The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliegraphically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cat tes géographiques en couleur:Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bieue ot noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. zes pages n'ont pas ètė filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de _ ₹ procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$

Pages damaged/
Pajes endommagées

Pages restored and/or laminated/
Pages restaurėes et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages dètachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tete provient:Title page of isste/
Page de titre de la livraison

Caption of issue/
Titre de dejpart de la livraison

Masthead/
Génèitique (périodiques) de la livraison

\squareAdditional comments:/
Comnıentaires supplèmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The Canaxian EIntomolonist.

VOI. III.
LONDON, ONT., OCTOBER, 187 I .
No. S.

NOTES ON SOMHE INSECCS OF NOVA SCOTLA AN1)

CANADA.

The following commmication is introductory to a few remarks on the Nora Scotian and Canadian Insects which I have received through the kindness of J. M. Jones, Esis., W. Suunders, E.sy., and Prof. Croft.

The study of the greographical distribution of Insects has become more interesting by the difference of opinion as to the origin and diffusion of species. The insects of separate aretic regions have a great mutual resemblance, and the difference between them increases in the successive concentric circles from the abooe regions towards the equator. It hats been said that the adramee of the glacial period was accompanied by the migration of insects southward, and that the present distribution of insects was effected by the prevalance of this epoch and by the succeeding temperate epoch. During the diminution of the glacial, the artice species of the present time migrated northward or ascended the mountains; and thus caused the partial identity of the insects of the Aps with those of the North. The similarity of insects of widely sejarated regions, such as North lemrope, North America, and North-cast Asia, chiefly consists in the arctic or northern forms; the difference between them is found in the species that have advanced northward in later times. Some species inhabit both the South and the North, and occur in Hindostan as well ats in North Europe, but the rest appear either to have wholly continued in the South, or to have wholly migrated thence to the North. The insect-fauma of North America appears in two aspects- the northern aspect, which closely and in some cases wholly resembles that of North Europe; and the southern aspect, which is very different from that of North Burope. and consists of speceies that have migrated from the south as fir as Cimada.

The Diptera in the folluwing list are natives of Nova Scota, and those marked thus "also inhabit Europe.

MYCETOPHHLID. A
Mcerophina propingua, Holk. contigua, lwalk.
lota, Walk.
Sohara procipua, Witk. CULICII.E.

COME stimulans, Wolk. provocans, tratk.
CHIRONOMID.J.
Chmosomes unicolor, Witk.
TIPULII.E.
Princla albivitta, Worl:
contermina, Watk.
Lamoma Argus, Sier.
badia, Wialk.
Tuplon triplex, Walk.
duplex, Witlk.
flavicans, fours.
borcalis, Wuth.
maculipennis, Sid.
resurgens, Walk.
frigida, Watk.
altema, Wialk.
Brtacomorpha clavipes, Pithr.
Trechocira bimacula, thith. BIBIONID.7:
Pexthetria atra, Macy.
limo xanthopus, IVica.
humeralis, Walk.
scita, Wiall.
restita, Walk.
gracilis, Walker.
STRATIOMID. \ddagger
Smarroms norma, Wïct.
Odowtomyha intermedia, Wiad.
vertebrata, Say:
Chrvsomma viridis, Serl.

TABANIDA:
Tabancs calens, Lim. flavipes? IFict. alfinis, Kirlby(frontalis, Walk). inscitus, IFith (bis lectum) comes, Walk.
gracilis, IFied.
marginalis, Fialm:
simulans, Walk.
Chrisors vittatus, Wicad.
morens, Falk.
carbonarius, IVark. ASILIDA
lapmena posticata, Say.
thoracica, Frthr:
sericea, Say:
sacrator, Walk.

- Eatus, Walk.
1).ssipoton sevfasciatus, Suy.
argenteus, Say:
Falto, Walk.
L.utatius, Walk.

Astucs apicalis, Wied.
Lecythus, Walk.
Sadyates = Abilux, Widlk.
IEPTIDA:
Leiris mystacca, Mfuy.
Curisoplla guadrata, Suy.
fumipennis, Say.
proxima, Walk:
reflexa, IFilk.
BOMBYLIDAE.
Therbia vicina, Walk.
conspicua, Will:
senes, Walk.
Axthrax tegminipennis, Sij:
OEdipus, Falor.
fascipemis, Say.

Anthrax fulviama, Sar.
Bastardi, Maty.
lateralis, Sar:
vestita, $/$ 'al/:
lonalivilus pygmaens, fithe.
"major, K.im.
EMPIISA:
EMpls Ollius, Walk. colonica, W'alk: SYRPHIDA:
Strirra proxima, Sars.
Siroma cjuncida, Sirv.
Libo, Walk.
Rumeia nasica, Su!!.
*Hecorminus pendulus, Lima.
Latro, 7 Jamston.
Meronon cmvipes, Wied.
morosus, $\|^{\prime \prime}$ all:.
Sericomyna militaris, licormsom. filia, II cell:
Enistalis nebulosus, Burmatom. tramsversus, Wipl.
vinctorum, F'alor.
fiavipes, Burnston. lateralis, W"all:
*Syrphus Ribesij, Lim.
*Melithaiptus Menthastri, Limm. *hierocrlyphicus, Meig. DOLICHOPID.E.
Psifopus nigrofemoratus, $1 / \mathrm{ss}$. albicosa.
Medetorus albiflorems, 15 atl:
Dorichorus afinis, Mel.
CONOPIDAT.
Conoms sagittaria, Sam. MYOPIDIE:
Mrora vicaria, Frall:
OESTRIDA.
Cuteremaa horripilum, Iried. Obstrus supplens, Wrall:
*(Gastrus Equi, liulu: sulijacens, IF wh: 'ACHINITAK.
Girmsosoma par, Itrall: orcidua, H"all:

Bamovomea hystrix, fidbr.
algens, Wied.
florum, Barnston.
finitima, $\|^{r}$ all:.
signifera, Wrall:
decisa, $\|^{\prime \prime}$ all:
candens, IT ell:.
Anaxias, IF all:
iterans, Wall:
I'Armind Ampelus, Irall:
Pyste, Wrall:
Pamatius, II rall:
Mella, IF all:
I'heutis, I'all:
misca, IVall:
Pimsa, Wrall:
violenta, \prod^{-}all:
irrequieta, Wrell:
Gosis Philadelphica, Mrare. MUSCIDN.
Dexin (Estheria Dess.) abdeminalis, Dess:
(Estheria Desv.) tibialis, Jese. Ogoa, ITrall:
Sarcomuaga plinthopyga, IFime.
"haemorrhoidalis, Fall.
avida, IF
rabiula, Wall:
accrba, Wall:
vigil, W^{\prime} all:
Musbumana Latreillii, Dus!.
(Stitmphord vicina, Dese.
*erythrocephala, Mcig.
viridescens, Desv.
*Lemira cornicina, lraln.
*illustris, Meig.

*Musca corvina, labr. *vespillo, Mei!, *apronbura meditabunda, líhur. *stabulaus, F'all.	Axphomya determinata, Hall: Opalia, I'rll: leucostoma? liull. HELONIYZIDA.
Smomess? Cybira, Wrall. ANTHOMYZID E.	*scorophata stercoraria, Limu. *squalidit, Mery.
Axphomyi. Apina, Hrall: Parpuna, IFall.	puhescens, Durnston. intermedia, I"relli.
Narina, IFrell:	* ('diop.a sciomyzina ! I/ul.
Luteva, Il'alli:	Actors ferruginea, IFall:
Bysia, Italli.	Heloms\%d tincta, Il alli.
Trome, Ifall:	*Hetrnomi\%s buceata, l'ull.
Amene, IFalli.	Biepharipjers fiasciata, W /elli.
Alcathoe, IFall:	-Teranocera clata, liabr.
Lysinoe, 1 "all:	Inromiza convergens, Walli.
Ausoba, IF ${ }^{\text {alll: }}$	LAUXANIDA.
Anthomyid Signia, IFall: Geldria, IF"ull:	*latensea cylindricornis, forlm. *Elisoc, IFirel.
Donuca, ITall:	*lupulina, licher.
Brixia, Walh.	Paborrena Philadelphica, Mucre.
Viana, IFrlli..	GEOMYZIDE.
Isura, Mrall.	

Isuma, I'ull:

Aspuomisa determinata, llall:
Opalia, Itall: lencostoma? l'ull. HELOMIYZIDA. **qualida, Mer!. puhescens, Dionston. intermedia, Wrell: *('diLOPA sciomyzina! IIn). Actora ferruginea, $1 /$ all: Heloms\%d tincta, I"all: *Herreomr\%a buceata, l'all. Beepharipjers fasciata, Well: *Teranocera clata, Prabr. Dryomiza convergens, Wall: LAUXANIDA.
*latNaNiA cylindricornis, forlor. *Elisoc, Wirel. *lupulina, l'ulu:
Paboriera Philadelphica, Mucre. GEOMYZIDE.
$\ddot{\square}$ Dosornita cellaris, $J, i m$.

L.IS' OF IEPIDOPTERA TAKEN AT (QUEBFC.

in (i. J. nowties.

On page 95 of Volume II. of the Casaman Extomobocist, I gave a list of the Diurnal Lepidoptera so far taken at Quebec. I now add the Hererocera as far as the Bombycidæ, availing myself of the latest revision of the species by Dr. Packard and Mr. Grote. It is to be hoped that the researches of these eminent Entomologists have placed the nomenclature and grouping of these moths on a permanent basis.

SPHINGINA.-Sesiadis.

1. Scsia diffinis, Boisduval. Rare. June.
2. Hamorrhagia thushr, Fab. (Sesia palasgus, Cramer). Common in June.
3. Hremorrhagia sracilis, Grote \& Rob. Described from a specimen captured by me in June, IS65 (Proc. F. S. Phil. V. 175). Its
habitat has been erroneously stated by them to be I.ondon, Ont., owing to their having received the moth from Mr. Saunders. (See page ıo, Vol. I., Can. Fert.) I have not met with the species since.
sphisGid.e.
Amphion ncssus, Cramer. Not uncommon: July.
Deilephila chamancrii, Harris. Very common some seasons, and appears in June, at the time the lilac is in bloom, of which it is very fond. A larva which, I think, produces this species, feeds on Fuschias, and on Clarkiar rosca. I took four of them this year on the latter plant in my garden. They have changed to pupre just below the surface of the ground. The caterpillars were of a dull olive green colour, with round cream-coloured spots in a row on each side, and a red caudal horn. Its native food-plant is unknown to me."

Otus charilus, Cramer. (.Daratsa charilus). Rare. June.
Sphinx chersis, Hubner. (Sphinw cincrea, Harris). Rare. June or July.

Sphinx Kalmice, Abbott \& Smith. Not uncommon. June or July. 1 have taken the larva on lilac, also on Fraxinus sambucifolia.

Sphinx drupiferarum, Abbott \& Smith. Not uncommon. June. larva taken last year on plum.

Sphinx gordius, Cramer. Uncommon. June.
Darcmma midulosa, Walker. Commonly known as Ceratumiar repontimus, Clemens. Not uncommon. June or July. (See Vol. I., Cas. Ent., page 17).

Ciratomia amplor, Hubner. (Coratomia guadriarnis Harris). For two or three years in succession I obtained the full grown larva of this species, on the 25 th and 26 th August, from Basswood trees near the Anglican Cathedral, Quebec, but have seen none for several seasons past. It appears in June, and may be considered rare.

Ellemar Harrisii, Clemens. Uncommon. June or July.
Smerinthus modesta, Harris. Very rare.
Smerinthus cacceatus, Abbott \& Smith. Not uncommon. June or luly.
Smerinthus sיminatus; Say. Not uncommon. June or July. AEGERIAD.ł.
Trochilium tipuliformis, Harris. Very common on red and black currant. July:

[^0]I have three species of Trochilium, which are still umamed.
No. 1 answers well to the description of the male of T. critiosa, Say, but unless its larra lives in some other tree than the peach or cherry, it cannot be this insect, as these fruit trees are not cultivated in the Quebec region. This species is rare.

No. 2 may be the Trochilium acomi of Clemens, described in Morris Synopsis, page 330. It is an uncommon insect. The "Northern States" is given as its habitat by clemens.

No. 3. This Agerian is perhaps the Frochilium prramidalis of Walker (C. B. M., VIII. 40) described on page 33^{1} of Morris' Synopsis, though the locality given there is far north of Quebec. It is a rare species.

Thyris maculatar, Harris. Very rare.]une. zagenidis.
Alypia Langtonii, Couper. Taken by him and described in the Canadian Naturalist for i865, page 64. Not uncommon.

Eudryas grata, Fab. This moth is abundant some seasons. In 1868 I saw them in large numbers on hops, in a small garden. No grape-vines were in the vicinity. 'This year I found numerous larva on wild grape vines.

Ctemucha airginica, Charpentier. Common.
Lycomorphat pholus, Drury. (Glaucopis pholus). Not common. I have only taken it in one locality-a rocky ridge where lichens grow plentifully, about five miles from the city.

Note.-This arrangement of the Zyrcenida is in accordance with Packard's "Notes on the 7ygenide" in Proc. Fssex Ins., 186.4.

by i. f. chambers, covington, ki.
Continued from lage 1:30.
LITHOCOILBETIS.
23.-L. Cincimaticlla. N. sp.

Face, palpi, under surface and legs silvery-white, the legs marked on their anterior surface with golden and brownish spots and bands: tuft, white, golden at the sides; antenna silvery-white beneath, abo: a golden brown faintly amnulate with whitish: thorax and anterior wings bright
golden; upon the wings is a short snow-white median basil streak strongly dark-margined behind and within. (Sometimes the anterior margin and sides of the thorax are also white). 'Two snow-white fasciae, one at about the basal $1 / 4$ th, the other about the middle, both strongly dark-margined behind, and sometimes slightly so interiorly; and both strongly angulated posteriorly near the costa; with the first sometimes slightly interrupted at the angle, and the dark margin of the second posteriorly produced. A long oblique snow-white dorsal streak at the base of the dorsal ciliæ posteriorly dark-margined, and a smaller costal one a little behind it at the base of the costal ciliae, similarly dark-margined. 'This dorsal streak is sometimes posteriorly produced, and confluent with it straight dorso-apical streak, which is faintly dark-margined behind, but is sometimes entirely wanting. When present it forms the interior border to the apical dusting. Sometimes the costal streak is produced so as to be confluent with it also, and opposite to it there is sometimes a costoapical white spot which is separated from it by the apical dusting, which extends thence to the apex and is black upon a white ground. Hinder marginal line in the ciliæ dark brown. Ciliæ golden. Al. cx. $1 /+$ to $1 / 3$ inch. Kentucky. Wisconsin. One of the commonest and prettiest species. The larva mines the leaves of White Oaks. (Qucrous Alba and Q. obtusiloba), and sometimes there are several mines on the same leaf. It mines the upper surface. There are always several larve in a mine, and this is the species of which (as stated ante p 55) I have counted fifteen small larve in a single small mine. Tie mine is broanish-ycllow and spreads frequently over a large part of the leaf, and may thus be distinguished from the abhitish mine of L. hamadryadclla which sometimes is found upon the same leaf with it. The young larre lie packed together side by side in the mine in a curve or crescent, and the mine for some distance shows a series of concentric curves gradually enlarging as the larva grow. The frass is scattered. The older larva scatter, and usually most of them leave the mine and perish. It is much preyed upon by spiders, which, I believe, from various circumstances (though I have not caught them f(agrante delicto), tear open the mines and eat the larvæ. The same thing happens to various other species of larvic. The mines of this and many other species are also much infested by a black species of Thrips. What its business in them is, I have not ascertained. Various mites are also found in them. This species passes the winter in the larval condition and forms its pupa in a flat thin cocoon or web in the mine, becoming a pupa in April, and the imago emerging in about ten
days. The larva is flat, whitish; head and sides of the first segment yellowish. Maculx rery indistinct and pale yellowish. All of the larve that I have examined this summer were of this character except in one mine, where with several flat larre there was one dead cylindrical one. My recollection, however, is very distinct that the first mine that I opened and which was gathered in March from a tree on which it had hung all the winter, contained two puper and four cylindrical larve, and the description in my notes made at the the time confirms my recollection. These four larre became pupa, and I have now by me the imagines which 1 bred from them, and I can not conceive how my eyes could have deceived me so as to mistake a flat larva for a cylindrical one. Yet I am loath to believe that there are two larval forms in the species, although it is well known that there are two in the genus.
$+\dagger$ Without fasciue, but midth dorsal and costal straths.
24.-L. Arscintinotclla Clem. Loi. cit. sup., p. 325.

Dr. Clemens describes the imago of this handsome species, but says that he can give no account of its larva, or food plant. I have bred it from a tent mine on the under side of Elm leaves (Ulmus Ameriana). The larva is cylindrical and yellowish.

All of my specimens have the white line on the anterior margin of the thorax extended back over the tegule, and confluent with the basal streak. Dr. Clemens does not mention these markings of the thorax, but they are so variable in many species-sometimes present, sometimes absent-that I have no doubt of the identity of my specimens with that described by Dr. Clemens, as they agree in all other respects, and I have never met with any species which might be mistaken for it. Alar. ax $1 / 4 \mathrm{in}$. Kentucky and Pennsylvania. Common.
25.-L. basistrigella Clem. Loc. cit. sup., p. 321.

There is some variation in the disposition of the apical dusting, and sometimes it is nearly wanting, and frequently the first dorsal streak does not quite attain the dorsal margin and is not produced to the base of the wing. Alur. ex. $1 / 4$ to nearly $1 / 3 \mathrm{in}$. The larva is cylindrical and makes a tent mine between two veins on the :mder side of the leaves of White and Chestnut Oaks (Q. allor and bicolor and prindids). Common. Kentucky and Pennsylvania.
26.-L. Ulmella. N. s.

Face and palpi silvery-white, tuft white intermixed with golden. Antenne silvery-white, the apical two-thirds annulate with brownish.

Legs and under surface silvery-white. Anterior wings bright golden, inclining to orange, with is white streak along the dorsal margin from the base to the cilia, where it is deflexed and passes on to the dusted portion of the apex which is near the posterior margin, and is dark brown on a white ground. There are three small costal silvery streaks, the first and second being near the middle of the costal margin, and the second one the largest, white the third is small and near the apee :. There is some variation in the size of the third costal streah and in the extent of the apical dusting, and sometimes the costal streaks are faintly dark-margined. The abdomen and legs are very pale-golden raried with white. Alar. as: $1 / 4$ to nearly 15 in. Two specimens, taken at Columbus, Cicorgia, were so much larger than my Kentucky specimens that I was inclined to regard them as specifically distinct, but they were so much injured before I had an opportunity to compare them with my Kentucky specimens, that I can not be certain; the smaller specimens ($\hat{\delta}$?) are more distinctly marked than the larger. The larva $;$ flat and makes an irregular blotchmine, with scattered frass, in the upper surface of the leaves of Ulmus Americana. It resembles close. the larva of Z. Cïncinnaticlla, but it is more greenish, whilst the imago resembles L. basistrigella somewhat, which has a cylindrical larra.

HIN'TS 'TO JRUIT (iROWERS.
PAPER No. \downarrow.
B W. SAUNDRRS, LoNDON, ONT.

Arraces .cecropla.-During the winter months, when the apple trees are leafless, the large cocoons of the Cicropia moth may be found here and there, firmly bound to the cwigs, and occasionally I have seen them on young trees attached to the stock near the ground. They are about

File. :31.
three inches long, pod-shaped (see fig. 31), and of a dirty brown colowr,
and are entirely constructed of silk, the fibres of which are very much stronger than those of the common silk worm Bombyex mori. This silk has been worked to $:$ limited extent and manufactured into socks and other articles, which have been found very durable ; but a drawback to the advancement of this branch of industry lies in the fact that the caterpillars do net bear confinement well, and hence are not casily reared.

The exterior structure of the cocoon is very close and papery-like, but on eutting through this, we find the interion-surrounding the dark brown chrysalis-made up of loose fibres of strong yellow silk. This snug enclosure effectually protects the inoect in its dormant state from the extremes of weather during the long wintry months. When the time approaches for the escape of the moth, which is about the beginning of June, the internal dark brown chrysalis is ruptured by the struggles of the occupant, and the newly born moth begins to work its way out of the cocoon. As it is possessed of no cutting instrument of any kind, this would indeed be a hopeless task had not the all-wise Creator made a special provision for this purpose, and to this end a fluid adapted for softening the fibres is furnished just at this juncture and secreted from about the mouth. On listening to the creature as it works its way through, you hear a scraping, tearing sound, which is made ly the insect working with the chaws on its fore-feet, tearing away the softened fibres and packing them on each side to make a channel for its escape. The place of exit is the smaller end of the cocoon, which is more loosely made than any other part and through which, after the internal obstacles are overcome, the passage is effected without much further trouble.

I have frequently watched their escape. First through the opening is thrust the anterior pair of bushy looking legs, the sharp claws of which fasten on the outside structure; then with an effort the head is drawn forward, suddenly displaying the beatifnl feather-like anteme; next, the thorax, on which is borne the other two pairs of legs, is liberated, and finally, the escape is completed by the withdrawal of the abdomen, through the orifice thus made. (lueer looking creatures they are when they first pat in an appearance, with their large, fat, juicy bodies, and tiny wings. When the wings are fully expanded they measure from five to six inches or more across, but when fresh from the chrysalis they are but very little larger than the wings of a bumble bee. The first necessity now for the welfare of the individual is to find a suitable location where the wings may be held in a good position for cxpanding, for without such favorable

circumstance they would never attain a serviceable size. It is necessary that a position should be secured where the wings may hang down as they are expanding, for which purpose the under side of a twig is often selected; and here, securely suspended by the claws, the wings undergo in a short time the most marrellous growth it is possible to imagine. The whole process, from the time of the escape of the moth to its full maturity. seldom occupies more than from half an hour to an hour, and during this time the wings grow from the diminutive sige already mentioned to their full measure and capacity:

A wing clipped from the insect immediately after its escape, and examined under the microscope, reveals the fact that the thousands and tens of thousiands of scales with which the wings are covered, and which afterwards assume such beautiful feather-like forms, are now nearly all threadlike, not folded up or wrinkled, but undeveloped. Impressed with this thought, the mind is fairly astonished at the amost incredible change wrought in so limited a time, for the growth embates not only the extension of the surface of the wing, but the enlargement and maturity of every seale or feather on it, the individuals of which are but as dust to the maked eve. What a wonderful and intricate system of circulation and power of nutrition must be possessed to accomplish this marrellous result:

As some of our readers may not he familiar with the appearance of this our largest moth, we append a figure of it. (See fig. 32). Soon after their exit these moths seek their mates, and after pairing, the female begins (1) deposit her eggs, a process which occupies some time, for the egss are not had in patches or groups, but singly; and are firmly fastened with a glutinous material to the under side of a leaf; and as it is seldom there are more than one or wo had on any single tree or bush, a considerable distance must be traversed by the parent in the transaction of this altimportant husincss.

Entil the presem season, 1 never had an opportunity of fairly computing the number of ess which one of these moths will lay, and had roughly estimated them in my own mind at from 50 to 100 . About the first of June, a pair of corophias came into my possession, and afforded a fivourable opportunity of throwing light on this point. On the 3rd of June, the female began to deposit eegss, which she continued to do at intervals until the Gth, and in a few days afferwards, died. On counting the egss I found them to number 217 . When we consider the relative size --for they are large- it may readily be imagined, that the size of the body of the moth, was murh reduced upon the completion of her task. The
egg is about one-tenth of an inch long, nearly round, and of a dall creamy white colour, with a reddish sput or streak near the centre. The exact duration of the egg stage was not noted. but may be set down as probably from a week to ten days.

At the expiration of this period, the larra cats its way out of the egg, the empty shell of which furnishes the young thing with its first meal. At first it is black, with little shining black knobs on its body, from which arise hairs of the same colour. Being furnished with a superior appetite, its growth is very rapid; and from time to time its exterior cont or skin becomes too tight for its comfort, when it is ruptured, and thrown off. At each of these changes or moultings the caterpillar appears in an altered garb, gradually becoming more like the full-grown larva represented in the accompanying figure. (See fig 33.) It is very handsome. Its body is

fur: :3.3.
pale green, the large warts or tubercles on the top of the $3^{r d}$ and $4^{\text {th }}$ segments are coral red, the remainder are yellow excenting those on the second and terminal segments, which, in common with the smaller tubercles along the sides, are blue. During its growth from the diminutive creature as it escapes from the egs, to the monstrous-looking full grown specimen, it consumes an immense amount of regetable food; and especially as it approaches maturity, is this voracious appetite apparent. Where one or two have been placed on a young apple tree, they will often strip it entirely bare before they have done with it, and thas prevent the proper ripening of the wood, entailing damage to the tree and sometimes endangering its life ; hence, during their season, they should be watched for and destroyed. Now that their period of ative habo is ower, heir
cocoons may be looked for, and removed in time to check their further increase. In the caterpillar state they are not of dainty appetite, and, while partial to the apple, will eat other foliage as well; were it not so, we should soon hear more of their destructive effects. We have taken them feeding on cherry, phum, maple, willow: lilac, black and red currant, and hazel, and they are said to attack also the hickory, birch, elm, honey locust, barberry, hawthorn, and elder.

The natural increase of this insect being so great, a wise provision has been made to keep it within bounds. ljesides enemies which attack the egg, and young larva, there are several parasites, which live within the body of the caterpillar and destroy it before reaching maturity; and in this way, their numbers, which would otherwise soon be alarming, are kept within moderate limits.

INSECTS OF THE NORTHERN PARTS OF BRITISH AMERICA.

 body $51 / 2$ lines ; breadth 7 lines. Taken in Nova Scotia by Capt. Hall.

Body very much depressed, thickly punctured with a hair issuing from each puncture ; on the under-side black. Head with a round impression between the eyes: prothoras pale-yellow with a subyuadrangular sublobate black spot in the disk; punctures of the prothorax very thick, those of the discoidal spot resembling scratches: elytra brown-bhack, rather silky; with two longitudinal, undulated, obsolete ridges that do not reach the apex; their surface is covered with irregular elevations, and near the suture is a series of punctiform impressions; epipleura very wide with its horizontal portion resplendent with a lustre between bronze and gokd, vertical part, or imer margin, yellow; the suture of the elytra terminates in a minute point. Olivier says there are three ridges on the elytra, but only two are discernible in the specimen here described. It is singular that no author has noticed the brilliant side-coters of the elytra. [Synonymous with .S. peltata Cateshy: Common in Canada : north shore of Lake Superior (Agassio). $]$
 $91 / 4$ lines. Taken in Nova Scotia by Capt. Hall.

This species seems nearly related to O. Ambricamm, but it is marrower in proportion to its length, the front has a distinct oblong impression; the elytra are yellow at the apex and acuminate, which last is probably a sexual character; the epiplemara is less brilliant than in the preceding species, and the elytra are not silky. In other respects it resembles it and may possibly be the female. [a rariety of Silphar peltatar Catesly ; taken at Toronto by Mr. ('ouper.]
147. Onfoproma [Shema] afmat Kirer. Length of body 9 lines. Taken in Nowa Scotia by Dr. Mac Cullorh.

Very like the preceding species, but the frontal impression is smaller and round: the discoidal black spot of the prothoras is smaller, with the lateral lobes rounded, and with round confluent punctures: the horizontal part of the epiplenara is black with a slight tint of blue, and not at all bronzed. [Also a variety of S: peltata. Taken at Toronto by Mr. Couper ; and on north shore of I ake Superior by Agassi\%s Expedition.]

MASCEILANBOLS NOTES

() The Swakmati of Dasals Akcmupes..-(On the first day of September, while driving along the lake shore Road, on the borders of lake Eric, a mile or two south of Port Stamey, I was fatoured with a sight which will not soon be forgotten. For several days previous, Arohiphus butterties had been musually abundant, and carty in the morning of the day in question, some groups-mmbering probably hundreds of individuals-which had rested during the night on trees adjoining the hotel at Port Stanke; were gyrating in a wild mamer at all heights, some so far up that they appeared but as moving specks in the sky, others floating lower, over the tops of the trees, in in apparently amless mamer. This was, however, as a mere skirmishing party when compared with the vast hosts seen a little later.

It was about nine oclock in the morning when, passing a group of trees forming a rude semicircle on the edge of a wood facing the lake, the leaves attracted attention : they seeming possessed of unusual motion, and displayed fitful patches of brilliant red. (on alightins, a nearer
approach revealed the presence of vast numbers - 1 might safely saly millions-of these butterflies clustering everywhere. 1 counted a small space, about the size of my two hands, on one of the trees, and there were thirty-two butterfies suspended on it, and the whole group) of trees was hung in a similar manner. When disturbed, they flew up in immense numbers, filling the air, and after floating ahout a short time, gradually settled again. There appeared to be nothing on the trees to attract them, yet when undisturbed they appeared at this time, to prefer resting in quiet, as if enjoying the presence of congenial society. I regretted not having a net with me, as I should like to have captured a number of them to see in what proportion the sexes were represeted in the company. Their food plants-the various species of Asclipias-did not appear to be unusually common in that section. I apprehended that many of the individuals must have travelled some distance to be present at this gathering. The fiact that the larva of Archippus is but seldom affected with parasites may partially account for their occasional abundance; 1 only know of one small ichneumon infesting them, and have seldom met with this.
II. Sacwores, Iondon, Unt.

Abcidance of 1). Archmples is Massachesmers.- 1 wish to call attention to the tact that Damais arehippus, Fab., is exceedingly common all orer New England this season. It is well known that many species of our butterfies have a year of great abundance, and then are almost unknown for quite a scries of years. The cause of this is usually attributed to a scarcity of insect enemics, and a favorable season for their food. This abundance of a species is a sufficient reason for the multiplication of parasitic enemies, which increase to the point of ahost total extermination of the species attacked, as well as themselves. Two years ayo, Cymthiot cardui was tery abundant, and I obtained over one hundred larve, not one of which could I raise on account of a parasitic fly-larva which were so abundant as to lack food for their own maturity, practically exterminating one another. Since then I have not seen a single cardui. Whether the parasitic fly is common I am mabie to say. 1 am confident that to some extent the above is true of many species, but D. wehitpus never has to my knowledge any enemies, for this year I have raiseci abundance of larve and taken many chrysalids; but all were sound. Therefore we must hunt for some other cause of their disappearance. Perhaps others more interested in l.epidoptera than myself may have gathered facts which will throw light upon this subject, and to draw out these experiences induces
me to write this note. My little son has found a parasite in the chrysalis. of Pioris rapac; Sch., which I will report on as soon as worked up. l'mhin S. Spragite, l Boston, Mass.
 ing over my late commmication that, as it appears on page 118 , l have in my haste made too sweeping an assertion in stating that "Curculionidous larve do not spin silken cocoons," (lines 16 and 17). I know of none in this country which have any such power of spimning, and this is so very generally the case with the family that it may almost be stated as a rule. Yet, Westwood in his Introduction mentions, on other authority, several instances of such spimning, some of which I am inclined to think must be taken can srano salis. It will be well to instance them, however. On page 337 (Vol. 1L.) he speaks of the perfect female of Rhymehits bucthus, Linn., as lining her nidus with silk, yet from the writings of Kollar, Nordlinger, Boisdural and others, we may learn that this nidus is simply closed with a glutinous substance, and whether secreted from the mouth or anus does not appear so clear. Again, on page 341 , mention is made of an undetermined species which in the larra state draws the clusters of apple blossoms together by means of : wel. This is on the authority of Sulisbury on Orihards, which I camnot consider very trustworthy. But on page 343 we find sufficiently authentic notices of cocoons spun by larve belonging to the genera Hippra and Ciomus, and by another weevil named Curculio pimpinclla: my statement should, therefore, be qualified.

> C. Y̌. Rules.

Akthichat. Cololrint; of lapuoprera. - At a recent meeting of the Entomological Society of London, (England), Mr. Butler exhibited species of Iepidoptera, upon which experiments had been made by Mr. Meldola, with regard to testing the effects of dyes. The insects were
 Atakuta and Arctio agja. The most striking effects were observable in P. napi dyed black, and A. ajor dyed metallic-green and magenta. The dyes used were aniline. Mr. Meldola dissolved the dyes in spirits of wine and laid them on with a camel-hair pencil. Not being satisfied with Mr. Meldolàs experiments, Mr. Butler resolved upon performing others on his own account; but being then ignorant of the system pursued, he dissolved his dyes in hot water, and discorered that the specimens would not take them. He then made a solution of soda, into which he dipped G. rhammi, and found that the yellow pigment immediately united with
the soda, and was discharged into the solution, which it visibly coloured, and he saw no reason why, if a sufficient number of individuals were experimented upon, the colour should not be collected and utilised. Colias Edasa and Hyale, Damais Cherriphos and limessa urtice, were deprived of their natural colours in the same mamer. Mr. Butler had experimented upon (i. rhimmi (dyed blue), C. Sidusir and /Trale, Patilio Demolers, Irvaena Convidun, Dumais Cherrippus, Arsimms Adippe and
 most successful results were obtained with Damais Chegsiphus, deprived of its natural colours and dyed bluc, which colour only entered certain scales, whereas magenta, being a faster dye, entered all: and I. wrtica, dyed blue in one case, and magenta in another; the latter resembled a typical South-African \mathcal{F} unomir, the former a melanitic variety of the same species. The peculiarity in these specimens consisted in certain parts of the wings not taking the dye, leading to the conclusion that the scales are more perfectly closed in these parts.

Mr. Meldola (who was present as a visitor) remarked that he had also made experiments with alkalies; the jellow of G.rhamni being removed by soda, and precipitated by the addition of an acid. He possessed an example of Fomessa to altered to deep mahogane-colour by exposure to the fumes of ammonia.

Mr. Bicknell exhibited a number of examples of Gomopley.ex rhamni, upon which he had experimented with cyanide of potassium, as suggested at the last meeting. The yellow was changed to orange-red in the parts exposed to the cyanide.

Mr. F. Smith stated that he had seen a number of wasps that had been killed by cyanide of potassium, and which, in consequence, were changed to vermilion.

The hope was expressed that these interesting experiments would not be taken advantage of by unscrupulous persons, in consequence of the prevailing disposition to pay high prices for varieties of common Lepidop. tera.-Tme \%oologist.

NOTICE TO MEMBERS.

In future, separate receipts for subscriptions will be sent with the next number of the Canadian livtomologist that is issued after the reception by the Secretary of any stoch remittances.

EXCHANGES, 心c.
The undersigned would be pleased to open communications with any Entomologist in Canada, United States or England with a view to eachanging specimens. Address James Conmeni, care of A. Choten, Kingston, Ont.

Tus undersigned would be pleased to correspond with I.epidopterologists (Southern and Western U. S. preferred), with a view to eachanges. Address Edw. I. Grafer, 40 Court St., Brooklyn, N. Y., U. S.

Lepmoprera, 心c.-I have a collection of Birds' Eggs, Lepidoptera (including some from Florida) and Coleoptora, duplicates of which 1 should like to exchange, giving preference to the two first named.-Josern E. Chase, Lock Box 46, Holyoke, Mass.

An Americ:an Entomologist, who has made a speciality of Lepidoptera, would like to correspond with collectors in any part of the world.-Address H. K. Morrison, care of E. K. Butler, 6S, Pearl-strect, Boston, Mass.

ADVERTISEMENTS.

Cork and Pins. - We have a good supply of sheet cork of the ordinary thickness, price 16 cents (gold) per square foot; and a full supply of Klaeger's pins, Nos. 1, 2,5 and 6, price 50 cents (gold) per packet of 500 .

Canadian Entomologist, Vols. i and 2.-We have a few copies left of these volumes-No. 1 of vol. I being deficient, however, and out of print. Price $\$ 1.25$ (gold) each.

Last of Canadian Coleoprera.-Price 15 cents each, embracing 55 families, 432 genera, and 1231 species. (For labelling cabincts).

Printed Ntmbers, in sheets, i to 2000, for labelling cabinets. Price 10 cents each set.

These prices are exclusive of cost of transportation, and orders will please state whether the package is to be sent by mail or express.

AGENTS FOR THE ENTOMOLOGIST.

Canada-LE. B. Reed, London, Ont.; W. Couper, Naturalist, Montreal, P.Q.; G. J. Bowles, Quebec, l. Q.; J. Johnston, Canadian Institute, Toronto, Ont.
United Stares. - The American Naturalist's Book Agency, Salem, Mass.; J. Y. Green, Newport, Vt.; W. V. Andrews, Room 17, No. ${ }^{1} 37$ Broadway, New York:

[^0]: * The Editor mentions having captured this species at Sault Ste. Maric in middle of August. (Pase $S 3$ of this volume.)

