Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.

THE LABOR STRIKES.

OR the first time since the summer of 1877 , made memorable by the great railroad riots, there are symptoms of a general disaffection among the working classes in the States, which has manifested itself in the organization of extensive strikes for higher rates of wages. These have followed each other with such rapidity and method that they would appear to have been the outgrowth of a plan carefully and deliberately considered in advance by the great labor organizations that of late have grown powerful and aggressive. the mon manufacturing and railway interests, among rable to attactant of the country, and the most vulnebrant of attack, have, as usual, been made to bear the difficult the conflict. What the outcome will be it is probable tharetell with certainty, but it is more than Fill lose that, as is nearly always the case, the men of trade in the end. Both the time and the conditions then a lull in the urable to them. There has lately the a lull in the iron trade-a natural reaction from that wayo the ingry activity of the previous year, and one the collapse inevitable consequence of a poor crop and tions, O_{n} this numerous and vast speculative operaearecof on this account, and also because of the exisco look a large atock on hand, the iron manufacturers Consoled with comparative serenity upon the situation, orbalization the reflection that the leaders of the labor hio thations confld not have chosen a time to precipidience and lict that would have caused less inconve$4 \mathrm{a}_{0}$ and loss to the masters, than they did.
Whor car as their ability to withstand an organized not ons war of the railroads, in consequence of the dispot in war of rates carried on during the past year, are $h_{4} y_{0} b_{0}{ }^{20}$ strong a position financially as they should Whionovers in another element in their favor, which Whinh mors in the strikes must have overlooked, and
condition counterbalances their weakened finan-- Oudition, is the continual flow of immigration to
the shores of America. Last year for example, immigrants landed at the unparalleled rate of nearly 2,000 per day ; and this year they are pouring in still more rapidly. These newcomers are made up largely of men in the vigor of life, and who are therefore available for immediate employment.

The trade unions have had time to replenish their coffers since the disasters of the panic years 1873-'77; but we gravely question whether the result will not prove the present movement to have been an act of supreme folly. It must be admitted, to the honor of the strikors, that their movements have been in the main quiet, orderly and dignified, and that but few instances of violence and intimidation have had to be recorded against them; but the initiation of the great strikes of the iron workers, and of the freight handlers, the former of which is still in progress involved in in both cases a discreditable breach of faith. The iron workers rejected plans for arbitration that they themselves had suggested and approved; and the freight men, without even the furmality of asking for the additional pay they afterwards demanded, abandoned their work, apparently thinking they could easily coerce the companies into compliance with their demands. In this the men were seriously mistaken, and the in dications at the present writing are that both strikes will terminate in complete failure for the strikers.

Irrespective of the merits of the issues for which the present warfare is being waged, it is certain, if long continued, to entail great disaster, suffering and misery upon the laboring classes who engage in it, and on this account will be regretted by all. As regards the iron trade, however it may be productive of results more far-reaching and calamitous than the organizers of the strike have dreamed, for whatever be the issue, the fight cannot but aid the British iron trade to the detriment of the Americans. The English papers are already rejoicing over the prospect. One of them, puts the case plainly : "If the men succeed, the increase in wages obtained will cause a rise in prices, and with the rise of prices the export of British iron to the Uuited States in large quantities will become possible. Even last year there were somewhat over three quarters of a million tons of iron imported into the United States, and if prices were now to be raised, the import would be enlarged until prices rose here also to counterlalance the rise in the United States. Even if the
men are defeated, and wages remain as they are, a rise in price is inevitable, provided the strike continues for a month or two. The cessation of production in all the great iron districts in the United States for several weeks, would give time for the exhaustion of the stocks on hand. Last year, as we have already said, over 9,000 miles of railway were made, and this year the rate of construction so far is still more rapid. Besides, there were at the ond of last year more than 103,000 miles of railway in the Inited States, and this vast mileage requires constant renewals, which use up a large amount of iron. But if production "is suspended for several weeks, while railway building and railway repairing go on, and stocks are thus greatly reduced, prices must rise ; and a rise of prices will open the door to foreign imports, and will thus give an impetus to the British iron trade."

With the prospect of the wholesale blowing-out of furnaces and shutting down of mills, which the flooding of the country with British iron would imply, the victory of the men would be a barren one incleed. It is a subject of infinite regret to right thinking men that there should be no better plan of adjusting differences between employees and employers than the destructive and suicidal resort to the strike. In the vast majority of cases, the strikers fail in their object, and the misery, wretchedness and suffering it entails, fall with terrible severity upon the dependent families of the wage earners.

If half of the executive ability and zeal displayed in organizing lodges, unions and the like, were spent in devising plans for the equitable arbitration of disputes and differences, the strike would be a thing of the past.

THE PROGRESS OF OUR TIME.

The prediction made for the last twenty-five years, by all well informed scientists, that we were standing on the threshhold of an advance in science and in its practical applications, greater than the world has ever seen, has commenced to be realized. Thanks to the astounding advance in electrical science we send instantaneous communications, over distances of thousands of miles, even when oceans separate the stations ; we converse by mouth and ear with our friends several miles distant and that by help of only a metallic wire, undisturbed by intervening noises, which would entirely destroy ordinary sounds. We can convey light and heat over such wires, and even motive power, all disguised in what we call electric currents, which, notwithstanding their essential nature is still a mystery to us, we have learned to generate, to manage and make subservient to our purposes. The practical accomplishment of the last mentioned transformation, is wholly due to the providential abundance of coal and the consequent cheapness of steam power, all the electricity needed for the lights, which illuminate our cities and buildings being produced by this agent.

There never could be a more striking practical illustration of the correctness of the new doctrine of the conservation and correlation of forces than these facts. This doctrine teaches that the amount of force (motion of matter) in the universe is a constant quantity, in other words that force is indestructible, and that what we commonly call a loss of force is only a conversion into a special form of motion, which may be heat or electricity. It is the pride of our age to have demonstrated this as a truth.

If we trace the operations involved in electric illumination backward to its primary origin, we have to go back to the solar light. This was the cause of the growth of forests, of which the remnants form our coal beds, in which the solar light and heat is as it were stored up. It is this solar heat which evaporatem water, and forms clouds from which rain descends, originating rivers and streams and all our water power; this power may move machinery directly, but if we use the heat which was stored up in coal we must set the heat free by
combustion, and either expand air or evaporate water, and use the expanding air or water vapor to act upon proper machines so as to move them. This motion is applied to the ingenious combination of iron cores surrounded by copper coils, which we call a dynamo. The iron having been slightly magnetinn, causes electric currents in the coils, which react on the iron, increasing its magnetism, while this mutual action and reals tion between the magnetic iron and the current in the cois. evolves at last electric currents strong enough to produce light which is the nearest approach yet made by man to thy, sunlight, from which it has its primary origin. Or we may in place of making a light, cause the electric current to ${ }^{\text {inch }}$ upon a similar combination of iron cores and copper coils which we call an electro motor, and cause this to move. In this cady we reproduce the motor of the dynamo, and it gives a rebss method of transmitting power to a distance, and that over mere telegraph wire.

The fancy in which many indulge, that electricity will become a notive power, has, as matters look at present, no hope of realization, because the cheapest source of electricity ${ }^{\text {go }}$ yet known is motive power, and this we must have first to begin with, in order to generate the electricity. It has bee proposed to utilize the motive power of great cataracts such ${ }^{85}$ Niagara, drive dynamo machines with the same, conduct the currents generated over wires to distant localities, and uns them for illumination, or power, and such a plan is perfectly practical. Nillions of horse power now running to waste csion for us in the future. - Industrial Neus.

TECHNICAL EDUCATION.

Writing of technical education in England, the Americsil Consul at Bradford says that more than twenty years ago id Swiss Government established in Zurich a general scientific the stitution, instructing in applied mechanics, physics, and and arts. The cost is $\$ 100,000$ a year, which is cheerfully bo by a population not larger than dwell within five miles from the City Hall in this city. After other Continental countrle had maintained such schools many years, the subject was talo up in England. The Consul sums up his idea of these schoor as being intended to supplement the education of the ordye of school by that especially calculated to increase knowledge ${ }^{8}$ each man's trade or business, so that he may contribute ${ }^{m}$ largely to the general wealth; this, he thinks, should form large part of national education, and pupils should consist an gely of boys and girls drafted from the elementary schools, 0 , no school in any important commercial center would be cor plete without an industrial museum, the advisers of the Livej Companies' Committee unanimously saying that laborator ${ }^{\text {s }}$ and a collection of technical works, etc., are indispensable. $f a$ English manufacturers acknowledge that their most succel rivals are in those countries or localities where technical is 8 to know that a few technical schools have already been lished in the United States, principally in the engineering gl iron trades, and he earrestly hopes ere long to hear tha system of thorough technical education has been adopted the whole country, there being no other means so effective developing the resourcess of the country and improving its nufactures.

There will, of course, be no dissent anywhere as to the ind portance of this subject. The most skillful labor, $\mathfrak{a l t h}$ al ${ }^{2}$ nominally high-priced, is really the cheapest; it is ant machinery are greatest, and although machinery, being than human labor, may seem to render the latter less necesgar) and to narrow the demand for all but the rader class of lanith in practice it is not so, for there is an apparently indapti field for the best labor in anticipating, contriving and adap th machinery. The more machinery becomes the servitors. more the most skillful men seem needed to be its directors. is also a suggestive fact that tastefulness in goods is fast coming regarded as an indispensable adjunct of utility, as an actual part of it. In this matter American wance, the character of labor here gives the highest warrant for th ing it. Moreover, the most prudent educational fact is marked tendency toward special education shown not onl the establisment of a few technical schools, but in the cha in the curriculum of old institutions, this visibly affecting the upper classes.

Eduxational.

MANUAL DEXTERITY.

From Boston on the east to St. Louis on the west, the as well are being run on the necessity of teaching the fingers teachers' the minds of school children. No well conducted al macrs' institute fails to take a vote on it. and no educationtion in teems to the Public Schools." The great public sentiment free borm have, at last, come to the conclusion that not every be cont American citizen can live by his wits, and a few must more delit to turn their attention to manual labor, at least the b) isters delicate kinds, and not, of course, suish as shall raise big jack knif the finger and coarse callouses on the hands. The carve ruife with which the typical school boy has been wont to for a rude characters on his desk and bench, is to be exchanged ted, instead tools, and the native instinct of "cutting" cultiva${ }^{\text {success a }}$ instead of being repressed as it long has been-with what fingers a visit to any district schoolhouse will show. Those ${ }^{n} 0$ ots which schoolmasters have been wont to look upon as of Dified and but be cracked with an oaken ruler are to be digthey and exalted to a first place in our educational system; of the brain to be trained and taught to follow deftly the dictates What brain, obedient to its every wish.
humat better example of a perfect machine have we than the ${ }^{\text {addip }}$ hand! Remove the skin and the few little lumps of tep of tissue, and examine its intricate mechanism; its sysone of levers and pulleys, the eeonomy of space achieved by and tenscle passing through another, and the union of cords tall y indons whereby one finger is given the power to move tothe independently of the rest, and then attempt to calculate mascles. Wer of movements imparted to the fingers by these few masies. Watch the movements executed by the fingers of a piano ; follow the hand of the compositor the the zither, or the lines, follow the hand of the compositor as he sets these very ablind the type writer, the telegrapher, the rapid knitter, or hand ind man reading raised characters, and tell us whether the
ted.
 all maters many the graduates who have this summer left their all the uses feeling that their education was completed, knew thasame that not one in ten had acquired more digital skill Wan Was needed not one in ten had acquired more digital skill
glove, and a letter, tie a necktie, button a lady's as and conceal a "crib" in his coat sleeve. It is a notoR_{0} foct that in every chemical laboratory, in every dissectcation and every other place where young men of liberal edu$\mathrm{finger}_{\mathrm{s}}$ arempelled to handle tools, they soon find that their One of are all thumbs."
sche of the first questions that is always discussed by every aching com or institute before whom the question of manual hall We attempt is, Shall we teach only the use of tools, or Do both, do either, do anything you like, only give $\mathrm{ital}_{\text {lity }}$ a chance, and leave the rest to time. If it has any
it, it will develop into something. The useless Members will, it wither and fall off, those most fit to survive will "suredly will wither and fall off, those most fit to survive will Citjeg limited in its field to the growth of plants and animals. eos, charches tow, trade and commerce, manufacturing indusboreby. ches and schools, have their development conditioned
bey Boston,

but we are satisfied that the idea will yet be made practical, and become in time a success.
(irant the desirability of such a modification of the school system, and practical difficulties will present themselves-have done so already. There is a lack of teachers : normal schools do not produce them, nor can they be found in the shops, although the latter can do more than the former. The number of good, thorough, enthusiastic teachers is small, because a godod teacher, like a poet, is born, not manufactured in a normal school, and of this little band too few know aught about tools, or could lead and instruct a class in carpentry, while our best carpenters have as little conception of how to preserve discipline among school boys. Another difficulty is the expense; tools cost money, much more than books: wood must be used, and a fresh supply kept up. The pupils must not be asked to bear this expense, and tax payers object. This obstacle is a serious one in the free schools, where it is most needed.

It was not our attention to pass by the girls, but at present they are better provided for than boys. In Boston sewing is a regular part of the school curriculum, and they not only learn to sew but do it well. This is something that can be done at a slight expense, and teachers that know how to sew are not so scarce. Mr. L. H. Marvel, in his paper on "Manual Education in the Public Schools," which appeared in the June number of Ellucation, says that in schools where sewing is taught the sewing does not detract from the efficiency of the other work of the school. The same writer adds: "Sewing was taught in all elementary schools half a century ago, and to boys and girls alike." It is unfortunate that this has not been kept up ; it is better that a school boy should sew or knit, than that his fingers should get no training beyond that of clumsily grasping a pen holder, while his body is twisted into some painful position to conform to the unhygienic law of the writing master. In the kindergarten, which too few of our children enjoy the advantages of, efforts are made to train the eye, voice, ear, and hand, bat the training stops when the child enters the school, and its effects are soon dissipated. One point must, of course, be guarded against, that the occupation of the fingers be not such as to strain the eye or produce near-sightedness.

An ingenious teacher would have no difficulty in arranging a series of exercises equal to any of the "finger gymnastics," of the music teacher, without being half so stupid, which should embrace the use of knitting, crochting, and sewing needles, of stilettos and bockins, of awls and gimlets, of scissors and pen knife; braiding, plaiting tatting, netting, tying knots, and splicing small ropes, are among the operations adapted to teaching girls and boys what their fingers are good for. One of our very skilled surgeons boasts of his skill in sewing, and the ability to hem the finest cambric handkerchief; and it would not injure any boy to be able to work a button hole, nor any girl to be able to tie up a bundle.

The sense of feeling since it resides in the fingers, could be cultivated at the same time, and while the skin is young and soft is the best time to learn to distinguish things by touch; the difference between wool and cotton, silk and liuen, kid and dog skin, sheep and calf, between flour and meal, between pure sugars and mixed, hetween silver and lead-these are distinctions a knowledge of which will be of practical value.-Scien. tific American.

The Opfn Fireplace.-A contributor to the English Art Journal, in an article upon the smoke nuisance, which is constantly increased by the enormous growth of the metropolis, writes: "It cannot, however, be said that up to the present time any system of domestic warming has been presented to the public which affords the undoubted advantages which the open fireplace possesses. The open fireplace of the old-fashioned pattern is undoubtedly the best engine of ventilation for a room. An open fire with a bright flame conveys warmth to the walls of a room, while its rays leave the air to be breathed cool ; and there is no doubt that the perfection of ventilation would be not only to have cool air to breathe, but to be surrounded with warm walls, floors, and furniture, so as not to feel ourselves parting with our heat to surrounding objects. Besides this, the open fire enables each occupant of a room, by selecting his position, to regulate according to his wishes the amount of heat he desires to obtain from it. There are, no doubt, cold countries of Northern Europe where the worship of the open fire does not prevail; but so far as England is concerned, it may be said that the abolition of the open fire would materially alter, if not revolutionize, many of our social arrangements."

SECTION OF THI: NEW TOWER.

sugineexing, ciufl \& zuxduanical. Alajouration of the new endystone lighthouse. The first Eddystone Lighthouse was built by Henry WinWhe carn, in 1696. It was constructed of wood and stone, and a violent amay, together with the architect and keepers, by atractiont storm in November, 1703. A second, of similar conbuilondon, was built in 1708 , by John Rudyard, a silk mercer, building by and this was burnt down in 1755 . The famous tory on by Smeaton succeeded this, and stood for over a cenoundation famous reef. In 1877 it was discovered that the althoation had been undermined by the waves, and that, of on which it tower itself was sound, the portion of the reef of new it rested had become insecure. The construction 4nary ; and its couse had therefore become imperatively neAugys ; and its cornerstone was laid by the Duke of Edinburgh, Sust 19,1879 .
Chilef new tower is from designs by Mr. James N. Douglass, entirely engineer to the Trinity Board. The building has been Thomas carried out under the personal superintendence of Mr. lunt as his assistant. It is entirely of granite from the De 4at quarries assistant. It is entirely of granite from the De $+$

The Duke went to the Millbay Docks, where he was received on board his old ship, H. M. S. Galatea, which at once moved into the Sound. She was followed there by the Trinity yacht Siren and the Harpy, which contained the Mayor and Corporation of Plymouth. The Carron, with the Mayor and Corporation of Devonport, and the Vivid, the yacht of the Port Admiral, Sir Houston Stewart, were waiting off the pier, and with the Triton, Trusty, Perseverance, and other government steamers, joined in the procession, followed by a number of private steamers and by a whole fleet of yachts. The Galatea led the way, closely followed by the Siren; the Vivid and the Harpy coming next in order. The ships in port were dressed with flags from sunrise, and as the royal standard was hoisted salutes were fired from the citadel and men-of-war. The weather was brilliant. As the Galatea passed through the Sound two American corvettes, the Portsmouth and Saratoga, which were lying there, dressed colors and fired a royal salute. The run out occupied about an hour and a half. The coast of Devon and Cornwall, from the Prawle Point to the Dodman, was distinctly visible, and the sea was covered with craft of all sizes, from tiny fishing boats to ocean mail steamers on their way up channel. The Eddystone was reached at a quarter past eleven, and the vessels grouped themselves around the reff. This is well shown in our engraving, which is from the Illustrated London News. Altogether 9,000 persons were present at the Eddystone at the time the light was inaugurated; but the ceremony was not participated in by more than a select few of those on hoard the Galatea, with the addition of Mr. C. F. Burnard, the Mayor of Plymouth. The Duke of Edinburgh landed on the Eddystone Rock about half past eleven. A prayer was offered by the Rev. Dr. Wilkinson, the lamps were lighted, and the maclinery which sets in motion the fog bell was started by the Dake of Edinburgh. Everything was found in the most perfect order. The ceremony over, cheers were raised by the party at the lighthouse, and taken up again and again by the occupants of the steamers which lay around. The Duke then embarked amidst another round of cheers, and the start homeward was speedily made, the Galatea and the siren being this time the last to leave. The run back was made at full speed, after the Galatea had steawed round the Americau vessels in the Sound, which manned yards in honor of the visit. Millbay Pier was again reached a little after two. Here an address was presented by the Mayor and Corporation of Plymouth, and His Royal Highness drove from the pier to the Guildhall to attend a luncheon, given by the Mayor, Mr. Burnard. The magnificent hall was splendidly decorated. The company numbered over two hundred, and included the Duke of Edinburgh and elder brethren of the Trinity House, Admiral Sir Houston Stewart, and other heads of departments in Plymouth and Devonport, Commodore Luce and the officers of American vessels in the Sound, the magistrates and members of the Corporation of Plymouth, Devonport, and Stonehouse.

The Mayor, on rising to propose the health of the Duke of Edinburgh, said: "I may say that when I suggested to His Royal Highness, as I did, that we had not expected our American cousins on this occasion, and that it would be desirable to recognize their attendauce, he at once expressed the pleasure it would give him to propose the toast of their healths. (Great cheering.) I have now to propose the health of the Corporation of the Trinity House, including the health of His Royal Highness, the Master." (Cheers.)

His Royal Highness, in concluding his remarks in reply, said: "I beg to thank you once more for the way in which you have drank to the health of the Trinity Brethren, and more particularly for the way in which you have associated my name with the toast. (Loud cheers.) The fact has been alluded to more than once by the speakers who have addressed this assembly, that we have among us to-day representatives of our Transatlantic cousins. I ask you to join with me and with the Brethren of Trinity House in welcoming among us Commodore Luce and the officers of the American squadron." (Loud cheers.)

Commodore Luce, was enthusiastically received, and said : "Your Highness, your Honor the Mayor, and gentlemen, I esteem it a great privilege to be present to day to speak in the name of Americans. (Cheers.) As Americans, it is good for us to be here. (Cheers.) The very name of Plymouth recalls to mind the Pilgrim Fathers-(cheers)-and reminds us of Plymouth Rock in Now England. As it has been happily expressed, the ocean does not divide but knits Old and New England. (Loud cheers.) Our traditions date from this country. (Cheers.) When my distinguished friend Admiral Sir Houston Stewart, reverted to the fact of Sir Francis Drake playing bowls upon

Plymouth Hoe, just before he and Hawkins and Howard of Effingham, set out to meet and defeat the Spanish Armada, , was reminded that it was just as much the New England as the Old that was interested in that great epoch. (Cheers.) lilgrim Fathers and the Plymouth Rock are inseparably ass ${ }^{\circ}{ }^{\circ}$ ciated by us in America. And I would go further and ask what American there is who has not been nurtured in the English classics, and what American there is who has not had instilled! in him the early English instincts of civil and religious liberty? (Cheers.) As the Old England has given light to the physical world, let us hope that it may continue to give light to tho moral and religious world. (Cheers.)
Commodore W. B. Hoff, of the Portsmouth, Commander Henry C. Taylor, of the Saratoga, and Flag Lieutenant A. Ward were also present at the luncheon.

PROGRESS OF THE HUDSON RIVER TUNNEL

Work on the tunnel beneath the Hudson river, uniting York City and Jersey City, is being pushed so rapidly one-fifth of the whole distance is now conpleted. On the Jersey side the tunnel is advanced at the rate of three feet th
day, a feat said to be unparalled in the history of enginepring day, a feat said to be unparalled in the history of engineering. The engineers in charge are confident that the greatest dimculties of construction have been overcome. Two tunnels ${ }^{\text {er }}$ tend under the river bed from the Jersey shore. The souther ${ }^{2}$. most is now 600 feet long the northern 1,000 . The peculis formation of the soil on the New York side necessitated done
sinking of a caisson, instead of the use of a shaft, as was don sinking of a caisson, instead of the use of a shaft, as was dog,
on the New Jersey side. The caisson is forty-eight feet long, on the New Jersey side. The caisson is forty-eight feet long'
t twenty-nine and a half feet wide, and twenty-sig feet in height, twenty-nine and a half feet wide, and twenty-six feet in heigity
outside measurements, and is sunk so that its bottom is fity outside measurements, and is sunk so that its bottom is filt, six feet below the mean low-water mark and sixty-five helow the surface of the street. It is made entirely of wood its walls are three feet thick, the sides having a slope of on ${ }^{n}{ }^{-2}$ half inch to the foot. so that its interior somewhat resemblag the sloping sides of an inverted funnel. It is one-third lat 0^{n} than that used on the Jersey side and weighs 400 tons. top of the caisson a coffer-dam in three compartments was ${ }^{c}{ }^{2}$ structed, these compartments running east and west across caisson, and the central compartment being nine feet in wi In this are the air-locks admitting to the base of the cais ${ }^{55^{91}}$ and thence to the tunnel proper. The two side compartine ${ }^{n}$, are filled with the material removed from the excaration thus serving as a load for the caisson. The whole arrangem is with its load weighs about 2,500 tons. The caisson course, air-tight. When the caisson was sunk to its pr level the bottoms of the lower halves of the projected tun
were bricked up inside the caisson. The work thus far were bricked up inside the caisson. The work thus far
comparatively easy, but that which has followed during past four weeks, the opening of the north tunnel, has watched with much interest by engineers. It consisted in ting out the side of the caisson westward, and the construction in of the iron bulkhead and of the tunnel walls, every step ${ }^{\text {g }}$ th which work was a desperate fight against the yielding ea $h^{\text {ad }}$ and the permeating water. When the side of the caisson to be been cut through, the work of excavating the earth had oticicarried on very slowly and carefully, for a new and u pated difficulty was met with. In addition to the pressup from above and from the sides, there was found to be an ward pressure of water from the bottom of the tunuel of twd ${ }^{\mathrm{en}^{2} \mathrm{f}^{\text {ts }} \text { ts }}$ eight pounds to the square inch. The water that found to way to the tunnel from below was found to be fresh, come from the southeast, where seemingly there is an ${ }^{n} \mathrm{n}^{\text {d }} \mathrm{de}$ ground spring whose waters make toward the river. How this newly discovered trouble will annoy is purely a ma ha ${ }^{\text {sid }}$ of conjecture with the engineers, but they think they discovered a plan of successfully battling with the pos
leakage from above or below. leakage from above or below.
When the rough excavation at the heading is made, ${ }^{8}{ }^{4}$ abs clet of iron plates, set together against the soil so that are air-tight, is constructed. This plan differs from that to-fore used in the work only in the substitution of smalle a variously shaped plates in place of the four by two and a feet plates used on the other side. This change was mad that the exposed surfaces could more quickly be covered the leakage, if any should occur, be more easily stopped the treacherous soil be prevented from caving in. plan has thus far proved efficacious, and the first section o north tunnel, twelve feet out from the caisson, is comp Workmen are now pushing forward the construction of
tiver. When this section is completed the work further out toward the river is begun, a new obstacle is to be met, with and Orercome. From the heading to beyond the river bulkhead ${ }^{\text {wan }}$, is ${ }^{\text {a }}$ distance of forty-seven feet, but before the tunnel Chich pass under the wall it must pass through the earth into Which the pires on which the bulkhead walls rest are driven.
But
little the little trouble is anticipated, however the plan being to cut these pies off and build the walls of the tunnel of twice the
Ordinare ordinary thickness in order to support the additional weight bed, it is thace beyond this wall of piles, and under the river bed, it is thought that the progress upward and downward wil!
fe comparatively easy, for it is expected that at a distance of fromparatively easy, for it is expected that at a distance of
the 300 to 400 feet from the caisson the workmen will strike the inmpervious silt which permits of much more rapid pro-
greas Sreass. Fifty feet below the mean low water level the opening
cut cut is situated, but the tunnel most descend considerably be${ }^{10}{ }^{2}$ th this level before the middle of the channel is reached, for the that point the depth of the water is sixty-three feet. With ${ }_{9}^{4}{ }^{4}$ incecereased depth of the water comes an increased pressure, rase defesity for heavier masonery, and more problems which are cofy theoretical engineering. The engineers in charge soil on fident, however, that the penetration of the treacherous most the New York shore-virtually a quicksand-is the Mose formidable obstacle to be overcome. Others, however,
think then greater skaill yet theatest difficulties are yet to come and the tuater skill yet to be exercised in successfully carrying the
tunnel under the bed of the river chananel. The interior of the
tungel is lig then
 be completed in in five years.- sllure. The Thated works. is expected to
beis.

A CURIOUS TORPEDO.

This latest offspring of Australian destructive ingenuity propresed to be a distinct success. Its motive power is not comTo prosed air, neither is it contained in the body of the torpedo. $k_{\text {bota }}$ prol the weapon through the water at a speed of from 15 or ats to 20 knots an hour for 1,000 yards, a separate engine, estry. This eppecial connection with an existing one, is necesrith. This engine drives two drums, about 3 feet in diameter, The a velocity at their peripheries of 100 feet per second.
the the quaty is to wind in two fine steel wires, No. 18 gauge, of
of Sir Wort as that used in the deep sea sounding apparatus
 rom two iam Thonson. The rapid uncoling ot these wires
itmparts small corresponding reels in the belly of the fish hiparts to them, as may readily be conceived, an extremely tigh velocity. The reels are connected with the shatts of the Tho procity. The reels are connected with the shats of the to in propellers work, as has long been known to be nece ssary one inure straight running, in opposite directions aud both in haft of the shaft of one being hollow and containing the bauling the other. Now, at first sight it would seem as if curioug a torpedo backward by two wires was a sulficiently In practice th speeding it "full speed, a-head," but it is found mith the thice that the amount of "drag" is so small, as compared to the the power utilized iu spinning the reels that five motion ther. Of prellers, that it may be leit out of calculation altoge. sion of of course it is at once seen that this method of propuland doess away with the necessity for air-compressing engines h_{0} reservoirs $_{\text {pressed }}$ to $1,500 \mathrm{lb}$ on the square iuch, which,
elemer corefully constructed, must always involve a certain telemer carefully constructed, must always involve a certain
lity $n t$ of daus ittle enginenger, however small. Neither are auy delicate
ox quisite
andes controlled aud stopped by complicated, though athisite mechanism, required. But these advantages, great sesed may be, are as naught compared with the power poscourse the user of the Breunan torpedo to guide and govern Mansy and movements.
and any experiments have been recently made at Woolwich, ${ }^{2}$ f far ${ }^{\text {mare }}$ egpecially at Chatham, and there seems little doubt, prove thost can be seen at present, that the new torpedo will

Exxelfanics.

machine for coloring and grounding paper for paper hangings, etc.

In priating offices, book-binderies, paper hanging factories, etc., large quantities of colored paper are used which is generally colored on one side only. Formerly these colored papers were produced by manual labor, but of late, machines have been used for applying the color, rubbing the same on the paper, drying the paper, and then smoothing the same.
Mr. Ferdinand Flinsch, of Offenbach a. M., Germany, is well known as a manufacturer of machines for coloring paper ; and the machine exhibited at the patent exhibition in Franka. M, gives ample proof of his ability in constructing and manufacturing machines of this class. In the annexed engraving a perspective view of this highly interesting machine is shown. Into the machine the paper is placed in large rolls: it is then unwound by the machine, colored, dried, smoothed, pressed, and finally wound into a roll. The first machine in which the roll of white paper is placed is a coloring machine, and the same draws the paper through coloring mechanisms, and then takes it over a large cylinder, upon which the color is distributed on the paper by a series of rotating brushes. The moist paper is then conducted upon a second machine which is used for drying it. In this second machine the moist paper is hung on a series of rods or shafts, and is moved backward and forward on the same a greater or less length of time until it is dry. This drying machine is very interesting, and is different from other similar machines inasmuch as chains are used to turn the rods, whereas heretofore belts or ropes were used, which produced irregular movement, as the ropes or belts contracted more or less, and thus some parts of the sheets were moved faster than others. These defects are avoided by the use of the chains. The paper is conducted through the space or room several times, and thus a very great length of paper can be dried within a very small space. After the paper has been dried it is passed to the winding machine, which winds it into a very solid and firm roll, the edges of which are as smooth as if they had been turued off. The fourth machine is an automatic adjuster for the rods or shafts on which the paper is hung while drying. A small steam engine of about one-half horse-power is sufficient to drive all the machines.-IDer Practische Maschinen-Constructeur.

IMPROVED PULVERIZER.

We give an engraving of the Thompson l'atent Pulverizer, improved by Stephen P. M. Tasker, of the firm of Morris, Tasker \& Co., Lim., of Philadelphia. It has been so changed by Mr. Tasker that nothing now remains of the original mill but the ball held between Hexible disks. These improvements are results of experiments made at the Paceal Iron Works and during a year and six months' rum at the mines. It is now perfected as a machine ; and for the reduction of ores, etc., it stands, as we believe, unequaled. The rflicient working of the mill cannot be realized unless it is seen in operation.

As the motion is a simple rolling motion no foundations are necessary. The pedestals are supplied with screws for raising or lowering the journal-bearing boxes in the event of the mill being set out of plumb.

In this mill contrifugal force is given to a loose ball. This is a principle which we believe has never been correctly applied before. The ball, B , is carried around the inner periphery of a steel shoe ring, C. by means of flexible disks. B, whose surfaces are chilled where they tou h the ball to prevent wear. The disks are set up by means of nuts, 1 , on the shaft on the outside of the screen frames, and they are kept apart by a strong steel spring, E, between them on the shaft. The disks are carried by the clutches, which are fast to the shaft. On the sides of the machine are the screens, N. As the ore is fed in at the top by the antomatic feed it drops into the mill, and, after being pulverized, is washed under the edges or rims of the disks, which have a clearance of one-eight inch. All that is tine enough passes through the screen ; that which is too coarse is caught in the take-ups and forced back under the ball again until it is fine enough to pass through the screens.

The fineness depends on the number of mesh of the screen and the quantity of water used; the more water used up to ${ }^{2}$ certain quantity, the more pulp will be washed out. With very little water a less quantity will be done, but it will be

MACHINE FOR COLOURING AND GROUNIING PAPER.-(see preceeding page.)

TASKER'S IMPKONED THOMPSON PIIVERIZER.
very much finer. To give the mill all the water that can be used requires but 400 gallons per ton of pulverized ore. This compares very favorably with the amount of water used by the stamp mills in the Black Hills, where they must economize water. They use 2,500 gallons per ton of ore. At the Rara Avis mine just enough water to carry the pulp over the plates was found to be all-sufficient. This mill, which has used the machine longest, is doing satisfactorily from 3 to 4 tons per hour, with bui little wear.

There is no wear of note on any part of the mill except on the ball and shoe ring. The latter is made of rolled steel, and will wear for several months. The ball is made of the very best cold blast charcoal iron, deeply chilled, which gives it a degree of hardness not exceeded by the best tool steel. The wear on the ball is very slight ; at the rate of 60 tons per day the ball will last from two to three months ; in fact the total wear is not 20 per cent as much as a stamp mill with an equal capacity. The amount of slimes made is but a very small percentage of that made by a stamp mill, and from the peculiar form of the pulp is more readily concentrated, as shown by actual workings on a very large scale.

The mill in its construction is very simple and easily set up. Any wearing part can be replaced in one hour. The lower half of each screen frame is supplied with a door, which is hung on hinges, so that it can be raised and the mill cleaned out while it is in operation, if necessary. It is not possible for rust gold to escape being brightened by the rubbing it receives while in the mill.

All parts of the mill are made very exact by templates, which assures a tit when extras are required at the mines. Another great point in the mill is its very low speed and small power required. The large mill, which reduces 60 tons per day through a 60 mesh screen, and is really capable of doing much more, only requires 10 horses power, which drives it very easily, the speed of the shaft being but 190 , while the ball makes about one-third less revolutions per minute. - Scientific American.

SODA BY THE INCH.

Soda which is imported at the cost of $\$ 52$ to $\$ 55$, can be taken from soda lakes in Wyoming and placed in the Eastern markets at a cost not exceeding $\$ 25$ per ton. The Wyoming soda is chemically purer than the imported, and the method and rate of supply indicates practical inexhaustibility. Means are now being taken to secure early access to the deposits, and when these are perfected our import totals will lose an annual item of from $\$ 6,600,000$ to $\$ 7,000,000$. In Nevada crystallized soda can be dug up as ice is from a pond, except in the case of soda no one knows how far it is to the bottom of the pond. Out near Ragtown there is an inexhaustible supply of pure soda extending down to an unknown depth. On the surface of the ground are two or three feet of sand, but below this lies the soda, looking like a solid mass of ice. It was this soda that gave rise in early days - when the emigrants were crossing the plains-to stories that in places there was to be found, under a few inches of sand a solid mass of ice. The soda as dug up from the plains, in sheets from two to three inches in thickness really does look more like ice than does any other mineral formation.--Mi.ing Neu's.

FORMATION OF ALLOYS BY PRESSURE.

W. Spring has shown that, when a mixture of bismuth filings, cadmium, and tin, in the proportions necessary for the formation of Wood's alloy, is subjected to a pressure of 7,500 atmospheres, the mass thus obtained powdered and again subjected to the same pressure, a metallic block is formed which has all the physical properties of the alloy. Its specific gravity, color, hardness, brittleness, and fracture are the same; and when thrown into water heated to 700 , it melts at once. In like nıanner Rose's metal was made by subjecting the proper mixture of lead, bismuth, and tin to high pressure. If zinc and copper filings are repeatedly subjected to pressure, a mass resembling brass is timally obtained.-Rerichte der deiutsrh, chem. Gesell.

Annealing Chains.--It cannot be too much insisted upon that chains of cranes, or those used for other purpises, should be regularly and periodically inspected. As all chains are liable to become brittle by use, they should be annealed once a year, by heating them in a furnace unitormly to a dull red heat and then allowing them to cool very slowly.

(Chemistxy, zhysics, dechualogyo

THE BLUE PROCESS OF COPYING TRACINGS.
As we have had several inquiries recently in regard to the best method of copying tracings by what is known as the "blue printing process," we will give a brief description of the method eruployed by us; we do not say it is the best, but certainly is as simple as any other, and has always given perfect satisfaction.

The materials required are as follows :
1st. A board a little larger than the tracing to be copied. The drawing-board on which the drawing and tracing are $\boldsymbol{1 0}^{\mathrm{a}^{\mathrm{do}}}$ can always be used.

2d. Two or three thicknesses of flannel or other soft white cloth, which is to be smoothly tacked to the above board to form a good smooth surface, on which to lay the sensitized paper and tracing while princing.

3rd. A plate of common double-thick window glass of good quality, slightly larger than the tracing which it is wished to copy. The function of the glass is to keep the tracing sid sensitized paper closely and smoothly pressed together printing.

4th. The chemicals for sensitizing the paper. These consis. simply of equal parts, by weight, of citrace of iron and at monia, and red prussiate of potash. These can be obtainednts any drug store. The price should not be over 8 or 10 celo per ounce for each.

5 th. A stone or yellow glass bottle to keep the solution do, the above chemicals in. If there is but little copying to fresh, an ordinary glass bottle will do, and the solution made whenever it is wanted for immediate use.

6th. A shallow earthen dish in which to place the solution when using it. A common dinner-plate is as good as anythind for this purpose.

7 th. A brush, a soft paste-brush about 4 inches wide, is the best thing we know of.

8 th. Plenty of cold water in which to wash the copies after they have been exposed to the sunlight. The outlet of ${ }^{\text {sir }}$ ordinary sink may be closed, by placing a piece of paper or it with a weight on top to keep, the paper down, and the cop s filled with water, if the sink is large enough to lay the cops in. If it is not, it would be better to make 2 water-tight bog about 5 or 6 inches deep, and 6 inches wider and longer the drawing to be copied.

9 th. A good quality of white book-paper.
Dissolve the chemicals in cold water in the following pr^{0} of portions : 1 ounce of citrate of iron and ammonia, 1 ounce be red prussiate of potash, 8 ounces of water. They may all will put into a bottle together and shaken up. Ten minutes suffice to dissolve them.

Lay a sheet of the paper to be seusitized on a smooth ta ${ }^{\text {ble }}$ or board; your a little of the solution into the earthen dist with plate, and apply a good even coating of it to the paper the brush; then tack the paper to a board by two addiajert corners, and set it in a dark place to dry ; one hour is suln bosth
for the drying ; then place its sensitized side up, on the for the drying ; then place its sensitized side up, on the
on which you have smoothly tacked the white flannel lay your tracing which you wish to copy on top of it ; of all lay the glass plate, being careful that paper and tracind are both smooth and in perfect contact with each other, ${ }^{2} d$ lay the whole thing out in the sunlight. Between eleven ${ }^{20} 10$ two o'clock in the summer time, on a clear day, from minutes will be sutficiently long to exprose it ; at other seas ad. a longer time will be required. If your location does not ade, mit of direct sunlight, the printing may be done in the shads or even on a cloudy day ; but from one to two hours half will be required for exposure. A little experience soon rnable any one to judge of the proper time for expent on different days. After exposure, place your print wash sink or trough of water before mentionud, and in thoroughly, letting it soak from 3 to 5 minutes. Upon will mersion in the water, the drawing, hardly visible before, after appear in clear white lines on a dark blue ground. washing, tack up against the wall, or other convenient pla is by the corners to dry. This finishes the operation, which very simple throughout.-- The Loromotive.
Basic S.outit: of the Bessemer retorts, Martin furnacher ate., containing as they do from 10 to 15 per cent of phosp in acid, M. Nanjean thinks conld be utilized with advantage the manufacture of artificial mauures.

THE DIRECT TRANSFUSION OF BLOOD.

Among the various methods of transfusing blood that have D_{r}. Omployed, the most commendable appear to be those of Cr. Ore, of Bordeaux, and Dr. Roussel, of Geneva. The proWhich has latter has recently occa-ioned a remarkable cure and has attracted much attention from the medical world, ${ }^{2} \mathrm{Pacte}^{\text {we }}$ are therefore glad to make it known to our readers. Pact, as we know, speak for themuel ves, so we will give these 1 In succinct manner. Mrs. M., aged 31 years, had had five aftor six children and two miscarriages. Li December, 1881, ${ }^{4}$ the gix months of gestation, she gave birth to two childrenonly. Them was stillborn and the other lived for a few hours trom. The patient in spite of all care gradually became feeble Cham week to week. She was attended by her physician, Dr. $J_{\text {anquary, and by Drs. Brochin and Pean. (In the 318t of }}$ aruary, she went from bad to worse ; and, on the 1 st of Feb. inary, there was little hope for her. Anorexia, vomitings, thee, $\mathrm{D}_{\mathrm{r}}^{\mathrm{f} .} \mathrm{P}$, and apan approaching dissolution ; such were her symptoms. reource. This Brochin then suggested transfusion as a last the rece. This was performed by Dr. Roussel, who describes D_{r} r. Brackable operation as follows: on the 5th of February, ${ }^{1}$ f found hain came to the Grand Hotel to ask my concurrence. mithout the patient inert, scarcely conscious, without heat, polse filiespiration, as pale as a corpse, veins invisible, and The filiform at 140 .
The heart and lung; appeared to me to be healthy, and I consented to operate, February 7 th, 4 o' clock P. M. The pa.
tient ${ }^{\text {is }}$. diarth is in the state above deseribed; to day she has had 150 . The sister and himes; her pulse is filiform, trenulous, and
and of the patient offer me their armo ; The sister and husband of the patient offer me their lsese bhere, atter an examination, 1 prefer to make a choice
treet There is made known to me a business man of the streetere. There is made known to me a business man of the
comphe employs many strong workmen. Mr. Z. at once compretho employs many strong workmen. Mr. Z. at once
to call , ands the importance of my request and causes his men mother ond to them I explain that it is a question of saving a Mothe, and to them I explain that it is a question of saving a
arm of of a family by giving her a little blood taken from the
ane harmene of them by a single puncture which I affirm will be hrmless. of them by a single puncture which 1 afirm win be Werty Sears of age, heallthy and robust, named Adrien Renaud.
ando ${ }^{\text {and go }}$ Chp to the patient's room, where are present Drs. Brochin transfuaverin and the husband, sister, and other relatives. The bittle sed is washed in warm water to which has been added a
here 1 uncover the breast of the patient, and stretch her soda. I uncover the breast of the patient, and stretch
arm along the edge of the bed. 1 seat R, and place his arma parallel withe edge of the bed. I seat R, and place his
bend that of the patient, and surround it with a
for fulldge so as to cause his veins to swell. After having careartery at atght and noted with ink the course of the humeral Certy at the bend of the elbow, I mark a point of ink at two rein meters beyond the course of the artery, on the median
blo, which blod, which appears to be prominent and well swollen with
a may hesting the initial cylinder of the transfuser in such Way thesting the initial cylinder of the transfuser in such
col that it fivures the circumference of this central point, I
itse the annula itse the annular cupping apparatus to adhere by a pressure on Then, turning to the patient, I find that her veins are so
bloodleass as to be invisible. I succeed in discovering them by
placing Placiugs as to be invisisble. Is succeed in discovering them by
vere
Pe bandage on her arm. I raise a fold of the skin transSind that the median vein, and cutting it with the bistoury, - finat the vein is bluish and very narrow. I prick it with Coufide erine, and then, removing the bandage from the arm, Me rein with Brochin the care of cutting a small piece from
anuala inth the point of a fine scissors and of introducing the and incoa the narrow vessel. A few drops of very pale, thin, During thisle blood run out.
$t 0_{0}$ of the this time I have dipped the bell of the aspirating 40 of the instrument into a vessel of water heated to about By working the bulb, this water fills the entire heats it and expels the air that it contains. It was all the air was expelled by the water that Dr. Brochin
aced the canala into the patient's vein. he patient canala into the patient's vein.
2opsthesia that she makes in at even the slightest movement either daring the incision of the skin or during the preparation
of the peing the reing. the incision of the skin or during the preparation
Our foll or two subjects are now united by an uninterrupted channel lap of Water and free of air. A sharp tap on the head of the Pearance at Renaud's vein, and his blood soon makes its ap-
"ator before orifice of the tubes, after having driven the Tater before it. The orifice of the tubes, after having driven the
tobe are clion tube as well as the expulsion orer closed, The water section tube as well as the expulsion removing and a direct current of blood is set up. Slowly,
bulb, and force the blood easily into the vein in quautities of 10 grammes each time. At the tenth contraction of the bulb the patient breathes more deeply and quickly. When questioned she answers that she feels no discomfort, but experiences a heat rising from her arm into her breast.

Dr. Brochin easily ascertains under his finger that the blood is distending the rubber tube and the vein at each pressure; and, moreover, we all perceive the vein becoming more apparent and turgid as far as the arm pit.

At the seventeenth injection of ten grammes, perceiving a resistance in the bulb and a slight agitation in the patient, I stop transfusing, after 170 grammes of Renaud's blood have passed into the patient's veins.

The preparations for the operation were somewhat prolonged by the absolute lack of comfort and room in the appartment. It was difficult to light the latter well, and Ir. Chauvin was good enough to hold a lamp so as to light alternately each subject. The operation itself lasted tive minutes.

Renaud's arm was dressed with a simple bandage, and he returned to his wolk very much pleased with the service that he had rendered.

February 8th. - The patient has slept, although she has awakened several times. During the day she has eaten six times. She has spoken aloud, and has not felt the least pain.

February 9 th.-The patient has slept well the entire night, and for the first time in six months.

Feb. 10 th and 11th.-State of convalescence assured.
February 12 th and 13 th. - Madame M. is sitting up, and is certainly cured. Hereafter she can dispense with my care.

Such is the interesting case that we have desired to make known. It now remains to say a few words in regard to the instrument employel by Dr. Roussel-his transfuser.
The apparatus consists of a soft, elastic, warm, and moist tube, after the style of the blood vessels, designed to be placed between the vein that yields the blood and that which receives it. This tube carries a suction an 1 force pump, which gives impulsion to the venous blood, while measuring the quantity and velocity of the same. Twis bifurcations, one at the beginning, and the other at the end of the tube, allow of the en. trance and exist of a current of warm water so as to drive out the interual air and heat the instrument without the water itself being forced into the patient's circulation.

The above description which is taken from La Nature, seems to indicate a method of transferring blood which is likely to be generally adopted, as it avoids the many difficulties which have hitherto accompanied the operation of removing blood from one person in order to inject it into the veins of a second.

GENTILLI'S GLOSSOGRAPH—AN AUTOMATIC 8HORT-HAND APPARATUS.

Amadeo Gentilli, C.F.., brought before the public a short time ago an invention with which he has been occupied for a number of years. The purpose of this apparatus is to record speech automatically, in easily deciphered characters, with the rapidity of the normal flow of speech. The inventor did not proceed with his studies as the inventors of the telephone and phonograph, upon the principle of acoustics, because he could not succeed in making practical use of the microscopical characters thus obtained; but he converts the motions of articulation of the organs of speech into visible permanent characters.

An easily managed instrument, shown in Fig. 1, is provided with delicate levers which rest upon the different parts of the tong ue and lips, and slender wings swing before the nostrils. The levers of this instrument may be taken in to the mouth without any inconvenience.

On speaking, these levers and the wings move, and their motions are transferred partly in a mechanical way and partly by electricity by a writing pencil, which is moved forward by hand or clockwork. Upon the utterance of the vowels and consonants, moving one or more parts of the organ of speech more or less strongly, or upon the air being exhaled through the nose, the signs corresponding to the sounds uttered are recorded and may be read at once. For example in uttering ch, r, g, the back part of the tongue is raised, with s, h, l, the tip of the tongue ; and with $e . i$, the whole tongue is moved; with s, l, the tongue is pushed forward against the teeth ; with o, u, the under lip, and with f, b, the upper lip is moved ; and with n, m , the solt palate is depressed in such a manner that the air which otherwise would issue from the mouth finds its way

GENTLLIIS GLOSSOGKAPII.
through the nose. These characteristic motions through double levers are transferred in the instrument from the inside to the outside of the mouth in such a way that with the ntterance of ch, r, g, lever IV.; with e, i, levers IV. and V. with s, ch, l, lever VI.; with s, t, levers V. and VI. ; with a, o, u, lever III ; with f, b, levers II. and III. and are put in motion and produce larger or smaller variations of the pencil from its position of rest. The nasal sounds n, and m, place lever I. in motion.

These few signs sutfice for the interpretation of languages for in our conventional orthography, taking into consideratid only the phonetic sound marks, it will be found that b, d, ${ }^{\text {glt }}$ t; g , are only less degrees of intensity of sound than p, k, $\mathrm{an}_{\text {n }} \mathrm{thab}$ that c, z, q, and x, are composed from ts, kw, and ks; between f and v no difference exists ; and that w is this ${ }^{4}$ sonorous modification of v. The system of writing of this papatus, as represented in Figs. 3 and 4, may be quicipb learned. There are certain rules which make the decipher

RECORI) OF THE (:IUSGOORAPII.

DIAGKAM OF THE LEVERS
Wier. These rules rest upon the laws of the construction of The and the combination of consonants.
secordinerman and Italian languages are best adapted for phonding by this apparatus, because in these languages the
out this mode of writing varies least from the orthography,
this does not prevent its being applied to other languages.

Stenography through the use of this apparatus (which the inventor calls a glossograph) becomes, in a certain measure, the public property of every one who will undertake the easy and interesting labor of learning the key of this "nature's selfowriting. This apparatus may be used for the recording of public speeches, not by the orator himself, but by one emnloyed - for that parpose, who takes the instrument in his mouth and repeats the speech softly, for the voice plays no part in bring. ing out the signs.
The glossograph has the advantage over stenography as it is practiced now, as it requires no previous study or practice, it demands no straining of the attention, and consequently causes no weariness. Only the deciphering requires practice. The employment of an apparatus which will enable us to write four or five times as rapidly as formerly, especially in an age when so much writing is done as in ours, will not be confined to the noting down of public speeches, and if the compass of the practical value of this invention has only been glanced at it must be percieved that there is a fruitful principle in it which is capable of great development. Herr Gentilli a short time ago gave an exhibition of his invention before the Instituie of Physical Chemistry of the University of Leipsic, and gave proofs of the practical utility of the apparatus.

A few inperfections which appoared at the first exhibition of the apparatus have since been obviated by the Inventor. He has separated the speaking apparatus from the writing apparatus, and provided the latter with clockwork, so that the writing is more distinct, and by the relative duration of the single signs a valuable knowledge of the signs may be obtained. The transmission of the motions is made by electricity: the contact of the tongue with the soft palate, or the lips with each other, is imprinted by the closing of the working current.Illustrirte Zeitung.

THE OPERATION OF TRANSFERRING BLOOD.-(see page 235).

3xiscellaudous.

PROGRESS IN TELEPHONY.

A new advance has been made by this remarkable instrument. Mr. Van Kysselberghe has just devised a new system of telephone differing very sensibly from all those known. The arrangement and details of the apparatus have not as yet been made known to us, but the following result of some experiments that have just been made with it are communicated to La Lumiere Electrique by Mr. F. Geraldy :

The system had first been put in operation on the line from Brussels to Ostend, but its inventor, desiring to experiment with it to a greater distance, has just tried it between Paris and Brussels.
Through the kindness of Mr. Van Rysselberghe I was permitted to be present at the experiments on the 17 th of May. I ascertained that conversation between Paris and Brussels was easy, that articulation was clear, and that it was not necessary to speak loud, but only in a clear and distinct voice-that, however, being required by the telephone.

Such a result, were it the only one obtained, would doubtless not be absolutely new, for our readers will recall the experiments at great distances with the Herz system, that we have had occasion to deseribe. Various attempts of this nature have been made with more or less success, but we may say that that of Mr. Van Rysselberghe has succeeded better than any that has been tried. But that is only only one feature of the sys. tem.

The inventor has bestowed his attention on a means of overcoming that terrible enemy of the telephone, induction. On this subject, I recall anew the studies made by Mr. Herz, on a means of applying the condenser in telephone lines as a preserver as well as receiver. The process employed by Mr. Van Kysselberghe has some points of contact with those experiments, while very sensibly differing from them. Mr. Van Rysselberghe, by an ingenious detour, instead of guarding against induction on the telephone line where it produces its injurious action, endeavors to prevent its occurrence by suppressing it in the lines on which it is produced. To this point we shall hereafter return more in detail. He has experimented, however, only imperfectly at Paris, where there was no time during these first experiments, designed only as a study, to provide all the prejudicial lines with preservative apparatus. The partial experiments have, however, sufficed to prove the efficacy of the process on telegraph lines.

From the combination of these two measures (I mean the improved telephone, and induction overcome), Mr. Van Rysselberghe has derived an unexpected and striking result; for he has succeeded in putting upon the same line and in causing to operate at the same time, a Morse telegraphic apparatus and a telephone. I have seen these apparatus work at the same time, and it is beyond dispute that they do not perceptibly interfere with one another, the double transmission being effected without any difficulty. At the first trial, which took place on the 16 th , there were transmitted simultaneously to Brussels two dispatches. The telephone dictated one (which it is un. necessary to reproduce here), while the telegraph was registering another (and entirely different one). These two dispatches were at once sent to their address. It should be remarked that they passed at ten minutes past eight in the morning, that is to say, after the work of the office had been resumed, and when inductive actions were already very energetic. We shall study more at leisure the processes employed by Van Rysselberghe, but it has seemed to us well to call attention to these beautiful experiments at once after their occurrence.

ELECTRICITY IMPORTED FROM FRANCE.

The curious feature of the importation of one of the imponderable forces across the Atlantic is one of the scientific events of the clay. The steamer Labrador imported a number of Faure secondary batteries which not only did duty on shipboard for illumination, but are ready for firther service. It appears from a statement of the engineer who had charge during the voyage that a Faure battery will last about 400 hours, delivering one weber per hour of current, with an electro-motive force of two volts. If this is correct it requires two secondary batteries to run an Edison lamp, but these two batteries will run such a lamp steadily 400 hours without replenishing the charge. The battery is a very simple affair, composed of sections of sheet lead, coated with the red oxide, and contained in a water-
tight box. A battery large enough to run an Edison lamp of sixteen candles would occupy a space of about eighty cubic feet, and a battery large enough to light a Fifth avenue resid dence about 500 cubic feet. Such a battery would be containe in a box eight feet square, which is by no means of cumbersomed proportions; and the objection which has been preferred against the system on this account is consequently without ${ }^{\text {a }}$ the proper foundation; while, on the other hand, the cost of thibattery is not high and the cost of recharging is merely nom nal. It must be conceded then that, with the Faure battely as a basis of operations, it is possible to prepare charges of elec. tricity for the market to be sold to the general customer in the same manner as oil is sold to the customer, not alone for light ing purposes, but for all the purposes, scientific and practical, for which the corrent is available. The immediate value ${ }^{\text {o }}$ the demonstration of the availability of the Faure battery cor cerns the introduction of the electric light for domestic p dr poses. Under it the consumer can buy and use any lamp pleases-an Edison, a Swan, a Maxim, a Werdermann, a Bru il or a Sawyer-just as he buys and uses a kerosene or other lamp. It is claimed that the supply of electricity can be boug is in Faure boxes at a moderate rate. What may be discern the the Faure arrangement just now may be a destruction of ectric monopoly that has been created by the consolidation of electran light companies ; and it is to be hoped that the work of mase those facturing for consumption will soon be undertaken by thoo who are interested in M. Faure's discovery. It has been suald cessfully initiated in Paris, and there is no reason why it sho fail here.

BRICKLAYING AND BRICKWORK.

The supreme importance of the drainage of dwelling. hou ${ }^{965}$ led us to linger over this portion of our subject rather long than we intended, but the gravity attending inefficient prtio cautions in this particular is not merely an excuse but a jas my fication for treating it at some length. The foundations \boldsymbol{m}^{9} be of rock, the mansion may be built of marble, the workm the ship may be unsurpassed, and the decorations may satisfy taste of Alma Tadema himself, but if the drainage be a defective, though it be a palace in appearance, it is little than a hovel, in so far as a dwelling-place is concerned.

The foundations of a building are sure to be well loo to after if the building itself is of any extent, or is required carry heavy weights, and also if it be of sufficient importand to require the direct supervision of an architect. architects as a rule pay a good deal of attention to the fonnds tions, for they know that the security of the whole sup ${ }^{0}$ structure depends upon its solidity at the base. In this ${ }^{1}{ }^{1}$ pect they seldom fail, and it is not often that any mishap occurs through deficiency or oversight in this particid. lar. Where no architect or surveyor has charge of the buh ing there is great danger of "scamping" in the foundstion 6 " and singularly enough nearly the whole of our suburbtol dwellings are erected entirely without supervision or concor in this important respect. The freeholder stipulates for tain conditions-as to frontage, elevation, "class," mat \&c., and as to foundations, drainage, and the like, in terms - but it is not often that any portion of the executed under the direct superintendence of the architect or surveyor. The result is that a large proportion of the b of moderate rentals are built on what is little better than face soil, or on " made ground" consisting of rubbish offal.

If the houses have "basements" or only " half baseme this necessitates a certain amount of excavation, and excavation generally reaches to the more solid subsoil, leeper. This is perhaps "one of the greatest advantages of to basement or half-basement story, but care must be take make provision to carry off the surface water, if any, ${ }^{80}$ no damp shall accumulate under the floors. But if there be no basement the trenches for the foundations must g^{0} to a solid subsoil as a base. The builder who builds on ground," such as we often see in various parts of the m lis, ought to be heavily fined, for not only is the bu unsate in the ordinary sense and meaning of that term is unsafe by reason of the putrid matter of which a of such made ground is composed, in so far as regar ealth of those who are destined to dwell in houses so We have no hesitation in saying that the fearfully unhe coudition of some houses is due entirely to this cause, efforts to etfect a cure are unavailing, for the simple that the whole ground is putrid or tainted.

Supposing then that the trenches are properly sunk to the oosh required - that is, to the solid subsoil $-\cdots$ and that all cose, damp earth is removed from the surface, then a layer of take the should be placed in each trench sufficiently wide to "idth of "footings" of the walls to be built thereon. The Desg of the concrete must obviously depend upon the thickinches the proposed walls ; but it should not be less than six
of a set-ofer than the first course of "footings," so as to allow saperinculf on either side three inches wide at least. If the great or if ent weight of the structure itself is intended to be eveat or if it has to carry a great weight, then the depth, and if, on the , of the concrete foundation must ine proportionate ; recter, and contrary, the house is not to be of so heavy a chaHeed, and is to be simply a dwelling-house, then the concrete good. Indeed, bery thick, but it, ought, nevertheless, to be very tance thaneed, the quality of concrete is of more real impor-
honses its quantity in all cases, but especially for dwelling homses. Its quantity in all cases, but especially for dwelling-
stren this case is not so much solidity and it mugth as it is to prevent dampmess; in order to effect this ${ }^{8}$ rengt be good. The use of ceroent is necessary where great ed to this required, and also where the foundation is subjectif to the action of water. Blue lias lime, stone lime rround, lidifies and good, is very suitable for foundations, for it soground be a kind of natural rock. If Dorking stone lime bround be used care should be taken that it be supplied and for while it is quite fresh. If either the lime or cement used tioned, is is at all deadened, its value, for the purposes menthat it is gone; and it should be mixed and used quickly, so its its strength shall not have vanished ere it is deposited in rouplace. Sufficient water must be used to "slack" it thoand ${ }^{\text {and }}$, but not enough to destroy its "binding'" properties The 'rer of fusion.
as "gravel". used for concrete should be as free from "dirt"
the ${ }^{\text {posible ; if it be at all loamy or clayey it helps to destroy }}$ the properties if it be at all loamy or clayey it helps to destroy ont care must be taken that the ballast so used shall not be of rach quality as to "give" when touched by damp. Some kinds must seem to have no damp-resisting properties at all ; must be avoided. Coarse clean gravel is by far the posen is preferable to any other ingredient for concrete cost. If if it is at all easily obtainable, and at reasonable ad in the ingredients of which the concrete is composed are aixed themselves, or are subject to chemical changes when ${ }^{\circ}{ }^{\circ}$ to nengether which tend to destroy their essential character, Dense neatralize their natural effect, then it is better to disWith bad me farce of concreting altorether. If badly done, that there materials, it is worse than useless; for you imagine $k_{i n h}$. Were is security, when in reality there is nothing of the or shingle and good tone ground lime, and clean coarse gravel, one of and sand, or good dry ballast, the proportions may gravel, of lime to five, six, or even seven, eight, oe nine of inary circumerding to the "strength" of the lime. Under orproportions cumstances one to seven may be taken as the fair depth of the concrete and gravel, or other ingredient. The and some concrete should never be less than twelve inches, inches, and its thickness should allow for a good set-off beyond face of the first and widest course of footings. And it is much of it as that the whole extent of the foundations, or
 like is no binding whatever between the parts; it is simply y butting in so many blocks-large or small, as the case eakest Its solidity and strength will then only equal the Peak point, so does it increase in intensity, until it takes the of it bearing of does it increase in intensity, until it takes the onde inherent weakness, or gives way utterly to the lateral or Af nerincumbent pressure. The pressure and strain should be roarly as possible equal at all places and at all parts The cont the whole bnilding.
to concrete being in and settled, the next thing to be done ought put in the "footings." The footings, if of brickwork, Wever to be less-indeed cannot well be less-than nine side is only room for two set-offs of $2 \frac{1}{4}$ inches each on
shis for cottages and the like, but not for buildings of a For of greater pretensions, or those requiring
houses above the commoner sort of worklings the footings should not have less than four r nine inches on either side, or a total of eighteen
tra to the fnll thickness of the wall. Even the com-
monest villa or ssburban dwelling ought to have this width of footings, upon a solid concrete foundation, which, in the case of brick walls of eighteen inches in thickness - that is, two bricks wide lengthways - would be double the width of the wall, and would have footings thus

In the above example the brick wall is supposed to be two full-length bricks in thickness - that is, eighteen inches wide the first course of the footings would consequently be thirtysix inches, or four bricks lengthwaya wide; the second course would be twenty-seven inches wide, or three and a half bricks wide. - that is three stretchers and one header ; the third course would be three stretchers wide; and the fourth, or top course of the footings, would be two stretchers and one header in thickness; and then would be started the face of the wall, two brick lengths wide. The set-otfs on either side (marked a) are supposed to be $2 \not \ddagger$ inches wide in each case. Should extra strength be required, or should the superincumbent weight or pressure to be borne necessitate a more solid foundation, the width of the footings and the number of set-offs mast be increased in proportion to the needed requirements of such building, otherwise the proportions above given will sufflce for all practical purposes

There is one hint which should be borne in mind, namely, that the bricks in footings should be laid lengthwise in the wall, as far as practicable. Where half a brick is required, the half brick should be as near the middle of the wall as possible, as, for example, in the illustration they are where the headers are shown (marked b), courses two and four from bottom, on first course. The reasons for thus laying the bricks in footings lengthwise are because of the necessity of giving to the wall the widest bearing possible in a lateral direction. The strain longitudinally will be met by other precautions when the building is more advanced.

Now, having got the footings in, one more step should be taken to ensure perfect freedom from damp : either pour a layer of asphalte over the top bed of the brickwork about three courses from the top of the last-footings course, or lay down a course of slates in cement, or cover with a sheet of lead the whole of the inner and outer walls of the building. Upon this layer, whichever may have been selected, proceed to build your house or construct an edifice of greater pretensions and dimensions.

There is yet another matter of great practical utility in building operations, and especially in the construction of dwelling-houses, namely, the building of dry areas, and the insertion of proper air-bricks at convenient points for ventilating purposes. A current of air should pass right through the building underneath the lowest door; if it does not dry rot will be sure to make its appearance, and with disastrous results. If the pressure of earth against the wall be great, headers should be thrown out here and there from the dry area wall to the main wall of the building, but these must be only at such intervals as will not interfere with the free circulation of air.

If the hints and suggestions here given are properly attended to there will be little fear of any damp arising to rot the floors, discolour and destroy the paperhangings or other decorations, and to injure the health of the inmates by foul-ness-either from defective drainage or damp. Let it not be thought that the directiong here given will entail much extra expenditure. In point of fact the extra cost will be compar atively nothing as an item in the entire cost of the building. It looks a good deal upon paper, but an expenditure of $£ 20$ extra while the work is being done will make all the difference in the world between a thing well done and badly done. Be sides which, if more care were taken at the first with the drainage, the foundations, the footings, the ventilation, and the selection of the site, the edifice itself might be built with far less expensive materials, without much detriment to its rental value as a dwelling-house, or to its intrinsic value as a building. Even in the smaller class of house property it would pay in the long run to do all that is here recommended to be done. But as a rule houses are built to be sold - this makes all the difference.-The Building and Engineering Times.

Frg , MICROSCOPICAI, EXAMINATION OF ICE.

microscopical examinamion of ice.

by ephraim dutter, new yohk, member: philosophtcal suciety great britain, efc., fete.
This paper is a roport of an examination of the forms founl in the water derived from melting of ice used in domestic consumption. The subject is one that is interesting, beciause ice is an article of commerce, and is exteusively consumed in this country.

Again, it is interesting as the notion prevails that water is purified by freezing, and hence can be ased freely, even though it may come fron ponds or lakes whose waters are impure. How far this notion is sustained by chemical examination is seen in the following extr:ct:
"The notion that ice purifies itself by the process of freezing is not basea on trustworthy scientific observation. On the contrary, it is utterly wrong in principle to take the ice for consumption, from any poud the water of which is so fouled as to be unfit for drinking purposes.' ${ }^{*}$

Again, how far the notion of ice parifying itself by freezing is sustained by a morpholegical (morphos, form, logos, account) examination may be gathered somewhat from what follows. I say "somewhat" advisedly, sinse the report simply relates to the specimens examined, and may be modified by subsequent examinations. So far as the results are positive, they are final as to the specimens examined, but not so to specimens not examined. Those must be judged by them.
selves. The examinations reported here are microscopiont, and relate to objects not recogniźed by the unaided visiluth which for distinction is now termed macroscopic (madion large, and scopein, to view); this includes ordinary tiajog Should any doubt, it is easy to test the statements by tak is domestic ice sufficient to fill an ordinary ice pitcher which clean. Melt and filter the water resulting through a bag mall, of fine twilled cotton; say three inches by one and ong bog and when the water is filtered down to the capacity of the
inverting the bag into a clean tumbler or goblet, then sopp bed inverting the bag into a clean tumbler or goblet, then
it in the water in the goblet, and finally twisting the longitudinaily.

The filtrate thus obtained will give to the naked eye gn ditt of the amount of dirt found ; and if the quantity of the dir like that obtained in the preparations for the following obd vations, some surprise will be excited and evidence afford in sustain those who are accustomed to filter drinking water j jars or bottles, and to cool it indirectly by placing gaid ati of water into a refrigerator. Indeed, Dr. Cuzner, the srito will testify that ice enough to fill a goblet has, when mid prodaced foreign suistances in quantities incontestably dent before the microscopical examination. Still, as
seen in ice examined at Amherst, Mass, I found hardy seen in ice examiaed at Amherst, Mass., I found haraly
sediment. Hence, all ice is not to be pronounced impart, sediment. Hence, all ice is not to be pronounced impate
rather the ground is to be taken that if some ice is quite from dirt, the great ice companies should take pains to f only such ice for drinking purposes.

Fig. 2.
Fig. 3.

Iy fitted ; on this was placed ice. The top was loosely covered with oil cloth. The rationale was that the ice as it melted cooled the air, which was displaced through the side holes ; then warm air would enter the crevices at the top, and thas a carrent would be formed, which, carrying with it the bodies found in the air, would then lodge on the ice by its stickinese during melting.

Fig. 4.
Fig. 5.

In an exposure from 8 P.M. to 7 A.M, next day, the mass of ice nearly melted, and what was left was covered black with dirt; and the water from the melting was so loaded with sand and dirt, that I was unable to obtain the object of the aspira. tion, to wit, the defection of the so-called ague plants of the district. So it seems that ice conveyed in open carts on highways must attract more or less dirt that floats in the atmosphere, and may explain the superabundance of dirt in urban as compared with suburban ice.

It will be my aim to show what forms may have come from the water and what from the air. When large cakes of ice are black with interstitial dirt frozen into its substance (as seen this summer on 8th Avenue), it needs no expert to point out presence. This report is intended to show something of the field for exploration that hare is open to the student of food stuffs. It is not intended for alarm, nor for discredit of ice companies, for there is no doubt they use care and juigement in their business. Nor does it aim to exclude ice from use. It would simply try to regulate use by knowledge, so that exposure to filth may be avoided as much as possible.

first examination.

Ice said to be from Naine, from a New York ice company. It was soft, cloudy, spongy, light, opaque. Mode of examination: A clean bag, one half inch by four inches, made of cotton cloth, was tied to the escape pipe of a refrigeratorzinc lined, shelf at top-that had been washed and cleansed with filtered water. The filtrate of from thirty to forty pounds of ice was collected by inverting the detached bag into a clean goblet, then sopping the inverted bag in the filtrate, and wringing the bag also. Power of microscope, ons-filth inch objective. Eye piece, one inch and half inch, 350 diameters.

Fig. 1, drawn by Mr. Hotchkisa, from specimens: 1, Yeast ; 2 , bacteria; 3, pelomyxa; 4, dithugia; 5, yeast vegetating filaments ; 6, myc + lial filaments of red watry fungus ; 7, dark red-organie unknown boty ; 8, trachelomonas; 9, astrionella formosa ; 10, bast fibers ; 11 , ascus; 12 , wool ; 13 , spherotheca fungus ; 14, decaying leaf ; 15 , diffiugia unusual; 16 , monad; 17, silica; 18, carbon ; 19, fuather barb; 20, difflugia globosa; 21, epithelia; 22, starch of corn, wheat, and potato ; 23 , egg of bryozor; 24, dirt, debris, etc. ; 25, abundunt mycelial filaments; 26, actinophrys sol; 27, aneures monostylus; 22, hacillaria diatom ; 29, chitin, ; 30, closterium ; 31 , cotton fiber ; 22 , distoma vulgaras; 33 , other diatomacese ; 34 , dinobryina sertularia; 35 , egos of entomostraca; 36 , epidermis of wheat ; 37 , englenia viridis; 33, grmiasma verdans: 39, h ir of plants ; 40, leaves of moss ; 41, liber fibers ; 42 , lyngbya; 43, oscillatoria; 44, peliastrum boryauum ; 45, other pelomyxas; 46, peridinium cinctum ; 47, pitted ducts; 48, potatostarch; 49, protococeus ; 50, rotifer ; 5l, scenedesmus quad; 52 , skeleton of leaves; 53 , silk; 54 , spiral tissues of leaf; transverse woody fiber. Thirty-three of these ohjects belong to fresh water, and twenty-two to air as a medium of communication. At my request, Dr. (1. B. Harriman, of Boston, examined this filtrate, and found almost two-thirds of the forms found in Boston ice by him, and reported farther on.

DEACRIPTION OF CUT. (FIG. 1.)

1. Yeast. This is the alcohol yeast of the yeast pot, torula cerevisire, the spores of which are everywhere present, ready to germinate if they have the opportunity. Its presence in ice is interesting.

2, Bacteria. These are minute self-moving protoplasmic bodie-. Some regard them as ultimate forms of life; others that they are but the cmbryonal forms, seed=, or babies (as is were) of a vegetation, yet capable of immense reproduction by division, arranging themselves into masses, chains, etc., at will. In order to know what plants they belong to, culture is necessary. It is possible that those in the cat may be the spores or seeds of the yeast plants, but it cannot be said with certainty.
3. Pelomyxa. This means " mud mucus." It is an animal classed with the rhizopod or root-footed protoplasmic animals. They are very greedy, and eat much mud or dirt. The color in this case is dark amber, and may be mistaken for decaying vegetable matter. The writer regards them with suspicion, as contributing when dead and decaying to cuse the "cucumber" and fish oil taste that sometimes occars in hydrant drinking waters, notably the Cochituate.
4. These are portions of difflugia (Latin diftico, to flow): these are like number 3 , only they have the property of build-
ing over themselves a covering made of particles of sand glued together so as to protect their structural prrtoplasmic bodies. Lately, the writer saw a difflugia cratera, whose shell had bee the broken on one side. The cilia that were usually seen at the natural opening were seen to be active at the artificial opening. The contour of the hole changed under view from circular to ${ }^{8}$ narrower one, forming a segment of the first; showing gil action of repair ; suddenly there was a gush of protoplasmic jelly, and the animal was dead, dying in its efforts of recoll struction!
5. Yeast filaments such as are seen in fluids where air has access.
6. Mycelial filaments of a red fungus, found commonly in Horn Pond, Woburn, Mass. ; also at Cambridge. Name n^{0} known to writer.
7. Is a curious dark red tubular boly, fragments of which I have often seen in hydrant drinking waters. Its fracture is classy. It is an animal substance probably, and this is the best specimen I have seen.
8. Trachleomonas. These are by Ehrenberg claimed ${ }^{98}$ infusoria. They are very abundant in hydrant waters at liv. seasons of the year. The specimen here is dead, but the liv, ing individual moves its curious long flagelliform filanention by means of which it gracefully propels itself in any direction at will.
9. Astrionellia formosa. A beautiful, very common dis ${ }^{\text {disel }}$. $t \cdot m$, that arranges itself into forms like the spokes of a whe $\mathrm{T}^{\mathrm{j}} \mathrm{s}$ Three spokes only are here given; usually, twelve. mis. power of self-symmetrical arangement is surprising and miy terious.
10. Bast or linen fiber. This probably came from $\mathrm{som}^{\mathrm{m}^{2}}$ table cloth, towel, or clothing.
11. This may be an ascus or theca of a fungus, which is ${ }^{\text {s }}$. part of a fructitication of the fungus, and also found in lichers It is strikingly well developed.
12. Wool fiber. Note the macerati n at one end.
13. This is found in mildews.
14. Decaying leaf.
15. Probably a large dittugia.
16. An isolated infusoria; very common in hydrant water
17. Piece of difflugia.
18. Charcoal, probably.
19. Feather barb.
20. A very small difflugia globosa
21. Epithelia; probably animal.

These are suspicio ${ }^{1098}$ organisms. See New York Medical Record, April 8, of the They are'parts of the investing covering of all portions of human body, inside and out.
22. Starch grains: X, corn or maize; Y, potato; wheat.
23. This is the egg of a bryozoa, or polyzon found 1 opt unfrequently in the drinking waters of our cities and towns. corresponds to the "winter egg" of entomosdraca. one of the four inodes of reproduction which Smith guishes: First, eggs from sperinatoxoa; second, from development (this very one) ; third, external buds: brown bodies in empty eggs. This particular egg is have an oval opening, whence tho contents have beell or destroyed. It has been traced to a single polyp. the animals live in a colonv, and are met with in fr on stones, sticks, sides of tlumes, and free. I have seen $\mathrm{col}^{\mathrm{l}^{10}}$
 ing on and covering the perpeudicular boards of a flumed the present csse, the egg is nearly as large as the animal in of state of rest. Its detection shows decidedly the presed animal life in ice.
24. Dirt. This is hard to picture, but should have a plis of in this report, though it has been defined as "matter place."

Of the remaining thirty-one things named, six are anim animal substances, the rest are vegetable or vegetable tances. They do not include the whole of objects some could not be classified or named bv the writer. be of interest to add that the melted filtered water pecimen was quite black and dirty looking to the naked ${ }^{\text {ej }}$ and that the examination of this specimen shows imp ${ }^{\text {d }}$ both from bodies that float in, or are blown through the vention of the air ; and also, those found in the wate ponds and lakes, and that are used for drinking So far as it goes, the examination favors the cooling of water by indirect contact with ice as a cooling agent, or ting the filtered water in a refrigerator. How far the
that are injurious has not yet been settled. It is a problem departay well attrac', the attention of those interested in the drinkingt of public medicine, though there is no doubt that rinking water is more potable without them.

SECOND EXAMINATION.

Ite from a New York Company. A common silver ice Water, porcelain lined, was cleaned with filtered Croton pact, sold filled with broken ice, source unknown, clear, compact, solid, diaphanous, and pure looking. This was allowed
to before. One quart of water resulted, and was filtered as l, fore and examined with following results:
8tance of Pria; 2, bast fiber; 3, broken down tegument and sublection of leaves; 4, coal ; 5, cloisterium lunare, dead ; 6, col-
dirt an liber fibers ; 7 , collection of mycelial filaments ; 8 , ${ }^{1} 1$, euglydant ; 9 , a desmid, penium ; 10, difflugia globosa; ${ }^{2}$, euglypha; 12, exuvium ; 13, egg of the fresh water poly${ }^{8 t_{0}} \mathrm{ck}_{8}$ are named, unhatcted; 14, euglypha cristata: 15 , foot ${ }^{\text {col }}{ }^{c_{k}}$ of vorticell bls, twenty five in number; 16 , fiber of wool, gromia, blue ; 17, fungus filament ; 18, gluten cells, wheat ; 19 , 23,10 , dead; 20 , humus; 21, large p iramecia. 22, leptothrix $d_{\text {ecaying vegetable hair ; } 24 \text {, linen fiber embedded in a mass of }}$ fggs, big vegetable substance; 25, large double body, probably jectum but possibly vegetable; 26. nostoc; 27 , membrum dis${ }^{8 t a r c h}$ of a large entomostraca; 28, pelomyxa; 29, potato unchan; 30, portion of a leaf with chlorophyl attached, color egg of an ; 31, silica; 32, shell of a cypruss; 33 , supposed haits : an entomostraca; 34, vorticell, dead; 35, vegetable these ; 36, worm ; 37, wheat starch; 38, yeast. Twenty of objects are aquatic, the rest come by means of air.

THIRI EXAMINATION.

2, Same as $^{\text {bacteceding, with more ice of like kind. 1, Amceba; }}$ of Wateria $; 3$, corn starch ; 4, cotton fiber ; 5 , chitin ; 6 , claw $m_{a l}$ and spider; 7, dirt; 8, daphne claws ; 9 , epithelium, ani13 , and vegetable; 10 , gromia; 11, gemiasma; 12, humus; chymen fiber ; 14 , potato starch; 15 , pelomyxa; 16 , paren${ }^{4}$ red of leaf; 17 , portion of a red water fungus ; 18 , piece of ${ }_{24}{ }_{i}{ }^{\text {ed }}$; 21 , 2 , 24 , wheat silk fiber; 22, vegetable hair ; 23, wheat starch; from water. gluten cells; 25, yeast. Ten of these objects come

FOURTH EXAMINATION.

G.
G. B. Harriman, D.D.S., of Boston. Mass., my associate, Hights as found in the melted water of one cake of ice, Boston cel Is $_{s}$ separd terias separated in all directions; 2, botridium cells; 3, cloislentim; 4, chlorococcus. 5 , cotton fiber ; 6 , cryptomonas and exlaris ; 7 , claws of insects; 8 , decaying leaves; 9 , dust ${ }^{\text {letijes }}$ exementitious matters; 10 , difflugia, dead, several var$\mathrm{fish}_{\text {scal }}$; 11, daphne claws; ; 12, epithelial scales. human ; 13 , rions anes; 14 , fungi and spores, 15 , humus; 16 , hairs of varVegetablmals; 17, linen fiber ; 18, large masses of decaying nium rinctubstances; 19 , navicula: 20 , nebalia ; 21, peridi-
vorticell 22 , peridinium spiniferum ; 23, starch; 24,
 ; 26 , yeast.

Fifth examination.
Ice from Amherst, Mass., furnished by Mr. C. H. Kellogg.
This show taken from his cream cooler, and thoroughly washed.
thelig, aned but little morphological impurity beyond epi. $\mathrm{K}_{\mathrm{el}, \mathrm{l}} \mathrm{g}$, animal and vegetable. From statements made by Mr. ${ }^{\mathrm{Pa}} \mathrm{per} \mathrm{gg}$, this ice was probably chemically contaminated by a

Sixth examination.
Iere from Horn Pond, Woburn, Mass. This presented consi-
Degetablightish Pegole lightish colored deposit, in which a few animal and
thetable forms were found, but was mainly made up of epi-
filtia and amorne
${ }^{\text {tered }}$ Horn arphous dirt. The result was unexpected, as unmond water is rich in forms of life.

Seventh examination.
from from New Haven, Conn. This specimen was quite free $_{\text {forms of life. }}$

vulgaris ; 6 , epithelia; 7 , linen fiber: 8 , monads; 9 , monostylus anccurœa. 10, mass of carbon ; 11, vostoc ; 12, one gonidia of coelastrum sphericum ; 13, protococeus; 14, scenedesmus obliquus; 16, scenedesmus qualricauda; 16, starch grain ; 17, staurastrum ; 18, tabellaria; 19, tetrospore ; 20, trachelomonas ; 21, vegetable epithelium collection: 22, young closterium.

Figlete 2.
Forms found in ice used in New York. Drawn by Dr. A. T. Cuzner, Peckskill.
a. Tabellaria.-A diatom found commonly in all surface drinking water. They have the power to arrange in rows, and the specimen in the cut has fifteen individuals in one aggrega. tiou, which is a small one. Diatoms are regarded as plants by the majority of observers. A good deal of difficulty arises from trying to measure things with the lines and plammets of past time, when the things in question were absolutely unknown, and hence conld not be properly named at the date when the word "plant" was invented. As knowledge increases names must be changed. The diatoms are generally regarded as innocent, though some observers take the opposite ground.
b. Epithelia. These are probably human, washed into the water and froz n into the ice. They are constantly thrown off in washing sputa and the excretions of the body. They are also found on all other vertebrate animals and on vegetables.
c. Is spiral tissue from some leaf, probably.
d. Is a gromia-a rhizopod-animal
e. Is potato starch more highly magnified than in Fig. 1. It is somewhat remarkable how long a time starch will exist unchanged in shape or form in pond waters.
f. Wheat starch cooked.
g. Wheat starch uncooked.
h. zorn starch.
i. Yeast.
j. Bascilli, vibriones, bacteria.
k. Astrionella formosa.
l. Monad.
m. Three algre ranged side by side, green chorophyl collected at extemities.

n. Chitin.

o. Sporangia fungus.
p and q Pelomyxas.

FIGURE 3.-(CUZNER).

Forms found in ice water, New York.
$a, a .{ }^{1}$ Carapaces of entomostraca.
b. Tegument of wheat.
c. Synhedra, a diatom.
d. Mass of dirt, debris, etc.
e. Leaf of moss.
The other objects are portions of decayed leaves.
FIGURE 4.-(CUZNFR).
One inch objective. Ice water forms.
d. Portion of limb from a water spider.
e. A sphagnum leaf entire.
f. Portion of another sphagaum (moss) leaf with reticulation shown.
g. Spined vegetable tissue.

FIGURE 5.

Portion of tree leaf with parenchymatous chlorophyl. This was drawn from a solar projection by Dr. Cuzner. It shows hou the process of decay was averted by freezing.
figure 6-(CLZAER).
Mycelial filaments of a vinegar yeast found in connection with melting ice. At the bottom are the embryonal spores of the yeast.

Thic shows what happens when ice water is allowed to stand exposed to the action of the air. A long, dirty, greyish, gelattinous ribbon, half an inch wide and about one-eighth inch thick, appeared to be a mass of what is called "the mother of of vinegar." The cut gives the appearances under the microscope. The significance shows what is the full development of some of the embryonal forms of life found in ice water when subjected to conditions that are present in refrigerators.

Fig. 7.

Fig. 8.

FIGURE 7.-(OUZNER).
Forms from Boston ice. (Not from Dr. Harriman's specimen.)
a. Epilobinm montanum-pollen.
b. Diatom.
c. Melosira.
d. Pavement epithelia. Five specimens.
e. Diatom valgare.
f. Starch.
g. Alcohol yeast.
h. Peotococcus.
i. Scenedesmus quadricsuds.
j. Parenchyma of wheat

The numerous objects in this field are monads that developed in large numbers in the specimen kept for a few days, as might be expected.

> FIGURE 8.-(UUZNER).

Objects found in ice water.
a. Cotton fiber.
b. Silk fibers.
c. Bast fiber frayed by maceration.
d. Wool.
e. Polomyza.
f. Starch. (This is common.)
g. Epithelia pavement.
h. i. Curious algæ, sometimes crooked like an oxhorn, allied to ankistrodesmus falcatus.-Scientific American.

IIPROVED TIN CANE.

A vary simple and neat improvement has been offected in the preparation of tin cans now so extensively used for preserved foods. The body of the can has a bevelled rim, upon the slope of which the cover is soldered. When the cover is smartly tapped arounc the edge, it is expended, and the solder joint broken by the wedge action of the bevel. The cin is thus opened without injury to the lid, while the present inconvenient and even dangerous process for catting open these air. tight cases is entirely avoided. The improvement involvee no additional cost, and the soldering is applied externally.

LUKENS' IMPROVED GATE

4
 Relations of firs extingutshicent to the ITSURANCE RISKS.

 thingtion this presence, to discuss "The Relations of Fire Whioh Jouishment to the Insurance Risk." It is a topic with doer sobjects to write about. Whenever you have fonnd We the topios apon which to concentrate your editorial intel--hand for yoct of fire extinguishment has always been ready
 out theair supply of more pertinent ammunition is exhausted. Podithmpont, it thing to be said about the subject of fire exto dof the general public. It is, indeed, to be regretted that Weh mo soprocent, for the annualy increasing fire losses of the Whent Conatitate a serious drawback to the prosperity of the mporien in the commuuity would be benefilted. As the evreat tean 10 of frres are due to ignorance, recklesesneses, or carrM do and monooncod as to almost oriminal, those great daily, portion of their service to their follow-men than by devoting mition. of thair time to expounding the gospel of fire proH himent will take care of itcolf. In what I shall have to say henod ine I aball not confine myself very closely to the text 1 Me etimgaintrive to consider the question of fire prevention - bopint of a oitizen taxpayer whoce burdens are made hear. hre he loveces.
What the oocurred at all stages of the world's hirtory, and

be, at least in this life; and if the fire hazard in the world to come is not greatly increased many of us will be happily dis. appointed. The prevention of disastrous fires is poosible, of course, by the proper construction of buildings and cities, but that such construction will ever be attained is far from probable. Hence we must continue to regard constantly recarring fires as inevitable under existing conditions, and resort to the best means possible for reducing their disastrous effects to the minimam. To do thie, we need to pay more attention to the science of fire prevention than to fire extinguishment. Baild. ings can be constructed of slow burning material so put togeth. er as to render them very nearly fire-proof. There are many such atructures in European cities, and a few in the cities of this country. But it is impossible to make their contents fireproof, and hence fires are liable to occur in them. But in buildings of this olase it is poseible to burn the entire contents of one portion of them without disturbing the occupants of the other portions. When buildings generally are so constructed, the fire loses will be reduced to the minimum. Under existing conditions of society, however, it is impossible to socure this nearly fire-proof construction. Property owners will not expend the additional sums necessary to erect such buildings, and no set of lav-makers has ever been assembled that possessed the requisite practioal knowledge to eusble them to frame laws prescribing the methods of fire-proof construction. Experience, ospeoially in this city, has demonstrated that it is impossible to enforce even such precantionary measures relative to building construction as have been enacted. Incompotent, careless, or corrupt officials have noglected their doty in the matter, property owners are opposed to restrictive laws, and architects and builders evale them whenever it is made their interest to do so. As a consequence, our cities are now fillod with bedly constructed, highly inflammable, and dangerous buildings, and their number is being added to day by day. The constantiy increasing fire hazird has rendered necessary more elaborate and costly meens of fire extinguishment. In this city it costa about $\$ 1,500,000$ a year simply to maintain ourfire department, involving a tax of nearly 81.50 a year apon every man, woman and ohild within the limits of the city. A tax in nearly the oume proportion is rendered to support the fire dopartmenta in
other cities. The losses by fire in New York average about $\$ 4,000,000$ a year : the amount paid for fire premiums annually averages $\$ 2,225,000$, while the uninsured losses bring up the aggregate cost of fire losses, fire insurance, and fire protection to very nearly $10,000,000$ a year. This is what we pay in this city for the blessed privilage of erecting cheap, flimsy, and inflammable buildings-for ignorance, recklessness, and carelessness. Apportion this sum among the tax-payers of the city, and it makes a tax of $\$ 100$ upon each, and probably more.

It is a theory of fire ingurance that premium rates are made to harmonize with the risk-the greater the fire hazard the greater the premium. If this thenry was carried into practice, we should have little need to enact building laws for it would then be to the advantage of every property owner to make his buildings as nearly fire proof as possible to escape the extra hazardous premiums that would be required upon buildings of the class now existing. As a matter of fact, however, the discrimination in premium rates is more a matter of theory than of practice, and in reality the rate is scarcely higher on a building known to possess many and varied hazards than upon one that has few. There is, therefore, no incentive to fire-proof construction, and property owners are content to put up shams that are attractive to tenants instead of substantial structures calculated to defy both time and Hames.

A property-owner in Boston some time ago stated this point very clearly in reply to a published letter written by Mr. Edward Atkinson. After stating that he was the owner of several buildings, he said that he would not spend one dollar for fire prevention or fire protection ; that he was willing to spend money freely to secure the best sanitary coudition for his houses, and to make them attractive to his tenants, but the fire hazard was of no interest to him whatever ; that he paid the insurance companies to assume the risk, and they were responsible for it. He said, however that if any company would make it an object to him to provide fire protection he would do so, but as long as he could get just as low rates without such protection as he could with it he would not spend money for such object. This is the secret of the flimsy character of the buildings that disgrace our cities to-day and jeopard the safety of whole communities. Insurance companies do not charge for the risk as they find it, and, by not discriminating, rob property-owners of all incentive to fire-proof construction. Until such discrimation is made, and property-owners shown that it is to their pecuniary advantage to provide proper means for preventing and extinguishing fires, the fire losses of the country will most certainly increase year by year in proportion to the increase of population and the development of our commercial and industrial resources. Insurance companies now employ survegors to inspect buildings and pronounce upon their fire hazards, but such inspections have far less influence upon the establishmeut of rates than does the excessive competition for business engendered by the active rivalry of numerous insurance companies. A few years ago the sanitary condition of buildings began to be actively discussed, and out of the interest developed in the subject there has grown a new profession, composed of sanitary experts, who are competent to remedy defective drainage, correct bad plumbing, and by other means convert a pestiferous house into a safe and wholesome domicile. When insurance companies encourage property-owners to adopt means for fire protection and prevention we shall soon find another class of experts taking the field to advise propertyowner as to the best means of nroviding against disasters by fire. At present, instead of fire prevention being provided at the cost of individual property-owners, too much reliance is placed upon the means for fire extinguishment maintained at public cost, and upon the complaisance of iasurance companies that insure property for its full value, or more, at absurdly low rates.

From the underwriters' standpoint, the means available for fire extinguishment have no relation to the insurance risk. At least, that is the inference to be drawn from their practice. Just over in New Jersey there is a manufacturing city that is literally without water for tire protection. A little stream passing through one end of the city furnishes sufficient water for numerous hat factories located on its banks, but is totally insufficient to protect them from the flames, as has been demonstrated on numerous occasions. Its fire limits embrace the main street and twenty feet on each side of it. The front of the street is lined with brick buildings, while twenty feet in rear of them there are any number of frame sheds, tumbledown stables, and cheap wooden structures. When a fire occurs the people turn out to see the property burn, not with the expectation of saving it. Yet in that city, composed
mostly of special fire hazards, and virtually withont fire protec. tion, the rates of insurance are no higher than they ars ${ }^{2}$ Newark, where a sp!endidly-equipped fire department giveg es cellent protection to property within the city limits. Ot the instances without number might be cited to prove that means provided for fire extinguishment have no influedre whatever upon insulance rates, whatever it may actually har upon insurance risks. We all reme nber how, some time agot there was a hue and cry about the insufficient fire protectiod in Chicago, and how the insurance companies threaten How to cancel their policies and withdraw from the city. the ${ }^{\text {ir }}$ many of them actually did cancel their policies, or gave up ther ${ }^{0}$ business there? It was a long time before any better fire pr on tection was provided; but what company refused a risk dethat account during that time $\{$ Possibly, if the entire fire diters partment of New York city was dishanded, the underwrite is might become frightened, cancel .policies, and stop writing wo the city ; but if one-half the apparatus only was disabled, ${ }^{\text {w }}$, or believes that one of them would refuse a premium tendered, the would still trust to luck to bring them out all right, and competition for business wuld be as active as ever. Whate in may be the theory of underwriters reg , riling fire protection, bo practice they generally do not regard it as of any value, for, ${ }^{3}$ it good or bad, it has little or no influence upon rates. To citize in and tax payers, however, an efficient fire department is of no 0^{0} estimable value. So it is to the unleruriters, but they do fire recognize it as other citizens do. Only a few days ago an mas occurred in a wood-working establishment up town which the filled with highly inflammable material. It originated on top floor, in a paint shop, and in a few minutes the upper stife was all ablaze. In an incredibly short space of time the coll, men were at work, and their efforts were directed by the ce ser clear-handed judgment of officers of long experience in the ser vice. In a s ibsequent report of the fire the daily papers eshe tolled the skill and energy displayed by the fir men, by wpet extraordinary exertions the fire was confined to the story. The only damage d ne to the property on the $1 \mathbb{m}^{P^{+}}$ floors was by water, and was inconsiderable. But for the tion, ly arrival of the firemen, and their able and energetic actiod the building, with ali its contents, would have been destroy The actual loss was not more than 10 percent. of what it w the have been had the building been entirely consumed or 0 firemen five minutes late in reaching the scene. The value \mathbb{v}^{3} the fire department to the underwriters in this instance equivalent to 90 per cent. of the ampunt of insurance on property. Instances of a similar nuture occar daily, and efficiency of a fire d-partment is an element that should diting prominently in the establishment of insurance rates. but the superior machinery employed in the fire dep of the large cities, and the celerity, experience, and gido judgment of the fireman, prevent confligrations of magnit occurring with frequency.

The means for fire extinguishm nt bear a most importitn nit $^{5^{0}}$ relation to the insurance risk; but if such importance is appros ciated by underwriters they do not recognize it in their deal th of with the public. It is not long since 1 heard the preat ${ }^{10 w}$ a city insurance company complain of the scarcity of fires in " ${ }^{\text {t }}$ York. Said he, "If the fire d + partment goes on putting oner in " the fires so promptly we shall lose our bu-iness.' surance president has written and said that "underwriters wa ${ }^{\text {a }}$ " plenty of small fires to keep the people alive t, the valuped, insurance. We don't want fire departments ton weil equip ${ }^{\text {pis }}{ }^{\text {is }}$ all we want is protection from large conflagrations."
 to the insurance rivk. Yet these same men, as nood and taxpayers, admit that this view is opposed policy. In their own communities they advocate the ${ }^{b^{8} 8}$ means attainable to protect their property from fire, know of some of them who have complete little fire ments of their own for the protection of their private ces. In one of my couversations with the president of ${ }^{\text {a }}$ pany who held these views, and who also said that orts, nsurance was responsible for fully 30 per cent. of all firt the said, "Then you must holl that fire ins rance is a curse " it is community?" "Most certainly I do," was his reply ;", Th ${ }^{\text {h }}$ a benefit to individuals, b it a curse to the comounity. welfare of the citizen and the taxpayer demunds the m cient means of fire prote tio: attainabl, while the intere of underwriters is consulted by having plenty of fires, conflagrations.
Modern architecture is rapidly outgrowing our present $\ln ^{p^{80^{8}}{ }^{n^{9}}}$ of fire extinguishment. Buildings are run so high up in air as to be entirely out of the reach of the fire departm
N_{0} stream of water can be projected from the ground to their roofs, nor can ladders be built long enough to reach the upper floors. All the firemen can do in such cases is to wait till the Conten down to them. Such was the difficulty they had to contend with at the great fire in Worth Street a few years
BiDce. Bince. The fire was raging a hundred feet above the street, to that engine was capable of throwing an efficient fire stream to that height. The water that could be projected that disfre. Aas merely a spray, and of no effect in putting out the Cree And so the flames spread from one building to another, ctheping behind the hollow-iron front that projected beyond Other buion walls, till they had done their destructive work. Other buildings have so enlarged the areas between walls that, of flame a fire gets started, it becomes such a formidable volume trollable and heat that it is both unaprroachable and unconin the
in dilvidingavemeyer and Elder refinery. One or two brick walls the firg the area of these buildings would probably have kept The fre confined so that it might have been controlled.
The buildinges of to today are as much beyond the capacity of our eresendings of today are as much beyond the capacity of
Yeare ears ago exceeded the capacity of the old hand-engines.
Either the Lither there must be limits put upon the construction of building, or there must be improved means devised for extinguish-
ng fires ing fires. There is not likely to be any reduction in fire ha-
aratd bards; on the contrary, new ones are constautly being devised, at there has been no radical improvement in fire extinguish. Machinery since the invention of the steam fire engine. New Methods of tutilising these are being brought forward by frimem
And inventors gectinventors, but no machines of greater capacity for pro.
jecting water have been invented. What are necessary to contio ing water have been invented. What are necessary to con-
otherse in large buildings, or even in stmall ones that imperil others, are large, ponwerful, streams of water sufficient to drown
Outa
Of fire at short notice. When a fire gets good headway in One of fire at short notice. When a fire gets good headway in
mach a block of buildings, the object of firemen is not so Much a block of buildings, the object of firemen is no so
those ad the contents of the burniug building as to protect the a adjoining. To do this they must drown out the fire by The application of a large volume of water. This is protecting
the in insurance risk to the best advantage. But to get these
lit larginsurance risk to the best advantage. But to get these
ceseand powerful streams au abundant water supply is necessary, and, iu this respect uine out of ten of the cities of this Wanter are deficient. In certain portions of New York the Pher supply is wholly inadequate, and Prooklyn, Boston, other citieia, Chicago, St. Louis, New Orleans, and many of her cities are little better off. Without an abundant supply come there can be no efficient fire protection. The day will
wate
When all our seatoard cities will have the high-pressure water $^{\text {ater }}$ service delivering efficient fire streams of salt water proximity from the hydrants, and these placed in such close ceximated to each other that forty or fifty streams can be confor fire upon a certain point. With such means at hand ${ }^{\text {ander mitinguishment, the conflagration so much dreaded by }}$ It hagers will be impossible.
Exti has been so frequently demonstrated that private fire-
poseguishing aypliances are of little value that I do not propose
buishing appliances are of little value that I I do not pro-
noiscuss them it is absolutely useless to equip a biif to discuss them. It is absolutely useless to equip a
of ing in with standpipes, hose, extinguishers, $\dot{\text { sec., unless men }}$ of ing ing with standpipes, hose, extinguishers, de., unless men
use,
und igence are placed in chargo of them, trained in their Use, andgence are placed in chargo of them, trained in their
antiosity held to a strict accountability for them. I had the
and
 been in, a short time since, to uuroil a coil or hose that had
It was coting a number of years without being looked at.
it to was cotton hose, rubber lined. When stretched out, it was
hadd that there were iny number of holes in it where the rats had chat there were any number of holes in it where the rats
lion
loing hed off the cottun to make nests with, and the rubber Wing had been the cottus to make nests with, and the rutened by heat that the iner surfaces of he hose weren so softeped by heat that the inner surfaces of
ano betler of chaear, ullined linen hose that would hold water no L_{0} enort than a sieve. You all remember, no doubt, that the ocisot Grove Hotel was splendidly equipped with fire-extin. oge ong apparatus-force-pumps, pipes all through the building,
ion every floor, \& C. The fire broke out in the oil room,
. adjoin every floor, \&c. The fire broke out in the oil room,
ances ing the force.puups, and the fire-extinguishing appli-
and thes were conserce.puntlyps, and and the first things burned. About
te only he onere consequently almost the first things burned. About
Dallue in private appliances that I know of that have proved of use of in extinguisthing fires are the automatic slr rinklers, the
 been mise service in putting out fires in latge factories, and have ${ }^{2}$ encenthusiastically commended by Edward Atkinson and his Praciticable officers in the mutual companies. It did not seem mocticable to bring these into general use for the reason that,
the ${ }^{2}$ ing automaticuly g automatically under the effect of heat, and releasing automatically under the effect of heat, and releasing
was danger that the uncontrolled flow of water would do more damage than the fire. But improvements have been made in them of late, and, among other thinge, they are so arranged that an alarm is sounded simultaneously with the starting of the water, and human intelligence is thus summoned to extinguish the fire or turn off the water, as circumstances may require. It seems to me that this means of fire ext:nguishment may be advantageously introduced in places that are now inaccessible to the firemen. By making the floors water-tight, and providing scuppers to carry off the superfluous water through leaders to the sewers, there would be little danger of injury to goods or material located on the finoors below where they were operating. Certainly any method that p romises to control fires in buildings that are now, for all practical purposes, beyond the reach of the firemen, is deserving of careful investigation.
The fire losses of the country have reached such magnificent proportions as to demand the attention of every thinkingman. They average, according to estimates of underwriters, about $100,000,000$ dollars annually. Add to this the large sums paid for insurance premiums and for the maintenance of fire departments, and taking into account, also, the losses of the thousands of mechavics and others who are thrown out of employment by reason of the burning of the industrial establishments in which they found employment, and we get some idea of what we pay every year for e.jjoying the luxury of burning up buildings. The efforts of every intelligent man should be directed to overcoming the ignorance and carelessness that are responsible for this enormous waste of the nation's wealth. In doing so, no one need be afraid that he is opposing the interests of underwriters, for however efficient may be the meansadopted for fire prevention and fire extinguishment, there will always be a sufficient number of fires to keep alive that interest in insurance that is so necessary to the successful collection of premiums. Fires have always been plentiful, and always will be sufficiently so to make insurance a necessity. The system of insurance has so grown into our commercial and industrial economy that it has become an essential factor in our national and individual posperity. It is not dependent for its success upon the number and magnitudes of fires that occur, but the character of the indemnity it offers against possible contingencies. Those contingencies are ever present, regardless of any means that may be adopted for fire prevention or extinguishment. If there should not be a fire in New York city for a year, that fact would not reduce the volume of insurance premiums by a single dollar. The welfare of the community demands the very best means of fire extinguishment, and the best that can be obtained will in no way conflict with the interests of fire underwriters.
In these rambling remarks relative to fire matters my purpose has been to dirent attention more to the subject of fire prevention than to discuss the relations of fire extinguishment to the insurance risk. I regard the insurance interest in the suhject as entirely secondary to that of the community, but that interest is in no danger whatever of being impaired by any efforts that may be made tending to lessen the fire losses of the country. At present, ueither property-owners nor the companies derive any advantage from buildings being either fireproof or extra hazardous. Either condition plays but an insignificant part in the establishment of rates, and has but little effect on the aggregate of premium receipts. While the fire hazard is an important factor in establishing rates for classes of risks, yet these rates are scarcely affected by the question of available means for fire extinguishment. It is fair, therefore, to assume that fire extinguishment is not regarded by underwriters as sustaining any important relation to the insurance risk. Consequently, if property-owners demand the best possible facilities for extinguishing fires, they cannot be regarded as antagonizing the interests of underwriters. If the latter show a little inconsistency in devising fire departments equal to the prevention of conillagrations, which they do not want, but inadequate to the puttiny out of small fires, many of which they desire, that is their fault, not mine, for I have simply quoted their public utterances. Having thus opened up this subject for discussion, I shall expect to hear other views expressed. Some of you, no doubt, will take issue with me on some of the poiuts I have touched upon. If you do not, you certainly ought to. Hoping I have said enough to arouse your natural belligerency, I leave my remarks in your hands for dissection.

The search for pearls in the mussels of Ohio has been a considerable industry for years.

Cabinet guaking.

CABINET DESIGNS

On the following page we show one of the excellent designs for dining room furnituie to be found in Mr. J. O. Kane's new work on Fashionable Furniture, which is full of suggestions to our workmen and will well repay perusal. It is sometime since we devoted any space to our cabinet making friends, but we propose in this and following numbers to let them see that we have not forgotten them.

Opposite to this we exhibit a design for a mantel, which for originality, oddity and variety, exceeds anything we have seen for some time. The design contains a number of suggestions and combinations which some of our artists, who love novelties, will, no doubt, appreciate.

The design is the work of E. G. N. Dietrich, of Pittsburg, Penn.

HOW TO MAKE A DIVAN CHAIR.

(Compllei from the Cabinet Maker of london.)
One of the nost prolifio features of the modern furniture trade has been the astonishing multiplication of easy chairs. A few years ago, such articles of luxury could almost have been reckoned on one's fingers. Now we have dozens of them. An age of luxury has given rise to this lost of aspirants for the comfort seeker, and some of the devices are certainly luxurious to excess.

The type of chair selected for this chapter is one often in re. quest, and if properly carried out will afford as much ease as any pattern in the market. As indicated by the perspective sketch annexed, the frame is set out to allow for what is known as double-stuffing, or spring edges to seat-a class of upholstery in demand of late years. The making of such a frame is so simple a matter that it is scarcely necess ry to explain the "modus operandi." For the sake, however, of novices in the craft, it may be briefly described as follows: First make a mould for back, taking care that it is a nice grace. ful line, and no other mould will be required for the job, as the rest of the pieces are perfectly straight. Get out stuff to thickness indicated and then fit up back, square top and bottom, as shown ; leave $4 \frac{1}{2}$ inches between top of seat and stuffing rail to allow for the double stuffing mentioned above. If the chair is to be upholstered in the ordinary way with the usual thickness of rolls, only 2 inches need be allowed between these rails. Having thus got the back up, glue and frame up front, and then cross frame the chair together from back to front.

In fitting the spindle stump which supports the arm, the best plan is to first fit arm on stump, a pin having been left on the latter, which may be allowed to come right through arm, and can thus be wedged in the top when finally fixed. Before fixing, however, mortise and lap over the square lower portion of stump on to side rails, and when properly adjusted the arms can be glued up and the chair frame is complete. It is as well to place an iron batten under seat to give extra strength.

An excellent plan to finish off a frame of this kind is to glue over the joints a strong piece of canvas; thus protected, the "rickets" are almost impossible, even if the stuff is a little "fresh." Either dowels, or mortising and tenoning, may be employed in the manufacture. The sizes given on this working drawing will answer equally well for a similar chair with "stuffed-in arms." If, however, the latter is required to be full in the stuffing, an extra two inches should be allowed in width of seat.

If an extra amount of ease is required, the chair should be made with a seat sloping from front to back; an inch longer on the front legs, and half-an-inch shorter in the back, will give a desirable angle of comtort. It must be rememberel that the joints in side rails will require adjusting in order to suit this angle. This chapter has more to do with the framemaker than the upholsterer; we can therefore only refer the latter to the drawing annexed as a guide to the style of stutfing desirable. The sketch shows the chair stuffed in tapestry now so fashionable, with dark velvet edges and trellis fringe to harmonize. The same shape can of course be used for leather or other material.

It has been arranged to hold an International Electrical Exhibition in Vienna. As exhibitions of this nature are to be held this year in Munich and in Trieste, it has been decided to postpone the Vienna one until August.

CHATS WITH OUR CARVERS.

flordl forms as arplied to " quete anne."
By slow degrees to noble art we rise."
We shall not apologize for inviting our carvers to consider yet further the treasures of nature that lie so handy to the chisels. At this time of the year, when vegetation is burstives forth into so many new and vigerous forms, opportunita occur for the study of natural design that do not prest, themselves at other seasons. As the poet Arnold $j^{\text {uts }}$ it
"In the 8 weet spring days,
With whitening bedges and uncrumpling fern,
And blae-bells trembling by the forest ways,
And scent of bay new-mown,'
there are especial charms which may be turned to profita hle account. Flowers, "earth stars," as they have been apty called, are in themselves so beautiful, that to say anything to commend their study seems almost as superfluous as to pa^{a}, ${ }^{\text {B }}$ the lily, or to gild refined gold. It may, however, hap that some of our carvers, from the matter never having brought under their notice, or owing to a town life or hindering cause, have not hitherto fully appreciated the ${ }^{s e c}$ natural beauties, or have failed to see in them any pracive bearing for themselves. To such we again address ourselvach of such hoping to demonstrate to them that in the struly of sudg subjects they may gain both enjoyment and profit. A lorid appreciation of nature has in all ages characterized the nobl of minds, and the advantage of such studv in the art school, in Dame Nature was beautifully put by Professor Richmond, his recent Oxford address. At the risk of being chaig with plagiarism, we embody his remarks upon this topic to cxtcnso, for they so exactly convey, the lessons we wish impress upon onr "wood sculptors."
"Now I would ask you," says the Professor, "to follow me into the fields and there to see whether it would not be a pity that any student of art should ever go there with that his pencil and book. In the first place, we all know fortis nature is inexhaustible, that her power of suggesting for ${ }^{\prime} g^{g}$ and combinations of forms is endless. It was in old da ${ }^{5}$, from natural objects that the Greeks derived their patter ${ }^{\text {a }}$ 明 the Byzantine artists their interweaving de igns of flow ${ }^{\text {m }}$ vines, and the Goths found out their endless wreath of or ${ }^{n}$ d ment. Only recently a Persian carpet, dating from the it is of the sixteenth century, was shown to me. In words of impossible to convey any idea whatever of the varienilly flowers which covered the surface, Howers not convention but truly drawn, while at the same time they were arrab and ordered with sufficient geometrical precision to fo definite pattern. Now each and every one of the flo woven in this carpet must have been studied carefully nature, for the daintiness of drawing, finish of color, characteristic growth could not have been so finely conce b or so various in all their attributes had not the artist fully alive to the biau'y of nature. If there is to combl new style, an individual style, let us call it-by individust mean the workings of a man's taste mate visible in his ained it must be through the study of wature acting upon a Having taste formed on the example of good works of art. learnt what the laws of design are, having acquired tas by that which is most pleasing in the combination of lines, or contact with specimens from Greek, Roman, Byzautine, to Gothic designs, let him who is prompted with a desire to $\mathfrak{a d}$ press himself in form betake himself to tields or gardens, there draw whatever he admires in leaf or flower. him do this in courage, trusting that the judgment him by the experience he has gained in the study of goo will not fail him. Gathering thus from nature, a true still find will get material to work upon in his designs, and he wither himself anxious to express himself rather than to copy We must remember that in old times the architect of a desig dral, church, or building, for whatever purpose desig trusted much to the workinen for the details of carving ornament. These workmen varied (as we see by their manship) in natural ability. Some were cleverer desisners others, some had more fancy than others whilst others among them were little else than excellent manipu or good carvers in marble or stone. But such men as inf in were true artists, and one of the great interests, especis of Norman or early English architecture, is the presence affections of many minds, the variety of invention, and ${ }^{\text {a }}$ of design, so got, and on!y so, by the individual chara every workman's taste being stamped upon all his achieven
should for my own part, see why the same method of labor if the not apply to modern management. I cannot see why, bas stone-mason lived simpily, cultivated his taste (this he lived the tif of facility for doing), and during his spare hours and the life of an artist, during his walks studying nature fields, learning inday time refreshing his body and mind in the Feeds, learning lessons in design from plants, flowers, herbs, Why the in fact, whatever he came across-I say I cannot see nor can carvers of our churches should remain mechanics only, Were th see why he should not be a designer and artist, as depe the masons of past times. Whether he be trusted must trusted upon himself, and before the workman of to-day is really to design, it must be quite certain that desire to do Who good work exists in him, and, further, that those artisans place would be dignified by the title of artist must, in the first give evide themselves to be honest workmen. They must before thence that there is no desire to scamp any work laid exace them to execute. Faithful in copying with the utmost be the pl, being animated by desire for perfection, work must Who desiresure, and labor the distinguished element, of him ever desires ever to be truly an artist. No really good designer ${ }^{\text {erer ser seamps his work : in fact, it is just in proportion to the }}$ toil, and of imagination that the artist will keep up through ever yan become thereby the buttress of his invention. Whatever you find in art of good design, whatever has lasted through
fashion and and perf changes of opinion, will always be marked by go ${ }^{\sim} \mathrm{d}$ art perfect workmanship. There is to be found a reward in yomy for than can be got by money, and more, the best ecotious for every workman is good work and absolnte consciensisted in ther. This must tell in the long run, and will, if perprope in through all temptations to slacken exertion, ultimately Some to physically and morally successful."
than a floral forms lend themselves better to a perpendicular of the horizontal position, and it is well to consider the nature pendicular or plant before placing it. Thus, to enrich a per it retaing molding, the fuchsia may be used, for as thus applied the joys the manner of its growth. "Daisy chains" suggest appropriat bucolic childhood, and daisy "swags," are just as It priate and pleasing.
field $_{1}$, would be wise of the young carver to pop out into the fall.size gather a specimen of each of these examples, and make against drawings of the flowers for his portfolio, saving them Rood int a rainy day. Such a bank of natural wealth will yield Professor Richmond inters to come, and there will be found, as be got by Richmond says, "a reward in art greater than can It may money."
"entional be well to refer yet again to the advantages of "conto make the versus purely "natural" treatment, and in order a standard the terms distinct we may give a definition from Datural forms, the ambition of the designer boing to make bis tionk as much like the real thing as possible; while convenfrms to deriving its inspiration from nature, modifies the animal or vegetae requirements of ornament. Naturalism is Dature or vegetable form merely applied; conventionalism is Writers on pted. "Ornamentation," to quote one of our greatest ${ }^{\text {otmers }}$ on art, " should be natural; that is to say, should in
does does not hence express or adopt the beauty of natural objects; it
or endet it should be an exact initation of, in endeavor to supersede, Cod's works." It may consist only of Datural adoption of and compliance with the usual forms tion ; and things, without at all going to the point of imita$\mathrm{cl}_{\text {osel }}$; and it is possible that the point of imitation may be $u_{\text {afit }}$ ror rhed by ornaments which, nevertheless, are entirely and for their place, and are the signs of a degraded ambition In a simple ant dexterity." To indicate the lines of such study
chapters.
experal way is merely the object of these exteners. To those who would pursue their researches more extensively, we would recommend the persual of Mr. J. K.
Collings' '
forings' 'Art Botany" and various standard works on plant

IMPROVED GATE.

We give an engraving of a new driveway gate, recently gate is by Mr. John F. Lukens, of West Mansfield, O. The Very lighmposed partly of wood and partly of iron rods. It is It is capht both in weight and appearance, but amply strong. by a person of being very easily operated from the cirriage or pened and on horseback, and at the same time it may be The gate closed in the same manner as a common gate. gate opening and closing attachment may be readily
applied to any of the ordinary gates now in use at a very slight expense. As shown in the engraving, the improvement consists simply of a crank formed of a wrought iron rod, and put through the upper eye of a common gate hinge. This crank is supported in bearings on the gate post, and the upper end of the rod of which it is formed is bent to form a lever for receiving the wires which connect with the levers, by means of which the gate is opened and closed. A movement of one of the hand levers in one direction turns the crank so as to raise the free end of the gate, when it will swing open of its own gravity. The movement of the lever in the opposite direction produces the reverse effect, and the gate closess.

Further information in regard to this invention may be obtained by addressing the inventor as above.

PETROLIOM'S SURPRISES AND DISAPPOINTMENTS.

The history of the discoveries in the oil firlds in this country has been one of a series of disappointments to the producers. From 1866 to 1872 the price per barrel averaged from $\$ 4$ to $\$ 5$, and the producers were making money rapidly. Then the field in Butler County was struck, and from that day to this the production has been greater than the consumption. Before Butler had hegun to decline the Clarion ficld was opened. Then came the Bullion pool with its 2,000 and 3,000 harrel wells, which forced the price down to $\$ 1.50$. This field was soon exhausted, and better times for the producers were at hand, when the Bradford field, the largest in extent ever known, was opened. For nearly five years the Bradford field, increased its production, until it had a daily out-put of over 100,000 barrels. The consumption was not over one-half this amount, and with the Standard Oil monopoly squeezing the producers many of them went to the wall. Then Bradford began to decline, and again a silver lining was seen in the clou't ; but again disappointment came. In May, 1881, the first well was struck in Allegany County, New York, and a new field was opened which soon more than marle up for the decline. In the spring of the present year the Allegany field showed that it had passed the climax and was on the decline, and again the producers looked forward to the near future when the consumption would equal the production. Then was the freat " 646 " mystery struck, and with it followed disaster to the owners of wells generally, and lower priced oil than since the summer of 1874 , when for a short time it sold for 45 cents a barrel. Where the next field will be is only a matter of conjecture.

The only time when the excitement over a now oil field was as great as that now reigning in the Cherry Grove district was in 1865 , when the Pithole fever took possession of the public. The first well was opened there in May of that year. In less than two months Pithole was a city of considerable proportions, and within six months it had 8,000 inhabitants and almost as large a floating population. At the pinnacle of its greatness it had fifty hotels, some of them palatial and gorgeous, and one of which cost $\$ 80,000$. It had miles of streets lined with banks and all kinds of business estallishments. A $\$ 50,000$ transaction was considered of small account, and, miscalculating the future of the place, wealth was squandered on new enterprises which in the minds of its citizens promised, fabulous fortunes; but Pithole was only a child of six months growth when it began to exhibit symptoms of an early decay, and it declined almost as rapidly as it sprang up. The T'ribune correspondent visited Pithol, the other day and found only one voter living in the place. The railroad was long ago torn up, and most of the houses were torn down. Two of the streets are still open, and beside them remains a pitiful scattering of old houses in the last stages of decay. Fieids of corn and oats stretch over the streets and squares where once were gaudy theaters and dance-houses, gorgeons saloons and mammoth hotels. When the oil fever was high a half acre of what is now waste pasture land was sold at a rate equivalent to $\$ 100,000$ an acre. Over on the hill still lives old Mr. Copeland, who in 1865 refused on ofler of $\$ 700,000$ for his farm. Two years later he would have taken as many cents. He still own it, and his daughter teaches school and supports the family. In all this there may be a lesson for speculators at Garfield to-day. $-N . Y$. Tribune.

There is annually manufartured on the Mississippi River and its tiibutaries s bout $1,500,000,000$ feet of white pine lumber, with its proportionate accompaniment of shingles, laths, and pickets.

THE AMERICAN TUNNY.

IHR ATMBICAT TUNJT.

BY C. F. HOLDER.
Probably no family of fishes exceeds the mackerels (Scom. Irinas) in their economic value. Having a wide geographical range, the different genera are found in almost all the waters of the world, everywhere being a benefit to man and from their beauty, form, and peculiar habits attracting universal attention. The family is divided into four sab-families: 1 st. Soombrinse, distinguished by the ahort first dorsal and the wide
space between it and the second, and the pectorals high gh including the genns Scomber, or common mackerele. The Orcynine, of which the subject of our illustration in member. Here the spinous dorsal is contiguous to the 90 the pectorals comparatively low, the caudal peduncle with median adipose carina, or fleshy keel, and two others, one sblat and one below, converging backward. This sub-family inchyth orcynus, sarda, and cybinm, and related forms. 3d. Thy tinæ, in which the spinous dorsal is alsn long and peot The comparatively low, but the caudal peduncle is not keelod. Gog family includes the genera thyrsites, ruvettus, etc. 5th. bo pylines, distinguished from the others by the vory long and (the height being less than a tenth of the leagth), and

numerous spines of the first dorsal, represented by the genus gempylus. Yery recently au American tunny was brought into Fulton Market, and from its great size attracted general attention. It was nearly uine feet long, and weighed between 800 and 900 pounds-a magnficent fish, its entire make up denoting wonderful speed and activity in its native element, where, with their rich coloring, iridescent and silvery tint-, they prasent a wondrous spectacle. It is rarely that they are captured so near New York city. In Rhode Island and by some of the more northern fishermen it is called the albicore, as well as American tunny, and its range is from Newfoundland to Florida. Rondelet figures a tunuy under the name Thon, and another species which he calls Pelamyde, or Thou d'Aristole. The first he denominates in Greek as Orkunos, which, he says, is the "Grand Thon." The generic name now used is evidently from the old Greek designation, and tunny is from thynnos, the more common term in use among the ancients. The fish seems to have been well known along the Mediterranean Sea. Rondelet figures a bize, which he calls also sarda, and which he says is called by Pliny pelamydes. It will be seen, then, that these names, which are retained by modern naturalists, were used by the earliest writers to designate species very closely allied.

Storer says: "The species known along our coast as horse mackerel and albicore comes on to Massachusetts Bay about the middle of June and remains until October. It is frequently taken for its oil, which is taken from the head and belly, a single specimen often yielding twenty gallons."

They grow to a great size, and in 1855 one was caught off Lynn, Mass., that weighed over 1,000 pounds, was 10 feet long, and 6 feet in girth. It was presented to the Lynn Natural History society by Dr. J. B. Holder, who was then the honorary curator. In a memorandum note in the History of bynn, Dr. Holder says, "In this year (1850) they were vary abundant, small ones being seen jumping out of the water; and I have measured several that were 10 feet in length."

After this they were rarely seen, but in 1871 a number were observed, as well as great quantities of a small tunny, Orcymus alliteratus, which, remarkable to relate, and showing their great range, had previously only been known in the Mediterranean Sea. The common tunny of the locality is the Thymnus vulgaris, and is said to have been seen in our waters. It attains a much greater size than its American representative (Orcynus secundo-dorsalis). Specimens have been found 20 feet in length, exceeding half a ton in weight. A casual observer would hardly note a specific difference between the two, so much () they resemble one another. From a very remote period the fisheries near the Island of Sicily have been valued, and in the summer vast shoals of them are caught in large nets or by means of what the Italians call tonaro.

In appearance the thynnus bears a close resemblance to our mackerel, except in point of size. Each jaw is furnished with a row of small sharp pointed teeth, slightly curved inward; the tongue and inside of the mouth are very dark colored; the cheeks covered with long narrow pointed scales; the operculum is smooth; the dorsal and anal fins are followed by nine small finlets, and the tail is crescent-shaped. The upper part of the body is very dark blue ; the belly a light gray, spotted with silvery white; the first dorsal fin, pectorals, and ventrals black ; the second dorsal and anal nearly flesh-colored, with a silvery tint ; the finlets, above and below, yellowish, tipped with black. This description well applies to the American tunny, though the Fulton Market specimen had lost its brilliant colors when we saw it. Mr. Garrell, quoting from Mr. Couch, says that "the tunny appears on the Cornish coast of England in summer and autumn, but is not often taken because it does not take bait, or at least the fishermen use no bait that is acceptable to it, and its size and strength seldem suffer it to become entangled in the nets. It feeds on pilchards, herrings, and perhaps more other small fishes, but the skipper (E Eox saurus) seems to be its favorite feed, and it has been seen to leap in the air after them and endeavor to cut them down after the manuer of the thrasher.

According to a French writer the greatest tunny fishery of the present day is that at Provence. Here the haul is made by an inclosed net called the madrague. The net consists of a combination of nets, which is quickly cast into the sea to head the tunnies at the moment of their passage. When the sentinels posted for the purpose have signaled the approach of a shoal of tunnies and its direction by the indications of a flag which points to the spot occupied by the finny tribe, the fishing boats are immediately directed to the spot indicated and ranged in curved lines, forming with the light floating net,
a half circular inclosure turned toward the shore, the interior of which is called the garden. The tunnies thus inclosed is this garden between the shore and the net become crazed with terror; as they advance along the shore they press upon the inclosure, or rather a new interior inclosure is formed ${ }^{\text {Fib }}$, other nets held in reserve. In this second inclosure an opid
ing is left through which the fish have to pass. In continuipg ing is left through which the fish have to pass. In continuild thus to diminish the space by successive inclosures each occdr
pies a smaller diameter, in which the fish are inclosed in about pies a smaller diameter, in which the fish are inclosed in
a fathom and a half of water. At this moment a seine into the garden, this is in turn hauled by the men into shallon water, and the small fish taken by hand, and the larger by hooks made for the purnose and thrust into the gills. A sing ${ }^{s}$, day of such fishing will oftentimes produce 16,000 tuan ${ }^{\text {nies }}{ }^{5,}$ ranging from twenty.five pounds npward. The madrague abo
mentioned is a permanent fishery, and consists of a vast inclo mentioned is a permanent fishery, and consists of a vast inc ${ }^{10}{ }^{\mathrm{k}^{3}}$
sure formed of nets into various chambers, supported by cor^{3} and held in place by weights. The net is intended to arres ${ }^{\text {es }}$ the shoals of tunnies as they 1 ave shallow wator tor opets seb For this purpose a long alley or run is established between ${ }^{\text {n }}$ 伿, sea shore and the park or madrague. The fish follow the ruth and alter passing from chamber to chamber, at last find the 10 g way into the interior. To force them near the "park nets are used, hauled by boats, and finally, when they ${ }_{\boldsymbol{g}^{d}{ }^{d}}{ }^{d}$ thoroughly in the toils, the net is raised to the surface, ad if the victims killed with poles and various weapons, the spo it can be called such, lasting the entire night.
As an eating fish it is there preferred to the salmon, and ${ }^{d^{d}}{ }^{8}$ French gourmand says of it, "For our part we put it far abo salmon. Nothing is comparable to the fiesh tanny thro satt. into a hot frying pan, and sprinkled with vinegar and sal In When properly cooked nothing can be more firm or savory.
short, nothing of the kind can rival or even be compared with short, nothing of the kind can rival or even be co the tunny as we find it at Marseilles and Cette."
The large tunnies of our coast are by no means such delic sin^{2} d cies. though their cousins, the mackerels, when fresh broiled-not fried-are equally up to the French ideal.

Is man the highest animal.

The measure of zoological rank is the specialization exhibit ed by all the organs taken collectively. Specialization nimal 8 be exaggerated in one or several organs, without the ane case
therefore attaining as a whole a high rank. This is the therefore attaining as a whole a high rank. This is the case
in man. The measure of specialization is afforded by embryp logy, which shows in earlier stagas the simplicity and uniforty. ity of structure which in later stages is replaced by complexity. The human body preserves several embryonic features, in man we find three series of high differentiations, namely \quad pp p° the brain, in the changes induced by or accompanying the to right position, and third, in the apposibility of the thumb the other digits. These are the principal, though of course strictly the only characteristics of man, which show that he the more specialized than any other animal. In other respects favir shows a still more striking inferiority. It is of course a fape of liar observation that his senses are less acute than those falcod, many animals-he has neither the keen vision of the falcod in nor the delicate scent of the dog. He is equally inferior iap many structural features. His teeth are of a low mamman pre type, as is shown both by his dental formula and by the pr of sence of cusps upon the crowns of the teeth, a peculiarity the lower mammalia, entirely lost in the horse, the elepferior and many other "brutes." His limbs show a similar inferif fall ity, since they are little modified, preserving even the ${ }^{\text {D }}$ dumber of five digits, and in respect of these members pis. stands therefore very low, lower than the cow and the pone He plants the whole sole of his foot upon the ground, yet por except the lower mammalia, together with man and, his
 indeed, is of about the same grade as that of the carnivora. nat $^{\text {at }}$ makes, however, a still more forcible impression to learn der ${ }^{8}$ the human face, which we admire when withdrawn und of high intellectual forehead, is perhaps the most remarks all the indices that point out man's inferiority. In the malian embryo the face is formed under the fore brain of bral hemispheres. In our faces the fortal disposition is nently retained, with changes, which when greatest inconsiderable. In quadrupeds the facial region acquir ${ }^{r^{9} 9}{ }^{8}$ h 6 prominent development leading to the specialization of ition jaws and surrounding parts which brings the face to a condidiof much higher than that of the foetus. Hence the proj

Thout is a higher structure than the retreating human face. det facts have long been familiar to auatomists, but I am enance that the inferiority of the human to the brute count. by ance has heretofore been considered a scientific conclusion and any. Yet that inferiority is incontrovertible and al-Thelf-evident.
Wan is preceeding statements render it clear to the reason that Pro is notice in all respects the highest animal-and that it is a the brain of ignorance that assumes that the specialization of ${ }^{65}$ btem. marks man as above all animals in the zoological *elf.m. It does give him a supremacy by his greater power of nothing mance in the struggle of the world, but that has Dothing whatever to do with his morphological rank. There is acthing in morphology that anywise justifies assigning, as is the spely done, an almost infinitely greater systematic value to stom specialization of the brain and a specialization of the limbs, ${ }^{\text {even }}$, ch, teeth, face, etc., hence it is impossible to call man tral the highest mammal. It is also doubtful whether mam$\mathrm{kin}_{\mathrm{ig}}^{\mathrm{m}}$ Would be regarded as the highest class of the animal of clam, were they not our nearest relatives. Let us beware nivora claing to be the head of organic creation, since the Carbelieve and Ungalata are in many respects higher than we. I bpecies that it is just as unscientific to call any one animal the head of the vegetable kingdom.-C. S. Minot.

Tixiscdlancous.

APARTMENT HOUSES.

${ }^{A}{ }^{\text {A Chicago paper says that ihere is every prospect that within }}$ apartmens New-York will have the largest and best-appointed filed, and houses in the world. Every week some new plan is $t_{i_{e}}$ ed and some of the later designs are conspicuous for attacbrildingelties that were never thought of when these great ap on ${ }^{\text {an }}$ were first erected. In one of the flat buildings going another Madison avenue there is to be a garden on the roof; Dather proposes to have a Turkish or Rassian bath for its im$\mathrm{P}_{0 \text { ort, }}$. The most magnificent scheme of all is that of W. H. Deart, Whose building, covering an entire block, is to be located curying ral Park. It will have 200 suites of rooms, each ocipying on au average 25 by 85 ft ./pace. Mr. Post proposes to features its tenants to share the benefits of certain co-operative *holesa. It is intended to supply some articles of food daily at delivered prices. Coal will be bought by the boat-load and Tholered; dressed meat or cattle will be contracted for at abolishale rates, and every effort apparently will be made to By far corner groceryman.
Ment far the most extensive inprovement in the shape of apartof ten hoses is the forthcoming erection by Jose F. De Navarro, eight mammoth houses east of Seventh Avenue, between Fiftybigh. Gad Fifty-ninth streets. The houses will be niue stories ladel Granite, brown stone, Ohio stone, Milwaukee and Phiof architectick will be used. They will be in the Moorish style $e_{600,000}$ archite, and it is estimated that their total cost will be of the four Contracts have just been let for the construction family four houses nearest Seventh Avenue. Edward Clark's a cost of hol, the Dakota, will be completed by next spring at will corer nearly $£ 300,000$. It is to be eight stories high and second cover the entire front on Eighth Avenue, between SeventyIt is reporenty-third streets.
the fin reported that James Gordon Bennett proposses to erect and Mast hotel in the world upon the block bounded by Fifth $8_{0 \text { me }}$ Madison avenues, Thirty-eighth and Thirty-ninth streets. Will be the buildings are too valuable to be removed, and they Pariety utilized in a sort of composite structure affording a great Will be of apartmerts for the guests. The lessees, it is said,
House. ${ }^{\text {Texcess }}$ Temand for suites of rooms in apartment houses is far in coms of the supply. It is understood that, although far from of its accommodations. the Dakota is bespoken to the extent of two thirds commodations.

UNJUST STRIKES

vited an investigation, but an officer of the Knights of Labor, known as the "Grand Statistician," wrote a letter sustaining the charges. Some time since the editor of a labor paper in Philadelphia investigated the charges and found them false and so stated, and immediateiy he was denounced as a traitor and his paper "boycotted." Now we see that at last a committee of the Kuights of Labor have investigated the charges and found them untrue, and it is reported that they have expelled the "Grand Statistician." For even this tardy act of justice, so rare an occurrence among labor organizations, the Knights of Labor are worthy of commendation. It shows a wonderful advance in courage. A few years ag, no officer of a union, no matter how just such an act might have been, would have dared to have countenanced such a withdrawal of charges as this, and, in many unions to-day it could not be done. But would it not have been better not to have hal occasion for such an act of justice, by seeing to it that injustice was not done in the first instance? Is there not a too preva lent idea among workmen that all the right and justice is on their side and all the wrong and injustice on the other, and that a strike, because it is a strike, and without any reference to the facts, is always "just nd right, and a demand for thoir rights ${ }^{\prime \prime}$ " There are labor papers in this country that never speak of a strike as anything but just. We have in mind a case where some workmen struck, and the union with which they were connected ordered them back to work, as the strike was unjustified, and yet journal after journal had notes of the tyranny of the manufacturers and the justness of the cause of the workmen. In many instances strikes are undertaken without judgment or reason, and persisted in from a foolish idea that it is cowardly or injurious to " back down." Such ants as this of the Knights of Libor will go far to lessen strikes, and when the leaders of unions or the cool heads dare speak out and condemn unwise and unjust strikes, they will be still less frequent.-Metal Worker.

A New Use for Old Tin Cans and Scrap Tin.-According to the Berg-und-Huttenmannische Zeitung, a better method for utilising old tin cans than simply to melt off the solder has been devised. E. Rousset first heats the tin, old or new, in an oxidising flame, which burns up all the pure tin and that combined with iron. When this is stopped the scraps of iron are seen to be covered with a brown aud brittle cru t, the upper layer consisting of oxide of tin, the lower of magnetiz oxide of iron. It is passed through rollers and then forms a powder that contains both oxides. The iron that remains after sifting out the puwder makes good wrought iron or cast iron, but is particularly fitted for precipitating copper. The oxide of tin, although mixed with oxide of iron, can be easily worked iuto tin, and the metal obtained from it is free from sulphur and arsenic. But will it not contain traces of lead ?

THE AIR ENGINE AS APPLIED TO ELEVATORS

The illustration given herewith shows the application of the air engine, manufactured by the Sherrill Roper Air Fugine Co., as a hoisting power to passenger elevators.

The engine known very favorably for some time as the Sherrilf Roper air engine, by reason of its safety, extreme simplicity of construction and its economy of operation, is excellently adapted for this species of service.

A few words respecting the principles of its.construction and action will serve to make this clear. In this engine the arr of the temperature of the surrounding atmosphere is drawn into the air pump; from this it is forced directly into the fire, which is contained in an air-tight furnace. Combustion and expansion ensue, and as the result of the expansion of the air and of the combustion products, a considerable pressure is developed in the fire-chamber. The charge of gases is then admitted into the cylinder, in which it is utilized precisely as steam would be, and is exhausted through valves in the same manner.
From the above explanation, the engine, as may be imagined, is simple, and in its design the makers have made it also very compact. The heated air is conducted from the furnace through the shortest possible pipes, thus insuring the utilization of the gases of the furnace to the greatest posihle exient, and reducing the loss of pressure by cooling to a minimum. To insure durability, the furnace is lined with heavy fire brick, and the air being brought into contact with the fite, there are no iron plates or other heating surfaces to be destroyed by burning out.

ELEVATOR WORKED RY THE: SHERRILL ROPER ENGINE.

Again, the complete insulation of the cylinder by the partition and non-conducting material used, and its removal from externally heated pipes, protectjit from a highter temperature than that neoessarily acquired by the expanded air supplied to it, thus securing the greatest economy in fuel, and avoiding enbequent loss of expansion and power, by cooling before it has performed its work. These are points of advantage of vital impertance to the success of a hot-air engine where limited expansion can be obtained, which will be appreciated by all who may take the subject into consideration.
In all that relates to mechanical construction, the makers hare left nothing undone, in respect to the use of the best materials and workmanship, to commend the engine to public favor. They have succeeded in producing an exceedingly simple, officient and economical ongine, compact and durable, that requires but trifling skill to operate, and that is free from the unavoidable objections incident to the use of steam, and free from the danger of explosion. Their adaptability for every form of service where moderate power is required will be apparent without further explanation.

The application of the Sherrill Roper air engine to ho machinery is one for which it is especially well adapted. illustration shows very well the engine and its relation to hoisting mechanism, without the neoessity of describing ith latter, which, in the absence of an engraving showing could not be done satisfactorily.

We may add that the makers have provided numerous of pliances for insuring safety in the operation of their perchers elevators and other hoisting machinery. They alaim for engine in its special service the following meritorious fentron "It uses ne water, cannot explode, does not increase the of insurance, will do the hoisting of an ordinary stort for than fifty cents per day, and can be attended by any ordic is employe without seriously interfering with his othor dutioh is in construction strong, simple and durable; and long successful operation in driving olevators proves it to bo equaled in this field."

The Sherrill Roper Air Engine Co., of 91 and 98 Weahi street, New York, are the manufacturers.-Manufacturef Builder.

