horizontal line called the statical directrix of the string, Art. 460. Show also that

no nart of the string can be below the directrix, and that the free ends, if there are

any, -aust lie on it.

Ex. 3. A heavy elastic string rests in equilibrium on a smooth cycloid with its

cusps upwards. If one extremity is attached to a point on the curve while the free

extremity is at the vertex, prove that the stretched length of any unstretched arc Sj

measured from the vertex is given by 7« = sinh7.Sj, where <kaEy-=tv, and a is the

radius of the generating circle.

Ex. 4. An elastic string rests on a smooth curve whose plane is vertical with

its ends hanging freely. Show that the natural length o- may be found from the

:|1I
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equation where y is the vertical height above the free extremities,

11 «

) r i

i "

i:

\d»/ 2y + b'

and b the natural length of a portion of the string whose weight is the coefficient of

elast'city. If the natural length of each vertical portion be I, and if {l + b)^=2(ib,

and if the curve be a circle of .-adius a, prove that the natural length of the portion

in contact with the curve is 2^(ub) log {^'2 + 1). [June Exam., 1877.]

Ex. 5. An elastic string, uniform when unstretchcd, lies at rest in a smooth

circular tube under the action of an attracting force (fir) tending to a centre on the

circumference of the tube diametrically opposite to the middle point of the string.

If the string when in equilibrium just occupies a semicircle, prove that the greatest

tension is {\(X + 2/ipa')}*-X, where ^ is the modulus of elasticity, a the radius of

the tube, p the mass o' unit o' ' igth of the unstretched string.

[Trinity Coll., 1878.]

Ex. 6. An infinite .. .la .«i,;,- (?, whose weight per unit of length when un-

stretched is m, and which i'-v 1 1 u iension ma to stretch any part of it to double

its length (when on a smooiii table), laced on a rough table (coefficient /x) in a

straight line perpendicular to its edge. Ti.e string just reaches the edge, which is

smooth. A weight ^ma/ji is attached to the end and let hang over the edge. If the

weight takes up its position of rest quietly, so that no part of the string re-contracts

after having been once stretched, show that the distance of the weight below the

edge of the table is |a/i (3;u + 4), and that beyond a distance Ja {fj. + 2) from the edge

of the table the string is unstretched. [Trinity Coll.]

405. Xilght elastic string on a rougli curve. Ex. 1. An elastic string is

stretched over a rough curve so that all the elements border on motion. If no

external forces act on the string except the tensions F, F' at its extremities, then

—
- = 6 '**, where \p is the angle bet ^een the normals to the curve at its extremities.

This follows by the same reasoning as in Art. 463.

Ex. 2. An elastic string (modulus X) is stretched round a rough circular arc

so that every element of it is just on the point of slipping ; if T, T' are the tensions

at its extremities, the ratio of the stretched to the unstretched length is

{T + \)
log-^:log-^,-^r-^^ [St John's Coll., 1884.]

Ex. 3. An endless cord, such as a cord of a window blind, is just long enough

to pass over two very small fixed pulleys, the parts of the cord between the pulleys

being parallel. The cord is twisted, the amount of twisting or torsion being

different in the two parts, and the portions in contact with the pulleys being unable

to untwist. If the pulleys be made to turn slowly through a complete revolution

of the string, show thc^ the quotient of the difference by the sum of the torsions is

decreased in the ratio c* : 1. [Math. Tripos, 1853.]

Ex. 4. An elastic band, whose unstretched length — 2a, is placed round four

rough pegs A, B, C, D, which constitute the angular points of a square of 8iAe--o.

If it be taken hold of at a point P between A and B, and pulled in the oirec-

tion AB, show that it will begin to slip round both A and B at the sam<i cime if

AP=a;(e^'''' + l). [May iJlxam.]

Ex. 5. An endless slightly extensible strap is stretched over two equal pulleys :

prove that the maximum couple which the strap can exert on either pulley is

2a (c -f mi)

c coth^/ii7r-t-2a//«
—7- T, where a is the radius of either pulley, r. the distance of their
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centres, ft the coefficient of friction, and T the tension with which the strap is

put on. [Math. Tripos, 1879.]

Ex. r. A rcii. jtli circular cylinder (radius a) is placed with its axis horizontal,

and a string, whos.' natural length is I, is fastened to a point Q on the highest

generator of the cylinder and to an external point P at a distance I from Q, PQ being

horizontal and perpendicular to the axis of the cylinder ; the cylinder is then slowly

turned upon its fixed axis in the direction away from P ; show that the string will

slip continually along the whole of the length in contact with the cylinder until

S (the natural length of the part wound up) = a//i, when all slipping will cease, and
that up to this stage the relation between S and (the angle turned through by the

cylinder) is l^^=(l-a<p)e'^^ i-aip, where S= a<l>. [Coll. Exam., 1880.]

496. Elastic string, any forces. To form the equations of
equilibrium of an elastic siring under the action of any forces.

Let dsi be the unstretched length of any element ds of the

string. Then by Hooke's law ds = dSi(T+ E)/E. The foro^ op

the element, due to the attraction of other bodies, will bf; j.rc

portional to the unstretched length. Let then the resolve. ;^i,rtf

of these forces along the principal axes of the string be iV.., 6ri 's,

,

Hdsi, as in Art. 4^^^. The equations of equilibrium (1), (2), aui

(3) of that article are obtained by equating to zero thr -^solved

parts of the forces along the principal axes of the curv.. ; uhese

equations will therefore apply to the elastic string if we replace

Fds, Gds, Hds, by Fds^, Gds^, Hdsi. The equations of equilibrium

for the elastic string may therefore be derived from those for an

inelastic string by treating the forces as

Fdsr,
E pi pi

^^^ T+E' ^^^ 'f+E'T + E'

i.e. reducing all the impressed forces in the ratio E : T + E.

497. Suppose, for example, that the string rests on any smooth surface. The
resolution along the tangent to the string (as in Art. 479) gives

(-!) dT+ Xdx+Ydy + Zdz = 0.
1

T + ^,+ iiXdx + Ydy + Zdz) = C.
2E

It follows that T-f T*/2£ + the work function of the forces is constant along the

whole length of the string. Art. 479.

Ex. When gravity is the only force acting, show that the equations of equili-

brium of an elastic string corresponding to (1), (2), (3) of Art. 479 may be written

in the simple forms

J12
Rp'- -WZ ( "'"~ "*"

21; )
*^" "^

~ '"''' ^^" ^'

where T is the tension at any point P, R the outward pressure of the surface on the

string per unit of unstretched length, x the angle the radius of curvature of the

string makes with the normal to the surface, z and z' the altitudes of P and the
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ii

anti-centre S above a certain horizontal plane, the angle the vertical makeB with

the plane containing the normal to the Hurface and the tangent to the string, and

10 the weight of a unit of unstretched length. If PS be a length measured out-

wards along the normal to the surface equal to the radius of curvature of a normal

section of the surface drawn through the tangent at P to the string, .S' is the anti-

centre of P,

If the surface in one of revolution with its axis vertical, we replace the third

equation by Tr' Bin\(/ = Ji, where r' is the distance of P from the axis of the surface,

^ the angle the tangent to the string makes with the meridian and li is a constant.

See \rt. 481.

498. To take another example, suppose that the elastic string is under the

action of a central force. Taking moments about the centre of force, and resolving

along the tangent to the string, we find, after integration,

Tp= A, T +
^j^

+ jFdr = C.

These equations may be treated in a manner somewhat similar to that adopted

for inelastic strings.

499. Ex. 1. An elastic string rests in equilibrium in the form of an arc of a

circle under the influence of a centre of force at any unoccupied point of the circle.

Show that the law of force iBF=%(l + ~k)-r^\ 2E r^J

Ex. 2. An elastic string, whose elements repel each other with a force propor-

tional to the product of their masses into the square of their distance, rests in

equilibrium on a smooth horizontal plane. If T be the tension at a point whose

d* c*
distance from one extremity is y, show tnat t-.(T + E)^ + -—

r, = 0, where c is a
ay* ' 1 + K

constant depending on the nature of the string. Explain also how the constants of

integration are to be det3rmined.

Ex. 3. An elastic string, whose elements repel each other with a force which

varies as the distance, rests on a smooth horizontal plane. If 21^ and 21 be the

unstretched and stretched lengths of the string, show that c/ = tanc/,, where E'''^dx

is the force due to the whole siring on an element whose unstretched length is dx

when placed at a unit of distance from the middle point of the string.

Ex. 4. A uniform elastic string lying on a rough horizontal plane is fixed to

two points, and forms a curve every part of which is on the point of motion.

Show that the tension is given by the equation (l + r) )(tz) ''"''^l
^M^'^'V.

where w is the weight per unit of length of the unstretched string, n the coefiicient

of friction and p the radius of curvature. [Math. Tripos, 1881.]

Ex. 0. An elastic string has its two ends fastened to points on the surface of a

smooth circular cylinder of which the axis is vertical ; show that in the position of

equilibrium of the string on the surface the density of the string at any point varies

as the tangent of the angle which the osculating plane at that point makes with a

normal section of the cylinder through the direction of the string. [Math. T., 1886.]

500. A heavy elastic string is suspended from two fixed points

and is in equilibrittni in a vertical plane. To find its equation.
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We may here use the same method as that employed in Art.

443 to determine the form (»t' e(|nilibrium of an inelastic string.

Referring to the figure of that article, let the unstretched length

of CP (i.e. the arc measured from tho lowest point up to any point

P) be Si, and let the rest of the notation be the same Jis before.

Consider the eijuilibrium of the finite portion CP
;

r cos i/r = T, (1) T»m ^|r = ws, (2),

dij^ ws.
(3).

From these equations we may deduce expressions for x and ij

in terms of some subsidiary variable. Since Si = c tani/r by (3), it

will be convenient to choose either Si or yjr as this new variable.

Adding the scjuares of (1) and (2), we have

T3 = w2(c- + s,-) (4).

Since dx/ds = cos yfr and dy/ds = sin yjr, we have by (1) and (2)

f2\ , fwc/^ /T\, wc
, .?, + \/(c- + .V)

a; = |^ ds=
I

^Wl+-^,jrf5, = ^,s, rclog '—^— .

y=j '-^-' ds = iul^^(l+
j^i

ds, =^ (c- + si^) + \/(c' + s,%

where the constants of integration have been chosen to make

« = and y = c + c-iv/2E at the lowest point of the elastic catenary.

The axis of x is then the statical directrix, Art. 494, Ex. 2.

SOI. Ex. 1. Prove the following geometrical properties of the elastic catenary

J2 /-Sj-oa

(1) ivy = T+-
2A" (2)

p=£!±*i']i + |v(ci'+V)j,

(3) «= ^-i +
2l; fiN%' + V)+c^log

*i + V(c= + V)}
all of vhich reduce to known properties of the common catenary when E is made

infinite.

Ex. 2. Let i¥, M' be two points taken on the ordinate FN so that MM' is

bisected in N by the statical directrix and let each half be equal to T'^j'IEw. If M
be above the directrix draw ML perpendicular to the tangent at P. Show that

T=w .PM, s^= PL, c= ML, o.MN='r-j2E and that M' is the projection of the

anti-centre on the ordinate.

^^ Ex. 3. An elastic string, uniform when unstretched, is hung up by two points.

Prove that the intrinsic equation of the catenary in which it will hang under

gravity is $= tan \p + It&n r// sec t/' + log tan ( -- + |-
)

}-
,

where c is the natural length of the string whose weight is equal to the tension at

the lowest point, from which s is measured, and X is the natural length of the

string whose weight is equal to the modulus of elasticity. [Coll. Exam., 1880.]



CHAPTER XI.

THE MACHINES.
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602. It is iiauiil to rf^'urd the complex machines as constructed

of certain simple combinations of cords, rods and ])lanes. These

combinations are called the mechanicdl imwem. Though given

variously by different authors, they are generally said to be six in

number, viz. the lever, the pulley, the wheel and axle, the inclined

])lane, the wedge and the screw*.

Mechanical advantage. In the simplest cases they are

usually considered as acted on by two forces. One of these, viz.

the force applied to work the machine, is usually called the power.

The other, viz. the force to be overcome, or the weight to be raised,

is calK'd the lueight. The ratio of the weight to the power is called

the mechanical advantage of the machine.

A03. As a first approximation, we suppose that the several parts of the machine

are smooth, the cords used perfectiy flexible, t)ie solid parta of the machine rigid,

and so on. In some of the machines these suppositions are nearly true, but in

others they are far from correct. It is therefore necessary, as a second approxima-

tion, to modify these suppositiona. We take such account as we can of the

rouRhness of the surfaces in contact, the rigidity of the cords and the flexibility of

the materials. After these corrections have been made, our result is still only an

approximation to the truth, for the corrections cannot be accurately made. For

example, in making allowance for friction we assume that the bodies in contact are

equally rough throughout, and that the coefficient of friction is properly known.

The results however thus obtained are much nearer the real state of things than

our first approximation.

504. Efficiency. Suppose a machine to bo constructed of a

combination of levers, pulleys, &c., each acting on the next in order.

* In the descriptions of the machines given in this chapter, the author has
derived much assistance from Capt. Rater's Treatine on Mechanics in Lardner'a

Cyclopa)dia, 1830, Pratt's Mechanical Fhilosophy, 1842, Willis' Principles of
Meclianiam, 1870, and other books.
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Let a force P acting at one extremity of th(> ci^nihination pnxhico

a force at the other extremity stich that it could Iw haliiticed by a

force Q acting at the same point. Then, for this machine, 7* may

be regarded as the power and Q as the weight.

Let tho machine be made to work, so that its several parts

receive «mall displacements consistent with their geometrical

relations. Such a displacement is called an actual displacement

of tho machine. Taking this as a virtual displacement, the work

of tho force P is equal to that of tho force Q together with the

work of the resistances of the machine. These resistances are

friction &c., in overcoming which some of the work done by tho

power is said to b(^ wasted or lost. The work done '>y the force Q
is called the useful ivork of the machine. The efficiency of a

machi)\e is the ratio of the useful work to that done by the power

token the machine receives any sviall actual displacement. It

appears that the efficiency of a machine wnmld be unity if all

its parts were perfectly smooth, the solid parts perfectly rigid, and

so on. In all existing machines however tho efficiency is neces-

sarily less than unity.

606. Ex. In any machine for raising a weight show thaf;, if the weight

remains suspended by friction when tho machine is left free, tho eflicioncy is less

than one half. If however a force P bo required to raise the weight, and a forco P'

be required to prevent it from descending, show that the ellicienoy will be (P + P')I2P,

supposing the machine to be itself accurately balanced. [St John's Coll., 1881.
J

When the force P just raises a weight Q, the friction acts in opposition to the

power P; on tho contrary it assists P' in supporting Q. The frictions in the two

cases are evidently the same in magnitude, being the extreme amounts which can

be called into play. Let x, y be the virtual displacements of the points of appli-

cation of P, Q when the machine is worked, and let the same small displacement be

given in each case. Let U be the work of the frictions. Then Px=Qtj+ U, and

P'x — Qy-U. The eiliciency of the machine is measured by the ratio QyfPx,

Eliminating U, we easily obtain the result given. If any of the resistances, other

than friction, have no superior limit, but continually increase with the increase of

the power, it is easy to see by the same reasoning that the efficiency will be less

than the value found ibove.

506. The lever. A lever is a rigid rod, straight or bent,

moveable about a fixed axis. The fixed axis is usually called

the fulcrum. The portions of the lever between the fulcrum and

the points of application of the power and the weight are called

the arms of the lever. The forces which act on the lever aro

usually supposed to act in a plane which is perpendicular to the

fixed axis.

W}
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When the forces act in any directions at any points of the body, the problem is

one in three dimensions, the solution of which is given in Art. 2G8. In what follows

we shall also neglect the friction at the axis, as that case has already been considered

in Art. 179.

507. To find the conditions of eqwilibrium of two forces acting

on a lever in a plane perpendicular to its axis.

The axis of the lever is regarded in the first approximation as

a straight line; let C be its intersection with the plane of the forces.

yiC'

Let the forces be P and Q. Let them act at A and B on the arms

CA, CB in the directions DA, DB, When the lever is in its

position of equilibrium, the forces P, Q and the reaction at the

fulcrum must form a system of forces in equilibrium. Hence the

resultant of P and Q must act along DC, and be balanced by the

pressure on the fulcrum.

The conditions of equilibrium follow at once from the principles

stated in Art. 111. Let CM, CNhe perpendiculars drawn from C
on the lines of action of the forces. Taking moments about C, we

have P.CM-Q.CN = 0. It follows that in a lever, the power

and the weight are to each other inversely as the perpendiculars

draiun from the fulcrum on their lines of action.

508. To find the pressure on the fulcrum, we find the resultant of the two forces

P, Q by any one of the various methods usually employed to compound forces.

For example, if the position of D be known, let </> be the angle ADB; we then have

B^=F^+Q- + 2PQcos(p, where R is the required pressure.

Let GA = a, CB= b, and let o, j3 be the angles the directions of the forces P, Q
make with the arms CA, CB. Let y be the augle ACB. If these quantities are

known, we may find the pressure by another method. Let 9 be the angle the line

of action of R makes with the arm CA, so that the angle DCA is n-O. Then,

resolving the forces along and perpendicular to CA, we have

Jv cos ^=P cos a + (? cos (y- ^)\

R sin 6^P sin a+Q sin (7 - ^3)^
'

whence tan d and ]t can be easily found.

Other relations between P, Q and R may be found by taking moments about A,

B or some other point suggested by the data of the question. In the same way
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other resolutions will sometimes be more convenient than those given above as

specimens,

509. When several forces act on the lever, we find the condition of equilibrium

by equating to zero the sum of their inoments about the fulcrum, each moment being

taken with its proper sign. Ihe moments are taken about the fulcrum to avoid

introducing into the equation the reaction at the axis.

To find the pressure on the fulcrum we transfer each force parallel to itself, in the

plane perpendicular to the axis, to act at the fulcrum. We thus obtain a system of

forces acting at a single point, viz. the intersection of the axis with the plane of the

forces. Tlie resultant of these is the pressure on the axis.

610. In the investigation the weight of the lever itself has been supposed to be

inco'.isiderable compared with the forces P and Q. If this cannot be neglected, let

W be the weight of the lever. There are now three forces acting on the body

instead of two. These are P. Q acting at A and li, and W acting at the centre of

gravity G of the lever. Let the fulcrum be horizontal, and let CL be the per-

pendicular distance between the fu'crum and the vertical through G. Let us also

suppose that in the standard figure the weight W and the force P tend to turn the

lever round the fulcrum in the same direction. The equation of moments now
becomes P .CM~Q .CN+W. CL = 0. The pressure on the fulcrum is found by

compounding the forces P, Q, W.

511. Levers are usually divided into three kinds according to the relative

positions of the power, the weight, and the fulcrum. In the first kind, the fulcrum

is between the po^^er and the weight. In the second kind the weight acts between

the fulcrum and the power, and in the third kind the power acts between the fulcrum

and the v/eight. The investigation in Art. 507 appli'^s to all three kinds, the only

distinction being in the signs given to the forces and the arms, in resolving and

taking moments.

512. The mechanical advantage of the lever is measured by the ratio Q : P.

This ratio has been proved to be equal to CN : CM. By applying the power so

that its perpendicular distance from the fulcrum is greater than that of the weight,

a small power may be made to balance a large weight. Thus a crowbar when used

to move a body is a Isver of the second kind. The ground is the fulcrum, the weight

acts near the fulcrum, and the power ia applied at the extreme end of the bar.

513. If the lever be slightly displaced by turning it round its

fulcrum through a small angle, the points of application A, B o{

the forces P, Q are moved through small arcs A A', BB', whose

centres are on the fulcrum. Thus the actual displacements of the

points of application of the power and the weight are proportional

to their distances from the fulcrum. It is however the resolved

part of the displacement AA' in the direction of the force P which

measures the speed of working For example, if the force P were

applied by pulling a rope attached to the point A, the amount of

rope to be pulled in would be measured by the resolved part

of AA' in the direction of the length of the rope. The resolved

parts o{ AA', BB' in the direction of the forces P, Q are evidently

^4^'. sin a, BB'.m\/3. These are proportional to CA sin a,
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CB sin /3, i.e. to CM, CN. (See fig. of Art, 516.) These resolved

displacements are clearly the same as the virtual displacements

of the points of application ; Art. 64.

If then 1 lechanical advantage is gained by arranging the lever

so that the weight is greater than the power, the displacement of

the weight is less, in the same ratio, than that of the power, each

displacement being resolved in the direction of its own force. It

follows that what is gained in power is lost in speed.

614. The reader may easily call to mind numerous instences in which levers

are used. As examples of levers of the first kind we may mention the common
balance, pokers, &c.

Wheelbarrows, nutcrackers, &c. are examples of levers of the second kind. In

these the weight is greater than the power. They are used when we wish to multiply

the force at our disposal.

In levers of the third kind the weight is less than the power, but the virtual

displacement of the weight is greater than that of the power. Such levers therefore

are used when economy of force is a consideration subordinate to the speed of

working.

515. The most striking example of levers of the third kind is found in the

animal economy. The limbs of animals are generally levers of this description.

The socket of the bone is the fulcrum ; a strong muscle attached to the bone

nc'r the socket is the power ; and the weight of the limb, together with what-

ever rt.'^istance is opposed to its motion, is the weight. A slight contraction of

the mMscle in thi? case gives a considerable motion tc the limb : this effect is

particularly conspicuous in the motion of the arms and legs in the human body ; a

very inconsiderable contraction of the muscles at the shoulders and hips giving the

sweep to the limbs from which the body derives so much activity.

The tieddle of the turning lathe is a lever oi the third kind. The hinge which

attaches it to the floor is the fulcrum, the foot applied to it near the hinge is the

power, and the crank upon the axis of the fly-Nvheei, with which its extremity is

connected, is the weight.

Tongs are levers of this kind, as also the shears used in shearing sheep. In these

cases the power is the hand placed inunediately below the fulcrum or point where

the two levers are connected. Gapt, Katcr's ifechanics.

516. The principle of virtual work may be conveniently used

to investigate the comlitions

of equilibrium in the lever.

Let P, Q be two forces

acting at A and B, and let

C be the fulcrum. If the

lever be displaced round C
throu- a small angle B6, so

that A, B come into the positions A', B', we have

P . AA' sin a - Q . BB' sin ;S = 0,
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where a, ^ have the same meanings as in Art. 507. This im-

mediately leads to the result P . CM = Q . CX.

617. Boberval's Balance. Thi.s nmchine supplies an excellent example of

the principle of virtual

work. In this balance

the four rods AA\ A'Jl',

B'Ji, BA are hinged at

their extremities and

form a parallelogrftui.

The sides .-(L', A'W avc

also hinged at the

points C, C to a fixed

vertical rod OCC. The Hue CC must be parallel to .^.1' and BB', but need not

necessarily be equidistant from them. Two more rods MM', NN' are rigidly

attached to AA', BB' so as to be at right angles to them. These support the weights

P and Q suspended in scale-pans from any two points // and K. As the comb'ua-

tion turns smoothly round the supports C, C, the rods A A', BB' remain always

vertical, and MM', NN' are always horizontal.

The pecuUaritii of the jiKichine is that, if the weights P, Q balance in any one

position, the equilibrium is not disturbed by moving either of the weights along the

supporting rods MM', NN'. It may also be remarked that, if the machine be turned

round its two supports C, C so that one of the rods MM', NN' descends and the

other ascends, the two weights continue to balance each other.

To show this, let the eciual lengths CA, C'A' be denoted by n, and the equal lengths

CB, C'B' by b. Let the inclination to the horizon of the parallel rods AB, A'B' be

d. If the machine is displaced so that the angle d is increased by d0, the rod ^.4'

descends a vertical space a cos Odd, and the rod BB' ascends a space b cos 0dO.

When the weights of all the parts of the machine are neglected in comparison with

P and Q, we have by the principle of virtual work Pa coa Odd --Qb cob OdD. This

gives Pa — Qb ; thus the condition of equilibrium is independent of the positions

//, K at which P and Q act on the supporting rods, and is also independent of the

inclination 8 of the rods AB, A'B' to the horizon.

If the balance is so constructed that the weights P, Q are equal, when in equili-

brium, we can detect whether any ditTerence in weight exists between two given bodies

by simply attaching them to any points of the supporting rods. The advantage of

the balance is that no special care is necessary to place them at equal distances

from the fulcrum.

Ex. 1. If the weights of the rods AB, A'B' are w, iv' and tlie weights of the

bodies AA'M', BB'N' are ir, W, prove that the condition of equilibrium is

(P+]r)<i-(Q\-}V')b + i{w + %v'){a-b) = 0.

Thence show that, if the weights P, Q balance in one position, they will as before

balance in all positions. Find also the point of application of the resultant pressure

of the stand EF on the supporting table.

Ex. 2. If the balance be at rest and horizontal, prove that the horizontal

pressure on either support bears to either weight the ratio of the difference of the

horizontal distances of the centres of gravity of tlie weights from the central plane

of the balance to the distance between the supports. [Math. Tripos, 1874.]

Let A', Y; X', 1", be the horizontal and vertical components of the reactions at

R. s. I. 23
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flensibility is therefore secured by so constructing the balance that the expression
on the right-hand side of this equation is as large as possible.

The sensibility is therefore increased (1) by increasing the length of the rod AD,
(2) by diminishing the length of the rod OC, (3) by diminishing the weight of the

beam. If the balance is so constructed that h and c have opposite signs, the
sensibility can be greatly increased. This requires that the fulcrum should lie

between G and C.

The third requisite of a balance is usually called stability. ^Vhen the balance
is disturbed, it should return readily to its horizontal position. The beam
oscillates about its position of equilibrium, and the quicker the oscillation the

sooner can it be determined by the eye whether the mean position of the beam
is or is not horizontal. The balance should be so constructed that the times of

oscillation are as short as possible. The discovery of the natare of the oscillations

is a problem in dynamics, and cannot propeiiy be discussed from a statical point

of view.

02O. Ex. 1. If one arm of a common balance, whose weight can be neglected,

is longer than the other, prove that tb- tiue weight of a body is the geometrical

mean of the apparent weights when weighed first in one scale and tht,..v in the

other. [Coll. Exam.]

Ex. 2. A balance has its arms unequal in length and weight. A certain

article appears to weigh Qy or Q., according as it is put in the one scale or

the other. Similarly another article appears to weigh 72, or R.,. Find the true

weights of these articles; and show that if an article appears to weigh the

g,2?3 - V„/?i

Qy-Q.-n^ + R.,'

[Coll. Exam., 1886.]

Ex. 3. In a false balance a weight P appears to weigh Q, and a weight P' to

weigh Q': prove that the real weight A' of what appears to weigh 1' is given by

X{Ci-q')=Y{P-F')+P'Q-rQ'. [Math. Triporf, 1870.]

Ex. 4. A true balance is in equilibrium with unequal weights P, Q in its scales.

If a small weight be added to P, the consequent vertical displacement of Q is equal

to that which would be the vertiaal displacement of P were the same small weight

to be added to Q instead of to P. [Math. Tripos, 1878.]

Looking at the expression for tan d in Art. .518, we notice that the changes

produced in d by altering either P or Q by the same small quantity are equal itli

opposite signs. The effect of increasing P ox Qis therefore to turn the balai the

one way or the other through the same small angle. The vertical displaci aents

of the weights are therefore equal in the two cases.

Ex. 0. If the tongue of the balance be very slightly out of adjustment, prove

that the true weight of a body is nearly the arithmetic mean of its apparent weight?,

when weighed in the opposite scales. [Coll. Exam.]

Ex. 6. A delicate balance, whose beam was originally suspended by a knife-

edged portion of itself (higher than its centre of gravity) resting upon a horizontal

agate plate, has its knife-edge worn down a distance e so that it becomes curved

(curvature = 1//-), and has a corresponding hollow made in the agate plate

(curvature = l/p). If slightly different weights P and Q be placed in the scales

(whose weights may be neglected), show that the reciprocal of the sensibility is

same in whichever soale it is put, its weight is

increased by {P+Q + W) (-.".) [Coll. Exam .890.]
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The common steelyard is a lever ACB with unequal
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531. The Steelyards.

arms AC, CIl, the fulcrum

being situated at a point a

little above C. The body Q
to be weighed is s uspended

from the extremity II of the

shorter arm, and a given

weight P is moved along the

longer arm CA to some point // such that the system balances. Let G be the

centre of gravity cf the beam, w its weight. The three weights, P acting p,t H, to at

G, and Q at P are in equilibrium. Taking moments about C, we have

P.HC + W.GC-.Q.CP (1).

Let D be a point on the shorter arm CB, such that te .GC=P .CD; the

equation (1) then becomes P.HD-Q.CP (2).

Thus the weight of Q is determined by measuring the distance HD. To effect

this easily, we measure from D towards .1 a series of lengths D]'\, E^K.,, E^E.^, &c.

each equal to CP. The weight of the body Q is therefore equal to P, 2P, 3P, &c.

according as the weight P is placed at the points Ei, E„, E.^, Ac. >vhen the system

is in equilibrium. The iutervals EJ'lj, E^E.^, Ac. are usually graduated into

smaller divisions, so that the length IID can be easily read. The points E^, E.,,

&c. ar'j mavked 1, 2, A-c. in the figure.

An instrument of this form was used by the Romans and is therefore often

called the i'.oman steelyard.

52S. In the Danish steelyard tne weights P and Q act at fixed points of the

lever, bul the fulcrum or
^

point of suppc t C is made ^j I -j_

to slide along the rod All '
' q'

until the system b.alances.

The weight P, being fixed,

can be conveniently joined

to that of the lever. Let,

then, P' be the weight, of the instrument, so that P'=P + !(', and let G be the centra

of gravity. Taking moments about C, we evidently have P'.GC=Q .CB, and

.•. BC— ' . This expression enables us to calculate the values of BC when

Q— P', 2P', 3P', ac. Marking these points of the rod AB with the figures 1, 2, 3,

&c. , the weight of any body pL^ced at B can be read off when the place of the fulcrum

C has been found by trial.

If *,') C 'le tv.ij suvcessive marks of graduation when the weights suspended at B

are Q aud Q, + !i, we ea:-ily find that ^ ,
- Tr-, - „,

'
, , ; since the right-hand side

is constant whe.i S is gi\ n, we infer that the marks of graduation on the bar are

.such that theii iUstancts fiom B form a harmonical progressjon when the weights

foim an arithniatical progrLssion. Thus hi the cojumo/t steelyard the distances of

the gruduations from a certain point are in arithmetical progression, and in the

Dani;h steelyard ;; harmonical progression.

£33. The adnint'igi's of a steelyard over tlte balance are, (1) the exact adjust-

iiicnt oi: the instrunient is made by moving a single weight P along the rod, (2) when

T

!('*
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the body to be weighed is heavier than the fixed weight the pressure on the point of

support is less than in the balance. The steelyard is therefore better adapted to

measure large weights. There is on the other hand this advantage in the balance,

that by using numerous small weights the reading can be effected with greater

precision than by subdividing the arm of the steelyard.

524. Ex. 1. The weight of a common steelyard is ic, and the distance of its

fulcrum from the point from which the weight hangs is a when the instrument is in

perfect adjustment ; the fulcrum is displaced to a distance a-\-a from this end ; show

that the correction to be applied to give the true weight of a body which in the

imperfect instrument appears to weigh W is (ir+P + «>)o/(«+o), P being the

moveable weight. [Math. Tripos, 18SL]

Ex. ',J. In a weighing machine constructed on the principle of the common
steelyard the pounds are read off by graduations reaching from to 14, and the

stones by wt ights hung at the end of the arm ; if the weight corresponding to one

stone be 7 oz., the moveable weight 4 lb.; and the length of the arm one foot, prove

that the distances between the graduations are Jin. [Math. Tripos.]

Ex. 3. Li graduating a steelyard to weigh pounds, marks are made with a file,

a weight ,r being removed for each notch. With the moveable weight P at the end

of the beam, n lbs. can be weighed after the graduation is completed, (/i + l)

before it is begun. Show that n (k + 1) a;= 2P, and find the error made in weighing

m pounds. The centre of gravity of the steelyard is originally under the point of

.suspension. [Coll. Exam., 18.S5.]

Ex. -1. Show that, if a steelyard be constructed with a given rod whose weight

is inconsiderable compared with that of the sliding weight, the sensibility varies

inversely as the sum of the sliding weight and the greatest weight which can be

weighed. [Math. Tripos, 1854.]

Ex. 5. A common steelyard is graduated on the assumptions that its weight is

Q, and that the moveable weight is W, both which assumptions are incorrect. If

two masses whose real weights are P and R appear to weigh P + A' and R + 1', then

the weight of the steelyard and the moveable weight are less than their assumed

. \-. ^, . y.^ 1') +— (PT-ii-Y), where b, a are the distances

from the fulcrum to the centre of gravity of the bar and to the point of attachment

of the substance to be weighed, and D =P-R +X~Y. [Math. Tripos, 1887.]

Ex. 6. The sum of the weight of a certain Roman steelyard and of its moveable

weight is .S', the fulcrum is at the point C and the body to be weighed is hung at

the end B. The steelyard is graduated and after graduation the fulcrum is shifted

towards B to another point €'. A body is then weighed, the old graduation being

used, and the apparent weight is W. Prove that the true weight is greater than the

apparent weight by {S + W) CC'IBC'. [Trin. Coll., 1889.]

Ex. 7. If, on a common steelyard, the moveable weight P, which forms the

power, be increased in the ratio 1 + k : 1, prove that the consequent error in Q, the

weight to be found, is kY, where Y is the weight which must be removed from (^ in

order to preserve equilibrium when P is moved close to the fulcrum.

[Coll. Exam., 1885.]

Ex. 8. In the Danish steelyard, if «„ be the distance of the fulcrum from tliat

€nd of the steelyard at which the weight is suspended, the weight being nlhs., prove

that :— - ^- + - =0. [M»th. Tripos, 1859.]

W
values by — (A' - Y) and j (X

*n+2 'n+i
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Ex. 9. An old DauiHh Hteelyard, originally of weight W lbs., and accurately

graduated, is found coated with rust. In conaequence of the rust, the apparent

weights of two known weights of A' lbs. and Y Iba. are found when weighed by the

steelyard to be (A' - x) lbs., (Y- y) lbs. respectively. Prove that the centre of gravity

of the rust divides the graduated arm in the ratio W{x-ij) : Yx-Xy; and that its

'^y. [Math. Tripos, 1885.]weight IS, to a first approximation, yX + X

Ex. 10. A brass figure AliDC, of uniform thickness, bounded by a circular arc

BDC (greater than a semicircle) and two tangents AB, AC inclined at an angle 20,

is used as a letter-weigher as follows. The centre of the circle, 0, is a fixed point

about which the machine can turn freely, and a weight P is attached to the point ^,

the weight of the machine itself being w. The letter to be weighed is suspended

from a clasp (whose weight may be neglected) at D on the rim of the circle, OD
being perpendicular to OA. The circle is graduated, and is read by a pointer which

hangs vertically from O : when there is no letter attached, the point A is vertically

below and the pointer indicates zero. Obtain a formula for the graduation of the

circle, and show that, if P = j!y sin-a, the reading of the machine will be Iw when

„, , .^i ., i- 1 1 1 i i -, i(7r + 2a)sin-o + 2sinacoao)
OA makes with the vertical an angle equal to tan i '' ' '

(tt + 2o) siu'* a + 2 cos a

[Math. Tripos, 1878.}

525. The Pulley. The common pulley consists of a wheel

which can turn freely on its axis. A rope or cord runs in a groove

formed on the edge of the wheel, and is acted on by two forces P
and F' one at each end. If the pulley is smooth and the weight

of the string infinitesimal, the tension is necessarily the same

throughout the arc of contact. It follows that the forces P, P'

acting at the extremities of the string are equal to each other and

to the "' »nsion. See fig. 1 of Art. 527. The same thing is true

if the pulley is rough and circular, but can turn freely about a

smooth axis; Art. 197,

526. When the axis of the pulley is fixed one of the forces

P, Q is the power and the other is the weight. Thus a fixed

pulley has no mechanical advantage in the technical sense. A
machine, however, which enables us to give the most advantageous

direction to the moving power is as useful as one which enables a

small power to support a large weight.

527. A moveable j^ulley can however be used to obtain

mechanical advantage. Suppose a perfectly flexible string to

be fixed at A, pass under a pulley G of weight Q, and to be acted

on at P by a force P ; see fig. 2. In the position of equilibrium

the strings on each side of the pulley meet in the lino of action of

the force Q (Art. 34), and must therefore make equal angles with
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the vertical (Art. 27). Let a be the inclination of either string to

the vertical, then 2P cos a^Q.

Fig. 1. Fig. 2.

The mechanical advantage is therefore 2 cos a. Unless a is less

than 60^ the mechanical advantage is less than unity. When the

strings are parallel, we have 2P = Q.

538. Ex. 1. In the single moveable pulley with parallel strings a weight W is

supported by another weight P attached to the free end of the string and hanging

over a fixed pulley. Show that, in whatever position the weights hang, the position

of their centre of gravity is the same. [Math. Tripos, 1854.]

Ex. 2. A string is atta'jhed to the centre of a heavy circular pulley of

radius r and is then passed over a fixed peg, then under the pulley, and afterwards

passes over a second fixed peg vertically over the point where the string leaves the

pulley and has a weight W attached to its extremity. The second peg is in the

same horizontal line as the first peg and at a distance ^r from it. If there is

equilibrium, prove that the weight of the pulley is '}][', and find the distance between

the first peg and the centre of the pulley. [Coll. Exam., 1880.]

Ex. 3. An endless string without weight hangs at rest over two pegs in the

same horizontal plane, with a heavy pulley in each festoon of the string; if the

weight of one pulley be double that of the other, show that the angle between the

portions of the upper festoon must be greater than 120\ [Math. Tripos, 1857.]

529. Systems of pulleys may be divided into two classes,

(1) those in which a single rope is used; and (2) those in which

there are several distinct I'opes. We begin with the first of these

systems.

Two blocks are plriced opposite each other, containing the

same number of pulleys in each. Three are represented in

each block in the figure. The string passes over the pulleys

in the order ABBEOF, and has one extremity attached to one

of the blocks. The power P acts at the other extremity of the

string, while the weight Q acts on a block.

Let n be the number of joulleys in either block, ]V the

h
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iveight of thu lower block ; wo then have Q+W supported by

I)

i';

'U
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power P can support a weiglit = a , /'+ —

7

« - 1 (rt -

liowever that a very slight deviation from the true proportion of the radii will

cause the rope to be unequally stretched, even the thickness of the rope must be

allowed for. Sonic parts of the rope are therefore unduly tij'ht, and others hoconio

nearly slack. This mode of arrant^inR the pulleys is due to White. It is not

now much used.

631. Ex. In that system of pulleys in which the same cord passes round all

the pulleys it is found that on account of the rigidity of the cord and the friction

of the axle a weight of /' lbs. requires al' + p lbs. to lilt it by a cord passing over

one pulley. Prove that when there are n |)arallel cords in the above system a

"("-1)
1 .• J iU' - p, and hnd the

additional weight required to be added to 1' to raise Q. [Math. Tripos, 1884,]

The rigidity of cordage was made the subject of many experiments by Coulomb,

Art. 170. The discussion of these would recpiire too much space, but the general

result may be shortly stated. Suppose a cord A lit' I > to pass over a pulley of

radius r, touching it at II and C, and moving in the direction AlICI). Then

the rigidity of the portion All of the cord which is about to be rolled on the

pulley may be allowed for, by regarding the cord as perfectly flexible and applying

a retarding couple to the pulley whose moment ia a + bT, where a and b are constants

which depend on the nature and jizo of the cord, but are sensibly independent

of the velocity. If 7" bo the tension of the portion CD of the cord which is

being unwound from the pulley, its rigidity may be represented in the same way by

the application of a couple equal to a' + b'T', The values of a', b' are so much less

than those of a, b, that this last correction is generally omitted. Taking moments

about the centre this gives T' -T = , where r is the radius.
r

532. When several cords are used pulleys may be combined in

various ways to produce meclianical advantage. Two systems are

usually described in elementary books, both of which are repi -

sented in the figure.

In fig. (1) each pulley is supported by a separate string, one end

Fig. 1. Fig. 2.

G B A
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therefore have T^ = 2Ti + w, = 2P + Wi- Taking the other pulleys

in order, we see that we have the same results as before except that

the iv'h have opposite signs. We thus have

T, = 2T, + w, = 2-P + 2?f, + w,,

T^ = '2T, + w, = 2='P + 2'^w, + 2w, + W3,

and .so on. Since the pulleys are all attached to the weight

we have T, + 2^ + ... + T,, = Q + W, where W is the weight of the

bar.

Substituting the values of T^, T<,, &c. in this last equation, we

find Q + TT = (2» - 1) P + (2"-' - 1) w. + (2"-^ _ i) j^,, + . . . + vj^-i.

If all the pulleys are of equal weight this reduces to

Q+W = (2» - 1) (P + w) - 7m.

When the pulleys are arranged as in fig. (1), the mechanical

advantage is decreased by increasing the weights of the pulleys.

In fig. (2) the reverse is the case, for the weights of the pulleys

assist the power in sustaining the weight.

To deduce the relation between the power and the weight

from the principle of virtual work, let us first imagine the bar to

be held at rest and the highest pulley to be moved downwards

through a space q. Each of the strings on the two sides of that

pulley is equally slackened by the space q. To tighten the

string, the second highest pulley must be moved downwards

through a space 2q, and so on. The power must descend a space

2"r/. To restore the upper pulley to its original position let us

now suppose the whole system to be moved upwards through a

space equal to q, Art. 65. On the whole, the weight Q, together

with the bar ABC, has ascended a space q; the downward dis-

placements of the several pulleys in order, counting from the

highest, are respectively 0, {2—l)q, (2^ — l)q ; while the

downward displacement of the power P is (2" — l)q. The prin-

ciple of work at once yields the equation

(Q-\^W)q = ^Vn-^{2-l)q + Wn..A^'-l)q+
H-w,(2"-'-l)9 + P(2»-l)5.

Dividing by q we have the same relation as before.

684. We notice that the bar ADC will not remain Iiorizontal unless the weight

Q is fastened to it at the proper point. The bar is acted on at the points A, It, &c.

by the tensions T,, 2',, Sec, and these are to be in equilibrium with the weight Q
acting at some point // and the weight W of the bar at its middle point G. The

intervals AB, DC, &c. depend on the radii of the pulleys. If the radii be a, , a-j, &c.

?
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we have Ali-'Ia^ - «, , IiC=2a.j - a.,, and ho on. Taking moments about A we have

J\.AIi+T3.AC + &c. = Q.AH+W.AG.
This equation determines the position of //.

If the weights of tlie strings or ropes cannot be neglected, we may suppose the

weight of the portion of string betwei-n the pulleys 3/, , il/j included in the weight

jOj, that of the portion between the pulleys M^, M^ included in 1^2, and so on. The

portions of string which join the points A, li, C, Ac. to the pulleys are supported by

the fixed beam AliV, &c. in fig. (1), and may be included in the weight of the bar

in fig. (2). The weight of the string wound on any pulley may be included in the

weight of that pulley.

The system of pulleys represented in fig. (1) of Art. 532 is sometimes called the

first syiitem. That represented in Art. 529 is the second system ; while the one drawn

in tig. (2) of Art. 532 is tlie third system.

630. When the weights of the pulleys are neglected and each hangs by a

separate string, we can easily find the relation

between the power and the weight when the

strings arc not parallel.

Let 2a,, 2an, 203, &0. be the angles be-

tween free parts of the strings which pass

over the pulleys .V, , il/,, .V3, &c. respectively.

Let also T, , T.,, T.j, &c. be the tensions.

Then by the same reasoning as before

T^zzP,
?'a
= 2r,cosa,, r.j = 2r.,co8a2, Ac.

If there are n pulleys we easily obtain Q = 2'^P . cos o, . cos o, . &c. cos a„

.

536. Ex. 1. In that system of pulleys in which all the strings are attached to

the weight, if the weight of the lowest pulley be equal to the power P, of the second

3P, and so on... that of the highest moveable pulley being 3"~-P, the ratio of

P : W will be 2 : 3" - 1. [Math. Tripos, 1866.]

Ex. 2. In that system of pulleys in which each hangs by a separate string

from a horizontal beam the weights of the pulleys, begl;;ning with the highest, are

in arithmetical progression, and a power P supports a weight Q ; the pulleys are

then reversed, the highest being placed lowest, and the second highest placed

lowest but one, and so on, and now Q and P when interchanged are in equilibrium;

show ihat n{Q + P) = '2U', where IF is the total weight of the pulleys, and n the

number of pulleys. [Coll. Exam., 1882.]

Ex. 3. In a system of ft pulleys where a separate string goes round each pulley

and is attached to the weight, if the string which goes over the lowest have the end,

at which the power is usually hung, passed under another moveable pulley and

then over a fixed pulley, and attached to the weight Q ; and if the weight of

each pulley be w and no other power be used, prove that Q= (3.2^-^-n-l)w,
and find the point of the beam at which Q must be hung. [Math. Tripos, 1876.]

Ex. 4. In that system of pulleys in which each of the strings, supposed parallel,

is attached to the weight, if the power be equal to the weight of the lowest pulley,

and if each pulley weigh three times as much as the one immediately below it,

prove that the weight of each pulley is equal to the tension of the string passing

over it. [GoU. Exam.]

Ex. 5. In the system of pulleys in which each hangs by a separate string, all
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the strings being vertical, if ]V be the weight supported, and tc,, ir^ w„ tlic

weights of the moveable pulleys, there will be no mechanical advantage unluss

H'-.r„ + 2{H'-ii>„_,) + 2»("'-«V,) + + 2»-'{H'-»-,)
be positive. [Math. Tripos, I8(i;».]

Ex. 6. In the system of n heavy pulleys in which each hangH by a se])arate

string, P is the power (acting upwards), Q the weight, and U the stress on the

beam from which the pulleys hang : show that Ji is greater than Q{1- 2'") and Il'sh

than (2" - 1) P. [Math. Tripos, 1880.]

Ex. 7. If there be two pulleys, without weight, which hang by separate strings,

the fixed ends only of the string being parallel, and the power horiicoutal, prove

that the mechanical advantage is ^3. [St John'3 Coll., 18H8.]

Ex. 8. In that system of pulleys, in which all the strings arc attached to the

weight, if the power be made to descend through one inch, through what distance

will the weight rise? Illustrate by reference to this system of pulleys the principle

which is expressed by the words, *' In machines, what is gained in power is lost in

time." [Math. Tripos, 1859.]

Ex. 9. In the system of pulleys in which all the strings are attached to the

weight Q, prove that, if the pulleys be small compared with tlie lengths of the

strings, the necessary correction for the weight of the strings is the addition to

Q, IT,, Wj...w„_, respectively, of the weights of lengths

/I, + //a + . . . + V, + h, 2
(//i

-h), 2
(//.J

- ;i,), . . .2 (/*„_, - /<„_„)

of string; where //,, //„, /13.../1,, are the heights of the n pulleys (whose weights are

jPj, i»3...u'„ respectively) above the line of attachment, supposed horizontal, of the

strings to the weight Q, and /( the height of the point of attachment of the power

above the same line. [Math. Tripos, 1877.]

Ex. 10. In that system of pulleys in which the strings are all parallel, and

the weights of the pulleys assist the power, show that, if there are n pulleys,

each of diameter 2» and weight w, the distance of the point of suspension of

the weight from the line of action of the power is equal to

2»+»(^4-[(h-3)2'' + « + 3]w
a,

2 (2» - 1) y
where Q is the weight. [Math. Tripos, 1883.]

Ex, 11. In a system of four pulleys, arranged so that each string is attached to

a bar carrying the weight, the string which usually carries the power is attached to

one end of the same bar, and the fourth string to the other end. The weight and

diameter of each pulley are respectively double of those of the pulley below it, and

the strings are all parallel. The weight being 33 times that of the lowest pulley,

find at what point of the bar it is hung. [Trin. Coll., 188u.]

Ex. 12. In the system of pulleys, in which each pulley hangs by a sejjarate

string with one end attached to a fixed beam, there are n moveable pulleys of

equal weight w. The rth string, counting from the string round the highest

pulley, cannot bear a greater tension than T. Prove that the greatest weight

which can be sustained by the system is 2"-'+' T- (2"-''+i - 1) iv. [Trin., 1890.]

Ex. 13. It is found that any force P being applied to the extremity of a st ing

passing over a pulley can just raise a weight P(l - d). In the system of pulleys in

which each hangs by a separate string a weight Q is just supported, the weight of

each pulley being aQ. If a and are small quantities, whose squares and products

may be neglected, show that an additional power equal to nOQji" can be applied

without affecting the equilibrium. [Coll. Exain., 1888.]

* i
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637. The Inclined Plane. To find the relation between the

power and the weight in the inclined plane.

Let AB ha the inclined plane, C any particle situated on it.

Let CN be a normal to the plane and CV vertiail ; let a be the

inclination of the plane to the hori-

zon, then the angle NOV— a. Let

Q be the weight of C, P a force

acting on G in the direction CK,

where the angle NCK =
<f>.

It is

supposed that CK lies in the ver-

tical plane VCN.

If the plane is smooth the reaction R of the plane on the

particle acts along the normal CN. We then have by Art. 35

^ = -^= -«—
(1)

sin a 8in<^ sin(<^ — o)

It is necessary for equilibrium that R should be positive, for

otherwise the particle would leave the plane. It follows from

these equations that <^ must be greater than a. This follows

also from an examination of fig. (1), for Q acting along VC and

R along CN cannot be balanced by a force P unless its direc-

tion lies within the angle formed by CV and NC produced.

If P act up the plane, = ^tt and P = Q sin a, R = Q cos a.

If P act horizontally, «^ = ^tt 4- o, and P = Q tan a, R = Q sec a.

588. If the plane is rough, let fi=tan t be the coefficient of friction. With the

normal CN as axis describe a right cone whose semi-angle is e ; this is the cone of

friction, Art. 173. The resultant action R' of the plane on the particle lies within

this cone; let CH be its line of action and let the angle NCH=i; then ; lies

between ± e. Let the standard case be that in which a is greater than t, and ^
greater than either ; this is represented in fig. (2). We therefore have

It ff V

Fig. 2. Fig. 3.

R'

8in(o-») Bin(^-j) sin(0-a)
(2).
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When the force P is bo great that the- particle ia on the point of ascending the plane,

the reaction R' acts along CE, and i= - t. Let /', be this value of P, then

^> = ^ = '^' - (3)
8in(a+e) 8in(0 + <) 8in(0- a) ''

When the force P is so small that the particle is only just sustained, the reaction R'

acts along CD, and i = (. Let P.j be the value of P, then

a _.
(4).

Q _ R'

8in(a-e)~ 8in(^- e)
~ sin(0- a)

If a > e as in fig. (2), it is clear that the particle will slide down the plane if not

supported by some force P, Art. 166. When the particle is just supported the

reaction 72' acts along CD and Q along VC\ it is clear that these forces could

not be balanced by any force /' unless its direction lay within the angle made by

CV and DC produced. Accordingly we see from (4) that W is negative unless

<t>>a. In the same way it is impossible to pull the particle up the plane (without

pulling it off) by any force whose direction does not lie between CV and EC
produced. Assuming <> > a, the least force required to keep the particle at rest

is given by (4), and the greatest by (3).

If e> a as in fig. (3), the particle will rest on the plane unless disturbed by

some force P. To just pull the particle up the plane the force must act within the

angle formed by C T and EC produced, and its magnitude is given by (3). In order

that the particle may be just descending the plane the force must act within the

angle formed by CF and DC produced, and its magnitude is given by (4).

580. Ex. 1. If a power P acting parallel to a smooth inclined plane and sup-

porting a weight Q produce on the plane a pressure R, then the same power acting

horizontally and supporting a weight R will produce a pressure Q, [Coll. Ex., 1881.]

Ex. 2. Find the direction and magnitude of the least force which will pull a

particle up a rough inclined plane.

By (3) we see that Py is least when <p + ( = hir, i.e. when the force makes an

angle with the inclined plane equal to the angle of friction.

Ex. 3. Find the direction and magnitude of the least force which will just

support a particle on a rough inclined plane.

Ex. 4. A given particle C rests on a given smooth inclined plane and is

supported by i force acting in a given direction. If the inclined plane is without

weight and has its side AL moveable on a smooth horizontal table, find the force

which when acting horizontally on the vertical face BL will prevent motion. Find

also the point of application of the resultant pressure on the table.

Ex. 5. A heavy body is kept at rest on a given inclined plane by a force

making a given angle with the plane ; show that the reaction of the plane, when

it is smooth, is a harmonic mean between the greatest and least reactions, when it

is rough. [Math. Tripos, 1858.]

Ex. 6. A heavy particle is attached to a point in a rough inclined plane by a

fine rigid wire without weight, and rests on the plane with the wire inclined at an

angle d to a horizontal line in the plane. Determine the limits of B, the angle of

inclination of the plane being tan~' (/xsec/S). [Coll. Exam.]

Ex. 7. Two equal particles on two inclined planes are connected by a string

which lies wholly in a vertical plane perpendicular to the line of junction of the

planes, and passes over a smooth peg vertically above this line of junction. If,

when the particles are on the point of motion, the portions of the string make
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i

equal angles with the vertical, show that the difference between the inclinations of

the planes must be twice the angle of friction. [Math. Tripos, 1878.]

540. Wheel and Axle. To find the relation between the

power and the weight in the wheel and axle.

Let a be the radius of the axle AB, c that of the wheel. The

power P acts by means of a string which passes round the wheel

several times and is attached to a point on the circumference.

The weight Q acts by a string which passes similarly round

the axle. Taking moments round the central line of the axle, we

have Pc = Qa. The mechanical advantage is equal to c/a.

CO- ' IH^

If

Fig. 1.

>e the

Fig. 2.

i'hich tht power and weight pass over

while t leel turns through any angle, we have

plq^cfa = QIP.

641. When a great mechanical advantage is required we must either make the

radius of the wheel large or that of the axle small. If we adopt the former course

the machine becomes unwieldy, if the latter the axle may become too weak to bear

the strain put on it. In such a case we may adopt the plan represented in fig. (2).

The two parts of the axle are made of different thicknesses, and the rope carried

round both. As the power P descends, the rope which supports the weight is coiled

on the thicker part of the axle and uncoiled from the thinner. Let a,bhe the radii

of these two portions of the axis. If Q be the weight attached to the pulley, the

tension of the string is ^Q. Taking moments about the central line of the axis, we

have Pc= iiQ{a - h). The mechanical advantage is therefore equal to the radius of

the wheel divided by half the difference of the radii of the axle. By making the

radii of the two portions of the axis as nearly equal as we please, we can increase

the mechanical advantage without decreasing the strength of the machine. This

arrangement is called the differential axle.

54a. Ex. 1. A rope passes round a pulley, and its ends are coiled opposite

ways round two drums of different radii on the same horizontal axis. A person pulls

vertically upon one part of the rope with a force P. What weight attached to the

pulley can he raise, supposing the parts of the rope parallel? [Coll. Exam.]

Ex. 2. In the differential axle if the ends of the chain, instead of being

fastened to the axl ^, are joined together so as to form another loop in which

another pulley and weight are suspended, find the least force which must be

applied along the chain in order to raise the greater weight, the different parts

of the chain being all vertical. [Math. Tripos,]
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A4S. When both the power and the weight act on the circumference of wheeU

there are various methods of connecting the two wheels besides that of putting

them on a common axis. Sometimes, when the wheels are at a distance from each

other, they are connected by a strap passing over their circumferences. In some

other oases one wheel works on the other by means of teeth placed on their rims.

644. Toothed Wheela. To obtain the relation between the

poii/er and the weight in a pair of toothed wheels.

Let .4, -B be the centres of two wheels which act on each other

by means of teeth, the teeth on the axis of one wheel working into

those on the circumference of the other at the point C Let a,, a,

be the radii of the axles, b^ , 6, those of the wheels.

Let p, q be the virtual velocities of the power P and weight Q,

then Pp = Qq. If the teeth Ji

are small the average velo-

cities of the points near C
on the two wheels are equal,

and the common direction is

perpendicular to the straight

line AB. If then 0i, 6^ are

the angles turned through by

the wheels when the power

P receives a small displace-

ment, we have Oi^i = b^d^. But p = bA, q = ('Ai' It follows that

— = ' *
. We have here omitted the work lost in overcoming

the friction at the teeth in contact and at the points of support.

545. Let a tooth on one wheel touch the corresponding tooth on the other in

some point D, and let EDF be a common normal to the two surfaces in contact at

D. The point D is not marked in the figure because the teeth are not fully drawn,

but it is necessarily situated near C. The actual velocities of the points of the teeth

in contact at D when resolved in the direction EDF are equal. If, then, /( and k

are the perpendiculars drawn from A, B on EDF, it is clear that 6^h=0.Jc. As the

wheels turn, the lengths h and k alter, and if the ratio hjk is not constant, there

is more or less irregularity in the working of the machine. To correct this defect,

the teeth are sometimes cut so that the normal at every point of the boundary

of a tooth is a tangent to the circle to which the tooth is attached. When this is

done, the line EDF is always a common tangent to the two circles. The ratio hlk

is therefore constant throughout the motion and equal to the ri.tio of the radii of

the circles. One cause of irregularity will thus be removed and the motion will be

made more uniform This method is commonly ascribed to Euler.

If the normal at every point of the surface of a tooth is a tangent to a circle,

each of the two halves of that tooth is bounded by an arc of an involute of the

R. S. I. 24
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oirole. The two involuteH are unwrepp«<d from the circle in oppoiite directions and

portion! of each form the Hide* of the tooth.

Wlicn the centroii of the toothed wheeln are Kiven, and the ratio of the angular

velooitiuH at whicii they are to work, we may determine their radii in the followiuK

manner. Let .1, H be the given centres; divide AH in C bo that AC .0i = HC .0^.

Through C draw a straight line KCF, which should not deviate very much from a

perpendicular to AH. With A and H aa centres describe two circles touching tlie

straight line KCF. The sides of the teeth are to bo involutes of these circles. By

this construction the common normal to two teeth pressing against each other at />

is the straight line KCF. As the wheels turn round, and the teeth move with them,

the {)oint of contact /) travels along the fixed straight line KCF. The perpen-

diculars h and k are equal to the radii of thcHo circles and are constant during the

motion. Their ratio also is evidently equal to the ratio of AC to liC, i.e. of

$f to e..

It has already been shown that I'p = Qq, and p=//,<>p 9 = a,0.j. Bince 0^h = O.J<,

we find as before -r.

V ^''•._ "1"

i",i

We may notice that, if the diHtnnce between the centres A and U is slightly

altered, the pair of wheels will continue to work without irregularity and the ratio

of the angular velocities will be the same as before. To prove this, we observe that

the common normal to two teeth pressing against each other is still a common
tangent to the two circles, though in their displaced positions. Thus, though the

inclination to AH of the straight line KCF is altered, the lengths of the peri)en-

diculars h and k are the same as before.

That the teeth should be made of the proper form is a matter of importance

to the even working of the machine. Many other considerations enter into the

theory besides that mentioned above. Thus defects may arise from the wearing of

the teeth if the pressure be very great at the point of contact. There may also be

jolts and jars when the teeth meet or separate. But the subject is too largo to be

treated of in a division of a chapter. Thn reader who is interested in this matter

is referred to books on the principles of mechanism. In Willis' Principles of

Mechanism (2nd edition, 1870) five different methods of uonstructing the teeth are

described, in three of which epicycloids a^e used ; the advantages and disadvantages

of these constructions are also compared.

540. Ex. 1. In a train of n wheels, the teeth on the axle of each wheel work

CD those on the circumference of the next in order. Show that the power and

weight are connected by the relation ^= 'J'""
, where Aj, a, &o. are the radii

of the axles and b, , b^ &<:. those of the wheels.

Ex. 2. In a pair oi toothed wheels show that, if the ratio of the power and

weight is to be approximately constant, the height and breadth .f tlie teeth must
botli be small relatively to the radius of each wheel.

Two equal and similar wheels, with straight narrow radial teeth, are started

with a tooth of each in contact and in the same straight line; show that they will

work together without locking, provided that the distance of their centres be

greater than 2<( cos2ir/n and less than 2a cos ir/n, where a is the radius of either wheel

measured to the summit of a tooth, and n the number of teeth. [Math. T., 1872.]

Ex. 3. Investigate the relation QjP= bih.Ja^a.-. for a pair of toothed wheels

without using the principle of virtual work.
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9 the radii

The reaction li betweun two tectli actH alontf titn HtraJKlit line HUF. TakiiiK

momentH in turn about A and //, we have l\ = ltb, Q(i, = /<fc. An before, we hare
when the tcetli are Hmall hjk = ii^jb^. The reHult followM at once.

547. The Wedge. To find the rekttion between the power
and the weiyht in the wedffe.

Let M, N bo two oKstacleH which it is intended to 8epariit«( by

inserting n wetlge A liC between theuj. For the wtke of tlistinctnesg

the.se obatacleH are represented in

the figure by two e(jual bo.xe.s

placed on the floor, but it \h ob-

vious they may be of any kind.

We shall suppose that the

wedge used is isosceles, and that

it has its median line CN vertical.

Let the angle ACB be 2a. Let

D, E be the points of contact with the obstacles (not marked in

the Hgure), R, R the normal reactions at these points, F, F the

frictions When the wedge is on the point of motion we have

F= R tan e, where tan e is the coefficient of friction.

Let P be a force acting vertically at N urging the wedge

downwards. Supposing P to prevail, the frictions on the wedge

act along CA, CB; we therefore And by re.solving vertically

P — IR (sin a + tan e cos a) = 2R sin (a + e) sec €.

The resultant reaction R' at D is then found by compounding

R and fiR.

If the obstacle M can only move horizontally, the whole of the

reaction R' is not effective in producing motion. The horizontal

component of R' tends to move M, but the vertical component

presses the box on the floor and possibly tends to increase the

limiting friction between the box and the floor. Let X be the

horizontal component of R' ; we find

X = R cos a— R tan e.sina = R cos (a + e) sec e.

The mechanical advantage X/P is therefore equal to h cot(a + €).

548. It may be noticed that the mechanical advantage of the wedge is

increased by making the angle a more and more acute. There is of course a

practical limit to the acuteness of this angle, for that degree of sharpness only

can be given to the wedge which is consistent with the strength required for

the purpose to which it is to be applied.

As examples of wedges we may mention knives, hatchets, chisels, nails, pins, &c.

Generally speaking, wedges are used when a large power can be exerted through a

small space. This force is usually applied in the form of an impulse.

01 o w
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It hai not beAn oonitdered ncoestary to ooDiider separately the cane in which

the wed^e ia mooth, as the reaulti obtained on au erroneous a uppo'iitiun hare no

practical bearing.

649. If the force i.s applied in the form of a blow so that the

wedge is driven forwards between the obHtacles, the problem to

determine its motion is properly one in dynamics. Our object

here is merely to find the conditions of equilibrium of a triangular

body inserted between two rough obstacles and acted on by a

force P.

When a series of blows is applied to the wedge, we may
liowever eti(|uire what happens in the interval between two

impulses. The wedge may either stick fast, held by the friction,

or begin to return to its original position, being pressed back by

the elasticity of the materials. Assuming that these forces of

restitution may be represented by two ecjual pressures R, R,

acting (m the sides of the wedge, let P, be the force necessary

to hold the wedge in position. The friction now acts to assist

the power. To determine P, we write — e for e in the equations

of equilibrium. We therefore have

Pi = 'IR sin (a — e) sec e.

If a is greater than e, Pi is positive and therefore some force is

necessary to hold the wedge in position. If a is less than e, P,

is negative, thus the friction is more than sufficient to hold the

wedge fast. A force ecpial to this value of P, with the sign

changed is necessary to pull the wedge out. The result is that

the wedge will stick fast or come out according as the angle ACB
is less or greater than twice the angle of friction.

Ex. 1. Referring to the figure of Art. 547, show that if either of the equal

anglen /I or £ of the wedge is leaa than the angle of friction, no force P however

great could separate the obstacles M, N,

If the angle A is less than t, we tind that an v is greater than a right angle, and

therefore that A' is negative. It is easy also to see that, if the angle A is equal to e,

the resultant reaction between one side of the wed|^e and an obstacle is vertical.

The wedge therefore merely presses the obstacle against the floor.

Ex. 2. If the obstacles ^1/, N are not of the same altitude and are unequally

rough, the position of the wedge when in equilibrium is such that the force Pi and

the resultant actions 7^,', li^ across tlie faces meet in a point. Supposing the foroe

Pj to act perpendicularly to the face AB ot the wedge and to be just sufficient to

P Ji

'

R

'

hold the wedge at rest, show that -.

—

--—

^

= ,
*—

- =—-
'

, assuming
sin (2a - ej - «,) cos (a - e,) cos (o - «j)

the obstacles to b» of such form that the wedge must slip at both simultaneously.

Show also that, if the wedge be such that the angle C is less than the sum of the
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angles «| + «,, the wedge can be held faiit by the frictions without the appi .oation of

any force.

Ex. 8. Deduce from the principle of virtual work the relation between the

force .Y and thn power /' in a smooth iHosoeleu wedge as represented in the figure

of Art. S47. Discuss the two cases in which (1) one obHtaolo is immovable and

{'i) both move equally when the wedgo makes an actual displacement.

650. The Screw. To find the relation between the power and

the weight in the screw.

Let Ali be a circular cylinder with a uniform projecting ridge

running round its surface, the

tangents to ^he directions of the

ridges making a cotistant angle

a with a plane perpendicular to

the axis of the cylinder. The

screw thus formed fits into a

hollow cylinder with a corre-

sponding groove on its inlernal

surface, in which the ridge works.

The grooves on the hollow cy-

linder have not been sketched,

but are included in the beam
EF.

The position of the ridge on the cylinder is easily understood by the following

construction. Let a sheet of paper be out into the form of a right-angled triangle

LMN, such that the altitude J/>^ \a equal to the altitude of the cylinder AH and the

angle the base LM makes with the hypothenuse LN is equal to a. Let this sheet of

paper be wrapped round the cylinder Ali; if the base LM is long enough to go

several times round the base of the cylinder, the hypothenuse will appear to wind

gradually round the cylinder. The line thus traced by the hypothenuse is the curve

along which the ridge lies.

Let P be the power applied perpendicularly at the end of

a lever CD. Let AC = a, and let b be the radius of the cylinder.

Supposing the body EF in which the screw works to be fixed

in space, the end B of the cylinder will be gradually moved as C
describes a circle round AB. Let Q be the force acting at B.

Let <T be any small length of the screw which is in contact with

an equal length of the groove. Let R<t be the normal reaction

between these small arcs, fiR<r the friction.

In some screws the ridge is rectangular, so that it may be

regarded as generated by the motion of a small rectangle moving

round the cylinder with one side in contact with the surface and
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its plane passing through the axis. When the ridge has this form,

the line of action of R lies in the tangent plane to the cylinder and

its direction makes with the axis of the cylinder an angle equal to

a. In other screws the section of the ridge has some other form,

such, for example, as a triangle. In such cases the line of action

of R makes some angle d with the tangent plane to the cylinder.

We therefore resolve R into two components, one intersecting at

right angles the axis of the cylinder and the other lying in the

tangent plane. The magnitude of the latter is R cos 6, and its

direction makes with the axis of the cylinder an angle equal to a.

Since ihe ridge is uniform the angle B will be the same throughout

the length of the screw.

Let us suppose that the power P is about to prevail, then the

friction acts so as to oppose the power. Resolvii)g parallel to the

axis of the cylinder and taking moments about it, we have

Q = 1R<T . cos d cos a — "^Ra . /* sin a,

Pa — XRcr . h cos 6 sin a + IRa . fib cos a.

Dividing one of these equations by the other we have

Q _ cos Q cos o — /A sin a a

P cos 6 sin a + /i cos a '

6

'

651. I; it be possible to neglect the friction and treat the screw as smooth we

put M=0« We then find for the mechanical udvantpge the expression (a cot a) /6.

If a point travcUing aiong the ridge or thread of the screw make one complete

revolution of the cylinder, it advances parallel to the axis a snace equal to the

distance h between the ridges. This distance is therefore h= Ivh tan a. Substi-

tuting for tan a, we find that the mechanical advantage of a smooth screw is c\)i,

where c is the circumference described by the power and h is the distance between

two successive threads of the screw measured parallel to the axii.

552. We may easily deduce the relation bet,ween the power

and the weight ii a smooth screw from the principle of virtual

work. When the power has turned the handle AG through a

complete circle, the screw and the attached weight have advanced

a space h equal to the distance between two threads of the screw

measured parallel to the axis. When therefore frction is neglected

and no w^ork is otherwise lost in the machine, we have Pc = Qh,

where c is the circumference of the circle described by P.

When the friction between the ridge and the groove is taken

account of we see by Art. 550 that the efficiency of the machine is

,
Qh cos ^ — /Li tan a

given by yi- =—^ —

.

" "^ Pc C0S^ + /L4C0ta
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When the thread of the screw is rectangular the angle 6 is

zero. In that case the expression for the efficiency takes the

simple form pr = ^
', r , where e is the angle of friction.^ Pc tan(a + e)

°

If the weight Q is about to prevail over the power, we change

the signs of /u. and € in these formula?.

A58. Ex. 1. What force applied at the eud of an arm 18 iuches long will

produce a pressure of 1000 lbs. upon the head of a smooth screw when 11 turns

cause the head to advance two-thirds of an inch 7 [Trin. Coll., 1884.]

Ex. 2. A screw with a rectangular thread passes into a fixed nut : show that

no force applied to the end of the screw in the direction of its length will cause it

to turn in the nut, if the pitch of the screw is not greater than c, where e is the

angle of friction. [Coll. Exam., 1878.]

Ex. 3. A rough screw has a rectangular thread: prove that the Iiast amount of

work will be lost through friction when the pitch of the screw is | (tt - 2f ), where e

is the angle of friction. [St John's Coll., 1889.]

Ex. 4. The vertical distance between two successive threads of a screw is h, its

radius is h, and the power acts perpendicularly to an arm a. If the thread be square

and of small section, and the friction of the thread only be taken into account,

show that if a and h are given, the efficiency of the machine is a maximum when

27r6 = h tan
( Jtt + Je), f being the limiting angle of friction. [Math. Tripos, 1867.]

Ex. 5. The axis Ali of a screw is fixed in space and the beam EF through

which the cylinder passes is moveable. The power P, acting at the end of a lever

CD, tends to turn the cylinder, while a force Q, acting on EF parallel to the axis

AB, tends to prevent motion. Show that the relation between P and Q is the same

as that given in Art. 550.

Ex. 6. A weight is supported on a rough vertical screw with a rectangular

thread without the application of any power. If { be the length and h the radius

of the cylinder ou which the thread lies, show that the screw has at least

turns.

^c = Qh,
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NOTE ON SOME THEOREMS IN CONICS REQUIRED
IN ARTS. 126, 127.

The following analytical proof of the two theorems in conios which are assumed

in these articles requires a knowledge only of such elementary equations as those of

the normal or of the chord joining two points.

Let <>, <!>' be the eccentric angles of two points P, Q on the conic. Taking the

principal axes of the curve as the axes of coordinates, the equations of the normals

at these points are

^ ^-^- = a2-6« -^ ^=a«_6J.
cos sin ^

'

cos
<f>'

sin (p'

The ordinate i) of their intersection is therefore given by

„— , „= ~-^——^ sin A sm ri> ( 1)

.

a^-h^ cos i (0-0') "^ ^ ^ '

The ordinate of the middle point of the chord PQ is

y= J6 (sin <j> + sin 0')= 6 sin J (0 + 0') cos i (0 - 0'),

• -^1 1 - - sin sin 0' _ co8g^(0 + ') _ j
,„.

' a^-h*y co84(0-0')~ 0082^(0-0')
^''

Again, the equation to the chord PQ is

-co8i(0 + 0') + ^8ini (0 + 0')-cosi(0-0')=O (3).

If j:, p' and (j are the perpendiculars on the chord from the foci and the centre,

we have the usual formula for the length of a perpendicular

pp' _ jcoa ^ (0 - 0') - e COS ^ (0 + <!>')} {cos ^ (0 - 0') + g coa ^ (0 + 0')}

q-
~

008^(0-0')

It follows by an easy reduction t}iat

{l-l)K=-^ (4).

It is explained in the text that the corresponding form for f is an inconvenient

ore because the foci on the minor asis r.re imaginary. If the chord cut the axes in

L and M, we find, from the equation to the chord PQ given above, that

CL _ coa ^ (0 - 0') CM _ cos i (0 - 0')

a ~ cos i (0 + 0')

'

i»
"" sin i (0 + 0')

"

We have immediately from (2)

The second follows from the first by changing the letters. These are the formulae

used in Art, 126, Ex. 3. By introducing CM into the right-hand side of (1) we find

CM n CL f

~a'"-rV^"°^^^"'^'' ^I'i-'^^^'P^^^'P' (6)-

f^^

'J:
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When the points P, Q coincide, {, 17 become the coordinates of the centre of

corvature at P. We then deduce from (1) the well-known formula

= C0; (7).

(8).

The coordinates x, p of the middle point G of the chord being given, the chord

itsejf is determinate. The equation to the chord is

We then readily find the intercepts CL, CM. We deduce from (2) or (5)

Let X, Y be the coordinates of the intersection T of the tangents at P, Q, then

X_Y xX yY
x~ y' tt-*

*"
f'
~

'

because G is the intersection of the straight line joining the origin to T with the polar

line of T. We easily find x, y in terms of A', Y, and the equations (7) then become

V _{a'-b'){X^-a^) f_ {a^-b'){ Y'-b"-)

Y an"^ + b^X^
'

A'" an'' + b-^X> ^
''

which are the equations used in Art. 127.

Ez. 1. A uniform ro'?, whose ends are constrained to remain on a smooth
elliptic wire, is in equilibrium under the action of a centre uf force situn .-d in the

centre C and varying as the distance, see Art. 51. Show that the centre of gravity

G must be either in one of tLo axes or at a distance from the centre equal to

CR^I(a^-rb^f, where CR is the semidiameter drawn through G. Show that in the

latter case half the length of the rod is equal to CD^I(a^+b-)K where CD is

conjugate to CR, Show also that the tangents at the extremities of the rod are at

right angles. Find the lengths of the shortest and longest rods which could be in

equilibrium.

Ex. 2. One extremity of a string is tied to the middle point of a rod whose

extremities are constrained to lie on a smooth elliptic wire. If the string is pulled

in a direction perpendicular to the rod, show that there cannot be equilibrium

unless the rod is parallel to an axis of the curve.

Ex. 3. When the conic is a parabola, show that the equations (5), (8), (9)

take the simpler forms,

r,= 2y.^-^ =''-y(x-yl)=-'-XY,
m III \ inJ m

ip
^=2x-AR + in= x-^''-+in

m
^r 2y2

m
where A is the vertex, R the intersection of the chord with the axis, 2m the latus

rectum, and the rest of the notation is the same as before.

Ex. 4. Show that the length Z. of a chord when expressed in terms of its focal

distances p, p', is given by

where R is the length of the semi-diameter parallel to the c'-ord.

|i

II

n
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Ex. 5. Two chords of a conic are drawn parallel to any two conjugate diame-

ters and touch a given confocal. Show that the sum of their lengths is constant.

Ex. 6. If the normals at four points P, Q, R, S meet in a point whose co-

ordinates are ((, i}), prove that the middle points of the six chords which join the

points P, Q, R, S two and two lie on the conic

(«2 - b'i) (aV - b'x^)

+

«'^* (f* +vy)=o.

This follows at once from (8).

Ex. 7. A heavy uniform rod is in equilibrium with both ends pressing against

the interior surface of a smooth ellipsoidal bowl. If one axis of the bowl is vertical,

show that the rod must lie in one of the principal planes.

The ellipsoid being referred to its axes, the normals at the extremities of the

rod are — (f - .t)

:

.-iv-y)='-(i:-z),
a' b^ c^

It is necessary for equilibrium that each of these should be satisfied by v= h{y + y')^

f= J (z + z'). Substituting, we find that y'jy = z'jz, unless either both the j/'s or both

the z'b are zero. Putting y'=py, z'=pz, the equations become

2a2, -«-.,=.>. P=c"-^--^.

T'nless h^=c^, these give p=l. It easily follows that y'=y, z'= z, x'=x so that the

two ends of the rod coincide. As this is impossible, we must have either both the

2/'s or both the z'b equal to zero. The rod must therefore be in a principal plane.

1^.
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The numbers refer to the articles,

Amontons. Experiments on triction, 170.

Ancbor ring. Surface and volume, 415. Centre of gravity of a portion, 425.

Anchor ring nlides on an axis, 269.

Anticentre. Defined, 460. Of a circle and ellipse, &e., 460.

Abchimbdes. Parallelogram of forces founded on the lever, 31.

Relation of sphere to the circumscribing cylinder, 420.

ABEAii COORDINATES. Defined, 63, Ex. 2. Trilinear equation of the resultant of

any three forces acting along the sides of the triangle, 120. Central axis

in terms of the moments about and resolutes alon<,' the sides, 278, Ex. 8.

AsTATics. Equilibrium defined, 70. Astatic triangle, 71, 73. Centre defined, 72,

160. Central point of two forces, 74. Of any forces in a plane, 160.

Atoms. Equilibrium of four repelling atoms, 130.

Kelvin on the theory of Boscovich, 226. Two, three and four atoms in

various arrangements, 227.

Axioms. Newton's laws of motion, 13. Elementary statical axioms, 18. Other

axioms necessary, 148. Frictional axiom, 164. Axiom on elasticity, 489.

Axis. See also Central axis. Of a couple, 97.

Friction between wheel and axis, 179.

Instantaneous axis always exists when a body moves in a plar ;, 180.

Axis of initial motion, 186, 188, &c.

Pressure on axis reduced to two forces, 268.

Axis of revolution and Pappus' theorems, 413.

Balance. Three requisites of the common balance, 619. False balances and other

problems, 620. Boberval's balance, used to weigh letters, 617.

Ball, Sib Bobert. The cylindroid, 287. Reciprocal screws, 294. The sexiant, 326.

The pitch conic, 288.

Ball, W. W. R. History of mathematics. Parallelogram of forces, 31. Catenary,

443 note.

Bending couple. Defined, 142. Of a plank bridge, 144. Of a rod acted on by

forces shown graphically, 146. Heavy rod, 147, Ex. 1. Rotating wire, 147,

Ex. 2. Crane, 147, Ex. 5. Gipsy tripod, 147, Ex. 6. Rod under centre of

force, 14?, Ex. 7. Townsend's theorem on a bridge, 147, Ex. 3. Found by

graphics, 362.

Bebnoulli. Discovers the catenary, 443. On the form of a sail, 468. String

acted on by a centre of force, 476.

Besant. On roulettes, 244.

Bonnet. The catenary of equal strength for a central force which varies as the

inverse distance, with a list of curves included, 477, Ex. 11.

Boole. Euvelope of an equilibrium locus, 224.

Boscovich. Theory of atoms, 226.

Bow. System of lettering reciprocal figures, 349.
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Catenabt. Centre of gravity of arc, with A geometrical construotion, 399, 440.

The suspended chain, 443. Examples, 446. The parameter of a suspended

catenary foand, 447, 448. Catenary with a heavy ring fixed or moveable, 448.

Examples on smooth pegs, festoons, endless strings, &o., 448.

Stability of equilibrium of a chain over two smooth pegs, 449.

Heterogeneous catenary, 460. The cycloidal chain, 451. Parabolic chain,

when roadway is light, 402. Catenary of equal strength, equation, centre of

gravity, span, (&c., 463.

Examples, Chain partly in water, partly in air, 406. Heavy string on a

rough catenary, 469, 471. A heavy string fits a tube without pressure, if

cut find the pressure, 462. A heavy endless string hangs round a horizontal

cylinder, 462. The catenary is the only homogeneous curve such that the

centre of gravity is vertically over the intersection of the tangents, 448, Ex. 24.

Stability of a heavy rod sliding on two catenaries, 243.

Spherical catenary, 482. See Stbinqb.

Calculus of variations, 488.

Cayley. The six coordinates of a line, 260. On four forces in equilibrium, 318.

Determinant of involution, 324.

Central axis, defined and found in terms of 22, G, 270. Cartesian equation found

in terms jf the six components, 273.

Central axis of forces A^A^; A.^A.^ ; (&c. 278, Ex. 6, 7. Central axis with

trilinear coordinates, 278, Ex. 8. Central axis of forces represented by the

Bides of a tetrahedron, 278, Ex. 6. Central axis in tetrahedral coordinates

in terms of forces along the edges, 339. Central axis of conjugate forces,

280, 309. Problems on central axis, 278, 283, 310.

Centre of gravity. Definition, 01, 374. Unique point, 370. Working rule, 02,

380; with examples, 382. Triangular area, 383; equivalent points, 380;

perimeter, 386. Quadrilateral, 387 ;
pentagonal area, trapezium, 388. Tetra-

hedron, 389; frustum, 391; faces and edges, 392; isosceles tetrahedron, 393;

double tetrahedra, 394. Pyramid and Cone, 390, 418.

Circular arc, 396 &c., other arcs and the curve r"sin nO= a", 399- Circu-

lar sectors, 400; quadrant, 401; segment, 402. Elliptic areas, 404; other

areas, 409, 412. Space bounded by four coaxials, 406 ; by four confocals, 412.

Pappus' theorems, 413, Sco., with extensions when axis does not lie in the

plane of the curva, 417.

Spherical surfaces, 420; hemisphere, segment, 423. Spherical triangle,

424. Spherical solid sector, segment, 426, 427. Ellipsoidal sectors &c., 428,

429. Ellipsoidal thin shells, both kinds, 430 ; also shell when the density

varies as the inverse cube of the distance from a point, 430, &q.

Any volume and surface, 431. The solid (j +(?) +(") =1> *54.

Octant of an ellipsoid when density is xhj^z", 434. Triangle of density x'l/'",

434.

Lagrange's two theorems, 436, 437. Franklin's extensions, 438.

Applications of the centre of gravity to pure geometry, 439.

Centre of parallel forces. Defined, 83; distinguished from the centre of

gravity, 373.

Centboid, 01. See Centre of gravity.

Chainette. See Catenary, 443.

Characteristic of a plane. Defined, 314.

Chobdal construction of maps 421.

Li '
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Crableb. Radiua of curvature of a roulette, 242.

Invariants of two Hystems of forces, 280.

Characteristic of a plane, Sll.

Four forces iu equilibrium, 316.

Circle. Least force to move a hoop, disc, &c. placed on a rough plane, 189.

Clarke. Principles of Graphic statics, 340 note.

Clausiub. Virial, 1S7.

Clebbch. Expresses the form of a heavy string on a sphere in elliptic integrals,

482 note.

CoMPONEKT. Defiued, 40. In three dimensions, 267, 260.

The six components of a system of forces, 273, 276.

Cone. Centre of gravity of volume, 390; of surface, 418 ; of cone on elliptic base, 419.

Gone of friction, 173.

Couple to turn a cone in a hole, 189, Ex. 12.

Conic. The relations of a chord to the normals at its extremities, 126 and note.

Conic of closest contact, position found, 249.

Centre of inscribed and circumscribing conic, 440.

The pitch conic, 288.

CoNJDOATE forces AND LINES. A System can be reduced to two forces, one line of

action a>bitrary, 303; other elements arbitrary, 313. Self-conjugate lines,

306. Conjugate of a given line found, 308.

Arrangement of conjugate forces round the central axis, 309; arranged in

hyperboloids , 310; in planes, 311.

Theorems on conjugates, 312, 313. Two systems of forces with common
conjugate lines, 311.

Conservative system. Definition and fundamental theorem, 211. See also 479.

Coordinates. Of a system defined, 206, 207.

7 1.3 six coordinates of a line, 260.

Areal coor 'inates, B3. Tetrahedral coordinates, 330.

Couple. Poinsot's tneory of couples, 89, &c. Measure of couple, 96; axis, 97.

Laws of combination of forces and couples, 101. Tetrahedron of couples,

99. Any four axes being given, couples in equilibrium can be found, 99.

Forces represented by skew polygon are equivalent to a couple, 99.

Friction couple, 167. Least couple which can turn a table on a rough

floor ; a cone in a rough circular hole ; and other problems, 188, 189.

Minimum couple of a bystem of forces, 277.

CoRioLis. Invents the catenary of equal strength, after Gilbert, 4S3.

Coulomb. Experiments on friction, 170.

Cremona. The polar plane of a system of forces, 298. Double lines, 306.

Beciprocal figures, 342.

Crofton. On gelf-straiLed frames of six joints, 238.

CuLMANN. Graphical statics, 340. Method of sections, 366.

Curtis. Problem on two spheres in a paraboloid, 129.

Curve. Equilibrium of a particle on a smooth curve, 66, 69.

174. Pressure, 68.

Centre of gravity, 398 ; the curve r" sin n$= a", 399.

String on a curve, 467, &c.

Cycloid. Centre of gravity of the arc, 399 ; of the area, 412.

Cycloidal catenary, the law of density, centre of gravity Ac, 461.

Heavy string on a rough cycloid, 169.

Ctlindroid. Defined, 287; the fundamental theorems, 289-291.

Rough curve, 172,
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I

Darbovx. Astatic equilibrium in two dimensions, 157, 163.

On the relation of four forces in equilibrium to a hyperboloid, 316.

DiFORib iTioN. Normal and abnormal deformations defined, 23'^ Abnormal defor-

mations lead to indeterminate reaction h, 238.

De Moboan. The polygon of maximum area, 133.

On Lagrange's proof of virtual velocities, 266.

On the use of Jacobians in integration, 411.

DiLATABLK. Framework defined, 231.

DiKECTRix. Of a catenary, 443. Statical directrix of a heavy string on_ a smooth

curve, 460. Other cases, 482, 494, BOO.

DocBLK LINES. Defined by Cremona, 306. See Nul lines.

DncHAYiiA. Proof of the parallelogram of forces, 27.

Dyname. Defined by Pliicker, 261. Relation to a wrench, 271.

Eddy. Graphical statics, 340.

Efficikncv. Of a machine defined, 604. If a force P raise and P' support a

weight, the efficiency is (P+P')/2P, 606.

Elastic htrinoh. Hooke's law, 489. Heavy string (a) free, (b) on an inclined

plane, 492.

Work of stretching, 493. Various problems, 492, 493.

Heavy string on a smooth curve, tension, pressure Ac, -194. Light

string on a rough curve, 496. See Endleph strinus. Various problems, 496.

General equations, 496.

Heavy string on various surfaces, 497.

String under central force, 498, 499.

Elastic catenary, equations, 600, geometrical properties, 601, Ex. 2.

Ellipse. See Conic. Centre of gravity of sector, segment, &c. , 406 ; of the space

bounded by co-axials, 406 ; confocals, 412 ; of the space between ellipse and

two tangents, 406.

Equilibrium of a rod in an ellipse, 126, 243.

Ellipsoids. Centres of gravity of the two kinds of thin shells, 430. Centre of

gravity when the density varies as the cube of the distance from a point,

430. Centre of gravity of an octant, density 3^y'"z", 434.

Besultant of normal forces to an octant, 319.

Endless strings. Slipping of a band which works two wheels, 466, Ex. 5. Maxi-

mum tension when string is slightly extensible, 496, Ex. 5. Festoons, 466,

Ex. 10.

Strings which just Jit a curve, 472. Examples of a circle, catenary,

cycloid, ellipse &c., 473.

Twisted cords, 496, Ex. 3.

Slippiu},' of cords round pegs &o., 495, Ex. 4, &c.

Equilibrium. Of a particle, 45. Of a rigid body in two dimensions, 109. In three

dimensions, 259 ;
problems on, 268.

Conditions deduced from the principle of work, 203. Altitude of the

centre of gravity a max-miu, 218. Stability defined, 70, 76; of three forces,

77, 221; conditions of stability, 214, 220; of rocking stones, 244, &o.

Critical equilibrium, 246.

On the sufficiency of the six conditions, i.e. m moments and n resolutions

being zero, 331.

Condition of equilibrium found by Graphics, 363.

Condition that six wrenches of given pitches on six given axes can be

in equilibrium, i.e. sexiant, 326.
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:es can be

EcLEii. Quadrilateral of jointed rods, not acted on by external forces, tJKhteued

by strings, 132.

Relation between corners, faces and edges in a polyhedron, 3S1.

Form of the teeth of wheels, MS.

EwiNO. Experiments on friction, 170.

FivK FORCEH, Two Straight lines can be drawn to cut tive forces in equilibrium,

330. Invariant, Central axis &c. , 323. Given the five lines of action, to find

the forces, 333, i&c.

Fleemino Jknkin. Praoticbl use of reciprocal figures, 840.

Force. Its characteristics, 6. Kcpresented by a straight line, 7. How measured,

10, 16. Superposition, 15.

n torces act along the generators of a hynmrboloid, 316, 317. n forces

intersect two 8\,>'aight lines, 330, 333. Forces represented by the sides of a

skew polygon are equivalent to a couple, 103.

FoBi i AT A POINT. Itesultant, 43, 44, 46. Conditions of equilibrium, 46, 49. A
force moved parallel to itself, 100.

Foun FoucKH. Their relations to (a) a. skew quadrilateral, 103, 333 ;
{b) a hyper-

boloid, 316; (c) a tetrahedron, 40, 318. Geometrical proofs, 316; analytical,

317.

Conditions of equilibrium of four forces acting a', a point, 40. Baiikine's

theorem on four parallel forces in equilibrium, 86.

Four forces acting along tangents to a conic, 120, Ex. 5, 317, Ex. 4.

The invariants, 316, 317, 323.

Given the lines of action, to find the forces, 316, 317.

Fret. Problem on the most stable position of the feet, 88.

FouuiEii. Proof of the principle of virtual work, 193.

Fbamewuiik. Defined, ISO. The number of rods nece&sary to stiffen a framework,

ISl. The reactions arc determinate in a simply stiff framework, 1S3. The

same deduced from the principle of work, 332; in an overstiff framework,

indeterminate, 1S6, 23B. Problems on hexagons, tetrahedra, polygons &c.,

234. iSelf-strained frameworks, 132, 238.

Heactions found by graphical methods, 363. Problems on graphical

statics, 372.

Franklin. Extension of Lagrange's two theorems on centres of gravity, 438.

Friction. Defined, S4; experiments, 164, 166; laws, 16S; limiting friction, 16S.

Coefficient and angle of friction, 166. Friction couple, 167. Cone, 173.

The two kinds of problems, 171, 181. Problems of the first kind, 176,

178, (fee. The ladder, 177, 178. Tripos and College problems, 178. Wheel

and axle, 179, (fee. The iudeterminateness of friction, 181. Limiting equi-

librium, 182.

Problems of the second kind, 182, (fee. The least couple or force which

can move a triangular table, a rod, a lamina, a hoop, a disc, a cone in a hole

and other bodies, 188, 189.

Two connected particles, 190; a string of n particles arranged in a circular

arc, 190, 487, Ex. 2.

Friction in three dimensions, 269. Examples, a rod over a wall, against

a wall ; spheres, curtain ring on a pole, cone rolling on a wall, 269.

FnNiCDLAR Polygon. For parallel forces, 140, 386. For forces not parallel, 363,

(fee. Theorems, 367-360.

Foss. Polygon of jointed rods, 133. The parabolic catenary, 462. General

equations of equilibrium of a string, 466.
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OiLBKRT. Invents the catenary of equal Rtreugtii, 448, 403.

Qicuo. Centre of gravity of a spherical triaoKlc, 434 ; also of a solid generated by

a catenary, 434.

OooDwiN, Harvkt. Htability of a rod inside a spheroid, 196, 34S.

Oraiiau. Graphic and Analytic statics, 840.

OiiKENHiLL AND Dewar. Construct a model of an algebraic spherical catenary, 483.

Orboohy. Solves the p ^ of the catenary, 443.

OuLDiN. Centre of p v>f 2n sides of a regular polygon, 397. Centre of gravity

of the area of a xht cone, 418.

Ouldin's or Pappus' theorems on surfaces of revolution, 418.

HooKB. Law on elastic strings, 489.

Hyperbola. Relation of the theory of projection to the hyperbola, 408.

Htperdoloid. Forces act along the generators, pitch, single resultant, central axis,

&o., 317.

Locus of principal force of a given system, 377.

Locus of conju^^ate forces, 310.

Inclined PLANE. Smooth, S37; rough, 038; problems, 039.

Indeterminate. Problems so called, if the elementary laws of statics are iii-

sutlicient for their solution, 148. Additional laws derived from the elasticity

of bodies, 148. Examples of such problems, weight on a table, the gallows

problem, bars suspended by several strings, framework, &o., 149.

The reactions of a framework are not or are indeterminate according as

it is simply or over stiff, 108, 100, 330.

Indeterminate tensions, 337, 366. Indeterminate friction, 181.

Indeterminate multipliers, 313.

Indeterminate reciprocal figures, 301.

Independence of forces. Principle explained, 10.

Inertness of matter. Explained, 14.

Infinite forces. 104, 198, 306.

Initial motion. Of a body when acted on by a couple, 103.

Of a system is such tliat the initial work is positive, 300; and that the

potential energy decreases, 316.

Invariants. The two invariants defined, 379.

Meaning of the vanishing, 379.

Chasles' invariants of two systems of forces, 380.

Rules to find the invariants of two forces, any number of forces, of

couples, of wrenches, 381, 383.

Invariant of forces acting along n generators of a byperboloid, 317. Of

forces intersecting two directors, 333. Invariant of any forces along the

edges of a tetrahedron, 339.

Involution. Forces in involution defined, 330.

Forces along the edges of a tetrahedron are not in involution, 339.

Jacobian. The Jacobian condition of equilibrium of a particle on a curve, 09.

Applied to centre of gravity of an area, 411.

Jellett. Conditions of equilibrium of a string on a rough surface, 486.

Joubert. Theorems on forces normal to every element of a surface, 319.

Kater. Treatise on mechanics, 003.

Kelvin. Proof of the principle of virtual work, 199.

On atoms in equilibrium in Boscovich's theory, 336.

Span of the catenary of equal strength, 403.

On Young's modulus, 490.
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Critical eciuilibriuni, 3M.

Laoranok. RomarkH on tho paralU>loKram of forced, 31.

Method of indoterminatu multiplierR, 218.

Proof of the priuciple t>f virtual work, 2M.

Two theorem! on centre of (gravity, 436, 437.

Laplack. Proof of thu parallelogram of forces, 31.

Lahmoii. AHtatic equilibriura in two dimennionH, 192.

Lawh or MOTION. Newton'fi, 13.

Lkihmtz. Theorem on the mean centre, 61. RoIvch the problem of the catenary, 443.

Lkmnihcatk. Centre of gravity of the arc AP liefl in tho biHcctor of the anjjle A()]',

399. The Iocuh of tho centre of gravity of an arc of ({iven lenKth, 399. The
centre of Rravity of half the area of either loop, 413, ntrin^; 477.

Lkvkii. Three kindfi, Sll. ConditionH of e(|iiilibrium, 607, proHHure, 608.

What in gained in power in lost in npeed, 613.

ExamplcH from animal economy, B16.

Lkvy. Statiqiie (Iraphique, on the ctioiis of frameworks, 160. His definitions,

231. Theorem on indeterminate tenHions of a framework, 236, 368. Graphical

statics, 340. Theorems on the force polyKon, 387.

LiMiTiNo. Friction, 166, equilibrium, 182.

Lock. Elementary stntics, 41.

Machine. Mechanical advantage defined, 602 ; lever, 612 ; pulley, 627, 632, Ac.
;

inclined plane, 637 ; wheel and axle, 640 ; wedge, 647 ; screw, 660.

Mai'S. The two systems of equal areas and of similarity, 421.

Maxwkll. On stiflf jointed frameworks, 160, 181.

Friction locus of a particle, 189.

If /{ be the thrust of a rod in a framework, >• its length, ^lir found in

terms of the forces, 230.

Theorem on reciproci figures, 341, &c.

Mean centuk. See also Centiie oe okavity. Use of, in resolving and compounding

forces which meet at a point, 61. Also other forces, 120.

Milne. Application of centre of gravity to pure geometry, 439.

Minimum. Minimum method of solving friction problems, 188.

The work is a max-min in equilibrium, 212.

Altitude of centre of gravity a max-min, 218.

Minimum couple of forces in three dimensions, 277.

Minimum couples and forces to move a body, 188, 189. Minimum force

at one end to move (a) a string of particles, 190, and (b) a heavy string in a

circular arc on a rough floor, 487.

Moebiuh. The polyhedron of couples, 99.

The nul plane, 298.

Four forces in equiUbrium lie on a hyperboloid, 316.

Five forces intersect two directors, 320.

Six forces in equilibrium, 324.

Moment. Moment of a force defined in two dimensions, 113, in three dimensions,

263.

Proved equal to dWIdd where 11' is the work, 209.

Moment of a line in geometry, 266. Kepresented by the volume of a

tetrahedron, 266. By a determinant, 266, 267. In tetrahedral coordinates,

267, 339.

MoiGNO. The astatic triangle of forces, 71.

Definition of principal force, 267.

MoNTUCLA. History of the Catenary, 443.

R. 8. I. 25
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MoHiN. Rxperimcnta on friction, 170.

Newton. Ltwi of motion, IS. i'roof of the parallelogram of forc«H, as.

Normal fohcbh. To a polygon, ISS; to a tetrahedron, S18; to a polyhedron, SIS; tu

a oloHod Hurface, S19; to an octant of an ellipHoid, 919.

NuL. Nul plane defined, 298. ItH CartoHJan equation, S <i. Itn tetrahedral equa-

tion, SS9. TheoreniH on the nul plane, 804.

The Cartesian condition thai a ^iven line is a nul lin<>, 301. Nul point of

a given plane found Keoniotrically and analytically, 803.

OiiLiguB. Resolution of forces, 40. Axes, SO.

pAi'ruB. The surface and volume of a solid of revolution deduced from a centre of

gravity son'ietimes called Guldin's theorems, 418.

Paiiaiiola. Centre of gravity of areas, bounded by an ordinate, 412 ; bounded by

four parabolas, 413, Sec.

Parabolic chain, tension, centre of gravity, <Vc., 482.

Pauallei. t'OHCKH. Centre o' parallel forces, 83, 373. ConditiouH of equilibrium, 80.

A given force replaced by two parallel forces, 79 ; by three forces, 88.

Itankino on the equilibrium of four parallel forces, 86.

Theory of couples, 89.

Paiullki'H'ki) ok kohckh. Theorem, 39.

Pakallklooham. The parallelogram law, 7. Of velocities, 13. Of forces, 34.

Pkntaoon. Centre of gravity of a homogeneous pentagon, 888, Ex. 5.

Pitch. Defined, 371. Pitch of an equivalent wrench found, 373.

PlCckeb. The six coordinates of a line, 360. A dynamc, 361.

A proof of Moebius' theorem, 316.

PoiNHOT. Theory of couples, 89.

Why some problems are indeterminate, 148.

Method of finding resultants, 104, 387.

Central axis, 370.

Polar plank. Cremona's polar plane defined, 398.

Sylvester's defined, 338. Various theorems, 336, &c.

PoTKNTiAL. Defined, 69. Potential energy, 311. Decreases in initial motion, 316.

Polygon. The polygon of forces, 86. Forces at the >'orner8, 87. Forces perpen-

dicular to the sides,' 37. Forces wholly represented by the sides make a

couple, 103, Ex. 6. Forces proportional to the sides at an angle $ and

dividing the sides in a given ratio, 103, Ex. 9. Forces which join the corners

of two positions of the same polygon, 130, Ex. 6.

Polygon of heavy rods, 134. Subsidiary polygon, 139.

On the number of conditions necessary to determine a polygon, 102.

Polyhedron. Polyhedron of forces, 47, 318.

Euler's relation between the number of corners, faces and edges, 381.

Reciprocal polyhedra, 341, 381.

Centre of gravity of polyhedron circumscribing a sphere, 392, FjX. 5.

Pratt. Treatise on Mechanical Philosophy, 003.

Pulley. Single pulley, 837. Systems with one rope, 039; severp.l ropes, two

cases, 033. Problems, 030.

Pressure. See Reactions. Pressure of a particle on curves and surfaces, 08, 170.

Of a body on the supports, 87, 88.

Pressure found by graphical method, 361.

Line of pressure. 369. Various theorems, 370, &c.

Principal force. Moigno's definition, 307.

Principal couple. Of a system at any point defined, 387. See Nul plane.
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PnonLr.MH. nuleii for resolving and tftking momenta in the itolution of problemi,

131, Ao.

PnojKCTioN. Centre of KCHvity of the projection of an area, 403.

Working ruiu to project Hgiirea, 403.

Analytical axpect of projectionH, 40T.

Pyuamio. Centre of gravity of the volume, 390.

The live otiuivalunt pointH of a pyramid on a i|un<lriinturiil h&ae, 39B.

QUADHii.ATKnAt, Juiuted with attracting imrticIcH at tiii> oornern, 130. With various

BtrJiigM, 133.

Centre cf gravity when uniform, 387, 388. Wht*n hetfrogcneoUH, 4S4.

Homo geometrical thuoromH deducud from Htaticn, 439, 441.

ForceH along the HideH of a nkeiv (luadrilHtotal iuh not in equilibriuu., form

a couple or Hingle rooultant, 103. Their invariant, 333.

Bankink. Equilibrium of four parallel forcoH, 86.

Force diagram, 140.

Moment of flexure or bending strcsH, 143.

Graphical Htatiox, 340.

Reactionh. Three rulcH (1) when two Hniooth rodo prenH, 130; ('2) when two roda

are jointed, (a) line of Hynimetry, (b) one rod not acted on by a force, 131,

(c) when more than two rods meet at the name point, 133; (<4) when two rods

are rigidly connected the reaction ia a force and a couple, 143, 143.

Jointed quadrilaterals tightened up by various strings, 133.

Jointed polygons acted on by normal forces, 133. Itcactions at the joints

of a polygon of heavy rods, 134. Various problems on reactions at

joints, 141.

Bending moment, 143. Weight on a light plank bridge, 144. Diagram

of stress for a rod acted on by forces a^ isolated points, 148. Weight on a

heavy bridge, 147, Ex. 1. Bending moment for a rotating semicircular wire,

147, Ex. 2. Townseud's problem on a bridge, 147, &o.

Principle of work used to find reactions at the joints of a hexagon, tetra-

hedron, rhombus, tripods, Ac, 334.

Reactions in three dimensions, at an axis, pressures, joints, d'c, 368.

Reactions found by graphics, 361, 363, &o.

n spheres in a cylinder, 139.

Reciprocal FiuuitEs. Defined, 340. Maxwell's theorem, ?41 ; Cremona's, 343. To
draw reciprocal figures, 343, 300. Mechanical property, 346.

Resolute. Defined, 41. Equal to dWjds where II' is the work, 309.

Resolution. Defined, 40. Resolved part or resolute, 41.

Three methods of oblique resolution, 40.

Use of the mean centre, 01.

Resolution in three dimensions, 360.

Along three lines by a tetrahedron, 03, Ex. 3.

Along six lines in space, 339.

Graphical method, 360.

Resultant. Resultant force defined, 23. Forces in a straight line, 33; at a

point, 43.

Method of the mean centre, 01. With an extension, 03, Ex. 4.

Parallel forces, 78, 80.

Single resultant in two dimensions, 118. A trilinear e(iuation, 120.

Resultant force and couple in three dimensions, 307. Single resultant, 374.

Resultant found by a graphical method, 303.
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Reynolds, OsnoisxK. Experiments on friction, 170.

Rigid body. Defined, 19. Rigidity of cords, 031.

RoBKKTH, K, A. Theorem on the centre of gravity of the arc of a lemniscate, 399.

RoBKiiVAi.. Method of finding envelopes, 242.

Balance, 617.

RocKiNO itoDiEs. Condition of stability, 244.

Hollow bodies with fluid, 246.

Second approximations, 247, 249.

In three dimensions, 261.

Rod. Heavy rod in a bowl and cylinder, 126. In a spheroid, 126, 243. Two rods

snpport an ellipse, 127. Jointed light rods forming quadrilaterals and

polygons, 131—133. Jointed heavy rods, 134. Friction problems, 178.

Bonding couple di'.e to a weight, 142, 144, etc.

Various problems, 141, 149. Stability, 221, &c.

Rod on rough wall in three dimensions, 269.

rrc3.-<ure on supports of a rod found by graphics, 361. Stress at any

point, 362.

Sail. Can a boat sail quicker than the wind ? 6?, Ex. 10. Form of a sail acted on

by the wind and its best position, 468.

Salmon. The relation between the inclinations of any four lines in space, 48.

A leading theorem on determinants quoted, 49.

On roulettes, 244.

On the six coordinates of a line, 260.

Generalization of a theorem on the '.eiations of a chord of a conic to the

two nornittlfi, 126 and note.

Scott, R. F. Treatise on determinants, 267.

Screws. See also Wwench. Pitch defined, 271. Right and left handed, 272.

Work of a wrench on a screw, 292.

Reciprocal screws, 294,

As a machine defined, 660. Mechanical advantage, 660. Various theorems,

661.

Shk.vk. Defined, 142.

Six fokces. Analytical view, 324. Geometrical view, 334.

Two methods of describing the sixth line («) as a p'ane locus, (b) as the

nul line of two fixed forces, 334.

Only one way in general of reducing a system to six forces along given

strt .ght lines, 329.

The case of involution, 328.

On the ratio of P,, to P^ and other theorems, 336.

On six forces aloi.g the edges of a tetrahedron, 339.

Smith, R. H. On graphics quoted, 364.

Smooth body. Defined, 64. Reactions, 66.

Spottiswoode. Tlie determinant of involution, 327.

Stability. Defined, 70, 76. Of two forces, 76. Of three forces, 77, 221.

of restitution for a particle on a surface, 77.

Deduced from the principle of work, 214.

Analytical rule when gravity is *;he only force, 220. Geometrical rule, 239.

Alternation of stable and unstable positions, 219.

Stability of a body when two points are constrained to slide on curves,

222. When two rods slide, 226.

. Various problems on stabilitj', 223.

See also EguiLinniuM.

See also Tetrahedron.

Resolute
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ouic to the

Stability. Circle of stability in rocking bodies, 244, 2S1. Stability of neutral

equilibrium determired by second approximations, 247.

Stability of a heavy string suspended from two points, 447; over two

pegs, 449. Of a free string on a sphere, 482.

Statics. Defined as one case of mechanics, l. As the science of force, 21.

Steelyard, (a) Boman, 021, (b) Danish, 022. Comparison of a steelyard and a

balance, 023. Problems on steelyards, 024.

STEREoanAPHic projection. On the principle of similitude in Maps, 421.

Stevinus. Enunciates the triangle of forces, 31.

Stress. Defined, 142. See Bexdinq couple.

String. See Catenary, Elastic strings, Endless strings.

Tension of a light string unaltered by passing over a smooth surface, 197.

Intrinnic equations of equilibrium, 404. Cartesian form, 460. Polar, 406.

Constrained by a curve, four cases, («) string light, curve smooth, 407,

(6) string heavy, curve smooth, 409, (c) string light, curve rough, 463,

(d) string heavy, curve rough, 467, &c.

String with normal forces, 408.

The statical directrix, 460. Heavy string on a circle with hanging ends

and a catenary, 462.

Methods of integration in case (d), 468, 469.

Eope wound round thin rough posts and pegs, 466.

One centre offorce, 474, 476. Force when the curve is a circle, Ex. 2, the

curve r"= a"cos«S, Ex. .3; infinite strings, Ex. 4, &c.; force the inverse

square, Ex. 6 ; catenary of equal strength when the force varies as the

inverse distance, Ex. 11 ; dynamic curves, Ex. 12.

Two centres offorce, 477. The lemniscate, Ex. 2,

Constrained by a surface. General equation, 478. Geodesic strings, 480.

Inflexional points, 480.

Solid of revolution, 481.

Spherical catenary form, tension, pressure, 482. Case of one end free,

case when directrix plane passes through the centre of the sphere, &c., 482.

Instability, 482.

Cylindrical surface, if smooth and vertical the string when developed is a

catenary, 483; if rough, Ex. 3. Examples on a horizontal cylinder, 483.

Conical surface with centre of force at the vertex, 484.

Eouyh surfaces, general equation, 480. Geodesies, 480. Helix, 487.

Minimum force to move a circular heavy string on a rough horizontal

plane, 487.

Calculus of variations. A string (a) suspended from two points, (6) on a

surface under any forces, 488.

Superposition of forces. A principle of statics, 10.

Surface. Particle on a smooth surface in equilibrium, 07. On a rough surface, 170.

Resultant of normal forces, 319.

Suspension. Of a heavy body, with examples on triangles, rods, cones, &c., 87.

Of a polygon of heavy rods, 134.

Of a heavy string, 447.

Suspension bridge. See Catenary. When the main chain alone is heavy, 443.

Wlien the roadway alone is heavy, 402.

When the vertical rods are heavy, 402. Other problems, 462.

Sylvester. On the equilibrium of six forces, 324. The determinant of involution,

320.
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Tendency to break. Defined, 142, see Bendino couple.

Tension. Of a rod defined, 142; of a string, 442. See Frameworks and strings.

A bundle of heavy horizontal cylinders tied by a string, 129, Ex. 7.

Tetrahedron. Used in two ways to resolve forces (a) by sines of angles, 40, (&) by
the mean centre of the base, S3, Ex. 3.

Volume found, 266 ; used to measure moments, 266, 267.

Any six forces along edges are not in involution, 339.

Central axis of the forces represented by the six sides, 278.

Forces referred to tetrahedral coordinates, 267, 339.

Relation of four forces («; acting at the corners perpendicularly to the

opposite faces, (6) at the centres of gravity of the faces, (c) at middle points

of the edges, 318.

Centre of gravity of the volume, 389 ; frustum, 391 ; double tetrahedra,

394; faces and edges, 392; heterogeneous, 434.

The isosceles tetrahedron, 393.

Geometrical theorems deduced from the centre of gravity, 439.

Thomson and Tait, see Kelvin. Proof of the principle of virtual work, 199.

Three forces, see Triangle. A system reduced t three forces acting at the

corners of an arbitrary triangle, (a) in two dimensions, 120, (b) in three

dimensions, 315.

Parallel forces reduced to three, 86.

Thrusts. Defined, 364, see Frameworks.

Ties. Defined, 364, see Frameworks.

Toothed wheels. Small teeth, 644. Involute of a circle, 646 ; effect of sepa-

rating the wheels, 646. Epicycloidal teeth, 646. Problems, locking of

teeth, &c. 646.

TowNSEND. Bending moment of a bridge with a carriage of finite size, 147.

Belation between the equilibrium of a string and the free motion of a

particle, 476.

Transmissibility of force, a principle of statics, 17.

Transon. Radius of curvature of a roulette, 242.

Trapezium. Centre of gravity of the area, 388.

Triangle. Triangle of forces, 32, &(s. ; theorems, 103 ; astatic triangle, 73.

A heavy triangle suspended by strings and in other ways, 87.

A system of forces reduced to three along the sides of an arbitrary

triangle, 120. A system in three dimensions reduced to forces at the

corners, 316.

The least couple to move a triangular table on a rough floor, 188.

Centre of gravity of area, 383 ; various equivalent points, 386 ;
perimeter,

386 ; heterogeneous density x'lf'z", 434.

Geometrical property of the product of the alternate segments of points

on the sides, 132. Centre of the nine points circle and the orthocentre found

by centre of gravity, 440.

Two FORCES, see Conjugate forces. A system reduced to two forces (a) in two

dimensions acting at arbitrary points, 120, (6) in three dimensions wit?! one

line of action arbitrary, 303, &c. 313.

Units. Various kinds, 11.

Varignon. On the transformation of forces, 116.

Venturoli. Contradicts Montucla's assertion about Galileo, 443.

ViNCE. Experiments on friction, 170.

Virtual velocities, see Work.
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Wkllih. Centre of gravity of a circular arc, 396. Circular sector, 400. Cycloidal

area, 412.

Walton. Centre of gravity of a spherical triangle, 424. Of the space between a

parabola and two tangents, 412. Of the lemniscate, 399.

Warben oikdeb. Problem on, 372.

Watson. Problems of the reactions of the legs of a table supporting a weight, 149.

On a case of neutral equilibrium, 88.

Wedoe. Defined, 647 ; mechanical advantage, 648. Condition that a wedge stays

in when struck, 649.

Wheel and axle. Mechanical advantage, 640 ; differential axle, 641. Problems

on the wheel end axle, 642.

Friction between wheel and axle, 179.

Work required to turn the whjel when the string is elastic, 493, Ex. 2.

White. A system of pulleys invented to diminish friction &c., 630.

Willis. His principles of mechanism, 602. On the form of toothed wheels, 646.

Work. Defined, 62 ; equilibrium of a particle, 66 ; rings on elliptic wires, 6rc., 69.

Proof of the general principle, after Fourier, 164, 196. The converse

after Thomson and Tait, 199. Work of forces equal to that of resultants,

194. List of forces which do not appear, 196.

Work of a bent elastic string, 197, 493.

Method of using the principle, 202, examples, semicircle, rods, &c., 205.

Work function defined, 208 ; stability deduced, 214 ; application to

frameworks, 229.

Lagrange's proof of virtual velocities, 266.

Wrench. Defined, 271. See Central axis.

Equivalent wrench (a) when R and G are given, 270, {b) when system is

given by its six components, 273, (c) when the system is two wrenches, 286,

(d) when the system is two forces, 284.

Method of compoun img wrenches by the cylindroid, 287.

Problems on wrenches, 278.

The work of a wrench, 292.

Condition of equilibrium of six wrenches, the sexiani, o26.

Used by Cremona for reciprocation, 342.

Young. Modulus of elastic strings, 490.
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