CIHM Microfiche Series (Monographs) ICMH Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadian da microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below. L'Institut a microfilmé le meilleur exemplaira qu'il lui a été possible de se procurar. Las détails de cet examplaire qui sont peut-êtra uniquas du point de vua bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

12	Y	16X		20 X		26X		28.4		
10×	14X		18X		22 X		26 X		30 X	
This stam is fill Ce documant e	med at tha raduc ist filmé au taux	tion ratio ch de réduction	neckad below n indiqué ci-	dessous.						
	ten as suppretition									
Addition	al commants:/	P.	agination	n is as	follows	: p. [3]	5]-326.			
					L	Generiqua	(periodidi		ranson	
						Masthaad	(périodia	ues) de la liv	raison	
mais, lors pas été fi	squa cala était po ilmées.	ossibla, ces p	ages n'ont		L	I I I I I I I I I I I I I I I I I I I	epart de la	IIIIIIIIII		
lors d'un	a rastauration ap	paraissent d	ans la texta,			Caption o	f issua/	Incore		
bean omi Il sa paut	ttad from filmin t que cartaines pl	ig/ ages blanche	s ajoutées		L	raye de th				
within th	a taxt. Whenava	r possible, t	hese have			Title page	of issue/			
Blank lea	vas added during	restoration	may appear			Le titra de	r i en tete p	novient.		
distorsion	n le long de la ma	arge intériau	ra			Title on h	ader takar	n from:/		
La raliure	sarrée peut cau:	ser de l'omb	ra ou da la							
Tight bin	ding may cause s	shadows or o	distortion			Includes in Comprend	ndax(es)/ Lun (des) ii	ndex		
Bound wi	ith other mataria	ni/				Pagination	ontinua	m/		
Filtherids								,		
Planches	plates and/or ille et/ou illustration	ustrations/ hs an coulau	r		V	Qualité in	igala da l'ir	mprassion		
						Quality of	oriot varia			
Encra da	coulaur (i.e. autr	ra que blaua	ou noira)		V	Transpare	nce			
	isk lie other th	an blua or t	black)/			Showthrou	ugh/			
Cartes géo	ographiques en c	oulaur				Pages déta	chéez			
	maps/					Pages deta	ched/			
La titre de	e couvertura mar	nque				Pages deco	lorees, taci	hateas ou ph	quees	
Cover title	e missing/					Pages disco	loured, sta	ined or fox	hd/	
Couvartur	e restauree at/ou	u peniculee								
Covers ras	tored and/or lan	ninated/				Pages resto	ored and/or	laminated/		
Covers de	maged/				V	Pages ando	mmagées			
					_	On sea dama				
Couvertur	e da coulaur					Pages de co	oulaur			
Coloured	covers/					Coloured p	ages/			

The copy filmed have has been reproduced thanks to the generosity of:

University of Toronto, Science & Medicine Library

The images eppeering here are the best quality possible considering the condition end legibility ... of the original copy end in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded freme on each microfiche shall contain the symbol \longrightarrow (meaning "CON-TINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrems illustrate the method: L'exemplaire filmé fut reproduit grâce à la générosité de:

University of Toronto, Science & Medicine Library

Les images suiventes ont été reproduites avec le plus grend soin, compte tenu de la condition et de la nettaté de l'exempleire filmé, et en conformité evec les conditions du contret de filmege.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés an commençant par le premier piet et an terminent soit par le dernière page qui comporte une empreinte d'Impression ou d'iliustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant per le première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une taile empreinte.

Un des symboles sulvants appareitra sur la dernière image de cheque microfiche, seion le cas: le symbole \longrightarrow signifie "A SUIVRE", le symbole ∇ signifie "FiN".

Les cartes, planches, tableeux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à pertir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'Images nécessaire. Les diagrammes suivants Illustrent la méthode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

3

(ANSI and ISO TEST CHART No. 2)

1653 Eest Main Street Rechester, New York 14609 USA (716) 482 - 0300 - Phone (716) 288 - 5989 - Fax

ŝ

033

200

0

3 176

ſ

TORO

IVERSITY OF

FROM THE DOMINION OBSERVATORY

THE ORBITS OF THE SPECTROSCOPIC COMPON-ENTS OF d BOOTIS

BY

W. E. HARPER

PLATE XXIV.

THE ORBITS OF THE SPECTROSCOPIC COMPON-ENTS OF d BOOTIS

BY W. E. HARPER

THIS star, $a = 1.2^{h} 0.05^{m/8}$, $\delta = \pm 25^{\circ} .34'$, photographic magnitude 5:3, was announced as a spectroscopic binary by Campbell and Wright in 1900. Approximate measures of the four plates secured showed a range of 75 km. Their measures referred solely to one component; they made no mention of the spectrum of the other component being visible, though, no doubt, such is the case on two of their plates.

Fifty-three spectrograms of the star have been obtained at this observatory during the years 1907, 1910 and the present year, and these form the basis of the present discussion of the orbit. The first four were made with the Universa, spectroscope as adapted for radial velocity v ark, linear dispersion at H_2 18:6 tenth-metres per millimetre, the next one with three-prism dispersion of 20:2 tenth-metres per millimetre at the same region, and the remainder of the plates with the new single prism instrument, dispersion at same region of 33:4 tenth-metres per millimetre. For number 3368 a Sigma plate was used ; all the other plates were of Seed 27 Emulsion.

As intimated above both spectra are visible, (Plate XXVI.*) are quite similar and of type F 5. For considerably over half the period the spectra are well resolved and measures were made on the lines of each component. At first all the lines that were at all measurable were used; gradually those were eliminated which from their complicated nature could not be depended upon.

* NOTE. Owing to the fact that die enlargement was made by moving the negative up and down, a few spurious lines are introduced.

The final onto me was a selection of thirteen lines, given in the table below, $n_{t'}$, i which all the measures were based. When all the measures were completed a table of residuals of each line, from the mean given by the plate as a whole, was formed and new wave-lengths were derived so that the sum of the residuals equalled zero for each line. The first column gives the wave-length as assumed at the start, the second the number of times measured, the third the average residual and the last the wave-length as corrected for this star. Outside of H_2 it will be noticed that practically all the lines selected were those due to iron or blends of iron.

LINES USED IN d BOOTIS

λ	Times Measured	Average Residaal	Corrected λ
4549.766	34	o o km.	4549700
4415'293	41	- 314	4415343
4340.634	31	-8	-1310.000
4325.820	43	+ 112	4325-812
1308-081	54	+ 2.7	4368.042
4271.760	53	- 0.0	4271.773
1200 540	50	+ 3.2	4200.405
4143.928	49	~ 0.7	4143.938
4971.001	20	- 2.9	4971.940
1053.756	35	- 2.0	4003.795
4045.975	52	- 012	4045.978
4005.430	47	+ 51	4005.362

With the exception of the last line, whose wave-length was very uncertain at the commencement of the measures, none of the wave-lengths as assumed are in very great need of correction. An unpublished investigation by the writer of the effect on the elements of an orbit of the use of wave-lengths which, treated similarly, gave residuals somewhat as those above, shows that the changes are almost inappreciable. However, as the last line needed correction it was decided to use the corrected wave-lengths throughout and the measured velocities were revised accordingly.

In the table following is given a summary of the measures. The phases are recked from the periastron passage finally

Orbits of the Spectroscopic Con *onents of d Bootis 317

accepted, J. D. 2417679:523, using the period 9:6045 days. The maximum weight assigned a place was 10, depending for the most part on the sum of the weights given the separate lines when the measurement was being made. The residuals given are scaled from the final curve. These appear only for those plates where the spectrum lines of the components were resolved. The other velocities are derived from measures on blends and are subject to considerable error. For some distance on either side of the intersection of the curves with the γ -line where the lines are more or less overlapping the tendency is for the measured velocities to deviate from their true position towards the tendence to observations can only be made use of to advantage when ground over a large phase interval, the extent of the intertait on each side of the crossing point being approximately the scame

MEASURES	OF	d	BOOTIS
----------	----	---	--------

Plate			Component I.			Component II.		
No	Jolian Day	Phase	Velocity	W1.	0 - C	Velocity	W1.	0-C
699	2417671.769	1.851	+ 85'0	10	+ 6.0	- 59.9	9	+ 2.8
776	719.635	1.604	+ 71.3	2	. 7.51	71.5	2	8.7
778	720.593	2.652	+ 81.5	4	+ 12.0	- 54'7	3	2.2
798	7727.053	.108	+ 17.8	6	1			
3368	8759.854	4'627	+ 17.1	5				
3406	826.768	4'310	+ 7.6	7	1			•
3475	832.702	.039	+ 35.7	5				
3512	859.591	8.319	- 54.2	10	4.2	+ 73.1	6	+ 0.7
3518	804.584	3.208	+ 20.9	10	1			
3524	866.581	5.705	+ 0.0	9				
3550	881.586	1.201	+ 73.4	9	- 3.9	- 61.2	- 9	0.0
3577	903.220	4.256	+ 10.3	7	1			
3594	913.245	4.643	+ 13.5	6	1			
3609	910.526	7.057	- 64.8	4	- 5.2	+ 69.3	3	- 11.7
3624	8923.534	5.031	+ 3.2	3				
3896 -	9927 '967	3.814	+ 28.4	6				
3926	046.875	3.213	+ 20.0	2				
3945	053.958	'992	+ 00.0	8	0.0	- 56.6	5	7.0
3954	054.925	1.920	+ 83.2	- 9	+ 4'5	- 56.2	7	7 5'8
3979	007.890	5.319	+ 8.2	4				
4044	098-881	7 497	+ 57.0	3	- 0'2	+ 78.4	2	- 214
4052	099:590	81506	- 40.0	7	- 1.8 /	+ 69.5	5	+ 2.2
4004	102.846	1.857	+ 77.7	5	- 1.0	62.8	5	m 410
4074	103-833	2.844	+ 04.8	7	- 0.1	~ 60.2	5	= 12.4
4120	112.892	2.200	+ 79.0	8	+ 3.8	- 59'3	6	0.0
4142	120.824	.050	+ 49.3	- 3	- 1.2	30.0	2	+ 214
4150	129.844	'042	+ 10.3	- 9				
4172	134.800	5.028	+ 8.4	10				
4183	137.853	8.051	- 55.1	3	+ 0.5	+ 75'0	.3	3.2
4190	138.712	8.910	29.0	-4	2'0	+ 57.2	2	+ 8.5
4208	145.807	0.400	40.2	5	+ 0.5	r 66'9	4	+ 1. 1
4218	140.816	7.409	52.5	7	+ 5.0	± 741	4	~ 6.0
4233	148,801	9.394	-+ 0.4	7				
4230	149.708	.092	+ 49.8	5	- 4'2	35.4	2	+ 1.5
4252	151.784	2.773	+ 00.0	7	0*2	- 50.0	4	~ 0.0
4200	152.781	3.770	+ 22.0	4				
4278	155'812	0.801	45.3	4	+ 3.2	+ 78.0	2	·r 0°2
4504	173.087	5.407	1.0	0		. =		
4312	170.740	8.520	40.0	4	+ 3.4	+ /10	2	1 1.9
4315	175.700	.935	+ 71.3	7	+ 7.8	47.9	5	0.8
4328	183.710	5.891	17.4	2				
4330	187.705	-275	+ 11.0	- 2		4.0.8		
4344	180'000	2.230	+ 73.0	- 5	2.7	10.5	- 4	0.8
4357	100.020	0.100	0'7	7				
4382	211'000	1.002	+ 13.2	9				
4300	215.046	0.008	24.9	~				
4301	210.502	349	+ 9.9	-				
4405	2211580	5 343	1 1214	7		1		- 12
4411	222.074	0.431	37.0	2	1.1.1	515	1	5.8
+120	225.556	0.313	+ 0.1	0				
4425	231.003	5 750	+ 50	0				
4431	232 579	1 1 32	14.7		1 12.0	1 010	3	• 13.3
4449	230.032	1100	1 94.0	1	- 4	3911	2	0.1

Orbits of the Spectroscopic Components of d Bootis 319

For convenience of reference, the early observations of the Lick Observatory are here appended.

LICK OBSERVATIONS

Date		Julian Date	Velocity	Residual from Curve
1900 March	27	2415106-881	+ 79	+ 3.0
April	4	114'953	+ 3	- 0.3
**	9	110.002	+ 11	1.7
	17	127.814	+ 60 ±	+ 0.0
1902 May	27*	897.715	+ 11	- 1*2

* Unpublished, but communicated through kindness of the Acting Director.

The period deduced from our own observations and the published ones of Lick, assuming their observations on the meridian, was 9:605 days. This was the period used throughont. A correction of -0.0005 days was made to this when the G. M. T. of the Lick plates was received. With the exception of the first four all our observations are practically of one year, so that the small correction to the period will not affect the results. Likewise three out of the four 1907 plates are at the crests of the enve and no appreciable change will result from the use of the revised period. The correction, however, will accumulate to approximately 0:070 days in the interval over which our observations extend and accordingly a correction of ± 0.070 days was added to the derived value of T making it 2417679:523 as given in final elements.

The observations on component I, were first grouped according to phase into thirteen normal places. The peculiar deviation effect near the intersection of the curve with the γ -line, previously referred to, was in evidence in four or five normal places, abnormal residuals for these groups being the rule.

Preliminary elements by the graphical method were obtained, which outside of the groups mentioned, satisfied the observations quite well. They were the following :

P .	= 9	605	day	S
-----	-----	-----	-----	---

c = -15

- $\omega = 280^{\circ}$
- $K = 68^{\circ} \text{ km}.$
- $\gamma = + 9.23$ km.
- T J.D. 2417679.600

Preliminary elements for solution of component 1. It could be seen that in a least-squares solution the large residuals, alternately above and below the curve on each side of the crossing points, would play the most important part and would cause considerable changes in the elements; nevertheless, as a matter of interest merely to see the extent of such changes, a solution was made. The period was considered determined and corrections were obtained for the other elements as follows;

> $\delta \gamma = + 2.54 \text{ km.}$ $\delta \Lambda' = - 2.48 \text{ km.}$ $\delta c = + .090$ $\delta \omega = - 13^{\circ} 11'$ $\delta T = - .235 \text{ days,}$

so that the first corrected set of elements for component I, are :

P = 9.605 days c = .240 $\omega = 266^{\circ} .49'$ K = 65.52 km, $\gamma = + .11.77 \text{ km},$ T = J. D. .2417679.365.

If we compare these with the values finally accepted we notice differences of consider: ble magnitude. The eccentricity is here considerable increased. Another marked effect is the lowering of both positive and negative maxima from that given by the final elements which latter maxima seem well substantiated by the observations at a time when the observed velocities can be relied on.

Though a second solution according to the foregoing grouping should have been carried out to satisfy the agreement between equation and ephemeris residual, yet any changes thereby deduced would have been of a vanishing order, and as the grouping at basis was faulty, no good purpose could have been served by such solution. In the new grouping which was now made all the plates whereon the component spectra were not distinctly resolved were grouped into two normal places at or near the two

Orbits of the Spectroscopic Components of d Bootis 321

points of intersection of the curves. They have, owing to the number of plates involved, relatively high weights.

The same set of preliminary elements as before were used and the following corrections resulted.

$$\delta \gamma = \pm 2.38 \text{ km}.$$

$$\delta K' = \pm -16 \text{ km}.$$

$$\delta c = \pm -030$$

$$\delta \omega = --12^{\circ} 01'$$

$$\delta T = \pm -206 \text{ days}.$$

The corrected elements for component I, then are:

$$P = 9.605 \text{ days}$$

$$c = .180$$

$$\omega = 267^{\circ} 59'$$

$$K = 68.16 \text{ km.}$$

$$\gamma = + .11.61 \text{ km.}$$

$$T = J. D. 2417679.394$$

The sum of the squares of the residuals was reduced from 88355 to 14711.

Elements corresponding almost to the above corrected values were used as preliminary in a least-squares solution for component II. The maximum positive for the curve seemed to be fixed about \pm 79 by the observations, while the maximum negative was \pm 61. This with corresponding values for c and ω gave a somewhat discrepant value for γ , nevertheless the elements following were assumed as preliminary for the solution.

P = 9.605 c = .180 $\omega = .88^{\circ}$ K = .70 km. $\gamma = + .8.56$ km. V = .10, 2417670, 204	Preliminary elements for solution of component II.
T = 1.0, 2417679.394	

The two normal places for component I, previously referred to as comprising all the plates on which the lines were bleuded were also used in this solution. This seemed a reasonable procedure as the bleuded observations refer equally to both com-

ponents. The following corrections were the result of this solution.

δγ = + 1.07 km.δ K = + 2.29 km.δ c = - .025δω = + 2°.10°δ T = - .031 day,

so that the corrected value for component II, are :

P = 9.605 days e = .155 $\omega = 90^{\circ} 10'$

K = 72.29 km.

 $\gamma = + 9.63 \text{ km}.$

 $T = J, D, 2417679 \cdot 363.$

These values reduced Spoor from 490.8 to 143.0.

The question now arises as to the best method of combining the results arrived at from each component to secure uniform values for the elements. For the values of γ , e and T must be identical, whilst the values for ω must differ by 180° . As we have determined them, they are :

	Component I.	Component II.
2	+ 11.61 km.	+ 9.63 km.
e a	180 267° 59'	(270" 10 + 180")
1	J. D. 2417079 394	J. D. 2417679'303

One might combine them according to the relative weights of the observations, which in this case are 31.3 and 25.5 for components I. and II. respectively. Again one might combine according to the probable errors of the determined quantities, weighting as the inverse square of the probable errors. Both these have been performed but before giving the results a better method than either, suggested by the Director, Dr. W. F. King, will be given. It consists in combining all observations on both components into *one* set of observation equations from which, of course, only *one* set of elements result. In building up the obser-

Orbits of the Spectroscopic Components of d Bootis

vation equations one must 1 careful to remember the for ω in one case we must use $180 + \omega$ in the other.

For preliminary elements the following were assumed.

 $\begin{array}{c|c} P = 9.605 \text{ days} \\ e = .180 \\ \omega = .268^{\circ} \text{ and } .88^{\circ} \\ \gamma = + .8.56 \text{ km.} \\ K_{1}^{*} = .67.87 \text{ km.} \\ K_{2}^{*} = .70^{\circ} \text{ km.} \\ T = \text{ J. D. } .2417679.394 \end{array}$

This solution gave the following corrections :

 $\delta \gamma = \pm 1.25 \text{ km},$ $\delta \Lambda_1 = \pm .53 \text{ km},$ $\delta \Lambda_2 = \pm 2.05 \text{ km},$ $\delta e = \pm .011$ $\delta \omega = \pm .5^{\circ} 00^{\circ},$ $\delta T = \pm .059 \text{ days}$

Hence the final values which are considered as definitive, with their probable errors, are the following :

P = 9.6045 days $e = .169 \pm .011$ $\omega_1 = 273^\circ + 2^\circ 55'$ $\omega_{2} = 93^{\circ} \pm 2^{\circ} 55'$ $K_1 = 68.40$ km. -0.92 km. $\Lambda_2^* = 72.05 \text{ km}_{\odot} + 1.15 \text{ km}_{\odot}$ $A_1 = 69.00 \text{ km}.$ Final $B_1 = 67.80$ km. Values $A_{i} = 71.41$ km. $B_{c} = 72.69 \text{ km}.$ $T = J, D, 2417679 \cdot 523 + \cdot \cdot 073$ $\gamma = \div 9.80$ km. ± 0.56 km. $a_1 \sin i = 8,904,000 \text{ km}.$ $a_i \sin i = 9,380,000 \text{ km}.$ $m_i \sin^i i = 1.36 \odot$. $m_i \sin i = 1.29$).

The value of $\Sigma \rho v v$ for the normal equations was reduced from 786.5 in the case of the preliminary elements to 429.8 and as may be noted in the following table, last column, satisfactory agreement was obtained between equation and ephemeris residuals. The phases in the table are referred to the final value for T.

NORMAL PLACES, COMBINED SOLUTION

	Mean Phase	Mean Vel.	Weight	0 C	Equation-Ephemeris
- 1	1.737	+ 78.53	2.5	- 18	+ *00
2	2.171	+ 79.71	2.	+ 2.29	+ *09
2	2.785	+ 69.21	2.	+ 2.70	+ '22
3	2.160	+ 51.60	• 3	- 2.42	+ 16
2	6.610	- 38.70	2.	+ 6.67	- '08
3	7:407	- 56.06	1.2	+ 73	- '08
-	8.262	51.41	1.2	3.17	- '12
8	\$-657	- 20.87	2.	- 1.12	- 114
0	-652	+ 11'26	1.2	- 7.65	- '00
2	055	+ 68.47	1.5	+ 4.00	+ .05
	933		2.5	+ 2.18	- '02
1	1 /00		3.5	20	- '05
2	2.200	62.62	1.5	- 1.62	- 113
3	2.302	- 02 05	1.5	- 14	07
4	4.782	+ 12 00	10	+ 6:25	+ '04
5	0.575	+ 13 25	1	T V 35	1
6	7.043	+ 73.83	1.	- / 30	T 43
7	8.487	+ 09.00	1.5	+ 2.08	29
8	9.526	+ 8.41	4.5	- 2.28	+ 13
0	.872	- 46.72	1'5	- 2.00	+ '11

The probable error of a plate obtained from the residuals as scaled, with their corresponding weights, is ± 3.21 km per sec. In the curves shown, which represent the final elements, the continuous curve and circles refer to component I, and the broken ones to component II.

A comparison of the elements common to both components, arrived at in the various ways, is given in the following table.

COMPARISON OF ELEMENTS

Elements	Solution Component I	Solution Component II	Combined According to Weights	Combined Acoording to Probable Errors	One Direct Solution
) e	11.61 km. 1180	+ 9.63 km. 155	+ 10'72 km. '169	+ 10.80 km. 1170	+ 9.80 km. -169
10	267° 59 9°394	<u> </u>	208 53	9*377	···· 9'453

There seems no doubt to the writer that the last solution wherein all the observations on both components are grouped into one set of observation equations resulting in a u...iform set of values, is the only rigid one, and, as previously stated, the suggestion for such a procedure came from the Director, Dr. W. F. King, to whom my acknowledgements are due for this and other valuable suggestions.

One detail in which, for future work, the foregoing can be improved upon. The two groupings representing the blend

plates should be broken up into four, with residuals scaled from each curve, the total weigl.⁴ assigned the four normal places being equal to that formerly given the two: or, retaining the two normal places, adjust the corresponding residuals in the observation equations so that they represent the deviations from both enrices instead of from one alone as in the present discussion.

DOMINION OBSERVATORY, OTTAWA, CANADA, August, 1911.

