The institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Instisut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculêes

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualisé inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison
\square Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Vol. II.-No. 7.
OCTOBER, 1874.
Price in Canada $\$ 2.00$ per An. United States - \$250 "

SELLER'S GEAR-CUTMING MACHINE.

Wo illustrate, on pages 193, and 196, a gear-cutting and whecl-dividing machine, constructed by the woll-known firm of Messrs W. Sellers \& Co., of Philadelphin. The machine is arranged for sutting both spur and bevel wheels, and has a capacity up to 54 in. diameter of whecl, 12 in. face, while it will cuta number of small spur wheels of the same si\%e at one time. The peculiarity of this machine is in its buing entirely automatic. It performs all its work, after adjustment, without attention of workman, to the completion of the wheel being cut or divided. The division is obtained by a taugent wheel and worm in connection with asyktem of chango wheels between the worm and the crank bandle, so that the turning of the crank one, two or three times, as may be colled for in connection with specified change wheels in the schedule of division, gives the number of teeth required. So far the machine is similar to many gears-cutters in common use, but in this machine the turning of the handle the proper number of times at proper intervals, as well as all other motions required, are automatic. Thus a blank wheel put in place, and the cutter adjusted to depth of cut, length of stroke of cutter head, \&c., the cutter passes across the face of the whecl, cutting the space betreen two teeth, then returns at a quick pace to the starting side of the wheel, the blank is then turned to present a second space to be cut, and the cutter restarts its proper motion in another space, to the completion of the wheel, all without attention from the workman. While in method of dividing, speed, and power of cut, it may not difier from other well-made gear-cutters, yet, inasmuch as it loses no time between its cuts, but performsall the motions required promptly and as rapidly as possible, it is claimed by its makers to do one and a-half times the work that a skilful workman can produce on a gear-cutter operated partially by hand. In practice it has been found that one man can attend advantagcously four of these machines, each machine doing more work than one hand machine, yet really using but one-fourth of the workman's time. An important feature in this macbine is that the various movements required to do the work follow each other in regular sequence, each one being dependent on the completion of the motion which preceded it In our engravings we show the external appearance of the machine as arranged when cutting pur-gearing. The post Λ, with its projecting arm B, carrying the cutter-head C, is made to swivel or turn between its bare-plate and the cap which carries the driving pulley D, so as to set the arm B, either parallel to the axis of the wheel to be cut for spur gearing, or at an angle to it for bevel gearing. It is also adjustable to any required position on the bed. Motion is conveyed to the cutter-head spindle from the pulley D, by means of the bevel wheels to the cono pulley at top of post, and thence by belt over guide pulleys (one of which acts as a tightener) to the cone pulley back of the cutter-head, thence by bevel wheels to the spindle. The cutter-head slides back and forth on the arm B, driven by a nut on screw E, this screw is stationary, the nut only revolving, and the traiu of gearing, which moves the nut, or causes it to revolve, starts from the lower cone pulley, by bevel whecle, through a set of variablo friction discs, to a shaft G, and by pinion G_{1}, through a sun-and-planet system of wheels II, to a gear wheel 1, on the end of a shaft, which passes through the arm R, below and parallel to the screw, which shaft termiuates in the oquare end (for handle) I. Spur whecle convey motion from this shaft to the revolving not in the screw E. Upon the screw E, are two nuts K , L , which are adjustable on the screw E, aud are readily clamped at ang required position. These two nuss determine the length of stroke of the cutter-head, by means of a crank on the end of the screw within post A, the turning of the screw one way or the other through a small portion of a revolution opurates clutches within the post, which determine the requisite motions in proper sequence. Thus the scres being stationary during the travel of the cutter through the wheel, the revolution of the nut on the screw causes the advancement of the cutter-head, we may say, towards nut L, when the revolving nut comes in contact with this stationary nut L, a tooth in the revolving nut catches with a tooth on the stationary nut L, and turns it, with it, the screw, and as both nut and screw ure in consequence revoiving in the samodirection at the seme time, the forward motion it the cutter head ceases and the atation of the screw operaws the
devico that is to start the next motion, nomely, the roming back of the cutter-head to its starting point. Hero a_{2} in :s comes in contact with nut K , again ceases its lateral motion. and imparts a rotary motion backward to the screw, stopping tho driving machinery last in operation, and putting in motion the machinery that turns the blank to present the next spisce to be cut ; the completion of this last operation restartmg the cutter into the work. Through the centre of the column A, is a vertical shaft which revolves continua!ly in one direction The bevel whecls shown at M, aro (by means of a clutch) held from turning, allowed to run loose, or are driven by the vi r_{-} tical shaft as required. We ave mentioned the system of sun-and-planct wheels at H; the planat whecls are attulat to a face plate N , this face plate to one of the bevel wheels at Mr. When the bevel whecls are held stationary, the sun wheel in the centre drives the outer wheel H_{1} and thenee th feed. If the bevel wheels run loose the feed stops, as there is no longer a point of resistance to drive it.

If a rapid rotation be given to the bevol wheels, they will drive the planet wheels around the centre une, and thus in. part a rapid motion to the nut or screw E , to carry the cutter back to its starting point; but when it has reached this point the wheels M are cut loose from this driver, machnery is put in motion within the bed, that, by means of a crank, rack, and pinion at 0 , turns the crank handle P, lifting the lateh Q, at each revolution. The number of turns of this handle are detarmined by a pin R , being placed in one or the other holes shown in the face plate, that controls a nest ot gearing S. A cass on a shaft within the bed, upon the completionof the proper number of turns of the handle P, moves the clatch to clamp the bevel wheels M, and thus restarts the feed.
This completes the series of motions, a series that mas have any one of its individual motions lengthened or shortened and yet not affect the others. The failure of any one to act mercly prevents the next one from starting, so that no evil can r alt to the work being done. The devices used in this tool are, many of them, contrivances hrst arranged ifs other machines. Thus the variable friction feed T, is cois. mon to all machines built by llessers bellers where sucha feed is advantageous; it is used on all their lathes as a turting feed, and on their drill presses and their boring mechneThe sun-and-planct system is an outgrowth of their dull press feed. The stationary screw, with its nuts K , and I , wa, first used in their cotter drill, to enable a fixed length ot stroke at a constant rate of progression possible, and the clutching device within the bed is taken from the feed motion of their planing machinc. Thus devices familiar to them in other tools have been brought together and harmonized in tbis remarkable machine.-Enginecring.

CASTING MIXED METAL.

When brass is ready to be poured, the zinc on the surtace begins to waste with a lambent flame.

When this condition is observed, the large cokes are first removed from the mouth of the pot, and a long pair of crucible tongs are thrust down beside the same to embrace it securely, after which a coupler is dropped upon the handles of the tungs. the pot is now lifted out with both hands and carried to the skimming place, where the loose dross is skimmed uft with as iron rod, and the pot is rested upon the spill-trourb, agamet or upon which the thasks are arranged.

The temperature at which the metal is poured wust be proportioned to the magnitude of the work; thus lage, stras. gling, and thin castings require the metal to be very 1 ot, other wise it will be chilled from coming in contact with the "steod. ed surface of sand before having entirely thlled the mu. ${ }^{\text {d, }}$ thick massive castiuge, if filled with such hot mactal, would a sand-burnt, as the long-continuance of the keat would destrof the face of the mould before the metal would be solddified The line of policy seems therefore to be, to pour the metalsat that period whon they shall be sufficiently fluid to tull the moulds perfectly and produce distinct and sharp impressions, but that the metal shall become externally congealed as so03 us possible afterwards.

For slight moulds the carbonaceous facings, whether maldust charcoal, or soot, are good, as these substances are bed conductors of heat, and rathor aid than otherwise by them ignd. tion ; it is also proper to air these moulds for thin works, or
slightly warm thom before a grato containing a coke fire. But in massive works these precautions are less reyuired, and, the facing of common brick-dust, which is incombustible nad, more binding, succeeds better.
The founder therefore tills the moulds having the slighest works first, and gradually proceeds to the heavicst, if needful be will wait a little to cool the metal, or will effect the same purpose by stirring it with one of the ridges or waste runners, which theroby becomes partially melted. Ho judges of the temperature of the melted brass principally by the cye, as when out of the furnace the vrry butsurface emits a brilliant bluish white flame, and gives of clouds of the white oxide of, ainc, a considerable portion of which floats in the air liko snow, the light decreases with the temperature, and but little zinc is, then fumed amay.
Gun-metal and pot metal do not flare away in the manner of brass, tin and lead being far less volatile than zine, neither, should they bo poured so hot or fluid as yellow brass, or they, will become sand-burnt in a greater degree, or rather tin and lead will strike to the surface. Gun-metal and the much-used alloys of copper, tin. and zinc, are sometimes mixed at the time of pouring ; the alloy of lead and copper is never so treated, but almays contains old metal, and copper is seldom cast alone, but strifing portion of zinc is added to it, otherwise the work becomes nearly full of littlo air bubbles throughout its suriace.
When the founder is in doubt as to the quality of the metal, from its containing old metal of unknown character, or that be desires to be very exact, he will either pour a samplo from the pot into an ingot moald, or extract a little with a long rod terminatisg in a spoon heated to redness. The lump is cooled sad tried with a \cdot, file, Baw, hammer or drill, to learn its guality. The engraved cylinders for calico printing are required to be of pure copper, and their unsoundness, when cast in the usual way, was found to be so serious an evil that it gave rise to casting the metal under pressure.
Some persons judge of the heat proper for pouring by applying the skimmer to the surface of che metal ; which, when very bot, has a motion like that of boiling water; this dies away and becomes more languid as the metals cool. Jfany works are spoiled from being poured too hot, and the management of the beat is much more difficult when the quantity of metal is small. In pouring the metal car: should be taken to keep back ; the dross from the lip of the melting-pot. A crucible containing the general quantity of 40 lb . or 50 lb . of metal can he very conreniently managed by one individual, but for larger yuantities, sometimes amounting to one hundredveight, an assistant aids in supporting the crucible, by ratching hold of the shoulder of the tongs with a grunter, an irun rod beat like a hook.

Whilst the mould is being filled, there is a rusiing or his. sing gound from the flow of the metal and the escape of the air; the effect is less violent where there are two or more passages, as in heavy pieces, and then the jet can be kept entirely full, which is desirable. Immediately after the mould is filled, there are generally small but harmless explosions of the gases, mbich escape though the seams of the mould; they ignite from ; the runners, and burn quictly; but when the metal blows, from the after esc.spe of any confined air, it makes a gurgling, butuling poise, like the boiling of water, but much louder, and it rill sometimes throw the fluid metal out of the runner in three or four separate spurts ; this effect, which mostly spoils the castings, is much tho most likely to occur with cored Fotke, and with such as are rammed in less judiciously b 4 rd , without being, like the moulds for fine castingo, subsequeutly Fell dried. The moulds are generslly opened before the castings are cold, and the founder's duty is ended when he has sarn off the ingates or ridges, and filed away the ragged edges , min fe the metal has entered the seams of the mould, small works are additionally cleaned in a rumble, or revolving cash, where they soon scrub each other clean Nearly all small brass korks are poured vertically, and the runners must bo proporioned to the size of the castinge, that they may gerve to fill the mould quickly, and supply at the top a mass of still fluid metal, to serve as a hesd of pressure for compressing that which is beneath, to increase the density and sounduess of the casling. Nost largo works in brass, and the greater part of those in iron, are moulded and poured horizontally.
The casting of figures is the most comples and difficult branch of the fuunder's art. An example of this is found in the moulding of their ornaments in relicf. The ornament, whaterer it may be-a monumental bas-relief, for instance-is firsu
modelled in relief, in clay or was, upon a flat surface. A sandflask is then placed upon the board over the model and well minmed with sand, which thus takes the impress of the model on its lover surface. A serond flask is now laid on the sunken impression, and also filled with sand, in order or take the relief impression from it. This is generally termed the cope, or back mould. The thiteknesu of the intented cast in then determined by placing an edgıng of clay around the lower flask, upon whach edging the upper one rests, thus keeping the two surfaces at the precise distance from each other that it is intended the thickness of the casting shall be In this process the mutal is economised to the greatest possible extent, as tho interior surface, or back of the casting, is an exact represontaton of the relief of the subject, and the whole is thus made as thin in every part as the strength of the metal permits. Several mo litications of the process just deseribed are also made use of, to suit the particular circumstances of the case. What we have said however, is a detail of the principle pursued in all matters of a similar nature In conclusion, we will give a compcaition for cores that may be required for difficult jobs, where it would be extremely expensive to mako a core-box for the same:-
Nake a pattern (of any material that will stand moulding from) like unto the core required Take a mould from the same in the sand, in the ordinary way, place strengthening wires from point to point, centrally; gate and close your fla-k. Then make a composition of two parts brick-dust, and one part plaster of Paris, mix with water and cast. Take it out when set, dry it, and place it in your morld warm, so that there may be no cold air in it.

NOVA S'OTLA'S COML PRUDUC'TION.

The returns receiver of the trade in coal during the nine months of th's year ending Soptember 30th, though exhibiting, as was fully exproted, a certain decrease in the sales, do not show so great a falling off as would bave been warranted by the dulness of trade. In the same period of time last yearJanuary to September-the trade in coal amonated to 541,057 tons, this yrar it has amounted to 571,889 tons, beir -a decrease of $99,10^{2}$ tons. The quantity of coal raised in the fir-t nioe months of 1973 was 703,533 tons, as againt 750,746 tons this year, showing a decrease for 1874 of 12,777 tons. It must ho remernbered, however, in comparing these figures, that there are yet three mouths to run, and that the pronpects of an improvement in the trade being very slight, it is likely that the decrease in the total returns for the year will be proportionately greater thin it shows at present. The following statement exhibits the comparative trade for the period of nine months, by countics:-

Trbe cances of this state of thinge are not far to seek. The United States, in ordinary times liberal customers, have imported thi - year 80,000 tons less than in 1873, and are not likely to import very much during this remaining quarter. Then the stock of coal has been large, and the consumptiou, reduced by the stagnation of trade, has been but small, leaving an unusually large quantity on the hands of owners. For the fame reason the demand in Montreal and Quebec bav been much lessened, and besides, the competition has veen much closer in the little trade there was. Coal in Eagland having gone down in price almost as quickly as it went up durng the panic-misnamed faminu-vessels salling from the st. Lavrence ports to En ${ }_{c}$ land, ladeu with timber, found it profitable to take return cargoes of coal, on which, carrying it even as hallast, they madea profit.- Lalyaz Chronicle, Nov 10 .

The: locomotive trade of the United States is in a bad condition. Work at the Grant Locomotive Works was, for the present, almost entirely suspended, October 17, about 700 men out of 850 employed having been discharged. Of the Russiau order, twenty-two engines have been finished and shipped, and one of the reasons assigned for the suspension is t'at owing to the clocing by ice of the port to which they are shupped, no more could be delivered antil spring.

THE BUILDINGS FOR THE (EENTENNIAI, EXHIBITION.

The Commissionners who have clarge of the arrangements for the Centenrial Exhibition, to he hold at Philndelphin in 1876, have recently given to tho publir definite details of the buildings to be crected in Fairmount Park for the purpose The structures are five in number, the Main Building, the Art Gallery, and the Machinery, Agricultural, and Horticultural Halls. We publish on page 197, from tho Scientific American, a view of the Art Gallery.

The dfain Building is to be 1,880 fect long and 464 wide, covering 20.02 acres of space. 'the whole will consist of one floor only, except in the projections and towers, where gallerles, giving additional space, will be provided, adding 145 acres to the available area. The great length of the building has rendered advisable the breaking of the roof lines by tho addition of three transepts or cross avenues. The roof is chicfly of ithe height of 70 feet from the ground, the towers at the corners being 75 feet high. The central portion, 184 fect equare, rises to an olevation aloove the rest of the building, and is surmounted by four towers 120 feet high. The central avenue will be 120 feet wide, with another, 100 feet wide, on each side of it. The passages for promenade, between the long lines of exhibited articles, will be mainly 30 feet wide.
The foundations for this structure, which promises to bo ad mirably light and convenient, as well as graceful in appearance, are to be piers of masonry, the superstructure cunsisting of wrought iron columne, with roof trusses of the same material. The columns are to be of rolled channel bars, with plates riveted to the flanges, and the roof trusses aro straight rafters, with struts and tie bars. The columns are to be 24 feet apart; and timber paneling, to the height of seven feet, is to be filled in between the outer colums. Above the paneling glass sashes are to rise to the top of the building, portions of the sashes being removable for the purpose of ventilation.
The engineers and architects of the structure are Messrs Henry Pettit, Consalting Engineer of United States Centennial Commission, and Jos \cdot ph M. Wilson.
Every product exhibited in any par of the entire Exhibition will be considered as belonging to one of the following ten departments- 1. Materials in their unwrought condition, mineral, vegetable, and animal. 2. Materials and mannfac tures, the result of oxtractive or combining processes. 3. Textile and felted fabrics. Apparel, costumes, and ornaments for the person. 4 Furnitare and manufactures of genemal use in construction and in dwelings. 5 Tools, implements, machines and processes. 6. Motors and transportation. 7. Apparatus and methods for the increase a a diffasion of knowledge. 8. Engineering, public works, arcnitecture. 9 Plastic aud graphic ards. 10. Objects illustrating efforts for the improvement of the physical, intellectual and moral condition of man.
In the main building will be located portions of all of the above departments. except No. G, which will be placed in the Machinery Hall, and No. 9, to which the Art Gallery will be especially devoted.
The departments will be arranged in parallel zones lengthwise of the building, the zones being of different wilths, according to the bulk of the products extibited in the particular department. The States and cuuntries exhibiting will be arranged in parallel zones crosswisy of the building, these zoues also being of different widths, according to the amount of space required for the exhibits of each colintry. Betweeu each department and each country will be passage ways distinctly marking the limit of each. The result of this dual system will be that any visitor or student, desiring to compare products of the same hind from different parts of the world, may do so by passing through the building lengthwise, keeping in the zone devoted to the perticular department, and any one desiring to examine only the products oxhibited by any particular country or State may do so by passing through the building crosswise, in the zone devoted to the particular conntry or State.

the art gallery

is of a highly ornate design, and is intended to bo the bes, and handsomest building yet orected on this continent for the purpose. It is to be constructed of granite, glass, and iron, and will be thoroaghly fireproot. Its dimensions are 365 feet long, 210 feet brosd, and 72 feet high, with a dome, surmonnted by a figure of Columbia, rising to 150 feet from the ground.

The Contral Hall will be 05 siet long, and tho Pavilions, one at ench end of the building, will bo 45 feet. The Parilions will bo connected to tho Contral IIall by arcades, each 60 feet long by 40 feet high.

The lighting armogemont, the most important point in the construction of an art gallery, appears to be thotoughly eff. cirnt. From the east and west sides of the Central Hall extend the galleries, each 98 feot long, 48 feet wide, nud 35 fuet in height. These galleries admit of tempornry divisions for the display of paintings. The center hall and galleries will, altogether, form one grand hall 287 feet long and 85 fect wide, capable of holding cight thousand persons, nearly twice the dimensions of the largest hall in the country. From the two galleries, doorways open into two smaller gallerics, 28 fect wide and 89 fect long. These open north and south into private apartments which connect with the pavilion rooms, forming two side galleries 210 fect long. A corridor 14 feet wide opens into a series of priv to rooms. Mr. H.J. Schwarzman is the architect, and Mir R. J. Dobbing the contractor.

neat without coals.

If there be one principle of industrial economy more firmly established, and of more universal application than another, it is that which insists on the coonomic advantages of a division of labour. In every department of industry we find the division of labour and its logical sequence, the specialisation of raanu. factures, carried out to an incredible extent and with unfailing success. Everyone is familiar with, and apprecintes the resulta of, that minute sub division of trades (apwards of a hundred in numbqr), each conining itself to the claboration of a single portiou of that wondrous complex of mechanism, and marvel of cheapness-a modern chronometer; but there seems a certain reluctance in acc pting in its entirely the proposition that, if any produc, whether material or dynamic, is in dails requ sition by a large number of individuals congregated within a suall area, their requirements will be most efficiently and economicalls supplied, by handing over the whole business of supply and manufacture to a single individual or corporation, whose whole attention can be cuncentra ed on perfecting the mesns of production and distribution. This ouce fairly stated secma, howeyer, so obvious an axiom that it is unnecessary to in stst ou it, furt er than to point out, as instances of the practicsl embodiment of this idea, the system on which water and gis are supplied, and reluse ren-oved in our towns. With the adrantages of these forms of centralisation we are now so famillar that no one would be guilty of the folly of rajecting their use aud depending on his own Isolated excrtions. It iequires an cffrrt eventr, conceive the possibility of every house holder in the metropolis, for instance, being obliged to fetch his own water (or buy it at the door), to make his own gas, and undertake tho removal of his household refuss indepen dently of his neighbours. Such a state of affairs would be considered intolerablin, and rightly so, by the present generation, since it has experienced the benefits of an arrangement which brings to, and distributes through, our houses light and rater in a constant and automatic supply, while superfivous matter is removed with a minimum of tronble an 1 inconvenience. In the matter of healing, however-a service in as universal request as a water supply-we find existing provision utterly behind the requirements of the age in every particular, and, inded. in no better condition than they were a century, nay, severai centorics, ago.
Though the home-manufacture theory has been exploded in every other department of urban social life, here it reign, supremu, and every man still may boast not only of being his own heat-manufacturer, but of teaving in each room, a separate factury in which the whole process is carried on-but at what a cost!
The ran material is indeed brought to the consumer's door, but in the most inconvenient form, and by a system of transport at once extravagant and inellicient; its solid condition rendering the pneumatic or hydraulic mothods of distribution inapplicable, so tinat, in place of being able to draw at any moment from an unfailing reservoir, a supply exactly adequate to the varying requiremeats of the individual, it is necessary to store up suticient for muny weeks' consumption, locking up capital and wasting space, while, owing to the fluctuaung character of a small consumption, one's calcalations aro
pretty sure cither to fall short of, or exceed, actual requirc-
ments.
In viow, then, of the superiority of n woll-arrangod system of pipe-distribution, as compared with the existing primitivo apparatus of coal-waggons, cellars, and scuttlos (which are in a measure necessitated by the use of a solid fuel), any fuel phich docs not admit of being so carried should have very great compensating advantages to justify its uso. The quesfion then arises, is coal so much tho best available form of fuel as to overbalance tho drawbacks of want of portability, weight, and lulk, inseparable disadvantages from which a comb 'stible gas would be freo?

If t were possible to effect the complote combustion of coal, and is sudition to utilise the whole of the heat produced, the thermal value of a fair average coal would be nearly, or quita, equal to that of any practicable substitute, tho calorific power of hydrogen being for ordinary purposes purely illusory. But it would bo Ctopian to expect ever to attain to such a result od a small scale, and evon with the special contrivances and constant attention which can be afforded only in a largo establishment, it could only be approximated to; as it is, the uso of coal in an average fireplace implies the loss of at least 50 per cent. of the total potential heat. It should be borne in mind that the heat absorbed by the products of combustion may be considered as lost for all purposes of sensible thermal effect, unless elaborate dovices be resorted to for its recorery, whence it by no means follows thoso bodies which have the highest calorific power, have a corresponding value In the scale of fuels for domestic purposes. That the theoretic calorific intensity, or sensible temperature, resulting from the combustion of coal, varies between 220 ' deg. and 2400 deg C., that of carbonic oxide ${ }^{\text {is }}$ variously reckoned at from 2100 deg. to 2800 deg. and upwards; while that of hydrogen, owing to the high specitic and latent heat of its product of combustlon, and notwithstanding its higher "calorific power," is little over 2000 deg. U.; tho best sorts of dried peat give a temperature fully equal to that of hydrogen, but wood has a much lower thermometric effect. It may bo said that these figures show coal to have as high a value as carbonic oxide, for instance, but they represent not the actual temperatures, but only the maxımum theoretical possible capabilities of the respective bodies, without making any allowance for loss, and on the assumption that the combustion takes place in the minimum of tiane. It is when these two factors of time and loss, which play an all-important part in the practical application of fuel, are taken into account that the palm must be yielded to combustible gases in preference to solids.

It may seem to some that an allowanco of 50 per cont. is an excessive estimate of the waste of a coal fire, but far from this being the case, it is probably too low a perceniage. Tho main causes of wasto are imperfect combustion, the necessity of keeping ap an excessive draught and the quantity of air required to be drawn though a coal fire to maintain its combuse thon. The loss under all these heads with a well arranged gas fire is almost nul. The loss from imperfect combustion is aue; first, to the escape of polatile hydro-carbon vapours; secondly, to a portion of the carbon being burnt only to carbonic oxide; and thirdly, to the loss in coal-dust and clinker: of a total of 80 per cent. carbon, 20 per cent. is frequently lost under the first and third of these forms. A gas such as curbonic oxide, or carbonic oxide mixed with hydrogen, would be entisely exempt from the waste arising from imperfect combustion, as, oring to the mobility of its atoms, the air has free access to every separate particle of the fuel, under conditions the most suitable to promote active chemical union. This same property of mobility allows of perfect combustion taking place Then only just so much air is passed through the fire as suffices to supply the exact quautity of oxygen necessary for combinalion with the fuel, while a coal fire requires at least double the supply of air that the chomical exigences of the fuel Fould call for, on account of the difficulty the air experiences in permeating the solid lumps of which tho firing consists. Yet a further squandering of calorio occurs in the chimney, which has to be kept at an excessive heat to enable it to draw this saperfluous bulk of air through the fire, on its way to dissipate its heat-burden in the at uosphere.

That gas produced at a distance from the furnace in which it is burnt can be substituted with the best results for the direct use of the fuel which gives rise to it, has been proved to practical demunstration by the siemens' furnace, which is heated by gases only some 40 per cent. of which are combustible.

We havo beforo us a proposal for heating towns by "pyrogon "gas, which consists of a mixture of miltrogen and carbonic oxide, three-fourths by weight of the mixture consisting of tho lattor gas. This misture is said to have a temperaturo of com. bustion of $2700 \mathrm{deg} \quad C$., and it is suggested it should be used to heat somo good radiating substance, such as fireclay, in an ordinary grate, by which means heat would bo radiated out as in the present coal fire. A fact which must always militate strongly against the use of carbonic oxide, without special precautions to provent leakage, viz., its poisonous character would probably ronder it more expedient to confine the actual combustion to a singlo apartment, trusting to nir travorsing heated pipes of earthencare (to provent tho possibility of carbonic oxide diffusing though) for the equable transmission of the heat through the house. Ono can hardly fall to epeculate on the applicability of this new pyrogen to lighting as well as heating whether by making the lime-light a commorcial possibility, or by the addition of a small proportion of a volatile oll, which would causu it to yield a light as bright as that of coal gas, at a much less cost. Such a consummation as that our light and warmth should be derived from the same source is indeed one to be devoutly wished for, and is in entire accord with the teachings of science.

The schome wo have slluded to is confessedly only tenta. tive, and its anthor, an F.R.S not unknown in the domain of practical metallurgy, will doubtless make such modifications in his process as the practical trasls about to be made may snggest.

We are chiefly concerned in pointing out in a general way the superionity of a well-selected gaseous fuel in crowded centres, and are far from adopting the defonce of any particular system. The proposal more immediately under consideration appears to us, whether rightly of wrongly to be defective in the following points. The noxious properties of carbonic oxide are ignored; the proposed method of gas generation would not produce nitrogen and carbouic oxide aloue, but in addition a not inconsiderable proportion of carbonic acid; no sufficient allowance is made for the absorption of heat during the vaporisation (or solution) of carbon during the deoxidation of the carbonic acid-how considerable this absorption may be, is evidenced by the decresse of temperature in that zone of the blast-furnace in which a similar reduction takes place; the heat of combistion is also probably overstated ; and, finally, the suggested method of regonerating the manganese by throwing tho $\mathrm{Mn}_{3} \mathrm{O}_{4}$ into water, or passing air over it, till manganic dioxide is reproduced, is, to say the least, a staitling novelty. Nevertheless, we believe tho vitality of the idea is strong cnough to surmount the defects wo have indicated, and the magnitude of the proposed revolution in practical thermics is 80 great that a satisfactory solution could hardly be hoped for except at the expense of numerous failures and disappointments, yot the importance of the subject may well reconcile one to its difficulties.

The new proposal is thus contrasted with the present system in its application to London:-
"Five millions of tons of coal (and coke) are at present carted to every man's door by means which are rude, cumbrous, inconvenient to the pablic, and involve a nerdless Waste of
rital and of labour. When arrived there, three fifthe of it totally wasted.
"Instead of this, not quite seven millions of tons of gas are conveyed by steam-power along what is in effect a railroad, not only to overy man's door, but to every man's fire-placo, and at a comparatively nominal cost.
"Every combustible particle of it, that is, two-thirds of the whole, is efficient in producing heat, which heat may be further utilised and ustributed down to its lowest unit above the mean surrounding temperature, in warmix σ and in ventilation The products of combustion, instead of poisoning the eir and darkening the skg, give nourishment and vigour to vegetation, and having by it bean in turn partially transformed, are ovolved in the oxygen of respiration, to give fresh life and vigour to man."-Iron.

Accompina to the Scientafic American, the Canadian way of measuring a tree is said 10 be as certain as it is grotesque You walk from the tree, looking at it from time to time between your knees. When youare able to see the top of a treos. in this way, your distance from thy root of the tree equals its hejght.

－1r olsiliome
OEッO Cたもに，
－ 3 －NiSCIAROF
VIEW NIIOLVINO FACR OF IHFADINO

TEE ST．GOTHARD TGNNEL．

'HIE S'J. (;OCIAARI) 'TUNNEI。

When the Mont Cenis 'fumnel was being made, the greatest interest was taken in the progress of tho work by English enginetrs, andeven the columus of the nou-scuentific juurnals abounded with notices of the undertaking. Much of this into rest was no doulit due to the circumstance that many authorities, more ur less competent, held that the dithiculties whith wonld be encountered in the constraction of the tunned would prove insurmountable. Suchanticipations, as we all knnw sow, fortunately proved groundless - the skill and inventive faculties of the engineers uverame evesy obstacle. 'lhe St liothard T'unml is, in several respects, a much more remarhable work, but nu une ventures to say that it wall nut be carried to a ancecisfal termination, and Eisplish engineers have, possibly in consequence, paid, as we thinh, too little attention to what is in all respects the most genantic tomatiling neration ewr undertahen. We propuse, therefore, to plare hifore our readers a short summary of the histury and frogress of the work, aud sume details of the system of constriction rdoptad, premising that for our data, as well as fur the drawings whi h we publish this week, we are mainly itrdelited to the linglish edition, now regularly published in Lomion, if the liecue [riverselle des Mines-is very admirable publication to which there is no purely English parallel, and of which we shall probably have more to say at another time.

The it Gothard Tumel is intended to permit the passage through the Alps of a line which shall unite the German and Swiss railway bstems with that of Italy, and so fizcilatate communication be tween the north-western portions of Europe aud Brindisi. The tunnel starts from Airolo, on the southern, or Italian side, and runs to Goscheuen, on the northern, or Swiss cide of the Alps. The total length of the work will be "fiat milis 'lht line was ut out by M. U. Gelpke, C. E. No dirert measurements could be obtained, lut the pussible error in lengtis moments to only about 2 ft . cither way. The tunnel will be approached at the Goschenen end by a rising grade of 1 in 40, on a line to be made from Altorf, on the Lake of iucerner, hy way of the valley of the lleuss. Just outside the tunuel will be a short bit of level. The line then rises at the rate of 1 in 171.8 to a point not far from the centre of the tunnel, where another short piece of level will contect the rising grale with cne falling to Airolo at the rate of 1 in 1000. Then comes a short length of level on a line now in course of construction from Airolo to Bellinzona, which will establish commoni tion with the l'icino Valley. 'The road will be donble through the tunne! and perfectly straight, with the exception of a curve 1 i chais. radius and 47573 ft . long, near the southern, or Italian end. The total length of the tunnel ; ropr- ant including the cuttings at cither end, will be la,-
'ras, or' miles 455 yards-a length greater than that of lus $: 1$ ais Tunnel $1-$ bout $1+2$ miles. The highest portion will be 378 ft. above the 1 vel of the sea. To assist the Ventilation it is proposed to construct a shaft at Andermatt, which will be about 3 fo yards decp, and will enter the tunnel ahout $3!$ kilos, or 2.17 miles, from the Gosehenen end. Our readers nate now before them all the data cequired to enable them to form an adequate idea of the precise locality and purpose of the tunnel, and we may now proceed to glance at its history before giving details of the method of coustruction employed.

On the loth of Oetober, 18:1, an internatioual association was formed to supply what is known tas the St. Gothard Company with the funds they required for the construt tion of the tunnel. The capital was fixedat $102,000,000 \mathrm{fr}$, or $\mathcal{L} 4,-$

 tion consisted of three groups, that of Germany, which found if,001, ,omo it, that of Italy, which supplied $34,000,000$ fr., and that of Switzerland, which furnished the remaining third. The groups consisted solely of bankers and fanance companies, and romong the names may be found such houses as Nothischild, Oppenheim, \&c., \&c. The final formation of the St. Gothard Company was completed in December, 18:1. I'he primary surveys had, however, been made by Mr. Gelpke as early as 18n\%. The tiual staking out of the ground -a work of great dilliculty, as may he iangined when wo state that no fower than fifteren stations were required, many of them in situations all but innccessible - was satisfactorily accomplished. Tho worl: was liegun at both ends, and tho lines met with an error
of but 4 in. in the maddle, wnich we regard as a triumphof trigonometrinal surveying, bearing in mind the difficulties to be overcome. It was finally decided that the dimensions of the tumnel should be nearly ddentical with those of the Mont Cens 'lunnel. The hemgt to the crown of the arch is to be 6 metres, or $1: 168 \mathrm{ft} . ;$ mnaimum width, 8 metres, or 2644 ft . and minmum width, $2 \pm 94 \mathrm{ft}$. Varions iystems of constracinn areadopted according to the anture of the ground.
'Ihe work were let by contract to M. Favre, of (eeneva, in the summer of $18: 2$. beven tenders were received, Uf these, two were withdrawn ; a third did not supply satisfactory information as to the system of construction the contractor propused to adopt; and of the remaining four, two were struck off the list. Unly two competitors remained - I Favre aud the Italian Company of l'ublic Works; but the latter requared nine years to make the tunnel, and M. Fiare ouly elght, and whereas the ltalian company would waly lurfeit the calition money- $2 s \leq 0,000$-lf the work was nut complete in elesen yeare, M. Favre cunsented to pay it o. as at the end of mne years. Agana, the Italian Company wanted about half a milion sterhing more than M. Favre. 'the worh began ia June, laiz, at coschenen, and at Arolo on the let of July in the eame year.

We have no intention at present of doing, more than shet.hing the history of the work, and the method of its execution. We must refer our readers to other sources of information for details of the monthly progress and the ecological features of the strata pierced. It will suffice at the moment to dessrite briefly the methods of working adopted. 'The rock to be pierced consists at the woschenen end for the most yart of a hard granitic guciss, much fissured, but trece from water. At the Airolo ath, gravel, sand, and pebbles were first met with, and then yellow limestone. Gypsum, talc, and mica-selinst werc also found; finally a dolomite. This did not last, however, and at about 286 ft. from the end a bed uf schas: was pierced, which discharged torrents of water, and was only traversed with the utmost dificulty. Our illustrations show, as we liave said, the methods adopted in dealing with the strata pierced through. It need hardly be said that the work is carried on by driling holes by machinery worked by cumpressed air, and exploding charges of dynamite in these hules. Figs. 26, 27, and 28, anucxed, show very clearly the way 10 which the holes aro disposed. Up to the present time, or, at any rate, until very recently, the drills were worked by tem. porary steam enerines which supplied the compressed air roquired; but three turbines, worked by af fall of 279 ft ., will b) erceted at Govehenen to drivo the compressers. These turb:ats are, we beleve, by Messrs. Eischer, Wyss \& Co., of Zurich, and will work to evo-horse power. At Airolo three other turbanes will be put down, which will cach work under a head of $54 t \mathrm{ft}$, to 210 -horse power. Each turbue wall actuate three Colladon compressers, supplying per minute 2258 cubic feet of air at seven atmospheres. 'lhus, in all, at least 1200 -horse pozer can be brought to bear on the works.

It woold appear that the St. Gothard Tuuncl presents magaificent opportunities for the patentees of rock dralls, every system of any promish being tried - Mchemis, Burlereh's, Dubois and I rançoss', and others, all being used with various results. About tuirty holes, a metre decp, are bored at one operation, and then charged with dynamite, and fited in the order shown in our illustration, Fig. A, the drill-carriage being withdrawn eighty or ninety yards, and defended by a shield from flying fragments of stone. Figs. $0,10,11,12$, page 200, and Figs. 14, 15,16,17, \&c., page 201, give illustrations of the progiess of the works at the n., the and south ends respectively These show the driviag o? the heading, the enlargement of the same, the turung of the masonry arch, the subsegueat excivation, aud the disin, and the final completion of the tunnel.

Fig. 1 , is at section of the tunnel in very solid rock, withont masonry lining. Fig. 2, is another section in much the same kind of rock, but it will be seen that on one side a masenrs wall has becn introduced, to make up for a deficiency in the rock. Fig. 3, is a section in solid fissured rock. The roofrs of masoury, sometim s with and sometimes without side wall, as 8hown. Fig. 4, page 200, explains itself. Fig. 5, shows a section in many reepects identical with fig. 3. The rock is solid, but fissured. Fin. G, shows the section in frable of treacherous rock, the tunnel being lined throughout. Fig. is is the section adopted in soft strata, liable to yleld to liateral pressure. Fig. 8, page 200, shows a portion of tunnel lined
with masonry. Fig. 9, is the heading. Figs. 10,11, 12and 13, on page 200, show the system on which the excavation proreeds, and explain'tremselves.
Fig ld, shows the henling timbered a, in moll rate good ground, ", in fissured rock Fig. $1: 5$ shows the lewalint enlarget, n, in moderately good ground, 6 , in fissured reek. Ith. if shows the heading enlarged, 1, in moderately gove ground, ${ }^{1}$ in insured roek Fig 1G, shows the dimburing of the whened tunnel ", and k, denoting, ground and tiesurad rouk, an before.
Fig 17 , shows the masonry of the tamal cumplete. Fis. 18, is a longitudinal section of, lig. 11. Fig 10 , is the same 8: . $;$. Fig 15 Fig 20, is a lungitudinal sectuon of Fig. 1 H . Fig 2^{4}, is a longitudinal section of Fig. 22, while Fis. 21 , is a similar section of Fig 23 Fig. 24, caphans itself. Fig. 3f page 2nt, gives a vertical section shumith the arraugement of the shot holes Fig 27, is a horizuntel risw of the same, while Fig 28, gives the face of the hoding. We may adi that the dyamite is generally aned in irua a artidice cascs.
We cannot hetter conelude this article than by the fullowing tabular statement, which shuws the promress of the works ay, to , Tanuary, 1874. We may add that sime that date thes have progresserd stradily, at, so far as wh a th ham, about the same average rate :-

Sinte of the Works on the 31st af January, 1874.

Workmen Emplyed during the past Munth.

From a recent report made to the ©wiss Federal Council Happears that, at the close of June, the contractors had combeted nearly one-seventh of the whole distauce. The progress made during July was about evenly balanced, lut the adsance on the Goschenen side was rather more mpidithan that effected on the dirolo side - Engineerng

A Frenchman, M. de la Batie, has found a means of readerong glass almost malleable, and is going to start a manufactory for the working of it. He uses a jarticular lath mhilst the glass is just on the point of fusion, by way of temperng "This operation, without renilering the glass malleable rold, inermase sits strength of resistance about furty times. A 5 -fmuc piece has been let fall from a height of two metres yron a sheet of ordinary glass thus tempered without doing it the least damaze.

incrustadion or boldeirs

Those of our realers when are emplogers of bolen-powe will nypreciate at unce the norld ut loss and trouble that is signified in the abore title. [o non-professeotal, readers, it anay scem a fmall matte that, dunag the continuous ovaporation of ordinary hard water, a zradual bard scale of calcarcous ratter is being deposited upon all the surfaces of the metal fortwenthe frame of the wre-bus and the water. But when these... latter will further consider that this seaty deposit is a most perfect nun-cunducior, they will soun apprectate the tact that its formation serivusls alle ts the economy of e-raporation. and increases the dansei jol lurnang the plates, ated hence of explosion. It in cident, then, that. to keep a boiter mamethang like proper condition, thas depusition must enther be prevented, or the builer be freguencl. cleaned out. Thes latter operation, we may remark, is no slight une, but necesistates throush stripping of the boiler, and the beale so usually so hard and no firmly atherent, that it must be chrped of whth hammer and hisel, at a conside rable expenditure of latoon nei tume. We have already mentioned thas subject in these p. es, as we colsider its importance very neat, as bearing on th. two vital prints to uscrs of boilerb-cionony and satety, and that it i much ignored.
the arrangements for preventing the deposition of these deposits by the use of boiler compositions or by preliminary heating are but comparatively little used, and in the latter case are often very dangerons to the boiler. There remam, then, the most practical alternative of using some innocuous substance which shall prevent the adhesion of the deposit as a scale on the heating surfan cs, but shall canse it to be thrown down as a mud whichcan eisily be got rid of through the blowoff pipe. We have already recommended such a substance an glycerine-practically introduced by our mgencous nemghtaurs in France-and we hope that some of our readers may have practically benefited therefrom. We are pleased to the able again to bring before our readers another very iugenious an.t simple remedy against this bugbrar.

One of the engineers on boad the tambatlanth, steamet, Samt Laurent, accidentally left in the inside of his buhters an ingot of zinc before his departure from Havre. Upon his return, preceeding to examine his boilers and rememberiug has forgotten ingot of zinc, what was his surprise to find no scaly deposit whatever on the heating surface uf the boiler, and further no trace of the zinc ingot. Thinhing, on cousideration, that the \%ine might have prevented the formation of the seale, he again placed in the inside of the boiler an lagot of zame weighing 8 lilics. On after examination, he found the phenomenon repeated, the ainc disappearing, and no scale being formed, the orly residue being a black mulat the bottom of the boter, ensily washed out. This incident was repeated by the user of a hoiler of 20 horse-power at Angers, who used the water of the Loire. He then inserted some itilogrammes of zinc turnings. and found that the disalpearance of the zinc was in this case as eniectual as in the case of the salt water, in preventing the formation of any scale on the heating surfaces.

It only then remains to give some feasible reason for this most valuable phenomenon, and we think that it is not very dificult to tind. The two metals, zinc and iron, leting in contact with one another, would constitute the two poles of a battery, being positivo and negative to one another. The hot water in which they are immersed would almaps contan sulhcient acid to set up chemical action, and we have than the boiler tranformed into anignatic jule, completely carculated by electric currents. Now it has been detmitely proved lis Mr. Ficld that electricit! is an adminablo agent to prevent the dreposition of a scaly deposit or to recoove it after deposition. We have thus a very simple explanation of the phenomenon. which is identical in its character to the action of a zine plate let into the copper of ships' bottoms to prevent the adhesion of barmacles

An arrangement which has been nearly completed, has in view the carriage of the mails between the large cities of the Uimted states in rapid trains to be used for no other purpose. and to which the freight and passenger trafic would alike: give way. liy this neans it is expected that letters will low carried betseca Ner Jork and Clicago in 24 hours rommunication with Cleveland, Cincindati, \&c., would alio be greatly accelerated.

PRODLUCTS OF PORCELAIN FACRORY, SEVRES.

Mechanics Magazine．

MONTHE：A\＆，oCTUBIER， 1874.

If．s．t＇s rit．iTION：：
siclleis heir－rutthor mathlne．．．．．．．．．．．． 193 I！ti Art－gallery fur Cell． texnlat Exhlbition．．． 197 The Sit．（iothard tuu－ nel．．．．．．．．．．．．．．．．．．．．．．．．200 20
lisxincts ut porcelaln fatetory，Sivie．．．．．．．．．．？
Anmufticture of（ina． bowder ．．．．．．．．．．．．．．．．．．．．．．．．．20

Transponamg key．board for wano．．．．．．．．．．．．．．．．．．． Walker＇s lmatent rollios curds．
Wire thainway．．．．．．．．．21：：21： ITu＂new Wimbledon tal＇get．．．．．．．．．．．．．．．．．．．．．．．．． Sivlmmfug bath．．．．．．．．． 217 dutomatic gasesaver．．．．． 20 bolt and Stud－cnd cut－ ter leybant artllery ser－
vice．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2
Show－plow．．．．．．．．．．．．．．．．．．．．．．．281
Intand of liodrigucz．．．．．．：20i
（＇oNrIこざく：
Scller＂gear－cutthg mathme．．．．．．．．．．．．．．．．．．．．1！1
Casthm mixed metal．．． 191
（＇ontl production，Novit icolla．．
centennial bxinlultion．
I＇lilladelpbla．．．．．．．．．．．．．．．．．
108
Heat withoit coal．．．．．．．．．．．I
St．Gothurd tumnel．．．．．．．．．． 202
Incrustation of bollers．．．．． $00: 3$
Publle baths．．．．．．．．．．．．．．．．．．．． 200
Swlminlag apparntus．．．．． 210
Transposing key－boart
for platio．．．．．．．．．．．．．．．．．．．．．．． 210
sievres．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 207
Arallery Elephant．．．．．．．．．． 207 7
Eu\＆uOn Canatense．．．．．．．．．．Lbt
Sialt beds la IIaron and
1sruce．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Manufacture and storage
of gunpovrder．．．．．．．．．．．．．．． 311
Walker＇s patent rollhag＇ Cars． －

Pruclples of shop mani．
pulatton．．．．．．．．．．．．．．．．．．．．．．．
Watch－makimg in swit． zerland．
Wire tramway．．．．．．．．．．．．．．
Sever has．．．．．．．．．．．．．．．．．．．．．．．．．．
IRazors．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Tho new Wimbiedon rifle
tarectu．．．．．．．．．．．．．．．．．．．．．．．．． 215
Automatle gas saver．．．．．． 215
bolt and Stud－ond cutter． 210
Mifscellaneous．．．．．．．．．．．．．．．．．：219
How to buld a snow－plow 2gI
Etching Ircn．．．．．．．．．．．．．．．．．．9：1
Canada．．．．．．
Caughnawasit ship canal $2:$

PUBLIC BaTHS．

We have，already，alluded to the great need，in Montreal， of public baths．＇I＇ho immense amount of sickness which prevails in the city has been referred to from our pulpits and our preachers have called upon us to wash and be clean．This is not so edty，expecially in winter，for a part of our population whowe houses are not furnished with baths．Even our more wealthy population rould，we are sure，however，delight in the poscession of such a public swimming bath as that wo illustrate ou page 217，and which has recently been erected for the Commissioners of the st．Marglebone Vestry，London， Eugland．

The length of the bath－room is 85 ft ．，and the width 41 ft ．， the leight being 28 ft ．from the platform round the bath to the ayes of the roof．＇The dressing－boxes，averaging 4 ft .3 in ． long，atud 3 ft 6 in ．wide，are contained along the sides of the room in recessed arched openings．All the fittings of these boxes are of ebony，and the metal work is electro plated．The artading is continued along the end walls，but the rece－ses here are filled in witi ornamental tile work．The piers of the arches have cach three panels，fillellin with blue hand－painted tiles，with wariously designed repeesentations of birds，fishes， and water－fowl．The roof is supported by cast－iron semi－ elliptic ribs，ornamented with gilded scroll work panels．
The size of the bath itself is 26 ft ．by 73 ft ，and the depth of water ： ft .6 im ．，shelving down to 6 ft ．The spring diving－ board is 4 th aloove the water，but there 18 another diviug－ boand 5 ft ．higher than this our．
The boltom and sides of the bath are covered with gla\％ed tiling，in variously desigued patierns，and the hand－panted tilo boricr above the water－hue， 21 in ．wide，represents the ap－ pearance of an nquarium，with fishesand rockwork．

The whole of the interior of the building is decorated with pompeiian ornument．
It would be hard to overestimate the hygienic value of such a bath in Montreal in our winter season，and we commend thm action of the vestrymen of St．Narylebone to the notice on our cily fathers．

Consilerable interest has Intely been excited by the report of the successful trial of a new swimming apparatus，the in－ vention of Mr．Merriman，an American citizen．Tho perform． ance we allude to was that of Captain Paul Boynton who cm． barked from New York in the＂Queen＂for Quecustown．It is stated that when about 200 miles from the American cuast be wished to be left adrift with his apparatus to take the chance of being picked up by somo inward bound ship．＇This proposition the captain，in view if the inclement season，is said to have wisely refused．Captain Boynton was，howcyer， when about 7 or 8 miles from the coast of Ireland allowed to ＇step overboard，and he suce tded in landing，by means of his apparatus，in spite of a heavy gale which was blowing at the i time，although he had to travel as much as fifteen or tiventy miles on accennt of the wind and tide．

Our illustration from the Illustrated London News，on page 20s，shows him exhibiting his apparatus at Queenstown，when he remained two hours in the water，during which time be ate and drank and fired off rockete，sc．His clothes on law！ ing were perfectly dry and he was not exhusted．The appio ratus is a completo body costume mauufactured chic：ly ot india－rubber，in two pieces which aro united at the waist．The pantalocns include covering for the feet，with stroug soles， drawu on over the wearer＇s ordinary dress，usually of blue flannel，and kept in position by strong suspenders passed over the shoulders and buekled to the inside of the waist．The waist is fitted witn a steel ridged hoop，which is a protection to the wearer＇s person and furnishes a water－tight joint tu the upper portion of the dress，which is drawn down to meet it． This upper garment is a jacket and head－piece，with gloves for the hands，all in ono piece．At the waist its clastic material is strained tightly over the hoop of jthe pantaloons，so as to cxclude the water and keep in the air，and its adjustment is preserved by another belt or strap buckied over the joinins It hangs loosely all over the person，except at the hands and feet；but in a few minutes，by blowiog through the fine tuhes attached to the outside of its different parts，air is introduced into the chambers，which lio britween the outer and innu skin of the costume When inflated the apparatus will sustan in the water a seight of 300 llbs ．in addition to the weight of the wearer．The latter can maintain himself in any position he chooses in the water either erect or recumbent，when cruct the waist belt is even with the water line．A store of provi－ sions is carried，sufficient for ten days，in a water－tight bag which thoats along－side or is towed by a string．Tbis bag which is also provided with air chambers contains，in addition to food，a small lamp with bull＇s eye，a loug sheath－knife，an axe and perhapsa book or two．The means of propulsion is a small double bladed paddle to which if wished a small sail can be rigged．

A very important art of the invention is the arrangement of the air chambers so that in casea holo should be made and water admitted to any one or even two sets，the apparatus would still keep the wearer afloat as the other chamilers beling unconnerted with these former ones would still contan a consideralle quantity of ：ir．Tho invention is consudered a grent success．

It is no casy matter to transpose at sight and play piano nuaic. Only the most accomplished accompanists and skilful musicians are able, when an accompanimont is at all complicated, to pny it at sight, transposing it into the koy suitable to the voice of the singer. Tho overcome this difficulty pianos have long since been constructed whose key-board could be altered one or two half tones. This, however, was found not Le sufticieut aud, moreover, this arrangement of the key-board was found incompatible with precision in the mechanism and colidity in the instrument. A now means of overcoming the dificulty has been devised by Mr. Wolf, of Messrs. Pleyel, Wolfi s Co. He has inventce a detachablo key-board (sec Fig. page 209), which can be easily applied to the piano over its own key-board, and which being movable over the keys of the latter permits of transposition into all the keys of the gamut. The music may then bo read and played on the upper key-board as written, the lower one produces it in any bey whatever according to the position of the upper keyboard. The invention was by no means ar casy one to complete as any one will realize who is acquainted with the manner in which the different intervals of tones and half tones occur in the different scales. In spite of this, however, the invention is stated to be perfect in its results and, what is of great importance also, to be neither cumbersome nor difficult of application to ordinary pianos.

SAVMES.

At the recent exbibition of the products of the French national manufactures the exhibits from the porcelain factory of Sivres showed that the high position held so long by the French in this art, in which they are ceally unrivalled, is not falling off, but year by year becoming higher and higher. This progress moreover is not merely industrial but also artistic. One of the most important improvements of late has been the perfecting of new decorative processes whinch aro now called in to aid the brush of the painter, hitherto almost the only decorative instrument employed.

The first of these processes is called pite sur pite, crust over crust and depends upon the partial transparency gained by the white crust when exposed to high temperature. This white crust is placed in relief over a coloured base, and, in proportion to the thickness of the crust, very varied and beautiful effects are produced. The second process consists in the use of metallic oxides which are capable of resisling the high temperature of the porcelain oven. In this latter case the artist is at once a painter and a sculptor and produces his effects either by colouring a flat surface or hy the use of relief. These two scientific processes are said to have enabled the artists to produce some new and very striking effects. Nuch credit is due to those in charge of the factory for having in the recent troublous times, and in spit of a diminished grant from Government, not only held th... uwn, but actually made marked progress.

ARTILLERY ELEPIANTS.

The power of adaptation to circumstances is one of the most remarkable characteristics of the Anglo-Saxon race, and owo without rhich that race could never have attained the position it now holds as the civilizing race par excellence. Our illustration on page 221, of the employment of clephants in the artillery servico in British India is a now exemplification of this power of adaptation. The drawing is from a photograph by diajor Harcourt who commands the elephant battery
stationed at (iwalior. 'J'ho elephants are said to be more suitable to the service than borses in that climate and es. pecinlly so in certain localities. 'lhey are procured by the Government in Ceylon, in the north of Assam, in the jungles east of Bengal and in the forests at the foot of the Ifimalayas, at a cost of about $\$ 500$ cach. A central depot of supply called a Khedda lias been established at Dacca.

FUR'THEH RESEARCHES ON FOZOUN CANAOENSE.

Dr Carpenter, in tino courso of a lengthoned adde ess at the recent meeting of the British Association, contended that the bypothesis of the foraminiferal origin of Enzoo: Ceretchense entirely accorded with the features alike of the general and of the minute structure of the best preserved specimens of this body, and that it is the only hypothesis which fits all the facts of the case ; whilst the bypothesis of subsequent metamorphic change, which has every probability to recommend it, fully accounts for all the appearances on which the anti- Eozoonists rely as evidence of its mineral origin, which, in tho face of the new evidence he adduced, was to his mind utterly " unthink. able." lintil these facts shall have been disproved by the examination of the specimens which he was realy to submit to any or all of his opponents, he must claim to withdraw from a controversy which cannot bu carried further to any advantage without a " comparison of actual specimens." Whilst he adinitted to the full every evidence of min+ralisation adduced ly Professors King and Rowney (of Galway), they did not admit the evidence of organic structure which they had not seen, but which he had expressed his willingness to place before them, with the parallelisms presented by recent foramtnifera. If was endeavouring to engage his Canadian associates in the preparation of a joint monowraph on Eozona Canudense, to be offered to the Palicontographical Society, with a request that before determining either to accept ot to dechue it, the council would appoint a committee of "experts," qua. lified by their knowledge of micro-palitontology and micromineralogy to judge whether what they held to be organic structure could be possibly regarded as the product of any kind of physical or chemical action.

'IIE SAL'L BEDS IN EUHON ASD BRUCE.

A visitor to the Suaforth salt wells writes as follows: - A very thick bed of rock salt seems to underlit this whole section of country. The wells are bored to the depth of ten or twenty hundred feet; the water from the springs that are penctrated in the downward passage is allowed to flow down upon the bed, and having the salt in solution is agan pumped up into the reservoirs. Such wells are put down at Clinton and Goderich and Kil,cardine. In some cases the salt rock itself has heen penetrated about 100 feet, and not yet pierced entirely through. 'I'he stratum of this wonderful thickness seems to extend many miles east and west, and to have a considerable breadth north aud south, so as to indicate an inexhaustible supply of this great preservative.

At Scaforth there are only three wells, but they continually supply eight huge evaporating establishments. These are wooden enclosures from 120 to 150 feet in dimension. They have shallow pans from 20 to 30 feet broad, runnong their eatire longth, in which the brine is run from tanks to the depth of 6 or 8 inches. Here tho cvaporation is effected either by furnaces under the pans, which are covered, or by steam pipes passing through the water in them. Whe salt falls to the Dottom as the evaporation proceeds, and is then thrown into great piles in the drying and packing houses, where one may sec heaps of salt, reminding one of February snow banks.

Slow evaporation produces a coarse salt; and quick, a fince article. For our table salt the coarser product is dried in a heated rolling cylinder, and then ground lihe flour with a stono and hopper. In the room in which this is done the air is laden with a salt dust which one may tasto readilg.

The Seaforth wells producedabout 120, , 00 barrels of salt last year ; this year it is expected they will produce about 150,000 . The Goderich, Clintou and Kincardine works are also sending out their hundreds of thousands. The damaged product 18 nsed asa fertilizer, and soon the whole comtry can havo it for such a purposc.

exhibition of swimming apparatus in cork harbour.

WALKER'S PATENT ROLLING CARS.

THE MANUFACTURE AND STORAGE OF GUN. POWDER.
The terriblo gunpowder explosion which occurred lately in Londou on the Regenl's canal has excited considerable interest in the subject of the manufncture and transport of an article so terrible in its power. An idea of the principal processes in its manufacture will be readily gained from our illustration on page 205, for which we aro indebted to the London Graphic.

Gunpowder is composed of three ingredients, charcoal, sulphur, and Ealpetre, incorporated with each other in the relativo proportion of about 13, 11, and 76, in a powdered state. Great care has to bo exercised in obtaining the right kind of charcoal, as also in purifying the sulphur. - "Giving up Matches at the Entrance "explains itself.-Our next illustration shows the grinding of the sulphur and the charcoal, which are reduced to a tino powder. This is carefully sifted into a"dusting reel" to remove any vestiges of grit or impurity which might otherwise find their way into the powder, and cause an accident in the course of the subsequent stages of the manufacture. Saltpetre, also, when not refined on the premises, is subjected to the same process. - Our next sketch shows the "Incorporating Mills," where the composition, having besn roughly mised in the proper proportions, is incorporated by being ground, in a wet state, uader edge runners, ouch weighing from four to six tons. This grinding is continued for a longer or shorter time, according to the quality of the gunpowder to be produced. This process is somewhat dangerous, and it is this which most frequently causes those minor explosions to the sound of which all persons resiaing near gunpowder mills are more or less accustomed. The powder thus completely pulverised leaves the mill in small lumps, being too friable to be conveniently granulated, it is thercfore taken to the "Hydraulic Press" and pressed between copper sheets by hydraulic power until it is sufficiently hard to bear the granulating process without crambling to dust.Next we come to the "Corning" or "Granulating House," where the cakes of powder from the hydraulic press are broken into grains by being passed between brass rollers, the grains being sorted into different sizes by falling over sieves which are set at a pretty steep incline, and kept shaking in order to free their meshes from the grains. -In our nest illustration we are still in tie "Corning "Honse, where "Hand Sifting" is going on. In cases where it is desirable to obtain a very carefully sized powder, the grains are again sifted, this time by hand, in circular sioves placed on a frame fixed to a revolving shaft having a cranh at the point where it passes through the frame. - The next process is the "Glazing," or giving a polish to the grains, by causing them to rovolve for some hours in clused barrels containing three or four cwt. each, a small quantity of black lead being added when a very high degree of polish is requited, as in tho case of blasting powder, which is intended to be used in damp localities. After being polished the powderis dried in a stove, warmed be steam or hot water pipes. The final process before weighing the powder into barrels is the "Dusting," or removing any fine particles of powder which may still adhere t the surface of the grains. This is accomplished by passing the powder over sloping sieves if "large," or through hollow cloth cylinders if "small grain."-In the Packing House, the powder is weighed into parcels under five pounds cach, and packed into tin canisters for the "sporting " trade. - The "Expense Magazine" is a store-house for gunpowder before it has undergone the final process, if there is any reason to delay the completion of the manufacture. It is built in the water, and is provided with a lightning conductor. - The "Charge House" is also surrounded with water, and has a water tank on the roof. Here the-finished powder is stored in bags on shelves, about a foot from the ground. So much for the manafacture of gunpowder, but we may add that all pecple connected with the works, and any one entering them, have to be "shed" with large leather shoes, with nails of copper. lest a spark from an unwary heel might fire the powder-charged air. All the bearings of the machinery are also of copper. As regards the transport of powder nauch has been said of late respecting the terrible and culpable negligence of Canal and Railway Companies, who treat it with the same nonchalance they would display towards barrels of pickled pork. At these works, however, the utmost precautions are taken, the whole internal carriage, from the time the powder leaves the in-
corporating milla until it is ready to bs sent away, is condoct. ed by bargex, each sufficiently small to be propelled by ore man with a punt pole at a speed of about two miles an hoor. These boats are, of course, kept entirely for powder work, For tho shipping trado the powder has to bo carted to of spet is Dartford Creek, not far from its entrnnce to tho Thames it is thero transforred to barges which proceed to the spots is ise Thames where the authorities permit powder to lo shupeed. For the home trade the powder is carted direct from Dartiurd to the railway or canal which will carry it to its destioation We may conclude our remarks by stating that accordigg to law, it is forbiddon to carry more than 25 lbs . by land, ut 4 :" lbs. by water at the same time, and that any one smuhiog es board a vessel laden with porder is subject to a ham of w. Illustrations-1. Giving up our matches at entrance. 2 .as. phur grinding. 3. Incorporating mills. 4. Hydraulh presa 5. and 6. Corning house. 7. Shod for the occasion. oblat. ing houso. 9. Chargo houso. 10. Expense magazine.

WALKER'S PATENT ROLLING OARS

The revolving cylinders invented by Mr. Walker for brog. ing down cheaply the produce of a country to its seapurs have been already introduced to public notice, and we nor supply from Iron on page 209, an illustrative figure of the ap paratus, with an ingenous adaptation, enabling it to pass s break of gauge without points or crossings, or even, af atc + sary, without stopping the trains.
The rolling cars are cylindrical, and made of boller-pate iron, with a covered opening for loading, \&c. They as stiffened at the centres of their ends, in which small axless as fitted; they may be further strengthened by angle or 1 .los riveted to them. Theso cylinders may be divided into tro partsby a horizontal diaphragm, in which case a coverd opening in the cglinder will be required for each compart ment. Around the outside of the cylinders, at the required gauges, metal riugs, called "tire-rings," are tightiy bited These tire-rings are similar in section to the tire of a locoma tive-engine wheel, perform the duty of ondinary wheels, $x=1$ ran upon the rails, passing with perfect ease and eafetg hoב one gauge ot railway to another and different gauge withoa stopping or any adventitious aid, as will be clearly uade. stood on inspecting the engraving.

Mr. Walker proposes to run his roll:ng cars in pairs, and cessequently mounts two of them in a light framing, whuh is supported and carried by the axles of the cars.
The cylindrical car and its load, beiug practically one rolltr; body upon the rails, a comparatively small engioe will be sufficient to conves trains composed of them to the cuast. The cars can also bo fitted with self-actiag brahes, to prevent then ranning back down inclines. They may be made of aty reasonable size, according to the character of the prodes to be carried, and, when made water-tight, may bo bentecially employed for the conveyance of water in seasonsd drought.

The principal object in this invention is to propide te means for the easy, economical, and safe conveyance of ts: general goods and produce of large and thinly-popolater countries, such as India, to the ports of shipment. As thet cars require neither wheels, axles (to carry the carriages an their loads), springs, nor tarpaulings, the cost of outitim maintenance is redaced to a minimum. Goods and proviu: may be thus conveyed for any distance without risk from na or fire, giving the additioual advantage of reducing the cus of insurance. The lightness oi this furm of rollag-stuki also an evident adrantage in reducing the tear and wead the hue. The invention has been very favourably cunsidead by the Government authorities of In lia, where it is hately come into extensive uso.

The engraving shows the general arrangement of the ril at the point of junction of two railways of different gacge The sleepers are grooved true to gauge by suitable macharef and afterwards creosoted when desired. The rails, ptid are fitted therein, are formed of timber cased with rollediace and are farther secured to the slecpers by pins or bolts.

A Corabspondent of the Scientific Amertcan eags. I bin run a piece of machinery in rawhide buxes for fouttecn fers without oil, it is good yet, and runs at 4500 per minute I p^{s}, it in while soft, and let it remain until dry.

PRINCIPLES OF SHOP MANIPULA'TION FUR EN. GINEERING APPRENTICES.

By J. Richards, London.

belts for transmitting powna.
The traction of belts upon pulleys, like that of locomotive wheels upon railways, being incapable of demonstration except by experience, hindred for a long tlme the introduction of belts as a means of transmitting motion and power. I mention motion separately because with many kinds of machinery that involve bigh speed, such as wood machines, the transmission of rapid movement must be considered it well as power, and it is only by means of belts that such high speeds may be communicated from one shaft to another ; so that at least in practice, belts alone are at this time employed for high speeds.

The first principle I will point out in regard to belts, distinguishing them from shafts as a means of transmitting power, is that the power is communicated by means of tensile inttead of torsional strain, the power during its transmission being represented in the difference of tension between the driving and the slack sides of the belts.

In the case of shafts, their length, or the distance to which they may be extended in transmitting power, is limited by tor sional deflection, and as this torsional strain is avoided with belts, we may conclude that, unless there are other disq ualifying conditions, belts are better than shafts for transmitting power through long distances.

Belts suffer resistance from the air and from the friction in the bearings of supporting pulleys, which are necessary in long horizontal belts. With these exceptions they are capable of moving at a high rate of speed and transmitting power without appreciable loss.

Following this proposition into modern engineering practice, we find how experience has gradually conformed to what these properties in belts would suggest ; wire and other ropes with a diminished cross section to avoid air friction, and allowed to droop in low curves to avoid supporting pulleys, aro now commonly employed for transmitting power through long distances. This system has been very successfully carried out in Germany and America, in some cases for distributing power in large manufacturing establishments

Belts, among which are included all fexible bands, do not afford the facilities for taking off power at differents poinis that sbafts do, but have advantages in transmitting power to portable machinery, or, in other words, when the power is to be taken off at movable points, as in the case of travelling cranes, hoists, and so on.

An interesting example in the use of belts for communicating power to movable machinery is furnished in the travelling cranes of Mr. Ramsbottom, in the shops of the London and North-Western Railway, at Crewe, and at other works, where powerful travelling cranes receive both the lifting and traversing power by means of a cotton rope not more than lin. in diameter, which moves at a high velocity, the motion being reduced by means of tangent wheels and gearing to attain the force required in lifting heavy loads. In looking at this me. chanism, those who had not their conceptions based on a true knowledge of power and the relations between power and speed, would see, in the effect of this small cotton rope, something marvellous.

Considered as means for transmitting power, the contrast as to advantages and disadvantages lies especially between belts and gearing instead of between belts and shafts. It is true in extreme cases, such as that cited at Crewe, or in conveying water power from inaccessible places through long distances, and so on, the comparison lies between belts and shafts, but for ordinary practice, in three cases out four, the problem as to mechanism for conveying power is between belts and gearing.

If experience in the use of belts was thorough, as it is in the case of gearing, and if the quality of belts did not form an im. portant part in the estimstes, there would not be much difti. culty in determiuing where belts should be employed and where gearing would be preferable.

Belts are continually taking the place of gearing, even in cases where they have been until very recently thought inadmissible ; at least one of the largest rolling mills in Pittsburg, Pennsylvania, except a singlr pair of spur wheels as the last movers at each train of rolls, is driven by belts throughout.

Leaving out the matter of a positive relative movement between shafts, which belts as a means of transmitting power can-
not insure, there are the following conditions that must be considered in determining whether belts or other means should be employed in transmitting power :

1. The distance to which the power must be carried. 2. The speed at which tha transmitting machinery must move. 3. The course or direction of transmission, whether in straight lines or at angles. 4. Durability and the cost of construction. 5. The loss of power during transmision. 6. Noise, vibration, and jar.
In every case where there can be a question as to whether gearing shafts or belts will be the best means of transmitting power, the several conditions named will furnish a solution if properly investigated. Speed, noise, or angles may become determinative conditions, and are such in a large number of cases ; first cost and loss of power are generally secondary conditions.

Applying these tests to cases where belts, shafts, or wheels may be employed, and carefully considering the special conditions of any case, the apprentice willsoon find himself in possession of knowledge to guide him in his own plans and enable him to judge of the correctness of examples that come under his notice.

It is never enough to know that any piece of work is"generally constructed in some particular manner, or that such a proposition is generally accepted as being correct; nothing is learned, in the true sense, until the reasons for it are understood, and it is by no means sulticient to know from observation alone that belts are best for high speeds, that gearing is best to form angles in transmitting powor, and that belts produce less jar and noise; the reasons for these things and the principles that lie at the bottom must be reached before it can be assumed that the subject is understood.
(To be continued.)

WATCH-MAKING IN SWITZERLAND.

Horological industry has grown to extraordinary dimensions in Switzerland, and the Journal de Geneve supplies the following statistics:-In the four cantons of Neuciâtel, Berne, Vaud, and Geneva more than 25,200 men and 12,700 women are employed in the various branches of the business, of whom 30,600 belong to Neuchatel and Berne. The trade has grown of late most rapidly in Berne, where at present half a million of common watches are produced annually, their value being set down at an average of forty francs each, making a total of $\boldsymbol{f} 800,000$. In the canton of Geneva the number made annually does not exceed 150,000 , but nearly all of them are in gold cases, and ornamental, so that the total value is about the same as the half million produced in Berne. Vaud makes about the same number as Geneva; the movements are generally well finished, but many of them are exported without cases; the value is considered to average about 55 francs, giving a total of $\pm 320,000$. The same canton also produces about $80,000 \mathrm{mu}$ sical boxes of the value of $£ 80,000$. One-half of the whole of the watches made in Switzerland are produced in Neuchâtel, and, in value, 35 per cent. of the whole, or $£ 1,400,000$ per annum. The total number and value of watches produced is given as follows :-Switzerland, $1,600,000$ of the approximative value of $£ 3,520,000$; France, 300,000 , value $£ 660,300$; England, 200,000 value $£ 640,000$; and the United States of America, 100,000 valued at $£ 300,000$. It will be observed from the above tigures that while the average value of Swiss watches is about 48. 6d. each those of France reach an average of 44s., those of England 68s., and those of America 60s. The fine balancespring of a watch is said to furnish the most remarkable example of the increase of the value of a raw material by the application of skill. It would be curious to know the cost of the materials employed to produce the $2,200,000$ watches of the four countries quoted, of the approximate value of $£ 4,800,000$. Still more carious would be the relative value of a first-rate chronometer, and the materials with which it is produced.

Galignani states that the French Stamp-office has just pur chased the secret of the composition of an ink absolutely indelible, and which resists the strength of all known reagents Owing to that discovery, it will be able to put an end to the numerous frauds which are constantly committed to the prejudice of the Treasury, and which consist in restoring to stamped paper already used its original purity. The annual loss to the revenue on that head is calculated at $600,000 \mathrm{f}$. in the Department of the Seine alone.

 8 x Trimin

WIAE TRAJWAY IN NORWAY.

Sang valuablo iron mines aro at present either worked to a very small extent, or even left unworked, owing to their being placed at such inaccessible spots as to preclu to tho possibility of cronomically transportinz the ore to a port of thipment. Frequent examples of such miner are to be found on the const of Norway situnted high up amongst the mountains, which tower aboze the numerous fiords which indent its seaboard. The only approach to these miues consists of a rugged and zig-zag road quite unlit for the carriage of any large quantity of mineral, nud owing to the extrome steepness of the mountain side, often leading a circutt of many miles to reach n spot which is lees than half a milo distant in a straight line. To accommodate such cases an arrangenent of wire sope incline has been designed and successfully worked, as shown in the engravings from E"nginrering, on pages 212, and 213 It consists of two steel ropes of about 40 tous breaking struin fixed at the mines, and stretching direct to the small pier at the foot of the mountain, rpanning a distance of 750 yards without support. On it are run two cages with small grooved wheels, in which are placed about 12 cwt . of iron ore, the fixed ropes being kept in tension by means of weight boxes at the boltom. The loaded cage is made to draw up the light one by means of a light steel rope, which passes round suitable brake sheuves ot the mine, and by which the speed of the descending load is governet. On arriving at the bottom, the rare is discharged into n large truck ready to receive the orr, which when full is in its turn discharged into the slip to ${ }^{\text {. }}$ Inaled. The light cage has meantime arrived at the top, and being filled is allowed to descend, and to drav the emptied cage up. The incling is anangle of 65 deg., and the speed at which the cages aro run is about 15 to 20 miles per hour. By this means about 100 tons per ten hours aro t:ansported at a very low cost, the only expense being the men required to werk it, namely, about three at the top and two at the bottom The incline illustrated was mado by the Wire Tramway Company, (Limited), from tho designs and under the superintendence of their engincer, Mr. W. T. H. Carrington, for some iron mines situated near Aalsund, which are the property of Messrs. Adamson \& Co., of Ioondon. The work was carried out on the spot by Mr. H. Dunn, one of the Company's assistant engincers.
By the application of such inclines, which from their simplicity are of small expense, it appears probable that many valuatle mines, at pecsent unvorked, could be utilised and their products brought to market. Tramways on tho system of the company are now being crected in many parts of thearorld, one having lately been opened at Llanelly in South Wales for the carringe of coal, and at Leitrim for a similar purpose, the latter working on an incline of 1 in 3

SEWER GAS.

The following letter, bearing the signature 'M.D.," has appearcd in a prominent position and type in tho Lundon Times:-
My own personal experience and the letters which have from time to time appeard in the Times prove to me that the modes of cxcluding sewtr gas from our houses are still very imper. fectly understood by the public, by the majority, I fuar, of builiters, and by not a few house surveyors and cngineers. Sewer gas finds its way into a house by one or more of fivedis. tinct kinds of channels.-

1. Sewergas very frequently cuters a house through the pipes which carry of r r fu-e water, for example, housemaids' sinks, butlers' pantry sinke, baths.

As a rule, the pipes from these places are carried directly in. to the house-drain The pipes are trapped where they enter the drain, and the traps when of good construction, well fised, and new, completrly shut out selurr gases from the house, the dirty water passes into the sewer, but no gas can pass back into the house. But traps are made of metal, and metal neare, and when the metal is worn the trap lets the water flow into the drain, but no longer beeps back the sewer gas. The pipe from the sink or bath, when the trap is out of order, con. Fers sewer gas into the house, and the defect in the trap is frequently not discorered till serious illness, due to sewer gas pnisoniug, has ralled attention to the "state of the drains.
It is casy to prevent the entrance into a house of sewer gas
| through these pipes. The pipes which carry off refuse wates should terminate, not in a drain, but in the open nir io London houses thoy may pour the water directly into the area I had constant trouble from offensive odours an my own ho ise and was frequentiy put to much trouble and expense for nim traps, the removal of area flagstonce to ascortain if trapa, al. rendy existing, were effective, \&ec., till I had, at a cost of almos 30s. ouly, five plpes, which earried refuse water from the howe, cut off from all communication with the drain, and made th terminate in the nearest areas. I thus did way for ever with five channels through which, if by accident or wear a trap wa defective, sewer gas could onter my house, and obviated the at. noyanco and expense which recurred overy timo a trap was even suspected of being defective.
2. Sewer gas may enter a house through the overflow pipw of the cistern.

Every cistern has a pipe to couvey away tho water whirh, if the cock of the cistern wero out of order, would flood the hovie as often as the water came into the cistera.

This overflow pipe of the cistern is frequently made to opes into the soil pipe of the nearest water-closet-i.e., into a pife flled with sewer gas.

The reflux of the sever gas from the soil pipe i.ito theorer. flow pipe of the cistern is, the builders say, prevented by a brod in the pipe filled with water. So long as the water in this siphon bend is sufficient in quantity, and frequentlg renewed, it forms an effective trap, but the water in the bend may cra. porate or it may become saturated rith rever gas from the soil pipe, and when so saturated it will give off from the cie tern eud as much gas as it receives at the soil pipe end, aod fo sewer gas be disseminated in the house and enter into the water of the cistern-water which is used frequently for drinting purposes, filling water bottles for the toilet, \&c.

The overflow pipes of all cisterns shonld terminate in the open nir.
3. In towns the water-closets are at the back of the house and the main sewer runs down the centre of the strect in froat c : the house. The consequencers that a drain has to be made under the house from back to front.

Injary to the walls of this draid, may result from accume lated sewer gas, and the escape of sewer gas from the dran through any aperture (accidental or other) in the drain will ba In proportion for the pressare of the sewer gas on the walls of tha drain. To prevent this pressure the drain should be rentr. lated-i.e., a pipe should be carried from the drain up tbe back of the house to a little belowithe level of the chimney poti.
4. A common practice is to make one pipe to serve the dorble purpose of ventilating the sewer and of carrying off the rain watr-ftom the roof. The pipe serving this double purpose is frequent.j a channel for the conveyance of sewer gas intos house. For every cubic foot of water that enters the pipeaca. bic foot of sewer gas is forced out, and if, as is commonly the case, the top rindows are near to the aperture of this piph serer gas finds a ready entrance into the house.

The pipe which conreys the rain water from the zoof should open into the area, and never into the drain.
5. The soil pipe of a water-closet, like the house drang, should always be ventilated-i.e., at open pipe should pas from the soil pipe to a little below the level of the chimaefs -to an elevated spot, that is to say, at some distanco frumail openings leading into the house. If the soil pipe of the wster. closet be not ventilated, then whenever the closet is aed should there bo the least defect from wear or accident in the trap, a certain amount of sewer gas will be forced upwards isto the house from the soil pipe.

To sum up, the pipes which convey refuse water from the honse and thuse which convey surplus water from the cioterts should, without exception or excuse, terminate in the opensif The main reain of the house and the soil pipes of every ratercloset should be ventilated, and the ventilating pipes shoa!d be carried up to about 3 or 4 feet below the level of the opes ing of the chimnegs and at some distance from all other opil. ings into the house-e.g., trap doors on the roof, windurt \&c. The pipe which cunveys rain water from the rouf sholl terminate in the open air, and should never bo used for venti lating the sewer.

The above letter has called forth the following currespo: dence. "A nother M.U."" writes .-

It is to le hoped that every householder in the hingdom rill read and try to master the five plain facts contained in the letter of "M. D."

There is one point which may, I think, bo a little enlarged gron with advantige. This is the insecurity of aiphon traps (addall water traps aro but modification of tho siphon) if their nater be not frequently renowed. All who sit up late nt nighit most occasionally bavo becomo acquainted with the sickly swell that arises from the sink in the back kifthen or scullery. The mann reason for this is that, the cook nad scullorymnid busing retired to rest, the water in the trap has not been rebefed. The sever gas on the far side of tho trap has saturoted the water and is being given off into the house. Pouring water down the pipe removes the smell for a timo. If the waste. pipes be all cut off from direct communicat on with the sower, ss" M.D." aiviser, this nuisance cannot arise
I once took part in an experiment to show tho rapidity wilh which sulphuretted hydrogen gns is sbsorbed by water and giren off again, and we found that this gas would, without presure, pass through a column of water containod in the bend of a tube (a siphon trap, in fact), in about tho timo which it these to writo this paragraph

a third correspondent srites.-

Some few rears ago I instructed my buildor to let mo seo the end of every basin, sink, waste, and overflow ifpe in the open alr, to ventilate the soil-pipe to the roof, and all wateriloset traps and containers by half-inch pipe to the ontaido.
Iam not comp tent to discuss the great sewage question, but l cua confidently assert that, so far as the interior of arach boaie is erned, the adoption of the abovo plan is an effectoal 63 feguard against tho danger of sewer gas
Now that winter is approsching, when fires will be lighted sai doors and windows shut, the precaution suggested by "y.D." is more than ever needed.
The essential principle involved is that, by breaking the continuity of earh pipe with the drain, ntmospheric equilibrium ismsintained between the interior of the drain and the connecting pipe during every variation of atmospheric prossure, and, notwithstanding the more or less highly rarefied condi tinn of the air in the interior of the house, fresh nir, and that ody, can be sucked back through these insidious pipes.

RAZOBS.

Razors, after a.l, form no unimportant subject, and their pur-posc-shaving-mounts in antiquity to pre-historic timo. Far Ister than thit rather indefinte epoch of the archeologists, Persians and Chinese, Egy ptian, Jews, and Gentiles, Greeks, Romans, and manumerablo barbarous peoples shaved, if not their beards, more or less of their heads. The processes and the instraments eunp'oyed by divers peoples and times were, no donbt, rarious, and probably curious in many wass, though but littlo is known about them. While soap was unknown, or a rare icimeti, and steel not widely diftused, "Easy shaving" coild valy bavu beun accumplished by methods very different from oor own Almost in our own day might have been witnessed the extrerurs of the barbers craft in its primitivo and its per-1 firt instrumunts. Captain Cuok was shaved in one of the Pacific Ielands as at act of humaje, by the king's barber, with a sbarpened oyoter shell, the process of getung orer the tough basd of the great navigator occupyiug about air hours. Cook, sodoubt, had his ox n uld-fashioned steel razors in his cabinqoite as good, probably, as "the newest thing out" now in that line and at the prerent dav Shefield razors are to be found plentifully amodgst the Fyi Islandere, Bosjecmene, Hottentots, and the trit s subjict to King Coniee.
The rhinese razor is a curiuus bit of sheet steol, very much!like 8 penny piece clipped uff stra.ght at uno side, and sharpened, at the opposite one, with a thin projectiog tasl which connects it with the eplit lanadle almust identicat with that of modern Eornpan razors, which suggests the notion that the rather pecoliar handles in which our razors aro mounted may have come to us frnm isia. In Europe the straight or slightly curved blade of some 4in. in length is universal, but innumerable rarietips and vagarics, in furm and proportion, weight, \&c., are
wergwhere encountered, the real reason as the base of all beurerywhere encountered, the real reason as the base of all bohare Rut is an instrument for shaving a thing absolutely berond the control of rational principle, or the teachings of ox-
perience? There must be some one size and form of blade, and vome one weight, that should be the best possibls for the averago human face and beard. Yet 88 to this no certainty can be arrived at from the doctors of the cratt of razor fabricntion. One recommends a light razor ; another "our orn make," with a crooked slank next tho handle, probably that no fingers not provided with the suckers of the octopus could hold; a third oracularly advises a heavy razor, with a thick back, and atrong enough to cut the throat of Goliah ; whale Germans tell us our British razors are all wrong, that nothing shaves well but the Hamburgh razor, with its hollow sides and thia pliable edge, which never requires setting. Wo should like somo light and gulde through all this labyrinth and contradiction, for we must confess that the resulting impression chicfly left upon our miads by it is, that there are fow branches of retail trado in small wares in which there is more bumbug th.sn in that branch of the cuttery craft which deals in razors. An excellent razor, well tempered, of good still, and with a black bandle, can bo purchased for about ls. Wo can testify that such a razor can shave well, and for many years. Yet go into some eminent "cutlery establishment" in any of the great London thoroughfares and you will be asked 12s. to 149. for a pair of instruments with, perhaps, ivory handles. and much ghiter from the polishing wheel, but intrinsically not a white better than the soldier's razor at 18. A curious essay, and of some length, might be written as to the improvements, pretended or real, that have within this century attracted scientific or general attention in razor making. Some of these, like those given account of by Parkee, of Birmirham, in his "Chemical Essays" of some forty years ago, which attempted to fix the tempemture at which razers should best be tempered, were laudable attempts to reduce ompiricism in art to the science of rule, though little came of it. Nor did any real improvements result from the somewhat elaborate experiments of Faraday and Stodart on improving razor steel, by the alloy of other metals in minute quantities. Rhodium and silver-steel razors have all passed away, though so-called "siiver steel razors" can still bo purchased near Sheffeld which do not contain a trace of silver. First-class cast steel of the most briliant fracture and closest grain and perfect hardening and tempering are the only real requisites to form a first-class razor. The right quality of steel can be chosen, but in the tempering an clement of uncertainty remains, which is no doubt the cause on which the capriciousness experienced in the gordness of any "pair" of razors proving quite alike depends.

A knife or surgical scalpel may cut throush animal tissues with perfect sinouthness and but little eflurt, but it may not shave well. The razor edge must not only be charp, but smooth,
if it be like all edges, that of a saw, it must be that of a saws whose teeth are more than microscopecally une. This was the basis of a mode of sharpening razors proposid about forty-five years ago by Mr. Gill, a patent agent and editor of "Gill s Technical Repository," which drew fur a time some attention, namely, to burnish simply the sides of the razors odge with the "currier's stee!," which is only a bit of finely hardened and polished stee! wire, and this thinning and smoohing of the edge is also the foundation of the Hamburgh construction, in which the edige futmed by the usculation of opyosite outside surfices is thin enough to bead whder the finger nail and fet return to its position. But though these razors are said to need no setting, they scrape rather than shave, and most uncumfortably.

Then the "setting of the razor beromes a source of ever renewed need and annoyance, it being a arars thing to get it well done, and the expense is no longer beneath consideration, since Londou cutlers have tallen in with tho prevaring habits of extortion and doubled their prices, under the plea of enhanced pages, \&c. We have very many readers in all classes and in all gorts of occupations, anu amongst them many ingenious and inventive men. We ask them to consider whether it be not possiblo to cunstruct a machine for automatically setting razorsone that driven ly power shall apply ats the grinding poreer to the razor blade already fix:d into a suitable rest or frame, in such a manner as to effect all that now depends upon the deaterity of the " setter's" hand, or tho degree of carelessaess. or the contrarg, with which he does his work. With the polishug machino for telescopic speculs and the gem cutters wheel before as, why should we despair of this? Once accomplished, it would prove, even in London alone, a hittle gold-field to rewand the perseverance of the inventor.-The Engircer.

THE NEW WIMBLEDON HIFLE TAHGET.

The introductinn, by the National Riffe Association at Wim. bledon, of the new iffe targets, an invention of Captain Costin, the execulive officer of the council, has had a material +ffect upen the shonting during the meeting of 1874, last summer. The object of the change was to inaugurate such a system of marking as should secure the highest possible conditions of fairnoss to the makemen, to prevent the occurrence of "ties" -ruch a tertile source of annayance heretofore-and to obviate the necesnity for the severe labour hi' berto exercised by the markers in the covered pits before the old iron targete, as well as to render their occupation a safer one. The following sweeping reform was therffore eflected at all the butts, excepting those fot the 800,900 , and 1000 yards ranger, those at which the Swisi targets had already been erected, and a few others of minorimpertance. The iron targets were removed, and a series of movable canvas ones were contrived somewhat similar in contruction to the old Swiss ones, the peculiar merits of which had been ratirfactorily tested. A novel system of marking was moreover applied to all the targets.

The nuture of the new targets is of so intereating a character that we hall give a somewhat elaborate description of them. A serics of longitudinal pits (6ee Fig. 1), connected by subterrane.n tunnels of brick work, so as to enable the matkers in one lutt to communicate will: those in another, is dog in front of the butts, in seme cares to a depth of 9 ft . and in others, to a $d \mathrm{p}$ th of 11 ft . These fits are portioned off by piers intorecessts for the various targets, the recesses themselves and the pirs butween being revetted with brickwork. The front ode of the pits is lined with loarding. Upon the summits of the piers stout baulks of timber are laid, which are securely bolted to uprights let into the brick work and to a framing behind. The ends of the baulks project a little from the piers, and are sufticicnily far apart to admit of the targets bu ing placed between them standards of gas-pipe ascend from the foundations of the pits to the extremities of the baulks, two on either side, which act as guidef, for the targets to zun up and down on. These consist of two, a striking and a"dummy" target to each recess, the former being for the marksman to shoot at and the latter for the shot to be "marked" on. The target proper connists of au iron frame covered with canvas, which is painted with a laige white circles and a back "bull's eye," de., the corners being left black, the frame constructed of knife-edged iron presenting an angle of about 50 deg. to the front, which is assumed to be the best angle for preventing splashes from the bullets. The "dommy" consists of a wooden fraine, covered and painted in a similar manncr, except that the bull's eye is red instead gi black, and that a wite screen is attached to the whole of the front surface to hang the marhing disces r . The tarcets are hung to the ends of two chains, one on each side, Thich pa-sover pulleys fixed to the ends of the baulks of timber, sliding up and cown the guide rods like buckets in a well, by means of the guides which are attached to their hottome. Thus when tho striking target is down the dummy target is up, and vice cersh. Now the striking target with its iron frame is of coure heavier than the dummy, which has only a wooden one. Hence the normal positions of the targets would be with the dumny elerated. But the dummy has a long iron lever attached to it hy an elongated slot passing over a button, the opposite extremity working on a fulcrum fixed io the wall or pier. To the centre of this lever a step is hong upon which 3 man can stand, and bis weight is sufticient to counterbalance the difference between the weights of the wooden and iron frames. Thus we bave two motions established. The iron-framed target raises the wooden-framed one, and the latter, with the mark $\cdot r^{2}$ standing on the step of the lever, raises the fermer. Practically, the ironframed target is too violent in action, and a brake has consequently been placed upon the crose-bar of the dummy, which contril the action of the lever and at the same time acts as an additional counterweight. It lies loose npon the cross-bur when tne dummy is down, but as the rounded end of the lever projects abore the crofs-bar during the ascent of the dummy, the counterweight, which is broad and hinged, is lifted, and *hen it is checked by the short break chain shown in the diawidg, the furthe elevation of the dummy is correspondingly arrerte: In order to keep the dummy down, when the marker gets off the step of the depressing lever, a break haudle with a drop weight is contrived in the front wall of the wellhole into which the targets sink, this is lower than the pitbottom, a stop on the brake-lever bandle catching a button on
the dummy target, and preventing its rising again until the handle is drawn back, as shown in the engraving. A small handle is placed upon the depressing lever alluded to before, for the marker to grasp in bis descert, in order to prevent his hands being jambed between the lever and the wall.

Such is the arrangement of Captain Costin's new targetr. Their mechanical working is capital ; it is, however, anticipated that several modifications will be made in ensuing years, a better disporition of the woodwork framing behind the piers and of the baulks being contemplated. 'lhe dimentions of the targets, spaces, divisions, \&e., may be seen by a reference to drawings Figs. 1 and 2. The smaller ones are not as yet completed, bot will replace those marked "A"in Fik. 2 bext year, they not having been fitted as origimally intended.

The "marking" at all distances is with large discs hung upon the screen over the face of the dumny target, as nearly as possible over the correspondin: spot to that which has been pierced by the bultet in the strikiug target. The arrangement is as fullows:-

Bull's eye)) white dise	1	f 5 marks.
Contre		red disc		4 marks.
Inuer	$\int_{\substack{\text { signalied } \\ \text { with }}}$		fand scoruns $\{$	
Iuner		white and bluck	,	3 warks.
Outer I	I	J black	$) \quad 1$	(a marks.

I ricochet is gignalled with the letter B on a disc. A shot gtriking outside the outer circle is not signalled But in urdet more fully to satiffy the marksman in the identification of his shut, a small piece of zinc, with a hook upon it, called a "Bland's patch," is hooked into the actual aperture made in the strikidg target, where it remains until a consequent shot in fired, and can easily be seen with a binoculat glass from the firing point.

The advantages resulting from the introduction of the new targets and the new system of marking are very apparent. The increase in the numbet of divisions on the face of the target-, from three to four, must neceesarily diminish the chances of "ties." The occurrence of these often destroyed a good match at its termination. The alteration in the shape of tho divisions from square to round is also an improvement. Observe the dotted lines in Fig. 2 for 500 and 600 yard targets which show the old marking. The shot marked b is actually nearer the centre of the bull's eso than that marked x, and yet it would have scored less under the old system of marking! We would, moreover, quote an incident to demonstrate the safety of working the new targets. A single important accident from bullet spluahes occured during the Wimbledun meteng of isit This was at the old tarjets. The accuracy of the new sysum of marking a shot ay pears to have given general satistaction to the volunteers and others engraged in prize shouting. As to the reduction or otherwise in the amonnt of labour required to be exercised by the markeris wo can say nuthing. Opinious differ ou this point very widely.-The Engineer.

THE AlTOMATIC fras savier.

It has been calculater that the average consumer of illumin. ating gas, in large citics, is sublect to a waste which conts bim from one quart.r to one third more for gas than is really necessary to produce the requisite light. The reason is obvious from the fact that the pre-sute, as transmitted from the works, must always be sufficient to iusure a full supply, not merely to the highest places, whither the gas rushes at greatest veiocity, but to the lowest localitues. The normal pressure, therefore, never falls to a poidt at which no waste at the burner can take place. Sor is it, indeed, possible for the manufacturer to supply each customer with the proper pressure to bsure the greatest luminosity, for he is prevented, both by difference of situation of points of delivery and by the constant var:ation in the quantitics drawn from the works by individual consumers. Catting off at the service cock or using check burners simpls reduces the light without affecting the proportional dearee of waste; so that the only ralid means of avoiding the Jatter lues in an apparatus which will antomatically control the pressare, keeping the same uniformly at the most advantagenus point, as the gas leaves the meter.

A new machine for this parpose bas lately been patented (May 19, 1874), and engraringa of the same are presented on paro 220. The noticeable featuro is the absence of the straight
diaphragm, heretofore commonly employed, forming a flat dish, with the valve rud secured to its center, and governing the ralve through its being forced upward as the pressure is augmented. The difficulty, due to the bardening of this appliance and consequent loss of its vibratory power, is, it is claimed, obviated in the present apparatus, by making the device of leather, covered with graphite, and ia telescopic form, so as to have from one and a half to six inches vibratory motion, according to the size of the machine.
The operation will be understood from the sectional view, Fig. 1.
An increase of pressure, whether it occurs in the mains or service pipe, by pitting out lights, is instantly communicated to membranc, ., the tension of which is thereby increased. As the membrane expands it is forced upwards, carrying with it the rod, C. which works the valve, E, and contracts the aporture through which the gas enters chamber, G; the quantity nov admitted in a given time being exactly equal to that which passed when the pressure was less and the opening greater. When the pressure again diminishes, the tension of the membrane is of course relaxed, and being forced downwards by the weight in the cup, B, again carries with it the rod, C , and the aperture to the chamber, G, is enlarged. Thus it will be seen that the saver is a eelf-acting valve, the operation of which depends on the equalization of antagonistic forces, namely, the pressure of the gas within the chamber, (i, impelling the membrane outwards. and the weight without impelling it inwards. By the combined action of these very dissimilar agente, the area of this aparture, by which the gas enters chamber, G, is exactIf adjusted to the velocity with which it moves. From the chamber, G, the gas escapes by the outlet pipe.
The comparative size of the apparatus and its mode of adjustment to the meter are shown in Fig. 3. . The effect upon the flame will also be noticed. The construction is substantial and durablr, the best quality of sheet copper, without seam. being used to confline the gas. The valves are ground and titted so as to control a single burner, and may be readily cleaned of imparitics.
The manufacturers add that whoever pays six or eight dollars, or even less, a quarter for gas, will save at the rate of from twenty to forty per cent on his gas bills by using this machine.

BOLT AND SIUD-END CUTTER.

We illustrate, from Eingtneerıng, on page 220, a vary handy little tool for finishing the ends of bolts and etuds. It consicts, as wil? be seen from Fig. 1, of a tubular hody which is scrowed upon the stud or bolt, of which the end is to be cut, a ring or washer being slipped over the stud so that the body of the tool is screwed up arainst an abutment. Within the bindy there is a short spindle, the lower end of which forma a tonl-holder, as shown in Figs. 1, and 3, while the upper end carries a handle by which it can be rotated. The upper part of the body of the tool is counterbored, and has a screw thr, ad cut within it, there being fitted to this portion Ω nut, the heard of which has teeth cut around it, as shown in lig. 5 . Thy nut dnes not directly fit the spindlo carrving the tool, there brins interposed between the two a thin brass bush having a collar formed at its lower end. From this collar project two lugs which fit into grooves or keyways cut in the screwed purtion of the body, as shown in Fig. 1, and 2. These lugs prevent the bush from moving round with the spindle, and thus prevent any motion from being communicated to the not by friction as the spindle revolves.

The nut of which wo have just beeu speaking gives th, dowaward feed of the tool, the nut receiving an intermittent motion by the neat and simple arrangement of self-meting sear shown by Figs. 1, and 5. From these views it will be seen that the handle carries on its underside a small rasing containing a detent or pawl, which is forced towards the feed nut by a spiral spring. This detent has a face deeper than the nut and the Inwer part of this face bears against an collar which almost surrounds the upper end of the body of the tool, this collar being, howover, cut away at one point so me to form a notch shown in the plan Fig. 5. For the main part of eech revolution the feed pawl bears against this collar, and is provented by the latter from engaging the teeth of the feed nut; on the notch being reached, however, it enters it, and at the same time engages with the feed nut, tho lattor being then
carried round until tho pawl is lifted out of gear again by aliding up the inclined side of the notch.

The form of cutting tool used is clearly shown by the en. gravinga, and it is, as will be seen, of a -imple shape and easily fixed. Being fix don the stud or bolt to be operated upon, the tool makes a perfectly st"ady cut, and turns out excellent work, the finist. being fully as guoll as rould be obtained in a lathe. Mr. Velson infurms us that by the ain of this tool tirelve \dot{A} in. stud ends can be fiuished in twelve minutes, while there is the advantage that the work is done without incurring the risk of breaking or loosining the stud or bolt. Altogether the tool is a very useful one, and wes expect to see it largely used.

MISCELLANEOUS.

Ten: Trupeana of Stral.-The Government of the United States has acquired, fur the sim of 10,000 dols. the following process, invented by MII Garnant and Seighfield, for tempering steel:-"The steel, heated t, a cherry red, is sprinkled with sea balt and worked in this state until it has assumed nearly the form required, the chioride of sodium being renewed from tine to time. For the latter is aftervards substituted a mixture of equal parts of chlorile of sodium, sulphate of copper, sal-atmmoniac, carbonste ot s da, at,l a half pint of saltpetre. The steel is assin heated, and the hammering is continued until the steel becomes retined thromshout its. whole substance and assumes the denired shape. It is the in again brought slowly to a cherry-red beat, and plunged into a bath of 37 litres (3 quarts) of rain water, 724 grammes ($1 \cdot 494$ oz.) of alum the same quantity of carbonate of soda anci suiphate of copper, 233 grammes (1 oz) of saltuetre, and 1698 grammes (5843 oz .) of chloride ot sodium.
Latent Heat of Steay.-Duridg the change of water into steam, a remarkable phenomenon has been discovered, bcing nothing less than the apparent disappearance of large amounts of heat, which appear to be consumed in order to overcome the cohesion of the water particles, and change it into a repulsion, which is the cause of the expansive elasticity of the steam, and results in the useful application of its pressure. The heat which thus disappears is called the latent heat of steam, and it reappears again as suon as the gascous steam returns to the condition of Inquid water. The amount of this heat is aliout 1000 units; that means, in order to convert 1 ll . of water of 212 deg. into stcam of the same temperature, 1000 unsts of heat will disappear, or as much heat as would suffice to heat 1000 lb . of water 1 deg., 100 lb .10 deg., or 10 lb .100 deg ., consequently, as 1 lb . ofanthracite coll gives 14,221 units of heat, it will convert 142 lb . of water, and bituminous coal 13.5 lb . of water into steam. The amount of expansion which the water undergoes during this change is an increase in bulk of about 1700 times; and as lcubic foot contains 1728 cubic inches, the usual statement that every cubic inch of water becomes a cubic foot of ateam is nearly correct for practial purposes.

A patent has recently been taken out in France for the preparation of leather from tripe, intertines, and other anmal membrances. These are soaked in mill of lime while still fresh, then washed in water, and finally immersed in a paste made of starch and white of eggs. The snbstance thus formed is to be used for glove making, etc., and may also be tanned or curried.

Well worn files are first carefully cleaned with hot water and soda; ther are then placed in connection with the positive pole of a battery, in a bath componed of 40 parts of sulphuric acid and 1000 parts of water. Tho negative is formed of a copper spiral surrounding the files but not touching them ; the coil terminates in a wire which rises toward the surface. This arrangement is the result of practienl expertence. When the filea have been in the bath ten minutes they are takien out, washed and dried, when the whole of the hollows will be fonnd to havo been attacked in a very sensible mauner, but should the effect not be snfficient, they are replaced in the bath for the samo period as beforc. The files, thus treated, are to all appearance liko now ones, and are said to be good for 6) hours' work. M. Werdermana employs twelve mediam Buasen olements for his batteries.

BOLT AND STUD-END CUTTER.

Fig. 1.

THE AUTOMATIC GAS SAVER.

ELEPHANT ATTILLERY SERVICE.

HOW TO BUILD A SNOW-PLOW.

Tho snow-plow illustrated on this page is built so as to be fixed upon the forward part of a dooble sled. The frame is made of 4×4 oak scantling, and is similar in form to a double mold-board plow. One runner is fixed to the formard part, at sach a distance below the edge of the plow as to raise it to clear obstacles snch as stones orfrozen mud which may be in its way. Four inches would probably ingeneral be a sale distance. The hinder part of the plow rests upon the sled as shown in the engraving, and is bolted to it. A long tongue is fixed into the place of the ordinary one, and is fastened to the front of the plow by an iron strap, which is bolted to the frame. The hinder portion of the plow may be covered with boards, and a seat fixed firmly upon it. When it is used, it is best to load it as much as possible. The sides of the plow are made of half-inch oak or basswood strips, steamed and bent into shape. The outer sarface of these strips should be dressed smootily, which will make the draft easier.-Amencan Ayrculturist.

ETCEING IRON.

Much time and attention has been devoted by Prof. Kick, of Prague, to the subject of etching iron with acids. His method is not a new one for arriving at a knowlodge of the quality uf iron or steel, having been used with some success for a long time, bat the care with which the profeasor has conducted his experiments makes them exceedingly valuable.
Some kinds of iron exhlbit what is known as the passive state, and are quacted upon by acids nntil this state has been destroyed by heating. Tho surfaces thas prepared were inclined to rust very soon. After a series of expenments with nitric, sulphuric, and hydrochloric acids, and etching solutions of copper salts, Prof. Kick found that a mixtare of equal parts of hydrochloric acid and water, to which was added a trace of chloride of antimony, was the best etching solation. The chloride of antimony seems to render the iron less inclined to rust, 60 that, after washing thoroughly in warm water, and applying a cost of Damar varnish, the etched surface may be preserved quite clean.
The smooth aurface that is to be etched is sarmounted with a ridge of wax 80 inch high, 88 is done in etching copper plates, and the acid is poured into the disc thas formed. At a temperature of 55 to 65 deg. Fah. the action soon begins, as shown by the gas crolved; in rinter the etching is poor. The time required is from one to two hours, bat the etching should go on until the texture is visible. Every half hour the acid
can be poured off without removing the wax, the carbon rinsed off, and the surface examined. If too mach chloride of antimony is added to the acid, a black precipitate will soon form, which can easily be distinguished from the carbon. One drop of chloride of antimony to the quart of acid is safficient. When the etching is finished, the wax rim is removed, the iron washed first in water containing a little alkali, then in clean water, brushed, dried, and varnishod. If in a few hours it begins to rust, the varnish should be remuved with turpentine, which also take off the rust, and then varnish again.
The appearance of different kinds f iron when ctched is ossentialiy as follows:-Soft or sinewy wrought iron of excellent quality is attacked so equally by the acid, and so little carbon is separated, oron after several hours' action, that the sarface remains bright and smouth. Fine grained iron acts the same; the sarface is still smoother, but a little darker. Coarse grained and cold-short irun is attacked much more violently by acid than the above. In ten minutes, especially with the latter, the surface is black. After thirty minutes a black slime can be washed off, and tho surface will remain black in spite of repeated waskings, and exhibits numerous little holes. Certain parts of the iron are nsally eaten deeper, while others, although blach and poruas, offor more resistance. By allowing the acid to act for an hour or so, then washing, drying, and polishing with a file, a distinct picture is obtained. Malleable cast iron, we know, rusts more easily than wrought iron, and it is interresting to know that the action of acids is also violent, the surface belng attacked very violently. Grey pig-Iron acta like steel, the etched surfaces hate quito a aniform grey colour. In puddled steel the colour, after etching and washing, is grey, with quite a uniform shade, and the lines are scaresly visible. Cement stecl has a very similar appearance, the lines being very weak. In Bessemer and cast steel the etched surfaces are of a perfectly uniform groy colour, with few, if any, nneven places. The softer the steel the lighter the colour.

On etching, the finest bair-like fractures are rendered prominent. A piece of steel, which looked perfect before etching, afterwards exhibited a hair-like frscture throughout its whole
length When different kinds of iron are mixed the acid attacks that for which it has the greater allinity, while the other is less acted upon than if it wero alone. Eitching is erceedingly valuable to all who deal largely in iron, as as it enables them to determino with comparative accuracy the method of preparing the iron, as in tino case of rails, sc., as well as the kinds employed.

CANADA.

The Fort Pelly telegraph line now shows itself on Main street, Winnipeg.

Work on the Victoria Railway is advancing rapidly. The grading in the viciuity of Fenclon Falls is being pushed on vigorously. The bridge over the Fenelon River is well ad. vanced.

A Chinaman while gold digging near Quesnelle, British ('olumba, found a piece of gold welghing 25 oz., said by good judges to lue the prettiest, best and one of the largest specimens ever fousd in that province.

The C. P. R. survey party under Mr. John Trutch were, about the 1st. inst., camped on the north side of the Fraser, a little below St. M..ry's Miosion. It was proposed to cross at One 'Iree Ieland, and keep down the north sade to New Westminster aud Burrard Inlet.

A new car for the use of Mr. Thomas Reynolds, IManaging lirector of the St. Lawreme and Ottawa Railway Company, arrived at Prescott last wech. It is something after the style of the "Pullman," and is, like it, divided into diterent apartments. It was built at Taunton, Massachusetts, Car Works, and is handsomely and richly fitted up.

A paper mill has been established at lonobsequis, N.B. A local paper manufactory was a want long felt in the Province, and particularly in St. John, where the darly consumption is very large, and where the publiners of the daily papers have aften been put to great incuavenience and loss through delay in the arrival of their urders from Cunadian or other houses.

The New Brunswick Railway, through the prompt action of the Minister of Public Works in furnishing old rails at market prices, will be alde to make cood its promised extension to Audforer this season. Thls will be an immense boon to the lumber thade and to the business of the country generally. Supplies will now be got through to all points during the winter. The Company may have to pay a pretty smart price for the rails, hat the obi gations of the country to the Government for acting so promptly are nonc the less.

A wood boat has sailed from St. John, N. B., for Havana, Cub1, with a general cargo. It is considered a foolhardy caterprise.

Mr. Baillarge, Corporation engineer of the North Shore Railway, has prepared a report of his first tour of inspection, which will be pri sented to the Eaty Council to-night. Mir. Baillarge expresses himself agreeably surprised at the quantity and quality of the wo.l done on the road.

P'a lipsburgl, Farnuaj and Yajasea Rallroad.-Mr. Gauvreau, the chief Goverament engineer of Uuebec, examined the first section of the line just graded, south of this plac , coday, in company with Mr. Leggec, the engineer-in-chief of the road, and Mr. Foster, the contractor. Mr. Gauvreau expresses himself well satisfi.d with the progress made and with the character of the work. I'no completion of the first section whl cusure the Goverament grant next season. It is expected that tees toad will soon be completed to Philipsburg and open for traffic, a distance of foriy-six miles, through a thicklysettled sectiun of the country, to which it will prove of tho most inestimable value. This line will extend from opposite Three livers to Phlipsburg, on Lake Champlain, a total distaut of about one hundred miles, and is the most direct and cheapest route for the transport of lumber and minerals from the great St. Maurice district, north of Three Revers, to the

Americen markets, at tho same time affording immense facilities for the transport of hay, grain, and other agricultural products of the fine country through which it passes to the best American and Canadian markets.

A large deposit of fire brick clay-the ouly one, it is sand in Canada-lhas lately been discovered at the head of Moore's Lakeand Gull River, on lot No. 24, in the Gth concession of Lutterworth. Mr. Thomas Lary, the owner of the property, is negotiating with a party ia coronto to establish a fire-brick manufactory on the spot, and the negotiations are likely soon to be completed. Its superior quality over other clay is that it contains neither lime, magnesia nor iron, which renders it more ieffactory than any other clay. This is oue of the most important discoveries ever made in the backwoods, and the supply of the material is believed to be practically ineshaustible.

The new locomotives for the Intercolonial Railroad, are to be ready by the 15 th of fune. Of these twenty are being bult by the Bal twan Works, Philadelohia, 10 by the Kingstun Lolumotive Works and 10 in Halifas. The last mentioned lot have been in hand for nearly three years, if we remember rightly, and are aboat halt completed. The Baldwin locomotives are to be delivered free of all charges, at $\$ y, 000$ a piece, l'aited States funds. The Kingston contract was only secured for a Canadian establishment by giving then the benefit of the duty on the foreign article, by which arratagement their price is so much more than that of the Buldwin Works. We believe the same thing was done in the case of Messrs. Harris \& Co., and we consider it perfectly rhidht. The rule of Council, admitting foreign works free of duty, has been suspended and will probably never again be in furce. This ss a movement in favor of Canadian industry, and it is of the most beneficial character.-St. John Telegraph.
The following particulars respecting the first discovery of gold in Nova Scotia are given by Mr. Heatherington in his report on the mining industries of that territory.-The exastence of gold in the Province appears to have been known to th earliest settlers, judging from the ancient names of "Cap d'or," "Brass d'or," Jeddore (evidently a corruption of "jcu d'or," or jet d'or," and Gold liver, in all of which localites the metal has since been found. In Dr. How's Mineralogy of Nova Scolia it is stated that gold was found one hundred years ago, and-gold washing was practised in the river Avue, at Windsor, about the beginning of the present century. The same authority also writes that the late Canun ciray, D. U., Rector of Trinity Church, St. John's, New Brunswick, who died in 1868, aged 70, told him that as a boy he bad taken gold out of rocks on his father's property, near Halifax, and had it smelted by a jeweller ia that towa, aud that Mr. B. G. Gray barrister-at-law, and son of the deceased clerisyman, possesses old documents which show tbat particular impurtance was attached to certain parts of the family estate, presumably from the known existence of gold. Its occurrence also in Sherbrooke, Isaac's Harbour, and Lawreacetown is stated to have been fanailiar to the oldest residents. The first recorded iastance of scientific discernment aiding discovery, and sug. gesting the existence of gold-bearing quartz of econumic importance, is that of a captain of the Moyal Welsh Fushlecs, who, in the spring of 1840, poiated out the aurniero:is character of the rocks at Gold Miver, near Chester, but, being on the eve of departure with his regiment, was umable to prosecute a search in person; and it was only afcer a lapse of twenty-one years that explorations were mude and the correctness of his observations proved. The probable occurrence of gold is also mentioned in Sir Charles Lyell's lotes on the Geology of North. America (1842:) and in tho first edition of Dr. J. W. Dawson's Acadian (deology (1855), but really practical results were first derived from the following discoveries.3fM. John Campbell and R. G. Fraser washed gold from the beach near Halifax in 1857; and in August, 185s, Mr. E. A. Mitchell, of Halifax, obtained a specimen of aurifuous quartz, which was seen by Mr. W. D. Sctherland, solicitor, and subsequently sent to Dr. How, at King's College, Wiadsor. Iu 1858 Captain Champagne L'Estrange found gold at Mooscland, Tangier ; and in May, 1860, Mr. John Gernish Pulsiver made the discovery which actually laid the foundation of the goldmining industry of the Province. With the exception of Mr. Campbell, who was temporarily omployed by the Government, these discoverers have received no reward.
neport of walter shanly, ESQ, C.E., ON THE CAUGHNAWAGA SIITP CANAL.

Nortil Adass, (Mass.)
2.th August, 1874.

Hon. Joun Youna,

President Caughnawaga Ship Canal Co.

Dear Sin,-In compliance with your request, that I would examine into, and give my viows of, the cost of constructing the "Caughnnwaga Canal," so called, and stato my opinion, generally, as to the desirability of the work and its probable effect on the trade of the country, I now beg to say :-

First-As respects cost-I have made an estimate based on thedrmensions of this canal proposed by the late J. B. Nills, Civil Engineer, in 1848, and which are identical with those of the existing St. Lawrence canals-lock 200×45 feet, with 9 fect of water on the sills.

I, of course, accept as correct Mr. Mills' quantities of the several hinds of work embraced in the construction of the canal on the plan referred to, and do so with the utmost conndence in their rehability; a confidence inspired by my knowledge of the care and accuracy with which such calculations over came from the hands of my deceased friend, and at oue time, professional chief.
His estimate of cost amounted in the aggregate to $\$ 1,814,-$ fis, which under the prices ruling for such kind of work five and twenty years ago would have been ample at the time, but in riew of the great advance in the value of labous, materials, lands, and all things else entering into the cost of undertakmins of the sort, 1 cannot bring the amount that would now be required to complete "Mr. Mills' Canal" in a proper and substantial manner below $\$ 3,763,000$; in which, however, permanent stone structures are provided for where, in some cases, aqueducts for instance, the original estimate contemplated using wood.

Having now entered upon (at least we have been told so: the external manifestations of the fact are not wholly convincing yet) a second era of Canal ealargement in Canada, the " Laughnawaga "scheme will, of coarse have to be reconsidered and remodeled in sume of sts originally proposed details to make it fitin with the other parts of the system - whatever that is to be. The dimensions adopted for the new, or im. pruved, Welland caual, are-locks 270×45 feet, with 12 feet water on the mitre sills.
Sot having access to Mr. Mills' detailed plans and notes of survey, I am without the requisite data for making more than au approzimate estimate of the cost of constructing the Laughnavaga canal on the scale of the "enlarged Wellind," but, approximately, I would not venture to state the additional outlay at much less than 50 per cent. advance on the cost of the lesser work. In other words, the Caurhnawage canal on the dimensions above assigned to the Welland would involve an outhay of some $\$ 5,500, v 00$. But I do not think that such large capacity, in re-pect of depth at all events, is needful to ensure to a canal connecting the St. Lawrence with Lako Champlain its fullest measure of uscfulness and success. The diference in cost in a caual adapted to vessels of 12 feet draught and one of two feet less depth would, in this instauce, be not far short. probably, of a milhon and a quarter of dollars. Ten feet draft is as much as is required, and on that bass the Caughnawaga canal may be constructed for about § $\$ 250,000$.
so nuch for my views on the cost question; and now, with your permission I will tonch upon the general proposition of the improvement and perfecting of our canal system, as bearing on the Lake Champlan connection.
It is undoubtedly desirable and important that our river im. provemente-t. Lawrence and Ottava alike - should be of untorm design; parts of one systom; but I hold that the Welland canal ought to be conceived and carried out on a widely different scale, as baving a difierent mission to fulfil. The object of the Welland canal is, or should be, to do away whth, so to speats, the barrier dividing Lake Ontario from the Lahes above by making the canal of such ample proportions as will pass, with the least perceptible interruption possible, the largest vessels employed in the carrying of flour and grain. Chicago harbour, formerly adapted to vessels of ten fect draft only, has been improved to 14 feet of depth, and with any less water on its locks-sills the Welland canal will not pro-
perly accomplish the object indicated above. Tho largest propellers loading in Chicayo or other upper lake ports should at least, be allowed the option of proceeding without break of bulk to the extremest easterly point of lake navigation in Canadiar waters-Kingston or Prescott. Let the bulk, or oven a fair proportion of the bulk, of western freight once get down into Lake Ontario, and wo of the River can battle for it with every certainty of being able to carry off the victor's share.
Transhipment from lake vessels to river and canal craft will be the rule in our St. Lawrence carrying trado. Occasionally, in the future as now, a ship will clear from lahe ports fur a tran5-ocennic voyage, and then, as now, let us "improve" our river navigation to the utmost possible capacity that money can effect, will find herself taking low rank among and consequently uafitted to compote on equal terms with, purely sea-going vessels. Direct freighting from tho Lakes to Europe will, therefore, for ever be exceptional. 'I'ranshipment will be the rule, because it will pay best all round, and the first transfer of cargo will for the most part take place at the point beyond which, because of the shallowing of the water, the largest lake vessels cannot descend. The river navigation never can be improved to the capacity of the lakes, nad sail. ing masters will not throw away the advantage of the two, three, or four feet greater draught that lake navigation whi allow of, as compared with the river, mercly that they miy pass "clear through" to Bontreal or Qucbec, or, mayhap, oda times to Liverpool.
If, then, lake-navigation is always to imply a totally different class of vessels from that best suited to the river, the next point to be considered is-what is the most fitting craft for the latter service, and what the extrume dejth of water really needed for such craft, and that can be obtained withon reasonable limits of expendituro.

The bulk of the grain trade from Kingston to Montreal has for the last ten years or thercabouts, been done by mean; of barges of the extreme size that the St. Lawrence caurl-locks are capable of passiar, and the capacity of the largest of which (the barges) may, I suppose, le taken at about 22,500 bushels. If then, as is, I think, easily susceptiblo of prouf, no cheaper, fafer, or speedier mode of trausporting four aud grain over the river portion of the route between Chicago and the ocean (or ocean vessel) can be devised, the barge undoubtedly will continue to be employed to the exclusion of almost every other kmod of craft, and the use of propellers for the carrying of those commodities through river and caual, each propeller with engine-power enough for the movement of half a dozen barges, each carrying a propeller's cargo, will, yeir by year, bear diminishing proportions to the large flect.
The St. Lawrence cauals, as already noted, have lucks of 200×45 feet, and were meant to have 9 feet of available depth, but, as a raatter of fact, not above $8 \frac{1}{2}$ feet can bo depended on; not, at all events, in such low-water periods as we have been having experience of in recent years. Had those works been desigued in the first instance for ten feet draught, and the sills of the locks put down to where that depth would have always been certiain, we should probably never have heard much about future enlargenent - not as to depthatauy rate. To improve those canals to ten fect draft now will be a work of very large expense, only to b; achicved at serious temporary inconvenience to the trade of the river, and it may be worth weighing whether pradence would not coubsel to abandon the attempt to decpen them, and, instead, to give the forwardere compensation in increased length of lock-a simple and inexpensive mode, as compared with the delay and cost of decpening, and where expediency has to be practiced, of gaining increased capacity. The st. Lawrenco canals, as they are, even, are capable of doing a large business in our season of 200 days or thereabuuts. They have never yet been taxed to angthing near their full powers of accommodation. I am quite sure that serenty-five milion bushels in the season, and that means a very large business, would not over-tax them. Still, increased capacity will be demanded, and in ono torm or another must bs conceded; but Whatever the plan adopted, I hold to ten feet as the greatest depth of which river navigation, without incurring needlessly iarge outlay, is susceptible, and that for that depti all future improvements, on both rivers, should be planned, and to that depth limited.
(To be continued.)

