BULLETINS

OF THE

Arrial Exprontent Agrariation

Bulletin No. XXXIV
Issued MONDAY, MARCH 11908

MR. HeCURDY'S COPY.

BULLETIN STAFF

Alexander Graham Bell
Oardiner H. Bell.
Assistant Editor
Charles R. Cox.
Mabel B. McCurdy. Typewriter

Stenographer
WABCH 2. 1909.

Fainn Thteagh, Font Badsects. How Seotia.

saitil 3p COHEMTS.

Peb.16. A Combination Prent Control............... -1
Mb.19, Kussian Propedler....................................

Ycb.l. The Plans of the A. A.................... $=$ -
Geb.20, Gugrosted Plan for corvertine the Aasociation into a Joint-5tack Co......9-13
Mob.22, Fixat Trial of Cy gnet IT.....................14-14
Yebo23, Firet Plight of Silver-Dart in
Canata. $1 j-15$
Yeb.24, 3 cond Plipht of silver-Diut..............iv-15
Bob. 6, Degarturea froen Buinn Ehrcah.......... 1 - -15
in Worg of the A. BeA: -

Peb. 3 . Rile Kodel of Drame Yo.6............16-19
Feb.l 3, Kite Kodol of Drome Ko. S............ $9-1$
Fub.16, Hjerodranc Toy........................... $2=22$
Feb.19, Vijing rey22-23
Rebok, Firet Trial of Cjent II.24-2

Peb.24, Second Trial of ह11ver-Dart.30-31
Peb.at, Second Trial of CวEnct II............... 1 - 2
Giginal Payerat . ${ }^{3} 3-48$
Yeb. 12, concerning Prapallers: their relat1ve position b) to acralanes:-

Bb.1: iront ContralasBy Y. T. Baldrin. 37-39
Yebels, N. ingmachines Coveretcially: By 0.H. Curtisa. 40-41
Pebal6, Struts, chords, and Trussed kibs: Hy J.A.D. McCurd
3obic. A now gume uith riying-boy:-
By Gardiner K. Bo 11.................. . 45-45
Fobe25, Aerodrorse totorsa: -
By 6. H. Curtias. 4 0-49
Yab. A6, A Combinstion Yront Control:-
By Gardiner H. BoL1.................. . $50-51$
Illuatrations of the Vorx of the A. H .A................... $2-60$

- 11scellanooun Communicationa: -

4. Tho Outlook on Aviation:-

(Continued on next page).

1wusizasions．

1．The si 2vorubart at Haverondaport．Throe photos． Ypper pieture reading froe loft te right，道r． Kimbal，sec．Aeronautienl See．器，Dr．Beli， Er．Wecurdy，Nr．Jonsas 健itor of meronnulica，
 the Aeronatatical Annial atanding in front of the siver－Dart at tiarnondspert，Dee．20，1906． Middle pie ure，ahod for the Silvar－Dart at Honvandaport in proeess of conatruetiono tom er picture，flight of the gilvermDart at Hum－ ต Ondagort，Dee．17，1908．HeCurdy Avistor．．．．．．．．．．．52

2．Mu wrint zhowing brake attached to the ice－ boat to prevent a repetition of the accitent In wioh Curbis was injured．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 53

S．TK ue print illuatrating locurly＇a papes on atruts，chords，and truswed ribs．．．．．．．．．．．．．．．．．．．．．．．．．．． 54

4．Drorso $\mathrm{IV}_{4} \mathrm{~S}_{3}$ Be11＂a Cy gnet II on the ice at Badteck Bay，Feb．22，1909．Upper piature， f ront viev shering MeCurdy in the aviatorla seat．Lown pieture，rear view showing the propel ler and pownr plant．．

5．The powur plant of Drocie No．5，B＜11＊a Cy－ हnot II Feb．22，1909．Upper picturn，power plant froes the rear．Lower ic ure，front view showing MeCurty st the stearing vheel．．．．．．．．．．．．．．．．． 56

6．Firas irial of Drone 9.5 ，Be12＇\＆Cygnet II on the iae on Badduck lay，Febe 22，1909．The beginning and tho ond．Upjor pietura ahours be－ Einning with soombers of Laboratory staff aknt－ ing aftor tho drene minile it ia moving formards ovar the iee．Lower pieture，monas Cygnet II arter aecidont to propelier．The pieces of the propeller were eolleeted togather and pleeed upon the lee near the smehine ac as to corse into the photograph．
（Continued on next page）．

7. Firat fisght in Canade of Drone No.f, MoCurdy ${ }^{4}$ silvar-inart, Pob. 23, 1909. U per picture bacen by tr. J.G. Daviceon ohovis the silverm Dart in the air (Yob.23) aggainst the sky with Fanhlo uoke in the baekgrowad. The lowar plesure taken by Mr. Benner (Pabo 23) ahowa the silvar-burt just as she tian about to milight after hor flifgty, with a portion of Boinn Bhreagh in the background.
8. Becond flight of the silvermart over the iee on Baddeca Bay Peb. 24, 1909. HeCurdy Aviator. Three photea. Upper pieture, gives a near viow of the slivor-Dart in the bir (Yab.24) with Mocurdy as uviator. widdie picture, showa the silver-Dart (Feb.24) at * Ilttle greater instassee amay orf the Badreck side of bue asy opposite the Hocurdy Homentead. Lover pictureg givea a diathent view of the silvarmart (FaDo_{0} 24) sagainat the Buinn Shreagh shors. The sleligh on the whore contains Mra. Bcil and her party...59
9. Se cond rlight of the silvermbart on Badicek Bay Yob. 24, 1909, the begtaning and the end. us per pioture, the begtrainge This ahows the silvarmbart wich MoCurdy on beard on 18a may to the starting place. It will be noticed that tr. Curtias, having no wkates, has stolen a ride on the machine. Lowor picture illuatrates the and of the experisent (Yenb. 24), showing the condition of the gilvor-Dart arter Landinge The darsage is not st groat as one would think srea the photograph, and at the present date (Faboid) the repaira have practleally boen e enyle tel. 60
10. Blue print illustrating Mr. Curtiss' Paper on Aerodrome Motors.61

A Combination zrent Controz.

Zobsi6, 29998- Gardiner Bell whoved tig to-day a erude modsl, whith he hud mede with his own harde, of a front control operated by two levery conbining the functions of front controx, steering rudder, and balsncing rudders. The apparatua sas ingenious and auggeative, and I have asted hin to give an acoount of it in this Bulletin. A.3.B.

Pusstan Pronsllers

Mobe 19. 1909 - Mr. Chanute has direeted our attention to a ne: propeller eonstrueted by Cel. Oehtchouny of Eunsis Which in etated to have tmenty times the efriciency of a perfeet aerven propelier of equal alameter (see Bulletin XX p. 42 The ceacription unfortunately is insurficient to enable us to reproduee the propeliar here se as te teat the trath of the rather start2ing etatemant. tra Chnmate hes been kind enough to write to Fungte for further deacriftions (see Balletin XXXX Pes) but with rather poer reeults, but he now sends us a cutting from a luesian newapaper which purports to give a rull deseription of the propeller; but, ate the artiele is uritten in the Fuasian longusge and is not ace cerspanied by an inlustration we can make nothing of ite. Whope however, that we may obtain a userul tramalation
 Wahingtone At preaent we only know that oseh blace is shoped
-
somemat like a bird ${ }^{3}$ wing; vide noar the hub and marrow st the sip; of ooncsvomeonvex form and with the front edge atiff and the rear edge elastic.

The very utartling aifferences observed in Balduln' ${ }^{2}$ experimente between the offects produced by a hydro-eurve and a hydroplane (Fhich were hardiy distinguishable from one snether by eye) have led me to think that thero moy be some truth in the elain put forth for the Fussian bird-ing propeller, and that we sheuld therefore make sone experfments with coneaveoconvex proyellers atiff at the front edge and elastie at the reer.

I brought the matter up at one of our reeent confercnees and it was tecided te have much a propoller conBtrueted. Mr. Bedwin to-day (Yeb.19) showed as the completed propelier. It is ten feet in alsmeter and though it does not tayer at the end like the fusmian propelier it poseesges the other fentures deecribea. Ve can conpare its efficioney comparatively with the 10 ft . propelier to be ueed on Drome Mo.5. I have saked $\begin{aligned} & \text { tr. Bedwin to give us serae deacription of }\end{aligned}$ it for thia Bulletin. A.G.B.

Drent Ions - Be112 Gymet IT.

Ybo 19, 1909g- The new Curtiss engine has been installed on Drome $\mathrm{Fo}_{0} 5_{\text {, }}$ and the tenmpot propeller is ready for ato technent.

A large number of young people from the Boddeck ficadeng vialted the Taboratory towlay and were about the mochine.

I took advantige of their preaence to give the aerodrome a mpecirie name, and ealled it Cygnet the 类eeen. It will

Mr. Brenner, a Hemenenepert phetographer, arrived at Beinn Fearaagh to-day in tine to thke a photograph of the nasemblage. A.G.B.

The Plane of the Aorrat.

Pabo 19, 19098- The tine for concluding the Fuperinental work of the Asseciation has very nearly come, and it is obVious that we will have no more than time to coaplete the experiments alrendy glanned out, if indeed we have time enough for that.
 soon as possible se as to get sone idea of whit we can do with an seredrone of pure tetraheeral conatruction without any horizontel aurfaces. The contitions unfortuatioly are very different Iron these originally contomplated. The mtrueture itacif is much heavier than weuld be necessary if We were te riy it as a kite. Fithout any engine or man it now weighs 400 2be. That it will weigh with ongine and man and all the acceaseries is problematieal, probably more than twice as such. It is obvious that the structure, with man and engine, will be altogether too heavy to be flown as a kite in the way Cygnet lio.I mas fuown. Besides the seasen Is net autiable for suoh an experiment as we would heve to depend apen nitural vind unaided by the pullitg power of a
nta
 The only thing to te therefore, if we are to make the experiment at ali, is to try Brome we. 5 on the iee as the "Red Winge was tried on Lake Keuks. IVen here it beeomes obvious that the machine ie toe heavy to afford much hope of suceoss. Ali we can te however is te try it and see what will remult.
(2) Immediately after the trial we should push our Drome $\mathbb{Z 0} 6$ to corpletion as far as possible by constructing the asrisi part of the apparatus on the basis of the ofonos Cite. It will take some time te make this structure and, winie it is being made, we ean make experiments on the lee vith MeCuray's egilver-Dert*。

Fe can try the Oionos strueture quite independently of the boat part, if deairea, upon the iee. If the ice leavea us bufore we are ready, the open water will be left and we can try it upon the oqury*. This is roally all the experimental wert that we can eentemplate, but we ean utilise our time by sandwiching in experiments upon propolier: upen the ieo-bont, in teating various ether points, and in trying teya.

The original object of the Association was simply Wo get inte the air*. This object has been fully aceompLished oven though we should meet with no further success with Fes.5 snd 6. We have made four aerodromes, ench of wheh has succeserfally fownprepelied by its own motive pewer and earrying a man. Fithout any further experimente therefore we are prepared to convtruet nyingomehines that
we know will flye We have appliad for patents upon these machines and upon our suceese in obtaining patents wil copend the poesibility of our getting outelte capital to put our machinos into comnereial wse.

It is obvious, however, that we could at once begin to obtain pecunitary retwrne by exhibitione of the twe aucoese oul machince ve poasessp Curtise "Jane Buge ond MeCurdy* "gilver-Dart*. The oniy aifficulty in doing se is the fret that is very obvious to m y mind thet the monent we begin te make money by the construction or exhibition of aeredromes we will find ourselves invelved in litigetion with the virigt Brothers and ethere, and it weula not be wise upon our part to attempt maything of the xind without hoving gurficiont capital at cosssand to protect us should litigation arise. I sw very much averae to attenpting to fake money under our proasnt organization, or under any organimation that would throw the financial responaibility upon me alone, for I ata the only momber of the Asecciation that could be touchod in the motter, If se are to do anything immediately in a oone merelal way we thall have te begin without the protection of patonta for it will take a long time for the Patent orfioe to pase finaliy upon our pending applicationd. We have no funde, as an Asseciation, oven to pay the cost of applying for patiente, and without a patent, or the assured proapect of obtaining one, it is extromely unlikely thet we ean get out-. alde capital inte the enterprise.

I think that we better conaider some proposition to aubmit te $\mathbf{M r}$. Charles \boldsymbol{J}. Beli, our Trustee, upon this mate ter. It would not talce any large amount of money to atart exhibitions of the "June Buce and msiver-Barto, and to begin the building of snother serodrome, but ouch worit must necesasurily be done under the aumplees of an organized Comysny.

The questions thon aries,
(1) Shall whe ge ahoad and organize a Company ouraeives bringing inte it a suffieiont amount of capital to begin the woris contemplated vith the prospeet of inereasing the copital from outaide sources 謁es patents have been secureds
(2) thell we attetyt to have a apocial Cormany organised by oukaide parties und ael2 out te that Cocrpany our interestes in the wort of the Asseciation for s cortain number of fuily paid up ahareap I doubt the practicability of this so long an we have no patent.
(3) Shali we sell out our intoreats In the work of the Association to some Couguny elready organised for shares or casht Thlt alac aeens to me to be fnpracticable until we have secured patents. Fithout pitente' we have nothing to aell. When we to sell anything it wil be a pustent.

Fooking the whole matter therefore squarely in the froe it seome to me we are confrented by the following conditions. We can de pothing on plans 2 and 3 until we have obtained patentes that is, upon these plane, we must wait nonthe before begining any cormercial explattation.

On the other hund if we decided to make an immediate coranerelat explettation we are reduced to plan \mathbf{x}. That is we
must organize a Company ouraclves. In other vords, we, the menbers of the Aerial Experinent Asseeiation, including the repreaentative of the Late Liout. Selfridge, would constltute the Company, and we would have to sell ahares to outside parties to obtain the necessary initial eapital, whieh noed not be large. It would be necesaary, however, to have a large number of ahares in the Ireasury of the Corapany to be sold from time to time as capital might be required.

We must face the condition that it will be very dippicult to got outaide capital to come in excepting in amall amounta until after we have obtained pationte. In the meantime we would heve to risk the peasibility and probabe ility of being invelved in litigation against our will, and this litigation if it arese woule prevent the influx of capital from outaide sourees by shaking the conflaence of would-be inventors.

I see no other why of doing anything practicel without delay exeepting through a Coryany organized by ourselves. Whe ther thia is practicable or not depende upon whit amount of meney would be needed for comerelal exploltation during the first year; what amount of money we could have taken up by ouraclven and our friendas and upon what anount of money would afford a romsonable asaurance againet the coate of iltigation furing the firat year.

The iden that ia vaguely growing in my mind is that we should organise "The American Aerodrome Company" to exp ploit the eerodromes ovelved by the derial Baperimont Asseeftion and have wr. Curtise manage the businese end of the
matter。
I would therefore abk 植．Curtise whst he thinks would be the minimtan mount of noncy regquired for the Pirst gear comaidering the fact that we bave already two atrodromes eompleted that can be ased for expleitation purposes．Ite should alao include in the estimate the manu－ Pheture of at loast one ether aerodrope at Bavendsport． Then let un oonsider hov far it weuld be pessible to riaime thia monount of money and a surficient amount more to pay the expenses of a moderate apount of ilitigation．

Should wo find any reasonable preapect of raising this anount it woula be worth wile formulating a schome to be presentea to otr．Charles J．Bell（for I very much fear that the initiative in this matter will have to corse fron us）．笥r．C．J．Bell is a busy man，fully occupied Fith ingortant busineas matters，apt we shoula not rely toe much upon hia good will and interest to initiate a Dhan for us．We whould tecide first what we want to dog and then sutmit our plon to him for eriticism．If，as a bualneas man，he aoes net approve，our proposition may stir him up to atogest an altermative plan．

This is the best I can think of at the present time， and I to not think we can occupy the short time remnine ing to us as an Asseciation to better advantage，than by dizcusaing the question of our ontrance inte the eomers eial riala．

A．G．B．

Iugrested Plan for Conyerting the Agroeiation into a Joint-gtock Conpany.

Pob. 20. 1909:- At a ocnference held Feb. 29 the foregoine notss coneorning "The Plane of the $A_{0} \mathrm{~K}_{\mathrm{A}} \mathrm{A}^{*}$ wore read and discussed. The idem of converting the association into a joint-stock company seewed to be recelved with favor and it Tais decided to formalate some pluns for aecomplishing this rosult to be considered at a subsequent conference. I woule therefore puggast the following tentative plan as basia for discusaion:-

Let ue proceed te rorn a company to be known as The Asorican Asredrome Company", to be organized under the laws of the state of Yev Yoriz with its hencquarters at Homondeport and with a nominel capital of 余 00,000 , divided into 1000 share of the par value of one hundred dollars, or 10,000 sharea of the par value of ton collars - the labter plan might posaibly be preferable.

To thia Company let the Aerial Hxperiment Assoeiation transfer all ita property, and inventions relating to darodronica, reeeiving in return the anonat of meney it has expended usen experiments, in the form of rully pata 4) shares, at par snd non-seacsable. The exponses of pate enting the aforessid inventions to be assumed by the company.

2his would dispose finally of the Agsociation. It would go out of exiatence and the Compony would taice ite place.

The twaly paid to sharea of the Company received by the Asseciation would be diatributed as follows:-

FIRs\%. Te Fris. Bell would be given onc per cent of the aharea received for every 含 000 dellars she had contributed te the suppert of the Asaociation; and the remainder of the sheres received would be aifided equally between A.G. Bo11, J.A.D. MeCurdy, F.F. Balawin, G. H. Curties, and Mr. Selfridge (the representative of the heirs of our late nonber Lieut. Selfriage). The fully paid up shares of the Corpany weuld belong to the above named peraons individually and they would be the firat and only atockholders of the new Compeny. The romesinder of the nominal eapital of 4100,000 in the form of undistributed aharea, rould bo placed in the Freasury of the Cempany subjeot to sheir aispoand.

At this etage the Company would oxist without any working capital in the form of cash and it would be neoessary to raise money by the saie of aome of the undistributed shares in the Treagury. The Company (that 18, the sbove nate ed individuals) could then order seme of the whares in the Treaaury to be sold; the atocicholdera fthat is, the above named individuals) to have the rigit to atzberibe for the etock at par in propertion to their eeveral holdinge. Should any shareholder aecline to taice up his full pre rata share, then the stoek not ae taken up should be seld to the higheat bidder, but not for lees than par. The same methed should be adopted In any aubsequent iastae of ateck.

The estimate of running exyensea made by Mr. Curtiss aoms te indicete that we coald support the company for a yoar if we could raise the gum of ten thouaand dollars as

$$
-210
$$

working capital. Then, when we have some income from any source, a pertion of the earninge could be lald aside to form a sinking fund, and the ramainder diatributed anong the shareholders as aividend.

How let us zee how this would work out in practice.
tra. Bell has sgreed to contribute a aum, not exeeeding in the ageregate $\$ 30,000$. She has done this, but our Tresourer reports that mere will be noeded to support the Associstion to the ond or Hareh. He eatimates that total at $\$ 34,000$, and chis ia probably a conesryative estimate. Mre. Bell has eet her heart upon the auceess of the Asseciation and will te her best to support it to the end of its allotted term, which will probably involve her in a total expenditure of (sey) 035,000 . The osn to no more than this so there is no use considering a further extension of time. Vo wher means of auport has presented i tself and the Ansociation vill have to eone to an ond on the 3lat of Hareh.

Few lot us ascume that the aetual cost of eur experimonts haf been 费:5,000 (contributed by wre. De12). We orgeno 1ze the Aerodrome Company on a basis of 8200,000 , and set aside $\$ 35,000$ in fully paid up sharea te be given for the property sand inventions of the hasociation. The belance of 365,000 te resain in the Treanury of the Comyany to be sela for cath ms required.

The Assoeiation gots $\$ 35,000$ in fully paid up wharse, Which would be i istributed as rellowst-

14a. Hell mould receive 35 per oent of this amount. wh the remsining as per cent mould be divided equaliy omone the five mentbere of the Aspociation siving 12 per oent of thsa anount a plece.

DActitibution.

認里, BoLl 358	Far value	v2\%ess0
A. 0. Bell 13%	par value	4,550
NeCurdy 13\%	par value	. 4,550
Bolduin 138	pat value	
Curestise 13%	par value	
selfridee 13 s	par value	
Total 10	pa	

We would ewn the st ohares individwaily in the prow portion shown abeve and could sell them or diapoat of them as we think beat.

In adalikon to this we would own colleetively, as The Compeng * the property and inventions of the A. Z.A., an have in out Ireasury 663,000 in the forn of undistributed shares.

It would be nocensent to sell some of thae Treasury shuras to raise eash for working capital say $\$ 20,000$, and we would have the zight to buy then ourselves at per in proe portion to eur heleings of atoek.

If we oan personally, or through our friends, tike up the share we are entitled to buy the following would be the amount to be subseribed by each shareholder.

Apounta to ba Gubparthed.

Hra. Bell	(345)	¢ 8500
A.0. Ben 21	(120)	$\underline{1500}$
杜ocurdy	(13)	1300
Eadduln	(12)	2.300
Cay\%asa	(12)	2300
	(13\%)	1.500
206al	300)	10000

 hnd Mra. Bell or thentritiends, and 65900 te bo provided by the frienda of Moturay, Balduln, Curtias, and Beifridec itrs. Bell and I oun undortause to IInd purchamern for our porportion ($\$ 6400$) if the othars oan dizanes of the ree rainder (55300) 。

Ia WeCuxdy, Baldwin, Curtian wn Belfridge sne the ir
 worth our whle considering tho rormotion af a Corynny st the preaent sdese. We cmnnot 65 to the puthic until wo have
 ter alone. A.O.B.

BTiss grxat oy cyenter Ix

Pob. 22. 1909:- We have waited long for the arrival of the nev Curtise engine to try an experiment with Drone Ho.s, Be11* Cygnet II. At lagt it cane and was auly instaliod last Yridey (Feb. 19); but the amooth slippery 1ee upon wien ซe deponded had diasppeared under about a foot of snow, so that the outlook for a suecessful experiment was disappeinting.

We were considering plana for clearing off a track when a rain-storm on Saturday (Faba0) saved us the trouble. Heavy rain and a comparatively high tomperature began to melt the snow. On 3unday evoning (Peb.21) the rain was maccecded by frosts so that tomelay (Feb.22) ideal conditions were pree mented fer an experimentse Glasay lee, no wind, and a beantifully sunahiny day.

We therefore eetermatnea to make en experiment without Waiting to teat the ten-foet propelier that had been prepared, and atcertain the proper gearing for the ongine. Theinovitable russing over minor details that always oceurs st the last moment took to the thole rorenoon, se that it was afternoen before mil wes resty. The resulte arc recorded arrong the axperiments noted in this Bulletin.

It was hardiy expected, on account of the great weight of the machine (ovar 950 Lbs), thet it would rise fren the 1ee, and in this we were not diamppointed It is obvious how ever that the enginc was overioadod with the ten-root propeller at a gesar ratie of $\mathbf{1 - 2}$ se that it aid not give us its

 Werurey Plet over Baddect Bay in the Gilvor-bart shout hal \& mile. Tis marks elesrly hiatorieal eventi- The fisat flitht of fiyingmachime in Canada. A.G.B.

B6b. 24. 1909: Wofurdy made a magniflcent flight of four and a half miles te-day in the in ivermert, cireumnavigating or rather eireumeroaing Fadecta Bay. Our only regret is that wro Baldwin and his wife mers not prebent to witnese thia great might. Orfieial coneretulations pave been ree ceived frem the town or Bnddecis. A.O.3.

 and itre. Haldwin lett abentime nge to that Douglan Hecurty and I romain as the acle repreaentative of the tot.t.

2xpparucsersi- Peported by the zitor.

Flite llodel of prone Fo.6.

Yebe 13, 1909g- The wite Oiones Kite ahom in Bulletin XOX p. 15 has been repalred. It was tried this afternoon Ilown by a Manilla rope 100 m long from a point 50 cm in front of the conter of the kite. The kite had been strengthenod चith beading whare the strain of the line cane (see Bulletin $x \times \mathrm{p}$.19). Wight of kite $178 \mathrm{~g}_{\mathrm{g}}$ gas or 39.26 1bs. Wight of riging-line 5328 grs or 11.74 1bs.
3e.1 Ixpe2 Ikp.3

Find 23.20 migh Find 14.25 mph Find 26.00 mph

Pull	A1t	Pu12	A1t	Pull	A1t
25	32°	60	44°	70	46°
30	33°	70	43°	40	46°
50	35°	60	36°	60	47°
60	46°	40	48°	40	49°
50	45°	50	45°	60	45°
30	44°	80	50°	40	45°
80	46°	50	52°	60	48^{6}
15	38°	80	48°	40	43°
40	36°	50	58°	60	44°
50	15	50	59	30	38

Ble.4
39.5

T0P. 6
Wind 25.50 mph tind 23.40 mgh "ind 22.25 mph

Pual	A1t	Pall	A1\%		Pu11	ALt
40	36°	20	44*		40	40°
50	40°	80	45°		20	33°
10	45°	40	40°		59	35°
40	35°	40	42°		30	37°
60	$3 \%{ }^{\circ}$	50	48°	\angle	20	37°
80	36°	40	40°	L	10	33°
40	40°	30°	580		50	$3{ }^{\circ}$
30	45°	30	40°		S0	30°
50	18	50	38°		50	40°
69	${ }^{15}$	20	40°		59	35°

Tlup.?		Try. 8	
wind 13.20 mph		wine 23.	00 mph
Pull	Alt	Pull	Alt
20	$38{ }^{6}$	40	40°
40	35°	30	$4{ }^{\circ}$
80	40°	50	40°
40	40°	40	39°
70	39°	50	40°
80	45°	60	45°
60	42°	60	48°
70	44°	$\%$	$37{ }^{\circ}$
60	45°	60	$47{ }^{\circ}$
350	120	60	45°

On the following page I give in a aunuary table the aggragate rendinge and the general overagess sne alse a oalculation of the efficieney of the kitese

-

Pu22 Altitude Find

\%e.	Obs	1bs	Ob	Ancle	008	Hph
3p. I	20	370	10	397	1	13. 20
Bap. 2	20	550	10	476	1	14.25
3q.3	10	500	10	452	2	16.00
3re. 4	10	390	10	406	1	13.50
	20	389	18	406	2	13.40
Fxpe 6	10	330	10	359	2	12.25
17x. 7	10	560	10	410	1	13.20
	10	520	10	428	1	23.00
3apo 9	20	560	10	462	1	14.40
720.20	10	580	10	473	1	14.30
Surantion Average	100	4700 47.00	100	4262 48.6	10	187.70 23.77

If the angular altitude betaken as $42^{\circ} 30^{\circ}$ then the sine is .676 and the coaine is.737.

Therefore with a total pull of 47 1bs. the vertical pull is 31.77 Lbe and the horizontal pail 34.64 1bs. The horisontal puil expreanes the drift.

The Lift includes the weight of the kite 39.26 1bs, the wight of the riyingwrepe 12.74 2bes, and the vertical pull 32.77 1be. Fotal Lift 82.77 2bs.

$$
\begin{gathered}
\text { Bryiciency }=\frac{\text { Kirt }}{\text { Crit }} \\
\text { Hrricieney }=\frac{88.77}{34.66}=2.4
\end{gathered}
$$

That is the inft is 2.4 times the frift.
\#emarksye The Kite riev quite atenaily during the above experiments $\mathbf{1 - 1 0}$, although I thought I detected a alight tendeney to longitudinal oeeillation.

It went off the wind ocessionaliy tivping cown one wingt but the metions were deliberate, there tas no tendency to alide down the hill sidewaya ab of structures of the Homondsport type, and thore was a graceful and deliberate recovery of position.

The atterxyt thas then made to increase the longth of the riyingmrope to 200 meteris. A squall eane, and the rite went to one side off the find and began to come down slouly by the hasio. The ine was released in time to prevent a bad smash, but failed to save the kite from lamage altogether.

It is propoacd to remedel this tite so as to convert its aeroplanes inte aeroweurves, and teat ite efficioncy vnder the mew conditien.

To next sried halr-alsed model of Brome HO. 5 , in order to make a Airect cocmarison with the preoeding experio monts with the model of Brome te.6.

Pob, 23, 1909z- Myingerepe 200 n Long attached 100 em from center of kite. This late is compesed of 736 tetrahedral vinged-celise surface se.9442 sq. (in (asy 40 sq. m). Wight of kite 19295 gin or 42.5 Ibs. Wient of sepe 5528 gns or 22.3.4.

- 6 -
(Model of EO.5)

720. 22

Wind 25.40 mph
Pull alt

70	28°
80	29°
100	32°
130	32°
80	$31{ }^{\circ}$
80	29°
70	30°
180	27°
100	30°
160	30°
354	2950

10 02t 5ye Eys
Aver. 99.0 1bs 29°.

Pamaricats The kite was beautifuriy steady in the afr ingisite of the guaty wind.

The Mying-roge was then let out until it was 200 m longe Firight of roge 10,646 gne or 23,45 Ibs.

2xp. 12
Vind 23.45 mph
Pall Ant

Hernataste ghe zite semed to be perfeetly oteady in the aif. In beth experiments 11 and 12 the atebility was
manifostly superior to that of the 0ionos medel uged in experinentis $\mathbf{3}-20$.

The kite made absi Landing and was somewhat donagod. but this was due to a sigtoice in handing it. The rope was carght on the eleat, se that a continuere ateady pall on the Line could not bo made uhile the kite line was being overo run, and no bow-lime wab used to roduce the otrain on the handilng iine. One ond of the wing piece struck the ground, and the eelis at that end vere ornshed in. The asuage vill be repaired. A.O.B.

sydrodrome Toy.

Feb. 16. 1909:- As guggested Mr. Bedwin has had made another hydrodrame toy, keeping the nieely, finished tin hyarodrome (Hulletin XXXIL sax mocel of to Cofery. The fresent on is a awall toy boat of wood deciced in, and previded with four seta of tin hadrodrones, one on sither side nem the bow, and one on aither side near the gtern. The surfaces locked vory andill although having an aras more than twice as great se those waed on the madel of the "query".

This baby hydroarone was temay Ploated in a bathtub and towe by a string when it at once rose out op the water on the nydro-aurfaces, but the reault did not seem to be axfieientiy etrizing to be of much interest to achild. For chia purgose we need exaggerated effects.

The motel has been annt back to the Laboratory to have Larger surfsces attachot. The area will be increased four-feld and simple aydroylanes will bo amployed when will be twite as seoply subrerged se as to pernit the boat io lift

Zrine 量ey.

Yeb. 19. 19098- Gardiner Bell tomay aubuitted a new riyIng toy which he thinke aight form the banie of a new yame for ohileren. It is an attempt to whilize the principle of tho erimary paper dart rormed by relding a pleee or poper ae as to make a dart effering an seute angle to the line of advance. The model ohown tomay was made of aluminue but was to申 heavy for the surfaes invelved. A leunching apparatus wse
placed on the floor and releated by pulling a triget when the dart was projected by the renction of a oolled apring. Gureiner Bell prapogez to augpend a ring as a target and have ehildren try to shoot their dartet through the ring. The proaent dart proves to be toe heavy for the purpoae and inother lighter one hag been ordered which will be of ailx over is framemoric of wood. A.B.B.

Drome Yo． 5 ，Boll 1 a Cymet 11

Pob．E8，19098－70perimonts were made thia arternoon with Drome Ho．S．BeIIts Cygnet II．Bufore atarting for the iee I read to the men at the Laboratory the folloaing note eom－ cerning the plan of the oxperinente

The obsect of the experiment to be tried this afternoon with Aerodrome No．5，Bel1＊a Cygnet II is firist，to teat whether it vill riae inte the air． and zecoon，thether while it is in the air it has the lateral atsbility dism played by kites of pure tetrahedral con－ struetion．

On secount of the great welght of the machine，esceeding 950 2ba．with san snd engine and ali，it is extronely Aoubtrul whethor the mishine will leave the iee．当e want te toat this point and not to manke a rishat．

植．NeCurdy in ragueatad when he ilfts the front centrol to get inte the siry te mate onky a short filight if the machine riaess and to go at no great elem vation wbove the iee．A horiaontal sisgt of Iroun 2 to 200 mundred feet will be suffielant to let us judge of the copap bilities of the machine in her present oondition．
 exnetiy what he propeaen to do，before he atartsy and tri．Bedwin unil seatter a fet men st polnts noar the proposed landing plaee se as te be at hand when the sere－ trome elingts．

緇．位edurty down soon enomeh to allew the mwohine to hove clear iee ahead of it for at least a querter of a nile so that she may ceme to reat aithout atriking againgt the shore， and to avela ary nceident lize that we had reoontly with the ice－boat．

The photographers thould be sosttered te one side of the line of Mingt ac as to increase the chances of getting a good pietiure．
The Gygnet the IX whe then taken out won the loe of Buddeex Bay mich must have been very thick for half the

-20

people of Baddeek seemed to be there, well eoncentrated upon the see near the machines- People on foot and people in texme.

A bresse had by this time aprung up of net leas thon six giles an hour fros the mouthwest, to tho snerine wes taken over the Bay, noar Carruth" plaee. MC. Curay took the aviatoris aeat and the machine wat turned round to face the wind, and the engine atarted.

Although the notor was evidenthy not developing its full power the puah of the propeller must heve been considerable for the men mere unable to hold the machine on the ali;pery iee and wero obliged to let go. Tho machine did net however aoquire mach apeed for the skatere upon the ice casily kept uy with it.

After gilaing for about 100 metera apon the ice the ongine stepped. or perhapa wss puryonely gtopped by weCurdy. After mome delay the machine was started agala with the onme reault.

I underatand that on one of the se triale, probebly the laat the pipe leading froe the gamoline tank broke, se that the engine had te be steppod.

A third trial was then mado, and it was obvious from my diatant point of view thet the engine waa working better than before. The machine began to gethor speed, but just as we were hoping she would, take the air, a noteo like anc explosion whe heart and the experiment cave to an end.

The noiae was tue, not to an exploaion, but to the auddon anapping of the propellor ahatt folloulng which the
propelier was thrown violently on the 1 ee and broke in three pieces.

Pur ther experimonts are peatponed until wnother propeller em be mete. 勒ile thin is teing done the engine 0112 be tranafarsed to the "giver-Derto wheh ull be tried upen the iee.

As ageneral concluaion we find that the engine is overleaded with tenmfoot propelier having a gear rasio
 of 9 rett diameter to be usse with the present gear ratie of $\mathbf{1 - 2}$, and another of $\mathbf{1 0}$ - Peet einometer enaloying a gearm ing of 2-3.

While the remulta sominy were sot uncxpeoted, we
 pormit of the ongine developing her full power we may be able to raise the manine into the air so as to observe its stability. One point that hae beon domenatrated te-day is, that a vertien rudder placed in front insteat of bew hind contrala the herimental atevriag of the machine. The action of the wind woa it tencot to turn the raakine to port or stambeari, but even with the acaell velecity attainct and with the xtailatance of the long aletgewrunnerw, HoCurty was easily sble to atear the machins into the windta ayo.

$$
A_{0} O_{4} B_{0}
$$

2xas \%illi of \%ig gitvileDnat.

Yob. 23, 180gte The Curtisw ongine was transferred fron Cyenet II yestertay to the silver-part, and this morning propelle experiments were made on the iee-bont machine to tost wht eh of the propellers we have would be sont auitable for the experiment. A propelier 7 reat B ivehee in diametar whi chosen wich hea been usea upon the 3iverDart in Waussondeport.

In tho afternoon the silver-pert wae taken out on the iee of Baddecic Bay; and a lagge eoneorurwe of people from Buddeck were present.

The cougregation of people and teate upon the iee yesterding near the Cygnet II had ahom the advianloility of polleing the crowd and koeplag thom seattered, and at a

 provided with the following notiee, wheh they displayed to visitore wherever necessary.

In order to areid the poanibility of any seoident vialiars are requested to keep at a diatanee frem the flyingo tnachine silver-bart, and not congregnte together on the iee, shey should remain bbhind the machine, or well orr to one side, cual Leswt e elear flela for the Labo ermtery deat itanta. They shoula not on any secount pliee themaives in the path of the suakine in front. It weuld be dingereus se be struck by it.

Beinn Bureagh, C.B. Feb. 25, 1909.
(5igned) Alexander Graham Be 21 Chairman ferial Joperiment Aswee.

This aerved ita purpose, and the viaitors kept well sesttered.

I give bolow some notaz of the experiments made today by Mr. MeCurdy and by Mr. Curtiss; and is will be unnecessary for me to sde any further deacription an my telem हrame to the Press, wich will be given in the next Bulletin, dsacribe aufficientiy the cetalla or this the pirst plight of E riying-mehine in Canada.

MeCundy's Accountso The morning of to-day (Feb.23) wai spent in getting the silver-Dart ready for a trial flight. The tranamisaion was changed frou the four V-belt drive to a eingle chain erive wheh, it wea anticipated, would net only cive greater efficiency but would be ef leag weight. The gearing used was 18-24 (or 3-4), the engine turning over 24 revolutions to tho propellers 18 revolutions.

We had three propellarag and to deede mith one Was to be used β aerica of teata weemade on the lee-boat, although the iee-boat was not allowed te advance during iny of the teats.

The propeller finally coeided upon wse one having a dianeter of aeven fiest 6 inches, and a pitch at the tip of $20^{\circ}-22^{\circ}$. This propeller was pet one of constant pitoh speed.

The silver-Dart was finally taken aeross the Bay on the $10 e_{\text {, }}$ and s start made at a ayot just off Framer's pont.

In the rirat trial a gaseline pipe sroke after the maehine had traveled abeut 100 feet.

Upon fixing his a second start was made wich mas vory successful. The mehine rowe from the lee apter traveling about 100 feet; and flew at an elovation of about tenthirty foet irectuy east for s diatance of about half a mile Landed \#ithout ary jar whetsoever. The speed I ehbuld Judge to be sbout 404 niles per hour. The machine mas operatse by J.A.D. 縣Curdy. IVC.

Curtiset Acoounti- In eheoditge a propeller for the Dart tomay (Fob.2S) we tried the three wich were avillabla on the icembort, to determine which would be beat suited for the purpese, the desired opeed being sbout 600 . The results were as followio

Prope 11 er	Speed	Pu11
He. 1	650	200180.
10.2	550	1121 bs .
170.3	450	50 2bs.

We chese \#o.l, a renodeled Marsondaport propeller. By apoeding the engine we got 825 (about) revolutions with this propelier, which proved plenty for the requirements.
 about seven inches mide and 20° at the tip, piteh feeresaing tosarde hub (not perfeet aerev), and had a curved face of hbeut 1 in 16.

We.i propeller whe seven feet four inches in aiameter, about $81 / 2$ inches maxinum wieth, and $22^{\circ} 1 / 2$ at tip, piteh decremsing tornarde mub, and had a curved faes of about $\mathbf{2}$ in 12.

Ho. 3 progeller was eight peet in diameter, 8 inchea wide and $22^{\circ} 1 / 2$ at the tip and a perfect serew. This propoller only hed a flat race.

The 311 ver-Burt wae givon a moat satiafuetory trisul tomay (Feb-2s). The speed was, I should judge, over 40 milea an hour; certininly more bhan we have had in uny prea vious rifehts either with this or the other maehines. The velocity of the wind was also greater than any in wioh we have attumpted to PIy burore. G. F, C.

gxcomp maxt oy sixvilenaig.

 becn eeligsed by becurdy's magnificent flight of this morning of $41 / 2$ miles in the silver-part. I have not time to write details as ve are to try the Cygnet II again this afternoon with the silver-Dart propeller. Uy preas dispatchos, and the following notes by Hocurdy and Curtiss tell the tole A.9.3.

Mecurdyis Account:- The second flight of a flying machine in Canade took place thiz morning (Pob.24) at Beddeck, When the A. R.A. Brome Me.4, MeCurdy'z Silvermbart, flew A diatance of $41 / 2$ niles.

Barted of Fraeer ${ }^{-1}$ P Pond, and headed up the Bay too wards the Leg Cabin. The turn to port was started there, making the circle as large as poasible. Fan \#\#\#\#\# cown Beinn Hhreagh shore eroseed the sand beach at the plaster dump; and atterptied a turn again to port just off william Faylors.

The space was however round te be too anall in ahich to corLetely negotiate the turn, and ae a landing was attempted.

The rachine, however, struck her starboard wing on tho iee, and opinning round amached a f ow struta and chorde. Orie wheel alse was broken.

Curtiss No. 3 engime worked be eutifully, net a skip all through the plight. The balanee wess ebout perfect, all the contrels workine weli.

The power developed was oufficient not only to erive the, machine geainst a sob mile wind, but alse wih it. The feel of the machine whe the gance both with and againat the wind. sec.

Curtise ${ }^{\text {Cugeonnt: }}$ The Might of the Silver-Dart tow day (Peb.24) was the beat ever saie by the members of the A. B.A. Herything worked perfectly. The machine raised quiekly but steadily, and covered a 41 stance, around the Bay, of permape $41 / 2$ miles at the rate of about 40 milea an hour.

NeCurdy haneled the machine porfectiy, and the secident Was catised more by a combination of circumatances. than by any fault of the aviator. G.H.C.

Peb. 2t. 19098s Unwilling to love the opportumity of the i\&eal westher conditions prevsiling tomay we transferred the engine and propeller from the damaged silver-bert to Cygnet II without amaiting the carpletion of the nev nine foot propeller being made rer her. Tried her on the iee just at dusk.

Three atarts were made, but she did not riae inte the air. During the thire trial Mecurdy (the aviator) ahut off power on hearing something in the machine onap suddenly. This turned out to be one of the guy wires attached to the enginembed and running up to the ridgerpole.

Wy should this have onspped unless unter tensionsl siraing And why should it have been under tensional atrajn unless the ruchine was beginning to lift the loadof the engine off the ieep I look upon the snapping of the wire as an epidence that the machine had begun to rese? a supporting speed.

It mícht be weil, bofore making further experiments. to teat the tensional atrength of the parts aupporting the ongine and man, by aupporting the suchine at as to allow the engine ete. to tang sithout towehing the floor. In all our teate the engine phrt has been aupportad from below, thereas In actusi IIIgit it wil be supperted fron above. A. A.B.

Yebe Lis. 1009: In a letter ohich appear: in Bulletin XIX p.23, Mr. Curtise nakea the suggestion that the application of power, parallel to the line of edvance and well sbove the center ef eravity, would inaure safety in case of secident. His reasen for this stimement is as fellowsio As long an the propeller is imparting ferward metion to the mad ine it is exerting a devnitard pressure by virtue of its hig lino of thrust. In order to counteract this dounward tendency it is necessary for the avistor to keep the front contrel continaally at an elevated angle. How auppose the engine stops during filght, the downward cornonent roes out of play and the front control, being normally elevated, tende to Lift the Eachine by the head as long as momentum continues. The point then is thin, that inmediately rollowing the atopping of the engine the head of the machine if thrown up. Fis are dealing bere with conditions lmodiately following a break down of the engine, er a alambled propellor. Obviousiy such action would practically eliminato the chances of an imenediate roredownwara plange. However there are other thinge te be oonsidered.

If the Line of thrust be above or below the conter or gravity, immediately inis thrugt is dimcontinued, the balance of the machine will bo changed. Indeed this is a nocesaary festure in the cage of the high line of thruet. We havo then aifferent conditions with wich te deal. The center of gravity is altered and the balamoe of the seroplane
is upaet. Headray has been checked because the mechine is working against the foree of erawity and it (the machine) being elovated at the bow is in a peaition to take a rear dommard plunge then hoadany is lost.

Up to this peint we have been dealing with conditions taking place after propulaion has falled. Let ua now take the conditions exiating before thrust has been discontinued.

A hich line of thrust being spplied continually is exerting a tendency to depreas the front of the machine. It is not increasing the load on the main surfaces becsuse the line of thrust is parallel to the line of advance. But it is necesuaryily bringing into play continuous resistance of the iront control in its efforts te keep the machine in the required di rection. Speed has been ascrificed by louding the engine with unneceseary resiatiance and taking it all in all has mafety been prosoted?

I was under the ixyression that during the conferonce the other day Dr. Bell made the atatement that in case of secident it would be eafer to have revelving propeller in the rear of an aeroplane rather then in front as there would be great danger of the aviator being thrown into the propeller wore it in front at the time of impact of the machine with the ground. Let us consider the two cases first from the standjeint of aarety and let us acsume that in each case the propelier is revolving under power at the time of impact with the ground.

Firat consider the case in which our propeller is in front. The propeller, placed as it is, will be the first part of the machine to come in contact with the ground. The
revolving bladez will be snapped off at the axis and tirough the actica of contrifugal force will be huried wide of the nachine thus rendering the propeller harmieas to the aviator even if he is thrown into its imediate vieinity.

Then too, the propeller being in front, it stands to remeon that the engine would alse be in front, and to my line of reasoning it sould be an infinitely more pleasant sensation to land on top of an engine, whose propeller ans embedced in the ground, than in the ether case to run the chances of having sn ongine with the propaller, wieh we have every reason to believe, would continue rotating until it atruck the ground, land on top of me.

A rovolving propelier in front of a machine wich it is sustaining in plight is throwing a constant current of air back upon its aupporting aurfaces. Fow it is intereating to note just how this current of air, thrown back from the propelier, aets in connection with the machine. It dees three things; and in order to make it clear let we consider these thinge as separate and apart fros one snother.
2. A portion of at sets upon free air inparting and suintaining a certain velocity of the meehine.
2. A gortion of it sets mpon the ander aurfaces of the supporting surfaces of the machine thercby inparting an sdeded lift.
3. Alae a portion of it acts upon atruts and swch goes inte hose reo aistenee.

In the above three casee we are considering the proe poller as being in front of the machine, now let wa conalier
-4-
it in the rear. In both eases. the relative iift ingarted to the machine by the air is the asme. It is the application of this ilft that is different. In the oase of the propeller in the rear the machine would ageed up until there is the asme preasure of air as in the former case. The velocity of the machine in the latter case will keep aceelerating until the preasure of air in the two ceases is exactily the sacs. In the firat case, there the propeller is in front the ayoed of the air has been incraased to suppert the mechine. In the secone case the apeed of the machine has been increased until the pressure of the air is surficient te aupport it inflight. This reasoning would sean to lead to the fact that in both cases we have the aase lift, for the preasure of the air is the ame. It is the velocity of the madi ine that ia changed, not the lirt. In the case of the propeliar being in the rear there ia as much power lovt in deaf reaiatance as there is in the case where the propeller is in front, because the preauure of the air in beth cases is the sare. The ceed reatstance remaine the sease, the lift is the aeme, but veloeity is ginined by having the propeller at the rear.
©. H.B.

Pobe 15n 1909t- Inere is a radical ©ifference between a suprorting murface and a control, wich, it would een, we ovorlook in the denign of our moohines.

It foes not follew that the best shape for a supe forting surface shoule be suopted in a surface ofich normsi$2 y$ preaents no angle of attack. A rudcer of any tind in oniy Cllled inte action oceasionmLIy.

While it is true that mutaining aurimose, parcoy in the line ef atvance, seen to be ore erpielens than ones Which are ss esep at they are wide, it by no mena follewe that his th the best form for a ruder aurfaeo of shy kind.

Is it net reasonable to ouppose that we are paying too much in head resistance fer the iceressed efficioney of the controiling aurfeeea.

There is another point in faver of eontrole deep sro fort to aft. It in wil know that exin friction per square foet decreawes with the length from fore to aft of the surfaees and while the quantitative value of experimenta or akin friction in, the ais may vary consiterably, we knev that in the water, were is is a large and measureable quantity it does teerease per square foot with the length of The surface.

Prof. Zahm's results, wich are almost itenticn boar out Froudca experiments on whterz and, for the bake of getting eceparizen, let us wecept them, and sea hew much we are paying in head resiatanee for our more erficient ountrols

Take a doublemeck boweontrol 12 feet by 2 feet giving a surface of 48 square feet, and compare it to a square 5 feet by 5 which would have a surface of 50 square feet.

Cutting edge struts

$$
\begin{aligned}
& \frac{26^{\circ}}{} \text { chords } \\
& \frac{26}{58} \text { e } 1 / 2^{*}
\end{aligned}
$$

32 ever. of $24,0=0.35$
\#ire
(ever. or $\frac{1 / 26^{\circ}=106}{2 / 25}$ sMart.

Total

- 40 mlles per hr. pressure : Therefore head resistance *
$26 \times .0288$ 5.13 Lbs.

```
Skin friction *
Total
```

.60 mg ft .

- Lbs. 4.30

Sicin friction e 40 milea per hr . $=.0282 \mathrm{x} 25=.3800$ Fotel $=4.4$ 1bs. Deaiatinne loss resistance about 18%.

How it is obvious that the square surface control need not have material twice as much is oroas aection as the -ther ene.

Instead of the $\mathbf{1 0}^{*}$ stook referred to $1 / 2$ wteel tubing oould be substituted to advantage - the sise of the strutes being aurrieiont to warrant ite

Hut even with \mathbf{w}^{*} steck and wire $1 / \mathrm{s}^{*}$ thick it has lese resistanee than the narrow/ eentrol.

It mast be taken inte account that with a aurface nemrly square the bending straine are matarially redweed.

After working this out I am of the opinion that a large single surface eontral almeat aquare is perhaps better than auperpesed arrangel ae we have then. At any rate the differenee between a aupporting aurface and a ructer is worth thanking about. F,W,B.

Kob. 15. 1909z- Practienily every flyingonsehine in exiztonce has been built by experimenters and for experimental purpoass. Tittle or no revenue has been derived fron their uge exeept perhape the winning of a Pew prines. Farman made one unguceesso tul ettempt at exhibition woris and the United states Govern
 led. Govermment contriacte and exhibition wort seen to be the two mest premising pusces of revenue. There are no protpects of the United itetes aevermment plaelng further orders for some time to come and when they to the Vrighte will no doubt be in on the eground moore.

The Canadian Government night be induced to invest In an seroctrome or twe eqpecialiy if they were built in Crinata, and I think this proapect ahould be eiligencly followed up.

Bhibitions may and min net prove profitable aceortIng to the way in which the uncertaking is hanazes. Farman ${ }^{\circ}$ a ©xpleit was cereainly aiseouragiage An experienced man woula be moat Likely to be suceesarul in this fiela, that is one Whe knows how to get contraets and how to get the money after the contraete are rulifiled. There are now aeveral ensh priaes कffered in fuerice and atill more abread. But when you play for theae big atakes you play against big odde and othere is hany a alip etee. However theae oakh prises leot very aluare Ing. I think prise chasing and exthibition wort whoud g° hand In hand.

Of the score or more machines lixely to be built the coming year there will be noarly as many dirferent modele and the manufacturer to get the business must, like the Voisin Brothere build anything that is wanted. Probably by another year the machines will become more atandardized and a certain ameunt of buelneas mey be expected frem private parties for machines for aport. Perhapa an Aerial Development Company could be formed te look arter Government contracta, prizes ete. and get in shape te handie the large volune of buaisese wich is bound to come ister.
o.H.C.

 on "Artificial and Fatural Fight" one 1a atruek by the fact that the work is pregnant with many practical ideas and valusble thooretical information which might be of the greatest importance to flying-machine experimenters, designers, or conatructera.

The auggeations and hintis aro greatly strengthened on account of having been aubjected to oxperimental testa and the reaulte obtained seem te thoroughly werrant thelr conclederation.

Uis reference in Chapter I to the amount of horse power conaumed in driving his machine through the air with no aeroplanea attached is very significant and points out the enormous waste of energy reaulting from improper tesign of strute, wires, ete. ete., and in fact all mambers which are oxposed so as to produce areaistance te motion along the line of thrust.

He very thorpughly and ayatematically oondueted a weriee of teate with the idea in view of tetermining the erosesectional form of atrut, or ehord, wich would not only consume the least pewer in being pubbed through the air, but Which alght at the aane time procuce an coonomical lift and so add to the erficiency of your machine. The best form arrived at was not the fish-shaped crosgesectional form in use on some of our machines, but a form having, both fore and aft, a rather sharp tapering, of squal dealgn. The erift of wuch a strut was very much lese than in the ease of the fiahwhaped, and the officioncy of thia form of crose-section when

-2

uasd as a lateral member was, at a low angle, ebout 6 . He is a atrong adrocate of the use of trussed ribs cavered over with frabric en both top and bettem and in this connection he atugests a very important point. The effieiency of an acre curve mon under way cepends upon the aurface holding ita predeternined curve. Fow with eloth applied in the ordinary manner this easential would be absent owing to distartion under pressure.

Ho not only eriticiaes this fault but goes further and suggeate a renedy. Cover the top of jour ribe with a material such aa rubber cioth wich is abeelutely air-tight and, as an underneath aurface, use a eloth which is to a dogree poroua. Mow the air is presaed through the under surw fince but cannot be foreed through the upper aurface therefore an air cushion is formed between the two cleths. Thia means that there is an equal atmospheric preseure on both sides of the under surface, hence ne alstortion will result.

In an actual experiment conducted by Haxim the efficieney of sueh a eonstructed seroplane was about the zame as that of an aeroplane formed up of rigla material.

We ahould, I think, take savantage of this important ouggeation in the construction of acre curvee. The front and back lateral chords to which the ribs abut could be mate in two plecei the seetion being made laterally.

How the top and bottem silks could be laced together pt the front and rear with the outalde section of the chords romoved when they are replaced, the lecing of the silks would be corpletely hidden and so the curve would not only look well
-30
but be very much "oleaned".
It is very unfortunste that Mr. Morim onitted to print the results of his experiments with propellers in tew tsil sa such a series of reaulty, would, at the present tire, be very valuable. He however atates as a general reault that the thrust is always conatant whether advancing or not. This wo have yet to find out for ourselvea on the lee-boat. J.A.D. YeC.

This paper is illustrated by blue print p. 54.

FILE NO. \qquad TO:DATE \qquad

NESTHNE $G \mathrm{AS}^{5}$

- Westhne EnGine ole
\qquad ENGINE
OIL

FORM NRC 47B (REVISED 24.2.49)

Pebe Sta 1909z- The follewing is a ceacription of a flying toy. Enis toy consiats of two parts, a launchway and a dart with a keel-atick which pita into a groove in the launehway. The dart is forced along the launchwing by a opring which aets on the recosi.

The aimensions of the launchway ars as followas- a inchea long by 2 inches wide and 1 inch deep. Thia launchway is aet at an inclined angle so as to give prefective ferce at a sultable sngle for a clide.

The Bert in of triangular form 12 inches long and 6 inchea at its face or rear edge.

In connection with the dart and launchway, a ring large onough to porvalt the dart to be shot through it might be used, and an incereating gane might be plaved by trying to ahoot the dart through the ring. G.H.B.

Pob. 25,1909 se The internal combuation or ges ongine is althout doubt the best power fer heavier-than-air fiying machines, and it remaine only to choose what type or atyle of gae engina is best adayted to the wort. of courat there art posaibilities in other forme of motive posfer but we consider only those wion are now in practical use. If, se some people prediet, flyingmmehines sre to be as common as sutamobilee thon motoris should be as atuple as autorsobile motors, and if posaible ever more reliable.

It is now coneeded that very 11 ght metors are unnec* tseary sna, may be undesirable if by their $2 i$ ghtnese their endurance anc roliability is wecrificed.

Suppose we mant on engine of $25 \mathrm{H} . P$. This should be sufficient for a flier to carry two men on hour or one man four or five houre (ssouning hht the engine will consume 302 ba . of fubl per hour). What type of motor should we adopt? Thore is a chelee of the bwe or reur eycle type, air or whterocoeled, towble oylinder opzowed, three, four or six cylinder vertieal, 5 or 7 cylinter atar ond seven or bight oylinder staggeres and othors besides innumersble syatems or 1 grition, Iubrieation, and valve section. With auch an sasortraent it would eecm airficult to make enolee but when we consider that eimplieity and reliability are the nost inportant reguirenents, i believe it is asfe to dism Inate ali the typas wich ean be conalderea in the experi\#ental state mad oheose an engine whioh has been built by the

Bulletin wo.xXxIV
thousand, and is in constant daily uee in sutonobilea, notor boats ofet- This is the four oyilnder vertical.

The reason that this number of eylinders and type of engine is se populat 1s, that it give almest perfect t nnce, even torgue, and in 25 H.P. aize, can be bailt muok aighter than an engine of one twe or three cylindera.

Such an engine, with all sceewsories, including th cooll:g syatem, built of beat materials and with all unn essary weight eliminated, will weigh about 6 lbs. per H.P. The ongines which are cescribed as developing a 4.8 . to every $2 \mathrm{~L} / 2$ to $3 \mathrm{~L} / 2 \mathrm{Lbs}$. Wight, will, , times out of 10 , in actual practice wigh 5 or 6 1bs. as the eatalogues or deseriptions make no allewnce for eoling, lubrication, balancemathech ete.

Asating that we are right in adopting this type of engine on account of itesimplicity, reliability, and the ract that this is so universally used and uncerstood, lot ua consider if there is a may or inproving the ongine aside from the uee of better matetinas and earerul worknanship. I as satiseriod that there is nothing more to be sought in the ganeral ayetem of iubriction, ignition, and carburation, but there is a chance for inprovement in the valve aetion. Valve ports or any uneveness of the interior of the combustion chamber are to be avoiced. Valves on the aide of the oylinder, wich ia a ceason conatruction, is bod bee cause the exylosion space is divided. Tho nore compact this exploaion epace can be cesigned, the mere perfeet if the ignition and the combuation of the gabes. Any protruding
edgea or cormert are alae objectionable as they become ree hot and cause prealgnition of the ineoning charge of ges which either coereases the efficiency of the engine or requires much more eceling than would be neceasary with the beat deaign.

In the new engine being built by the Curties $\begin{aligned} & \text { wrg. Ce. }\end{aligned}$ the rollowing design as been shoptek. (See figeI).

The advantage can readily be veon when it is eompared with Fig.2, which is a comon conatruction. The placing of the Valva at an angle in the cylinder hest not only nakes a nore perfect shape combuetion chasber but aleo allows of the use of very large valvea, mich ia genernily known to be A noat deairable peint.

The twomcyele engine has 1 te sevantages, but dees not equal the four-ayele when $\mathrm{E} . \mathrm{P}_{\mathrm{o}}$. par lb . welght and Puel consumption are considered. One of the pointa of advantage clained by the twe-cycle echeel is the absence of valves Which are a posstble souree of trouble in the rour-cyele engine, eapecially the exhaust valvea leaking from the bee coning pitted by the excoosaive hat of the burnt gas pasaing out. Thia fault can however be entirely overcome by the use of caat-iron rins homogoneously welded to the valves. Caste iron doea not pit fron heat and thie type of valve can be run for y ena without regrinding. Thia overeones the prineipal disudvantage of the four cyele as compared with the two.

Thooretically an explosion ewch revolution, as see oured by the two eyele system, would give more power for the same alae cylinder than an axplosion every other revolutiea
as in the four cyle. But a part of the baynt gas alwey reo moine in the eylinder in the two cycle type, and cuts doun th zean effective zreacure besides making the engine much more difficult to cool properly, not only from the Pact that there is an explesion every revelution, bat bre cause of the imperfect combustien canaed by the burnt gas Elxing with tho incoming charges whereas in the foux cyele the burnt gasess are almeat completely ejected by the ane huset atroke and the oylinder is given an opportunity to cool on the suction starales.

Tht. two oycle encine however has undergone great ino provereat in the leat few years and there is a possibility 011 ts yet eqpalling the feur cyclein erfieiency.

Te stea v. I would reecamend for flyingmeshinea requiring $20-35$ in.P. a four eylinder vertieal water-ceoled pour crele engine vith a aingle float feet carbureter mechanieally operated intake and exhanst valves in the head, foree feed and liflath Lubricasion and magete ignition. For greater power an 8 ejlinder with wwo sete of rour eyLindors eot an an angit of 90° and wth one of each sot of connee ting reds sttached to the wose arank, fitted with two carbureters, one for each set of cylinters, lubrication by both gear puat fireet to bearinge and mplash, cylinders corper-jacketce, water-coolat, mechanically operated walves In the heat aptrated by single push rea and ritsed with both magnete and battery ignition. G. H. . .
(See blue print p. 61)

 ion and pardilel to eseh other attoched at or near their center ta a forut or ber raning pertandiewlar to anda levers ond on onith they may turn freely with acid bar or atrut as
 fromright to left an mil sa to elevsta and depress. The at t wo Luvera cupport at thoir forrard end a front eontrol. Their oppoalte enda beiag graspes by the hand of the oper-
 above mintioned tranoverae strut or bar rafatung perpendicular to aid lever and in a lateral Aisection, in eomection with tho msehine, this combination allew the overator so move matil Lovera up or com clevating or dopreasiag the front contrel. It alise sllowe of a movertnt of the levers from right to laft the levera alway keoping parallel to one another), ant it aleo allows one lever to move up and the - ther down.

The three above mentieme corbinatione have the rollowing efreotse (1) To elevith or tepreas the front control.
 to the abe extent. Tis sction steer the machine up ar doun as desired.
(2) Ie teral stobilits ia brought about by tarping of the frant control alevating ane sise shd depreasing the other, by moving one lever up sunt the other downe

Ot following case may explain more clearly the action broutht about. Suppoae the operator winhe to depreas his machite on the gort side and olevate it on the starboatd ai de, he tharefore depreasea his rigt lever and levistea Ma left. At the control the sction will be just t^{2} opposite, the right portion will b elevated, loft portm ion depreased. Neting on the wind or advonce the advancing angle diqlayed in this way ahoul oring about the deaired - If act.
(s) Een horizonkal stecring toricht or left by front contral is brought sbout in this weyta In connection :i in the horizontal front contrel thore is a verticel control pivote to the horizontal control at tho forward edrees of both. Th rear edge of the vertcal rudder is rastenad by reans to wire to the body se that if cannot be move. Now by moving the levere from right to left the horisontal pront control is moved in ito oum plane from left to right. The front serein of the virtical rutder being fastene te the front exgin of the horisontal control is noecsarily movec sise. The raar rargin being held stationary to the body - I the machin does not move. In this way the wind of sedVance may be made te act ono elther alde of the vertical control steering the rachine to right or left at will.
0.8.

$$
111
$$

