THE JOURNAL

of tre

B0ARD 0F ARTS AND MANUFACTURES

F0R

UPPER CANADA.

EDITED BY THE SECRETARY OF THE BOARD.

VOLUME VII.

TORONTO:
printed for the board of arts and manufactures for upper canada, by w. ceewett \& co., king street east,

BOARD OF ARTS \& MANUFACTURES FOR UPPER CANADA,

FOR THE YEAR 1867.

EX-OFFICIO MEMBERS.
The Minister of Agriculture,
Tr Chef Superintendent of Eduoation for Upper Canada,
 Universities and Colleges of Upper Canada, the Director and Principal Offiomis of ter Groloaioal Survey, Tie Presidents of Incorporated Meoganics' Institutes in Upper Canada, Ter Presidents of Incorporated Arts Absootations in Uppar Canada, Tie Presidents of Boards of Trade in Upper Canada.

DELEGATES FROM INCORPORATED MECHANICS' INSTITUTES, AND BOARDS OF TRADE. AyrM. I. . James Gladstone. and James Piper, Jun.
Cobourg ". . John Beatty, M.D., and E. A. MoNaughton.
Hamilton " .. Thomas Hilton, J. W. Ferguson, James Cummings, Arorirald MoCallum, Wm. Brown, W. H. Glasgco, and Mr. Judge Logier.

Oshawa " ". R. McGee, E. Mill, Jun., W. D. Michael, and W. F. Gowan.
.Toronto " .. W. H. Sheppard, H. Langley, H. E. Clarke, J. Tarty, J. J. Withrow, F. W. Cumberland W. P. Margton, W. Camion, Jun., and W. Edwards.

Whity ". . Joni Shear and Major Harper.
Toronto Board of Trade. . W. J. McDowell
Hamilton " ".. B. E. Carlton.

OFFICE-BEARERS.

President Join Beatty, M.D. Cobourg Mechanics' Institute.
Vicc-Presideut
Joins Sere, Delegate, Whitby.. ".
Secretary \& Treasurer... War. Edwards, Delegate, Toronto
SubCommittee
Gro. Buohland, Prof. of Agriculture, University College, Toronto.
W. H. Semppard, Delegate Toronto Mechanics' Institute.

IN DEX.

Page
Page Acid, Separating Nitric from Sulphuric 65
" for Brass 216
" Holder 218
Acids, A test for 112
Acetylene 168
Agriculture, Minister of, Report 34
Agricultural Association, Annual Meeting 296
and Arts Bills 309
Agate, Artificial 279
Air, Expansion by Heat 275
*• Treatment for Wounds 275
Aluminium 52

* in Dentistry 163
Alloyed Metals 80, 106,:167, 189, 245, 326
Alcohol, Effects of 138
Alcoholio Liquors, Consumption of 248
Albert, Royal, Arts and Science Hall 177
American Commerce 27
" Cities, Debts and Tazation of 247
"6 Agriculturist 285
Amber 39
Ammoniacal Gas as a Motive Power 302
Anaesthesia applied to Horses 134
A. new 245
Animalcules, Snow 168
Animal Food, To Preserve' 278
" Refuse, Treatment of 300
" Grafts 308
Apprentices, Engineer and Machinist's 188
Artificial Leather 78
Art Schools, British 223
" Education for Artizans 268
Arts and Manufaotures at the Provincial Exhibi- tion 281
Articles de Paris 324
Arbitration in the Trades 251
Area of a Circle, To find 326
Asphalt Pavements in Paris 300
Automaton, Ar Electricn 216
Bärrels, Staveless 79
Band sav for iron 104
Bank Notes, Gutta-percha 131
Bachelors, Mortality of 195
Buth brick 29
Berdan's rifle 23
Berlin Mechanics' Institute 296
Bessemer steel rails
78
78
" ${ }^{2}$ process 180
Beton Agglomere 107
Beet Sugar 130
Belts, Fastening for. 134
Beckett \& Co's Machine Worlss 220^{\prime}
Beverage, a refreshing 245
Beef-curing by Venous Injection 280
Beer, Nutriment in 301
Birds, Catalogue of Canadian 9, '142
Birkhols' Metal
302
302
Blacking, Liquid 165
"Black-Country," a model
112
112
Eleaobing Processes 166
Blood Poisons, Remedy for 211.
Blood, to stop the flow of PAGE PAGE
Blue, Soluble 106
Board of arts and Manufactures, Ontario:
Annual Examinations 6
Meeting and Report 30
Finances and Future of. 33
Meeting of Committee 293
New Books added to Free Library of Ref. 234
Prize Medal for Canadian Birds 204
Trade Marks 8,35,90,120,151,174,204, 234
259, 29
Board of Arts and Mandfactures for Quebec:
Annual Meeting and Report 36
Boots, Water-proof 49
Boot-Pegging Machine 105
Books, New 259
" Bad 137
Boiler Making 101
Boilers, Steam 211
Bones, Value of 168
". and Leather, Old 299
Bolts, Screw, Strain on 215
Bottle of Water Explosion 807
Breech-loaders. 12, 126
Bronze for Castings 49
British Operatives 57
Bridge, a Monster 89
Brewer's Waste 169
Brick Rubbish and Clay 154,160
Bridge across Dover Straits 240
Bronzed Iron 217
Bronchitis, Canges of Acute 307
Business Failures 123
Burnishing Powder 133
Burglar-proof Safes, Eaglish vs. American ... 269 300
Building Cement $3: 7$
Canadian Birds, Catalogue of 9, 142
" Patents 64, 227
" Conveyancer 204
207
Canada and New York State 108
" Her Educational and Industrial Future 169
". Peat Co 207
" Provision Trade with England 328
Cadger's Ciphers 56
Cancers, How to Cure 56
Castor Oil, Meobanical uses of 105
Camphene Burning Fluids 167
Cast-iron, how made 162, 167
Catching Cold 223
Car-wheel, The Sampson 244
Caen Stone 328
Cements, 105, 106, 165, 187, 217, 245, 273, 326, 327
Cement Side-walks 325
Central American States 306
Chicago Water Tuanel
Cbeese as Food 54,
" Factory, the Sydney 10
Charcoal 160,161
and Ozone 68
Chip Rubbish 161
page
Cholera and Disinfectants :37, 194
Chemical Experiments 223
Chestnut Oil 239
Cbewing-gum, Mysteries of 305
Chlorine Vapor, Poisoning by 325
Chinese Green 325
Civic Expenses, Paris vs. Nev York 50
Cisterns, To Cleanse and Preserve 134, 21
Capacity of 166 166
Cities, Populations of 135, 248
Circle, To find the Area of 326
Clay, What is it? 126
Climbing Steep Gradients 323
Clock, The largest in the World 104
Close of the Seventh Volume 309
Corn Returns of the United Kingdom 26
Coins, Ancient 38
Color, Making Trees imbibe 111
Combustion, Curiosities of 122
Cocon-nut Fibre 161
Co-operative Factory. Sir F. Crossley's 186
Companies 209, 224
Coal Pro tuct of England 306
" First discovery of use 308
Conduct, Rules of 194
Convention on Agriculture and Arts Bill 313
Correspondence:
"S. R." on Technical Education 205,259,293,810
"Artificer"234
"A Worker" 295, 312
Crystallography 73, 94, 112
Crcosoted Cailway Sleeper 249
Creusot Works, France 305
Dairyman's Convention 254
Darving Machine for Stockings 273
Decapitation, Pain of 53
Debts and Taxation of United States Cities 247
Dental Art, The 327
Disinfectants...........26, 118, 167, 177, 223, 2i9, 326
Dion's Pire-alarm 130
Diseases, New Nomenclature of 307
Digestion, Artificial 308
Duser Straits, Proposed Bridge across 240
Dressing Skins, Furs, \&c. 133
Drainage 168
Dyeing Horn Buttons 24
Early Mensures 138
Editorial Notices $5,6,30,64,90,119,120,204,285$
Education in New York 50
" Lower Canada 50
" France 328
Egge, Preservation of 106
Electro-Magaetic Machine 179, 214
* deposited Copper 247
Casting 273
Electrical Automaton 216
Electric Telegraph one hundred \& fifty years ago 224
Elementary and Technical Education 295
Enamelling Iron 128, 196, 213
Engraving on Glabs 132, 326
Engineer's Alphabet 167
Engineering, English 206
English Tools at Paris Exhibition 214
Steam Fire-engiae in France 321
Essences 166
Evening Cl 315
Evaporation 39
Examinations, Board of Arts. 4,6,32, 90
Excavator, a Ney 48
Exbibitiod, Paris $9,33,35,58,90$, 20
" " Time required to see. 308
Prizes to Canadians 202
" Toronto Mechanics' Instituta 153
" ProvincialPrize Awards...141, 144, 285
Exit from Public Buildings 119
Expansion of Fluids and Solids 80,134, 275
Explosive Compound, a New 111
Explosions, Steam-boiler 127
Exports of the World $5 t$
Failures, Business 123
Fire-arms. 12, 23, 126
Fire-engines, Steam 321.
Fire-alarm, Dion's $13 a$
Fire-escape 131
Fire, Putting out a 138
Fireman's Protector 167
Fire-proof Petroleum Reservoir 249
Fires, Suffocation of 251
Fibrous Plants 22, 89
Fibres, Solvent for 81
Files, To renovate 167, 217
File Making 173
Fish Culture 237
"Guano and Meal 300
Flowers, Putting up for Winter 165
Odor of 187
Flax Industry, The Irish 236
Fleas and Lice, To banish 187
Focussing 51
Food, Nutriment of various kideds 136
Animal. To preserve 278
Free Library of Reference 31
Frosted Limbs 49
Frosts in the Good Old Times 135
Friction 134
Fruit Essences 166
French Polish for Boots 187
France, Commerce of 222
Fuel, Cnmbustion and economy of 138, 275
Fumigating 178
Gas from Pine Wood and Bones 1
Gas, Removing dmmonia from 107
" Pipes, Destructiou of, by Rate 195
Gaslight Improvement 196
Perfector, The Platinum 216
Gasoline, The daagers of 54
Gestation of Animals 188
Germany, Manufacturing industry of 320
Gilt and Bronze Test 50
Glyconine 49
Glue, Superior. 49, 274
"Waste 161
" for Metals 165
" Bleaching 274
Glass, To Drill 50, 246
" Elastic 131
" Engraving 326
" To mend broken 183
" Crystallizing
PAGE
Liquids, expansion of. 13^{4}
Grafts, Animal 808 808
Gradients, Climbing steep 323
Gunpowder, A new 48, 133
، Gun-cotton and Charcoal 50
Inexplosive
Inexplosive 106 106
Guns, English v. American 226
Gums, Bleaching 246 246
Hamilton Mechanics' Institute 98
Harrison Steam Boiler 218
Hat, An impromptu 244
IIans, To keep through the summer 246
Westphalia 275
Heating Power of various substances 81
Health, The way to 307
Hides, Green, Curing 107
Harse's scent, Power of 224
Horse, to judge its character 261
Horseshoeing, A new mode 821
Horse-keepers, Hints to 828
Hull Iron Mine, The first Smelting at the 105
Human Life, Statistics of 248
Hydro-propulsion 137
Hydrophobia, Remedies for 166, 211
Tolaying, The art of 181, 273
Inventions, British 132
The lull in 210
Inventors, Reprards to 195
Insects 241
Iron Ore 24, 105
Ancient workers in 47
" Shaft, Monster 79
" Cast Malleable 104
" Euamelling 213
"Works at Barrow-in-Furness 129
" Fibrous, What makes 130
Filinge 161
" Cast, how made 162
" and Copper, Strength of 188
" Works, Marmora 197
" Bronzed 217
and Steel, Exports of 222
Malleable, Weight of 275
312
Cement 326
Itch, Treatment of 187
Ivory, Artificial 24
Fossil 827
Tournal, The $5,30,32,64,120,204,309$
Japanese Alloys 106
Jerusalem, Commercial aspect of 221
Krupp's Steel Works $5.15,40$
Kuowledge by the Fireside 38, 73, 94
Labels on Tin, To fix 50
Lamp, Kerosene, Explosion 807
Leather, Gummy Oil on 23
To prevent Rats from Damaging 25
from Leather Cuttings 78
Russia, how made 132
" Cracking of 164
" Waterproof Composition for 166
Splitting 242
" and Bones, Old 299
Lead, Percbloride of 111
Red. 325
Life Boats and Tackle 46, 102
Liberia, The Sugar Crop of 50
Linseed Oil, "Drying" 107
Light, Artificial, Cost of 252
Lights, Artificial, Danger of. 157
Lime Rubbish 159
Library of Reference $2: 4$
Longman, George 30
Lowell Manufactories 50
London, Sanitary arrangements. of 125
Post Office 222
Locomotives, A race of Road 321
Lumbermen, A useful Rule for 188
Lubricants, Wet and dry 321
Luicimeter, The 322
Lumbago, Cure for 322
Marble Fireplace, 'To clean 81
* Dust 161
Variegated 246
Malleable Cast-iron 104, 302
". Iron, Weight per foot 275
Magnetism in Iron 106
Manures, Waste substances for 158
Male Dust 161
Matches, Imptorement in 166
Marmora Irun Works 197
Manufactures, Summary 244 320
Mahogany, to Imitate
Mahogany, to Imitate 325 325
Magnesia. Hypochlorite of 325
Measure-Maker, Every man his own 107
Mechanics in Southern Society 140
Meghanics' Institutions:
Rerlin, Annual Meeting 296
Hamilton 93
Ottawa 93
Toronto 151
Toronto, Annual Exhibition 94
" Evening Classes 315
Meats, to Preserve Fresh 189
Mercurial Vapors 218
Memoranda........25,49,80,106,134,166,188,217, 246
Metaphysics Defined 138
Metal Shavings 101
Metals, Linear Expansion of. 18.4
" Friction of 134
" To remove dust from 217
" Temperature of heated. 188
" Plating or coating 319
Metric System, The 250
Milk-Weed or Silk-Weed and the Canadian Nettle 89
Milk Supply, London 107
" Condensed 140
Microscope, Objects for the 175
Microscopic Furnace Dust 280
Mining Items 827
Molds, Interior of 81
Muntreal Herald, Illustrated 120
Mortality of Cities 135
Motive Power, Ammoniacal Gas 302
Moles, The Diet of 307
Moldiness, to Prevent 246
Mushét's Steel Manufacture 302
Naturalist's Home, A. 96
Nails, Sizes of 184
New York and Canada 108
Nitro-glycerine, Non-explosive 52
Niagara Suspension Bridge

Page
327
Oatmeal, its Nature and Value 55
Oil, Castor, Mechanioal uses of. 105
" "Drying" 218
Oiling the Sea. 138
Ointment, Healing 325
Original Articles:
American v. English Guns 226
Arts \& Manufactures at the Provincial Exhi. 281
Bath or Scouring Brick 29
Caanda: Her Educat'l \& Industrial Future. 169
Conven. of Delegates on Cap. 32 Con. Stat. ©. 313
Close of the Seventh Volume 309
Distress amongst the Operatives of Britain. 57
Disinfectant and Sanitary Precautions 118
Evening Class Instruction 254
File Making. 173
Marmora Iron Works 197
Odell's Patent Clothes Wringer. 30
Our Social Customs 225
Patent Economic Grs 1
Pent Bogs of Canada 85
Peat in the Manufacture of Iron, and as Steam Fuel 115
Provincial Exhibition Prize List 141
of 1867 253
Statutes on Agriculture and Arts and Manu- factures 309
The Harrison Cast-Iron Boiler 113
"Folly and Danger of Strikes 117
Technical Education 199, 255
Willard's Address at the Canada Dairyman's Convention 254
Organic Compounds, Synthesis of 194
Orchard Culture 16
Orphanage, The Alexandra. 252
Ottawa Mechnnic's Institute 98
Ox Tribe, The. 94
Oxygen, its Manufacture106, 251, 279, 304, 326
Ozone, and its relation to Animal Ghareoal 68
" Manufacture of. 140, 22
" as n Visinfectant 167
Paste, White and Office. $25,187,217$
Patent Lavs 32, 137
Patents, Caurdian 64, 227
Pateut Department, United States 108
Paris Exhibition 202
" " English Tools at 214
260
Paint, Cheap rough 49, 106
Packing Paper, Waterproof 133
Paraffin Waterproof 165
Paper Boats 224
Pavement, Asphalt 300
Packing, Self Lubricating 321
Peat, Compressed 48
" Boge of Canada 85, 207
" in the Manufacture of Iron, and as Steam Fuel 115
Perfumes 85, 207
Petroledm:
As Stenm Fuel15, 76, 99, 112, 128, 154, $219,220,250$
American Oil, Danger of Burning 157
As a freezing Agent 250
Australian 250
Turpentine from 48
Oil, Hervy 75
Pitroledm:
Oils, as Lubricators 81
Italian 139
Oil Tanks 220
The Utilization of Waste 158
Lubricating, as a Siccative Oil. 157
What is Petroleum? 218
For Steamers 220
Tank Cars 220
Value of Pennsylvania 221
Export of 221
Storage of 249
A new Process of Manufacturing 324
Philadelphia Music Hall 204
Photograpit:
On Focussing 51
A new Actinic Light 109
Production of natural Colors 109
Nitrate of Silver 110
Marking Linen by 110
A new Modification of 110
Submarine 110
Old Collodion 110
The Dark Room 189
Developers-Intensifiers 190
Toning--Solutions 191, 192
Coloring Slides for Magic Lanterns 192
The Photographis Art 193
Improvements in. 193
Drying Sensitized Paper 193
Yellow Glass for operating rooms 193
Permanent Photographs 193
Employment of Carbolic Acid in. 276
A Photographic group 276
Glaze for Photographs 277
Notman's Portraits 277
Tin Types and Gem Pictures 277
Pbotograpic Phantoms 277
Ornamenting glass, \&c., by 278
Pine Tree Wool 104, 243
Pickling 218
Piak for Woollen or Cotton 275
Platinised Copper Vessels 218
Plating or Coating Metals 319
Pneumatic Railways 186
Populations of great Cities 135
Pork-packer's Salt 159
Poisons, Organic 218
Poultry Manure 252
Poison of the Cobra-di-copella 280
Pride, Mistaken 83
Prize List, Provincial Exhibition 144
Prizes a warded at Provincial Exhibition 285
Preventing Railroad Collisions 324
Publications, Recent 92, 174, 259
Quebec Relief Fund 81
" Shipbuilding at. 136
Railway Items 82, 244 247
"Traffic, Canadian 82
" Trains, Speed of 247
" Collisions, Preventing 324
Railways, Street, New York 222
City Subterranean 110
Resins and Varnishes, Solution of 106
Reciprocity and New Brunswick 248
Reaping Machines, Invention of 207
Redelpts, Usefgl:
Dyeing Horn buttons-Staining Wood-Arti-ficial Ivory-White Paste2.4PAGE
Receipts, Usefus:Waterproof Bcots-Frozen Limbs-Bronzefor Castings-Cheap Paint-Glyoonine-Soldering Solution - Steel from Rust-Laundry Gloss--Deodorization of Rubler--Superior Glue48
Cement for Ivory, \&c. - Inexplosive Gun-powder-To Preserve Eggg-Cement forIron or Stone-Cheap Paint-Soluble Blae 105
Dressing Sheep-skias and Furs-Water-proofPacking Paper-To mend Broken Glass-Guopowder-Varnish for Iron-Applica.tions for Wounds-Burnishing Powder-To Write upon Iron, Steel, \&c.-ArsenicalSoap133
Liquid Blacking-Wash for Buildings-Gut-ta-percha, Rubber, Hydraulic Iron, andStone Cements-Glue for Metals-Glyco-nide-Paraffine Water-proof-Putting upFlowers for Winter-Hydrophobia-Im-proved Matches-Water-proof for Leather-Superphosphate-Bleaching165
To banish Fleas-To remove Stains-Odorof Flowers-Itch Treatment-Cements-Zinc White-Solder-Office Paste-Weld-ing Composition - Polish for Boots -Whitewash187
Cements - Paste -To Bleach Sponge - To Preserve.Cisterns-Crystallizing Glass.... 217-Alloy - Cements-Artificial Stone-New.Anaesthetic-A Refreshing Beverage-TarWater-Bleaching Gum - Welding Com-position-Drilling Glass245
Cements-Silvering Powder-New Glue-Anew Styptic-Toilet Soap-Whitewash andStarch-Bleaching Glue-To Solder Tor-
toise SLeil-Pink for Woallen or Cotton... 275
Alloy for Hard Tools and Bells-To ImitateMahogany - Poisoning by Chlorine Vapor- Healing Ointment - Hypochlorite ofManganese - Red Lead - China Green-Cement Walks-Sizing for Fabrics - ToPrint by Sunlight - Varnish for Maps-Linament for Rheumatism - Cure for-Libucat RorScrofula-Cure for Lumbago325
Rbeumatism, Linament for 326
Room, To Light a Dark 49
The largest, in the World 112
Rotton Rock 159
Road Sand 160
" Locomotives, A race with 321
Russia Leather, its Manufacture 132
Saltpetre. Artificial 48
Salmon Fisberies, Our 58
Salt Mines, Nevada 110
Sanitary Precantions 118, 125
Saw Blades, Band 165
Safes, Trial of, at Paris 269, 300
Scale Frucet 186
Rule, A novel 243
Screw-bolte, Strain on 215
Schools of Art 223
Scrofula, Cure for 326
Sea, Life and Death at 82
Self, A knowledge of 96
Sewing Maching Facts 306
"Shut the Door, John" 53
Shoddy Devil Superseded. 102
Sbells, Filling with cast-iron
105
105
Sbip Building at Quebec 136
English: 1866 222
Signs + and - , Origin of 189
Silvering Powder 274
Sizing for Woven Fabrics 325
Slaughter-house, Public, New York 222
Smelting Iron-ore 24
Small Savings 81
Soldering Solution 49
Solder for Brass Instruments, 187
". for Aluminium Bronze 275
Solvent for Testile Fabrics 81
Social Customs, Our 225
Soap, Arsenical 134
" Powder, and Solution-Disinfecting 223
" Toilet 274
" Glycerine 305
Sods and Turfy Loam 160
Springe, Tempering 45
Sponge, To bleach white 217
Staining Wood 24
Stains, To remove 187
St. Lawrence, Damming the River 53
Strikes and their Cure 27
The Folly and Davger of 117
Starch, Colored 28
Statistical Information......26,50,81,107,135,221, 247306, 327
" Summary 2.49
Stone-breaking and Rolling Machine 186
Street Railroads 222
Storm Signals during Farvest 224
Stone, a new Artificial 245
Styptic, a new 274
Streams, Pollution of 275
Steam Fuel, Liquid. 219220, 250
Steam Guages, Mercurial 25
" Engines aad Boilers, Notes on 25
" Fire-Engines 3, 321
" Boilers 211
" Propulsion 137
" Engines, The Past and Future of. 163
" Velocity of 183
" Eagines, Propellers, Largest in the World 322
Steel, Manufacture of 40
" Avnealing 46
" Tempering and Sharpening 48, 79, 91
" Preserving from Rust 107
" Rails 78
" Bessemer procesg in U. S. 180
" Manufacture, Uchatius' process. 301
Surgical Splints, Soluble Glass for 302 104
137Super-Phosphate, How to make
Summary-Manufactures 166
252Sunlight, To Print by
325Saspension Bridge, Niagara
Tanning 104, 165
Tanner's Waste 160
Talkers and Writers 111
Tar-Water, Mode of preparing 248
" for Caterpillars 252
Teeth, Nutrition of 110
Tests 49, 50, 112, 211
Technical Education, 169, 199, 205, 234, 255, 269
Terra Alba 248
Tea Canisters, new, 'lo Cleanse 247
Temperature and Moisture 269
Telescope for Objeots under Water 322

THE JOURNAL

OF THE

FOR UPPER CANADA.

JANTARY, 1867.

THE NEW PATENT ECONOMIC GAS.

It is one of the objects of this Journal to announce any new discoveries which may be of use to society at large, and to explain as far as possible what advantages may be oftered by putling them into practice.

During the last few minths, journals of more or less notoriety have occasionally made allusion to a new invention known as "Ensley's Pacent Economic Gas." Nutwithatanding the geod authority under which some of these accounts have been published, we have always been inclined to look upon gluring statements of wonderful discoveries with a certain amount of incredulity, and so for some time we regarded this. Latterly, howerer, owing to the confidence with which the merits of this new gas have been proclaimed, from sources worthy of all credence, and especially from the andisputed fact that a town in Camada has actually been lit up with it, preconceised theorice with regard to the invention appear to have been eatablished, many of which when originally propounded were regarded with apprehensiou and surpicion.

The primary object of this invention is to produce on illuminating gas. The secondiry object is, at the arme time and with the same apparatua, to manufacture certain saleable and valuable products, namely, charcoal, tar, turpentine, pyroligneous acid, bone black, ammoniacal liquor, nad other valuable substances. The patent covers the right to manufacture these articles from vegetable and animal matter, either separately or combined.

The materials best suited to the purpose are pine wood and bones. From the former gas has been made, bit of a kind unfit for general use owing to its want of carbon, which is essential to impart the proper colour and brilliancy, on account of which defecta, wherever it has been tried, it bas generally been laid asido. The effectaal meeting of this difficulty is what we conceive to be one of the chief merits of Mr. Ensley's patent. To attain this object he adds to the wood gas a quantity, equal to from thirty to fifty per cent., of gas made from animal matter. The best material and that most easily obtnined for this purpose is bone, which not only yields a large amount of gas, but also affurds, by means of the apparatus nsed,
a large proportion of residuum in the form of ammoniacal liquid and bone black. These two commodities are manufactured in large quantities in many cities and towns of America, and are extensively used and known as fertilizers (the bone black being the principal ingredient in Coe's superphosphate of lime), and they will always find a ready market for this and other purposes.
The promoters of this patent contond, and say they are prepared to confirm by actual experiment, that which may appear at first sight to bo ailmost incredible, namely, that the residuum of the wond and bones taken from the retorts are sufficiently valuable to defray more than all the cost of material and other expenses of every kind in the manufacture of the gas, thereby leaving the receipts for the gas itself all clear profit.

The following is a short history of Mr. Ensley's discovery, as published by the assignees and present proprietors of the patent, Mr. John Moffat, of London, and Mr. T. D. Ledgard, of Toronto :
"Mr. Ensley's discovery that illuminating gas and the other valuable substances could be easily extracted from common pine wood and bones, was, like many other valuable discoveries, at first regarded with much suspicion and distrust by the public, and many popular prejudices and fears had to be overcome befure its commercial value and importance were fully apprecinted. The test of practical success has, however, now stamped it as one of the most important inventions of this age of scientific discovery.

It is many years ago since, by a series of experiments, Mr. Ensley first demonstrated that it required but a very simple and economical apparatus to extract in large quantities not only gas but also tnr, turpentine, obarooal, \&e., from the oommon pine wood and roots which abound in almost every part of the United States and Canada. The gas, however, produced from these materials, although good, yet wanted one of the most valuable properties of a bright, light, viz., carbon. That property Mr. Ensley discovered, could be easily extracted from bones and refuse animal matter of all kinds, and he aecordingly proceoded to mix Ω portion (say one-third) of the gas produced from this matter, with that produced from the wood, until he had a bright, oteads light, perfectly free from smoke and smell, and quite as good as that produced from good coal.

Having satisfed himself of the genuineness of his diecovery, he construoted a small model of the apparatus he proposed to use, and endeavoured to obtain the aesistance of several eminent men to enable him to bring the invention under the notioe of the public. He received, however, noencouragement from those to whom he addressed himeelf, and at length, after repested fuilurcs to enliat the sympathies of influential men, the beoame dis. heartened, and suffered the model to remain idle for a number of years.

It was not until the beginning of this year that Mr. Ensley at length succeeded in attracting public notioe to his valuable discovery. It happened
that Mr. John Moffat, of Komoka, Canada Weat, was at that time endeavouring to introduce an economical light into his Seminary in the Village of Komoka, and seeing the commercial value of Mr. Ensley's invention, immediately entered into arrangements whereby the discovery might be properly developed and brought into public notice. The result was, that an apparatus costing about $\$ 500$ was erected last May (ly66), at the Seminary in Komoka, with a gasometer containing about 600 cubic feet of gas, more than sufficient to illuminate the entino building. The success of this firat experiment is testified by the report of the committee appointed to investigate it by the Board of Trade, and also by the other gentlemen of the City of London, C. W., who visited the works on the 16th May, 1866. The apparatus is still in successful operation, and can be inspected by any one who chooses to visit the Seminary for that purpose. Komoka is a station on the Great Western Railmay of Cariada, situated ten miles West of London, and midway between the Suspension Bridge and Detroit.

A public trial of this wonderful discovery was made in the city of Detroit. Having disposed of the patent right for the Slate of Michigan, an apparatus on a larger scale, containing 2,400 cubic leet of gas, was erected in Detroit, and on the 27 th July, 1866, nad three following evenings, the Buard of Trade Hall in that city was brilliantly illuminated, the light being declared by all present, to be equal to that of coal gas.

The patentee and promoters of Ensley's patent economic gas, do not claim that extracting gas and other materials from wood and animal matter is altogether new; the merit of the invention lies in discovering a proper combination of vegetable and animal matter, to produce a goodilluminating gas, and at the same time to develop all the valuable substances in the material used. The construction snd combination of the apparatus, and the elements employed, are, however, entirely new, the inventor having obtained patents for them both in the United States and Canada. The small cost at which the apparatus can be constructed, will bring the luxury of gas-light within the reach of small towns and villages, and also of those living in detached dwellings. Hotels and manufactories, which at present have but imperfect means of illumination, oan also, by means of this invention, be economicnlly and brilliantly lighted. This invention is also worthy the attention of gas companies in cities and towns, as it may be used either separately or in conpection with coal gas."

It is quite recently, within the last few weeks and since publication of the above, that the town of Cobourg has been lighted with this gas. The proprietors of the patent, as has often been the experience of proprietors of other good patents, found numerous objections and difficulties raised as to the praoticability of using the gas for towns, where it would have to travel through miles of pipe, although they had established the fact of its being suitable for factories, where the gas had not far to travel from the works, as in the Komoka and Detroit experiments. In order to meet these
objections, negociations were opened with the Cobourg Gas Company, an institation which had for years provided but a powr investment for its shareholders, and finally agreed to rent their works. from them for the purpose of establishing, by actual demonstration, that the new gas pussessed all the qualities claimed for it. The result has proved all and even more than was anticipated. Not only were the various residues produced as and in the quantities it had been asserted they would be, but the gas itself turned out to be superior to that formerly used, and there is probably no town in America so well lighted at the present time as Colourg. The objections whicb had been raised as to the travelling properties of the gas were undeniably set at rest, as the lights at the extremity of the pipes, over a mile and a quarter in a direct line from the gifometer, but, owing to the circuitous course of the pipe, nearly three miles in reality, burned as brilliantly as those at the works. It is in this particular that most gases (excepting that from coal), which are otherwise good, hare invariably failed to succeed.

At Cubourg, the gas is not only better than that which the consumers bave been accustomed to, but already the manufactarers of it have been enabled to reduce the price from $\$ 30$ to $\$ 250$, with the prospect of a still greater reduction.

The accuracy of the following statement of proportions of the different residuums are vouched for by Mr. Moffat, the lesses of the Cubourp, works:-
Memorandum of cost of manufacturing Gas from Ensley's Patent, as demonstrated by practical test at Cobourg, from one cord of pine wood and 1000 lbs . of bunes.
1 Cord pine wood $\begin{aligned} & 200 \\ & 400\end{aligned}$
考 Ton bones...................................... . 400
3. Cord hard wood for fuel, at $\$ 3$ per cord... 215
Cost of labour 200
$\$ 1015$
Amount of gas produced 15,000 cubic feet, making the cost 67 多 cents per thousand feet, without taking into acconnt the sale of the residu-ums-estimate of cost and proceeds of which are ns follows :-

Dr.
Cost of wood, bones and labour, as above. $\$ 1015$
Cr.
40 bushels charcoal, at $5 \mathrm{c} . . \$ 200$
50 gals. tar, at 8c........... 400
12 " oil of turpentine, at 20c.
770 lbs. bone black, $\$ 1$ per

| $\frac{1}{2}$ brl. ammonia,............. | 770 |
| :--- | :--- | :--- | :--- |

240
$\frac{1}{2}$ brl. ammonia,............ 100

- $\$ 1710$

Abstract

Brought forward $\$ 1710$

\section*{Less cost of separating turpentine and tar from the pyroligneous acid
 200} $\$ 1510$ Learing a net prote on the residuums of $\$ 45$ and the gus free.

Persons acquainited with the value of charcoal, will admit that the price at which it is estimated is very low indoed at ive conts a bushel, as the cost of mandifacturing it in the usual marner with pine at $\$ 2$, and hardwood at $\$ 3$, cannot be less than 10 to 12 cents per bushel. Then the praportions of tar and turpentine, according to Professor Troft's analysis, would he from 20 to 30 per cent at least ower tho above estimate, and the other estimates have been made with the same liberel discount.

The cheapness of material, the value of the residuums, reducing as they do the cost of the gas, will admit of a corresponding reduction in the present high prices-probably in many cases to the estent of one-halt, and even at that figure it mould appear that the investment must be more profiable than those in ordinary coal gas cempanies. Nest to cheap food, a cheap illuminator is a great desideratum for the people, a boon which seems to be afforded by this wery valuable discoyery.
In Canada and the Onited States, where all the materials for the manufacture of this gas can be readily and cheaply procured, and where the gas heretufure used costs from $\$ 3$ to $\$ 8$ per thousand feet, there appears to ke little doubt but that it must come into general use. It is adapted to large cities and towns, to small villages, and also for botels, seminaries, and other establishments where there is a large accumalation of bones and other refuse animal matter and offal, all description of which are equaliy suitable for the manufacture of this gas. Some of these institutions have to pay thousands of dollars annually for gas which they can, by this new discovery, make for absolutely nothiog.
It may be thouglit that in some places where the materials are expensive, that promising results, such as the above, would not bearrived at ; but this opitrion is not necessarily corroct, as it must be obvious to all that the value of the products and residur of wood and bone, as of all other crude material, must be regulated and proportioned to the price of these articles. Thus the resullts zoould be very much the same at New York, Boston, or Ifontreal, as they have proved themselves to be on a smaller scale at Cobourg. As an instance of this, pine has been valued at Cubourg as above, at $\$ 2$ a
cord, and charcoal at 5 cente a bushel. In Bostop, where pine is worth $\$ 7$, charcoal readily brings from 25 to 50 cents a bushel, according to quality. Bone can be bought for $\$ 3$ a ton in Canada, and the price of bone dust is $\$ 20$; wherens in Bustun, bone is worth $\$ 25$, and bone black $\$ 75$ to $\$ 100$ n ton. It has been suggested that sufficient bone might not be procurable to keep the gas works supplied. On this senre there need be no apprehension, as may appear from the fact that about five hundred tens of bone would be sufficient to supply the gas works of a city of twenty-five thonsa:al inkabritants for the year. But bone is not the unly waste animal matter that will answer the purpuse. All kinds of garbage and animal offal, hundrads of tons of which go yearly to waste in such a tuw: as that referred to, and which can be had for tho taking away, are equally ins suitable, and the satac quantities and proportions aufice, but of comse they will not yield the same valuable residuums:-

There are several favourable features in connestion with this matter which bave not yet been mesetioned, and which give this gas a great advantage over that produced in the ordinary way-mood and bone being twice as readily consumed as coal, the gas is more readily generated from it, conseguently the cost of labor, fuel, and works, are correspondingly reduced, and operations san therefore lie carried on with much lese capital than usanally required.

The estimated cost of crecting apparatus, works and pipes, for a town burning say 2,000 lights, is $\$ 10,000$ gold ; the estimated returns from which would be as follows:
2,000 lights, at an average of three fect each per hour, one hour and a half per day, would consume 9,000 feet of gas per day, or $3,285,000$ feet per annum, at $\$ 2$ per thousand, would produce a wet profit of $\$ 6,570$ per annum.
As the residuum from the pine and bones will more than pay wooking expenses, the above returns are net profit, and show a dividend of more than 65 por cent. on the capital actually invested, and this with gas at $\$ 2$ per thousand feet, which is at least 30 per cent. lower than the usual price in Canada.
It is a simple and not expensive matter to altcr ordinary gas works to answer the new process; and while the alterations are proceeding, the manufacture of coal gas necd not be interrupted for an hour.
It is just one month since the gas was intreduced so successfully at Cobourg, and we uncerstand that arrangemente are on foot for introdacing it in other localities, both in Canada and the United States. Some of tho places mentioned o.ra

Montreal, Ottara, Belleville, Dundas, Ingersoll, and Prescott. Already several towns in the United States, where coal gas is very expensive, are making enquiries ; and a contract has been entered into for the erection of works with at lenst one extensive factory, namely, that of Chickering Brothers, the renowned piano manufacturers of Boston. This establishment is expected to he lighted with the naw gas on or about the 10tb of this month. This fact alone goes far to show the high esteem with which this new invention is regarded; and should its introduction at this factory give the same satisfaction it has given at other places where it has been tried, this new and cheap gas will no doubt befors tong come into general uee.

TUE ANNUAL EXAMINATIONS, AND EVENING CLASS INSTRUCTION.

In another portion of this number, we publish the Board of Arts programme of the nest annual examinations, to which we beg to direct the attention not only of the gouth for whose special bencfit they have been established, but of parents and employers of youth in the various industrial pursuits. These examinaticns, modelled after the examinations of the Lundon Society of $\operatorname{Ar} t \mathrm{~s}$, were organized by the Board in the year 1863, and con. tinued in 1864 and 1865.

The number of candidates, papers on diferent suljects, and certificates awarded were as fillows:

Number of Candidates				1303.	156.1.	1565.
				7	17	11
l'apers cxamined on different subjects				9	43	27
First class certificntes awarded				1	6	4
Second	${ }^{6}$	*	${ }^{6}$	2	11	6
Third	"	${ }^{6}$	*	4	19	5
Silver medal anarded				1	0	0

From some cause or causes, the volunteer movenient no doubt being one, no candidates presented themselves for the examinations in May 1866. This is to be regretted, as there can be no doubt of the benefits accruing to all engaging in such exercisos, and the studies necessarily prepiratory thereto.

A piper published under the auspices of the Glasgow Alhceneum, in the year 185s, in reference to the examinations of the Loudon Society, contaius the following paragriph:-
"If any thing were wanting to enforce the benefits. accruing from the Society's examinations it might be derived from the approbntion signified loy the great numher of Master Manafacturers, Railwny Directors, and Inankers throughout England. and of the leading commercinl firms in Londoin and in the Propinces, Which hare declared their readiness to accept the certiforers of the Society as a guarantee of pro-

The number of candidates at the esaminationsof the Society referred to, is eonstantly increasing. year by jear; and we hope the same will be the ense with the examinations of this Board, 80 soon as their usefulness is properly appreciated. A short time since we received a communication from " a WYorking Man" of this city, in which he says:-
"I was looking oper some of the numbers of your Journal-the articles on the Board of Arts Emamidations drew my attention, nod I read them. I think that these examinations are calculated to be very beneficial to young reen, but I was sorry to see that very few had entered the listo ; and \mathbf{I} began to thinge of some plan to make them more successful.
I think that if you bad a more enticing reword they might be successful. Could not some of our merchants be coased into giving a small amount each, towards buying Ω good prize? say a rifle or shot-gun, which I think would take very well ; or coald not the worthy Directors of the Mechanics Institute be induced to offer a life-membership in their excellentinstitution, as a reward for the one who obtained the greatese number and bighest grade certificates? Or if this would de stretcling their generosity too far, let it be a membership for one or more years, as they may seefit."
In an article upon this subject, in the Journa: for Aagust 1864, we wrote as followe :-
" $I t$ is to be regretted that the financial circumstances of the Board do not allow of the n warding of prizes of an actual money value to the successful candidates, as is the case in connection with the examinatious of the London Society of Arts, whose system is in otber respects pretty closely followed. We would fain hope that some of our men of wealth, having the interests of the indarstrind classes at leart, may follow the gaod example set by John Macdonald. Esq., M.P P. for Toronto. in founding a-Bursary in Toronto University College for the benefit of the sons of working men, and endow a Bonrd of Arts Examination Fuwd for the benefit solely of the wniking classes. We fully appreciate tbe generosity of Mr. Macdonalia in making the endownent nbove refurred to, and in ibe mane of the working men return him thanks; but liberal as the act is on his part, it is not ealculated directly to benenit to any apprecinble extent those who are inteading to follow mechnoical pursuits-the sons of mechanics studying the learned professions will be benefired, bat not mechatics themselves, as: instances are rare indeed of Graduates of Universities following any of the ordinary iolnstrial occupations."
"An endowment of such an Esamination Fund as is above indiented won:d direclly yench the parties for whom intended, and fond to such a course of private stallies, or to connection with Mec!naies' Institures +vening classes-which are now with so muctr bebeft being organized in some localities-as would gralunlly elerate the chnracter and copabilities of nur artizans, and redound to the credit mud prosperity of the Province."

We would again express a hope, either that suck a fund may be founded by private individuals, or that the beard may soon have such an appropria:ion as shall enable it to establish prizes in money and medals, in addition to the usual certificates. Youths engaged in laborious mechanical or other industrial pursuits, for from 10 to 12 hours each
day，are naturally but little inclined to devote the spare hours of their evenings to close study－it needs generally some inducement other than the advantages to be derived from the attainment of knowledge for its own sake．These inducements furnisbed even at the public expense，the country would reap the benefit in the increased intelligence and skilled labour of its operative classes．

Of the 35 candidates presented for examination during the three years referrea to， 15 were from the Tloronto and 20 from the Whitby Mecbanics＇ Institute．We are not aware that in Upper Canada any cther of the Institutes bave thad eren－ ing classes organized，although it is quite probable some few may have been in operation，that we hare not heard of．

The＇Toronto ${ }^{3} \mathrm{Xechanics}$＇Institute has，at various times，since its organization in the year 3831，had such classes in existence；but it was not till the year 1862 that it had any well devised seheme for their organization and coutinuance．The statistics of its classes for the five years ending with the current session，are as follums：－

Sudjecr．	No．Pupile．				
		$\begin{aligned} & \text { ザ } \\ & \text { 蓲 } \end{aligned}$	$\begin{aligned} & \text { 荷 } \\ & \text { 品 } \end{aligned}$	（	容
$\begin{aligned} & \text { Sook-keeping } \\ & \text { Peumauship........... }\} \end{aligned}$	34	58	46	61	74
Arithmetic and				90	38
English ．．．．．．．．	44	21	8	19	00
Erench．．．	30	10	18	16	36
Elocution．．．．．．．．．．．．．．．．．．：．．	nil	nil	5	10	12
Phonography．．．．．．．．．．．．．．．．．	mil	nil	nil	43	11
Architectural and					
Landscape figure and ${ }_{\text {M }}$	10	20	7	16	13
Ornamental Drawing．．．．		nil	7	15	14
Total number．．．．．．．．．．．	150	115	105	200	178

May we not hope that a grodly number of candi－ dates from this Institute，and some others，may fairly bo anticipated for the ensuing final examination？

KRUPP＇S STEEL WORKS．

In the December number of the last volume of this Journal，occurred a paragraph taken from the Scientific American，giving statistics of Krupp＇s Works，and locating them in Essez in England． We noticed the error at the time，but by an oversight failed to correct it before going to press．On page 309，of the same number，we referred to Krupp as a non－English manufacturer．
Mr．I．Meyer，of LIarpurhey，in a communica－
tion directing our attention to the error，says ：－ ＂I have seen the same blunder in the Leader and Globe，and several other papers，and would hardly believe it possible to be copied so often without correction．Mr．Krupp，a German，hats his great steel works not in＇Essex，England，＇but at Essen， a town of about 8,000 inhabitnhte，＊in the German District of Dusseldorf，Prussia－the neighbour－ hood is famous for its rich cond mines，worked by between 3 and 4，000 miners（or pitmen）．Besides the great steel works of M．Krupp（the same who got the first prize at the Exhibition in London，fur the largest piece of cast stoel ever made），matiy other factories flourish at Essen and its vicinity．＂

An interesting series of articles descriptive of this establishment is commenced in another portion of this number．

THE SEVENTH VOLUME．

The present Number commences the seventh volume of the Journal．The endeavour will be in the future，as it has been in the past，to render it as worthy of the support of thinking and practical men as the time at our disposal and the means of the Board will permit．Mechanics and others interested in the progress of the Industrial Arts and intereste of the Province，are requested to for－ ward useful and practical information for its pager， or to make suggestions for otberwise increasing its usefuluess．It is formarded to nearly all last year＇s subscribers，from whom no notice has been receir－ ed to discontinue．Partics not wishing to be subscribers for this year，are requested to returu the present（January）number．Subscribers in arrears are requested to remit to the Secretary ot the Board．

TO MEMBERS OF THE TORONTO MECIIANIOS＇INSTIU＇TE．

The Directors of this Institute have made arrangments to publish monthly，on the cover of this Journal，a complete list of new books added to their Library during the month．Members of the Institute subscribing to the Journal will thus have regularly placed before them a monthly printed sapplement to the Institute catalogue．
Subscriptions of members of Mechanics＇Insti－ tutes，and of Literary and Agricultaral Societies＇، when paid through their respective Secretaries or other officers， 50 cts．per annum．Non－members， 75 cts．per annum．

[^0]
FOR UPPER CCANADA.

ANNUAG MEETING OF TIE BOARD.

- Notice.

The annual meeting of the Board will be held on Tuesday the 29th inst., at 2 o'clock P. fl!, in the Board R'joms, Toronto Mechanies' Institute; when the report of the retiring Committee will be presented; and Office-bearers elected for the ensuang year.

The members of the Board are:-the Minister of Agriculture, the Chief Superintendant of Ediucation, Professors of Physical' Sciences in Universities and Colleges, Officers of the Provincial Geological Surrey, Presidents of the incorporated Mechanies'Institutes, ode Delegate from ench Board of Trade, one Delegate fur every twenty Mechanic members of every incorporated Mechanics' Institu:e or Wurking Men's Association, an'do one Delegate for every twenty members of any incorporated Arts Assuciation in Upper Canada. [See Frorisions of Statute in last Number of Journal.]

Secretaries of these various bodies are requested to notify their respective Delegates.
W. Edwards, Secretary.

January 1at, 1867.

ANNUAL EXAMINATION OF CANDIDATES.

This Board proposes to hold its Fifth Annual Examination during the third week in May next, under the rules and restrictions laid down in the annesed programme.

The examination will be open to all members of incorporated Mechanics' Institutes or Library Associacions in Upper Canada, who are not students of any college, graduates or under-graduates of any University, or certified school teachers; or who are not following any of the leurned professions.

Copper-plate certificates of three grades, printed on parchment for pocket use, or reference, will be awarded to successful candidates; indicating. respectively, "Excellence," "Proficiency," and "Commeadableness." A beantiful lithographed Diploma, for framing, will also be atrarded to holders of first and second class certificates.

PROGRAMME.
 tocal Commitrect.

1. The Manngers of Mechanics' Institutes and Library Associations desirous of co-operating with this Buard, in promoting the education of such of their members as have not been able to arail themwilves if the beoefite of aeadentical instruction and distibe: ie:, but who are now engared in classes or
evening sclrools, or ather means of selfimprove. ment, are invited to form loeal committees for the purpose of conducting the necessary preliminary: examinations; and to assist and co-operato with the examiners appointed by the Board. Each local committea must consist of at least thres members, and shoutd be enmposed of sach persons. as would glve their time and earnest attegtion tothe suhject.
2. The lucal committees will supervise the worl:ing of papers which the examiners appointed by the Bonnd will set for the final examination.

Prelimbary lasaminalions by Local Committecso

3. No candidete will be rdmitted to the finat examination without a certificate from his local commitiee, that he has satisfactorily passed a pre liminary examination in the subjects is which he wishes to be extrmined by the Board:
4. The preliminary examinations may be eitherwholly witten, or partly oral and purtly written, as ench local committee may thin这best ; nnd musi be held sufficientiy early in the gear to allow the resulte to be communicated to the undersigned on or befire the Eirst day of $\mathrm{May}, 1867$.
5. The "pass" to the final examination should" not be given to any candidates whom the locat committees consider not to have a reasodable chance of obtaining certificates from the Buard.
Fincil Examination by tire Ezamfinero appoimedt liy tile Borrl.
6: Forms containing the names of the candidates "passed" by the local committees, and the subjects in which they wish to be examined, must be recturned to the undersigwed not later than thefirst diy of May, 1867.

7 . The examiners appointed by the Board will set the requisite papers for the final examination, and these will be forwarded to the local committees. The lucal conmittees will sce, and certify to the Basrd, in the form whieh the Buard wil: furnish, that the papers are fairly worked by eash c:undidate without copying from any other, and without books or other assistance; mid will return the wrorked papers to the Buard.
8. The final examinations will be conducted' by the means of printed papers.
9. The Examiners will award certificates of three grades, but certificates of the first grade will be: awarded only to a high degree of excellence.
10. The final exominations will be held simultaneously on the eveningz of Tuesday, Wednesday ${ }_{T}$ Thbusday and Friday, of the thisd week in May nest.
11. Julgment will he fassed by the examinere appuinted by the Board, and the awards of certifcates will be communicated to the respective local committees.
12. To indicate the portions of the subjects that will be taken in the examination, certain text-booko are sugersted for some of the derartments. In other departments, where no teat-books are named, the troatises in general use in the schools and colleges in Upper Canada are recommended; but it is distinctly to lie understood, that in so doing no opinion is pronoonced as to their comparative merits. Real knowledge, howevep, or wherever acquired, will be accepted; and tine exposition of a sulbject in the candidate's own words will be preferred by the examiners.

1. Arithmetic.

Fundamental rules of Arithmetic; Proportion, Fimple and Compousd; Practice; Interest ; Fractions, Vulgar and Becimal:; झxtraction of Square :and Cube Roots.

The Eraminers will take into account not only the correctness of the answers, but the excellence of the method by which they are worked out, and :the clearness and neatness of the working, (which must always be shown.)

11. Foakmlueeningo

Book-keeping by Single and Double Entry; Drafts of the various forme of Bills of. Exchange, Promissory Notes, Invoices, fe.; and an accurate knowledge of the parious books used in the count-ing-house.

1ill. English Grammary and Analysis.
Grammatical Analysis of sentences in Proseand Poetry; Composition on a given sulyject.

耳 5 . Geography.

Political Geography. General Questions in Ancient and Modern Geography; Maps drawn from memory; Explanation of Geograpbical Definitions; Mathemetical Gengraphy; Physieal Geography; Outlines of Physical Gengraphy.

F. Penmanskif.

Busiaess Hand. An even round hand, without tlourishes, will be preferred.

Specimens to be selected by the local committee, and forwarded to the Toard, on the same conditions is specimens in department IX.

\$1. Algebra.

Algebraic Tractions, Square and Cube Root, Simple and Quadratic Equations, Single and Simultanenus, Ratio and Wariation. Candidates -should be prepared to give explanations of zlementary Principles and proofs of Trundamental Propositions.
'lest Books.-Colenso's Algebra or Bridges' Algebra.

WII. Geometry.

A facility in -solving geometrical theorems and problems, deducible from the first four books of wuclid, will be expected on the part of those who -desire to obtain certificates of the first or second class.
:Cext Eooks-Euclid, Books I, II, III \& IV, VITI. Irtuciples of Mechanics.
The Properties of Matter, solid, fluid and gaseous.
Statics: The composition, resolution and equiGibrium of pressures actiog on a material particle; constrained particles; machines; attractions.

Dyusmics; grapitation; collieion; constrained motions; projectiles; oseillations.

Rigid Eynamics; Motion of a rigid body about a point; of a free rigid body; of a system of rigid bodies.

Ifydrostatics: Pressures of fluids; equilibrium of floating bodies; specific gravity; elastic fluids; machines ; temperature and heat:; steam ; evaporation.

Hydrodynamies: Motion and resistance of fluids in tubes, \&c., waves and tides.
iPreumatics: Mechanical properties of the air; the barometer.

Text Book-Silliman's Natural Pbilosophy.

IX. Geometrical and Decorative Drawing and Nodelling.

Orthographical Projection, or Geometrical Drawing of Architectural or Engineering subjects, Machinery, \&c.
Linear Perspective.
Original Designs.
Models of figures, groups, foliage \&c., connected with the Fine or Decorative Arts.
The local conmittees will select, and forward to the Board, such specimens of Drawing and Modelling as they may deem worthy, and which they shall certify to be tho work, solely, of the candidate naned, who may not be an artist by profession.

X. History

Outlines of Greek and Roman History; English Ilistory from the Norman Conquest; Canadian IListory.

XI. Trigonometry.

In Plane Trigonometry the solution of plane triangles, and the use of logarithmic tables, \&o. ses
Spherical Trigonometry, Napier's Rules, Sulation of Spherical Triangles.

XIL. Ifensuration. 1
The calculation of the areas and circumferences of plave figures bounded by right lines or ares of circles. The superficial and solid contente of cones, cylinders, spheres, \&c. Measuring and estimating artificerts work.

XIII. Practical Mechanics.

The Application of the Principles of Mechanism to Simple Machines. The Steam Engine.

Text Books-Lardner on the Steam Engine; Nasnay th's Elements of Merhanism, with Remarks on 'Tools and Mackinery (Weale) ; Bourne's Catechism of the Steam Engine.
XIV. Conic Sectipns.

Analytical Conics, including the equations of the straight line, the circle, the three conic sections, and the general equation of the second degree. The Principles of Projection, Orthogonal and Central.
XV. Chemistry and Experimental Philosophy.

Physical. Elementary laws of heat, light and electricity, in conceetion with chemical action.
Inorganic. Chemistry of the Metalloids and Metals, lawe of combining proportions, volumes of Gases, vapours; Sc.

Organic. Composition, propertios and decompositions of elcohule, acids, \&e.
Cundidates are expected to be able to explain decompositions by the use of symbols. Questions illustrative of general principles will be selected from the fullowing amongst other trades and manufactures; Metallurgy of Lead, Iron and Copper; Bleaching, Dyeing, Suap-builing, Tanning; the manufacture of Coal Gas, Sulphuric Acid, \&e.
Test Books-Fowne's Manual of Elementary Chemistry; Cruf's Chemistry; Elements of Chemistry (Chambers' Educational Course); 'tyndall's Lectures on Heat.

XV1. Geology and Mineralogy.

The properties and distinctive oharacters of the commonly occurring Minerals and Metallic Ores; the structural characters, conditions of occurrence, and clessification of Rocks generally.

Text Books-Dana's Manual of Mineralogy, and Dana's Geology-

XVIX. Animal Physiology and Zoology.
The general principles of Animal Physiology. Practical application of them to bealth and the wants of daily life.

Text Books-Agassiz and Gould's Introduction to Comparative Physiology; Paterson's Zoology; Carpenter's Animal Playsiology, 1859 (Bohn'); Lardner's Animal Physice (Walton \& Maberly).

EVIII. Botany.

Vegetable Physiology. Classification of Plants; Leading principles of Morphology; Scientifie and applied Botany.

Text Books-Gray's First Lessons in Botany ; or George Bentham's Outlines of Botany.
xIX. Agaiculture and Horticulture.

Theory and Practice of Agriculture and Horticulture.

Text Books-Johnston's Elements of Agricultural Chemistry and Geology; Youatt's Treatises on the Horse, Cattle, Sheep and the Pig; Sipson's Agricultural Chemistry : Buist's (Robt.) A merican Flower Garden Directory; and Family Kichen Gardener; P. Barry's Fruit Garden ; and Smith's (C. H. J.) Landscape Gardening, \&c.
xX. Pollitical amd socinl Economy.

A general knowledge of the Commercial, Financial and Statistical History of the United Kingdom and of Canada, will be required.

XXX. Wnghiah Literature.

Shakspeare's "Thempest ;" Milton's "Paradise. Lost," Books I \& II ; Spencer's "Faerie Queen," Book I; Cowper's "Taek;" Pope's "Eseay on Man ;" Wardsworth's "Excursion," Books I \& II; Macauley's "Essays;" Bacon's "Advancement of Learning," Book I; Addison's "Spectator;" Johnson's "Rambler ;"'Craik's "History of the English Language;" Trench on the "Study of Words."
N. B.-Candidates may select any two of the authors in the above list.

Candidates are recommended to make a very careful stady of the text of the authors they may select. The questions on each author will be divided into two sections, the first intended to test the candidate's acquaintance with the test, the second his knowledge of the subject matter, and his eritical and literary information. Fill marks will not be given for answers to the second section, if those to the first section do not prove satisfactory.
XXII. French.

Questions on any portion of the French Grammar (To be answered in French, if possible), and an extract from a conteniporary French writer to be transhated into English.

An English extract to be translated into French, and a list of idiomntic expressions to be rendered from French into English, or vice versa.

XXiEI. Gorman.

Schiller's "Wilhelm Tell." Grammatical and Critical Analysis of.

Goethe's " Iphigenie Auf Tauris."
Guethe's " Egmont."
Cumposition on a given subject.
Pieces from each of the abure works will be given for translation. Every candidate must translate
one piece. First elaes certificates will be given to those only who translate weell from English, and write in German a good Essay reliting to German History since the Reformation.

Thenry of music. Notation, the mindern modes, intervals, time, signatures, the stare, transposition, modulation, terms and eharacters in commun use: Elements of Harmony.
XXV. Oruamental siad Landseape Braving.

Ornamental Drawing of Natural or Conventiona? objects.

Landscape Drawing in pencil, erayua, water colours, or in oil.
Specimens to be selected by the loeal enmmittees, and forwarded to the Board, on the same conditions as specimens in department IX.
Terms of Admission to the Finni Examinations..
13. Every candidate for examination must be "passed" by a loonl committee, and must be a member of, or student of a class in, an lincorporated Mechanics ${ }^{\prime}$ Institate or Lilorzpy Association in. Upper Canada.
14. The examinations will be held at the rocons, of the respective institutions reporting eandidates. Instructions as to the particular erenings upon which the respective sabjects will he taken up, and all the necessary formas for returse to the Binard, will be furnislied by the undersiqued, 80 soun as. candidates are reported by any hereal committes.
W. Edwards;

Secretary.

TORONTO MECHANICS' FNSTLTUTE.

The Toronto Mechanics" fonstitute has in operation chasses fur the stedy of Arithmetic, Buokkeeping, Penmanship. Geometrical Drawing. Ornamental Drawing, Electation, Phonography, and the French Language, comprising in all 1 Te pupils. The term for instraction is five months, each class meeting twice a week. Fees varying. from $\$ 2$ to $\$ 4$, for the term.

TKADE MIARKS:

Trade marks registered in the office of the Bonrd of Registration and Statistics, and open for inspection. at the Library of this Board.

$$
\text { (Continuted from page } 314 \text {, Wol. VI) }
$$

B. \& W. Rosamond \&l Co., Almonte, C. W. Trade-mark:-A Ram's Hend. Vol A. follin 149, No. 585. Dated November 3rd, 1866.
Henry Lyman, Ottawa. "Lyman": Univegsal Pain Reliever." Wol. A, folio 148 No U4G. Dhted Nokem29th, 1866.
W. \&F. P. Cuprie, Montrenl. Thale math:-A Grown with inscription, "W. \& F P. Currie." Vol. A; folio 153, No. 647. Dated November 30ilh, 1866.
Evans, Mercer \& Co., Muntreal. Trade mark:Escutcheons of the cities of Eondon and Liverpool. surmounted with crest of Beaver. Sir. Vol. A, folic. 150, No. 653. Dnted December 1st. 1856.
D. Cirawford, Toronto. "Silver Bar." Vol. A, folió 152, No 678. Dated December 10th. 1816.
D. Crawford, Tarouto. "Goldeu Rar." Vol. A., folio 151, No 678. Dated Deccubler 10th, 1868
©ATALOGUE OF BIRDS KNOWN TO IN－ HABIT WESTERN CANADA．
Systematically arranged according to the method wdopted in the Nuseum of the University of Toronto．

By the Rev．W．Hinces，F．L．S．，\＆c．， profegsor matural mibtory，oniverbity ool．，toronto．

The occasion of drawing up this catalogue was the desire of the Board of Arts of Western Canada to exhibit at the approaching Paris Exhibrition as complete a collection of the birds of the country as the time at their dispesal would admit．With this －object in view they wished êrst to know what tuirds thad been observed in the country，and the inform－ ation is here given from the best sources to which the compiler had access．The work is without doubt imperfeet，but lesides its imnediate purpose it wiil senve as a guide for collectors end a basis for the labours of observers．

Some may be surprised that the arrangement and nomenclature are not these of the well－known and useful catalogue of the birds of North America by Dr．Baird，of the Sristhsonian Institute；but， notwithstanding a certain degree of consenience in such conformity，we bave preferred following the method in use amongst ourselves，and the names to which our public can refer in the prinoipal muscum of this country，that of the University of Toronto．

The nomenclature is that of Er．George Gray， in his Genera of Birds，and although in some special cases change may be thought justifiable，it is presumed that from his extroordinary opportu－ aities for obtaining information，and his known conscientious accuracy，his authority in respect to apiority of names can seldom be set aside，whilst he has gone as fas in the sub－division of genera as the prevailing opinion of zoologists will sanction， and even these who use other names will readily understand these and be able to identify the object．

The gencral arrangement adopted is one which has been proposed and defended in the Canadian Journal，and for which we would claim attention， though it cannet be－shown to advartage in a mere local catalogue，where it would le uscless to attempt noticing the sub－fanilies，and large groups are altogether wirthout a representative．

In the catalogue the birds we were unable imme－ iliately to procure are marked with an asterisk $\left({ }^{*}\right)$ ， and those sent in pairs are marked with a（ \dagger ）．

Key to din syctem．
Oraelr I．－Insegsones（Perehing birds）．
（The true representatives of the bird type of structure．）
Sus－Orders．
1．Dentirostres．2．Serratirostres．3．Conirostres． 4．Tenuiroetres．5．Fiesirostrcs．
（The remaining orders contain the deviative forms of Birds．）
Order II．－Raptores（Birds of Prey）．
Grder III．－Scansores（Climbers）．
Order IV．－Rasoies，Gainhmacbous Brdes（Scra－ pers）．
©rder V．－Grallatores（W．aders or stilted birds）． Order VI．－Natatores（Swimmers）．

Insegsores（Porchers）．
1．Denflrostaes（Toothed－billed birds：）．
Fayulz．－Laniadé（Butober－Birds）．
1म Lanius borealis ．．．．．．．．Amperican shrike．
2 ＂، excubitoroides．．Loggerhead shrike．
8，Tyrannus intrepidus ．．The King－bird．
$4 \dagger$ ．Iyiobizs crinitus ．．．．．．Great crested tyraut fy catcher．

5＊	＂	C
0．t	＂	virens ．．．．．．．．Wood pee－wee fly c
7	＂	nunciola ．．．．．Pee－wee fly catcher．
8	،	Acadicus ．．．．Small green crested fy
	＊	faviventris．．．Yellow－beliied fly en
$10 \dagger$	＇	us．．．．．．Lenst tyrant fly

Fanixy．－Sylviades（Waiblers）．
$11 \dagger$ Regulzs satrapa ．．．．．．American gold－crest．
$12 \dagger$＂Calendwla．．．．．Amerioan fire－crest．
$13 \dagger$ Culicivora coerulea．．．．．Coerulean warbler．
147．Mniotilta varia ．．．．．．．．．Black nad white creeping warbler．
15才＂．striata ．．．．．．．Black poll wood warbler．
16 ＂، aestiva．．．．．．．．Sammer warbler，or yellow bird．
17 ts Americana．．．Blue yellow－back warbler．
18 ＂petochia ．．．．．．Yellow red poll warbler．
19 ＂G BlachturnioeBlackburnian warbler．
20．t．＂castanea ．．．．．Bay－breasted warbler．
21 \＆．Peunsylvanica．Cliestnut－sided warbler．
22 6．Canadensis．．Blacle－throated blue war． bler．
23 ＂chrysoptera．．Golden－winged swamp war－ bler．
24毒＂virens ．．．．．．．．Black－throated warbler．
25 ＊ruficapilla．．．．Nashyille warbler．
26 ＂marilima ．．．．Cape May warbler．
27 ＂maculosa．．．．．Black and yellow warbler．
28＊＂－formosa ．．．．．Beautiful warbler．
20\％＂coronata ．．．．Fellow crowned warbler．
31）＂Pinus ．．．．．．．．Pine warbler．
31＊＂Parus．．．．．．．．．Hemlock warbler．
32＊＂celala ．．．．．．．Orange－crowned smamp warbler．
33 Trichas Philadelphica．Philadelphinn warbler．
347＂．Afarilandica．．．Maryland yellow throat．
354．Purus atri－capillus．．．．．Black capped titmouse．
36＊＂．cristatus．．．．．．．．．．Crested titmouse．
37 Sialia Wilsoni ．．．．．．．．The bluebird．
38 Anthus Lrudovicianus．．American pipit．
Family Ampelidice（Fruit eaters or Chatterers．
（Tbe T＇anagrince are accounted a sub－family．）
39才 Ampelis garrulus．．．．．．．Bobemian chatterer or wax wing．
40 st cedrorum ．．．．．．The cedar or Cherry－bird， and yonng．
$41 \dagger$ Pyranga rubra ．．．．．．．．The red Tunager．
$42+$ Pipilo crythrophthalmaThe Tirowhee bunting．

Family Therdidae (Thrushes).

$43 \dagger$ Turdus migratorius ...The robin, and young, and one white robir.
44 \dagger : mustelinus......Wood thrush. 45 " fuscescensTowny thrush. 46t " solitarius...... Hermit thrush. 47 " Swainsoni......Olive-backed thrush. 48 Sciurus aurocapillus...Golden-crowned tirush. $49 \dagger$ " aquaticus Water thrush. 50 Dimus Carolinensis ...Cat bird 51t " rufusBrown or song thrush.

Family afuscicapide (Fly-catchers).
52* Tireo virescens Greenlet.
$53 \dagger$ " olivaceus......... Olive greenlet.
54 " solitarius...... ... Solitary greenlet.
$55 \dagger$ " flavi frons Yellow-bellied greentet.
56 " gilousWarbling greenlet.
$57+$ Setophaga rutioillia.....American red-start.
58 "Canadensis.Canada fiy-catcher.
59 " mitrataBlack capped fly-catcher.
The sub-order Serratiostres not keing reppesented in this climate we pass to

Sud-Order iii.-Conirostres.
Family Corvido (Crows).
60 Corvus Anericanus:.. Thie common erow.
61 " CoraxThe raven.
$02 \dagger$ Cijanocorax cristatus..The blue jay.
63 P'crisoreus Canadensis:Tbe Canada jay or whiskey Jack.
Pamily Fringillide (Finches):
64+ Fringilla tristis.........The American goldfinch or wild canary, and one in winter plumage.
$\begin{array}{ll}65 & \text { ". } \\ 66 \dagger \text { inus........ } \\ \text { iorealis...... }\end{array}$
Sinaria minor (Aud.) A ${ }^{\circ} \mathrm{g}_{-}$ iothus Linaria (Baird's Cit) Lesser redpole.
67t " hyemalis..... Snow bird.
$68+$ Spiza cyaneaThe indigo bird.
69* Ammodromus passeri-
nusYellow-winged sparrow.
70 Zonolrichia leucophrysWhite crowned sparrow.
71 " albicollis.. Whitn throated sparrow.
72 " iliaca......Fox coloured sfarrow.
73 " graminea. Bay winged sparrow.
74 " 3 socialis.... Chipping eparrow.
$75 \dagger$ " monticola..Tree sparrow.
76 " palustis .Swamp sparrow.
77 is melodia...Song sparrow.
78 " pusilla ... Field sparrow.
79 " Savanna..Savanna sparrow.
$80+$ Plectrophanes nivalis...The snow bunting.
$81 \dagger$ U Lapponi.
cus Lapland bunting
82 Olocoris alpestrisShorclark.
$83 \dagger$ Carpodacus purpureus. Purple finch.
84†Strobilojihaga enuclea-
tor Pine grosbeak, and young.
85̈ \dagger Loxia Americana: .. .American crossbill.
$86 \dagger$ " leucoptera White-winged crosabill.
87 Coccothrutustes vesper-
tinus:. \qquad Eveniog grosbeak.
88†Guiraca Ludoviciana. Rose-breasted grosbeats, and young.
89* " cocrulea Blue grosbeak.
90 " cardinalis Cardinal grosbeak (юcea'l).
Familx Columbidice (Doves).
91 Ectopistee migratorius Migratory pigeon.
$92 \dagger$ " CarolinensisCarolina pigeon.

Faxhly Sturnide (Starlings).
$93 \dagger$ Sturnella Iudovioiana. Meadow lark, and nest of Joung.
$94 \div$ †'Solecophagus ferrugi-
netss Rusty grackle.
95 Quiscalus purpureus... Bont-taii.
$96 \dagger$. Agelaius phoniceus ...Red-winged starling.blackbird or soldier-bïrd; andF young.
97† Molothrus pecoris......Cow-bird!
$98+$ Dolichonyx oryzivora. Rice-bird on beb-o'Hink.
[$99 \dagger$ Icterus_Baltimore Baltimore Oriole, and nest of young.
Sub-Order iv.-Tencinostres.
Famini Certhiada (Creepers).
$100+C e r t h i a$ familiatis...... Common oreeper:
101 Troglodytes America-
nus.... Wood wren.
102 Tiroglodytes hyemalis... Winter wren.
103 " arandina- Miarsh wrcm
cexs........
104 Troglodytes aedon...... Howion wrea.
105!̣Sitla Carolinensis......Garolina ov white-bellied nut-batch.
106 "G GaradensisGanadian or red-bellied bat-bateh.
Family Trochilidee (Humming birds)
107. FAthellisuga cclubris:..... Ruby-breasted on Northers humming-bird.
Sub-Order v.-Figsirostrest.
Family Alcedinidee (Kingfishers).
$108 \dagger$ Ceryle Alcyon. The belted linggisher:
Family firtandinidie (Swallows).
109 Hirundo fulva Cliff swallow.
110 6. bicolor White-bellied swallow:
$1: 11$ "s rustica Barn-swallow:
$112 \dagger$ Cotyle riparia Sand martin.
113 Progne purpurea Purple Martin.
114 Acanthylis pelasgza....Spiny-tailed or chimnez swallow.
Family Caprinalgidec (Goat sucters).
$115 \dagger$ Chordeiles Firginicus.. Night hawk.
116 ${ }^{\text {. Caprinuulgus vociferus. Whip-poor will. }}$
117.*. '. CarolinensisChuck Will's widow (rare).

Order 1I.-Raptores (Bieds of prey).
Family 1.-Aquilidoe (Eagles and Buzzarde):.
118* Aquila chrysceiosGolden engle.
119 FArchebuteo lagopus ... Mough-legged buzzard.
120 "Saneti Jo-
hannis., Black buzzard (only a forn: of preceding).
$121 \dagger$ Buteo Americanzs...... American buzzard, and young.
$122 \dagger$ " lineatusRed-sbouldered buzzard:
$123 \dagger$ " Pennsylvanicus..Broad-winged buzzird.
124 ${ }^{\dagger}$. " hyemalis Winter buzzard.
125 " borealis Red-tailed buzzard.
126. Haliotus leucocephalusBald engle, and two young.

127 \dagger Pandion Haliactü:..... Osprej or Fish-hawh.

Familix 2 -Falconides.

128fFalco peregrinus Deregsine fatcon or Bronds footed harrk, and young.
129†Hypotriorchis Colitmbarius
.. Pigeon hawk.
$130 \dagger$ Tinnunculus sparverius A merican sparrow hawk.
131 Astur atricapillus......American Goshawk, a.nd tw. young.,

13.引Accipiter Cooperi.......Stanley bawk. $133 \dagger$ it fuscus.........Sharp-slimed hawk, and young 134*Circus cyaneasCommon harrier. $135 \dagger$ "uliginosus Marsh-harrier (believed to be a state of preceding). Familx $\mathrm{T}_{\text {- }}$-Strigide (Owls). 136+Surnia ululaThe hatw owl. 137 Nyctale Richardsoni... Richardson's owl. 138 \dagger Niytea niveaThe snowy owl. $139 \dagger$ thene passerine [A - Acadicd ${ }^{\text {d }}$..............The little owl, and young. 140"Alhene allifrons White-facerl owl. $141 \dagger$ Syrniume nebulosum.... Barred owl. 142 ". cinercunzGreat cinereous owl. $143+$ Ephialies Asio........ Screech-owi, and young. $144 \dagger$ Bubo VirgiıiannaGreat horned owl. $145 \dagger$ Otus Witsoni....American long-enred owl, and young. $146 \dagger$ Otus brachyotis......... Shert-eared Owl. Order III.-Scansores (Climbing-Birds.) Family.-Picida (Woodpecker). $147 \dagger$ Dryocopus pileatus.....Pileated woodpecker. 148 Picoides arcticus........ Arctic three-toed woodpecker. $149 \dagger$ Picus varius....... Yellow-bellied woodpecker. $150 \dagger$ Picus villosus............The hairy wondpecker. $151 \dagger$ Picus pubescens.........The downy woodpecker, 15: Centurus Carolinensis. The red-bellied woodpecker 153 Melanerpes erythroce- phalusThe red-headed woodpecker 154 Colaptes auratzs........Gold winged woodpecker.

Family-Cuculide (Cuckoos.)
155 Coceyzus Anericanus.. Yellow-billed cuckon.
$156 \dagger$ ". erythropthal.
mus....... Black-billed cacboo, and nest of yonug

Order IV.-Rasohes (Scrapers, Gallinaceous Birds).
Famlur- Tetraonide (Grouse).
$157 \dagger$ Tetrao CanadensisThe Pine grouse
$158 \dagger$ " Cupido...........The prairie fowl (rare in Canadn.
$159 \dagger B$ nasa umbellus The ruffed grouse.
160* Centrocercus phasianellusThe sbarp-tailed grouse (very rare-northern parts).
$161 \nmid$ Orlyx VirginianusAmerican quail. Family.-Phasianido.
Sud-Family.-Meleagrina.
162 Meleagris gallipavo....The wild turkey (searce). Order V.—Grallatores (Waders).
Family.-Ardeide (Herons, Storks, Cranes, \&e.).
$162 \frac{1}{2}$ ILis falcincllusGlossy Ibis.
$163 \dagger$ Ardea Herodias........Great blue heron, and young.
164 " viresichsGreen heron (rare).
165. " Egretta............Greater egret, or white heron.
16is " exillsLeast bittern.
$167 \uparrow$ Botaurus lentiginosus . American bittern.
$168+$ Nycticorax naevius.....Americnn night-theron.
169*Grts Canadensis.,Sand-hill crane.
Family.-Charadrida (Plovers).
$170 \dagger$ Squatarola Heivstica..Black-bellied plover.
$171 \dagger$ Charadius Virginicus.American golden plover, and young.
$172 \dagger$ " vociferus.. Kildeer plover.
173 " semipalma. Ring plover.
tus
$174 \dagger$ " Wilsonius-.Wilson's plover.
$175 \dagger$ Strepsilas interpres.....The turn-stone.
Family.-Rallide (Rails, Water-Hens, and Coots).
$176 \dagger$ Orlygonietra Carolina. Sora rail, and young.
177 "JamaicensisLitile black rail.
$178 \uparrow$ Rallus crepilans..,......The clapper rail.
$179 \dagger$ "VirginianusVirginian rail.
180* " elegans. Great red-breasted rail.
$181 \dagger$ Gallinula galeataThe water ben, and young.
18: \dagger Fulica atraThe coot.
Famict.-Scolopacida (Snipes, \&c.).
183 Numenius longirostris. American curlew.
184† " Hudsonicus. Hudsoninn curlew.
185† Limosa fedoa.......... Great marbled godwit.
186 " Hudsonica..... Hudsonian godwit.
187 Tolanus favipcs........ Tellowshanks tatier,
188 " melano Leucus.Tell-tale tatler.
189 " semipalmatus..Semipalmated tatler or snipe.
$190 \dagger$ Tringoides macularia.. Spotted tatler, and young.
$191+$ Tringa canuta L. Red-headed sandpiper.
$192 \dagger$ " cinclus..Red-backed sandpiper, and young.
193* " pectoralis........... Pectoral sandpiper.
194* " subarquataCurlew sandpiper.
195† " pusilla..............Little sandpiper.
196* " Schinzii.............Schinz's saudpiper.
197 Caledris arenariaSanderling.
198* Hemipalma Auduboni Long-legged sandpiper.
199† Heteropoda Semipal-
mataSemipalmated sandpiper.
$200 \dagger$ Philohela minor.........The American wood-cock.
$201 \dagger$ Gallinago Wilsoni......North American snipe.
202 Microramphus griseus. The brown snipe.
203 Recurvirostra occiden-
talis
..The western avocet.
204 Phaleropus fulicarius..The grent phalerope.
205*Phaleropus hyperboreusHyperborcan plalerope.
206 Phaleropus Wilsoni....Red-necked phalerope.
Order VI.-Natatores (Swiminers).
Family.-Pelecanida (Pelecans).
207* Sula bassana............Solangoose, gannet (Oshawa, C.W., aecidental).
208 Graculus carboThe common cormorant,
209 "dilophus......Crested cormorant,
210 Pelecanus trachyrhyn-
cus (erythrorkyncus
Gmellin)
The Amerioan peleoan. (avoldental).
211 Pelecanus fuscus....... The brown pelecan (Hudso.,'s Bay and Red River, in Canada, occasional).
Family.-Laridac (Gulls, Terns, Storm Birds, \&c.)
$212+$ Larus Bonapartii..... Bonnparte's gull, and young
213+ " argentatus.......The herring gull.
214t " zonorhynchus...The American gull.
$215 \dagger$ " marinus.........The great black backed gall, and young.
216 " lencopleras......White winged silvery gull
217 " glaucusThe grey gull.
218 " atricillusThe Amer. laughing gull,
219 "" Franklinii......Franklin's rosy gult.
220*Pagophila eburnea.... The ivory gull,

221 Xema Sabini............Sabine's gull. $322 \dagger$ Sterna Caspia........The Caspian tern, and young. 223 f " macroura...... ..The long-tailed tern. 224 " kirundo.......... The conmon tern. 220 t H ydrochelidon plumbea, The black tern. 226*SCercorarius parasi-

ticusThe arctic skan.
Famley-Anatidae (Tbo Duck Tribe).
227 Fuligula collaris........The collared duck.
228* " cristataThe crested duck.
229. " marila The scaup duck.

230** mariloides.... The lesser scaup duck.
$231 \dagger$ Nyroca Anericana.....The red-headed duck.
232 " valisneriaThe canvas-backed duck.
$233+$ Clangula Americana...The Anerican golden eye duck.
234 " histrionica ...The barlequin duck. $235 \dagger$ " albeolaThe buffel-headed duck. 236 Harelda glacialis.......'The long-tniled duck, (one old and three young, in winter and summer plumage).
$237+$ Somateria mollissima... The Eider duck (rare).
$288 \dagger$ " Spectabilis...Theking duck (accidental), and young.
$239 * O i d e m i a$ nigraThe black duck (rare).
$240+$ " fusca...........Tbe scoter.
241 " perspicillata...The surf duck.
$242+$ Erismatura rubida......The spiny-tailed or ruddy duck.
$243+$ Aix Sponsa..............The summer duck.
$244+$ Mareca Americana.....The American widgeon.
$245+$ Dafila aculaThe pin-tailed duck.
$246+$ Spatula clypeata........ The shoveller duck.
$247 \dagger$ Anas boschus.Tbe mallard.
248 " bimacalata........Brewer's Dack (rare, variable, alwost certainly a hybrid between the preceding and following).
249 " obscuraThe dusky duck.
$250 \nmid$ Querquedula Carolinensis....The green-winged teal.
251 " discors...The blue-winged teal.
$262+$ Chaulelasmus strepera. The gadwall.
2¢3*Bernicla Brenta........ The Brent goose.
254 "، Hutchinsii....Hutchins's goose.
250 " Canadensis....The Canada goose.
256* Anser hyperboreus.. ...The snow goose.
267 "coerulescensSupposed to be female of the nbove.
258 Cygnus Americanus ...Americnn swan.
259 ". PasmoriPasmore's swan (may possibly be a state of the following).
260 " buccinator......Trumpeter swan.
$261+$ Mergus merganser......The goosander.
$262+$ " serrator........The red-breasted merganser.
$263 \dagger$ " cucullatus.....The hooded merganser.
Family.-Alcide (Dikers.)
$264 \dagger$ Colymbus glacialis.,...The great northern diver or loon.
$265 \dagger$ " septentrionalis.The red-throated diver.
$266+$ Colymbus arcticus......Black-throated diver.
2.i $7 \uparrow$ Podiceps griseigena.... The red necked grebe.

268* " cornutus......The horned grebe.
$269 \dagger$ " cristatus......Crested grebo.
$2.0 \dagger$ Podylymbus Carolinensis, The pied-bill dobchiok, and young.
Family.-Alcida (Auks and Penguins).
$271 *$ Arctica alloThe little Auk (rare).

Selected Axticles.

INTRODUCTION OF BREECH-LOADEISS.

A most difficult scientific problem, complicated by many questions of expediency, is now being placed before the military administration of every civilized country. Upon the different solutions of the question as to the best arm for infantry will, in such warlike times as ours, probably in a great measure depend the course of the military hiotnry of the nest generation. The enormous expense attending a change in the weapons of a whole army is a good reason why any step now taken will not easily be retraced. All the gun makers of the United Kingdom, and all the breech-londerinventors of the world, are now on the quivive since the publication of the War-office advertisement for a breech-loading rife, to replace the present Snider-Enfield. The weight of the English breech-loader of the future is not to exceed 9 lbs. 5 ozs . without bayonet; it is to be 51 ins. long; the weight of sixty rounds of ammunition is limited to 61 lbs 4 ozs.; ' the cartridge must carry their own ignition; and the gun should be able to fire at least twelve rounds per. minute. Very wisely, a prize has been offered for a repeating arm, and the last day for sending in the wenpons intended to compete is the 30th of March nest. Meanwhile, Enfield is at work day and night turning out the converted Snider.Enfields. Besides these, an order for some 25,000 of the Westley Richards form of breech-loader is being carried out. We should say that there is not much chance for the prolonged existence of this ingenious gun side by side with the many excellent American rifes with their admirable copper cartridge. As, however, the ordinary Westley Richards can be used with the common ammunition, the breech-loading guos now being made will probably be emploged to work up the existing supply. The visitor to Enfield is surprised to see in course ${ }^{\text {f }}$ mapufucture, side by side with these improtedtimplements of destruction, a number of smooth-bores-antique Brown Bessies, in fact. On intuiry, he is told that these guns are inteoded for Sepoy troops in India, in order to avoid offending them with the greased cartridges required with rifles. If this is true-and wo have no reason to doubt the substantinl accuraoy of this answer to the question we made-it is strange that recourse oannot be had to some other lubricant than animal fat for enrtridges intended for the black East India troops. Vegetable oil, paraffine, some composition of bees- $\pi a y$, a dozen other Jubricants, in fact, could be tried.

The immedinte adoption of a converted arm has thus given time for a careful choice of a standard weapotu. The Freach have been much quicker in their decision : but time will show whether their haste is speed. There have, indeed, been some rumors that the Chassepot gun, after having beennoepted by the French Emperor, and after orders fur large numbers have been given out, bas lately been rejected. We believe however, that this is a mistake, or, at any rate, premature. The Chassepot brecelh-loader, the "invention" of a French grovvernment inspector of musketry of that nane, is mainly an improved form of the Prussian noedlegun. Less work is thrown on the needle by its
being made to ignite the powder from behind instead of in front; the joints are stated to be made with india-rubber ; and the mechanism of the lock has been somewhat simplified. We understand that, in some of the extensive trials now being conducted at Yienna, the Chassepot gun gave wretchedly bad results. As usual very little is known of what is being done by the Russians, butit is stated they have adopted a breech-loader, invented, or at least introduced, by M. Thierry, a Irrenchman. Several of the smaller countries of Europe have imitated the haste with which the French have come to a decision. Spain is stated to liave taken up the Prussian needle-gun ; Portagal has adopted the Westleg Richards; and Denmark a gun the production of the country.
The advantage as to gaining time afforded by haring some breech-loader or other, however bad, is ngain making itself felt in the course which is being quietly adopted by the Prussians. With the prescience of which the present Prussian administration has given such proofs, it has not merely been determined to give up the Züudnadel gun for a more modern weapon, but a carefully chosen military commision has been appointed to visit the United States in order to gather all the information possible about American breech-loaders, their use, and their results in the late war. With the guns that these officers are to bring back an extensive serics of experiments will be gone through, similar to that now being undertaken at Vienna-which have resulted in the adoption of the Remington system-by their late adversaries. In this way they will not have to rely entirely upon private enterprise and competition for the guns brought before them; add they will gain informotion which could be obtained nowhere better than in a country where a gigantic war seems to have been finished with breech-londing weapons. In any case, the Prussians are still in advance of other arimies in one important point, the consideration of which has been ounitted in the many discussions in which it has been sought to account for their prodigions successes. For years, they have adopted a system of tactics suited to a breech-loader. In the royal Prussian "Allerhöchsten" -" Order respecting the exercise of tronps in large masses"-the war thetics of the Zitodoadel gun are defined under the tollowing three principal heads;-" 1. To draw the enemy into a small-arms engagement (Fenergefecht) and to hold him therein ; 2, to get him, as much as possible, to place himself on a level plain; 3, to fiyht in deep ranks, but in such-wise that in order to obtain great and speedy results, a wider front can be formed at any instant."

A really remaricable phenomenon in the annals of invention is the exportation of such a dumber of different plans for breech-loading and repeating rifles from the Unitod Sates. The Remington. the Peabody, the Berdan, the Snider, the Ball, the Spencer, are all duo to A mericna ingenuity. Many weapons under English daines are substantially imitations of American systems. They all, however, resemble ench other in one most paricular point; they are all made to fire a metallic cartridge, consisting of a copper cylinder, open at the front oud in order to take the rear of the bullet, and inolosing behind the explosive fulminate. These weapoos bence furthur resemble each other in being
provided with a steel pin for striking the fulminate inclosed at the back of the copper shell either at its rim or centre. The existence of so many ingenious forms of rifles for firing this admirable cartridge is probably mainly due to theingenious policy of the American Government. As soon as the efficiency of the breech-loader was seen, no time was lost in replacing with it the old Springfield musket at first in the hands of the Federal troops. The first step was to determine the bore and kind of cartridge to be adopted. When this was done any form of breech-loader was employed as long as it could stand the not very severe teets of the government inspectors. Contracts were given out for two or three thousand guns, but no particular form of breech-loader was taken up officially; and up to the present, though each breech-loader inventor lives in hope, the United States Government havo not yet officially settled upon any gun. And it is a question whether, having once settled upon a size of bore and the proportions of the metallic cartridge, it may not turn out the best policy to employ mire than one form of arm, as was done by the Americans.

Wo have little doubt that the American metnllic cartridge, whether of copper, or even of very solt steel, to be fired in a small-bore barrel, whetber a breech-loader or magazine gun, will be the arm for Europe. The production of a practical repeater is only a question of time, and probably not of a very long time. England and Prussia being in possession of a breech-loader arm, however inferior to what may yet be produced, can afford to wait longer than those powers who, like France and Austria, have neither an antique needle-gun nor an arm of conversion.-London Engincer.

TIIE GREAT WATER TUNNEL ONDER LAKE MICHIGAN.

Our exchanges brings us, this week, accounts of the virtual completion of a work of American engineering, which, for boldness of conception, unerring skill, and uninterrupted success, deserves to be classed with the proudest achievements of the old world, or of any age.

The greatest produce market in the world, and the most energetic and enterprising city on even. the American continent, Chicago bas grown up in. thirty-six years from a lair of wild beasts to a greatmetropolis, under some of the grossest natural disadvantages that ever taxed the resolution of any. similar community. Its water supply-alwaysmiserable, since the drainage of a city begun to be mingled with the lake from which it was drawnhas been all this time growing execrable, until hardly fit to be tasted by man or beast. There the crystal waters of Lake Michigan, among the purest in the world, spread out before the tantalized citizen in all their beauty, beyond his reach, poisoned far along the shore by a ceaseless drenoh of abominations from the sewers of the city. It was imposible to conduct water from any point remote enough. to be assured against this contamination ; and in fact the shore water from whatever point must always continue subject to every variation of impurity from attrition with the banks and from the deposits washed down by streams and rains. The pure and undisturbed depths of the mid-lake were the only
source from which a supply of clean water could be obtained. It was resolved to reach those depths by a tunnel under the bed of the lake, tapping its bottom at a distance of two miles from the shore. Surreys of the lake-bed by means of an auger inclosed in a tube, revenled the favorable circumstance of a continuous underlying stratum of bard blue clay. The contract for the bold undertaking was awarded in October, 1863, to James Gowan and James J. Dall, of Harrisburgh, Pa., at the sum of $\$ 315,139$. They have alreudy expended more than double this amount, mainly in consequeuce of the enhanced prices of labor and materials; and it is expected that, with all changes, improvements and finishing touches, the water-works will not be completrd fur less than $\$ 1,000,000$. The contractors have as yet received no relief; but their splendid success warrante the expectation that the city of Chicago will not suffer them to go either unrepnid or unrewarded.
Work was begun at both extremites-the shore end and the lake end-of the tunnel. At the latter point the great engineering dificulty, and triumph occurred. The violent storms on the lake, it was thought by eminent engineers, would make it impossible to fix a permanent structure in the waters. A huge wooden crib, or coffer dam, was built, like a ship, on the shore, launched, and stowed to its location. It was 40 feet deep, five-sided, 290 feet in circumference, and over 90 feet in diameter. Its angles were armored with iron two and a half inehes thick. It had three distinct walls or shells, one within another, each constructed of twelveinch square timber, caulked water-tight like a ship, and all tbree braced and girded together in every direction, with irons and timbers, to the utmost possible pitch of mechanical strength. The central area, or well, inclosed by the inner wall, was only twenty-five feet in diameter; leaving spaces about fifteen feet wide between the shells. Within these spaces were constructed fifteen caulked and water-tight compartments, which were filled with clean rubble stove, after the crib was placed in position. By this means the crib was sunk to the bottom, where it was firmly moored by cables reaching in every direction to huge screms forced ten feet into the bed of the lake. The water in which it was sunk was 35 feet deep, leaving five feet of the structure abore the surface. This was in June 1865. The crib had cost $\$ 100,000$; consuming 618,625 feet of timber, 05 tons of iron, and 400 bales of oakum.

The next business was to sink a water-tight shaft within the well of the crib, and into the bottom of the lake to a depth of some thirty feet further; making 66 feet in all below the surface of the water. Seven great iron cylinders were cast, each about 9 feet long, aine feet in diameter, 22 inches thick, and weighing 30,000 pounds. One of these cylinders having been suspended in the well, another was placed upon it, the two were firmly bolted together with a water tight joint, lowered, a third cylinder bolted to the second in the same manner, and so on until the shaft, a solid iron tube 64 feet deep, rested on the bottom, and forced its woy by its own weight through the softer deposits into the hard blue clay beneath. The water was now pumped out, the top of the shaft was closed as nearly as possible air tight, and a
powerful air-pump, driven by steam, commenced to exhaust the air also. As fast as a vacuum could be created, the atmospheric pressure, added to its own weight of over one hundred toas, forced the huge shaft downward into the bed of the lake with inconceivable force. Thus a depth was reached and secured, at which it becime perfectly safe to carry forward the excavation, and complete the shaft to the level at which the tunnel was to begin. The lovse rubble stone is finally to be taken out of the water-tight compartments, one at a time, and they will be re-filled with piers of galid masonry, laid in hydraulic cement, and united above the surface in some manner, so as to present an immorable front on all sides againss the force of storms. A light-house is to surmount the whole.

The process of constructing the rest of the tunnel was simple, though interesting. Three sections of great cast-iron tubing, like that used in the lake shaft, were let into the earth by simply excavating beneath them, and letting them sink as the earth was remored. Having thus worked through the sands, and into the blue clay, the shaft was now narrowed to eight feet, and completed and walled in the ordinary manner to a total depth of 77 feet. This shaft was sunk four feet further below the surface of the lake than the lake sbaft; causing a descent of two feet to the mile in the tunnel, to ficilitate emptying it when required.

Both shafts having been completed, the excariation of the tunnel was commenced from both ends. On the 16th ult., the opposite gangs of workmen were within two feet of each other; and on the following duy, the Board of Public Works formally broke through this last natural obstruction to the passage of the pure waters of the mid-lake into the city of Cbicago. The aecuracy with which the two lines of excavation met was an admirable engineering success. The centre lines caincided within nine and a-half inches, and the floors joined with a difference of only one inch. The tunnel is nearly a true cylinder, of five feet diameter in the clear, but worked two inches higher, vertically, on account of the key stone of the arch. It is lined with the best of brick and cement, 8 inches thick, lid lengthwise, in two sbells, like toothing joints. The lining of the shore shaft consists of twelve inches of the same masonry in three shells. About $4,000,000$ of bricks were used.

Ground was first broken on the 17 th of March, 1864; and the work has been continued wich but slight interruption, night and day, and at all seasons. A narrow railway was laid from the foot of each shafr, as the work progressed, with turn-out chambers fur the passage of meeting trains; and omall ears, drawn by mules, conveyed the excavated earth to the hoisting apparatus, and brought back at every trip a load of brick and cement. The men worked in gangs of five, at the excavation ; the foremost running a drift in the centre of the tunnel, about two and half feet wide, the second breaking down the sides of the drift, the third trimming up the work to proper shape and size, and the last two loading the earth into the oars. The bricklayers followed closely, only a few feet behind the miners. About a hundred and twentyfive men employed in this work, in three relays, working eight hours each ; the only cessation being from 12 o'clock Saturday night, to 12 o'clock Sun-
day night. A current of fresh air was constantly forced through the tunnel by machinery. It is remarkable that no accident from earth, gas, or water, occurred in the whole course of the work, sufficient to interrupt its progress.

Water is to be let into the lake shaft by three gates, on different sides, and at different heights. The lowest is five feet from the botom of the lake; the next ten feet, and the highest fifteen feet. Flumes through the surrounding masonry, also closed by gates and gratings at their outward ends, will conduct the water to the shaft gates. All the gates can, of course, be opened and closed with pleasure. Chicago will boast-with huw much renson unprejudiced water-drintsers must judge-of all other citiey on the continent, the best supply of the best water, at a trifling cost for both construction and maintenance-if the work holds as good as it promises to-in comparison with some of her eastern sisters.

LIQUID STEAM FUEL.

The general results of the experimente carried out at Woolwich Dockyard, with the view of establishing the superiority of petroleum orer conl as a fuel for steam purposes, led to several important conclusions. They sbowed that the most valuable oils for the purpose were those containing the largest amount of paraffine, and further that their steam-producing power above our beet coal was fully twice and a half. The inflammable spirit nad burning oil can be extracted from the crude with advantage, thus rendering it perfectly harmleas. It was also shewn that steam could be got up with great rapidity and maintained with little or no habor. A clear, intense Glame enveloped erery portivn of the boiler exposed to its action, and which could be lowered or raised at will, and maintained for any length of time. But, notwithstinding all these apparent adrantages, the petroleum boiler experiments do not appear to have led to any practical result in the way of adrancing the position of the oil as a steam fuel. Since the Woolwich experiments, however, Mr. Richardson has taken another step in the matter. He has invented a portable grate for burning petroleum, shale, crude, or heavy oil, residuum, a grease, creosote and gastar, without smoke. During his experiments, Mr. Richardson found the necessity for such an apparatus, by which the minnufacturers and retiners of shale oil might use up the refuse of the oil-stills as fuel, instead of slack or coal in their retorcs. The grate consists of two iron boser, one within the other. The inner one contains the porous material, the steam-jet, and the oil, and in the outer box water is placed. As the water boils the steam mises with the oil vapor; this burns, and thus adds to the amount of oxygen and bydrogen gases produced by the inner box.

In practice the grate is placed level in the furnace, the outer case being always kept full of water, as high as the funnel allowrs. Oil is kept constantly running in, but only in sufficient quantities to saturnte the porous material. Residuum or solid oold cakes of the oil, may be placed within the grate in moderate quastities. Stenm is let in when the oil is in full flame, the proper amount being indicated by the cessation of smoke. The proper
quantity of oil can be constantly maintained in the grate, as a glass register always records its hight. The flame is extinguished by running out the oil and allowing the stenm to play for a few minutes. In relighting it, if the grate is quite cold, hot water is run through the outer case, and a little spirit and burning oil used in the trough. The grate can be used either by itself or as an auxiliary to a coal furnace. Wherover a large, powerful, clear fire, making no smoke and equalizing the temperature throughout the whole furnace is an advantage, this certainly appears qualified to have a place. Steam would seem to be the grand agent in effecting the complete combustion of liquid fuel without preducing smoke. The water vapour introduced in jets below the grate rises and is decomposed into its constitutents gases-oxygen and hydrogen. These burning with the vapurs of the hydro-carbon cause the flame to become wholly decarbonized, and its temperature to be greatly increased. The several kinds of petroleum requi:e a variable quantity of steam; thus the American requires very little. But theu such is the volatile nature of this oil that it seldom vaporizes more than $12 \frac{1}{2} \mathrm{lbs}$. of water to 1 lb . of oil. On the other hand, the British shale, crude, or heavy oil, creosote, or gas-tar, require more steam; but then some of these oils vaporize from 18 lbs . to 20 lbs . of water to 1 lb . of oil. The slack coal used by refiners offers a marked contrast to this, 1 lb . vaporizing only about 4 lbs. Water vapor, then, appears to be the key to the secret of utilizing liquid fuel with the non-production of smoke, and as soon as the public recognize this fact its extended use will doubtless ensue. Mr. Richardson is certainly paving the way to this condition of matters by the introduction of his portable petroleum grate.Mechanic's Magazine.

MANUFACTURE OF CAS' STEEL AT ESSEN.

(From the Mechunics' Magazine)

In close prosimity to the main route from Cologne to Minden, on the right bank of the Rhine, is situated the little town of Essen, lying within a short distance of that of Ruhrt. Like all small villages and towns originally insignificant in size and population, Bssen owes its present importance and increasing development to two causes. Ono is the presence of natural productions, and the other the skill and enterprise of a few individuals in rendering them subservient to the interest and welfare of mankind. The natural wealth of Essen consists in the possession of the same material which has been a means of bringing our own country into its present state of commercial prosperity. It is in the centre of a coal-bearing area, and large revenues are derived from this source, although the price of the conl varies from 7 s . to 9 s . per ton. A considerable traffic in wool is also carried on between this place and the merchants in Normandy. But the chief cause of the prosperity of the town is to be found in the enterprise and exertions of those who have established manufactories and workshops, and thus enable these natu-
ral endowments to be turned to gnod account. First in importance, in the number of hands employed, in their tone and prestige as a scientific mechanical establishment, in their extent and influence, stand the workshops of M. Krupp. Some idea of their mere size may be arrived at by considering that from first to last they cover an area of 500 acres. On the authority of "Les Grandes Usines," from which we quote, a very considerable difficulty is experienced in obtaining access to the engineering premises of M. Krupp. In fact, this gentleman is sufficiently candid to let it be known very politely, but at the same time very decisively, that one will not be permitted to go over the works, by affising at their entrance botices, written in English, French, and German, that visitors are requested not to ask for permission, in order to save the proprictor the pain of giving, and themselves the mortification of receiving, a refusal. To us, who are so exceedingly good-natured as to throw open our armouries, and disclose all our warlike implements, and the secrets of their construction aud working arrangemen us, to those who might, perhaps, is a month's time, be turning against us the knowledge so required and literally beating us with our own weapons, the policy of M. Krupp may appear somewhat too ezclusive. There is, however, very little doubt that in the main that gentleman is right, and that independently of the trouble, danger, and inconvenience incurred by the advent of visitors to an establishment of this description, it is but natural that its proprietor should be jealous of exposing to prying eyes all those details of workmanship aequired at the cost of 80 much time and money, and upon whose union and maintenance depends the prosperity of the concern, and that of the 10,000 hands engaged in it: After forty years of incessant labour, study, and sacrifices, M. Krupp has been rowarded for his toil and patience by being able to produce and work solid masses of steel weighing upwards of 36 tons. The magnitude of such an operation will appenr, when compared with the linit reached in France in similar matters. There it is seldom that a block of cast steel attains to the weight of 9 or 10 tons, and even when run of that amount it has to be left in the ingot, as there is no machinery suitable for working it up. So far as the production of cast and wrought iron is concerned, the French are not by any means behind the Prussians, but at Essen it is not a question of merely the production of either of these two. The elder M. Krupp had a higher aim in view when starting his works, and he has given all his efforte to the production of steel-that true engineering philosopher's stone of the present age-concerning the chemical composition of which there has been so much dispute, and so many and various opinions have been promulgated, and the physical properties of which have a range so wide, varying from the hardness of the highest tempered chisel to the softness of the finest thread. In addition to the apecial production alluded to the manufacture of most of the ordinary engineering applications of iron are simultaneously carried on, including axles, tyres, wheels, and every description of railway iron work. The character of the Krupp steel has become so well known that, besides its being used in our own country, it is frequently insisted
upon by French, German, and Russian companies in their specifications relating to the employment of that material, notwithstanding the heavy duties existing between the different countries, and which one would naturally oonclude would be more than sufficient ts protect the home manuf: cturers.

Independently of the indomitable perseverance and ability of the originator of the establishment, the coal in its vicinity and even within its boundarics is of the purest kind and well adapted for its intended purpose. The very circumstance, however, of the presence of the required fuel in a proximity so close to the workshops was attended at the commencement with a serious disadvantage, viz., the procuriag of hands, as all the available labour was absorbed in working the pits. In order to overcome this drawback and supply the deficiency it was necessary to despatch recruiting agents into all the minor states of Germany to engage labourers, large numbers of whom were obtained from the province of Hesse. The effect of the coal workings in creatiog a scarcity of labuer for any new enterprise may be gathered from the fact that upon one of the many small branch lines constructed for the purpose of the coal traffic more than one hundred trains of twenty-five waggons pass daily backwards and forwards. The writer in "Les Grandes Usines" institutes some comparisons between the works at Essen and others of a similar nature in France by no means complimentary to his countrymen. He particularly notices the grave taciturn mode of the German workmen, as opposed to the lively and somewhat boisterous manner of the French, and maintains that five hundrel of the latter nation would make more noise than as many thousands of the former. In entering the workshops one is immediately convinced of their predominant nationality by the serions demean our of the men, their long porcelain pipes, which some of them never relinquish, even when carrying the heaviest loads; the elegant contours of the buildings, calling to mind the Gothic style of architecture and the curvilinear outlines of the windows, so different from the harsh straight lines characterising the appearance of theso details of construction in French mazofactorics. We now pass on to the actual production or manufacture of the steel, the preliminary operation consisting of the pudaling or partial decarbonisation of the melted mass. The modus operandi of puddling is ton trite to require comment, although its practical difficulties are not by any means yet conquered. In producing the melted steel n small quantity of iron obtained from a particular ore is put into the melting pot and takes from the puddled steel its excess of carbon, and in so doing carbonises itself; the iron, ordinarily exceedingly difficult to fuse, melts and becomes incorporated with the steel. To accomplish the necessary fusion the melting pots or crucibles are arranged upon the grates of furnaces built in brioks of a most refractory deseription.
[A description of the mode of manufneturing the crucibles follows, which we amit.-Ed. J. 1

One peculiarity io the system upon which the establishment of M. Krupp is conducted, and probably one of the secrets of its success, is that all new inventions, proposed impruvements, novel processes, or modificitions of others long recog-
nized, are submitted to Ω searcbing ordeal previously to their being used in the workshops. There is, in fact, attached to the works what we might term an experimental workshop, combining in one all the essentials of the studio of the savant, the workshop of the mechanic, and the laboratory of the chemist. As may be readily imagined, it is replete with crucibles of every abape and size, furnaces, retorts, and scientific apparatus of every description, the majority of which are familiar to those interested in such matters, but some are of a particular construction, specially adapted for certain purposes, and are the invention of M. Krupp himself. If, in addition to the enormous size aud scale upon which all the processes at Essen are carried out, we talse into consideration the guarded manner in which admission into the works is obtained, as previously mentioned, it will not be surprising that many vague rumours and reports are in circulation in the neighbourhood respecting the modus operandi of the production of masses of metal so exceedingly beyorfd, in point of size and purity, the capabilities of other establishments. Preating all these exaggerated rumours as mere idle gossip, "Les Grandes Usines" considers that the extraordinary success attending the whole process is not so much due to the discovery or employment of any very novel method, as to the udmirable organisation, division of labour, system of management, and perfect discipline pervading the whole operation, and is the result of the practical knowledge and experience of all concerned in it, from the superior intelligence of the foreman down to almost the most ignorant of the suburdinates. On this point we are decidedly disposed to concur with our authority, and, were there any doubt on the subject, the fact that many excellently desigued plans have been rendered completely abortive liy carelessness and frequently culpable negligence on the part of those engaged in their execution, would corroborate the stacement.

The building where the great castings are ran holds about 1,260 crucibles arranged in furnaces by 4.8 , or 12 , aceording to size, and the moulds to receive the melted metal are disposed in line along a trench sitatad between two pairs of rails upon which runs a movable crane. It will be at ouce seen that the moulds are placed in what we call the "six fout," when alluding to railways. The moulds of cast metal, always, without exception, of a cylindrical shape, are attached by trunnious to a heary chain connected with machinery worked by hand labour. The capacity of the moulds varies from 1001b. to 36 tons; the latter being the extreme limit to which, at present, this branch of industry has attained. It is not at all impossible that this limit will be ultimately surpassed, provided the necessity should arise. The furnaces are arranged along the sides the whole length of the building, and are provided with means of access by galleries underneath in order that an inspection of their working condition may be made at any time. Constant practice enables the men who are charged with tbis particular duty to ascertain, by inserting a long iron rod into the melted mase, when it has arrived at the proper degree of fluidity. The excellent disposition of the means of access aids them in arriviog at a correct conclusion on this all important point. The prac-
tical problem to be solved is the following:-"To deposit in the mould a continuous stream of melted steel sufficiently hot to cool without any sudden impediment, and to solidify into a mass perfecily bomogeneous." If the steel in cooling solidified quickly; and caused, in consequence, the formation of a thin solid layer interrupting the process, the value of the ingot would be very considerab'y diminislicd, and in the majority of cases altogether lost. The operations, simple as they appear, could not be succesafully carried out except by men who had undorgone $\boldsymbol{\Omega}$ long and progressive experience in all the various details, and each of whom could be trusted to execute with almost mathematical precision the especial duty falling to his charge. The foreman determines the position of the mould, assigning it in a manner so as to cause it to be commanded by as large a number of furnaces as possible. He also regulates the slope of the floor towards the trench. Upon these slopes are fixed the little canals or cbannels conveging the fluid into the usual hollow to be seen in the upper portion of every mould, and which is for the purpose of regulating and equalising the descent of the melted metal into the mould, as otherwise it would be too violent. These channels are strongly constructed of wrought iron, lined interiorly with fireclay to resist the enormous heat of their passing contents, and slightly widened out or bell-mouthed at the extremity next to the mould. The men are divided into gangs, each man being selected for that particular duty in which he most excels, and the signal having been given by the foreman the furnaces are opened, or, as it is termed, uncovered, and the momentous work commences. One of the men with a pair of pincers seizes a crucible, but instead of carrying it himself and emptying it into one of the channele, as is the custom in France, he transfers it to two of his fellow workmen, who in their turn consey it at once to a part of the shop floor left free for the purpose. In close proxinity to this spot a regular line of assistants are drawn up two by two, almost in military fishion, quietly awaiting the advent of the crucibles. Directly one is deposited as above mentioned, the two at the bead of the file advance and seize it with a double pincer baving a large ring which clips round the belly of the crucible and retains it in a verticle position. Having emptied the contents into the particular channel assigned to them by previous arrangement they cast the empty crucible down a funnel into tho cellars below the shop, and it is thus got rid of. Its duty for the time is done and its presence would only serve to encumber tho floor and occupy space, every inch of which is too valuable to be taken up by empties. Thus disenbarrassed of their load the two workmen dip their pincers into water to cool them, keeping them there for about Ω minute, and finally take up their place at the bottom of the file from which they started. As those in the ranks abore them more of to perform their part in the routine, in procoss of time they become again the foremost of the file, and a repetition of the manœuvres continues until the running is brought to a termination. On considering the general features of this system it might at first be supposed that some of the men would be merely looking on while others were at work, but the admiruble regularity and organiza-
tion maintained throughout prevents any such waste of time or labour. Immediately that the two foremost men of the company have filed off with a crucible, another is deposited in unfailing succession and is instantly seized in its turn and carried off, and so on in unbroken continuity. The adoption of separate channels for each pair of men precludes all possibility of confusion and overcrowding, which might arise if the same channel serred indiscriminately for carrying off the contents of any crucible. The whole process is especially distinguished by a remarkable abseace of angthing approaching to disturbance, noise, or confusion. The only cries heard are those informing the men in the galleries underneath the furnaces that the moment has arrived for clearing the crucibles from the particles of coke adhering to them, and for opening the furnace doors. Many other precautions suggested by long continued practice are faithfully attended to in urder to ensure the success of the operations, and some minutes are all the time required to fill the vast cavity, containing as a naximum 36 tons of metal.

All labour may be classed under the two divisions of skilled and unskilled. In the latter nothing is demanded of a man but that he should be willing to use his hands, and the railway excavator or "navoy" furnishes us with as good an example as could possibly be instanced. In the furmer a man must be able to work with his head as well as bis hands, although not to the same exteit, becanse a considerable portion of the success of his trade or craft depends altogether upon himself individually. He can make either a bad or a good job of his work according to his willingness or ability. The workmen employed in the manafacture of cast steel, particularly on a scale so stupendous as that of M. Krupp, have need of peculiar qualities of address and of a degree of physical and moral force not easily to be met with in men of the class. The result is, that the number of men who are really capable of undertaking this description of work and gaining their livelihood by it is limited to an extent much smaller than what is generally beliered. Out of every hundred hands who enter the foundry at Essen, furty of them at least, after remaining there for some time and giving themselves a fair trial, are furced to acknowledge to their great chagrin and mortification that they neither possess naturally nor are able to acquire the dexterity, the addross, the skill in manipulation, and the unremitting attention indispensable to the successful execution of the details committed to their charge. They are cunsequently very un willingly compellod either to quit the establishment altogether or accept some uther description of employment more suitable to their disposition and playsical endowments. There are, therefore, no comments necessary respecting the difficulty of obtaining a large number of hands for a branch of mechanionl industry where awkwardness and inattention, carelessoess and want of skill, may occasion, not only serious !oss to the proprietor, but dangerous and sometimes fatal consequences to both the incompetent workman and his more skilful companions. The workmen who uaite in themselves the requisite qualities are paid according to a scale of wages proportioned to their different positions and value in the estab.
lishonent. It is mentioned in "Les Griandes Usines." as a proof of the health the foundry-men of M. Krupp enjoy, that they of all others require least assistance from, and make the fewest demands upon, the resources of the sick fund belonging to the whole institution in general As may be imagined they suffer rather at first from the severo and continual sweating produced by the aature of their employment, but when once, as we might say, seasoned, their health is in no manner whatever affected by it.

As a rule, for the obvious purpose of avoiding night work, the meltings are so managed that the running takes place either early in the morning or during some after portion of the day. The prudence of this arrangement cannot be too much commended, as everyone is well aware of the wasteful expense incurred in carrying on night work, which amounts, in fact, to paying higher wages for less work. Accordingly the only men left in the works at night are those having charge of the maintetance of the furnaces, as the removal of the ingots is also effected in the daytime. In about two hours after being cast, the ingot, except when of eacessive dimeasions, is sufficiently solid to be lifted by the movable crane and taken away. Whenever it is intended to be worked at once it is put upon the railway traversing the workshops in every direction and conveyed by a locomotivo to the particular shop where that description of work alone is carried on. Frequently it happens that very large ingots are not required to be at once put under the hammer, and then the following plan is adopted:-The ingot is remored from the mould and deposited in another part of the building reserved for such purposes, and is not permitted to become quite cold, 'To accomplish this by the construction of furnaces sufficiently large and numerous to answer for all the different masses of metal awaiting their finish, would have entailed an unwarrantable and ruinous outlay, so the difficulty is overcome in another manner. The ingots are covered with asthes and half-consumed débris, and a little wall of dry fire-bricks built all around to keep io the heat. The slow combustion of this otherwise valueless fuel prevents the block from getting cooled down below a certain point, and represents a kind of hot charcoal bath.

Recent events on the continent have amply demonstrated not only the advantage, but the absolute necessity, of a country possessing among its other resouroes an establishment similar to that at Essen. The same power, skill, and ingenuity which, whon omployed in the wase of peace, can contribute so largely and zealously to the welfare of mankind, can also, wl en enlisted on the side of war, produce weapons and warlike implements alike creditable to mechanical art, as destructive and fatal to the five. In the ordinary conditiou of the workshops of M. Krupp the blocks of cast metal lying about-some just turned out of the moulds, others partly worked and awaiting their transportation to another portion of the premises-represent a value of about $£ 170,000$. This value, as our authority remarks, only holds for M. Krupp, as it is only in his establishment they can be finished and fitted for their intended purpose. In one sense it is the very worst deseription of stook ane could possess, being not convertible, but this is a consi-
deration of very little importance in mechanical works occupying the position of those in question, and whose maintenance is so essential to the prestige and interesta of the Prussian nation. In order to forge and reduce into shape the enormous masses of metal ivtended generally for the construction of heavy pieces of artillery, or to form portions of the machinery of large men-of-war steamers, it becomes necessary to call into play the greatest mechanical invention in the whole establishment, viz., the celebrated stenm hammer. The size of the castings to be operated upon far exceed the limited powers of any of the ordinary steam hammers. The celebrity of this famous 48 -ton hammer has become a household word in nearly every mechanical workahop of a nature similar to that of M. Krupp, and it is questionable whether in the whole world thete exists its fellow. The firm of Petin et Gaudet possess one of 1.4 tons; those at Creusot and Guerigny average about 12 tons; and "Les Grandes Usines" asserts that 20 tons is aboat the limit attained in Englamd respecting the same machine. The fillowing particalars wilk assist our readers in forming a correct idea of this stupendous imple-ment:-The moviblie part of the hammer or striker is 12.31 ft . in lengih, has a breadth of 5.21 ft ., and Ω thickness of 410 ft . Putting the weight of the metal at about 460 lb . per cube foot, it will be readily seen that the power is theoretically even beyond what has been stated.

So early as the jear 1850 M. Krupp had the foresight to perceive that the ever-increasing exigencies of industrial and mechanical art would demand the production of masses of metal, whether steel or iron, exceeding in size and proportions aoy thing ever previously attempted. It was while turning over in his mind the probably speedy occurrence of these demands that the im mense advantage a mechanical establishment sinilar to his own rould possess over all others in being provided with a machine suitable for working ecormous masses of cast metal, presented iteslf foreibly to his attention. The idea once conceived, to a man like the proprietor at Essen, the carrying of it into execution folluwed as a matter of course. Had M. Krupp paid much attention to the opinion of others on the matter it is probable he would never have erected this valuable acquisition to his machinery deparment. All thase to whom he communicated his intention considered it in the light of a futile and foolhardy project, and not to be entertained by a math of sound sense. Many savants and scientifie mon declured that a hammer of the proposed priser euniti not be made, and, even if it werc actually constructed, it would be impossible bo set it going. As a fast consolation to the invensur, it was predicted that, supposing it were, by an extraordinary struke of good luck, pat au courant, it would, by its own violence, lnoek itself to pieces and every thing belonging to it. In spite of these sinister propherses, M. Krupp commenced the construction of his enormous hammer, and the result showed his calculations were well founded. A brief description of a work unparalleled in size and the monount of capital inrested in its erection will be found intercsting. The hammes was built upon What may be called a triple foundation. The lowest consisted of masoury of a very strong and solid description. Upon it vere placed, axranged in joist
fashion, a number of enormous oak trunks, obtained, for the most part, from the forests of Northern Germany, including the well-known timber of 'Teatbourg, mentioned and eulogised in the time of the Emperor Augustus. Upon these oaken joists was. placed the uppermost foundation, consisting of cylinders, east in segments and solidly bolted together. These earry the bed-plates, or base proper of the anvil. The anvil is not a fixture, as, would naturally be imagined. but is movable, and is continually being removed and replaced by new ones. The necessity for this incessant changing arises from the fact that it is always destroyed after a short term of duty by the blows it receives; and, moreover, its shape must be varied to suit the different forms of the pieces subjected to the action of the hammer. A clear space of about 10 ft . is left all arcund the anvil -a rery unusual, although a very convenient arrangement. It arises more froms the manner in which the columbs supporting the hammer are disposed than from any absolute design or intention. They are separated by a space of about 22 ft., thus forming a kind of arcade, having a height of $16 \frac{1}{2} \mathrm{ft}$., causing the force of the blow to be further augmented by the impetus derived from a fall of rather more than 9 ft . These columus are of cast iron, having a thickness of 9.75 in ., and a circumference of 19.39 ft . They are slightly flattened at the top to allow of the attachment of horizontal iron girders, which serve to maintain in a vertical position the guides or grooves in which the hammer works. These girders are evidently, in addition to their nore immediate use for holding the guides immovable, for the purpose of stiffening the whole combination. Although it is difficult. without the assistance of diagrams, to arrive at an exact idea of any compound structure, yet thero is no doultt a strong resemblance between the frame, if we may so express it, of M. Krupp's hammer and that containing our ordinary gas bolders. The columns, vertical guides for determining the path of motion, and the connecting horizuntal girders at top are manifestly identical characteristics.

One of the most important details in tho erection of the hammer lies in the foundations of the hammer proper being distinct from those of the anvil, and consequently the vibrations resulting from the percussion affect but very slightly those parts most intimately connected with the machinery of the structure. There is very little doubt that the success of the project has been mainly due to these excellent precautions, and that but for them it is possible the predictions respecting the damaging action of the concussion upon the contiguous parte might have been fulfilled. 'The cylinder and piston constituting the motive agents of the machine are fixed upon pillars standing upon an isolated foundation as above. The diameter of the cylinder is 6.03 ft ., Ω very fair size for a principal iustead of an accessory engine. With the exception of the iron columns and other permanent portions of the structure, all the separate parts can be replaced at a moment's notice, duplicates being always at hand to avoid the prejudicial delay arising from fracture of any of the component parts. Thus a duplicate cylinder is always ready to be substituted for its predecessor in case of any accident renderingan immediate change requisite. A second hammer, or, more correctly, the striking part, ar
hammer hend, is kept in stock to replase a damaged one. Such a contingency is, hewover, of rare occurrence and only happened once when the head, unable to resist the shock, cracked across. A large assortment of anvils is arranged eystematically in line before the workshop, and in their immediate vicinity the broken head of the hammer. whish appears to be preserved as a kind of curioosity. It is rather remarkable that the crack did not tnke place in the actual striking part, but bigher up, in a corner and close to one of the pins fixing the head in its socket. The vicinity of the crack to a pinhule is, however, sufficiently explanatory of the reason of the failure occurring at that point. The head of the hammer is not in one piece, and its fabrication was not the least diffculty to be overcome. The lower or striking part. is of cast steel, rhich was allowed to first partially cool. and while in that condition a melted mass of iron was run on to it and in cooling became incorporated with it. All the component parts of the hammer, as xell as those of the other large machines, were made in the workshops themselves, which possess an iron foundry on the samescale of magnitude as the rest of the preanises. It contains, among others of lesser proportions and capacity, several cupolas capable of holding nearly 50 tons each of melted metal, and machinery in proportion for manouvring the necessary operations attendant on the running. The skill and ability of M. Krupp and his subordinates, whether displayed in the selection and exanination of the ores-all of which undergo a se:arching ordeal before being approved of-or in the more practical operation of melting and running the metal, have rendered auccessful at Casen casting 8 which could not even be attempted elsewhere, not perhaps so much on accoust of the complexity of the models as from their immense size and solidity, which are the especial characte. sistics of the productions of M. Krupp's foundry.

It must not, however, be supposed that castings exhihiting considerable delicacy and sharpness of outline cannot be produced at Essen; quite the severse, for those who have the good firtune to obtain the entrée are shown a cast plate containing in bas-relief the principal monuments of Germany. These representations are all produced by the one operation of ensting without any aftor planing, chiselling, or filing whatever, and consists of cathedrals, castles, mausoleums, and public buildings, rendered with a purity of delineation one would scarcely suppose compatible with the density of the mnterial employed. The artist ras engnged for more than a year in preparing the mould, and the effect is the more extraordinary as the ground is a cast-iron plate and not the surface of a bronze medal. An ornamental clock surmounted by a garland of fuschias, a chandelier with branches of foliage, and a varioty of handsome domestic appendages, are nleo turned out in the same material, called Sayn metal, whose grain appears dearly equal for the purposes of ornament to that of brunze, and considerably superior to that of zinc. As may be easily conjeetured, all the accessoricy of the great hammer are on a scale equally stupendous and massive, the walls of the workshop in Which it is erected being considerably stronger than those of the adjoining shops. 'l'he vibration scaused by each blow spreado itself over a large
area of surface, and the sound of the concussion, which rises above all the various noises and din going on in every direction, is an infallible indication that the gross marteau is finsily at work. Having satisfactorily solved the problem of the actual construction and working of the hammer, M. Krupp turned his attention to perfecting the machinery destined to transport the blocks to be acted upon, to and from the necessary localc. At each of the four corners of the frame he erected a movable crane capable of sustaining individually a sale load of nearly 50 tons. That there might not be the slightest chance of a failure occurring in any of these machines while an incandescent mass of metal of the above magnitude was in transitu, they were each of them tested to eight times the safe load, or to about 400 tons. Exactly behind each of these cranes, and belonging, as it were, to them respectively, is a furnace with a bottom movable on rails. This movable sole is of Grebrick, bailt upon an iron frame or "lorry," supported upou small massive dise wheels, and can thus be run in and out of the furoace as required. The dimensions of the furnace are atout 10 ft . by 8 ft . The ingos being brought into the shop by a locomotive is lifted by one of the cranes on to the "lorry" and run into the furnace. When raised to the proper temperature for being operated upon by the hammer the business of forging commences, and the whole process is conducted with the same degree of regularity, order, discipline, and certainty attending all the operations carried on in the establishment.
Haring alluded to the process of forging a solid steel ingot weighing upwards of thirty-six lons, we will now briefly describe the modus operandi practised at Essen. It will he remembered that the ingot is undergoing a slight re-heating, or, rather, a conservation of its prerious high temperature, in a furnace, the bottom of which is movalle. The diameter of the nass of metal arerages about c_{2} feet. Directly the furnace door is opened, a chain, already attached to the sole, is tightened, and partially draws out the "lorry" with the ingot upon it. The crane, one of the four belongiog to that particular fornace, is slewed round so as to command the block, and heavy chains, armed with loug fangs, are passed securely and safely round it. The heat emitted from the surface of the block does not permit of an approach, even by the workmen, nearer than 7 ft . in distance, and amateur observers are compelled to keep far-ther-a good deal farther-off. The block being once well gripped by the holding chains, the lorry upon which it rests is drawn clean out of the furnace; another chain is then attached to the hinder part of the mass, and the whole apparatus is brought vis-a.vis to the anvil, upon whiel a rapid semi-rotation of the crane deposits the ingot to be operated upoo. Once there, the machinery erected for the purpose lifts and curns it about until the exact point which the foreman desires to be lirst strack is presented to the hammer. The foreman presiding over this important detail of workmianship is, as may be casily anticipated, an old and experienced hand. Thirty-five years of constant practice in this particular branch have endowed him with a superiority only to be acquired by sidilar means. Commencing with the smallest
hammer in the establishment, he has been adranced, ns new and larger ones were surcessively erected, to the daty of superintending their operations, until he has finally reached his present reuponsible position. All being in readiness, the foreman gives a signal, and the hammer descends quietly, just touching the place to be afterwards struck, in a manner analogous to that in which a smith taps a piece of iron he is forging to indicate to his nssistant where to strike. A second signal brings down the hammer with a force which causes a small earthquake, and the spectator recoils instinctively. The blows once commenced in earnest continue without intermission, the block being turned and adjusted as required without any apparent effori. In removing the ingot, so many as a hundred men together are occasionally employed to work the leverage of the large pincers, and nur authority notices the vivid contrast between the crirs, shouts, and noise attending similar operations in France on a much sinaller scale, with the sany fioid, the silence, steadiness, and busineaslike manner of the workmen at Essen, who appear to be quite dwarfed by the enormous proportions of the machinery around them. While the forging of one mass of metal is going od, there are three others heating in the other three furnaces, ready to take successively the place of the first when the operation is finished. A few blows of this gigantic hammer suffice to produce the desired effect upon smaller masser of metal, whether steel or iron. including large anchor flukes and the cranked axles of marine steam engines. The gros marteau works day and night, for it has to pay the interest of the capital expended upon its erection and maintenance, and in order to do this it must return the manufacturers profit upon dearly $\mathcal{L} 120,000$, a duty it faithfully fulfils. During o period of incessant action, extending orer five years, the only deláy ever incurred was occasioned, as already mentioned, by the cracking of the hammer block, which was replaced by a new one in less than three reeks, and the machine started again. In addition to this stupendous engine there are forty-two other hammers duing duty in the workshops at Essen. Sume af these are 20 ton hammers, and the others range from about 10 -tons to the smallest size. The majority of these owe the force of their blow to simply the weiglit of the hammer, aided by the momentum of its fall, but several are also assisted in their action by steam pressure.
M. Krupn, who frum his own office can take in at a conm d'ceil everything that goes on in the vicimity of the gos moitcan, his already foreseen that the progress of scientific and mechanical art may ulimately demand in power exceeding that already at his command, and he has alrendy meditated the eoustruetion and ereetion of a 100 ton hammer. The difficulty becomes reduced to a matter of financc. Would an engine of a magnitude so extreme repay the outliy of about a quarter of a million, required to erect it? So soon as the proprietor of Lissen can solve this question satisfastorily in his uwn mind, he will doubtless set about solving it in a practical point of view. Thero is, however, another means of arriving at the same end, which has not eacaped the penetration of M. Krupp, and which, in all probability, will usurp the place of steam hammers reaching dimensions
and proportions beyond what bure already been attained to. We allude to the hydraulic press, and it is questionable whether the nest huge forging instrument ereeted at Essen may not be eonstructed upon this well-known principle.

Among the nomerous varieties of work turned out of M. Krupp's establishment, one of the most usual deacription, and one for which there are constant orders on hand, is the manufacture of steel tyres, both for waggons and locomotives, the latter especially. As this process is considered one of the curiosities of the establishment, we will give a brief description of it, and it must be borne in mind that there is a vast difference in conducting the operation when it relates to the working of steel instead of the ordinary malleable irov. The first step consists in cutting from an ingot of about 3 tons weight a certain quantity of metal, according to the size of the tyre to be made. In general, the quantity cut off varies from 3 cwt . to 8 cmt . To cut n piece out of a block of metal nearly 10 in. thick, is not so easy as may be anticipated, and it is performed by placing a cutting edge ou the block while red-hot, and driving it through by a few blows from one of the smaller-sized hammers. The piece thus cut off is forged into the shape of a rectangular prism, sligbtly rounded at the extremities, raised to a red-heat, placed upon an anvil, and a portion of it driven out by the action of a very thin wedge, leaving an oval-shaped hole in the central part about $\frac{3}{4} \mathrm{in}$. in breadth, the minor axis constituting that dimension. After one or two blows from the hammer to flatten down the metal, which has spread out a little in a lateral direction, a wedge is iniroduced into the oval aperture, then another, until the metal assumes the form of a very elongated lozenge. It is now raised upright, with the longer axis vertical, nnd, being struck once or twice, takes the shape of a rough square. To bestow upon it a circular form, it is placed under a hammer whose anvil is split from top to bottom, thus allowing the unformed tyre to enter the aperture and be supported by a large mandrel placed in the gap. This piece of mechanism acts as a kind of secondary anvil, and, by being hammered upon it while in a rotary state, the metal commences to assume a correct circular contour. It is again hammered on a solid anvil in a horizontal direction, to take out all the angles which hight have been formed, and to bring the particles of the metal in closer contact. The next step is submitting the semi-formed tyre to the action of the rolls, which are of a special deacription, and were once, for a long period, used only at M: Krupp's establishment. They are rather complicated in construction, and, while pressing the ring of steel in every direction, one of the cylinders determines the shape of the flange, a detail indispensable to all wheels designed for running over rails. The ezact regulation of the action of the rolls demands the attendance of experienced workmen to manage the different screws and levers in connection with the machinery. There is one peculiarity worth noticing in the workshop where these operations are carried ons and in which it differs from the majority of other mechanical works. The furnaces, instead of being constructed above ground, are built underneath, in a manner similar to those in the steel foundry
which we have already described. Like these, they are also furnished with machinery and gearing to eender their working convenient and rapid. The tyre, for we may now so call it, is re-heated in one of these furnaces, and placed horizontally npon a darge plate or dise, in the centre of which there is a cylinder, corstructed of segments. The action of an hydraulic press causes this cylinder to gradually enlarge its circumference, and consequently to stretch the tyre until the required dimensions are accurately obtained. While the tyre is still andergoing the above tension \rightarrow to spentr metaphoricallf, while it is still on the rack-it is subjected to the poine forle et dure, consisting of a series of numerous and hetary blows, baving for their object the discosery of any flaw, crack, or other unsoundness which might have happened to the metal during the vicissitudes it underwent in its manafacture. A searching examination is made when it is cooled down, and if satisfactory, it is handed over to those whose duty it is to give it the finishing touches by cleaning it of scales and clinging débris, io which last process the labour of children is employed, a very unusual spectacle in the premises at Essen.

It must not be supposed that the tyres of wheels constitute the only item of railway mechanism turned out of the workshops of M. Krupp; on the contrary, every description of constructive detail, whether fised or movable, is there mapufactured. For several yeare M. Krupp was engaged ia conquering the difficulties and combating the obstacles attending the construction of solid or dise wheels of cast steel, as the rapid solidification of this metal renders it unsuitable for any complicated description of manufacture. In the premises at Essen there is now a foundry especially devoted to the mannufacture of dise wheels in a single operatijn, aud the casting has arrived at such a state of perfection that, beyond the usual amount of dressing, so after process is necessary to render the fabricittion complete. As they are taken out of the moulds so are they ready for service. One advantage of this principle of construction is that all welds and joints are avoided, and the chances of fracture considerably diminished. Notwithstanding these manifest advantages, several railway companies decline to adopt them, and M. Krupp, in order to to be ready for any earergency, has appropriated 2 workshop for the production and forging of the spokes, naves, and felloes of wheels in iron.

There is very little doubt that cast-steel axles; whether straight or cranked, are becoming generally substituted for those of iron, either in wagons, locumotives, or marine engines. The remarkable feature in their manafacture is that they require machinery of tremendous power. An idea of the immense strength of the rolls may be gained by the fact that nfter leaving them the bar has sometimes a thickness of more than 10 in . Among the steel axles turned out at Essen, some have erinced proof of extreme solidity, and we select an example which was supplied to the Orleans Railway. it appears from a table compiled by order of that company, and giving necsuratoly the number of miles run by the axles of several of their locomotives, that the one in question ran upwards of z: 70,000 miles during a period of nine years. The engine to which it belonged weighed 30 tons, Iu
another table equally interesting is recorded the distances rua by the tyres of the locomotives. M. Krupp has n rule of his okn, aecording to which he guarantees that all the tyres coming from his establishment shall do a certain amount of work before being injured or requiring repair. The fol lowing formula will give in English measures M. Krupp's rule. Let W represent in pounds the weight of one of the steel tyres, M the distance in miles it is guaranteed to ran, then,
$\mathrm{M}=\frac{\mathrm{W} \times 248.55}{2 \cdot 2048}$. As an approximate rule suffi-
ciently near for practical purposes, it may be stated that for every pound's weight of metal in the tyre it will run 113 miles. The following examples are mentioned. One tyre ran 43,000 miles and another 46,006 , without requiring to be returned. It is recorded, as a just tribute to the excellence of the work at Issen, that England, for self and colonies, ordered, in 1865, 11,396 tyres and 564 axles. Among the largest orders are those from the Great Eastern Railway, the Patent Shaft and Axletree Company, the London and NurthWestern Railway, the Great Nortbern Railway, R. Morrison and Co., of Newcastle, the Cast Indina Railway, and Prosser \& Son, of New York. The last quated ordered over 2,000 tyres. In close proximity to the premises where the solid steel wheels are cast, is the workshop where the manufacture and testing of the steel blades destined for the springs of locomotives and carriages are conducted. There is nothing peculiar, or to eall for especial notice, in this process, the only exception to the usual routine consisting in the employment of a huge lever worked by hand power in lieu of the vertical steam press more generally in vogue. A little to the right of the above are situated large rooms in which all the operations necessary for the production of cast steel rails are executed. Rolling, planing, boring, cutting, and otber machines are disposed in an order the most favorable for rapidly and effectually doing their own share of the work. In the foreign mines a large demand for steel pump rods bus arisen, and some have been sent from lessen furged in one solid piece 60 ft . long. With few and rare exceptions, iron in the ingot or in bar never goes out of M. Krupp's establishment; it is all utilised there, ind is only sent out in a form and condition fit to serve immediately some mechanical or scientific purpose. Railway plant and machinery, mining gear and marine machinery, constitute about three-ifthe of the products of the steel cast at Essen; the remaining two-fifths are appropriated to less pacific objects, and necessarily demand an especial study. They comprehend the construction of cannou of all calibres, from the smallest specimen of light artillery to others throwing a projectile weighing upwards of $1,100 \mathrm{lb}$. In our nest we trust to give a resumé of what the efforts of M. Krupp have accomplished towards the production of implements of war.

Fibre of Stalk of the Hop Plant.

If as son as its flowers have been gathered, the stalks of the thop-plant are made into bundles, and weil steeped in water, then dried in the sun and beaten like hemp, a fibre will be obtained which, after having been combed, is admirably adapted for beiog spun into cordnge.

Utilization of Waste Substances.

While considerable attention is being given to gan-cotion and nitroleum, a fomewhat similiar substance is gradually making its way as an article of ordinary duméstic use, entirely free from danger, and possessing such advantages as are likely to secure its general adoption. In the manufacture of Parkesine, fibrous vegetable natter of any and every kind-cotton and fias waste, and old rags, being, from their cheapness, the favorite materials -may be employed. These are first diseolved by acids, and they then gield what chemists call pyrusyline. Pyroxyline, however, as its name implies is highly inflammable, and indeed explosive, like gun cotton, and this dangerous qu lification hos to be neutralized. Mr. Parkes effects this by the introduction of either of various chemical ingredients, as indine of cadmium, tungstate of soda, chluride of zinc, gelatine, sereral carbonates, sulphates, and phosphates. Collodion (as used by phetographers), when evaporated so as to leare a solid residue, has been employed in the production of Parkesine, but it was fuund by far too expensive. The subistances which have given the best results with the pgroxyline are nitro-benzole, aniline, and glacial acetic acid. By the use of variuus proportions of these substances, all consistencies of Partesine, from the solid to the fluid form, may be whtained. The applications of Parkesine are, of coure as numerous as its forms are various. In the lluid form it is arailable for waterproofing fabrics, and in this was it is very servicable. In a plastic state Parkesine is useful in making tubes, etc, and for insulating telegraph wires." Where hurdness and toughness are required, these desiderata are arrived at by the admixture of oils prepared with chloride of sulphur, the latter suliditiea and mnkes them (the oils) non-adhesive. Again, by the use of tesins, gume, stearin, tar, cte., moditied Freparations of the invention may be made to suit special applications. Parkesine, indeed, is a most accomodating material, and may be made as bard and brittle as glass, or as fluid and yielding as cream and of every intermediate consistency. It may hare elasticity imparted to it to almist any extent or degree, and in this state it is likely to hecome a dangerous rival to india-rubber aud guttapercha, inasmuch as it will become, if it be not now, far ebenper than those useful articles of commerce, and answer almost all their uses equally well." Vuleanized India-rubber will find a sturdy competitur in Parkesine, for it may be manufactured with less of brittleness, quite as unuch hardness, and at a lower cost than that tediously manipulated substance. There is no refues in the manufacture, the chips and cuttings being capable of remanufacture with the greatest facility. Parkesine will take any color, and may be given any degree of hardness; it may be made to imitate tortoiseshell, marble, malachite, or amber, and can be cut with a saw, turned in the lathe, planed, carved, engrared, stamped between dies, rolled into thick or thin sheets, worked into screws, shaped into moldings or cornices, etc. It is susceptible of a high polish, agreeable to the touch, and not dis. agreeatile in smell. At a temperature of 340 deg . Fali., it is consumed, without flame; being decomposed and passing off as dense smoke, leaving but a dark colured ashy residue behind. It is now
being manufactured for a variety of purposes, and is daily becoming more extensively known.Mining Journal.

Colonel Berdan's INew Riffe.

The American Artisan says, "Colonel Beranns has brought oat another improvement in his already widely celebrated rifle, which seems destined so eclipse all that has yet beer done in the way of converting the muzzle-loading musket into a breechloader, as the improvement seems especially adapted for this purpose. Instead of the breech-pieco formed in two parts, as in his former patent, it is made of one solid plug or piece of steel and ewses in the same manner. Instead of the two joints of the former arrangement, there is in this but one joint. The breech is fastened in its place by sliding it upon a fianged piece of steel that is fastened longitadinally upon the top of the barrel. By pressing upon a small spring, the breech is easily remored for the purpise of cleaning, carrying in the pocket in case of rain, or it ean be removed and thrown away if the soldier is liable to be captured, so that the enemy cimnot take advantage of the rifles he may become possessed of.

The cartridges used are che "central fire," and made after a patent of Col. Berdan's. In many respecta they are an improvement on the coppertlanged cartridge; when once fired they can bo preserved for future use. It resembles the ordinary copper cartridge, except at the centre of the base there is an indentation, within which there is a raised cup on which a shallow percussion cap is placed. It is oxploded by a blow from the hammer on a pin that passes chruagh the solid steel breechpiece.

We witnessed a test of the qualities of this new gun a few days ago; and it exceeded all that we expected of it. For rapidity of fire it is unsurpassed. After being fired thirty or forty rounds, we examined the breech, and could perceive no trace of fouling or difficulty in manipulating the parts. As a prouf of the secarity of the closing of the breech, it was fred by not closing it to its place within nearly half an inch; and we coald perceive no difference in the firing. The hammer, in its doscent, always forced it into place.

Gummy Oil on Leather.

In the earlier daya, the oil used in the finishing of leather was neats foot only ; then we heard nothing of guramy leather; but as time rolled on, and neats-fort oil grew dearer, leather-dressers sought out some chenper substitute, and the article nenrest neateforot oil was supposed to be the oil expressed from fish. The hide of the cow or the calf has a strung affinity for neatsffoot oil, of course ; even the bide of the horse absorbs this oil, and holds it. This oil does not gam, and will wot, when once absorbed by the leather, esude to the surface. Not so with fish oil, however. This is something of quite another character. The oil of the fish differs as much, chemically, from the oil of the hoof of the ox or the cow as it dues from that obtained fr.m the vegetnble world, which cantains a still larger amount of gnmmy property, Fish oils are heating or burning in their character; and will ruin any leather they are applied to ; the stock hardens, and fiually cracke,
through the effects of the stuting, of which this oil is the main irgredieat. If ish oil and neats-foot are mixed, the evil is tessened, and when tallow is incorporated, the bad results of the fish oils are partially warded off, but the application of tish oil to deather kills the substance, and is the prime cause of the gum which is found on the surlace.-Hide and Leather Interest.

Smelting Titanic Iron Ore.

The London Mining Journal says, "a valuable discovery has just been made by a gentleman, a chenp process for smelting titanic iron ore, which has hitherto defied all iron masters and seientific men in the trade. It is well known that titaniferous ore is most valuable, on account of its hardness and tensile strength being five times greater than ordinaryiron. This iron will be admirably adapted for plating on iron-clads, and also for rails, on account of its hardness and strength, and the discorerer will be prepared to test this iron against any other iron hitherto discovered for these purposes, or for making steel."

alseful sectixts.

Dyeing of Horn Buttons, \&tc.

1. Dull Black.-The buttons are boiled in a saturated sugnr of lead, until tlre color has acquired the desired shade. According to the quality of the horn, this may take a'quarter to half an hour. The buttons should then be washed with wrater, slightly acidulated with vinegar.
2. Iron Black.- T'he buttons, after being treat ed as stated in No. 1, are placed in a cold solution of an alkaline sulphuret. The result is, the buttons possess a bright, metallic lustre.
3. Pearl-After undergoing the treatment of No. 1, the buttons are broughtinto diluted muriatio acid, containing 3 per cent of the strong acid. This weak solution produces, according to the duration of its influence, all shades, from the darkest blackish blue to the lighlest white.
4. Silfer-gray.-The buttons from No. 1, are placed in a solution of nitrate of mercury, saturated at a temperature of 140 degs.- 170 degrees Fah. The treatment in this bath should last ten to twenty minutes, which, if cleanliness is observed, will produce most elegant results.
5. Chocolate Brown.-The buttons from No. 4 are boiled for about a quarter of an hour in a concentrated but thin solution of eatechu.
6. Chocolate Brown Dark.-The buttons from No. 5 are placed in a warm bath of bicarbonate of potash, containing 3 per cent of the salt. With the duration of the treatment the color darkens.
7. Cmocolate Brown.-The buttons of No. 5, are placed in a warm solution of sugar of lead, saturated at the common temperature. This color looks especially well in knife handles, ete.
8. Bronze Brown.-The buttons from No. 4 are placed in a solution of aesculine (the pigment of the horse chestnut), and treated and boiled as in No. 5.
9. Bronze Brown.-The buttons from No. 4 are boiled for quarter of an hour in a concentrated solution of green vitriol, and then in aesculine. 'The
resulting bronze differs materially from the former, possessing great softness.
10. Ligat Brown.-The buttons from No. 4 are boiled in a solution of galls or pare tannin. This is especially adapted to netty designs, to which it imparts a silky lustre.

Upon the sensitive surface, produced by treatment No. 4, a great many combinations of colore may be produced.-Scientific American.

New Process for Staining Wood.

In a recent report of the "Proceedings of the Franklin Institute," we tind described a procers of staining wood, by Barton II. Jenks, that promises to be of some utility. In the mannfacture of sume articles, where there is an amount of wear, or the articles are subject to nbrasion, the beauty of the finished article is soon gone by the surfuce atain being soon worn through, and than the original color of the wood appears, rendering it unsighty, and its value is consequently impaired. But when, as by this process, the color is made to permente the entire body of the article, eved if it be serivusly injured, it can be easily repaired or varnished so as to hide the defect. The process is described as follows:-
"The wood to be treated is placed in a closed vessel, which is connected with an air pump, and the air is remored. The colloring flaid is then allowed. to enter and permeate the wood, which it dues in a very thorough manner, on account of the removal of all air from the fiber. The excess of fluid is then pumped out, or the wood is removed and allowed to dry in the usual way. The specimens exhibited were all of white pine, and were stained with the following substances:-

1. Nitrate of iron Warm grey, light
2. Nitrate of iron and paraffine Warm grey, dark.
3. Sulphate of iron.................................. Colder grey, light.
4. Sulphate of fron and peraffine Colder grey, dark.
5. Sulphate of iron and logwood Like 3.
6. Sulphate of iron, logwood, and paraffine Like 2 .
7. Chromate of potash.. Lik ligit.
8. Chromate of potash anđ parafloe............. Yellow gray, dark.
9. Bichromate of potakh.............. Yellow gray, between $\overline{7}$ and 0 .
10. Bichromate of potash and paraffine......Very rich yellow gray.

IT. Log wood.. Light orange.
12. Logwood and paraffae.. Dark orange.
13. Aniline blue
.Bluikh slafe.
14. Aniline blue and parafino... slate, dark.
15. Aniline red Violet, with yellow sliade.
16. Aniline red and parafine A little darker than 15. 17. Aniline solferino.......... Rich purple18, Aniline solferino aud paraffine................Ricla puryle, darker.
"The blocks exhibited were sections cut from larger sticks after treatment, and they showed the color to have penetrated very evenly and tho-roughly."-American Artisan.

Artificial Ivory.

Artificial ivory is now being made in France, from a paste of papier mache and gelatin. Billiard balls formed of this material, though hardly a third of the price of those made from real ivory, are yet so durable and elastic that they can be thrown from the top of the house on to the pavement or violentIy struck with a hammer, without injury. With this same paste, to which the name of Parisian marble is given among many other things, the finest and most complicated moulding for ceilings can be made, or capitals of columns can be constructed in any color so as to resemble the most valuable marbles.

White Paste which will adhere to any Substance.

Make the following misture:-Sugar of lead, T20 grains ; and alum, 720 grains; both are dissolved in water. Take 2π ounces of gum-arabic, and dissolpe in two quar s of warm water. Mix in a dish one pound of wheat flour with the gum water cold, till in pusty consistence. Put the dish on the fire, and pour into it the misture of alum and sugar of lead. Shake well, and take it of the fire when it shows signs of ebullition. Let the whole cooll, and the paste is made. If the paste is ton thick, add to it some gum water till io proper consistence

To Prevent Rats from Damaging Leather Belting.
It is not an uncommon occurrence in factories where steam power is used, that during the night, ar periods that the machinery is stationary and the shop ahandoned, the rats will eat the lenther belting, where it is accessible to them : for instance, where it passes through openings in the floor; cases bare eren happened that they ganwed holes in the floor just over the place where a belt was running horizontally in order to reach and eat pieces nut of it.

Nur, it ia a singular fact that rate will not toach angthing containitug castor oil, or even only covered with it, and, therefore, to guard belting against the voracity of these animals, all we have to do is to touch it at every place where belting is exposed to theirattacks with a brush previously dipped in castor oil.
The matipathy of the rats agninst this useful oil is really strange. Probably their instinct teaches them that it is injurious to them ; but it is useful for man to know this in order to guard many subatances against their roracious appetite. -Scientific American.

To keep Mercurial Steam Gauges Perfectly Clean Inside.

General experience has shown that the mercurial Aterm gauges in the course of time often become dirty in their interior by mercury and its ozide adbering to the glase, so that it is very difficult to see the position of the surface of the mercury. The consequeuce is, of course, an uncertainty as to the amount of steam preasure. A simple and very effective remedy is, to bring on the surface of the mercury a little glycerin, this serves as a lubricator for glass and mercury, covering the surface of both, preventing their immediate contact, and consequently all adhesion, and keeping it always clean and bright. This simple remedy is spoken very iaiglily of by all who have tried it.-Ibid.

Notes on Steam Engines \& Boilers.

Oue of James Watt's engines, the second erected by Boulton and Watt in London, is still in excellent working order at Mesers. Coombe, Delafield \& Co.'s brewery, Long-acre. It has a 24 -inch cylinder, and 6 -fiot stroke, and works at a pressure of 10 lbB . per square inch.
Δ_{s} bearing upon the probability of ateam boiler explosions by the admission of water upon heated iron, a simple experiment will show that the heat contrined in a given mass of red-hot iron is insufficient to convert any part of its own weight of writer into stenm. A pint claret bottle may, when filled with cold water, be safely beld in the havd while a red hot poker is thrust into it. If care is taken to keep the bot iron from actual contact with the glass, the bottle will not be cracked, and there will be no disengagement of steam.
The brasses of paddle-shạts always wear most on their forward sides.
Fuar steam engines were in existence in the year 1744, two of them being emploged in the coal mines near Newcastle.

Cast-iron boilers were firmerly extensively employed, and at the present time many boilers at work on the island of Cuba and elsewhere have fatt cast-iron ends, although the boilers of $4 \bar{j}-i n c h$ diameter are worked under a pressure of from 60 lbs. to 80 lbs . per squaiae inch.

The serenth division of James Watt's patent of 28th of April, 1784, describes a stenm carriage intended probably for comomn roads. The boiler was to be of wood, strongly hooped to prevent bursting, and having an internal metal vessel containing the fire.

Less coal is frequently consumed in steam vessels by working three, instead of two, boilers out of four, when it is desired to go under half power. This fact proves the advantage of large heating surfaces.

The application of folt to the outside of marine boilers has been sometimes found to accolerate their internal corrusion.

Not only is the resistance of tubes to collapse inversely as their length, but the resistance of cylindrical boilers to rupture from internal pressures bears some proportion, although contrary to that of their length. A cylindrical builer, when subjected to gradually increasing pressure, yields first at the middle. It is believed by many that the strength of cgliodrical boilers would be very considerably increased if hoops were shrunk at intervals around them.

A boiler, 3 feet in diameter, with plates of $\frac{5}{8}$ inch iron, will burst at a pressure of 708 lbs. per square inch.

Dr. Ernest Alban at one time worked a steam engine, in London, to a pressure of $1,000 \mathrm{lbs}$. to the square inch.

Steam boilers constructed of wood were at one time employed to some extent.

Steam wre conveyed in pipes to n distance of over 800 feet to drive engines which worked in the Great Exhibition.

The Giffard injector, when supplied with steam of 25 lbs . per square inch from one boiler, has forced water into another boiler against a prossure of 48 lbs per square inch.-Engineering.

Tree velocity of the sun has been estimated at 422,000 miles pe:: day.

Stutistical $\frac{0}{2}$ Information.

CORN RETURNS OF UNITED KINGDOM.

Comparative Statenent

Of the Corn Returns of the United Kingdom, fin the last five years, each ending 31sl August. (Compiled by James Watt, Glasgom.)

Remarks.
Whear.-It will be seen from the above returns that our imports of foreign wheat and flour during the twelve months ended 31st August last, amounted to $7,405,409$ qre., of which France contributed nearly two-and-a-half million of qrs., being about
oue-third of our entire receipts; the actual quantities received from the various countries, during the period stated, being as follow:-Wheat, from Russia (southern and northern) 1,968,010 que., Prussia 1,220,918, Deomark and the Duchiey 205.547, Mecklenburg 194,4̄33, Hanse Torros 189.011 , France 1, 098,869 , Turkey and the Danubian Principalities 104,273, Egypt5,094, Uvited States 201,930, British North America 21,945, other Cuuntrics 640,031 . Flour (stated also in qres.), from Itanse Towns 79,356 qrs., France 1,310,449, United States 74,677, British North America 19,212. other Cumtries 71,634 .

3itcellaneaus.

DISINFEOTANTS.

Polytechuic Association of the Americra
 Institutc.

Prof. Tilman introduced this sulyeet, the regrslar topic for the eveniog's discussion, in an article defining the signification of the term, and enumerating all the more valuable disinfectants now in use. This class of substances should not be reg:arded as syonomous with those shemical agents known as deodorizers, for the difference is essential ; the latter may act as a palliative, or simply overpowor, dissipate, or disguise the gasecus products arisingy from that which conetitutes the cease of disease, while true disinfectants attick and destroy the very roots of the evil. Taking the four elements of tho ancients as the type of division under which to rank the generally received disinfectants, we note, under the first, that the soil is capalle of absorbing indefinitely, injurious vapors. This property, possessed by porous bodies in general, is held by charcoal in a remarkable degree; for not only dies this absorb, but also, by bringing the particles into close contact, it bastens decomposition. Second, water, as a solvent, removes the source of disease, and, in connection with the soil and the air, constitutes the grand disinfectant of nature. Third, no better purifying agent exists than a plentiful supply of pure air. Among the gases, chlorioe is the best known, which, chemically combined with lime, has been extensively employed. All the bleaching agents are also disinfectants; anaon" these ozone is said to be the best. Sulphurous acid has, in all ages, been used and highly valued; it acts as a deodorizer, and by its antiseptic qualities impedes fermentation. Fire, lastly, is acknow:ledged as one of the best disinfecting agents known.

The generally received theory assuming the presence of some specific poison or deleterions matters in the atmosphere, was disputed by Dr. Bradley, who adranced a hypothesis, supposiog that malarious diseases are produced not by any specific poison in the atmosphere, generated from decomposition of vegetable matter or miasmatic emanations of any kind, but from a cause negative in its character, viz., the want of the normal depuration of the animal organism. The matters in the human body which haveserved their purposeand have become effete, must be regularly expelled, or they act as a virulent poison within the system. Free perspiration under the stimulus of heat or ex-
ercise being nmong the mostimportant functions by which the depurative process is performed, in the absence of such stimuli, another nuxiliary, viz., the atmosphore, having an affinity for the exhaling matter, is required. In a healthy state of the atmosphere, such affinity is an active positive fores of great power, but it may be sated in various ways; this occurs when the temperature of the air and the dew point approximate. An excess of carbonic acid has also a powerful effect in satisfying the power with which the atmosphere is otherWise endowed, of carrying of the effete carboniferous matters. During the spring aad early summer, carbon is assimilated by the luxuriant vegetation, and the atmosplere is purified, but later when plants begin to decline in growth, the air becomes charged in larger proportions with carbonic acid; to this, and to the fact of the greater amount of aqueous vapor in the air at this season, is due the prevalence of malarious diseases during the fall of the year. In crowded hospitals or ships, the atmosphere becomes charged with the refuse matters which bave already served their purpose. The deleterious effects of inhaling these matters are small compared with the effects of depriving the air of ite absorbing tendency. The conclusion, then, seems evident that malarious diseases are caused by the effete excrenentitious matters of which the system has failed to be properly depurated, on account of the lack of an atmosphere having an affinity for such exeretions, and the consequent deprication of this auxiliary in the performance of the perspiratury functions. Any thing, then, that tends to desiccate or dry the air, or to enlarge its capability of absorbing and dissolving the fluids of perspiration, is a true disinfectant. Fire increaes the power of evaporation; chloride of calcium and other deliquescent salte, by their attraction for moisture, tend to dry the air, and hence stand so high as purifiers. By tho application of water the pores of the skin are opened, and thereby healthy action in the performance of its excretionary functions is stimulated.-SCientific Americun.

American Commerce.

The New York Times in a recent article upon American commerce asks the question, "Is American commerce to be extinguished?" and goes on to show that at the present time England monopulizes the carrying trade of the world. He quotes from the report of the Secretary of the Treasury, and proves that the diminution of our carrying trado and ship-building has steadily fallen behind Great Britain at the rate of fifty per cent., and if this continues we shall soon cease to de a maritime nation. To quote from the report, we find that in 1860 the tunnage of American vessels engaged in the foreign carrying trade which entered United States ports was 5,921,285 tuns; in 1866, it was $3,472,060$ tuns. The tunnage of foreign vessels that entered our ports was, in 1860, $1,353,911$ tuns and in 1866 it amounted to $4,410,424$ tuns. In 1860 the United States tunnarge exceeded the foreign by $3,567,374$ tuns, but in 1866 the foreign preponderated by $1,038,364$ tuns. The tunnage of American vessels that cleared from American ports was, in 1860; 6,165,924 tuns, and in 1866 it was $3,383,176$ tuns. The tunnage of
foreign ressels that cleared in 1860 was $2,624,005$, and in 1866, 4,438,384 tuns, ehowing a balance in favor of American vessels of 3,541,919 tuns, but in 1866 showing the amount of $1,055,204$ tuns excess of fureign clearances

In speaking of the fact of the approaching sale of two steamers of the Ifavre line, the Times says:-
"They are apparently the last American steamers on any great line betreen New York and Europe. So ends our expected great commerce in American-builtocean steamers. Great Britain has a vast fleet of iron commercial stenmers plying over every sea, built so cheaply and ingeniously as to drive out all competition. In the grand busi-ness-struggle of nearly a century to get possession of or to lead the commerce of the ocean, the United States, that seemed once on the point of victory, must now own to defeat. She is not only a commercial power second to Great Britain, but she seems destined to still further inferiority, and to be almost driven from the seas."

We must add the melancholy fact that, of about a dozen lines of ocean steamers that ply between our ports and the European cities, not a single vessel is now owned by Americans or sails under the American flag. England has quietly maintained that she was mistress of the ocean, and it has as ${ }^{8}$ quietly been laughed at upon our side of the Atlantic, thinking it was a foible of Britannia, but as facts and figures are stubborn things, then we have no longer any occasion to laugh, but to wake up to the sober reality.

The Times mentions that the orders for machinery from the Southern States and South America, that used to come to Northern manufacturers, are now filled in England, and it is said that soon river steamboats made in Great Britain, will be plying upon our rivers:-
"Mr. McCulloch wisely remarks," says the Times, "this is a direct effect of the bigh protective system, especially as applied to raw material. It must be remembered that such a tariff as we have now weighs upon every article that the manufacturer uses-his iron, brass, steel, wood, coal, and tools; and he not only has to compete with the cheaper labor of England, which ho might do with the aid of ingenuity, but he has to work on raw products which are all far dearer than in England, owing to our exorbitant duties. More than this, the effect of such a high bounty as the present tariff offers is to encourage, with the American producers of the raw material, a carelessness, extravagance, aud want of business prudence and saving which gradually render their production more expensive. There is nothing which stimulates economy, ingenuity, invention, and care like open competition. The moment Government comes in to back up an interest with excessive duties it becomes wasteful, and soon loses the watchful care which before made it successful." - American Artizan.

Workingmen's Strikes and their Cure.

For some time back, a contest has been going on between the iron manufacturers in the North of England and their workmen. When, some time since, the price of iron became materially reduced,
the masters found that they would have to manufacture at a loss, unless the cost of production were also diminished. The workmen refused to accept lower wages, and struck work, and at latest advices still maintained their position of voluntary inactivity, aided, as they were, by contributions from other iron districte. Now it is very evident, that while employers are losing the profits of their business, as well as a certain portion of expenses which cannot be stopped, the men are proportionately losing much larger sums, and the longer they refuse to work, the greater becomes their loss. In addition to the loss of masters and men, there is also the very heavy loss to the country at large in the stoppage of production, while the consumption of fond, \&ce., goes on as usual. The loes is a very serious one, and with the other evils resulting from the contesta between capital and labour, has attracted a good deal of attention in England, and much therupite and consideration has been devoted to the subjeet. Mr. Fawcett, member for Brighton, lately made a speech at Leeds on the Co-operative Cual Company of Messre, Briggs, in which he pointed out the sreat difficulties that surrounded the commercinl position of England from the unsatisfactory relations existing between the classes of labourers and capitalists. ILe also pointed out what he believed wh the only certain way of palliating, if not remedging this evil, namely, by the growith of assuciations such ne Mesers. Briggs ${ }^{\circ}$ Coal Company, in which the interest of the capitalist and the labrurer are to a certain extent identical, and in which the trages of the labourer, if too low, are supplemented by a share in the profits. The plan of the Conl Cumpany is to pay, first, the regular rate "f wages in the district. then 10 per cont, on all the capital of the company, and finally to divide the surplus between the capital and the labourer. This system, it will be perceived, is as nearly equitable as any arrangement can be. It gives to all those employed in the production, whether represented by capital, ono of the great elements in production, or by labour, another of its chief elements, a similarity of interest, and a pro rata share in the profits. Mr. Briges atated that the result bad been not only to put a good bonus into the pocket of the labourers-a banus of five per cent. on their wares-but to yield thimself, as enpitalist, a lager profit that he had ever before receired, erer in the most prosperous years of the colliery's existence. This co-operation betweon capital and lubure is only a varintion of eo-rperative working societics, where the men themselves represent both the capital and the Inlour ; but, as in the latter ease, the effints of the men are hampered by the smaliness of their menus at the commencernent of their undertaking, wo think the arrangement a better no where the capital is furnished, and the men, as in the oase of the Coal Company abnve mentioned, given a certanin share of the profits. They might also be allowed to inveat their earnings in storek of the oompany, and thus give them a strong nutive fur the practice of econony and the virtues which are inseparable therefrom.

Several very important advantages are at once secured by the cu-operative principle. Disputes between men and macters with reference to wages are :limast of necessity entirely prevented, and prodaction gues on steadily, up to the point allow-
ed by the means of the company or the state of trade. The men are perfectly willing to receive wages, which would otherwise be low. when they are sure to receive back in shape of profits, the difference between their nominal wages and what they should in equity obtain. And let it be remarked, their earnings will always be larger in this way than in any other. Each manhaving a direct interest in the success of the whole, he will do his best, and more work hy far will be accomplished than under the ordinary labour system, and the jealous watchfulness of all will prevent idleness or waste on the part of any one who may not be so industrious as the rest. Improvement both in the amount of work turned out and in the quality of that work, has nlways closely followed the adoption of the co-operative system, and Mr. Fawcett was not far wrong when he said that " he almost believed that the future existence of his country depended upon this scheme. If it be not extended, we tinght depend upon it that capital and lahour. would, to a large extent, emigrate from this country. If capital went, where was our wealth? If labour so went, where would be the elements of our future greatness?"
Several co-operative societies have heen formed in Canada, but with quite a different object in vierr. They have been formed with a view to economy of consumption, not of production, to furnishing food and clothing as cheaply as possible to their memLers, not to producing the wherewithal to purchase those necessaries. We should be glad to see cooporative working societies introduced into this country; and whether the capital were contributed by the labourers themselves or furnished by capitalists, the greatest economy of production will be secured. We would then have an opportunity of testing the great question of the profitableness to Canada of producing her own manufactures; of deciding whether the manufacturing interest should be fostered at the expense of other and mnch more important interests; whether even it would need any legislative help whatever; and if the cxperinent should prove successful, it would undoubtedly attract to this land, where the cost of living is so low, a large share of both eapital and labour, which, together, are at the foundation of the material prosperity of every great nation.-Trude Review.

Colored Stareh.

This, anys a London paper, is the latest and greatest norelty of the season. It is made in pink, buff, the new mave. and a delicate green, and blue will soon be produced. Any article starched with the new preparation is completcly colored-dse. 3 we should have said, but as it washes out, and the garment that was pink to-day may be green to-morror, and buff afterwards me can hardly say "djed" It is intended especially for those bright but treacherously colored muslios that are costly, wash out and perplex their owners. If the pattern has been mavee, they only need the maure starch, if green, green starch; and they ean be rendered one even and pretty shade, thus becoming not only wearable again, put very stylish. White anti-macassars, or tace curtnins may also be colored in the same way, and infinite variety afforded.

[^0]: ＊There are now，according to the Mechanica＇Magaziae，10，000 hands employed in thit．establishment alone，－［ED． 1

