Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagee
Covers restored and/or laminated /
Couverture restauree et/ou pelliculée

Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Additional comments /
Commentaires supplémentaires:

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquées
Pages detached / Pages détachees
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials /
Comprend du matériel supplémentaire

\square
Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été numérisées.

THE CANADIAN

PATENT OFFICE RECORD

AND REGISTER OF COPYRIGHTS AND TRADE MARKS

VOLUME XXIV.

OTTAWA:

VOLUME XXIV., 1896. - ANNUAL INDEX.

INDEX OF INVENHONS.

Acetylene gas generator. Charles C. Jones
Adding and printing machine. George W. Dudley
Adding machine : see Calculagraph, Calculating machine.
Adding machine. Cyprien C. du Berger
Addressing machine. Addressograph Company.
Adjustable seat. Laughlin-Hough Drawing Table Co.
Advertising apperatus. Guy Carey Frieker.
Advertising block. Oscar Lee Owen
Advertising cabinet. Charles H. Tebbetts, et al.
Advertising desk. John G. Ten-Eyck.
Advertising device. Henry Nicholas Gros
Advertising medium. Henry Beaumont.
Advertising medium. Maurice Barsalou
Agraffe, George Charles Heintzman.
Air and vapour distributor. William Sutton
Air blast apparatus. Henry A. \& Isaac H. Rogers, et al.
Air brake coupling. Charles (i. Emery.
Air brake jump and apparatus. Niels Anton Christensen..
Air charging device for air chambers. Marie Joseph Etienne-

Ludovic.

Air compressing and storing machine. Edwin C. Nichols..
Air cooling and drying apparatus. Thomas B. Lightfoct. .
Air heating apparatus. William A. B. Fishleigh.
Air lock for caissons. William C. Barr.
Air pump. James H. K. McCollum. .
Air pump. Lawrence W. Swem.
Alarm : see Burglar alarm.
Alarm. Robert W. J. Kraus
Alarm bell. Edward de Haas
Alarm lock for bicycles. John P. Daniels
Alkaline bichromate. Method of making. likgy
Alkaline chlorates. Process of producing. Carl Kellner.
Alimentary product. John H. Kellogg.
Alternating current regulation system. The Canadian General Electric Company
Alternating currents distribution system. The Canadian General Electric Company
Aluminates or silicates, \&c. Method of cobtaining. Dimitry A. Peniakoff

Aluminium alloy tubes. Method of preparing. Frederick A. Ellis.

Aluminium reducing process. Frank A. Gooch, et al..53,584,
Amalgamator. James 1). McKinnon.
Amalganator, John E. Sutphen
Amalgamator. Louis C. Park, et al
Ammonia manufacturing method. Carl Pieper, et al......
Animal brand. Henry W. Potter, et al.
Animal feeding device. Hein Warner.
Animal poke. James E. Fletcher.
Animal trap. James B. Perkins, et al
Animal trap. James W. Jones.
Animal trap. Thomas Crane, et al.
Annunciator for vehicles. Joseph S. N. (iuindon.
Anti-friction bearings : see Ball bearing.
Anti-friction bearings. Benjamin F. Sparr.
Anti-rattler. John W. Willard
Anvil. Malree W. McInturff.
Anvil, vise and drill combined. James Weathers.
Arc lamp. Samuel P. Parmly.
Arithmetic. Apparatus for teaching. Herman Rodel- sperger
Alm rest. Charles S. Gilman 54,040
Artificial fuel. John Dolphis Oligny 52,454
Artificial fuel. William H. Biggs, et 52,649
Artificial limb. Samuel H. Kellum 52,746
Artificial stone. George A. F. R. Janin 51,856
Asbestos filter. Friedrich Breyer 52,658
Ash pan. Summer F. Cummings 54,343
Ash sifter. Johnson Clench 81,322
Ash sifter. Major Creedy. 53,644
Ash sifter. Paul K. Krasel 51,996
Apparatus for repairing. United States Repair and Guaranty Company 51,574
Asphaltic products. Method of obtaining. Francis H. Byerley..-4@7n!. 2 ?!... . $51.6!?$ 52,049
Auger : see Earth auger.
Auger. Olof E. Wallner 53,507
Auger for making post holes. Robert Leighton, et al...... 53,515Auger handle. Aaron T. Binkerd
Auto-harp. James S. Back, et al 52,670
Automobile vehicle. Charles E. Duryea. 51,506
Axle bearing. Charles A. Sullivan, et al 53,019
Axle box. Henry A. Hyle. 54,201
Axle box. Jackson R. Baker. 53,187
Axle box. Michael F. Deininger 52,439
Axle cooler. The Cook Cooler Co 51,108
Axle for vehicles. Hedley A. Patton 51,974
Axle nut. David Spicer 51,663
Awning. Frank A. Wagner 52,392
Baby carriage. Daniel Sharp Kendall. 51,320
Baby-jumper and rocking chair. Charles O, and John W. Glascock
Bag fastener. Alfred Arkell. 54,274
Bag filler. Rubert O. Campbell 52,300
Bag holder. Charles Sandford. 54,439
Bag holder. Martin W. Morton 53,013
Bag holder. William Willis Hudgins 52,360
Bagasse filter. Alexander H. Wright 52,529
Baggage loader. George H. Wall... 53,492
Baited gun. James Roger Booth. 51,850
Baking oven. Adolph Rauber. 52,013
Bale label. Juhn Hanigan. 52,301
Bale tie. Cyrille Bourgeois. 53,129
Bale tie. Samuel H. Cochrun. 52,773
Baling press. John J. Burnshire. 51,650
Baling press. John Major Bishop 53,700
Ball bearing. American Harrow Company 52,174
Ball bearing. Bruno Wesselman 52,116
Ball bearing. Harry A. Stephens. 61,908
64,307
Ball bearing. Oliver C. Knife 53,778
Ball bearing. Peter F. Turner 52,874, 52,875
Ball bearing axle box. Robert S. Crawford, et al 53,286
. Strangward 53,296
Ball joint. Carl Kühn. 53,448
Ball mill. Meyer J. Davidson 61,013
Ballot paper. Herbert E. Irwin, et al. 54,220
George D. Lamm, et al. 51,381
Band cutter and feeder. John E. Sponseller. 52,282Band cutter and feeder. John Y. Collins, et a
Band cutter and feeder. Nathan Cornish. 61,796
61,828
Band saw guide. William McBeth. 52,112

Band saw mill. Dempsey B. Hanson, et al.
Bandage. Richard Jacks.
Bank note binder. John T. Hough, et al.
Barrel. James McDonald.
Barrel making machine. Josef Polke
Barrel or package charger or discharger. Edgar Friedman.
Barrel support. George A. Doyle.
Basting colander. Edward C. Johnston
Bath. James J. Hutcheson.
Bath. Michael J. Lyons, et al.
Bath. William E. Dobbins.
Bath brush. Mary E. Collins.
Batter beater. Stephen H. Coombs
Beam supporting method. Alfred Westwood.
Bean harvester. Clarence Winfield Crossman.
Bearing rib for building purposes. Charles Steiner.
Bearings. William H. Wright.
Bearings and bearing surface. John W. Sheard, et al
Bed. Harry Prufrock
Bed plate. Fred E. Maxfield, et al
Bed spring tightener. John J. A. Miller.
Bedstead. Thomas J. Tear, et al51,724, 51,725,
Bedstead. William M. Jones.
Bedstead fastening. William H. Magalis, et al
Bedstead for invalids. Anna Marie Douglas. .
Bee feeder. John S. Rooker.
Bee-hive. Karel De Kesel.
Beer jug. Heinrich Reissing.
Beer pump cleaner. John J. Geiger.
Belt and apron adjuster. The Diamond Match Company.
Belt fastener. Harry H. Jones
Belt replacer. Daniel Brion.
Belt shifter. The Cleveland Machino Screw Company.
Belt shifting mechanism. Cohoke Wooden Ware Manufacturing Company.
Belt tightener and shifter. Patrick H. Quinn.
Beverage. Alexander Bernstein.
Bicycle: see Cycle, Velocipede, Tricycle.
Bicycle. Albert S. Weaver.
Bicycle. A. F. Letson, et al.
Bicycle. Ansel F. Temple.
Bicycle. Charles A. Coey.
Bicycle. Charles E. Bryant, et al
Bicycle. Charles L. Travis
Bicycle. Edwin R. Stanfield, et al.
Bicycle. Edwin Y. Mackenzie
Bicycle. Frank M. Goodhue, et al
Bicycle. Franklin P. Burnham, et al
Bicycle. George James Lunn.
Bicycle. James E. Hatch.
Bicycle. John H. Higbee
Bicycle. John Thompson, et al.
Bicycle. Lewis H. Guertin.
Bicycle. Romeo Girilli.
Bicycle. Samuel Palmiter
Bicycle. Walter A. Osborn.
Bicycle. William De Lany.
Bicycle. William H. Percival, et al
Bicycle attachment. George Washington Aldrich
Bicycle bell brake. William A. Hay
Bicycle brake. Edgar D. Misner
Bicycle brake. Lewis H. Guertin.
Bicycle brake. Peter McGregor
Bicycle brake mechanism. Edwin R. standfield, et al
Bicycle canopy. Denis J. Reaume, et al
Bicycle chain. Frederick K. Patric.
Bicycle chain link. John P. Browning, et al.
Bicycle changeable speed mechanism. Harry De Lyne Weed, et al
Bicycle coupler. Thomas S. Taylor
Bicycle crank shaft. The Lackawanna Wheel Co
Bicycle crate. Herbert G. Streat
Bicycle drive gear. John (t. S. Clarke, et al
Bicycle driving gear. Walter W. Curties
Bicycle driving gear and brake. John H. Mitchell, et al.
Bicycle driving mechanism. Carl Voss, et al.
Bicycle driving mechanism. Franz J. A. Kindermann
Bicycle driving mechanism. Fritz H. Vagt.
Bicycle driving mechanism. Gerard Beekman
Bicycle driving mechanism. L. N. Iuhrberg, et al.
Bicycle driving mechanism. Samuel F. Clouser
Bicycle driving mechanism. William W. Green
Bicycle, etc. Arthur Harris. .
Bicycle for military purposes. U.S. Cycle Improvement Company
Bicycle frame.

Charles F Lavender, et al
Frank T. Fowler
John P. McCloskey.
Lucien Barnes, et al
Robert M. Keating
The American Cycle Manufacturing Co. The Trengrove Improved Cycle Frame Co. Thomas L. Southam, et al.

51,218
52,901
53,030
51,062
54,331
51,834
53,888
52,581
52,234
51,927
51.133

54,361
54,187
53,073
51,907
53,872
52,775
52,109)
53,361
52,140
54,130
54,406
53,692
53,212
51,807
54,393
54,248
52,522
52,546
52,468
52.272

5186
51,869
53,765
51,426
52,624
52,572
53,884
54,294
53,445
52,133
51,791
54,025
54,377
54,029
52,417
52,418
52,589
54.29.

53,329
54,298
53,108
52,156
52,566
51,878
53,309
54,288
52,236
51,757
54,302
53,108
52,890
54,308
51,449
52,601
54,301
53,867
51,881
53,372
52,603
52,478
53,255
53,518
52,238
53,616
54,300
52,096
52,072
52,980
52,009
53,250
53,813
53,214
53,365
52,182
50,994
53,453
52,908
51,425
54,023

Bicycle garment. Alice M. McCauley, et al
Bicycle garment guard and lock. Henry A. Ranert, et al.
Bicycle gear. Isaac P. Patton.
Bicycle gear. Samuel Nash
52,253
54,084
54,296
53,076
52,859
52,612
54,031
53,284
53,697
53,824
51,083
51,515
53,560
53,132
53,434
54,289
53,217
54,285
52,641
52,518
53,032
53,646
51,978
51,718
53,207
53,298
54,022
53,502
53,502
53,511
54,016
53,100
51,533
52,599
53,440
51,191
51,186
53,213
53,015
52,917
51,376
53,097
52,995
54,064
52,367
51,759
51,081
52,829
52,270
52,27!
51,986
53,247
50,986
53,639
54,291
53,050
53,050
51,816
51,815
51,461
53,704
53,833
51,796
53,877
52,639
53,323
53,026
51,904
53,828
52,276
51,130
52,206
53,441
52,237
53,266
Bicycle supwrt and lock. Rolert Holmes. 53,128
Bicycle supporting post. Robert F. W. Beardsley5i,818, 54,020
Bicycle tandem. Max Jakobson 51,516
Bicycle teaching apraratus. William Frank Mitchell.... 51,452
Bicycle tire. Andrew Graff...... 53,506
Bicycle tire. John C. Iighthouse...................................63,635
Bicycle tire. The Long Island Rubber \& Cycle Co.......
53,021
Bicycle tire binder. James L. Hutchinson............... 53,036
Bicycle tire cover. Arthur L. Smith.......................... 51,809
Bicycle tire making machine. Henry James Doughty..... 52,839
Bicycle tool. Robert C. Fawcett.
54,008
53,634
Bicycle wheel carriage. John W. Windle 54,018
Bicycle wheels. Runner for. Clarence Delance Chatterton. 53,861
Bicycle whistle. William E. Crump, et al 53,826
Bicycles, cte. Brake for. Thomas Henry Simmonds...... 53,878
Bicycles. Ball bearing for. Charles Henry Chapman..... 53,758
Bicycles. Brake and foot rest for. Silas Fader, et al..... 53,910
Bicycles. Brake mechanism for. Perry Emest Doolittle. .

Bicycles．Drive gear for．Duncan Campbell McCaig，et al． Bicycles．Handle bar for．William Penberthy，et al．．
Bicycles．Wooden frames for．Justin Gilbert．
Billiard cues．Machine for placing tips on．Samuel Perry Davis．
Billiard marker＇s check．John G．Dixon
Billiard table apparatus．Arthur A．Leaker
Billiard table cushion．Berton H．Fogg．
Billet loop for harnesses，etc．Charles Kozeli
Binders and sheets therefor．Robert J．Copeland，et al
Bird food．Bartholomew Cottam．
Bird bread holder．Bartholomew Cottam
Black board．Comparative Synoptical Chart Co
Black loard．The Laughlin－Hough Drawing Table Co
Bleaching compound for linen．Denise Dyotte．
Blind hinge．Neil McKinnon．
Blind roller．Edwin A．Powell
Blind slat journal．Edwin F．Newell．
Boat propeller．Charles 1）．Augur．
Boat propelling apparatus．Charles M．Kimball
Boat propelling attachment．Samuel N．Smith，et al．
Bobbin holder．Oliver C．Burr，et al．
Bob－sleigh．Charles E．Gould．
Bob－sleigh．Valentine Mitchell
Bodkin．A．W．Lozier．
Bonler ：see Masut boiler heating
Boiler．George Fillion．
Boiler．John I．Thornycroft
Boiler．Lewis Saunders．
Boiler．Michael Mahoney．
Boiler．William McCallum
Boiler feeder．Orlo J．Scott
Boiler scale solvent distributor．Hezekiah M．Bolin．
Boiler tube cleaner．John Henry Voorhees．
Bolster stake for wagons．James H．Jackson
Bonding device for electric railways．Wilson Brown．
Bookbinding system．Eugene Gregory ．
Bookcase．Benjamin Micon．
Book cover．Oliver G．Anderson
Book－handling device．Herman Pfund．
Book holder．James R．Gilman
Book holder．Samuel Bromley
Book holder．William T．J．Parkes．
Book turner．David Moore，et al．
Boom．Denis Gaherty．
Boom fastening．John C．Sattes，et al
Boot．John S．King．
Boot and foot protector．James Oxenrider，et al．
Boot and shoe．Augustus Gross
Boot and shoe．Donald Inrig，et al
Boot and shoe counter．Thomas H．Wonovan．
Boot and shoe fastener．Henry S．Hadland
Boot and shoe polishing machine．John White，et al
Boot and shoe soles．Peter N．Nissen．
Boot and shoe stretcher．Edward J．Leighton．
Boots and shoes．Spring heel for．John Bresman．
Boot holder for horses．John M．E．Morill．
Bootjack．Richard Jacks
Boot or shoe．Ernest Mobberley．
Boots and shoes．Machine for polishing．William Black．
Boots and shoes．Springs for．George E．Swan
Boring tool．Hiram G．Fowler，et al．．
Boring tool．London Silcott．
Bottle：see Non－refillable bottle．Bottles．Device to hinder refilling of．
Buttle．Atwell C．R．King．
Bottle．Carl P．Lundquiste
Bottle．Elizabeth Ann Sanders
Bottle．Johannes Meyer．
Bottle．Michael J．Nolan
Bottle．Nathan Schwab，et al
Bottle．Richard S．Seaman．．
Bottle．Samuel J．Smith．．．
Bottle．Thonas N．Sterry，et al．
Bottle．William C．Jerome．
Bottle．William Kampfer，et al．．
Bottle．William M．Breck
Bottle and stoppering device．Maurice M． $\mathbf{M} . \mathbf{J}$ ．O．O，Connor．
Bottle cap and seal．Chauncey C．Brown．
Bottle－filling apparatus．William A．Bowie，et al．
Bottle－filling machine．William Miles Fowler
Bottle－filling mechanism．＇I homas B．Booth，et al
Buttle－labelling nachine．Andrew Siegel，et al．
Bottle－sealing device．Robert Allison Hall．
Bottle stopper ：see Stoppering device．
Bottle stopper．Arnold Stern，et al
Bottle stopper．Clifton H．Davis
Bottle stopper．Frank T．Robinson．
Bottle stopper．Jesse Rosenfeld，et al
Bottle stopper．John Henry Stone．
Bottle stopper，etc．Thomas C．Newman．
Bottle－stoppering device．Hugh Dixon．
Bottle－washing machine．Melvin Donally．

53，696
53,774
53,831
53，831
51，489
54，421
51，066
51，959
53，759
51，242
51，086
51，341
53，126
52，306
51，014
50，948
53，330
51，456
54，072
52，863
53，760
53，567
51，641
51，879
51，105
53，754
51，454
52，451
54，200
51，736
52，640
53，107
51，603
53，990
52，625
51，979
51，437
54，120
53，116
51，150
53，95！
53，718
51，438
53，087
51，591
53，185
52，884
53，564
53，987
53，241
50，973
54，181
51，840
52，953
50，975
53，889
53，072
50，964
53，958
51，223
51，800
51，327
52，527

52，347
52，912
53，931
52，231
52，480
53，653
22，488
52，435
53,528
52， 171
53，695
52，077
53，138
52，209
51，440
52，453
53，454
53，363
53，950
52，248
22，208
52，197
51，262
52，531
50,946
52，397
51，811
$\begin{array}{ll}\text { Bottles．Device for preventing refilling of．Charles Booker } & \text { 51，159 } \\ \text { Bottles．Device for preventing refilling of．William C．}\end{array}$ Sherman

51，249

Bottles．Device to prevent refiling of．Patrick Brownley， et al．

51，245
Box：see Lunch box ；Sand box．
Box．Austin Berry，et al．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．53，459
Box．Joseph A．Christin ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．52，519
Box．Joseph Thibault ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．53， 380
Box．Pontius Patent Butter Box Co．．．．．．．．．．．．．．．．．．．．．．．54，085
Box blank making machine．William Healy ．．．．．．．．．．．．．．． 52,135
Box cover fastener．Austin Berry，et al．．．．．．．．．．．．．．．．．．．．．． $5 \mathbf{5 2 , 8 8 1}$
Box fastener．John F．Wiltz．
Box fastener．Williau Beck
53，989

Kox for coal，wood，etc．Henry Kenne，et al．．．．．．．．．．．．．．．． $5 \mathbf{5 2 , 2 9 2}$
Box for holding bottles．Didace W．Tagnon ．．．．．．．．．．．．．．．53，376
Box for pepper and salt．David M．Kittle．．．．．．．．．．．．．．．．．．52，017
Box for shipping animals．George Bell．．．．．．．．．．．．．．．．．．．．．．51，457
Box iron．Frances E．Hunter ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．52，154
Box lid support．William W．Fowler．．．．．．．．．．．．．．．．51，187
Box－making machine．Abner Carey ．．．．．．．．．．．．．．．．．．．．51，677
Box－making machine．The Diamond Match Co．．．．．．．．．．．．52，465
Box or crate．Charles A．Grant ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．53，399
Box or package．The Drummond Tobacco Co．．．．．．．．．．．．．．51，487
Box shuck making machine．The Diamond Match Co．．．．52，466
Box soldering machine．Otto Asche．．．．．．．．．．．．．．．．．．．．．52，509
Boxes，etc．Machine for applying adhesive strips to．
Horace and Harry A．Inman．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51,214
Brake．Albert Massey ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．52， 5 ． 076
Brake．Charles J．Hall．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．53，643

Brake．Paris Erb．．．52，440
Brake．Robert A．Kiskadden．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51,164

Brake beam．American Brake Beam Company．．．．．．．．．．．．． 53,892
Brake beam．The Chicago Railway Equipment Company． 52,058
$\begin{array}{ll}\text { Brake beam．The Chicago Railway Equipment Company．} & 53,272 \\ \text { Brake beam．The Chicago Railway Equipment Company．} & 53,570\end{array}$
Brake beam guard clamp．The Chicago Railway Equip ment Company．

53，274

Brake fluid pressure．Elner E．Kerns．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．53，780
Brake for baby carriages．Austin \mathbf{G} ．Mackenzie，et al．．．． 52,275
Brake for baby carriages．Henry W．Morgan．．．．．．．．．． 51,209

Brake for sleighs．Adelbert Mecham．．．．．．．．．．．．．．．．．．．．．．．52，007
Brake－operating device．Edward S．Hall．．．．．．．．．．．．．．．．．．54，303

Bread baking pan．Norman Chester Lloyd．．．．．．．．．．．．．．．．．．．．． 51,632
Bread raising apparatus．George W．Cowan，et al．．．．．．．． 52,764
Brick．Edward New．．． 5 ． 52,573
Brick．Oscar Klemberger．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．51，686

Brick kiln．John J．Caldwell．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\quad \mathbf{5 3 , 4 0 0}$
Brick mar：hine．Frank Gutteridge．．．．．．．．．．．．．．
$\mathbf{5 1 0 6}$

$\begin{array}{ll}\text { Brick machine．Frank Gutteridge．．．．．．．．．．．．．．．．．．．．．．．．} & 58,806 \\ \text { Brick making machine．Charles S．Meyers，et al．．．．．．．．．} & 51,988\end{array}$
Brick veneer．George S．Balsley．．．．．．．．．．．．．．．．．．．．．．．．．．．．．51，701

Broom holder．William C．Ackerman，et al．．．．．．．．．．．．．．．．54，458
Brush．Anthony E．Magovis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 52,648
Brush．Oliver Martin．．． 51,496
Brush for taking electric current．Oto Herig．．．．．．．．．
Bucket and tank．Arthur G．Leonard．．．．．．．．．．．．．．．．．．．．．．．．．．．．52，123
Buckle．Elodie Mennier．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．51，259
Buckle．George F．Stansbury，et al．．．．．．．．．．．．．．．．．．．．．．．．．．． 53,534
Buckle．Lewis H．Bennett．．．．${ }^{\circ}$ ．．．．．．．．．．．．．．．．．．．．．．．．．．51，388

$\begin{array}{ll}\text { Buffer for tow boats，etc．Drew Stretch．．．．．．．．．．．．．．．．．．．} & \mathbf{5 3 , 7 1 9} \\ \mathbf{0 0 , 9 9 3} \\ \text { Building．Art of．John Henry Wood．．．．．．．．．．．．．．．．．．．．} & \mathbf{5 4}\end{array}$
Building block．John Lee．

Bung．Finley R．Butterfield
Bung．Gottlieb Frederich Bokel．
Bung and bushing．Frank L．Myers．
Bung for barrels．Edward J．Gleman，et al．．．．．．．．．．．．．．．．．．． 51,861
Bureau drawer and guide．Oliver G．Anderson．
Burglar alarm．Thomas J．Sutton．
Burglar－proof car．Samuel H．Williams．
Burial casket．William C．Lantner
Burner ：see Vaporizing burner for oil．
Burner．Walter T．Ross

9

35

9

3
\qquad
4

399

6

58

044

\section*{| 54,096 |
| :--- |
| 2,428 |}

701

78
1，496
4

[^0]Burner for fluid fuel. William Elias Vernon.
Burner for gasifying and burning fluid fuels. Oscar Ehrenfried Wollert.
Burner for hydrocarbon. Edwin (. Mummery, et al......
Burner for liquid fuel. Maurice Dalton
Burner for oil. Johann Muicke.
Burner for petroleum. Hugh H. Sutherland..
Burner for spirit gas. Albin Perlich.
Burners. Gas supplying apparatus for. John F. Duke.
Butter and cheese cutter. Edwin G. Bennett, et al.
Butter box. William Rutherford.
Butter making apparatus. Frederick W. Church
Butter making machine. Margaret J. Gordon.
Butter mould. Edward Bartlett
Butter worker. Wadsworth F. Waters.
Button fastener. Aaron F. Smith.
Button fastening. Franklin S. McKenny
Button-hole cutter. Abby S. Vose.
Cabinet. James E. Stephens
Cable coupling. Robert Lee.
Caisson sinking process and apparatus. William D. H. Washington.
Calculagraph. Henry Abbott, et al.
Calculating machine. Charles S. Labofish. .
Calculating machine. William N. Cuthbert
Calendar. Amos S. Walmer.
Calendar. George Washington Shirk.
Calendar. George W. Johnson.
Calendar. Thomas H. Hovenden
Calendar for pencils, etc. George Washington Johnson..
Calk machine. Franklin W. Pitcher.
Calk sharpener. Leonard F. Tarbell.
Camera. Alfred C. Kemper.
Camera. Emil P. Shoenfelder, et al.
Camera. Frederick E. Ives.
Camera. Photographic. Stern Manufacturing Company.
Camp stool. Linley G. Wade.
Camp stove. William Johnston.
Can. The Utility Manufacturing Company
Can. William A. Read.
Can. William Pratt.
Can and key opener. William Pratt.
Can blank cutter. Axel Johnson.
Can burnishing machine. Guillermo A. Farini.
Can carrier. Guillermo A. Farini.
Cancelling and stamping device. Fred. Ti. Bailey, et al..
Candle holder and pocket tool. Frank Dudley Holton, et al
Cane hoist trip. Albert A. Morrow
Cane planter. Antonio M. Rivero.
Can filling machine. Cbarles W. Shedd.
Canister. Archibald G. Snowdon.
Can labelling machine. William G. Trethewey.
Cannon carriage and traction arrangement. The Earl of Dundonald.
Can opener. Abraham C. Scarr..
Can opener. Claude V. Zınn.
Can opener. Daniel Hall.
Can opener. David L. Baumgarten
Can opener. Edward Ney Pike
Can opener. William Millen.
Can opening device. Summers Brown
Cans. Machine for making. Simon S. Meyers.
Cant hook. James Mark Ellis, et al.
Cap. Gillespie, Ansley \& Dixon.
Capsule. William A. Hinchman
Capsule for bottles. Austin Bucknall
Car axle. Francis C. Crean.
Car-axle support. Reinhold Bettermann..
Car buffer. The Gould Coupler Company
Car coupler. Abbie H. Lovejoy, et al.
Car coupler. Alexander Atkinson..
Car coupler. Alfred P. Redmon.
Car coupler. Andrew H. Bezzo, et ai.
Car coupler. Charles D. Horgan
Car coupler. Charles Edward Gallanore
Car coupler. Charles H. Taylor..
Car coupler. David J. Schult, et al
Car coupler. Edgar E. Coman, et al.
Car coupler. Frank G. Kammerer.
Car coupler. Frederick H. Newton, et al
Car coupler. Frank W. Gerlach.
Car coupler. George E. Smith, et al.
Car coupler. George H. Pacaud.
Car coupler. George J. Farrey, et al.
Car coupler. Henry Gallager.
Car coupler. Henry S. Bryan..
Car coupler. Hugo Oberlaenter
Car coupler. Hugo Oberlauter
Car coupler. Isaac Fetters.
Car coupler. James A. Ward, et al.
Car coupler. James Depew ,et al
Car coupler. John H. Senger.
Car coupler. John M. Gifford.

53,681
51,446
51,628
52,704
53,717
52,664
51,035
52,227
52,060
53,367
53,005
53,200
53,498
53,96:3
51,526
53,294
53,514
51,873
51,639
54,272
52,939
51,038
53,538
42,146
53,170
52,142
51,851
51,494
51,132
51,082
5251
54,321
52,652
53,854
53,208
52,968
51,103
52,183
51,561
51,560
51,172
53,583
53,58
52,517
52,678
51,855
52,365
50,970
51,565
52,243
53,427
52,210
51,508
53,162
54,165
52,090
52,457
53,049
51,003
51,020
53,772
52,785
51,384
53,423
52,086
51,017
53,545
51,719
54,206
53,306
53,269
52,920
53,898
53,920
53,885
53,080
52,849
52,310
52,449
54,230
52,982
52,381
52,401
52,613
51,827
53,291
51,465
53,463
51,992
51,314
51,704

Car coupler
Car coupler.
Car coupler.
John Moss
52,101
Joseph E. Forsyth.
51,653
Car coupler. Joseph Rowat Fair, et al. 53,866
Car coupler.
Car coupler
Car coupler.
Car coupler. The Lee Car Coupling and Manufacturing
Company and John W. Schuchardt
52,162
51,201
52,703
52,080
54,348
51,806
54,212
53,610
53,610
51,903
53,526

Car coupler The Mooman Car Coupler Company........ . 52,225
Car coupler. Theodor Hagen...................... 52,179
Car coupler. Thérence Potvin . 54, 565
Car coupler. William M. Robinson, et al
Car coupler. Willian R. Fine, et al
Car coupler. William Silver
52,313
52,098
51,460
Car coupler. William T. Ellis..... 51,874

Car coupling. Charles E. Ward..... 5 .
Car door. H. W. F. Jaeger. 52, 702
Car fender : see Fender for cars.
Car fender. Frederick .I. Graf. 53, 243
Car fender. (xeorge A. Weed.................................. 52,834
Car fender. Harold A. Webster, et al 53,945
Car fender. James D. Lamb, et al. 54,073

Car fender. Obediah Cullison. 52,078
Car fender. Peter Best, et al . 53,188
Car fender. Rosco Dittrick 52,083
Car fender. The Consolidated Car Fender Company...................... 52, 52,409
Car for coal, etc. Silas Fader . 52,065
Car jack. Charles S. Locke. 51,001
Car journal cooler. Cook Cooler Company. 52,107
Car seal. Louis J. Genett. 51,470
Car seat. The Scarritt Furniture Company 50,951
Car stake. John S. Miller
Car standard. William J. Holmes
51,880
Car step and guard. Dwight R. Wing. 54,380
Car stop. George H. Dippo.
52,095
Car track cleaner. Samuel Irwin, et al 52,117
Car truck. Edgar Peckham.. 51,862
Car truck. Fidward Cliff .53,749, 53,750
Car truck. George Robert Joughins..... 53,804
Car truck. John A. Brill...... 5 . 5 ,483

Car wheel. William J. Taylor. 53,006
Car wheel forging machine. James A. Facer. 51,608, 53,321
Carbon manufacture. Charles P. Shrewsbury, et al 51,600
Carbonate of lead. Oswald Hamilton.............................
Carbonic acid gas. Process of and apparatus for obtaining. Pabst Brewing Company.
Carbonic acid, sodium sulphate and magnesium carbonate. Erik W. Enquist

53,752

Card case and hat holder combined. Niels P. Mickelson.
Cards, etc. Apparatus for suspending. Adolphe Poisson. .
Carding engine. Alfred A. Langewald.
Carpenter's bench. Eldridge M. Brown. 51,773
Carpet. James and John Camelfort
Carpet fastener. Katherine Camplell $5 \mathbf{5 3 , 1 2 0}$
Carpet fastener. William I. LeFevre. $\mathbf{5 3 , 3 8 4}$
Carpet roll support. Charles Lewis Taylor. 51,183
Carpet stretcher. Frederick M. Zander. 50,94
Carpet stretcher and tacker. Ephraim Huber, et al...... . 52,414
Carpet sweeper. Thomas S . White, et al. 51,934
Carriage axles. Sleigh runners for. Ceorge Ovington.... 53,751
Carriage for children. Felix Cohn. $5 \mathbf{5 4 , 3 1 6}$
Carriage gear. William J. Brown.
Carriage top. Daniel Conboy
53,911
Carriage top. Daniel Conboy Bi................................ Holder Company
Cart. Edward Hemming. $\mathbf{5 1 , 7 0 2}$
Cartridge carrier. Lewis \mathbf{R}. Ferguson.

Case for magazines, pamphlets, etc. Kisbrough H. Tilley. . 52,685
Case for magazines, bamphlets, etc. Risbrough H. 54,416
Cash carrier. Nehemiah (nuthridge.......................

Cash register. David MacLaren.... 52,212

Cash register. Frederick H. Seymour 53.117
Cash register. John A. Mehling . $\mathbf{5 4 , 1 6 3}$
Cash register. Luther E. Allen. 52,542
Cast steel. Method of hardening. Warren 'T. Reaser. 51,355
Caster. George J. S. Collins. 52,633
Caster. James Percy Ernest Prond, et al 52,323
Caster: Wallace C. Ransden, et al....................... . 52,914
Cattle guard. Edwin G. Emmert. 51, $\mathbf{4 6 3}$
Cattle guard. Eugene Cook..... 53,648
Cattle guard. George H. Goldrick, et al.................... . 53, 328

53,812
51,058
51,819
53,858
53,497

53124
0,944

51,72

51,355
52,633

53,648
53,328

Cattle guard. Sheffield Car Company
Cattle salter. William F. Lawler.
Cattle stall. Merrill J. Drown.
Cementing apparatus. Henry M. Cushing, et al

Centre-board. Atkins Stover

Cereal hulling and cooking process. Kirk Hopkins.
Cereals. Machine for washing. Walter A. Scott, et al
Cereals. Washer and huller for. Kirk Hop,kins.
Chain. Jacob Boes.
Chain. John Gould.
Chain and chain-wheel for velocipedes...Joseph Hollis.
Chain making machine. Philander H. Standish
Chair. Harrison Owens.
Chair. Joseph O. Lemay
Chair. Télesphore Fortier.
Chair. Thomas W. Robertson.
Chair and couch. Oscar P. Breithut.
Chair seat. Hartman Krug.
Chairs. Wedge for securing rails in their.
Chalk line. Gustof E. Johnson
Charcoal making system. Archibald A. Dickson.
Check punch. Beebe Check Protector Company.
Checkrein hook. Joseph R. Gump. .
Cheese knife. Joseph McKay
Cheese making apparatus. Jan Helder.
Cheese press. Daniel A. Sprague.
Cheese rack. John Levey.
Chemical compound for photographic purposes. Emil P. Schoenfelder.
Child's crib. William W. Pursell, et al
Chimney. Henry J. McK̇night.
Chimney cleaner. Sylvester A. Wood.
Chimney top and ventilator. James W. Hunc
China painting cabinet. Alice N. Pringle
Chocolate coating machine. Charles T. Viau.
Chopper for vegetable matter. James M. Flower, et al.
Churn. Eugene P. Smith.
Churn. Nephi Packard..
Churn. Sydney Cheeld.
Churn. The One Minute Churn Company
Churn. William Hisks Curtice
Cigar. Abraham J. Bloomfield.
Cigarette filling machine. Anthony Bruandet
Cigarette machine. Domingo Perez Y. Burnol
Cigarette machine. Edward R. Colgin.
Cigarette machine. Herman Handelbaum.
Cigare te machine. Jacob S. Detrick.
Cigarette machine. The Bohls Cigarette Machine Co
Cigarette making machine. Henri F. M. Lemaire
Cigarette making machine. Hugo Bilgram.
Cigarette making machine. James A. Bonsack
Cigarette making machine. John R. Williams..
Cigarette making machine. Jules A. Allagnon, et al
Cigarette making machine. The Winston Cigarette Machine Company.
Cigarette manufacture. Bernhard Baron.
Cigarette mouthpiece fastener. Joseph S. Beeman.
Cigarette mouthpiece making machine. Joseph S. Beeman
Cinder sifter. Ovila Cadot
Cistern. Eugène S. Manny
Cistern. Richard R. Mitebell
Clamp for dental dams. Henry F. Libby.
Clasp for garment supporters. Andrew Thomson, et al.
Clasp for shoe laces. John D. Hoffman.
Cleaner: see Electric light globe cleaner.
Cleat for wires, ropes and cords. John Goodwin, et al
Clip. William Chivers.
Clipping horses and shearing sheep. Machine for. John Peter Dean
Clock. Reinhold E. Gunther.
Clock movement. Charles M. Rhodes.
Closet seat and cover. Frank G. High
Cloth-boards. Method of making. William H. Marcon
Cloth painting machine. Robert E. Menzie.
Clothes boiler. Arthur Lecavalier, et al
Clothes boiler. Dominique Chartrand
Clothes dritr. Charles Fowler
Clothes drier. Peter Schaefer.
Clothes-lifter. Adolf Killnov, et al.
Clothes line. Fred Sterzing
Clothes pin. Thomas Henry Prosser, et al.
Clothes pounder. Enoch J. Rogers
Clothes washer. Asa Leroy Burke
Clutch for machinery. Joseph S. Beenan
Coal dumping car. William George Lane :
Coal mining machine. Jonathan Wart Harn. Hac.........
Cock. Richard Thompson.
Cock. Richard Thompson, et al
Cock. William Shïfer
Coffee roasting system. Joseph Baker \& Sons
Coffee roasting system. Jilliam Alexander,
Coin-actuated apparatus. Wian
Coin-controlled apparatus. James S. Barcus.
51,121,

53,827 51,(i81
51,122
Coin-controlled gas-vending machine. Wesley Webber..
Coin-controlled machine. John B. Carr, et al.
Coin-controlled machine. Isaac Richardson, et al.
$51,!33$ Coin-controlled vending machine. Joseph Mackin.
52,069
54,271
51,148
53,847
53,258
53,248
52,604
53,048
54,376
51,042
53,227
52,019
53,290
53,864
53,787
51,284
51,750
52,245
53,614
53,086
33,086
51,473
52,777
53,222
52.960

50,95
52,576
53,156
ook stove and range. Wiliam Buck
53,362 Cooking apparutus. William E. Baxter.
52,114 Cooking outfit. Francis H. Buzzacott, et al
52,801
51,789
51,820
50,949
52,381
51,209
53,204
51,918
54,044
5?,969
54,166
52,122
53,027
51,612
51,612
52,533
52,534
51,498
52,144
51,625
51,955
52,299
52,192
51,216
53,521
53,047
51,060
53,708
51,999
51,846
51,462
53,472
51,032
53,913
52,499
52,039
51,849
53,327
53,413
5.3,413

53,254
52,653
53,134
2,706
2,706
51,019
52,672
52,460
50,957
52,723
52,536
51,243
54,114
51,518
51,018
54,215
54,215
52,057
53,148
59
Coin-freed electric meter. (ieorge Knight, et al. . .
Coin-freed fluid meter. Franz Wright
Coin-freed gas meter. Franz Wright.
Coin or check box and register. John A. Mehling.
Coke oven. ($x u s t a v ~ H o f f m a n n ~$
Cold storage apparatus and system. James G. Lamb....
Collar. Joseph Atkinson.
Combusting producing apparatus and process. Paul Schlicht

Combination tool. Oscar Ernest Morse, et al.................. 51,586
Combination tool. William Thompson.
Commercial paper form. Marion Leventritt.................. 52,129
Commode. Thomas L. Fortune 51,772
Communion cup. Paul G. Klingler, et al....................... 51,380
Communion service. Edward W. Ryan....................... 51,088
Condensation water condutor. Albert Flachsmann........ 51,779
Condenser. Henry R. Worthington 52,155
Conneeting rod for machinery. Daniel J. Crosby 53.412
Connector for tube , rods, plates, etc. Friedrich Albrecht. ${ }_{52,994}$
Converter. Alexander Tropenas.
Conveyer. Ferdinand J. Armodin, et al 51,217
Conveyer.
Conveyer belt apparatus.

Crank. King Robert H. Hurris...........................53,267,51,429
Crank drive. James Heron ${ }_{53,083}$
Crank motion. William J. Devers, et al
Crayon sharpener. James T. Rice.....................
54,094
Cream. Centrifugal separator for. Thomas Collins, et al. 81,481
Cream separator. Andrew Wilson, et al 52,907
Creamer. Olaf Ohlsson.
Creamer. Oscar Anderson
Creamer. Centrifugal. D. H. Burreli \& Co................. 53,891
Creamer indicator. Thomas C. Davidson.... 53,144
Crematory. The Buffalo Steel House Co. $\quad \mathbf{5 3 , 6 1 9}$
Crushing mill. John Walker. 51,925
Crutch. David J. Kennelly.. 52,805
Culinary, Detachable fastening for.: Ambrose Kent \& Son
Culinary cleaning device. Edward G. T. Thomas.
Culiary implement. David Ward.
Cumnary vessel. Romaine Clark Cole
Cultivator. Elzear Doré.
Cultivator. Stephen K. Vaughn. et al $5 \mathbf{5 3 , 5 7 3}$
Cultivator. The Peter Hamilton Manufacturing Co.
Thomas Cooper.
Walter Couthland

51,286
54,058
51,241
53,440
54,347
52,198
52,198
51,053
54,162
52,745
51,931
51,922
52,575
51,994

53,095

53,901.
51,969
51,914
54,442
52,128
52,059
52,987
52,931
52,655
53,257
53,124
52,868
51,070
52,577
52,560
53,686
54, 193
54,1037
52,597
51,894
51,799
51,468
${ }_{6}^{6,2229}$
52,289
52,783
53,419
51,466
54,107
51,602
53,404
51,377
51,009
51,491
52,158
54,227
51,524
54,184
52,862
51,173

53,504
53,136

53,829
53,112
2,137

53,519
53,509
50,977
Civator, Walter Couthland. 50,977

Cultivator. William G. Scott.
Cultivator. William H. Retcheson.
Cultivator tooth. The Peter Hamilton Manufacturing Co.
Culvert. Benjamin P. Saunders.
Curd dam. Robert Wherry, et al.
Curling iron. George M. Pitner, et al.
Current converter. Charles S. Bradley
Current induction motor. Canadian General Electric Co.
Current wheel. Archibald W. Ponton
Curry-comb. John Carden.
Curry-comb. William J. Overend
Curtain fixture. Emsley L. Slight, et al.
Curtain guide. Fdward T. Burrows.
Curtain pole. Jean B. Bédard.
Curtain pole. Park Benjamin Harvey, et al.
Curtain stick forming machine. William H. Ramsey, et al.
Cushion for stanıping machines. John P. Cooke
Cut-off for gas systems. Francis L. Cook, et al.
Cutter and sleigh. Truman Coleman.
Cutter for bark. Samuel Wesley Butterfield.
Cutter head. Samuel J. Shimer.
Cycle : see Bicycle, Tricycle, Velocipede.
Cycle. Edward Independence Braman.
Cycle. James Edgar Hatch.
Cycle driving gear. James J. Marshall.
Cycle driving gear. Peter James Smith, et al.
Cycle. Driving gear. Jacob Louis Lob, et al.
Cycle frame. Frederick A. Ellis..
Cycle frame attachment. Edward G. Sherward
Cycle transmitting mechanism. Gerard Beekman.
Cycle tire. Theodor Miller.
Cycles and cars. Elevated railway for. Willian H. Martin
Cycles. Driving mechanism for. William H. Trengrove.
Cycling skirt for ladies. Alice L. Bygrave.
Cylinder mould for paper machinery. Sanuel Crump.
Cyclometer. Curtis H. Veeder
Cyclometer. John Washington Wilson.
Dam. Samuel D. Phillips.
Damper. Louis H, Gaudry.
Damper. Warren D. King.
Damper for musical instruments. Dr. Adolf Richter. 51,356 ,
Damper for musical instruments. John Riell.
Damper for stove pipes. Henry T. Smith..
Dampening device: see Moistener.
Dampening and erasing device. Wm. Cotter Wils n. .
Decorticating system. Ernest de Moerhouse.
Dehorning clippers. John Arms, et al..
Dental apparatus. Oscar H. Pieper, et al
Dental apparatus. William P. Horton, et al.
Dental chair. Frank Ritter.
Dental cuspadore. George Smith.
Dental engine. The S. S. White Dental Mifg. Co............646,
Dental motor stop motion. Henry P. R. Temple.
Dental plugger. Joseph R. Jones, et al.
Dental porcelain. Walter Levy Mason.
Dental spittoon. Frank Hurlbut, et al.
Dental swage. Joel C. Parker.
Dental tool. Andrew John Brown, et al.
Dental lamp. Henri F. Casgrain.
Dentures. Kelly R. Bragg.
Depurator. George W. Booth, et al
Jerailing switch. Joseph Y. Porter
Desk and seat for schools. James J. Baskerville
Diaphragm for electrolytical apparatus. Carl Kellner....
Dice lox. Eugene Gregory.
Die for forming nails. Solomon M. Cutter
Die for leather. Seth Ward.
Dilator. Elisha I. Parker.
Disc harrow shar pener. John W. Simpson, et al
Dish washer. Bridget R. Mann
Dish washer. Charles Allan
Dish washer. Christine E. Ruhl
Dish washer. Samuel Cripe, et al
Dish-washing machine. Amanda M. Unger.
Disinfectant distributor. Walter W. Peay, et al.
Disinfector. John C. Thresh
Disinfector. Robert S. West
Disc harrow. Lars T. Wieks, et al
Disc plough. Deers \& Co
Disc washer. (George W. Blackiburn.
Display apparatus. Frederick W. (i. Boettcher.
Display apparatus. Harry F. Zimmerlin, et al.
Display fixture arm. Edward Leger.
Iisplay hook. Walter J. Pitkin.
Display mechanism. Albert Ufford
Distilling apparatus. Ira H. Jewell.
Distilling apparatus. The Kalston Still Mfg. Co
Ditcher. James E. McCormick.
Ditching machine. Calvin C. Green..
Diving apparatus. Hubert Schon, et al
Door. John Slade Carter.
Door. Joseph W. P. Destroismaisons
Door closer and opener. Baron A. Von Der Ropp.

52,369
53,261
51,721
53,810
51,302
51,192
53,470
53,792
52,621
52,254
53,318
54,268
53,452
52,911
51,312
54,235
53,052
51,375
52,564
53,683
51,830
51,616
52,850
53,331
52,539
53,869
53,105
51,303
51,087
54,028
53,707
53,834
51,929
51,328
50,998
54,167
52,244
53,350
53,098

52,825

Door fastener. Frederick A. Potter. 51,004
Door hanger and roller. Samuel E. Horning................. 52,696
Door hanging device. Jean Marie I'itent.................. 52,241
Draft and buffer mechanism. Perry Brown................. 54,256
Draft equalizer. George R. Gamble 51,347
Draft equalizer. Stephen A. Miller, et al 52,415
Draft mechanism. Perry Brown.... 52,638
Draft rigging. William M. Yiper......... 54,325
Draught animals to vehicles, etc. Means of connecting. Thomas H. Brigg.

51,193
Draw-bar. Albert D. stentiford..... 53,179
Drawbridge safety device. John Coup.......................... 54,034
Drawing board, etc. Gustave Grund. 53,682
Drawing table. The Laughlin-Hough Drawing Table Co.. 53,386
Drawing process. Rev. Marie E. Lefebvre................. 53,153
Dredge. Janes Amess.
52,432
Dredge bucket. William J. Moore........................... 51,319
Dress-cutting system. Michael Maurer 54,226
Dress-shield. Benjamin F. Sutton.............................. 52,720
Dress-shield. The I. B. Kleinert Rubber Co...................... 54,188
Dress stay. Allen Bagley 51,061
Dress stay. John S. Crotty 52,427
Drill. Charles A. Williams.................................. 51,278
Drill. Richard Huffman, et al .. 51,38
Drill. Victor and Gustave Jettey . $52,9 \mathbf{o n}^{1}$
Drill. William J. Pearce, et al $5 \mathbf{5 2 , 2 5 2}$
Drill chuck. David Weir, et al......51,626, 52,043
Drill chuck. Ross M. Russell 51,400
Drip-cock for stean engines. John Albert Wright......... 54,088
Drive chain. Ellory A. Baldwin 51,362
Drive chain. John Moore .. 53,159
Driving gear. Samuel J. Henderson 52,506
Driving gear and brake. James T. Bustin........ 51,682
Driving gear chain. John Smith 51,016
Driving mechanism. Walter Ames................................. 51,221
Drop hammer. Frederick C. Billings, et al...........51,763, 51,764
Drying kiln. Albert T. Benis...........................53,398, 53,421
Drying machine. Manuel S. Ayan.
53,219

Dumping wagon. John, Jacob Theobald......................... 54,004
Duplicating machine. The American Carving and Manufacturing Company

54,363
Dust absorber. Hannah Grant \& Co....... 51,723
Dust collector. Alexander Dobson 52,436
Dust collector. Eara Miller. 52,016

Dust collector. James F. Stephens, et al.................... . 52,111
Dust collector. Thomas H. Paris. 52,758
Dust-pan and ventilator. Francis M. Rector 52,082
Dyeing machine. Tom B. Buwers.. 51,072
Dynamo. Johann Josef A. Minder........................... 54,389
Dynamo-electric machine. Henry Chitty.............................. 51,754
Dynamo-electric machine. The Canadian General Electric Company

53,603
Ear and throat protector. Adolphus Carrette. 52,70s
Eardrum. Addison V. Sandford.............................. 51,949
Earth auger. August H. Meier, et al..... 51,423
Earth auger. James Douglas Browman, et al. 52,352
Eccentric. Charles Listrom...................... 53,447
Edge tool. Joseph R. Mann..916
Hgg beater. Henry Beammont, et al.... 53,480
Egg beater. Thomas A. Moody 53,997
Egg lviler. William Steefelhagen, et al........................... 53,851
Egg crate. Albert DeL. Gilpin 52,373
Egg crate. Arthur W. MeFarland............................. 52,516
Egg holder for crates. Andrew Jay liaker 53,557
Egg tester. Annie M. L. Chute................................. 53,469
Elastic tire. Erich Liskow..........
Electric accumulator. Jules Julien.
54,284

Lectric accuniulator. Producing paste for. Richard Linde. 52,219

Electric alarm mail box. Edward C. T. Belding.............
Electric annunciator. Thomas J. Stansel
$51, \ldots 44$
53,422
Electric arc lamp. Louis B. Marks 53,929
Electric arc lamp. Malone Wheless. 51,598
Electric arc lamp. Samuel S. Allin.................................. 51,553
Electric arcs extinguishing system. Canadian General Elec-
tric Co... 538

Electric battery. Samuel N. Smith, et al. 53,953
Electric brake. Arthur K. Bonta.
Electric brake. The General Electric Co.
51,755
Electric car gearing
Electric car trolley. William H. Russell. 52,986
Electric circuit safety device. Lewis (i. Rowand 51,244
Electric circuit. Apparatus for detaching grounds in. John Forest Kelly
Electric conductor, and method of manufacturing same. Johm H. Croskey, et al.

51,263
Electric current controller. Flmer A. Sperry.
53,738
Electric elevator apparatus. Thomas L. Kay3,338
Electric energy distribution system. The Canadian General Electric Co

52,538
53,659

Electric flash light apparatus. William Burns.
Flectric furnace. Thomas Leopold Willson.
Electric apparatus. Aloys Naville, et al.
Electric headlight. William Dibb, et al
Electric heater. Consolidated Car Heating Co.
Electric heater. The Consolidated Car Heating Co.
Electric indicator for journal boxes. William B. Chockley
Electric lamp. Alvie O. Mackin.
Electric lamp. E. H. A. H. R. Von Nollendoz.
Electric lamp. Sir Charles H. A. F. L. Ross.
Electric lamp. The Davy Electrical Construction Co.
Electric lamp carbon. Theodore M. Foote.
Electric lamp hanger. Edward P. Snowden
Electric light apparatus. Nelson McLeod.
Electric light display system. Jonathan E. Woodbridge
Electric light fixture. Frederick A. Chapman.
Electric light globe cleaner. Henry Eummelen.
Electric light support. Barton Pickering.
Electric lighter for oil lamps. Einpire Self-lighting Lamp Co
Electric lighting system. Daniel McF. Moore.
Electric lighting system for cars. National Electric Car Lighting Co.
Electric locomotive. Jean J. Heilmann
Electric meter. The Canadian General Electric Co
Electric motor. The Canadian General Electric Co..51,550,
Electric motor. The Diamond Electric Co.
Electric motor. The Canadian General Electric Co..
Electric motor controller. The Canadian General Electric Co
Electric motor controller. William H. Morgan.
Electric motor controller system. Elmer A. Sperry.
Elastic. Process of and apparatus for vulcanizing. Fred W. Morgan, et al.

Electric propulsion. Frederick C. Esmond.
Electric propulsion system. Archibald H. Brintnell
Electric railway. Alfred Philippi.
Electric railway. Alfred Rosenholz, et al
Electric railway. Frank Krizik
Electric railway. Harry Clifton Reagon, jr
Electric railway. James Michael Faulkner.
Electric railway. John C. Love, et al.
Electric railway. John F. Jordan, et al
Electric railway. The Electro-Magnetic Traction Co.51,147,
Electric railway. Willian. B. Furvis, et al
Electric railway rail connection. Ford Marsellis.
Electric railway system. Byron E. Osborn.
Electric register. Stephen C. Shanks, et al
Electric safety appliance for railways. Edward L. Orcuitt.
Electric shuttle. Weaver Jacquard \& Electric Shuttle Co.
Electric signal. Charles Holtman
Electric signal. John Oehler .
Electric signal. Lucien S. Crandall.
Electric signal clock. Frank C. Jordan.
Electric signal for trains. Edward James Devine.
Electric signalling system. The Bell Telephone Company of Canada.
Electric smelting. Thomas L. Willson.
Electric soldering iron. Frederick H. Date, et al.
Electric stop motion. Louis St. Peter, et a
Electric switch. Elmer H. Wright, et al
Electric switch. Henry B. Whitehead.
Electric switch. James Leonard Wesson.
Electric switch. The A. W. Johns Manuf'g. Company.
Electric switch for street railways. Wm. R. Daggett, et al
Electric time indicator. John J. Wright.
Electric tramways, etc. John Charles Love, et al.
Electric ventilator. James J. Devine, et al.
Electric water gauge. Hermann Biermann.
Electric wires. Covering for. Franklin S. Randall.
Electrical apparatus. John F. Kelly.
Electrical circuit closer and sprinkler. George A. Wall.
Electrical contact apparatus. Carl F. Ph. Stendebach
Electrical cut-off for marine engines. The Folk-Ellis Patent Marine Governor and Safety Cut-off Company
Electrical exchange system. George W. Hey, et al..
Electrical gold-mining machine. Reinhard Hoffmeinster, et al.
Eiectrical heater. I. Arthur G. Trudeau.
Electrical relay. Frank E. Chapman.
Electrical signal. James G. Smith.
Electrical signal for vessels. Henry H. Frankiin..
Electricity from car wheel axles. Means of generating. National Electric Car Lighting Company
Electro-conductor insulation. Theodore Guillaume..
Electrode, Jules Julien.
Electrode, for storage batteries. . Paul Ribble..
Electrolysis of salts. Carl Kellner.
Electrolytic apparatus. Thomas Craney.
Electrolytic apparatus. Trevenen James Holland
Electro-magnetic induction system. The Shuttleworth Electric Company
Elevator. Cofran I. Hall, et al
Elevator safety attachment. Richard F. Lebrocq.

53,476
51,037,
53,805
54,275
51,145
51,562
21,656
51,910
53,415
52,370
52,743
52,304
51,784
52,836
52,422
51,580
52,571
51,691
53,010
53,954
54,214
51,566
52,423
51,696
51,698
54,238
54,441
51,697

53,287

51,225
53, 44, 53,150
53,151, 53,152
51,753
53,649
53,654
53,468
53,882
51,311
53,602
52,327
51,497
51,917
54381
53.582

53,582
52,303
51,571
52,873
54,244
52,808
53,585
53,689
53,794
50,990
51,555
52,710
53,568
52,565
51,568
51,687
53,793
51,746
53,727
52,736
52,475
51.235

54,012
53,937
53,315
54,384
52,872
53,809
53,782
54,411
53,575
52,445
51,567
54,432
54,259
51,576
52,520
52,957
53,842
53,232
52,781
52,713

Ellipsograph. James A. Caldwell	51,280
Ellipsograph. John Hottinger	51,421
Embroidering device for sewing machines. Jacob W. Smith.	52,748
Enamel for leather. The Patent Leather Protector	51,657
Enamelled ware. Manufacturing of. Alex. Niedringhaus	54,255
Jnamelling metal. James Cochran.	51,831
Engine : see Gasoline engine, Steam engine, Water engine.	
Engine. Agnes B. Wellington.	51,156
Fingine. Albert L. Ide.	53,848
Engine. Benjamin H. Tr	53,224
Engine. Frederick O. Kilgore.	53,863
Engine. (leorge H. Chappell.	51,290
Engine. John Wand	52,081
Engine. The Comstock Motor Company	52,940
Engine. John George Leyner	53,711
Engines. Oil and gas motor for. John Samuel Cundall.	53,731
Engines. Stopping apparatus. Gilman W. Brown.	53,252
Engines. Rotary feeding mechanism for rock drilling. John George Leyner	53,729
Ensilage cutter. Peter Hamilton Manufacturing Company	52,385
Envelope. Andrew Mortenson	51,832
Envelope. Charles Kelley.	53,041
Envelope. Daniel Conrad	53,366
Envelope. David A. Ross.	54.418
Envelope. Frank E. Munn	54,070
Envelope. Henry Du Pré Bon	52,651
Envelope. John I. Lussier.	51,351
Envelope. John Morrison	51,288
Envelope. Robert Schaellibann	52,885
Envelope. Thomas R. Jordan.	51,185
Envelope. William Daniel Thomas	51,285
Envelope and stamp sticker. Linn E. Wheeler	53,193
Envelope machine counter. Henry B. Cooley et al	53,090
Envelope machine drying chain. Henry B. Cooley et al.	53,096
Envelope seal. Frank M. Converse.	53,536
Envelopes. Machine for applying adhesive material to. Caroline Newman Bintcliffe, et al.	53,85.5
Eraser. Frederick C. Zinke...	51,666
Evaporator. Hamilton Powder Company	52,782
Evaporator. Louis Bourdon.	51,601
Evaporator. Thomas Craney	51,728
Evaporator for maple sap, Ried Page Small.	50,978
Excavator. Alexander McDonald..	51,315
Excavator for earth. Element E. Burbank	52,923

Excelsior wrappers, etc. Machine for making. The Excelsior Wrapper Co.

Extension ladder fire escape Ralph S. Young 5 ,438
Extirpators. Adolph Merrel, et al.
Eye-glass and holder. Charles John Bailey................... 53,092
Eye-glass and spectacles. George Whitfield Meigs $\mathbf{5 3 , 9 3 4}$
Eyelet. Theophilus King.. 51, 199
Eyelet. Willian H. Force, et al. 54, 407
Fabric making machine. The Publishing, Advertising and Trading Syndicate.
Fabric turfing machine. William Craig . 5 54,334
Fabric weaving. Weaver Jacquard Electric Shuttle Co... 51,865
Fabric weaving machinery. Albert E. Hodder $\mathbf{5 4 , 4 5 2}$
Fabricoid. John C. Nichol. 52, 535
Fan. Leaney Recht.
Fan. Samuel O. Tuerk
Fare box. James Quinn.
51,047
51,047
54,417
51,418
51,543
51,755
51,627
53,716
51,716
53,676
53,899
51,593
51,069
51,071
52,043
53,770
51,821
51,781
52,958
53,946
52,668
51,679
54,290
54,344
52,941
52,756
52,922
53,744
52,582
68,781
53,079

Fender: see Car fender.
Fender for cars. Clara M. Beebe
Fermentation system for worts. Jean Effront.
Ferrule and bushings. Charles H. Adams.
Ferry. Firmin Longtin.
Fibre treating compound. Vincent Paul Travers
Fibrous material preparing machine. William Seward Archer
Fibrous substances in suspension. Art of straining. Tvar A. F. Wallberg

Fifth wheel. Caleb R. Turner
Fifth wheel. Christen Nielson, et al.
Fifth wheel. Francis A. Taylor.
Fifth wheel. Thomas A. Watson
Fifth wheel. Thomas (reorge Read
Filament and carbon. John H. D. Willan.
File. Arthur James Wells
File. Charles W. Northrop.
File. Richard Bennett
File for documents. William O. Gottwals
File for filing metal. Daniel Henderson.
File for papers, etc. Bernard MeGinty
File guard. Stephen Lonergan
Filing receptacle. George Henry Richter
Filter. Adolphus Davis.
Filter. Charles A. Kunzel
Filter. Edgar A. Wilder.
Filter. Edward J. Durant, et al
Filter. Emeline Graves.
Filter. Jacob S. Broughman.
Filter. James Wilson.
Filter. Johann F. Fischer.
Filter. Omar H. Jewell.
Filter for quicksand and wells. Thomas A. Evans, et ail.
Filter press. Oscar P. Bushnell
Finger exercising device. Frank E. Osterhout.
Fire alarm indicator. James Foster.
Firearm. Eugene Lazaed.
Fire bucket. William R. Myers.
Fire escape. Eric O. Sjolander
Fire escape. Jacob J. Haller, et al.
Fire escape. John F. Percival, et al
Fire escape. John Spence
Fire escape. Tin,othy Lemond
Fire extinguisher : see. Prairie fire extinguisher.
Fire extinguisher. Mancelia Eugene Ogden
Fire extinguisher. Stephen Banfill
Fire extinguisher. Thomas J. Vail
Fire extinguisher. Thomas Lacey.
Fire extinguisher. Walter Robert Johnston
Fire extinguisher. Wilson Fire Extinguisher Company
Fire kindler. Henry Wright.
Fire kindler. Reese C. A. Jones, et al
Fire kindling compound. John Joseph Keating, et al.....
Fireplace throat. John Lally.
Fish bait. Ernest F. Pflneger
Fish cutting machine. William Munn
Fish drying systemi. Carl Waldemann
Fish hook. Elliot H. Crane, et al.
Fish hook. Frank M. Robinson.
Fish hook guard. Benjamin F. Bargess
Fish net. Decator H. Hibbert.
Fish plate. A. J. Roy, et al.
Fish plate. Robert J. Catchings.
Fishing reel. Thomas I. Sutton,
Floor cloth. Art of and apparatus for making. William Mather.
Floor washing machine. James E. (iee, et al
Flour. Manufacture of. Augustus 1). Bergtold.
Flour dresser. Harvey C. Malsness.
Flour sifter. Warren D. House.
Flue cleaner. Harry B. White
Flue lining. Williain H. Lewis, et al
Flue stopper. Louis J. Haberkorn.
Flue support. Stephen A. Griggs.
Flue thimble. David \mathbf{F}. Taylor.
Fluid-aging process. George R. Besser
Fluid condenser. (ieorge A. Barnard
Fluid meter. Wright's Gas Meter Sy ndicate.
Fluid pressure regulator. The General Compound Air Co.
Fly escape. Annie Sarah Miles.
Fly exit. Charles ($)$ Tatlor
Fodder cutter. John Taughlin.
Fodder shredder. (ieorge W. Packer
Fog signal. Christopher Taylor
Folding box, basket, crate, etc. Edgar 1)redge..
Folding stand. William Edwards Baxter
Food compound: see Bread.
Food compound. Edward Kressel,.
Food compound. Firmin Delangle.
Foot guard for railway frogs. William Driscoll.
Foot rest. Rufus Day Brown
Foot stool. Louis J. Hoffıneyer.

51,331
51,334
53,145
53,393

53,976
51,814
54,006
52,496
51,788
51,915
51,976
51,389
51,415
22,631
52,206
53,172
53,263
52,433
53,354
53,055
54,065
53,114
5107
51,350
53,061
53,198
52,888
51,220
54,147
54,462
52,334
51,740
51,744
52,716
51,877
51,296
51,735
52,730
52,493
53,796
52,975
52,549
51,294
51,464
52,030
51,493
53,133
51,713
53,407
54,153
51,398
53,009
51,416
51,900
51,958
52,421
51,247
54,124
54,118
51,120
54,071
61,896
53,317
53,119
53,324
54,119
54,450
54,461
51,458
54,345
51,161
53,512
54,106
51,577
52,447
52,845
51,305
52,828
51,289
51,510
52,858
51,068
52,784
52,591
52,420

Foot wear. Charles L. Higgins

51,857

Forceps. Ned Farish.

52,694

Foundation structure. Rubert $\underset{\mathbf{L}}{ }$. Harris. $5 \mathbf{5 2 , 2 (6 3}$

Fountain pen. Arthur W. Askew, et al....................... 52,617

Fountain pen. Carl J. Renz.

53,693

$\begin{array}{ll}\text { Fountain }{ }^{\text {ken. }} \text { Frank Alfred Price } \\ \text { Friction clutch. } & \text { Benjamin Clayton } \\ \text { Waite. } & 5, \\ 53,410\end{array}$

Friction clutch. The Reeves Pulley Co................................ 53,337

Fruit evaporator. Harry M. Amos, et al. 54, 385

Fruit jar closure. Henry B. Burns, et al. 54,057

Fruit ladder. William H. Wilson
Fruit macerator and press.
51,134
52,510

Fruit macerator and press. Otis Everett Davidson
Fruit picker. Alfred M. Terrill .
$\mathbf{5 4 , 0 0 0}$

Fruit picker. Robert Horneck . 53, 37 . 8

$\begin{array}{lll}\text { Fuel. Harman Bunker. . . . Wi............................. } & \mathbf{5 2 , 0 2 6} \\ \text { Fuel. Means for burning. William Mussell, et al. . . . } & \mathbf{5 1 , 3 6 7}\end{array}$

Funeral carriage. Keuben A. McCauley 53,0 . 9

Furnace. Edwin Powell . 51,023

Furnece. Frank L. Bartlett . 52,838

Furnace. Herbert Lang, et al.. 53,668

Furnace. James Moran. 51,812

Furnace. John B. F. Herreshoff .
F2,172

Furnace. Porfiri Antonovitch Archipenko., $\mathbf{5 2 , 8 1 0}$

Furnace. Robert B. Carsley, et al....................... 53,091

$\begin{array}{ll}\text { Furnace. Robert Deissler. } & 52,261 \\ \text { Furnace. } & \text { Samuel M. Trapp. }\end{array}$

Furnace. Thomas Murphy........ 54,342

$\begin{array}{ll}\text { Furnace. Thomas York, et al. } & 52,062 \\ \text { Furnace and fire bar. Andrew Pillatt. } & 527\end{array}$

Furnace boiler. Jonathan McQ. (illespie 51,208

Furnace draft. John E. Beckman, et al. 51,803

$\begin{array}{ll}\text { Furnace dust preventer. Aldé Doré . } & \mathbf{5 1 , 6 7 4} \\ \text { Furnace fire bars. Andrew Pillatt. }\end{array}$

Furnace fire bars. Andrew Pillatt. 51,337
Furnace for burning hydocarbons. Charles H. Bachy. . . .
$\mathbf{5 2 , 3 0 7}$

Furnace for burning coal dust. Ferdinand de Camp...... 53,449

Furnace for deoxidizing. Henry A. Jones............... 54,260

Furnace for heating purposes. The E. A. Manny Co..... 52,207

Furnace for heating purposes. Thomas Waller $\mathbf{5 1 , 2 0 0}$

Gauge glass. The Penberthy Injector Company

Galvanic battery. Edward S. Boynton...... $52,786,52,787,52,788$

Game : see Musical game.

Game. Frank L. Decker. 279

Game. James H. Cramsten. 52,278

(iame. Joseph W. Horsfield, et al. 51,096

Game apparatus. Frederick Reesor James. 51,336

Game board. Volney K. Coftill. 51,942

$\begin{array}{ll}\text { Game holder. McOIner H. Parker. } & \mathbf{5 3 , 0 4 5} \\ \text { Garbage pit. } \\ \text { Ghomas Henry Shipway }\end{array}$

Garbage. Process of and apparatus for treating. Cyrus C. Currier

53,673, 53,748
Garbage reducing apparatus. Cyrus C. Currier... 53
(iardening implement. George W. Biddell. 5 . 53,510
(iarment. John R. Ball. 51,029
Garment adjuster. Lee H. Deaner, et al.................... . . 53,486
(Garment binding. De Lntbinière MacI)onald............. . . 52,830
Garment clasp. Reddin W. Parramore 54,117
Garment displaying apparatus. Marcus A. Adler. 51,937
Garment hook. Charles C. Blossom 51,737
Garment hook. Fdwin F. and Frank A. Smith............ 5
Garment jocket. Edward J. Curran. 54, 509

(iarment support. Alva S. Grimm. 50,961
Garment supporter and fastener. Agnes E. Harris. $\mathbf{5 1 , 9 2 1}$
Garter. Bernhard Dreyfus..
Gas and water from oll. Device for separating. Benton (xilmore, et al.

53,615

Gas. Apparatus for producing and storing acetylene.
Ernest Albert Morton Brown, et al.
53,974

s burner.

Gas burner. Charles Knapp 51,180

Gas burner. John Wesley McKnight. 51,972
Gas burner. The Consolidated Car Heating Company.... 51,624
Gas burner lighter. Leonard H. A. Drueding. 53,595
Gas burner safety attachment. Henry H. Cummings. 51,163
Gas check for projectiles. Alfred NoDel. $\mathbf{5 2 , 8 3 5}$
Gas controller. Ernest Brownhill. 52,211

Gas distribution system. Thomas Leopold Willson..... . $\mathbf{5 1 , 0 3 6}$

Gas engine. James A. Hockett. 52,689

Gas engine. The Buckeye Manufacturing Company.
Gas engine. Thomas Kane
Gas engine and governor. George W. Lamos, et al.
Gas enriching apparatus. George G. Schroeder.
Gas generator. Pettibone, Mulliken \& Co
Gas governor. George E. Food, et al.
Gas incandescent. Dr. O. Knofler.
Gas lamp. Jules Dawans.
Gas lamp. Walter J. Thomas.
Gas lamp suspension device. Frank E. Nichol, et al.
Gas lighting apparatus. Louis Denayronze.
(ias machine. Lawrence W. Swenn.
Gas mains. Method of testing. Adolphe Bowvier.
Gas making machine and process. William F. Brown.
Gas making process. Erra S. Hoyt..
Gas making system. George H. Harvey, et al
Gas meter. Daniel Orme.
Gas meter. John M. Tourtel.
Gas. Method of making and storing. John A. Wallace.
Gas. Method of producing and utilizing. Thomas $\dot{L}_{\text {L }}$. Willson.
Gas motor. James F. Duryea.
Gas. Process of and apparatus for generating and using. Charles Edwin Rand
Gas regulator. Darius Wilson.
Gas regulator. Ernest J. Verrue.
Gas tap. George G. M. Hardingham.
Gas valve. Charles O. Tackson.
Gases. Treatment of substances with. Ludwig Mond
Gasts from liquids. Apparatus for separating. Viggo Drewsen.
Gasoline engine. Thomas Reid
Gasoline stove casing. John A. Ruth.
Gate. Alkert Davison.
Gate. Charles M. Abell.
Gate. David W. Brooks
Gate. Frank V. Burner.
Gate. Henry Hodel.
Gate. Jacob A. Freese.
Gate spring. John J. Larimer
Gate. John N. Goltra
Gate. Rivin (i. Stingley
(rate. Williams Harley.
Gate for wire fences. George $\stackrel{\mathrm{C}}{\mathrm{C}}$. Barrett
Gate hinge. William H. Hefner.
Gauge. Elijah H. Holmes.
Gear teeth making machine. Herbert $\underset{C}{ }$ Warren
Gear teeth. Method of and apparatus for making. Herbert C. Warren

Gearing. George E. Schrader.
Germ excluding hood. Alfred Orr, et al.
(Xl lass blowing inachine. Michael J. Owens, et al 52,138 ,
Glass bottle making machine. Charles Edwin Blue.
Glass cover for facing bricks. Ernst Bohm.
Glass in sashes. Means for securing. Rubert Schaellibauin.
Globe for lamps. John L. Spink, et al.
Glove fastener. William W. Whitaker
(Gold and silver separation. Nathaniel S. Keith.
Gold collecting apparatus. John Reitter Brown.
(iold extracting apparatus. William H. Hyatt..
(fold extracting process. Frederick A. Luckenbach
Gold extracting process and apparatus. John (i. Murphy, et al
(Gold extractor and process of extracting. Bertrand Chase Hinman. .
Gold extractor and process of extracting. Louis J. Pelatan, et al
 et al
Gold separator. James F Gwin
Gold separator. Joseph Mait.
Golf club. David I. Urquhart, et al.
Governor for machinery. Edward Thunderbolt.
Grain binder. Frederick D. Mercer, et al.
Grain binder. Maurice Kane.
Grain binder apparatus. Maurice Kane.
(irain binder knotter. Maurice Kane .
Grain cleaner. Frank W. Swanton, et al
Grain cleaner. John C. Welling
Grain cleaner. Orange M. Sweet
Grain crusher. Joseph Hanson.
(Grain dampener. William H. Hill, et al
Grain drill. Alonzo Stansell
Grain measure and register. Gottlieb K. Holbine.
Grain meter. Daniel Wilde
Grain pickling machine. Robert Davidson..
Grain saving machine. John W. Snyder
Grain separating process. Jean B. Deslandes, et al..
(irain separator. The Goldie \& McCulloch Co.
Grain shocking machine. George S. Bingham.
Granular fuel. Process of and apparatus for burning. Colin
W. Claybourne W. Claybourne.

Grate. George M. Conway

51,316
51,177
54,099
52,265
54,370
54,225
53,642
54,176
52,214
51,352
51,031
52,056
51,160
51,240
51,747
51,919
52,189
54,455
53,473
53,647
52,949
53,753
52,389
53,054
54,366
53,113
51,672
54,353
52,978
54,180
53,948
53,493
52,844
52,996
52,274
53,630
51,427
52,152
53,690
52,364
51,270
52,705
52,686
53,106
51,054
54,283
54,467
52,139
54,409
52,934
52,886
51,151
54,087
54,067
51,633
54,151
51,622

Grate. William Henry Page

53,956

Grate drum heater. Anna Woods
51,769
Grate for heating purposes. Henry Orein Hayes. 51,538
(irate, stove, furnace, etc. James D. Hannah, et al $5 \mathbf{5 , 5 7 7}$
(irater. Evangeline Gilmore . 53,491

Grating. George H. Evans.................................... 54,250
Grating machine. Reuben J. Panabaker. 51,690
Gravity railway. John William Cawdery.... $\mathbf{5 3 , 1 5 8}$
(irease trap. Edward H. Donahoe . 5 ., $\mathbf{5 4 6}$

Grindstone frame. Silas C. Schofield.... $5 \mathbf{5 3 , 2 0 1}$
Grinding apparatus. Kisc. John A. McMartin...... .
Grinding disc. John A. McMartin...... .
Grinding machine. Horace S. Buckland. $54, \mathbf{5 6 4}$
Grinding mill. William Henry Coward. $5 \mathbf{5 2 , 6 0 9}$
(Grooving saw. Charles Baar 52,610
Guard for paper rolls. Charles L. Duval............................. $\mathbf{~} \mathbf{~} 1,114$
Guard rail. Rebert B. Poole.
52,251
(iun : see Baited gun, Machine gun.
Gun. Hiram S. Maxim. $\mathbf{5 1 , \mathbf { 3 8 6 }}$
Gun making process. Peter C. Castle. 54,310
Gun powder. Edward Dickson. 51,662
Gun rack. George Falk 52,751
Gypsum rock treatment. George W. Parker54,278, 54,280
Hair clippers. George F. Stevens, et al...................... 51,371
Hair curler. Annella s. Gilmore....................................... 54,159
Hair cutter. Napoleon J. Millette. 5 . $5 \mathbf{5 2 , 7 2 2}$
Hair pin. Ionis Frederick Hock. 53,709
Hair straightener. Ada Harris................................. 52,543
Halter shank and line holder. Kobert C. Stewart, et al... $\mathbf{5 1 , 3 3 9}$
Hame fastener. John William Stanley 52,984
Hame hook. Samuel H. Windley, et al................. 52,382
Hame staple. Riley Stoner. 51,272
Hame tug platr. Kenneth R. Reid............ $\mathbf{5 2 , 4 2 6}$
Hames. Moses Johnson
53,209
Hammer: see Drop hanimer.
Hammock. George B. French. 51, $\mathbf{5 2 1}$
Hammock support. Martin Keegan. $\mathbf{5 0 , 9 6 0}$
Hand car. William H. Saladee, et al 52,161
Hand cars, etc. Mechanism for propelling railway. James
Joseph Thompson . 51,479
Hand grenade. George W. Hathaway . 51,229
Hand power propeller. Isaac A. Wilson. 53,071
Hand truck. Harry York, et al.............................. 52,491
Hand warming device. The Earl of Dundonald. 54, 404
Handle bar. John Galt, et al. 53,464
Handle fastening. Reiner Sanders. $\mathbf{~ 5 2 , 9 1 3 ~}$
Handle for cans and cases. Theodore W. Hickson. 52, 811
Hanger for coats, trousers, etc. Harry J. Flegal........... 5 . 53,437
Hanger for folding door. William S. Roof. $5 \mathbf{5 3 , 9 9 1}$
Harness. Henry E. Detzer. 5 .
Harness. William N. Carlisle, et al............ $\mathbf{5 3 , 2 3 9}$
Harness coupling. John D. McDonald. $\mathbf{5 2 , 3 7 6}$
Harness hook. David Bradley. $\mathbf{5 4 , 1 2 1}$
Harness saddle. Henry Schmitz. $\mathbf{5 2 , 3 2 2}$

Harp. George B. Shearer . \quad. 1,905
Harrow. Freeman C. Merrill. $5 \mathbf{5 2 , 4 5 8}$
Harrow. John M. Patterson . 54, 375
Harvester. Henry M. Glancy, et al. .
Harvester. Marcus E. Hunter, et al.
5088
Harvester, thresher and separator. Wm. J. Conroy, et al. 51,762
Hat fastener. Carl Nelson Moller. $\mathbf{5 2 , 3 1 9}$
Hat fastener. Katie D. Head.................................. $\mathbf{5 3 , 4 8 7}$
Hat finishing machine. John B. Howe. 51,140
Hat pin device. Henry Beaudry, et al......... 53 . $\mathbf{5 6 1}$
Hat securer. Oscar J. Jones.
Hay carrier. Philip A. Myers.
51,615
Hay making machine. Thomas M. Jarmain 5 53,392
Hay press. David Pounder..... $5 \mathbf{5 , 9 5 2}$

Head for cultivators. Joseph N. Clouse.
Head light. Franklin E. Huntress. $5 \mathbf{5 , 6 7 7}$
Heat conserver. Stephen W. Underhill....... $\mathbf{5 3 , 2 3 7}$

$\begin{array}{ll}\text { Heat regulator. Warren S. Johnson. } & \mathbf{5 2 , 2 5 8} \\ \text { Heater. Herman Gutschmidt. }\end{array}$
Heater. Zacharia David Johns, et al............................ 53,764
Heater for cooking stoves. Robert M. Ballantyne........
Heater for use with liguid hydrocarbon. Auguste Quentin.
$\mathbf{5 2 , 4 4 4}$
$\begin{array}{lll}\text { Heater for use with liquid hydrocarbon. Auguste Quentin. } & \mathbf{5 2 , 4 4 4} \\ \text { Heater for vehicles. Thomas H. C. Beall. } & \mathbf{5 2 , 1 7 0}\end{array}$
Heating apparatus. Morton F. Beal................................ $\mathbf{5 4 , 0 0 5}$
Heating apparatus. William H. Page 53,921
Heating device for lamps. Boulton D. Bouron. $\mathbf{5 1 , 0 2 4}$

Heating ventilating drum. Arthur W. Brock.
Heel calk making machine.
54, $\mathbf{5 8 1}$
Heel for shoes. Harry D. Richey.....

Hinge: see Blind hinge.
Hinge. James M. Young.
Hinge. John Asken.
Hinge. John H. Lawrence
Hinge. Oliver H. P. G. Spencer
Hinge. Robert B. McClellan.
Hinge. The W. S. Reed Toy Company
Hinge for trunks. William A. Truesdale.
Hoe. Henry A. Parcells, et al.
Hoist. Hay F. Donaldson.
Hoist for grain, etc. Peter Muller
Holder : see Coupon holder, Mucilage holder, Ticket holder, Photographic plate holder, Writing and weighing device holder.
Holder for check reins. Myron L. Winans.
Holder for ink-wells and drinking cups. Horace M. Evans
Holder for reference. Books. William Alex. Philips
Hominy making process. Kirk Hopkins..
Hood. Moses Dubinsky, et al
Hoof trimmer. Oscar Wilbanks.
Hook and eye. Emil Hirth.
Hook and eye. Ernest T. Lorin.
Hook and eye. Katharine S. Bort.
Hook and eye. Joseph F. Schoeppl.
Hook and eye. Samuel I. Slade.
Hook and eye. Singer Safety Hook and Eye Conpany
Hoof cutting machine. D. H. Burrell \& Co
Hopper. John W. Stone.
Horn guard for cattle. Joseph Lemuel Straw.
Horny material. Process of converting skins into. The Marloid Manufacturing Company
Horse boot. William Cain.
Horse collar. Frederick C. Kreiger.
Horse collar. Frederick Warner.
Horse collar. Oscar J. Westfall.
Horse hitching device. Thomas Agnew
Horse shoe nail. Daniel E. Kempster. .
Horse rake. Alexander Robinson.
Horse rake. Frank Whitecomb.
Horse shoe. Alexander Pearsall.
Horse shoe. Christiau Eisenberg.
Horse shoe. Cruther D. Shepherd
Horse shoe. Ellery C. Davis, et al.
Horse shoe. Frederick W. Hahn.
Horse shoe. George Lafayette Reynolds.
Horse shoe. James Bell Gillespie..
Horse shoe. John Peter Buengers.
Horse shoe. Mark Danby.
Horse shoe, etc. Duncan A. Davidson.
Horse shoe calk. Henry Sachs
Horse shoe plates. Method of expanding. Joseph Naipolder Le Vasseur
Horse starting device. Hiram P. Hall
Horse stopping device. James (i. Casey..
Hose : see Nozzle for hose.
Hose coupler. Leon J. Houze, et al
Hose coupling. Edward E. Gold.
Hose coupling. Jean Naud.
Hose coupling. Pierre E. Guérard, et al.
Hose. Device for repairing. Jehn J. Cooper
Hose nozzle. Felix L. Decarie.
Hose nozzle. Peter Byron Montrois.
Hose reel. David C. Landon.
Ноse support. Leonard G. Abbott
Hose supporter. Isaac H. Paul.
Hot air cabinet and screen. Charles M. Kobinson.
Hot air register. F rancis C . Corroll.:
Hot water furnace. Joseph T. Robbins.
Hot water furnace. Lucien N. Fortier.
Hot water heater. George C. Morrison.
Hot water heater. John Barclay. .
Hot water heater. Joseph B. Sheridan.
Hot water heater. The Magee Furnace Co.
Hub. Abraham C. Scarr.
Hub. Hiram L. Stuart
Hub. Robert F. A. Mackinnon
Hub attaching device. Henry M. Cromer
Hub for vehicles. Martin Luther Killam
Hull for vessels. Giilbert T. Brewer.
Hull for vessels. G. W. Schermerhorn
Hydrant. Elias Cronstedt
Hydrant. Ludger Genest.
Hydrant. William W. Corey.
Hydraulic air conpressor. The Berner-Mayer Co....52,942,
Hydraulic elevator seat. George H. Evans.
Hydraulic motor. Stephen J. Tutthill.
Hydraulic pressure system. William B. Cowles
Hydraulic ram. John H. Hendy
Hydraulic ram and pump. George Yellott
Hydraulic ram and pump. George Yellott...."........... 51,645
Hydrocarbon burner. Edwin G. Mummery, et al. . . $54,427,54,429$
Hydrocarbon burner. Joseph H. Mathews
Hydrocarbon burner. Patrick H. Cooney
Hydrocarbon burner. Walter Darby, et al.

54,464
52,130
54,322
51,078
53,490
52,305
51,892
51,348
53,221
53,691

51,324
51,943
51,583
54,202
53,986
:3,599
53,305
54,041
:2,298
51,344
51,589
52,053
53,822
51,683
52,583
53,736
52,271
54,199
52,428
52,165
51,040
51,847
52,011
54,388
53,751
52,657
52,014
54,013
54,394
51,527
03,893
51,528
52,356
52,578
53,450
53,798
53,319
52,761
54,328
54,323
53,353
52,647
53,839
52,115
53,671
51,443
52,256
54,422
53,409
51,410
53,592
52,876
53,368
53,481
51,798
20,798
54,116
51,413
51,459
53,535
52,291
51,236
52,691
53,543
53,845
51,399
52,943
53,014
52,532
53,173
51,392
54,429
53,395
52,615
51,967

Hydrocarbon burnei. Welsbach Incandescent Gas Light
Company .. 510

Hydrocarbon generator. Edwin (it. Mummery, et al....... 54,428
Hydrocarbon oil. Apparatus for producing light from.
Welsbach Incandescent Gas Light Co........... 51,274

Ice bicycle ther. Anard S. Walsh.256
Ice. Device for cutting channels in. Joseph © i B. Latour 51,370
Ice harvester. David B. Arnold
Ice making machine. Charles A. Kunzel.................... ${ }_{54,160}^{53,177}$
Ice shaver and scoop. Adolph (reering 54,160

Ice tongs. Charles S. Bird, et al....
Incandescent lamp. Casimir Wurster....................... $\mathbf{5 4 , 3 5 1}$
Incandescent lamp. John T. Lister, et al.................... 53,485

Incinerator. Robert C. Sayer................................
Indicator for setting axles. Byard Dickie............. 53,633
Indicators for offices etc. John P. Millourne................ 51,38.
Intlammable liquids. Method of gasifying. Emil Rohrbeck 52,410
Inflating device. Henry Lawrence Gulline.................. 52,377
Inhaler. George B. Underwood.
Inhaling, disinfecting and perfuming apparatus. Otto Jo- 51,897
hann J Witt. E.........
Injector for vaginal powder Josef Schoene 53,067
Inkstand. Charles Henry (iardner 53,678
Inkstand. (ieorge I). Spielman. 54,156
Inkstand. James Spencer Parmenter 52,871
Inkstand and mucilage bottle. John B. Thomas.. 51,115
Inkstand shield. Rolert (. Hopkins 52,915
Inking mechanism for puinting processes. Joseph McCallum 54,435
Inking pad. William W. Hammond 54,083
Insect destroyer. Wdward ' T '. Burrowes.... 51,403
Insect destroyer. Willam H. Freeman 52,393
Insect destroying machine. Robert W. Hillyard............ 51,030
Insect powder distributor. John R. Brown.................. 51,801
Insect powder distributor. Charles D Cutts 53,033
Insecticide for destroying horn flies. James D. McLeod. . 52.790
Insole. James Stanstield...... 53,844
Insulating joint. Chicago (Gas and Electric Fixture Manu-
facturing Co ..
51,823
Insulator. William I)ibb, et al. 51,756

Joint grinding machine. Champion Steam Joint Reamer and Grinder Co .

Kettle. Eugene Danforth.

Kite frame. Everett E. Thayer
Kitchen cabinst. Wesley A. Young,.
Knife etc Edward Q Norton

Knitting machine. The Providence Knitting Machine Co. 51,170

Insulator pin. Fred Morton Locke .. 58,349
Iodine comround. Dr. Alexander Classen. 50,981
Iron alloys. Electrolytic manufacture of. Joseph Heibling 54,021
Iron fence post. Simeon C. Davis . 53,325
Iron into steel. Method of converting. Samuel Hufty, et al 51,936
Iron pipe. James and George Thomson.................. 51,394
Ironing board. (reorge S. Reynolds. 53,590
Ironing board. Branville H. Ashworth 51,651
Ironing board. Thomas J. Sutton, et al........................... 52,100
Ironing table and wash bench. Sidney D. Kingsley, et al. 52,831
Invalid bert. Jackson B. Young, et al. 54, 246
Invalid lifting device. David H. Shutters. $5 \mathbf{5 2 , 4 9 2}$
Jack. Stephen Mallery, et al.. 51,658
Jar, etc. Frederick Joynson, et al. 53,397
Jar and can filling apparatus. Otto H. Michaelson.. 54,369
Jar closure. Franz (iullaume, et al.. $51, \mathbf{3 4 3}$
Jar fastener. The Bristow Fruit Jar Co. 5 52,396
51,969
Jointer and gage for saws. Silas Buckingham........... . . . 53,876
Joist and wall hanger. Vincent E. Gregg, et al 5 . $5,5 \pi 2$
Journal box and shaft. Ambroise Stevens Vose 53,741
Journal for vehieles. Charles Truman.. 51,785
Jug bail. Albert Patrick Woodard . 51,684
Keel, centre loard, etc. Herbert W. Fairbrass. 54,311
Keg-pitching machine. Pabst Brewing Co.
51,722
51,529
Kettle cleaner. Flla G. Delaney. 52,163
Key and handle combined. August (i. H. Schroder 52,864
Key board. John F. Black, et al . 5 . 5 ,125
Key board. Richard Hensley . 5 5, 0 .
Key duplicating machine. Edmund R. Darling 51,766
Key fastener. James A. Beebe............................ 53,111
Key for door locks. Oscar Stoddard, et al...................... 53,235
Kiln. F. D. T. Lehmann, et al. 5 . 51,095
Kiln flue. George Warren. 5 . 5 .425
Kiln for burning earthenware. Charles D. D'Enghien, et al 51,926
52,431

Knife f, r mowing and reaping machines. E..................................... 51,582
Knife sharpener. Henry Landgraf. $\mathbf{5 2 , 1 2 0}$
Knitting machine. Emil John Franck. .
Knitting machine. George F. Sturges . $\mathbf{5 2 , 1 2 4}$
Knitting machine. John Bentley . 54,046
Knitting machine. Joseph Bennor. 5 . 52,526
Knitting machine. Louis D. Willians, et al...................... $\mathbf{5 1 , 1 1 3}$
3,590
,100

53,876
,684

Knitting machine, etc. Clark Older
Knitting machine attachment. Herbert T. Ballard.
Knitting machine cylinder. John Bentley
Knitting machine needle jack. John Bentley.
Knockdown case. Mary M. Cleckley.
Label-applying machine. S las R. Thayer
Label for bottles. Arthur S. Jackson
Label holder. Americus C. Mills
Label holder. John W. LaBaw.
Lace cutter. Philip Coldstein..
Lace fastener. Charles H. Pratt.
Lace fastener. Julius Strassburger
Lacing hook. Eleazer Kempshall.
Lacing with wire tips. Machine for providing. Samuel Lee Pratt.
Ladder. Jerome B. McSherer, et al. .
Ladder. Thomas Sooy
Ladder chair. Edgar B. Rogers
Lamp. Joseph H. Iredale.
Lamp. Rohert Hitchcock.
Lamp. Walter Hare.
Lamp burner. Hartwell A. CBrosby, et al.
Lamp burner. Sidney A. Hoover, et al
Lamp chimney and gas glube. Albert F. Alcock, et al...
Lamp chimney holder. William G. Trethewey, et al
Lamp chimneys. Machine for making heels of. George James Gaukert
Jamp or lantern guard, Samuel N. Goodinan
Lamp shade. August Wolff
Lamp shade and support. George H. Scafer.
Land roller. Charles J. Shaw.
Land roller. William Lowery Marshall
Lantern. Benoni E. P. Creighton.
Lantern. William G. Holden, et al
Lantern. William M. Bouchelle.
Lap borard. Sophia M. Rivers..
Lard package. Adna J. Fogg..
Last. George E. Baldwin
Last. John Cave \& Sons
Lasting jack. Daniel Porter Pewthers, et al.
Lasting machine. Elisha Hanshew
Latch and lock. John R. Bedell, et al
Lath for corners. Frank Loving Union, et al.
Lathe cutter rest. George F. Rabus
Lathe for twining axle boxes. Ralph K. Sipars.
Lathes. Tool carriage for. David F. Carnell, et al.
Laundry case. Thomas Paterson
Lawn mower. David Maxwell \& Sons.
Lawn mower. Frederick T. Maynard.
Lawn mower. William D). Benson.
Lawn nower grass carrier. Roswell \mathcal{F}. Krause
Lawn mower knife. Henry Eummelen
Lawn mower sharpener. Harlow H. Howe.
Lawn mower sharpener. Roxa Slaght.
Lead pipe coupling. Erwin W. Whitmore, et al.
Lead press. Henry 13. Cobb
Leaf gilding process. Hugo Panl Weisse
Leather cutter. Ellis Spear, et al
Leather dressing composition. Daniel Z. Woords, et al
Leather measuring machine. Olivier Bresse, et al.
Leather recessing machine. The McKay Nevervip Sole Co.
Leather sewing machine attachment. John B. Hadaway.
Leather strap for handles, etc. Friend Johnson Bringham.
Leather trimmer. Ellis Spear, et al
Leather washing machine. James McKenzie, et al.
Ledger. John F. Brown
Leggings. Charles Fisher
Letter and message receiver. Isaac F. Shaw
Level. Edwin J. Simmons
Level. Lewis C. Raymond, et al.
Life belt. John W. F. G. Alde
Life boat. A. L. H. Short, et al
Life saving apparatus. Jacob Greener.
Lifting and carrying device. 1 aniel Broderick.
Lifting device. Charles B. Ulrich
Lime. Process of treating. Harry H. Pierce
Lime holder. Louis Hansen.
Link for metal chains. Henry L. Ferris
Links. Machine for bending. George P. Simpson
Linotype machine. John A. Erkson
Linotype machine. Ottmar Mergenthaler.
Linotype machine. The National Typograpical $\ddot{\mathrm{C}}$ o
Linotype machine. The Stenotype Co. of Portland
Linseed oil purifying system. The Cleveland Linseed Oil Co
Liquid carbonating machine. Thomas B. Booth
Liquid concentrating process. Sydney D. Rowland
Liquid cooler. August (F. H. Luderitz
Liquid dispensing apparatus. Willian M. Fowler
Liquid dispensing apparatus. William Miles Fowler
Liquid indicator. Frederick A. Morse
Liquid level. Henry A. McGrory.
Liquid measure. Charles A. Fish.
Liquid meter. William M. Fowler.

53,677
51,099
54,100
54,047
51,751
51,889
51,671
51,774
54,037
54,152
52,413
52,293
51,825
51,909
53,265
51,829
51711
53,940
51,390
53,143
51,968
52,328
53,181
52,213
51,882
53,131
53,667
51,391
51,620
52,348
52,036
51,383
53,346
52,592
54,219
54,460
54,396
53,825
52,105
53,014
51594
51,945
51,333
-33,707
51,136
51,204
53,832
53,220
52,562
53,121
52,889
54,113
23,548
52,959
54,453
52,878
52,489
51,308
54,224
53,47?
51,153
52,877
52,344
53,065
53,028
51,430
:53,038
53,544
54,319
52,186
51,609
53,998
โ2,796
53,797
52,690
51,950
51,168
52955
53,587, 53,588
51,107
53,104
51,123
53,650
52,113
53,530
52,634
51,369
52,353
53,375
53,199
52,681

Liquid motor. Duncan G. McBean
Liquids. Apparatus for treating with heat. La Compagnie Internationale des procédés Adolphe Seigle.

53,614
Liquids. Effervescent cartridge for aerating. Godfrey Bamberg.
Liquids with gas. Method of charging. Joseph Scheneible 52,559
Liquids with gas. Method of charging. The A. F. Hof-
mann Carbonating and Racking Company
52,675
Liquors. Process of making fermented and distilled. Angelo Myers.
Litharge reducing system. Joseph Williams
Lobster canning system. Frank Roberts
Lock. Adrien . oseph Moulart.
Lock. Charles N. Lippitt
Lock. Eugene S. Sutton, et al
Lock. George W. Hill
Lock. Henry Dwight Hinckley
Lock. Jerome W. Packard, et al.
Lock. Matthew Willis
Lock. Napoleon Roy, et al
Lock. Woodbury D. Roberts
Lock and seal. John Anschan
Lock cover. Parazette Hopkins
Lock for bicycles, Benjamin F. Smith
Lock for boxes. Matthew Willis, et al
Lock for document binders. Robert James Copeland, et al
Lock for electric lamp hangers. William A. Thompson.
Lock for wagon bodies. Joseph T. Duncan.
53,155
52,776
51,618
51,578
54,123
53,488
51,706
53,862
51,299
54,459
52,906
54,079
53,789
51,402
51,304
52,910
53,542
51,985
Lock for wagon eats. Joseph G. Romenesko. 53,924
Locking system for waterways. Chauncey N. Dutton $\mathbf{5 2 . 9 5 4}$
Locomotive. Charles A. Couch........................54,066, 54,091
Locomotive. Robert Hardie. 52,760
Lucomotive. William J. Holman................................ 53,218
Locomotive. Rubert Deissler.…......................22,284, 52,285
Locomotive exhaust pipe. William F. Borbridge........... 52.
Loy chain. Peter Payette
4,217
Log loader. Peter McNerney
Logging machine. George T. Glover.......................... 53,364
Log rolling device. John Vanderwort, et al................. 53,115
Log sawing system. Annie S. Dees................ 51,710
Logging traction machine. George T. Glover................ 52,404

Loom. Elmer Gates....................54,240, 54,241, 54,242, 54,243
Loom. James Henry Northrop................................ 51,860
Loom. John Payser.. ... 51,232
Loom. The Crompton Loom Works Electric Shuttle Com pany.

51,864, 54,251, 54,263
Loom for weaving cane. Ford, Johnson \& Co 51,226
Loom let-off. Francis L. Ball, et al............................ 54,465
Laom let-off. John Payser, et al54,465,
Loom reed. The Crompton Loom Works.
Looms. Inlet-off mechanism for. A rthur Allan Forbes... 53,730
Lubricant for bicycle gear. Richard H. Caswell.
Lubricants. Method of making. Franz Josef Reinisch.
Lubricating axles. John Tudor Richards
Luhricating journal hearing. David Lee Attmen 01,085
Lubricator. Addison C. Hott, et al $5 \mathbf{5 3 , 9 6 8}$
Lubricator. Harold P. Tippett................. 52,860
Lubricator. James Donovan 53,166

Lubricator. John J. Kennedy................................. 58,260
Lubricator. Lewis \dot{F}. Longmore, et al............................. $\mathbf{5 2 , 0 5 1}$
Lubricator. Ludwig Hirsch 53,264
Lubricator. Peter Nadeau....................................... 51,015
Lubricator. Frank Della-Turre, et al...................................42
$\begin{array}{lll}\text { Lubricator. Theodore Martin Anderson, et al......................... } & 54,333 \\ \text { Lubricator. The Rochester Autonatic Lubricator }\end{array}$
Lubricator. William H. Johnson 54, $\mathbf{3 2 0}$
Lubricator. Willianı Silver:......................... 51,782
Lubricator. William W. Conner.
Lubricator for vehicles. Albert S. Geiger, et al..... ...
$\mathbf{5 2 , 4 5 5}$

Lumber piling apparatus. Anders Stendahl................. $\mathbf{5 2 , 9 3 0}$
Lumber truck. Albert T. Bemis. 52,818,
Lunch box. Jacob Victor
52,819
51530
Machine gun. Alfred A. McKnight......................... 52,337
Machine gun. Lauretta Wilder, et al..................... 5 . $54, \mathbf{2 4 7}$
Magnetic electric light holder. Martin H. Collom
51,034
Magnetic needles. Means of increasing directive force of.
John S. Gishorne
Magnetic phases and fields. Means for producing. Charles S. Bradley

53,089
Mail bag. Augustus Philip Hauss.
51,940
Mail pouches. Augustus P. Hsuss......................... 51,613
Mail stamping machine. Agnes D. Carroll..................
Main tapping machine. Mathew C. Walker.
53,912
Malting apraratus. Alvis Zeckendorf et al
51,486
Mandrel for tire sheaths. Fred. W. Morgan, et al.
Manger. Don L. Richmond.
Mantle for lighting by incandescence. Arthur O. Granger. 51,729

Manure spreader. Daniel Bolivar Merrell
Manure. Treatment of. Seberecht Tralls.
Marine conveyance. John Dean, et al.
Marine nerry-go-round. Arthur R. Newton, et al
Marine propulsion mechanism. Sidney Lawrence
Maritime vessel. John W. Glaholm.
Massage appliances. William Douglas.
Masut boiler heating. Friedrich Grube, et al
Mat. Franz H. Donath
Mat. Thomas C. McPherson, et al
Match box. Frank Wittenberg.
Match box. Hugh Henry Brown
Match coil carrier. The Continental Match Co
Match making machine. Davenant Rodger.
Match making machine. Diamond Match Co.
Match making machine. Joseph C. Donnelly.
Match making machine. The Diamond Match Co
Matching machine. William Henry Bullock
Mausoleum. Rodney F. Carter.
Measure for cloth, ribbons, etc. Joseph I. Wagner
Measure for liquids. Jarvis H. Platt
Measuring or weighing fuids. Apparatus for. David W. Curtis
Meat boiler. George Washington Aldrich
Meat curing apparatus and system. Evan R. Down.
Meat saw. John Marshall,
Meat tenderer. William G. Mumma
Mechanical movement. Mack T. Smith, et al.
Mechanical movement. Warren S. Johnson.
Mechanical movement. William H. Dolmestsch.
Medicinal compound. Lauran Dépeins.
Medicinal compound. Ada L. Filgate.
Medicinal compound. Alfred Houle.
Medicinal compound.
Medicinal compound.
Antonio Pene.
Medical compound. Giovani B. Deferari
Medicinal compound. Henry Edwards.
Medicinal compound.
Medicunal compound.
Medicinal compound. Marie R. de L. E. D'Avignon.
Medicinal compound. Robert J. W. Atwood
Medicinal compound. Samuel Irwin, et al.
Medicinal compound. Warren W. Spaulding.
Medicine case and saddle bag combined. James E. Smoot.
Medicines. Method of and apparatus for preparing and administering liquid. John Robertson
Merry-go-round : see Marine merry-go-round.
Merry-go-round. Anthony H. Sanders, et al
Merry-go-round. Frank Gray.
Merry-go-round. Lyman D. Howard.
Metal articles. Method of making. Emilien Dumoulin. .
Metal bearings. William Leatch.
Metal can. Edwin B. Mclongall, et al
Metal can. Henry Peterson
Metal can sealing machine. Emil Kutzner, et al.
Metal lath. Dawson Brown Hilton..
Metal mining system. Herman Frasch.
Metal pipe. William T. B. McDonald.
Metal plates. Means of joining edges of. Mephan Ferguson
Metal soldering system. Frederick A. Ellis
Metal weather strip. Jeptha Harvey Sutton
Metal working tool, Theodore L. Stewart.
Metallic alloy. William Herman Kemler.
Metallic articles. Method and means of shaping. William Hall, et al
Metallic car. willard Pennock
.54,125
Metallic carbides. Thomas Leopold Wilison.
Metallic lathing. Alexander Roberts Fordyce
Metallic oxides. Process of reducing. Ludwig Mond.
Metallic packing. Edward Lathrop Raynsford .
Metallic railway tie. The Hamilton Malleable Iron Co....
Metallurgical furnace. William Bell \& Co.
Meter for electric power. The Canadian General Electric Company
Military equipment. Jens Zinn
Milk and cream preserving method. Edward \dddot{P}. Hals......
Milk bucket. Charles F. Cooper, et al.
Milk can. James M. Williams
Milk heater. Achille Baribault.
Milk or cream. Apparatus for treating. David W. Curtis
Milk purifier and cooler. Sévère Langlois, et al.
Milk receptacle. Joseph A. Gosselin.
Milk safe. Frank S. Twombly.
Milk wagon. John L. Owens, et al
Milking machine. Alexander Shiels
Milking maching. William H. Lawrence, et al.
Milking machines. Method of and apparatus for automatic ally maintaining and regulating the vacum in cow. Jerry E. Harvey, et al
Mineral fibre. Mechod of treating. David H. Ferguson.
Mineral wool. Thomas S. B. Wood.
Miner's candlestick. William Lincicum, et al
Mining machine. Charles E. Wolfendale, et al.

50,965
53,795
51,104
54,419
53,03:
53,178
52,184
53,754
52,523
51,033
51,842
54,449
51,424
51
1,441
52,469
52, 284
53,601
52,126
53,311
53,192
54,141
53,679
52,897
51,845
52,459
53,285
54,286
52,257
53,356
53,670
54,150
53,351
53,349
54,155
51,407
54,276
52,547
51,542
52,700
51,052
51,116
54,143
52,230

Mirror holder. Towsend W. Noxen
Mirror support. John F. Hanlon
Mitten. Jwight C. Clapy
53,099
53,369
Mitten. Jwight C. Clapp
Mitten. Joseph Letorne
52,363, 52,368
Mitten. Joseph Letourneau 54,359

ting Company

52,309
Moccasin. (ieorge Schmidt. 11,028
Moistener for attachment to fingers. Henry U. Beck, et al 52,809
Moulder's flask. James Barker
51,883
Moulding apparatus. Harris Tabor................. 51,891
Monocycle. Joseph Chouinard. 52,339
Monument. Emery Coté.
52,143
Monument. Freeman A. (ireen.................................... 53,147
Monument. Robert Drury, et al. 52,635
Mop. William R. Popplewell. 51,572
Mop and brush. Patrick J. Grace
Mop wringer. John G. Maendler, et al................... 53,231
Motor. Isak Johnson.
53,238
53,391
Motor carriage. Thomas Dill.
54,081
Motor controller. The General Electric Company62
Motor truck. John A. Brill....................53,466, 53,467, 53,607
Motor wheel. Charles F. Goddard........................ 54,237
Motors. Means for regulating. Carl G. P. de Laval...... 52,507
Mould for confections. Walter E. Coleman.............. 51,637
Mould for sanitary ware. Frederick B. Dakin, et al...... 53,394
Moulded articles. Manufacture of. The Publishing, Advertising and Trading Syndicate.

51,149
Moulding nachine. Frederic Wm. Thos. Hartland, et al. 53,715
Mouth-pieces for cigarettes, etc. Machine for making. Joseph S. Beeman.
Mouth-piece for musical instruments. Benjamin Witner.
Mower. Maurice Kane..

Multiple telephone. The Bell Telephone Company of Canada..

Music rack. Joseph Rockwell..

Musical instrument : see Stringed musical instrument.

Napkin holder. G. A. Barrett
Nasal inspirator. George B. Farmer.

Nitro compound. Walter F. Reid, et al
Non-refillable Buttle : see Bottle, Unrefiliable bottle.

Non-refilable bottle.
Non-refillable bottle.
Non-refillable bottle.
Non-refillable bottle.
Non-refillable bottle.
Non-refillable bottle.
Non-refillable bxottle.
Non-refillable bottle.
Non-refillable bottle.
Non-refillable bottle.
Non-refillable bottle
Norr-refilable bottle. Company.
Non-refillable bottle.
Non-refillable bottle.

Mowing machine. Stephan B. Jonsson, et al. 53,618
Mowing machine. The Deering Harvester Company...... 53,384
Mowing machine cutter bar. George A. Hall. 52,002
Mowing machine knife. William Brenton 54,092
Mowing machine knives. William C. Case. $\quad 5 t, 035$
Mucilage bottle. Christian A. Biorn, et al. 53,431
Mucilage bottle. Frederick W. Rahmer..................... 51, 184
Mucilage brush. Joseph F. Suith. 52,794

Mud guard for carriages. Stanley Mundey 51,667
53,906
Music leaf holder. Alpheus A. Lundy, et al.................. 51,097
Music leaf turner: İiattimore Carter, et al. 51, bias
Music stand. William Wholton. 51,110
Musical dial. Frank H. Daniels. 53,195
Musical gane. Abbie T. Hays, et al.. 51,349
Musical instrument. Adolf Richter. $51,485,53,160$
$\operatorname{taz}=2$
Musical instrument. Neil Merrill... 54,161
Musical instrument. Neil Merrill, et al.... 52,667

Nail presenting and driving mechanism. Frank F. Stanley 51,300
51,935
Needle
Needle for knitting machines. George F. Sturges........... $5 \mathbf{5 2 , 1 2 5}$
Necktie fastener William C. Mcbougall..................... 51,075
Neck yoke and tongie. Arthur Frederick Montford Broke 53,703
Neck yoke. Henry W. Wilcox.... 52.7.
Neck yoke. William A. Whitney.............................. 51,041
Net lifting apparatus. John W. Atwood...................................,239
Netting and machinery for making it. William Stuart.... 52,452
Newspaper holder. Linley (x . Wade. 54,080
Newspaper vending machine. Mishael A. Kemedy...... 51,340
Nickel. Flectrolytical production of. Dr. Carl Hoepfner. 51,780
Nickel ores. Apparatus for treating. Ladwig Mond...... 52,789
$\begin{array}{llll}\text { Nickel ores. Apparatus for treating. Lad wig Mond...... } & 52,48 \\ \text { Nipple cutting machine. William Murchey } & 52,446\end{array}$
Nipple forming machine. The Pope Manufacturing Co.... 54,233
52,042
Non-refillable bottle. Alfred Mathews Riley, et al......... 51,266
Non-refillable bottle. Archie K. Hay, et al................. 54,098
Non-refillable bottle. Charles P. Landquiste, et al....... . . 51,354

Daniel Hepp
David K . Saunders. 51,234
54,448
Frederick T. Vaustman, et al...... 54,356
Garson J. Newwitter, et al 51,731
(reorge Washington Johnson 52,346
George W. Steffens. 52,714
Horatio (y . Wood. 5 52,738
James O'Jonnell 51,106
John L Wolf.. $52,1: 5$
Joseph S. L'Hommedieu. 51,273
Toseph Stretch, et al....................
\ldots.

Willeve T. Marriman
5
52,368William Von Bokern

51,279
36
,800
\qquad

174
,
\%

1,35 ,345
,098-

Non-refillable vessel. Elias A. Jukes
Note sheet for musical instruments. Adolf Richter
Nozzle for hose. Thomas L. Murphy
Nursing bottle support. William Gill
Nut. Charles Schoening
Nut. Edwin B. Brewer, et al.
Nut and bolt lock. Allen P. Lord, et al..
Nut and bolt lock. Alvin Nelson Woodard, et al
Nut blank. Samuel Vanstone.
Nut lock. Charles C. Grant.
Nut lock. Gustavus Struss, et al
Nut lock. James T. Peters, et al
Nut lock. John E. Ward, et al.
Nut lock. John M. Martin.
Nut lock. John William Spriegel.
Nut lock. Thomas Gare, et al
Nit lock. Thomas Heard.
Nut lock. Thomas L. Henderson.
Nut lock. William Hallett.
Nut making machine. Samuel Vanstone
Nut tapping maching. Norman B. Wood
Oar. Joseph Berron.
Oar. Michael F. Davis
Oar. Onésime I. Bergeron
Oar. Otto Shnicke.
Oar. Samuel A. Tenney
Oar lock. Willis E. DeRiai
Obstetrical forceps. Charles Barber.
Obstetrical forceps. Frank Wagner.
Office indicator. John A. Day
Oil and gas engine. Henry Thomas Dawson.
Oil can. Andrew W, Knittel
Oil can. Frederick J. Marolf.
Oil can. Steward Dunlap
Oil can. William A. Wallingford
Oil can. William Frosch.
Oil can and faucet. Henry C. Terry
Oil compound. Edward (i. Kubler, et al.
Oil engine. George J. Altham.
Oil filter. Edward H. Downing
Oil filter. Rudolph Conrader.
Oil filter. William J. Bailey
Oil gas making machine. Frederick Mayer.
Oil lamp and stove. Charles L. Jackson.
Oil pump. James W. Rhoades
Oil refining system. Carlos A. Smith.
Oil stove. Otto Hurschmann
Oil wells. Means of increasing flow of. Herman Frasch, et al
Oil wells. Means of increasing flow of. John W. Van Dyke, et al.
Oiler. John Braithwaite, et al.
Ointment. Alphonse H. Grulet
Opera glass. Jeremiah Murphy, et al.
Operating tablet. Richard Kny.
Orchard ladder. Harvey Bowman.
Ore concentrator. Charles F. Pike.
Ore concentrator. Merchant Stoddard, et al.
Ore concentrator. William H. Coward.
Ore concentrator. Willis G. Dodd.
Ore crusher : see Stamp mill.
Ore crusher. John Roger.
Ore extracting process. Henry L.' Sulman, et al
Ore extracting process and apparatus. The Cassel Gold Extracting Co
Ore extraction system. Henry Ernest Fry
Ore pulverizer. Archibald A. Dickson.
Ore pulverizer. John W. Bailey
Ore separating method. Edward Fearen, et ail.
Ore separator. Edward E. Reynolds, et al
Ore separator. Frank J. Bernard.
Ore separator. Frederick H. Long, et al
Ore separatr. Henry Arden.
Ores, etc. Process of extracting metals from. (ieorge A. Schroter, et al.
Ores. Treatment of ginc and copper. Walter J. Koehler.
Organ. George W. Scribner, et al
Organ action. Albert L. White..
Oxide of lead. Process of forming. Thomas Binfield
Pace indicator. Albert B. Holson, et :l
Package filling and weighing machine. William H. Dolie.
Package making and filling machinery. Henry E. Smyser
Packaging machine. William H. Butler.
Packing for piston rods. Thomas H. Holmes.
Packing machine. Peter Charles Larkin.
Paddle wheel. John Lefeaux.
Pail. Harry K. Martin.
Paint. George W. N. Hamilton
Paint. William Augustus Hall.
Paint removing compound. Charles stuart Bailey
Painting. Apparatus for. Roughsedge Wallwork, et al.
Pan. August Lindemann.
Pan cover. George Curley
Panoramic display device. Levi W. Yaggy.

52,806
53,161
52,200
53,142
51,887
53,320
53,871
53,767
54,430
52,537
53,775
52,896
53,373
53,443
52,355
52,726
51,981
51,693
51,661
54,431
53,586
52,391
52,815, 52,816
52,541
54,173
53,118
51,606
52,733
51,966
53,288
53,379
51,575
52,273
51,313
52,671
51,733
52,550
, 51,219
52,977
51,162
52,752

51,073

51,928
53,925
53,141
54,341
51,786
51,893
51,676
51,623
51,743
52,02?
51,765
53,628
54,039
53,620
52,611
54,270
52,046
$54.33!$
52,108
51,712
51,749
50,972
52,827
51,573
54,444
54,445
51,261
53,571
54,392
51,194
52,688
51,025
52,388
52,063
53,370
51,373
51,638
51,839
51,281
54,110
53,519
53,786
51,705
53,739
53,077
53,084

Paper box. The Elliott Paper Box Co................. . 51,101
Paper box machine. Arthur B. Cowles................... 52,226

Paper displayer. Joseph James Reid...................... 52,747
Paper file. Felix Tramblay............... $54,170,54,171,54,172$
Paper file. Robert Christie........... 51,584
Paper making machine. George W. Lewthwaite......... 53,973
Paper pulp screening machıne. Warren Curtis............ 52,335
Paper roll holder. James Rowland Brough....... 53,849
Paper trimmer. Robert N. Adams
Parafin. Means for removing molten. Joseph S Beeman 51,692
Paving composition. The Asphaltina Company of America 54,327
Paving machine. Christian Lenz, et al...................... 51,012
Pea harvester. Wright Chatterson........................ . 53,488
Pea harvester shoe and divider. Thomas Ruddell....... .. 54,390
Pedal and barrel. The Diamond Machine and Tool Co.... 54,299
Pedestal for show-cases, etc. Charles T. Hartson.......... 52,461
Peeler and corer. Emile Cherrière . 52,530
Pegging machine. John Francis Davey630
Pegging machine. Patrick R. Condon.......................... 53,299
Pencil. Wlmer E. Monroe . 52,032
Pencil. Henry Hunt 53,262
Pencil. The Eagle Pencil Co................................. . 53,215
Pencil sharpener. The A. E. Dick Co... 52,038
Pen-holder. Frank Kugene Potts, et al. 53,790
Pen-holder. Joseph McCarty, et al..... 53,042
Pen-holder. Samuel Bromley. 52,229

Perch for birds. Bartholomew Cottam........................ 54,221
Perforator. Horace G'reeley Miller............................ 53,666
Permutation lock. Stefano Bozano 53,475
Persian lamb imitation. George Robidoux. 52,682
Persian lamb imitation. Marguerite Boisvert. 53,465
Pessary and womb battery. Martha E. Keller. 54,045
Petroleum engine. Dixon Best. 52,434
Petroleum engine. William E. Gibbon......................... 52,330
Petroleum preparing system. Otto Paul Amend, et al... 51,930
Petroleum. Process of refining. The Solar Refining Co... 53,726
Petroleum. Process of and apparatus for refining. The
Solar Refining Company
.
Petroleum refining system. The Solar Retining Company. 53,191
Photo-lithographing plate. Thomas Knowles
Photographer's stove. Daniel R. Van Riper
53,053
Photographic emulsion. Hermann Wandrowsky............... 53,336
Photographic plate holder. Fidward Gardner Cone. 51,409
Photographing systen:. Herman E. Mendelssohn.......... 51,332
Phocography. George J. Atkins. 54,368

Piano. Fridolin Schimmel, et al............................... 51,329
Piano action. Adam Nickel.................................938, 53,939
Piano action. Morris Stein ${ }^{\circ} \mathrm{rt}$. .ill.......................
Piano attachment. Charles D. Williams, et al. 53,020
Piano desk. Albert and Samuel Nordheimer. 51,127

Pianos stool. Charles W. Munz.................................. . 50,971
Piano stool. Herbert Martin. 52,202
Piano stool. Wellington Shupe........................... 51,646

Pick, shovel, hoe, etc. Pighing-rod and gas lighting device. Charles A. (iregory.. 51,335
Picture exhibiting apparatus. Thomas Armat. 52,333
Picture hanging device. William P. Cave..... 53,018
Pigment. Joshua Tennant, et al. 51,119
Pile. The Teredo Proof Pile Company....... 52,800
Pillow or cushion. William Vogel........................ 5
Pillow sham holder. John Symons. 51,912

Pipe connection. Harrison Reed....... 52,772

$\begin{array}{ll}\text { Pipe holder and vise. Edward P. Fitzgerald................ } & 52,887 \\ \text { Pipe joining system. } & \text { Gustav Hoyer }\end{array}$
Pipe joining system. Gustav Hoyer. $\quad \mathbf{5 2 , 9 6 7}$
Pipe joint fastener. James L. Kennedy....................... 50,954
Pipe thimble. David A. Brislin. 52,574
Pipe tongs. John M. Palmer, et al 52,970
Pipe wrench. Alson W. Freeman, et al.... 53,661
Pipe wrench and cutter. Frank A. Whitney, et al........ 53,039
Pipes. Apparatus for scraping the interior of. Henry
John-Inwood Bilton, et al....................................
$\mathbf{5 3}, 815$
Piston head. Matt F. Ross. 53,865
Piston packing system. John George Leyner................ 52,791
Pitchfork. Jackson Johnson. .. 51,617
Planetarium. Alexander Laing. . .
53,339
Planetarium. Gideon E. Henderson. 54,447
Plant disinfection process. Johannes T. Wagner..........
Plant protector.
George

Plant setter. Ottu Fischer
Plant sprinkler. Johannes T. Wagener
Plaster board. James Morrison.
Plaster. Machinery for producing slabs of. Richard William Hitchins.
Plate for floors, etc. Lyman H. Snyder
Plate printing method. The American Bank Note Co.
Pliers. John S. Williams..
Plough. Ira H. Schnell, et al.
Plough. William H. Perrin.
Plough. Carle B. Fleurent
Plough. Henry Mulkins, et al.
Plough. Herbert W. Fleury.
Plough. John W. Goodall
Plough. The Verity Plow Company.
Plough for ditching. Joseph N. D'Artois
Plough stock. John F. Peele
Plough wheel adjuster. The Verity Plow Company.
Plumb and level. David W. Fish, et al.
Plumb or level. Frank G. Juney.
Plumber's tack. Edward Bookhout.
Plush-making process and apparatus. Kunstwerber Claviez \& Co.
Pneumatic cushion. Adelaide Ritchie McDonald
Pnemmatic fire alarm. Albert Goldstein.
Pneumatic handle. Frederick H. Merry.
Pneumatic pump. William F. Browne. .
Pneumatic saddle. Oliver F. Baker. .
Pneumatic sole and heel. Joseph Lacroix
Pneumatic tire. Benjamin V. (iintz.
Pneumatic tire. Benson P. Alexander, et al
Pneumatic tire. David W. Alexander..
Pneumatic tire. Fred. W. Morgan, et al
Pneumatic tire. Gruy Huggins Gardner.
Pnemnatic tire. Harry Clinton Dean.
Pnemnatic tire. The Gcold Bicycle Co.
Pneumatic tire. The Self-Healing Pneumatic Tire Co....
Pneumatic tire. Thowas Furlong
Pneumatic tire. Willard A. and Melvin F . Warren.
Pneumatic tire. William F. Goerdes
Pneunatic tire. Abram L. Smith
Pneumatic tire. Charles F. R. A. H. Bagot
Pneumatic tire. Clarence B. Bowling.
Pneumatic tire. Fleuss Pueumatic Tire Syndicate
Pneumatic tire. Henry P. Trueman.
Pneumatic tire. Hugh L. Warner.
Pneumatic tire. Rolert E. Sparks.
Pneumatic tire covering. Charles W. Hazeltine
Pneumatic tire plug tool. Edwin (ix. Hurt
Pneumatic tire protector. David W. Noyes
Pneumatic tire inflater. Benjamin K. Adkins, et al
Pneumatic tire infation system. Kelso King.
Pnemmatic tired wheel. Thomas Rouse
Pnemmatic tire tester. James Smith..
Pneumatic tires. Comperition for clesing punctures in. William Lincoln Lyman.
Pneumatic tires. Compound for repairing. William C. Moxre, et al.
Pneumatic tires. Means for repairing. Christopher \mathbf{W}. Youngman
Pneumatic tool. James Wolstencroft.
Pneumatic tool. Julius Keller.
Pneumatic vehicle tires. Composition for repairing. Charles S. Howe, et al................
Pneumatic wheel tire. Henry A. Vea
Pocket brok. Frederick Hasselberger.
Pocket brok. Lewis Cano, et al
Pocket stove. The Earl of Dundonald
Polishing device. (ieorge H. P. Flagg
Polishing material. Pittsburg Crushed Steel Co.
Poll book. Samuel E. St. Onge Chapleau.
Portable dam. Philips. Witcher.
Portfolio. Levi W. Yaggy
Post driving machine. Archibald McPhee
Postal weighing scales. Essington N. Gilfillan.
Potato bug sprinkler. Allison and Levi Redden
Potato cleaner. Theophile Brunnelle.
Potato digger. Joseph Tuer
Potato digger. Paul Tiedemann.
Power transmitting mechanism. Hermann Bultmann, et al
Prairie fire extinguisher. Jancs Dawson.
Precious metal recovering system. Henry L. Sulman
Precious metal saving device. James A. Bouk, et al.
Preserving process. Cornelius F. Buckley
Preserving process. Helen Bierer
Press for hay. Wilfrid Leclair
Press for stamping leather. Robert. John Jameson
Pressure alarm for steam boilers. Daniel C. McAulay.
Pressure reducing apparatus. Carl (x. P. de Laval.
Pressure relieving device. John Carlos Henderson.
Printer's case. James E. Hamilton
Printing apparatus. Melvin L. Severy
Printing press. Matthew L. W. Hallenbeck, et al.

53,001,
53,184
51,771
53,313
53,880
53,873
52,731
52,759
54,196
52,487
53,332
52,644
51,523
53,277
51,866
51,636
51,997
53,505
53,811
54,053
52,974
52,246
53,870
53,784
53,068
53,600
53,524
51,210
52,962
52,588
51,076
52175
53,640
54,282
53,62
52,477
53,875
52,052
51,901
51,987
, 53,002
51,239
52,763
54,30;
54,019
52,579
52,(337
52,841
52,153
53,314
54,011
52,102
54,305
53,714
53,732
51,655
51,276
51,385
53,190
53,263
53,340
51,501
54,197
52,217, 52,218
52,398
51,109
52,031
52,034
51,597
53,978
51,063
53,598
53,699
51,817
53,539
52,935
54,355
54,068
52,040
53,011
53,685
53,746
52,264
52,508
54,051
53,941
51,941
52,882
 Printing press feeding mechanism
Propeller. Edmund S. Wheeler

51,854
52,474
51,002
51,365

Propelling apparatus. Carl A. G. Storez................................. 5124
Pulley. John N. Starr Young............. 54,195

Pulley wheel, etc. Abner D. Thomas........................ 52,20
Pulp separator. Edward F. Millard. 54, 231
Pump: see Steam pump.
Pump. Adolph Geiger...... 52,425

Pump. Adolph Geiger.

Pump. Dudley L. Smith, et al... 51,640
Pump. George Lansell. 53,312

Pump. Henry A. Sheldon. 52,018
Pump. John C. Fountain, et al................................ 52,395
Pump. Jules Lemichel. .. 51,668
Pump. Karl A. Klose, et al.................................. 54,128
Pump. Willian C. Buck........ 52,919, 54,015
Pump. William Miller 52,097

Pump. William Miller 52,097

Pump tor oil cans. Fred. Clinton Smith..................... 52, $\mathbf{5 0 2}$
Punch, shears and tire-upsetter. George Sears............. 52,976
Putty. Charles Allinsi............. 51,742
Puzzle. Charles M. Fitz..... 52,037
Radiator. Anton Ohnemus. 52,921
Radiator. Edward H. (. G. Hay..... 52,041
Radiator. John T. Jackson, et al... 54,101
Radiator. Joseph B. Fox...... 51,471
Rag picker. Edward R. Coverdill................... 51,358
Rake En manuel H Snyder 53895
Rail bender. George E. Smith.....................................53, 53,057
Rail bond for electric railways. Budd Jay Jones.......... 53,163
Rail coupling. Jacob E. Smith, et al........... 53,969
Rail fastener. Charles G. Chamberlain 51,813
Rail joint. Henry J. Schmick................................. 51,197
Rail joint. James Milton Halfpenny, et al. 53,860
Rail joint. John Lang Pope 54,338
Rail joint. Martin Hubbell. 51,317
Rail joint fastening. Jonathan Dickason, et al........... 53,302
Railway: see Buffer.
Railway. Rolert C. Sayer.................................... 53,645
Railway accident preventer. Hermann Biermaun 52,567
Railway accidents. Means for preventing. Hermann Bierman

52,869
Railway axle-journal alarm. Hermann Biermann.......... 52,400
Railway brake. The La Rose Car Brake Co 53,275
Railway car. (ieorge Thomas Tribe.

53,275
52,585

52,269
Railway car. William Harden
Railway car refrigerator system. A rchibald Lamont..... 54,007
Railway car replacer. Patrick H. Durack................. 53,3uf
Railway frog. Duncan Macl'herson.. 51,195
Railway frog. Owen J. Travis, et al. 52,247
Railway frog. U. Gilmeault..................................... 52,166
Railway gate. Emmit E. Fraunfelter. 54,401
Railway gate. Hermann Biermann $\mathbf{5 2 , 3 9 9}$
Railway gate. William T. Crawford................................... $\mathbf{5 0 , 9 8 4}$
Railway rail. Hermann Biermann........................ 53,841
Railway rail connecting system. Thomas A. Bayliss
Railway rail fastener. Edward Mc.038
Rann..
$\mathbf{5 4 , 2 1 1}$
Railway rail fastener. Edward McCann..
Railway rails. Device to prevent spreading in. Calvin Keeler, et al

51,654
Railway signal. John George Dixon........... 52,194
Railway spike. Charles Platz............................... 51,325

Railway switch. Heister C. Derr, et al 54,115
Railway switch. Henry Bartz. $\mathbf{5 1 , 9 6 5}$
Railway switch. James D. Bailey.............................. 52,734
Railway switch. Moses S. Pittman.. 53,230
Railway switch. Rufus G. Burton...... 53,495
Railway street sprinkler. The American Car Sprinkler Co. $\begin{array}{r}52,937 \\ 52,938\end{array}$
Rallway tie. Orvill W. Brown................................ 54,191
Railway ventilated car. William Cline, et al. 52,000
Raisin speder. Chatles Bristow..
Raisin seeder. Frank H. Chase, et al.
Rasp. The Shaw Electric Rasp Company
Rat trap. Willian Henry Sallee
................ 53,850
Reapr and
Reaping uachines. Benjamin \mathbf{F}. Rich $\mathbf{5 3 , 6 3 2}$
Receipt blank. David P. Fackler.......... 52, 5121
Reed for musical instruments. Joseph Wojciechonski..... 51,346
Reed organ. Samuel Jenkinson..
Reed organ. William Seybold.
53,918
Refractometer. Henry L. De Zeng.

54,273
51,282

Refrigerator. Charles J. S. Lambert, et al.
Refrigerator. Economical Refrigerating Company.
Refrigerator. (George A. Bowen.
Refrigerator. George B. Zantzinger. \qquad
Refrigerator. The G. F. Quinn Refrigerator Company
Refrigerator. The Portable Refrigerator and Freezing Co.
Refrigerator car. Joseph Thomas, et al.
Refrigerator crate. Joseph Thomas, et al
Refrigerator shelf. Frances M. Lochen
Register. George A. Norcross, et al..
Register for beer engines. James Daniel Hannah, et al
Register for letter carriers. John D. Miller, et al.
Registering machine. Luther E. Allen.
Rein holder. William Beine.
Rheostat. The Canadian General Electric Company
Ribbon spool. John Leask
Rice cleaning machine. Gim Fook Yuen.
Rifle. Albert (r. Dougherty, et al..
Rifle. Edwin James Cashmore
Rinser for the nose and throat. Alphons Rapp.
Rivet setting machine. Herbert S. Crombie.
Rivets, studs, etc. Process of making. The Indianapolis Chain and Stamping Company
Riveting machine. Chester B. Albree..
Riveting machine. Christian A. Skeie.
Roach trap. Silas P. Burgess.
Road breaking inachine. Harry Morrison.
Road grader. John Henermann.
Road grading machine. Alexander Barhite
Road scraper. John Cussons Steele.
Robbers. Device for protecting against. Geo. H. Jackson.
Rock crusher and grinder. Kinkead Mill Company.
Rock drill. R. P. Elmore
Rock drill. William H. Dixon, et al
Rock drill casings. Joseph W. Cameron
Rock drill feed. John (ieorge Leyner.
Rock drill sharpening process and apparatus. Thomas Henry Bradbury.
Rods. Stock for threading and cutting off. Aibert w Bartholomew.
Roller bearing. Frank Mossberg
Roller bearing. Herbert H. Ellis, et al.
Roller bearing. James D. Mattison, et al
Roller bearing. Lee Oliver Gilliland
Roller bearing. William H. Woodcock.
Roller bearing. Pierre Dansereau.
Roller skate. Samuel Martin.
Rolling pin. Frank E. Wolff, et al
Roofer's seaming tool. Enma H. Heberling
Roofing board. Shiloh W. Durham
Roofing composition. Daniel Allen
Roofing composition. Isaac H. Culp.
Roofing tile. Gustav Schulze.
Root entter. John Sillick.
Rope fastener and loosener. Axel Sabroe.
Rossing machine. Albert E. Beals.
Rotary brush. Henry Eummelen
Rotary cutter. Ambrose Stevens Vose.
Rotary cutter. Christopher G. Bartlett.
Rotary cutter. George D. Gillette.
Rotary engine. Isaac N. For rester.
Rotary engine. Oscar E. Morse.
Rotary engine. Peter A. Larson.
Rotary engine. William E. Prall
Rotary engine or pump. Henry Saxton
Rubber articles. Machine for making. Henry G . Wolcott
Rubber boot. Samuel J. Harris.
Rubber condenser. Thomas (i. Beaumont. .
Rubber heel. Thomas J. Williams
Rubber tire. John D. Beebe
Rug weaving system. Frederick Bullock, et al
Rule. August Mundt, jr.
Rule. John Daniel Maier, jr.
Ruling machine. Ellis Graber, et al.
Runner or covering for sidewalks, steps, stoops, etc. Archie I. Ross, et al.

Saccharine making system, Constantin Fahlberg
Saccharine preparation system. Raoul Pelissier.
Sack filling and sewing machine. Arthur T. Timewell
Sad iron. Edmond Gagnon, et al.
Saddle bridge. Gabriel F. Fortier
Safety check for boilers. Frank Albin, et al
Safety lamp cylinders. Cleaner for. G. Grossmann
Safety pin. John Murray Guilbert
Sailing vessel. Ronald Gillis.
Sales book. Frederick W. Jeffery
Sales book. Henry D. Keith
Salt mandafacturing machine. Thomas Craney.
Salt trough. Christopher M. Arthur.
Sand band. Harry W. Russel.
Sand blast. Frederick W, King
Sand blast. Morgan \& Wright.
Sand box. Jacob A. Rose.

52,511
52,768 53,342
, 54,336
52,623
53,900
53,621
53,622
54,208
51,142
53,883
53,680
53,348
53,817
50,996
53,140
52,891
54,387
51,492
51,506
52,136
54,281
52,632
52,331
51,139
51,206
51,514
52,145
52,521
52,666
53,436
52,484
51,102
51,652
53,225
52,554
53,944
51,902
53,520
53,547
-3,919
53,406
51,783
52,486
52,249
52,312
54,118
51,100
52,084
51,275
51,251
51,675
53,388
52,739
53,762
51,039
53,442
53,411
51,079
54,383
53,251
51,644
52,754
52,267
53,529
52,755
52,985
51,211
53,672
53,852
52,436
52,945
51,556
51,579
51,233
52,386
52,823
53,516
51,166
51,381
53,060
51,428
52,025
51,963
51,198
51,077
52,288
53,971
53,819

Sand papering machine. Walter Black
53,347
Sap bucket. The G. H. Grimm Manufacturing Co.
53,189
52,715

Sash
Sash balance. James Anderson
53,276
Sash balance. Joseph H. Bane, et al.
Sash balance, lock and fastener. Alonzo 'T. Martin. 51,411
Sash fastener. Frederick E. Jarvis........................ . 53,702
Sash fastener. (reorge Menzies
51,504
53,016
53,008

Sash holder. Lewis A. Heinzerling $52,50,54,196$
Sash holder. Willard E. Dowling.

Sash lock. Thomas W. Crozier................................ 53,531
Sash lock and balance. Robert K. Brown.................... 51,993
Sash lock and lift. Donald Fletcher 54,382
Sash lock, etc. Walter Barnhart . $\mathbf{5 1 , 4 7 2}$
Sash operating device. Peter Marshall........................ 53,532
Sash pulley housing. John H. Shull, et al. 53,566
Saucepan. L. J. Painter..... 51,293
Saucepan, etc. Thomas Llewellyn 53,293
Saucer. Carl Koster
51,429
Saw. Charles T. Redfield
52,502
Saw. Henry J. Frederick... 52,366

Saw guard. Louis Come Rinquette......................... 51,041
Saw-horse. Albert Clymer... 51,758
Saw machine. Charles E. Turnock 52,600
Saw mill. William H. Inglish............................... 52,015

Saw mill set works. Henry McDermott....................... 51,179
Saw set. A. J. Grinnell. 54,210
Saw set. Jacob F. Strahle . 54,379
Saw set. Robert Dillon. 5 . 5 .176
Saw set. Silas Toles.
Saw set and gauge. George Hope.
Saw set and tooth holder. The Spelman Manufacturing Co.
Saw stretching machine. Elisha B. Rich.
Saw swage. B. La Fleur
Saw swage. Thomas Seely
George McClellan Brown. .
Saw teeth. Side dresser for. George McClellan Brown...
Saw vise. Harry C. Hawkins...................................
Saws: see Jointer and gauge for saws.
Sawing machine. Christian M. Hillebrand.
Sawing machine for sawing logs. John Howard Estabrooks, et al.

820

Scales. Weight and cost indicating apparatus for. The
Combined Weight and Cost Indicating Scale Co. . .. 53,733
Scarf and hat pin. Finn Fosheim. 52,905
Scarf pin. Harry V. Ashby . $\quad \mathbf{5 3 , 0 4 0}$
School desk and seat. John Smith, et al.. 52,091
School desk and seat. Warren Lafayette Starkey. 51,996
Scoop knife. Harry F. Postley . 51,055
Scoop shovel. Daniel A. Daly. 5 53,665
Screen. George D. Henry . $5 \mathbf{5 , 6 7 9}$
Screen. Jacob M. Fleming.
Screen. Adjustable rotary. Hugh P. Grugin
53,389
Screen foje 53,728
Screw. Hermann Schwartzenhauer
Screw and nipple making machine. The Cleveland Machine Screw Co.

54,052
Screw propeller. Alfred Wells Case....................................490
Screw thread cutter. Paul M. Wiebe........................... $5 \mathbf{5 , 5 1 7}$
Sea cock for vessels. Pardon T. Perkins, et al............ . 51,953
Sea waves. Apparatus for utilizing. Bernard M. Fletcher 53,563
Seal lock. Patrick H. Conger
Seat tilting spring. Charles F. Davy.
51,871
Seed distributor. Samuel Hardley.
51,480
Seed planter. Hirain A. Bacon
Seeder. Asa S. Linthicum. Bacon.
Seeder. Delmer H. Moore, et al.
53,623
Seeder. Delmer H. Moore, et al. $\mathbf{5 2 , 5 9 3}$

Seeder. William L. Marshall. 5 . $5 \mathbf{5 , 1 5 1}$
Seeding machine. Massey-Harris Company 5 . 5 ,187
Self-sealing bottle. William E. Foster. 54, 111
Selvage weaving art and apparatus. George Browning, et al. 54,426
Separatur. Orrin B. Peck. 51,227 ,
Sewage apparatus. Amasa S. Glover.
51,228
Sewer trap. George A. F. R. Janin. 54,403
Sewer trap. Joseph Ellis. 52,472
Sewer trap. Jules Colas.
Sewing machine : see Wire sewing machine.
Sewing machine. Daniel Jones.
Sewing machine. Earle H. Smith.
Sewing machine. Harry Manning
Sewing machine. Matthias Koch.
Sewing machine. The Goodyear Shoe Machine Company.. 64,063

Sewing machine. The New Branston Two Reel Sewing Machine Company.
Sewing machine. The Union Special Sewing Machine Co. Sewing machine attachment. Johannes H. H. Wöhl.
Sewing machine attachment. John D. Schoonmaker
Sewing machine feeding device. The Union Special Sewing Machine Company.
Sewing machine for soles. Z. T. French, et al
Sewing machine spool holder. Helen L. Webster
Shade. Arthur F. Espersen
Shade holder. Henry Hazlitt Forsyth
Shade holding mechanism. Henry H. and William H. Forsyth
Shade roller tip. Jacob Myers.
Shaft bearing. Andrew Wilson, et al
Shaft bearing. Orrin B. Read
Shaft bearing. Pomeroy W. Power.
Shaft bearings. Edwin J. Armstrong
Shaft coupling. Chauncey C. Brown.
Shaft drive and clutch. Thomas H. Worrall
Shaft-holder and anti-rattler. Alexander M. Stewart....
Shaft support. James Q. Lemmon.
Shaft support. Stephen R. Peters, et al.
Shaft support and anti-rattler. Frederick Hanson
Shaft tug. Jefferson P. Crews. .
Shaving brush and soap-holder. Francis N. Denison
Sheet metal. 'Treatment of. William E. Harris. .
Shelf for baking ovens. Clarence R. Bonnett.
Shell fuse. George M. Hathaway.
Shingle planer. Knute Lauritz, et al.
Ship model. Otto Hartwich
Shipping receipt book. John D. D. Mortimer
Shirt collar band. Morison Kyle.
Shirt making system. Max Louis Schloman
Shock-cover. Hiram Walker
Shoe. Adanı Reed, et al
Shoe. Alexander M. Bollinger.
Shoe. Charles Bellerive.
Shoe. George W. W. Sleeper
Shoe. John E. Kennedy, et al.
Shoe. McKay Neverslip Shoe Co
Shoe. Susannah Trimble
Shoe brush. Francis Burdett
Shoe fastener. Leonard A. Fortier
Shoe fastening machine. Schindler Brothers
Shoe holder. Anthony B. Croceo
Shoe shaper. Joseph W. Skinner
Shoe upper. Louis and Joseph Tremblay
Shooting stand. Otto C. Krause.
Show case. Felix E. Mistrot
Show case. Joseph T. Robin
Show case. Samuel R. Waldron
Shutter. Andrew Schmitt
Shuttle threader. Rémi Brodeur
Sickle grinder. Perry Howard Cazier, et al
Sieve and strainer. Thomas S. Fair
Sifting machine: see Separator.
Sifting machine. William D. Gray
Sight for firearms. Lloyd H. Chase
Sign. Abraham B. Gehman
Sign letter. Frederick H. Colburn
Sign letter. George James Bellamy Rodwell
Sign letters. Albro Silver, et al.
Signal. John F. Barker.
Signal and lockout system. The Bell Telephone Company of Canada,
Signal for preventing collision on railways. Pierre Bernier
Signal for railways. Alexander Lefebvre.
Signal valve. Johin R. Ide
Silo. Willaam A. Van Deusen.
Skate. George Brimstin.
Skate. Jacol Stutz-Miiller
Skate. Samuel L. Schwartz
Skewer pointing machine. Frederick Harrison
Skewer pointing machine. Thomas W. Hamlin
Skirt attachment. Mary C. P. Hooper.
Skirt binding systen. De Lotbiniere MacDonald, et al
Skirt binding system. Joseph J. Westgate
Skirt holder. Katie D. Head.
Skirt protector. Harvey Feder
Skylight support. Charles Escher
Slab sawing machine. Austin W. (ioodell.
Sled. John Berry.
Sled. Tohn Ledman, et al
Sled propelling device. James C. Robertson
Sleeping car. Charles W. Bradstreet
Sleeping car berth register. Stephen C. Skauks
Sleeve link. Saunders, Lorie \& Co
Sleigh. Aimé Taillefer
Sleigh. Charles W. Schultz.
Sle gh. Seth C. Nutter
Sleigh attachment. Charles Lusted
Sleigh knee. Frankliii De F. Smith, et al
Slide for coasting. Edouard Gauthier 52,429
Slipper sole. Samuel Borchardt
John C. Harris 51,760
Sluce for lock gates. Eugène S. Manny 53,85?
Smelter for ores. Charles Bishop 52,181
Smelting furnace. Christopher Cunningham. 52,354
Smelting furnace. James A. McArthur 51,703
melting furnace. John D. McDonald. 53,565
54,440
Smelting furnace John S. Loder
Smoke box. Alexander K. Kirkpatrick. $5 \mathbf{5 2 , 1 0}$
Smoke condenser. George HeinkelSmoke consuming furnace. Franz Josef Reinesch.52, 8
Smoke jack. Howard Bruyn, et alSmoke stack. Charles PickeringSmokeless composition system and apparatus. Meylert M.Armstrong
bining. Russell A. Willson
Sole. Matthias Koch

53,451
54,395
Sole laying machine. Erastus E. Winkley
Soot catcher. (abriel A. Pickle
Speculum. Veterinary month. Henry Francis Condon, et alSpeech transmitting system. Alexander W. Hall.51,364
Speed changing mechanism. Harry H. Cummings, et al . . 51,212Spike pulling implement. Frederick L. Graves, et al 51,51
Spinning machine. John (frood 53,175Spinning top. Alfred P. Monnier, et alSplint. John H. Rankin
Spoke thimble. Donald J. McLeod, et al

53,544Spoon. Edward F. HeadSpron bait. Elias O. PealerSprayer. James Henry WerrySprayer. Lyman B. WuodSpraying machine. Joseph H. PotterSpring. Enoch L. Canover, et al.Spring bed. William R. Boisvert
Spring for carriages. Charles Fournier $\mathbf{5 3 , 6 8 4}$
Spring mattress. Adelbert J. Gale .. 51,920
Spring mattress Robert (4 Vincent

Spring roller. Enoch Broberg. 51,307
Sprimkler for plants, etc Francis N. Denison
Sprimkler for plants, etc. Francis Nenison $\mathbf{5 2 , 4 1 6}$
Sprinkler for potato vines. Thomas Laughlin............ . 51,752

Sprocket chain. Benjamin F. Sparr..
53,894
52,544
52,462
54,055
51,326
51,326
54,209
53,664
54,372
52.580

53,684
51,920
52,602
52,602
51,307
52,663
52,416
51,752
Sprocket chain. Erick Juno Swedlund.
52,147
Sprocket chain. Fanning Ball Bearing Chain Company... 52,157
Sprocket chain. Frederick Meyers. 52,729
Sprocket chain coupling block. Otis J. Merritt, et al..... 54,056
Sprocket wheel. Harry Morrison
Sprocket wheel and chain. Perry (i. (iardner. 53, 582
Square. Charles Herndon Biggs.
Square and bevel. John McLean
Stacking machine. Octavus F. Adolph
Stage illusions. Apparatus for producing. Phineas B
Myers
Stall. Reuben C. Eidridge
Stall floor. Charles B. Emery.
Stamp for marking. Wilber B. Smith
Stamp holder and ink-pad. John H. Kleine
Stamp mill : see Ore crusher.
Stamp mill. Isaac Barton Hammond
51,614
52,315
52,983

Stamps to lettre Ban Ho...................188
Stamping device for cartoons or anding. Aeorg Fiodheim $\mathbf{5 9} 956$
Staple driver. John R. Kline, et al............................ . . 54,168
Staple puller. Albert H. Russell . $5 \mathbf{5 2 , 8 1 2}$
Starch mangle. Thomas Whitworth. 53,887
Starch. Process of manufacturing. Julius Kentorowiez. . 53,785
Station indıcator. A. J. Roy................................ . . .
Station indicator. Willian R. Ramsay, et al.
Stave-making machine. American Barrel Stave Machine Company.

52,132
52,387

51,051
52,660
52,846
51,146
51,379
51,188
53,856

5,887

Stave-preparing machine. Itohn W. Lahey, et al..
Steam boiler. D. McDonald, et al.
Steam briler. Giardner Clish, et al.
Steam loiler. John Albert Fish.
Steam boiler and coupling. Edward Sanford Clark
Steam boiler safety device. (ieorge J. N. Carpentien..
Steam engine. Alon $\%$, W. Eldridge, et al.
Stean engine. Harker Mullen.
Steam engine. James T. Halsey.
Steam engine. Jean Jacques Heilmann.
Steam engine. John V. Rice .
Steam engine. Joseph Hardill.
Steam engine. Samuel Marley, et al.
Steam engine. William Fitch Cleveland, et ai
Steam engine. Operating system. Alfred Hog.
Steam exhaust. Wilhelm Schmidt.
Steam gauge alarm. Harry Browning, et al.
Steam generator. Edouard Empain.
Steam generator. Edward 1). Meier.
Steam generator. John Ellison Dane
Steam generator and condenser. Frederick Liounstrom.
Steam hammer. George Smith.
Steam injector. Patrick Brownley, et al.
Steam pump. Albert F. Hall
Steam pump, Gustaf F. Flodman..
Stean pump. James B. Erwin
Steam pump. Jay Byron Rhodes, et al
Stean separator. Harrison Safety Boiler Works.
Steam shovel. Daniel H. Kelley.
Steam valve. Charles Schneider
Steel and iron manufacture Benjamin B. Stockman.
Steel shingle. Robelt Hill
Steering apparatus. Joachuu Johannsen
Steering apparatus for ships. George F. Woodman
Step-ladder. Frank White.
Scep-ladder. Harvey Bowman.
Stereoscope. Daniel B. Marsh.
Stereoscope. Hawley C. White.
Stereoscope. Raoul Harilaos
Stirrer for ore-roasters. Camil Pilon
Stock car. William Cline, et al.
stock watering apparatus. Samuel and John Montgomery
Stone crusher. George W. Stuart
Stone cutting machine. Francois \dot{X}. Landry, et al.
Stone drill. Hermann Schwartezenhauer.
Stone finishing machine. Stephen Hernon.
Stone. Method of making artificial. P'eter Kieker..
Stone. Method of making waterproof. Peter Kle ber.
Stone moulding tool. James Peckover.
Stone planer. Michael Tames Camphell.
Stone. Process of making. Robert Allan Pyne, et al.
Stone separator. Byron E. Bechtel.
Stone wagon. David N. Butterfield.
Stop-cock lock. Charles Heyman.
Stop-motion for twisting machines. Thomar Henry Smith
Stoppering device: see Bottle stopper.
Stoppering device. Thomas Burnlridge.
Storage battery. Alexander Schanschieff
Storage battery. John Joseph Rooney
Storage battery. Jules Julien
Storage hattery. Ludwig Epstein.
Store truck. Arthur Hitchins
Stove. Co-operative Foundry Co.
Stove Eugene S. Manny.
Stove. Frank V. Knanss.
Stove. Frederick W. Moffatt
Stove. Tiodfroi Chapleau.
Stove. James Fleming.
Stove. John A. Crossman.
Stove. Leonard Meyer. .
Stove. Mark W. Foster.
Stove. Ophni L. Gadoury.
Stove. The Gem City Stove Manufacturing Co.
Stove. Walter Darby, et al
Stove. Willian L. Mitchell
Stove. William L. Wilkinson
Stove drum. George Bellamy
Stove. Gas or oil. Sierra Leone Richards
Stove leg. Elbert J. Evans, et al.
Stove leg. Jasper A. Partridge.
Stove lid-lifter. Rolert Mainer.
Stove or fireplace. Wilson A. Hughes.
Stovepipe. Thomas C. Davidson..
Stovepipe elbows. Machine for making. George Cunin.
Stovepipe fastener. John C. Stone.
Stovepipe joint lock. Rulw t Sword, et al.
Stovepipe shelf. Abram H. Smith.
Stovepipe shelf and clothes drier combined. "William Huxtable, et al
Stovepipe thimble. John R. Bostwick.
Stovepipe ventilator. Hezekiah Howe
Stove truck. Leron O. Wiswell
Stove utensil. Frank G. High.

Telephone. Philip .J. Bose
Telephone. Salomon Berditschewsky
Telephone and sigual circuit. The Bell Telephone Company of Canada.
Telephone circuit. The Bell Telephone Company of Canadia
Telephone circuit. The Bell Telephome Company of Canala
Telephone circuit. The Bell Telephone Company of Canada
Telephone circuits. System of current supply for. The Bell Telephone Company of Canada
Telephone exchange. Salomon Berditschewsky
Telephone exchange. William F'. Loundsburg.
Telephone exchange system. The Bell Telephone Company of Canada.
Telephone exchange system. The Bell Telephone Cempany of Canada.
Telephone index. Charles A. Orth, et al.
Telephone line system. The Dell Telephone Company of Canada.
Telephone lines. Busy signal for. The Bell Telephone Company of Canadit.
Telephone lines. Signalling apparatus for. The Bell Tele. phone Company of Canada.
Telephone lock-out system. The Bell Telephone Company of Canada.
Telephone signal. The Bell Telephone Company of Canadia.
Telephone switch. The Bell Telephone Company of Canada.
Telephone switch-board. Isaac Anderson, et al.
Telephone switch-bard. The Bell Telephome Company of Canada
Telephone switch-losard annunciator cirenit. The Bell Telephont Company of Canada
Telephone switch-board aparatus. The Bell Telophone Company of Canada..

T,4\%
Telephone switch-board. Apparatus for. The Lell Telephone Company of Canada
Telephone switch-board signal. The Bell Tejephone Company of Canada
Telephone switch-board. Spring jack for. The Bell Telephone Company of Canada
Telephone transmitter. John J. Carty
Telephone transmitter. Walter Louis Wilhelm.
Telephones. Call counter for. The Bell 'I'elephone Company of Canada.
Telephones. Service register for. The Bell Telephone Company of Canada.
Telephonic apparatus. Carl J. Schwarze
Tender tank for locomotives. Charles Linstrom
Tent. James J. Rinn
'rent. Spencer F. B. Biddle
Testing machine for brake beams. The Chicago Radway Equipment Company
Thermo-dynamic system. Agnes B. Wellington
Thermo-electric generator. Harry B. Cox 1,599
Thermoneter. David (i. Cooper.
Thill coupler. George S. Preston, et al.
Thill coupling. David J. Croshy, et al
Thill coupling. Peter Bold.
Thill coupling. Rudolph (i. Jahuke
Thill coupling. Walter K. Scribner
Thill coupling. William A. Lucas, et al
Thill or shaft. William R. Chapin, et al
Thill support. Henry F. Goding
Thimble thresad cutter. M. J. Amsden
Thistles, etc. Matter for destroying. Rovel M. Curtiss
Threads in envelopes. Machine for fixing. Max (iruls:
Threshing machine. John (foodison, et al
Threshing machine. Luis Pfaff.
Thrust bearing. Willian I. Eveland, et al
Thrust bearings. Mikle Schmaltz
Ticket holder. Charles A. Brown
Tidal motor. Joham F. R. Knobloch
Tie for bags and bales. William (iibsom.
Tie juint. William Livingstone.
Tie-plate Benjamin Wolhaupter.
Tie-plate. Frank Elden Carne.
Tie-plate. William T. R. Funk, et al.
Tie-plate for railways. Alexander 13. 13. Harris
Tile. Julius T. Köhler.
Tile framing process. William H. Winslow54, 397
Timber float. Alexander McEwen.
Timber gange. Thomas Mcouat.
Timber preserving process. Frederick M. (iruminacher. .
Time recorder. John W. Poler..
Tin cans and boxes. Mode of sealing and opening. Peter J. Taeger, et al
Toaster. Archibald Fairgrieve, et al
Tobacco moistener. Melchior Brazall.
Tobacco package. George Learmonth, et al
Tobaceo pipe. Charles W. Foster
Tobacco pipe. (reorge A. Hynds
Tobaceo pipe cleaner. Ira 13. Sturges
Toe-clip for licycle pedals. Edward 1 . Thiem
Toilet ca e. George William Glover.

54,132 51,570

51,558 53,502 33,722 53,904

53,721
53,574
52,8!2
51,597
53,458
51,381
53,500
53,720
53,909
23,551
53,902
©3,908
52,$1 ; 20$
53,907
51,5\%!
53. 420

53,903
53,457
53,907
51,673
51,64!
53,723
53,724
53,737
$53,8!7$
51,049
51,422
53,270
51,155
51,776
54,056
$53!166$
51,732
54,194
53,307
53,211
51,595
53,5:4
52,45)
52,119
53,! 143
53, 176
52,283
53,278
23,182
54,108
51,181
51,670
51,792
51,298
t2,193
53,694
50,099
52,840
51,977
54,398
51,439
53,995
53,742
54,178
52,200
53,N64
51, (iTR
53,435
51,178
54,112
52,55
T3, 418

Tongue for agricultural machines. Andrew B. Mckay.
Tongue for music boxes. Dr. Adolf Richter
Tongue support. Robert B. Clement.
Tongue support for sleighs. Erwin W. Anderson.
Tool chuck. Horace S. Buckland
Tool for prospectors. Frederick (feorge Fiaguier
Toothre pectors. Fuquer.
Tooth brush. Walter (i. Stout, et al
Toothpicks. Machine for making woorlen. John C. F. Scamman.
Top. Eugene Gregory
Top for muciage rece
Corpert onarias. Burrage 51,43
Kegan.

Toy. James S. Tobitt.
Toy. Reuben A. Smith
Toy. Uptan Harwood
Toy, Whiting .J. Wilcox.
Toy and advertising device. Carolines. Pocock
Toy pistol. Walter k. Everitt.
Trace fastener. James De Lacey
Trace fastener. William K. Wallace.
Trace releaser, hold-back and brake. Joseph Lechner. Track brace. Charles J. Redifer
Track cleaner. Andrew J. Reynolds.
Track cleaner. Joseph Baringer.
Track cleaning and tire preserving compound. Wilhiam T. Owen, et al.
Track sanding apparatus. Jerome A. Houstom.
Track sanding device. James 'I. and John E. Porter.
Traction engine, thresher and gang plough combined. Wim. Stephenson..
Traction motor. Antoine J. P. N. le Sowa.
Transformer. The Canadian (ieneral Electric Co.
Transparency card. William 13. Blackhall, et al.
Trap for catching horn-flies. Walter Bristow, et al..
Traps for sinks, etc. Omer Ia Kue
Travelling hag. Esther M. Barrett
'ray for bottles. Fred T. Trabilcook, et al.
Treadles and levers. Mechanism for changing point of weight on. Frederick Ljungstrom.
Treble tree. Arthur W. Rowson.
Tree pruner. Arthur C. Smith
Trestle. Enoch Sprague.
Trestle. Thomas Adam Clarke
Trestie. William B. Sigsby
Tricycle. François Mailhiot, et al.
Trimming and channelling machine. Zachary T. French, et al.
Triple button. August J. T. Sebelin
Tripod. Robert Ancock.
Trolley. John Corcoran, et al.
Trouser stretcher. Robert 1hrown Colle

Truck. Wilbert Richman, et al.
Truck bearing. Stephen A. Fisele.
Truck frame for railway cars. Charles T. Schoen.
Trunk. Perley E. Rich.
Trunk handle A ristide I Gquthie
Trisk lock. Russell I. Shelley
Truss. Douglas Reid.
Truss. Joseph Fandrey
Truss pad. Julius Bricknor, et al
Tube drying machine. Robert Wootton, et al
Tube scraper. Veitus Radspinner, et al
'Tubes, hollow articles. Machine for forming. John C. Stephens..
Tubes, rods, \&c. Machine for preparing. Philip Medart, et al.
Tuft inserter for looms. The Crompton Lom Works
Tufting machine. Edward A. Potter.
Tirbine. Charles (x. Curtis............... $54,313,54,314$

Turbine. John 13. MeCormick. 54,414

Purbine. John H. Staples.
Turbine governor. Charles (G. Curtis.
Turbine wheel mould. John J3. McCormick.... 44,413

Twine holder. Otto Priegrel.
94,413
22,395
'Type casting pimp. John West.
54,349
Type cutting machine Thomas T. Heath............... 51,835
Cistributing machine. The Cox Type Setting Machine Company..
$\therefore 1,500$
Pype making composition. John Wrest.
24,350
Type setting machine. Goodson Type Casting and Setting Machine Company

52,195
Typewriter. Aaron E. Bergey. .
Tyluwriter. Crandall 'Typewriter Company

50,979
51,844

52,027
22,308
52,463
51,484
52,780
51,190
24,412
54,437
52,707
52,683
435

53,269
53,710
53,343
61,117
52,467
51,502
53,234
1,734
2, 822
52,504
63,110
52,926
53,282
50,711
[4, 103
51,157
53,525
, 11,548
53,541
51,525
53,981
51,41!
52,234)
53,503
53,501
52,020
52,070
54,236
52,92!
52,948
51,863
53,975
51,453
52,880
5, 0
+,032
54,374
51,975
53,527
3,074
3,070
52,614
52,973
61,434
51,189
53,969
01,717
51,417
22,552
52,044
$3 .!26$
3
53, 046

Typewriter. Frank Lambert
Typewriter. James D, 1)augherty
Typewriter. Thomas Oliver......
Typewriter. Thomas Oliver.
Typewriter. Thomas T. Meath
Typewriter. Wagner Typewriter Company
Typwriter page-end alarm. Robert McKendry, et al.
Typewriter prism pointers. Walter B. Byer.
Typewriter roller. David O. Fonda.
Typewriting machine. Fred I. (Gorin
Typewriting machine. Robert J. Fisher.
Typewriting telegraph. Adolf Merrel, et al.
'Tyjographic machine. Thomas T. Heath
Tyre: see Elastic tyre.
Tyre. Andrew (Graff.
Tyre. Conard Henry Hoff
Tyre. Findlay A. McRae
Tyre. Henry lingham.
Tyre. Howard M. Du Bois, et al
Tyre. James F. R. Wood.
Tyre. Zebulon \mathbf{F} oster.
Tyre for bicycles. Charles Johnston Ree es, et al.
Tyre for wheels. Pierre Ambjorn
Tyre for wheels. The Goold Bicycle Co.
Tyre inflating device. Joseph Broadley.
Tyre protector. Edward Davies, et al.
Tyie protector. Frederick H. Fischer.
Tyre shrinker. M. D. Gould.
'Tyre tightener. (eeorge H. Lintott.
Umbrella. Frederick J. Mitler.
Umbrellia. Gustave J. Jaccard.
Umbrella. Harvey D. Sabin.
Umbrella. Harvey D. Sabin...
Tmbrella. Joseph Stark
Unbrella frame. Randol ih P . Hull, et al
Umbrella tent and holder. Robert Irvine.
Umbrellas. Drip culd for. Thomas Dume Musband.
Undergarment. Willard J. Frisbie.
Underground conduit. James F. Cummings, et al.
Underwear attachment. Hugh i '. (ieisler.
Unicycle. David Shelly.
Unrefillable bottle:- see Xon-refilable bottle.
Unrefillable bottle. Francis Rouland
Unrefillable bottle. James Culley, et ai.
Valise, seat and lunch vessel combined. Philip Nicolle.
Valve: sec Steam valve.
Valve. Charles Fitz R. A. H. Bagot.
Valve. Cornelius Birkery, et al.
Valve. Curt J. Batthasar, et al.
Valve. Daniel H. Brown.
Valve. Edward G. Kimmell.
Valve. Frank W. Fuster.
Valve. George Washington Grattin.
Valve. Horace I). Taggart.
Valve. Howard 1 . Waters.
Valve. James C. Getty.
Valve. James Hewitt.
Vialve. John Harrison.
Valve. John L. McGiffin.
Valve. Martin Hanner.
Valve. Matthew Berger
Valve. Myron H. Wilcox, et ai
Valve. Sidney W. Sampsion, et al
Valve. The Brownell \& Co.
Valve. The Homestead Manufacturing Co.
Valve. The Radway Manufacturing Co...
Valve Thomas A. Ryan.
Valve. William (ieary lrescott, et al.
Valve. William H. II. Sheets.
Valve for cans. Nelson P'. Bradish, et al
Valve for pneumatic tires. Fred. W. Morgan, et al
Valve support. Warren'I. Reaser
Vanilline. Method of making. Haarmani \& Reimer.
Vaporizer. Grover \& Co.
Vaporizer and inhaler. Johin S. Judge.
Vapour generating and applying apparatus. Oreons. Rhodes
Vapour motor. Agnes B. Wellingtom.
Vapour motor. Peter Burt, et al
Varnish. Edward (I. Kubler, et al
\checkmark anlt light. John Lawrence'spink, et al
Vegetable fibre. Methorl of treating. Charles Lifros, et al
Vegetable pulverizer. Charles II. Wright, et al
Vegetable wax. Process for alstracting. Carl F. F. Bratech
Vehicle: see Automohile vehicle.
Vehicle. Charles H. Stratton.
Vehicle. John W. York
Vehicle axle. Thomas I. Storey
Vehicle axle lubricator. Charles T. Moorman
Vehicle gear. Aaron Kerry
Vehicle gear. Harmon (iilmore
Vehicle gear. Odell Wilson.
Vehicle gear. William Atkinson
Vehicle gearing. Rolkert S. Anderson
Vehicle impelled by hand. Carl Miethe.

54,169
51,944, 52,964
53,935
51,835
52, 8×3
53,186
51,141
51,432
52,750
54,269
51,564
51,837
51,408
-51,476
53,228
53,297
52,779
53,259
51,442
53,6:93
52,727
51,536
54,035
$03,2,6$
01,680
52,075
52,741
53,593
51,057
52,545
53,51
51, 52,804
51,843
53,712
53,559
51,730
51,026
53,489
54,433
64,424
52,003
22,287
53,334
53,216
51,80.
53,127
63,439
53,773
51,111
51,804
52,154
51,499
:33,103
53,594
53,164
54,174
54,183
51,091
52,762
52,497
52,750
53,768
53,608
53,194
:32,643
50,992
51,092
52,853
52,430
52,2!7
51,154
51,167
53,335
31,152
53,617
53,206
51,131
51,635
51,374
20,974
52,927
51,323
51,205
51,535
52,378
51,980
$\begin{array}{r}\text { 51,980 } \\ \hline\end{array}$

	52,471
Vehicle seat lock. Thomas I	53
Vehicle shaft and harness. William A. Bromwich	
Vehicle spring. Martin Luther Senderling.	54,001
Vehicle spring. Kobert T. Lombard, et al...........51,761.	52,149
Vehicle thill. John Wallace, et al. .	54
Vehicle tire. William G. and Eliza	50
Vehicle tol. Edward Itenney	52,
Vehicle traction arrangement. The 1	53,171
Vehicle wheel. Charles L. Schwartz	53,627
Vehicle wheel. Frederick W. Schroe	53
Vehicle wheel. James McC	52
Vehicle wheel. John Lind	54,192
Vehicle wheel rim. William De I	51,70
Vehicle wheel tire. James (i. Rodgers	52
Vehicles, boats, etc. Propulsion of. (ieorge A. Washburn	52,870
Velocipede. Blois Wolfmiller	52,561
Velocipede. John C. Hicks	51,0
Velocipede. Charles Cecil Cas	
Velocipede. James M. Spangler	51,
Velocipede. Luther V. Moulton	51,396
Velocipede. Stanisliav Zungel	54,304
Velocipede. The United States Cycle	54,010
Velocipede brake. Joseph Hollis..	54,02
Velocipede driving gear. Inavid S. He	50,955
Velocipede, etc. James Joseph Warry	53,58
Velocipede handle bar. John F. O'Br	53,4
Velocipede lock. Charles Fitz R. A. H. Bagot.	52,2
Velocipede saddle. Robert Crossman, et al.	54,297
Velocijede saddle. Sidney Pattisson. .	52,357
Velocipede-sleigh. William S. Bur	52,965
Velocipede steering gear lock. Franz Josef Brons	54,

Velocipedes: see Chain and chain whetl for velocipedes.
Velocipedes. Steering gear for. Thomas Henry Simmonds $\mathbf{5 3 , 8 0 3}$
Vending and advertising machine. S. Silberberg. $\mathbf{5 2 , 0 3 5}$
Vending machine. Frank P. Keese, et al. 53, $\mathbf{5 3}, \mathbf{3 5}$
Vending machine. George Harper Bowie. 5 . $53, \mathbf{3 8 4}$
$\begin{array}{ll}\text { Vending machine. John A. Williams. } & \mathbf{5 1 , 3 , 3 7} \\ \text { Vener }\end{array}$
Veneering apparatus. Josef Polke . 5 . 5 .301
Venetian blind. John Manttan.
Venetian blind. Leomard (funn..... 51,540
Venetian blind. The New York Venetian Bilind Company. $\mathbf{5 1 , 0 2 1}$
$\begin{array}{ll}\text { Ventilated boot and shoe. Willian Wilson } & \mathbf{5 3 , 9 8 8} \\ \mathbf{5 4 , 0 0 9}\end{array}$
Ventilated shoe. Mathew Hilgert .. . $\mathbf{5 4 , 1 3 1}$

Ventilator. John Cinnamon 51,345
Ventilator and water escape. Andrew 13. Holmes. 5 . $\mathbf{5 2 , 8 2 0}$
Ventilator and water escape. Andrew 13. Homen. 50,987

Vessels and other structures. Means for protecting, filing and packing. Mark Warsnop Marsden.

51,283
Vessels. Apparatus for raising sunken. Frederick Kindt, 52,405

Vinegar making method and apparatus. Anton Haaz..... 53,374
Violin. Edwin TI. Cass........ 52,75
Violin. William McKenzie, et al. .
Violin mute. Willian Bingham.
V2,961

Vise. Samuel Harrison 54,451
Vise. William J. Wanless, et al. $51,0,06$

Vise. William Thompson... 52

Volocipede driving gear. William J. and Edwin Fretman. 52,792
Voting machine. Cyrille Leveque. 54,048
Voting machine. James Mc'lammany... $\mathbf{5 2 , 8 6 5}$
Wages indicating table. Charles E. Stewart 51,665

Wagon. Williain K. Loft . $5 \mathbf{5 2 , 2 3 3}$
Wagon and tongue steadier. Wdward Brinck 51,467
Wagon brake. Albert Powers, et al . 5 . $\mathbf{5 1 , 4 7 8}$
Wagon brake. Deloss Rhoades
Wagon brake. Laurens S . Wheeler . 54,003

Wagon-jack. John Eustace, et al............................... 54,104
Waist. Thomas Bernard Fitzpatrick.
Waist belt. Henry Jacques (iaisman.
Walking or skating cycle. Tilman A. Marteeny
Walking stick and umbrella. Felix (foldschmidt
Wall, foor and ceiling construction. Alexander Matrai....
Wall paper trimmer. Twiggs Price, et al.
Walls. Plate for the construction and protection of plastered. George W. Meserve
Washboard. Margaret Wiseman.
Washboard. Rosanna J. Hartwick
Washboard face. Samuel Stephenson
Washtubs, cover for. Rachel Fee Maiden
Washing machine. Alphonse Conët .

Washing machine
Washing machine
Washing machine. Washing machine. Washing machine. Washing machine. Washing machine. Washing machine Washing machine.
Washing machine.

Asa Leroy Burke
 Henry Burker.

Isaac Hill Arnold, et al.
Jacob McGee..
James H. Lamson, et al.
James L. Weir.
James Scott.
Neil Kunkel.
Robie Crowe
William Murphy
Washing machine. William Power
Washing machine and churn. Samuel Mirfield
Waste heat utilizing apparatus. John R. Tercy, et al
Watch chain cross-bar. Reuben C. Eldridge, et al
Water accumulator. Carlo Coda.
Water closet. David Thomas Kenney
Water closet. Edwin Plant
Water closet. John Francis Goodwin, et ai
Water closet. John H. Hamilton.
Water closet. Philip Nicolle
Water closet. Wesley Knight
Water closet and tank. Charles M. Cookson, et al.
Water closet bowl. Smith \& Anthony Cumpany
Water closet flusher. Robert Ovens..
Water closet seat. John C. Febiger..
Water closets. Apparatus for Hushing. Hitchcock Lamp Company
Water distilling apparatus. Henry pattison
Water elevator and carrier. John W. Eckerd, rt al.
Water filter. Joseph Archer
Water filter. Zeph. Fermo.
Water gauge. Barnet Long, et al.
Water gauge. Joseph Pissinger.
Water gas apparatus. Olaf N. Guldlin
Water heater. Alfred H., Fred. J. and Herbert S. Humpbrey.
Water heater. John S. Coe
Water heater. Thomas H. Lennox
Water heater for troughs. Robert M. Oliver, et al..
Water purifying apparatus. Henry Tindal
Water tanks. Means for hindering freezing of. Clarence L. Davis, et al.

Water wheel. Jean Baptiste Parent.
Water wheel. John W. Cover.
Watering trough. Jaber S. Woodward
Watt meter. Whitney Electrical Instrument Co
Wave power. William E. P. Rost.
Wax pot. Francis J. Freese.
Weather strip. Horace W. Chamberlin
Weather strip. Leon Depp, et al.
Weather strip. William Z. Brown, et ai
Weather top for bicycles. John Ritchie.
Wedge. William J. Harmon.
Weed destroying machine. Robert S. W. Corbett
Weed puller. Charles Waterman
Weed puller. Frederick William Read.
Weeder. William E. Whitman
Weighing and package filling machine. William H. Doble
Weighing machine. Francis H. Richards 51,169,
Weighing seales. Alpha R. Beal.
Weighing truck. Orlando W. Parsell.
Wall caser. Richard Iobbyn
Welting strip. Frank Woodard Merrick
Wheel. George Edmond Paquette.
Wheel. The National Malleable Castings Co.
Wheel and tire. The Rubber Tire Co
Wheel-barrow. William P. Carmichael
Wheel bearings. David Roper, et al.
Wheel for vehicles. Alphonse Charlco.......
Wheel for vehicles. Archer Septimus Bowman
Wheel for vehicles. George S. Webb.
Whiel for vehicles. John Rufus Terry
Wheel hub. Beauchamp H. Montgomery.
Wheel hub. David S. Henderson
Wheel hub. Max Wysong
Wheel rim. Charles Robert Peterkin
Wheel rim. John H. Kydd, et al
Wheel rim. Theodor hundtz
Wheel rim and tire. Thomas 13. Jeffery.
Wheel rim former. Edward B. Dake.
Wheelwright machine. Seth C. Doane
Whittle-tree. Benjamin Bear
Whiffle-tree. John Dickey Cason
Whip and line holder. Hugh Wright
Whip and skin scraper combined. Horace Stokes
Wick adjuster for carriage lamps. Alfred Billens
Windmill. Eli J. Shrock
Windmill. Freterick A. Mathews, et al
Windmill. Hubert Schon; et al.
Windmill. Jacob L. and Franklin M. Küut, et al.
Windmill. Juseph Lemire
Wintmill and pump. John W. Whitman
Windmill regulator. Atthur S. Clark.

53,95
53,031
53,396
53,742
52,160
51,207
51,822
51,202
52,008
52,848
53,249
54,207
51,374
22,924
52,521
54,033
51,495
51,541
51,700
52,651
52,642
21, 01
52,515
54,454
51,903
51,451
51,080
53,1:58
52,548
52,127
52,500
51,962
51,923
51,158
52,012
51,447
51,469
52,826
51,767
52,341
52,190
52,006
51,094
53,390
54,144
53,945
54,097
53,549
51,951
53,003
51,669)
53,802
53,936
52,721
52,024
โ1,242
53,917
51,3!13
61,010
52,605
52,342
52, 250
U3,180
52,242
54,234
52,205
53,705
51,777
52,719
61,810
53,24;
52,103
51,631
51,971
53,308
52,483
52,735
52,216
51,916
53,007
52,778
52,989
54,229
51,648
61,477
i-4, 126
53,371
52,918
51,503

Window.
Window. Albert Carey
53,13!
Window. Lorenzo A. Murphy, et al
54,367
Window. Richard Lewis Brown. 53,763
Window and blind. August Sommerfield.
51,913
61,913
50,963
50,963
53,484
53,64
51,405
51,255
52,933
54,324
53,737
53,717
53,837
:4,402
54,252
$50,!, \ldots 7$
50,402
52,402
53,983
54,269
54,203
52,209
54,102
52,732
-52,807
52,857
53,03;
53,102
51,309
51,2:38
53,542
53,985
53,914
51,961
52,050
52,936
52,193
53,94!
$52,45 \%$
53,205
$\mathbf{3 2 , 2 0 0}$
52,324
52,659
51,545
50,943
52,(61!
: 4,134
54,316
52,528
52,(687
52,317
52, (isis)
54,332
54,075
52,024
$53,(;)$
$52,1!1 ;$
51,271
53,523
52,5! 0
54,149
$51,!11$
53,881

Wrench.	John M. Palmer, et al.
Wrench.	Joseph Shafer

Wruch. Peter Panl Collins..................................... 53,06i3
Wrench. Richard M. Carroll....................................... 53,314

Wrench. Robert A. Wilson..... 52,326

Wrench. Thomas Dixon. 54,038

Writing and weighing device holder. Rudolph W. Riess. . 51,182
Writing tablet. Willimm Assheton, et al..................... $\mathbf{5 3 , 4 3}$
Writing telegraph. Thomas Ewing. 5 , (is9)
Vinc. Process of producing. Siemens \& Halske........... 51,088

INDEX OF PATENTEES.

Abbott, Charles J. Seeder
Abhott, (t. Walter, et al. Window fastener
Abbott, Henry, et al. Calculagraph.
Abbott. Hose support
Abell, Charles M. Gate.
Absterdam, John. Speech transmitting system
Ackerman, William C. and Edward. Broom bolder.
Adams \& Westlake Co. Bicycle lamp.
Adams, Charles H. Ferrule and bushings.
Adams, Rubert N. Paper trimmer.
Adams, Samuel F. Metallic railway tie
Adkins, Benjamin R., et al. Pneumatic tire inflator.
Adler, Marcus A. Garment display apparatus.
Adolph, Octavus E. Stacking machine.
Adressograph Co. Addressing machine
Agnew, Thomas. Horse hitching device.
Aitken, John W. D. Wagon
Alberger, L. R. Condenser.
Albin, F., et al. Safety check for boilers
Albrecht, Friedrich. Connector for tuber, rods, plates,etc.
Albree, C. B. Rivetting machine
Alcock, A. J., et al. Lamp chimney and gas globe.
Alde, John W. F. G. Life-lelt
Aldrich, (i. W. Bicycle attachment
Aldrich, (ieorge W. Meat broiler
Alexander, Benson P. and David W. Pneumatic tire
Alexander, David W. Pnenmatic tire.
Alexander, D. W., et al. Tauning process..
Alexander, William, et al. Cuin actuated apparatus.
Allagnon, J. A. and G. J. Cigarette making machine
Allan, Frank B., et al. Bicycle support and holder.
Allen, Charles. Dish washer
Allen, Charles L. Stove leg
Allen, Daniel. Roofing compound
Allen, John S., et al. Lubricator
Allen, Luther E. Cash register
Allen, Lather E. Registering machine
Allen, William (i., et al. Wire spoke
Allin, Samuels. Electric are lamp.
Allis, (The Edward P.) Co. Band saw miil
Alluisi, Charles. Putty
Alsup, J. D., et al. Bicycle.
Altham, (eoorge J. Oil engine
Altshuler, Samuel, et al. Lubricator.
Ambjorn, Pierre. Tire for wheels.
Amborn, (iteorge. Wrench.
Amen 1, O. P., et al. Petrole oum preparing syste.in
American lank Note Co. Plate printing method.
American Barrel Stave Machine Co. Stave making machine American Brake Beam Co. Brake beam..
American Car Sprinkler Co. Railway street sprinkler.
American Carving and Manufacturing Co. Duplicating machine.
American Cycle Manufacturing Co. Bicycle frame
American Harrow Co. Ball bearing.
American Mutuscope Co. Mutuscope
American Smokeless Powder Co. Smokeless gumpowder.
Ames, Walter. Driving mechanism.
Amess, James. Dredge
Amos, Harry M., et al. Fruit evaporator.
Amsden, M. J. Thimble thread cutter
Anderson Cycle and Manufacturing Co. Bicycle handle bar.
Anderson, Edwin Sarus, et al. Bicycle handle bar
Anderson, Elwin s. Harp
Anderson, Erwin W. Tongue support for sleighs
Anderson, I., et al. Telephone switch-board
Anderson, James. Sash balance.
Anderson, J., et al. Cheese knife
Anderson, Oliver (a . Book cover
Anderson, Oliver G. Burean drawer and gride.
Anderson, Oscar. Creamer
Anderson, Osman H. Straw carriet and grain separator
Anderson, Robert S. Vehicle gearing.
Anderson, Robert Scott. Bicycle handle
Anderson, Robert Spain. Dental tool.
Anderson, T. M., et al. Lubricator.
Andrae, Gustav., Lace cutter
Andrews, W. K. Bicycle support
Angers, Philippe, et al. Milk purifier and cooler
Anschan, John. Lock and seal
Apache, Antonio. Game apparatus
Appel, Dr. Simon, et al. Bicycle spring tire
Archer, F. M. Vending and advertising machine
Archer, Joseph. Water filter
Archer, Willian S. Fibrous material preparing machine.
Arden, H. Ore separator..
Archijenko, Porfirl A. Furnace
Arkell, Alfred. Bag fastener
Armat, Thomas. Picture exhibiting apparatus

22,593
53,899
52,939
52,256
53,4!3
51,364
54,458
53,217
51,334
53,157
53,533
53,314
51,937
52,983
53,611
51,040
51,982
52,155
53,516
52,994
52,6332
53,181
54,319
52,236
52,897
52,588
51,076
52,054
53,148
52,144
53,266
51,664
51,793
51,100
53,968
52,542
53,348
52,903
51,553
51,218
51,742
52,418
52,977
52,412
52,7:27
54,446
51,930
52,731
51.841

53,892
52,937
54,363
52,908
52,174
52,854
51,12!
51,221
52,432
54,385
52,119
53,824
53,824
51,905
51,190
52,620
52,276
53,086
53,116
53,961
53,136
53,501
51,980
53,697
52,40
52,412
54,152
52,2:37
54,041
53,789
53,383
54,201
52,035
52,548
54,457
51,261
52,810
54,274
54,33

Armolin, Ferdinand J., et al. Conveyer.
Arnold, Herbert Thomas. Fastener for gloves, etc..
Arnold, Issac Hill, et al. Washing machine.
Arms, John and Chester E., et al. Dehorning clippers.
Armstrong, Allert H. Cuirent induction motor
Armstrong, Edwin J. Shaft bearings. apparatus

51,330
Armstrong, Meylert M., et al. Electric railway........... 51,917
Arnold, 1. B. Ice harvester 52,171
Aron, Maurice. Trousers and leggings combined........... 54,032
Arthur, Christopher M. Salt trough.
Arthur, Frank D. Bodkin
Arthur, Gerge \mathfrak{G} et Grain dampener 5105

Asche, Otto. Box soldering machine.......................... 52,509
Asphaltina Co. of America. Paving compowition.......... 54,327
Ashby, Harry V. Scarf pin 53,040

Askew, A. W., et al. Fountain pen 52,617
Askew, J. Hinge. 52,130
Asselin, O., et al. Mode of sealing and opening tin cans
and boxes.... .
52,220
Assheton, William, et al. Writing tablet 53,433
Astley, Arthur W., et al. Fire escape 51,735
Atherton, Jacob, et al. Coin-freed electric meter............ 54,347
Atkins, George J. Photugraphy...... $54,34 \mathrm{~B}_{8}$
Atkinson, Alexander. Car coupler in,204
Atkinson, John D., et al. Ore separator...... 51,444
Atkinson, Joseph. Collar.. 51,422
Atkinson, William. Vehicle gear \ldots.
Attman, David Lee. Lubricating journal bearing 51,018
Atwood, George F., et al. P'ump............................ 51,431

Atwood, Robert J. W. Medicinal compound. 51,052
Aucock, Robert. Tripod.
51,453
Augur, Charles D. Boat propeller.... 54,072
Automatic Cycle Stand. Bicycle stand. 51,794
Axforl, Georges. Wire fencing toril......................... 53,085
Ayan, Manuel S. Drying machine. 53, 519
Baar, Charles. (r roving saw. 52,610
Babb, Isaace C., et al. Car coupler.......................... 52,2699
Babecek, Arthur M. Baby jumper and rocking chair. 52,371
Bachy, Charles H. Furnace for burning hydrocarions.... 52,307
Back, James S., et al. Auto-harp. 52,482
Bacon, Hiram A. Seed planter...... 63,623
Bagley, Allen. Dress stay. 51,06i1
Bagot, Beatrice Laura, et al. Velocipede lock.
Bagot, C. F. R. A. H. Pneumatic tire
$53,001,53,5002$
Bagot, Charles Fitz R. A. H., et al. Velocipede lock....... 52,286
Bagot, Charles Fitz R. A. H. Valve 52,287
Bailey, Charles John, et al. Hyeglass and holder 53,042
Bailey, Charles Stuart. Paint removing compound....... 51,705
Bailey, Edward L., et al. Printing press 51,854
Bailey, F. T., et al. Cancelling and stamping device...... 52,678
Bailey, Harvead I. Grain separator. 52,832
Bailey, James D. Kailway switch 52,734
Bailey, John W. Ore pulverizer and amalgamator..... . 50,972
Bailey, William J. Oil filter 51,173
Baker, Andrew Jay. Egg holder for crates................. 53,557
Baker, Jackson R. Axle box. 53, 137
Baker, James R. Table..... 62,411
Baker, (Joseph) \& Sons. Coffee roasting system.... 52,057
Baker, Oliver F. Pneumatic saddle 53,524
Baldwin, Edwin J., et al. Drill 51,382
13aldwin, Lilizabeth. Bucycle support 53,026
Baldwin, Ellory A. Drive chain............. 51,362 Baldwin, George E. Last..................................... 54,460
Ball, Francis L., et al. Loom let-off 54,465
Ball, John R. Garment. 51,029

13allard, H. T. Knitting machine attachment. 51 ,044
Ballon, G. F. Pencil sharpener........................... 52,038

Balsley, George S. Brick veneer. 51,701
Bamberg, Godfrey. Effervescent cartridge for acrating
Bane, Joseph H: Sash balance
52,351

Barber, Charles. Obstetrical forceps...733

Barcus, James S. Coin-controllesl apparatus 52,950
Barbite, A. Road grading machine 52,145
Baribault, Achille. Milk heater............................... 54,060
Baringer, Joseph. Track cleaner 52,926

Barlow, George Hornsby, et al. Driving gear for cycles, etc. 53,869
Barlow, W. H. Tap for cream cans.
larnard, Frank J. Ore separator.
$.54,443,54,444$
Barnard, George A. Fluid condenser
51161
51,217 3,716 196
268
709
2,847
, 105

2,509
1,651
,617
,433 1,347
4,348
,,378
,018

1,453 1,74 1

061
286
${ }^{287}$

Barner, Charles O., et al. Bicycle frame.
Barnes, (heorge. Tap.
Barnes, John S., et al. Bicycle canopy
Barnes, Lucien, et al. Bicycle frame.
Barnett, Thomas R., et al. Harness
Barnett, W. H., et al. Car coupler.
Barney, Edwin E. Typewriter.
Barnhart, Walter.
Sash lock, etc.
Baron, Bernhard. Cigarette manufacture.
Barr, William C. Air lock for caissons.
Barrett, Esther M. Travelling bag
Barrett, G. A. Napkin holder.
Barrett, George C. Gate for wire fences.
Barry, Grosvenor W. Bicycle support..
Barsalon, Maurice. Advertising medium.
Barthelmes, Franz L. Piano plate.
Bartholmew, Albert A. Stock for threading and cutting off rods.
Bartlett, Edward. Butter mould.
Bartlett, Frank L. Furnace.
Bartlett, John T., et al. Tack holder for lasts.
lartz, Henry. Railway switch.
laskerville, James J. Desk and seat for schools.
Bass, W. A., et al. Washing nachine.
Bassett, Norman C. Electric motor.
Bastedo, C. A., et al. Tray for buttles
Batthasar, C. J., et al. Valve.
Battle, James, et al. Arc light.
Baumgarten, D. I. Can opener
Bavis, Walter, et al. Bicycle gearing
Baxter, W. E. Cooking apparatus
Baxter, William Edwards. Folding stand
Baxter, Willian Edwards. Table and kit case.
Baylan, Nicholas J., et al. Apparatus for raising sunken vessels.
Bayliss, Thomas A. Railway rail comnecting system.
Beal, Alpha R. Weighing scales.
Beal, Morton F. Heating apparatus.
Beal, James H., et al. Station indicator.
Beall, Thomas H. C. Heater for vehicles.
Beals, Albert E. Rossing machine.
Bear, Benjamin. Whitte-tree.
Beardsley, E. R. Dam.
Beardsley, Rolert F. W. Bicycle supurting pust....5i,sis
Beaton, Colin, et al. (irain cleaner.
Beattie, Andrew M., et al. Milk wagon.
Beaudet, Pierre, et al. Tricycle.
Beandoin, Philias. Bridge
Beaudry, Henri and Joseph, et al Hat pin device
Beammont, Henry. Advertising medinm.
Beammont, Henry. Egrg beater.
Beaumont, Thonas G. Rubher condenser.
Bechtel, B. E. Stome separator.
Beck, lienry K., et al. Umbrella frame
Beck, Henry N., et al. Moistener.
Beck, John M., et al. Oil comperand
Beck, John M., et al. Varnish..
Beek, John Martin, et al. Oil product.
Beck, Wriah G. and Warren. Coupen holder
Beck, W. Box fastener
Beckman, E. O., et al. Flue stopper
Beekman, John E., et al. Furnace draft.
Bedarl, Jean B. Curtain pole
Bedell, John K., et al. Latch and lock
Beehe Check I'rotector Co. Check punch
Beebe, Ciara M. Fender for cars
Beebe, Dillon. Fancet
Beebe, Jame's A. Key fastener
Beele, John D. Rubber tire
Beekman, G. Bicycle driving mechanism
Beekman, Gerard. Cycle transmitting mechanism
Beeman, J. S. Cigarette month-piece making machine
Beeman, Juseph S. Cigarette mouth-pirce fastener
Beeman, Joseph S. Clutch for machinery
Beeman, Joseph S. Machine for making mouth-piecess for cigarettes, etc.
Beeman, Josetph S. Means for removing molten parafin.
Beemer, Levi, et al. Bath apparatus.
Beine, William. Kein holder.
Belcher, John D. Corset clasp
Belcher, Warren J., et al. Drop hammer.
Belden, Edmund A., et al. Cut off for gas systems
Belding, Edward C.'T. Electric alarm mail box.
Bell, George. Box for shipping animals
Bell, James, et al. Wreck raising apparatus
Bell, John C., et al. Marine merry-go-round
Bell, Louis. Electric motor
Bell Telephone Co. of Canada. Lock-out telephone system Bell Telephone Co. of Canada. Switch-huard system
Bell Telephone Co. of Canada. Telegraphic key -loard 53,605 ,
Bell Telephone Co. of Canada. Tele phone and signal circuit
Bell Telephone Co. of Canada.
Bell Tele phone Co. of Camada.

Tele hone exchange system Telephone exchange system

50,994
51,366 51,449 50,994 53,239 54,348 51,970 51,472
51,054, 51,955
53,612
51,419
51,935
51,270
51,904
52,744
53,382
53,944
:33,498
52,838
53,240
51,965
51,520
52,160
54,441
52,239
53,216
51,254
22,0:5
54,031
52,128
51,510
51,509
54,287
23, 13
23, (i338
23,917
54,005
52,38i
52,170
53,388
$51,!116$
52,244
04,020
50,9192
53,029
50448
52,148
54,264
53,761
54,420)
53, 480
53,52!!
52,0!12
$5 \cdot 3,804$
$52,80!$
51,208
53,335
51,219
51,173
52,066
52,450
51,803
52,911
53,01.
52,245
52,358
51,593
53,111
52,985
52,096;
51,087
22,192
52,29!
50,957
51,27)
31,692
51,927
53,817
51,602
51,764
51,375
51,044
51,457
51,047
5.4,419

51,698
53,55)
54,223
53,606;
51,558
53,458
51,557

Bell Telephome Co. of Canada. Telephone line system
53,550
Beli Telephone Co. of Canadi. Telephone switch-knard.
Bell Telephone Co. of Canada. Telephone switch-board annunciator circuit

51,559

Bell Telephone Co. of Canada. Telephone switch-loard signal
:3,4:7
Bell Telephone Co. of Canada. Telephone circuit. 53,552
Bell, (Willian) \& Co. Metallargical furnace............... 52,709
Bellamy, (ieorge. Stove drum 51,084
Bellerive, Charles. Shoe....................................... 53,196
Bellinger, Willard L . Lash holder 51,318
Bemis, Allert T. Dry kiln. 53,421
Bemis, Allert T. Drying kiln 53,398
Bemis, Allert T. Lumber truck.............................52, $818,52,819$
Benedict, Lewis, et al. Printing process.
52,474
Benfield, Thomas. Process of forming oxide of lead...... 51,025
$\begin{array}{ll}\text { Bennett, E. G., et al. Butter and cheese cutter. } & 5,000 \\ \text { Bennett, Frank S., et al. Runner for sidewalks, etc. . . . } & 52,45\end{array}$

Bennett, Richard. File.................................... washers.

52,631
washers.
Bennor, Joseph. Knitting machine.
52,941
Bemny, Allan, et al. Railway spike. $52,51,519$
Benshimole, David, et al. Ore separator.................... 51,573
Benson, W. O. Lawn mower......................... ... 53,220
Bentley, John. Knitting machine........................... 54,046
bentley, Johm. Knitting machine cylinder.................... 54,100
Bentley, John. Knitting machine needle jack.............. 54,047
Benton, Alfred B. Bicycle canopy............... 51,449
Perditschewsky, Salomon. Telephone exchange.......... 53,574
Berditschewsky, Salomon, et al. Telephone........ 50,570
Berger, Matthew. Valve.
Berger, Richard A., et al. Fifth-wheel................... . . 54,006
Bergeron, O. I. Oar
Bergey, Aaron E. Typewriting machine................................541 50,99
Berginan, August H., et al. Band cutter and feeder ..51,884, 51,885
Bergman, Willian C., et al. Band cutter and feeder..51,884, 81,885
Bergtold, Augnstus 1). Flour 11,896
Berkey, Julis. Hook and eye 52,053
Berner Mayer Co. Hydraulic air compressor.................. 58,942
Bernier, P'ierre. Signal for preventing collision on railways 53,747

52,391

Best, Dixon. P'etroleum engine.......................... . 52,434
Best, Peter, et al. Car fender......... 63,188
Bettermam, Reinhold. Car axle support. 51,017
Betts, John H., et al. Furnace 53,091
Bevlikgy, Marc W. Method of making alkaline bichronates
$52,!40$

Biddell, George W. Gardening implement................................... 53,510
Biddle, Sis-ncer F. 1. Tent. 51,422
Bierer, Helen. Preserving process........................... 53,011
Biermann, Hermamn. Ehetric water gange............. . 52,475
Biermam, Hermann. Railway accident preventer........ 52,567

Biermann, Hermann. Railway gate..................... $52, \mathbf{3 9 9}$
Biermann, Hermann. Railway rail. 53,841
Biermann, Hermann. Means for preventing railway aceidents

52,869
Biggs, Charles Herndon. Square. 51,614
Biggs, W. H., et al. Artificial fuel. 52,649
Bilgram, Hugo. Cigarette making machine............. . 52,533

Billings, Freslerick C., et al. Drop hammer.........51.763,
Bilton, Henry John Inwerd, et al. Apparatus for seraping the interior of pipes

53,815
Bingham, (ieorge s. (irain shorking machine. 53,980
Bingham, Henry. Tire
53,297
Bingham, William. Violin mute. 52,961
Binkered, A. T. Auger handle62,670
Bintcliffe, Caroline Newnan, et al. Machine for aplying adhesive material to envelopes.

53,855
Biron, Christian A., et al. Mucilage bottle................... 53,431
Bird, Charles S., et al. Ice tongs. 52,697

Birnie, William N., et al. Paper box making machine.... 51,388
Biron, Juan Baptiste. Stone cutting machine. 51,093
Bishee, Lattie R. Pin
Bishop, Charles. Sinelter for ores. 52,181
Bishop, Johm Major. Baling press.................. 53,700
Bitzer, Samuel B., et al. Stock car.
Bitzer, S. B. Kailway ventilation car02000
Black, Alfred T., et al. Trolley...
52,000
Black, John F., et al. Key lwayd
53,125

Black, Walter. Sand papering machine
Black, William. Machinery for polishing bents and shoes
Blackburn, Charles J., et al. Latch and lock.
Blackburn, (4. W.• Dish washer.
Black hall, William B. Transparency card.
Blackwell, Kenneth W. Switch stand.
Blake, Millard F. Dumping car
Blaster, Ernest, et al. Switch for electric light
Blood, Charles N. Stump extractor.
Bloomfield, Abraham J. Cigar
Blossom, Charles C. Garment hook
Blue, Charles Edwin. Glass bottle making machine
Bors, Jacob. Chain.
Botcher, F. W. (i. Display apparatus.
Bugler, Philip. Car coupler.
Bol Cigarette Machine Company. Cigarette machine
Bohm, Edward $\mathbf{F}_{\text {., et al. Joist and wall hanger.. }}$
Bohm, Ernest. (llass for facing bricks..
Bohrer, William. Pipe.
Boisvert, Marguerite. Persian lamb imitation
Boisvert, William R. Spring bed.
Bowel, (Gottlieb Frederick. Bung.
Bold, Peter. Thill coupling
Bolin, Hezekiah M. Boiler scale solvent distributor
Roles. Archibald Luzerne and Luzerne Monroe, et al Window sash attachment.
Bollinger, Alexander M. Bicycle shoe.
Bollinger, Alexander M. Shoe.
Bowman, C. W. Pencil
Bonnetheau, H. Du Pres. Envelope
Bonncte, Clarence R. Shelf for baking powder.
Bonsack, James A. Cigarette making machine.
Bonita, Arthur K. Electric brake
Boston, Charles. Sap bucket.
Booker, Charles. Device for preventing refilling of bottles.
Bookhout, Edward. Plumber's tack.
Bookout, Edward. Ventilator for stoves, ranges, \&c
Booth, Fred M., et al. Curtain stick forming machine.
Booth, George. Dental cuspador.
Booth, (George William, et al. Depurator.
Booth, James Roger. Baited gun
Booth, T. B. Liquid carborating machine
Booth, Thomas B., et al. Bottle filling mechanism
Borbridge, W. E. Locomotive exhaust pipe.
Bouchardt, Samuel. Slipper sole
Border, Bert E., et al. Device for separating gas from water and oil
Bort, K. S. Hook and eye
Bose, P. J. Telephone.
Bostwick, John R. Stovepipe thimble.
Bouchelle, William M. Lantern.
Boucher, J., et al. Fish-plate
Book, James A., et al. Precious metal saving device.
Bourdon, Louis. Evaporator.
Bourgeois, C. Bale tie
Bouvier, Adolphe. Method of testing gas mains.
Bowler, James, et al. Monument.
Bowen, Ambrose B., et al. Machine for applying stays to wire fences.
Bowen, George A. Refrigerator
Power, Lewis A. Railway spike
Bowers, Tom 13. Dyeing machine
Bowie, 'george \mathbf{H}. Vending machine
Bowie, William A., et al. Bottle filling apparatus.
Rowling, Clarence B. Pneumatic tire
Bowman, Archer Septimas. Vehicle wheel.
Bowman, Harvey. Orchard ladder
Bowman, Harvey. Stepladder.
Bowman, James Douglas, et al. Earth anger.
Bouron, Moulton D. Heating device for lamps.
Boyd, Frederick C., et al. Fare register
Boynton, Edward S. Galvanic battery
Pozano, Stefano. Permutation lock
Bradbury, Thomas H. Rock drill sharpening process and apparatus.
Bradford, Daniel w., et al. Axle bearing
liradish, N. P., et al. Valve for cans
Bradley, Charles S. Means for producing magnetic phases and fields.
Bradley, C. S. Curtain converter
Bradley, David. Harness hook.
Bradley, Silas W., et al. Tobacco package
Bradstreet, Charles W. Sleeping car.
Bragg, Kelly R. Dentures.
Bragger, John W. Apparatus for flushing water-closets...
Braithwaite, John, et al. Oiler
Brandenburg, G. (x., et al. Ball bearing
Brandes, Frederick. Machine for grinding joints.
Brannan, Edward Independence. Cycle.
Brassard, Baptiste J. Ointment.
Bratsch, Carl F. F. Process for abstracting vegetable wax..
Brancher, William B. and Arthur C. Feed water heater and purifier

53,347
51,223
53,014
52,441
53,541
21,824
54,105
51,143
51,539
53,204
51,737
54,409
53,258
52,131
-4, 212
53, 027
53,572
52,934
52,701
53,465
52,580
51,455
54,194
51,603
53,777
52,27!
51,521
53,215
52,661
52,345
52,534
51,755
51,15!
52,974
52,268
54,235
52,963
51,714
51,850
53,650
53,454
52,255
51,939
54,423
52,298
54,132
54,205
53,346
51,247
54,068
51,601
53,129
51,160
52,635
51,309
53,342
52,692
1,
51,440
51,239
53,705
53,628
54.198

52,352
51,024
51,543
52,888
53,475
52,554
53,019
53,194
53,089
53,470
54,121
53,435
51,708
54,050
51,451
61,(623
51,908
51,969
51,616
51,743
51,131
51,679

Braver, August. Bicycle power mechanism
54,016
Bray, O. E. Feed cutter.
Brazen, Melchoir. Tobacco moistener.
Break, W. M. Bottle.
2,093
51,678
52,077
$53,76{ }^{7}$
53,240
Et, 103
54, (6.82
53,889
51,308
53,320
51,236
52,65
51,189
52,641
53,434
01.193

52,93;
51,625
$53,4 \times 3$
53,607
63,360
51,467
51,153
51,753
51,869
52,574
52,204
52,3:4;
51,525
52,270
53,174
54,030
52,502
51,977
54,261
51,623
50,96if
53,998
52,379
52,229
53,718
51,091
51,090
54,026
53,703
52,844
53,639
53,849
53,061
53,449
52,406
51,181
52,209
53,794
51,876
51,802
52,831
52,598
Brown, Earl, et al. Ironing table and washstand
Brown, Eldridge M.
53,766
on, Ernest Albert Morton, et al. Apparatus for pro-
ducing and storing acetylene gas
51,907
Brown, F. W., et al. Bean harvester
Brown, (G. W. Engine stopping device.
Brown,
Brown, George McClellan. Side dresser for saw
$\mathbf{5 3}, \mathbf{8 9 0}$
Brown, H. F., et al. Cementing apparatus. 51,933
Brown, Hugh H. Match box. 54,449
Brown, Janis P., et al. Fire kinder.............. 53,133
Brown, J. M., et al. Stovepipe joint lock.
Brown, John F. Ledger
Brown, John R. Distributor for insect powder.
Brown, John Reitter. ($\begin{aligned} & \text { Gold collecting apparatus. } \\ & \text { Brown, Leroy, et al. Paper box making machine. } \\ & 51,333\end{aligned}$
13rown, O. W. Railway tie.
Brown, P. Draft mechanism
Brown, Perry. Draft and buffer mechanism
Brown, Philip C., et al. Car coupler.
Brown, Richard Lewis. Window
Brown, R. K. Sash lock and balance
Brown, Robert A. Corkscrew.
Brown, Robert P., et al. Printing press
Brown, Rufus Day. Foot rest.
Brown, Samuel L., et al. Electric register.
Brown, Summers: Can opening device.
Brown, W. Engine stopping device
Brown, William .J. Carriage gear.
Brown, William Z., et al. Weather strip..
Brown, Wilson. Bonding device for electric railways
Browne, A. W. Dental engine.
Browne, W. F. Pneumatic pump............................ 58,600
Browne, William F. Gas making machine and process.
Brownell \& Co. Valve
Brownhill, E. Gas controller.

51,240
51,991
52,211

54,191
52,638
54,2 26
53,610
53,763
51,993
52,577
52,577
51,854
52,\%91
51,853
51,853
51,003
01,012
03,252
54,090
54, 544
53,04!
51,979
138

52,089
53,065
51,801.

1,338
4,191

53,604
53,600

3
Brown, Alfred. Suspender. Brown, Al. . . Brown, Andrew John, et al. Dental tool.
Brown, C. C. Bottle cap and seal.
Sown, Charles Wren

own,

Brown, Chauncey C. Shaft coupling.
,831

Brooke, Arthur Frederick Montfort. Neckyoke and tongue

Brooks, Howard K. Bicycle spring seat and handle bar.
h, James Rowland. Paper roll holder
Brocher, H. Tile
Brisin, David A. pipe thimble. .
Bristow, Charles. Raisin seeder. .
Bestow, Walter, at Trap for catching horn-flies.
stow, W. (: Bicycle seat for children
(1) oms.

Bristow, William George Game
Broadly Joseph Tire inflating device.
Broberg, F . Spring roller.

Brodeur, Rémi. Shuttle threader.

51,:07
Bringham, F. J. Leather strap for handles, etc........... .
Brintnell, Archibald H. Electric propulsion system. . . .

Brill, John A. Motor truck $53,466,53,46$ Brill, John A. Car truck.

\qquad

[^1]

20

.
號

號

Browning, feorge, et al. Selvage weaviag ait and apparatus..
Browning, Harry and William John. Steam gange alarm
Browning, John P., et al. Bicycle chain link
Brownley, P., et ai. Device to prevent refilling of bottles.
Brownley, Patrick, et al. Nteam injector.
$.24,077$
Bruandet, Antony. Cigarette filling machine.
Brundage, Everett H., et al. Combination tool
Brundin, Pher. W. Venetian blind.
Brunelle, Thénphile. Potato cleaner
Bruns, William. Electric flash-light apparatus.
Bruyn, Howard, et al. Smoke jack..
Bryan, Henry S. Car coupler.
Bryant, Charles E., et al. Bicycle
Buck, Williann. Cook stove and range
Buck, William C. Pump.
. .

54,426
52,005
:24,301
51,245
54,0182
51,90s
51,280
51,021
53,598
53,476
51,306
52,(613
51,791
51,914
Buckeye Manufacturing Co. Gas engine
Buchboltz, Ernst. Feed water heater.
Buckingham, Silas. Saw-pointer and gange.
Buckland, Horace S. Grinding machine
Buckland, Horaces. Tool chuck.
Buckley, C. F. Preserving process
Bucknall, Austin. Capsule for bottles.
Huengers, Peters. Horse shoe
Buffalo Steel House Co. Crematory
Bullock, Frederick, et al. Kug weaving syste......
Bullock, William H. Matching machine
Bultmann, Hermann, et al. Power transmitting mechanism
Bump, Charles M. Bicycle lantern.
Bunker, Harman. Artificial fuel.
Bunker, William Isaac. Bicycle saddle
Bunol, Donning P. Y. Cigarette machine.
Burbank, F. E. Excavator for earth.
Burbridge, Thomas. Stoppering device
Burdett, Francis. Shoe brush
Burgess, Benjamin F. Fish hook guard
Burgess, Silas ${ }^{\text {l' }}$. Roach trap
Jurgess, Williams. Ve'reipede sleigh.
Burke, Asa Leroy.. Clothes washer .
Burke, Asa Leroy Washing machine
Burke, Walter. Bicycle rest
Burker, Henry. Washing machine:
Burleigh, Joseph A. Knitting machine
Jurnap, Charles E., et al. Brake beam
Burner, Frank V. Gate.
Burnham, Franklin P., et al. Bicycle
Burns, Henry B., et al. Fruit jar closure
Burns, John. Window and door fastener
Burnshire, John J. Baling press
Burr, Oliver C., et al. Bolibin holder
Burrage, Marias. Top for mucilage reeptacles
Burrell, (D. H.) \& Co. Centrifugal creamer.
Burrell, (I). H.) \& Co. Hoop, cutting machine
Burrows, Edward T. Curtain guide
Burrows, Edward T. Insect destroyer.
Burry, John. Spring winding mechanism.
Burt, Peter, et al. Vapour motor. .
Burt, William E. Sap tank
Burton, Rufus (i. Railway switch.
Bushnell, Charles R., et al. Precious motal saving device
Bushnell, Oscar 1'. Filter press.
luskirk, Thomas B., et al. Kifle
Bustin, James T. Driving gear and brake
Bustin, Robert, et al. Device to prevent refilling of bottles
Butler, Maguler. Lubricator
Butler, William H. I'ackaging machine
Butterfield, David N. Stone wagon
Butterfield, Finley R. Bung
Butterfield, Samuel Wesley. Bark cutter
Butts, Henry S., et al. Nut lock.
Buzzacott, Francis H., et al. Corking outfit
liygrave, Alice L. Cycling skirt for ladies
Byerley. F. X. Method of obtaining asphaltic products.
Byrne, Flliott V., rt al. Umbrella.
Cadot, Ovila. Cinder sifter.
Cain, Thomas J., et al. Bicycle driving gear and hake
Cain, William. Horse hoot.
Caldwell, James A. Fllipsographi,
Caldwell, Henry C. Combination tool
Caldwell, John K. Brick kiln.
Caldwell, Joseph K., et al. Method of comverting iron into sterl..
Came, Frank Fiden. Tie plate
Camelford, James and John. Carpet
Cameron, Joseph W. Rock drill casings
Campbell, Donald, et al. Depurator.
Campbell, (土. N. Wagon jack.
Camphell, John P. Pepper and salt box combined
Camphell, John W., et al. Cooking utemsil.
Campbell, John W. ct al. Toaster
Campbell, Katherine. Carpet fasterer.
Campbell, Michael Janes. Stone plancr.
51,316
51,821
23,576
54,364
54,412
52,040
53,423
51,528
53,61!
51.211

52,126;
53,539
52,518
52,026
52,367
54,044
52,923
53,402
51,537
51,958
51,139
52,965
52,460
53,957
53,440
53,031
51,170
53,8:32
52,996
52,41K
54,057
50,963
51,650
53,567
21,435
53, 891
53,822
53,452
51,403
51,307
51,167
54,042
53,495
54,008
54,462
54,387
51,682
51,245
54,333
61,373
52,797
53,992
53,683
53,373
52,059
51,92!
53,508
51,216
23,518
52,271
51,280
51,372
53,40\%
61,933;
53,694
51,773
51,652

Camperl, Robort (). Jang filler
52,3140
Canada Switch and Spring Company
Canadian (reneral Electric Company. distribution system
Canadian General Flectric Company. Alternating currents regulation system.
Canadian Gencal Electric Company. Current induction motor.

21,549

Canadian General Electric Company. Iyyamo electric machine
Canadian (ieneral Electric Company
Wlectric meter
53,603
Canadian reneral Electric Company. Electric meter..... 51,6世;
Canadian (remeral Electric Company. Electric motor. .j1,0\%0, 51,698
Canadian General Electric Company. Electric motor controller
Canadian (ieneral Electric Company. Meter for electric
51,697
power.
21.714 Chapthan, T. M. P. Spring roller

51,714 Chappell, (ierorge H. Engine.
53,289 Charbonnean, A. Wheel for vehicles 52,205
53,124 Chartrand, Dominique. Clothes boiler. 53,413
53,868 Chase, Edward Fddy, et al. Car conpler. 51,719
53,1:20 Chase, Frank. Nail presenting and driving mechamism. . 51,310
51,406 | Chase, Frank H., et al. Raisin seeder............... . . . 53,023
Canadian (ieneral Electric Company. Rheostat............
Canadian (ieneral Electric Company. System of distrihution of electric energy.
Canadian (ienemal Nlictic Compay
Cantang. Transf'rmer. . .
Cantield, Mortimer M. Window sash lift
Cano, Lewis, et al. Pocket book.
Capewell George J et al Wire spoke.
Car-Skaden, Delos. Ore separator.................................. 445
Carden, John. Curry comb . 52,254
Carette, Adolphus. Ear and throat protector............. 52,708
Carey, Allert. Window
Carey, Abner. Bux-making machine
Carlile, Charles M., et al. Ball bearing axle box 53,2xf
Carlisle, William N., et al. Harness.
Carmichael, William 1'. Wheel-harrow
Carnahan, Charles C., et al. Blectric switch
Carnaham, William H. Electri: switch
Carnes, Charles E., et al. Fruit jar closure.
Carpenter, Charles K., et al. Marine conveyance
Carr
Car, , ohn B., et al. (Com controlled machine.

Carroll, James E., et al. Iadder
Carroll, John T., et al. Brake ind foot rest for bicycles. Carroll, Kichard M. Wrench.
Carsley, Robert 13., et al. Furnace
Carson, (aeorge J. Insulating joint
Carter, John S. Door.
Carter, Lattimore, et al. Music leaf turner.
Carter, Roduey F. Mausoleum..
Carty, Juhn J. Telephone transmitter
Case, Alfred Wells. Screw propeller.
Case, Charles W., et al Wire fencing tool.
Case, William C. Mowing machine knives
Casey, James (!. Horse stopping device
Casgrain, Henri E. Dentist's lamp.
Cashmore, Edwin James. Rifle
Casher, Herman. Mutoscope
Casom, John I). Whittle-tree.
Cass, Edwin T. Violin.
Cassel (iold Extracting Company. Ore extracting process apparatus
Casselman, Charles Cecil. Velocipede.
Castle, Peter C. 1). (iun making process.
Caswell, Richard H. Iubricant for bicycle gear 04,310
Catchings, R. J. Fish-plate.
Cave \& Sons. Last.
Cave, William 1'. Picture hanging device
Cawdery, John W. Grasity railway.
Cazier, Perry Howard, et al. (irinding machine for sickles
Chamberlain, C. G. Kail fastener
Chamberlain, William S., et al. Incandescent lamp
Chamberlain, Horace W. Weather strip.
Chambers, Alexander I., et al. Car coupler.
Chamers, James W., et al. Tire for bicycles
Champion Steam Joint Reamer and Grinder Company. Machine for grinding joints.
Chandler, Willis. Fence
Chapin, W. R., ret al. Thill or V shaft
ft.
Chaplritu, (i. Stove
Chaplean, S. E. St. O. Poll book..
Chapman, Andrew W., et al. Germ excluding hood
Chapman, Charles Henry Ball bearing for bicycles
Chapman, Frank E. Electrical relay
Chapman, Frederick A. Flectric light fixture.

53, 112
53,433
53,265
53,910
53,344
53,091
Ti, 823
52,712
51,(6)5)
53,311
21.673

51,490
53,085
54,036
52,761
54,245
51,49\%
22, $\mathrm{N}, 4$
53, 007
52,753
52,108
51,973
54,310
54,292
64,124
54,3! 9
53,018
53,158
51,450
51,813
53,485
53,945
53,885
53,693
242
,568
3,568
057
1,104
5
5
19

4 02

1
54
$3!$
17%
186
286
3
$53,23!9$

7

23
12

50
1

5
.

24

158
450

3,945
,

Chase, Lloyd H. Sight for firearms
Chatterson, Albert E. Lack for order binders.
Chatterson, Clarence Delaney. Runner for bicycle wheels
Chatterson, Wright. Pea harvester.
Cheeld, Sydney. Churn.
Cherriere, Emile. Peeler and corer.
Chicago (ias and Electric Fixture Manufacturing Company. Insulating joint

Chicago Railway Eduipment Company. Brake beam.
Chicago Railway $\mathbf{E q u i p m e n t}_{\text {Company. Brake leam guard }}$ clamp......53,273,
Chicago Railway Equipment Company. Brake beam hanger.
Chicago Railway Equipment Company. Texting machine for hrake leans, ett:
Childs. Eugene. Calk machine
Chipman, Henry M. Wire fence tool
Chitty, Henry. Dynamo electric machine
Chivetes, William. Clip
Chockley, W. B. Flectric indicator for journal boxes
Chominard, Joseph. Monocycle.
Christensen, Niels Anton. Air-hrake pump and apparatus
Christie, Robert. Paler fyle.
Christin, Joseph A. Box
Christy, Henry A. Pi-ycle saddle
Church, Frederick W. Butter making apparatus
Chute, Annie M. J. Egg-tester.
Cinnamen, Ichm. Ventilator
Clapp, Jwight C. Mitten
Chark Albert C., et al. Dental spittoon
Clark, Arthur S . Wind mill regulator
Clark, Edward Sanford. Steam lwiler and coupling.
Clark, Henry Marcus, et al. Vehicle wheed.
Clark, J. A. Tuft-inserter for looms
Clark, John A. and Charles W. Loom reed
Clark, Myron W., et al. Can
Clark, Peter. Window sash balance
Clark, Robert W. Pipe banger.
Clark, Thomas J., et al. Tramsparency card
Clarke, John (x. S., et al. Bicycle drive gear
Clarke, Thomas Adam. Trestle
Classen, Dr. Alexander. Iodine compuind
Clawson, Charles H. Cyclometer
Clay, Francis A. Table waiter..
Clay, Harry C. Valve
Claybourne, Colin W. Process of and apharatus for burning granular fuel
Clayton, A. B., et al. Disinfectant distributor
Cleckley, Mary M. Kuockdown case
Clentent, R. B. Tongue support.
Clemow, Thomas. Harness trace
Clench, Johnson. Ash sifter
Clere, Frederick De.I. Window sash and frame
Clerici, F., et al. (iold extractor and process of extracting
Clerihew, Margaret, et al. Metal can.
Cle veland Linseed Oil Co. Method of purifying linseed oil
Cleveland Machine Screw Co. Sorew and niphe making machine
Cleveland, William Fitch and Eugene Wyman, etal. Steam engine.
Cliff, Edward. Car truck
Clinnock, George H., et al. Phemmatic tire
Cline, William, et al. Railway ventilated car
Cline, William, et al. Stock car
Clish, (fardener, et al. Steam boiler.
Close, Dorr R., et al. Photographic plate holder
Clouse, Joseph N. Head for cultivators
Clouser, Samuel F. Bicycle driving mechanism
Clunie, John S., et al. Box .
Clunie, John S., et al. Box cover fastener
Clunie, John S., et al. Shaft hearing
Clyne, James Bruce. Belt shifter . .
Clyne, James Bruce. Serew and nipio making machine
Clyner, Albert. Saw horse.
Coates, John A. Stumpextractor
Cobb, Edwin F. Bicycle steering gear
Cobb, Henry B. Lead press.
Cochran, James. Enamelling metal.
Cochran, D. Feed water heater and purifier
Cochran, D. Steam separator.
Cochrun, Samuel H. Bale tie.
Coda, Carlo. Water aecumulator
Coe, Johns. Water heater.....
Coey, C. A. Bicycle...
Cofill, Volney K. Game board.
Coghlan, John W. Process of forming oxide of lead
Cohn, Felix. Carriage for children.
Cohoke Wcoden Ware Manufacturing Company. shifting mechanism.
Colas, Jules. Sewer trai,
Colburn, Frederick H. Sign letter.

54,145

53,74,
53.776

51,011
53,542
53,861
53,488
50,94!
52,530
51,823
(52,058
53,271
53,270
53,274
53,271
53,270
51,132
53,035
51,754
51,462
61,910
22,339
21,522
51,584
52,519
21,376
[33,005
53, 469
51,345
22,313,
62,368
53,169
50,176
53,783
53,461
52,044
$52,4!8$
61,103
53,837
23,556
53,541
22,478
54,236
50,981
54,164
53,226
51,991
51,237
,54,149
51,751
52,780
52,375
51,322
54,324
51,297
54,362
51,123
54,052

53,750
52,477
52,000
22,803
$54,124,54,127$
61,40!
51,534
52,980
53,459
52,881
53, 130
53,765
54,052
51,758
$5(3,945$
52,(639)
22,959
51,831
22,668
52,669
52,773
52,521
52,012
52,134
51,942
51,02)
52,316
51,426
61,797
51,359

Colcord, E. C., et al. Boom fastening.
53,185
Cole, Romaine C. Culinary vessel...
Coleman, James A. Telega
54,405
51,745
52,564
$\begin{array}{lll}\text { Coleman, Walter F. Mould for confections. } & 51,637 \\ \text { Calgin, Edward R. Cigarette machine. } & 569\end{array}$
$\begin{array}{lll}\text { Coleman, Walter F. Mould for confections. } & 51,637 \\ \text { Calgin, Edward R. Cigarette machine. } & 569\end{array}$
Colley, Robert 13. Trouser stretcher. 52,570
Collins, (ieorge J. S. Caster
Collins, John T. and Samuel W. Band cutter and fecder. 51,795
Collins, Mary F. Bath brush... 54,361

Collom. Martin H. Magnetic electric light holder.
51,034
53,183
53,080
51,906
53,126
52,940
53,911
53,735
53,299
51,409
51,871
52,709
53,075
53,825
54,372
54,372
53,3 6
52,752
$52,82 \times 1$
51,762
52,409

Continental Match Company. Match coil carrier. 51,424
Converse, Frank M. Fnvelope seal. 53,536
Convay (itorge M Grate.
Cook Cooler Company. Axle cooler. 51,108
Cook Cooler Company. Car journal cooler.. 52,107
Cook, Eugene. Cattle guard.
Cook, Francis L., et al. Cut-off for gas systems. 51,375
Cork, John W., et al. Brake rod . 54,096
Cook, Miles P. Axle cooler.
51,108
Cook, William, et al. Refrigerator 52,511
Cooke, John P. Cushion for stamping machines.......... 53,052
Corokson, Charles M., et al. Water-closet and tank...... 51,064
Cooley, Henry B., et al. Envelope machine counter.... . 53,090
Cooley, Henry B., et al. Envelope machine drying chain. 53,096
Coombs, Stephen H. Batter beater. 54,187
Comey, l'atrick H. Hydrocarbon burner.
Cooper, Charles F., et al. Milk bucket.
$\mathbf{5 3 , 5 1 5}$
Cooper, Charles F., et al. Milk bucket. 54,076
Coper, I). (i. Thermometer.
Cooper, John J. Device for repairing hose. 53,839
Conper, Thos. Cultivator.
Co-operative Foundry Co. Stove
Copeland, Robert J., et al. Binders and sheet therefor
Copeland, Robert Tanes, et al. Lock for order binders.
53,839
53,509
52,767
51,242
Corbett, Robert S. W. Weed destroying machine.... .
53,542
Corcoran, John, et al. Trolley.
51,669
Cone, G. T., et al. Brick making machine. 51,988
Corey, William W. Hydrant. 51,399
Cornell, Iavid F., et al. Tool carriage for lathes. 53,707
Cornell, Lewis 'l'. Hydrocarbon burner. 50.615
Corneille, Charles C., et al. Mould for sanitary ware..... 53,394
Cornish, Nathan. Band cutter and feeder. 51,828

Costigan. W. T., fet al. Brake.
Costigan, W. T., et al. Car axle
52.085

Coté F Monument 52,086
Côté, Treflé. Sad iron . 52,386
Cottam, Bartholomew. Bird food compound. 51,086
Cottans, Bartholomew. Bread holder for birds. 51,341
Cottam, Bartholomew. Perch for birds........ 54,221
Couch, Charles A. Locomotive $066,54,091$
Court, Alphonse. Washing machine. 53,333
Coup, John. Irawbridge safety device..................... . . 54,034
Couthland, Walter. Cultivator............................ 50,977

Coverdill, Edward R. Kag picker. 51,358
Covert, Janes C. Snap hook.... 51,588

Cowan, (\&. A., et al. Car axle.... 52,086
Cowan, (reorge W., et al. Bread raising appratus 52,764
Coward, W. H. Ore concentrator .. .
Coward, William H. (irinding mill.
C009
Cowdrich, Hiram 0 . Tooth brush.
52,609
52,707
Cowle, Wiliam E., et al. Waste heat utilizing apparatus.
Cowles, A. B. Paper box machine.
51,374
52,226
52,226

Cowles, William B. Hydraulic pressure system
Coyte, Joseph Slater. Enamel for leather
Cox, Harry B. Thermo-electric generator
Cox, Lottie. Work table.
Cox Type Setting Machine Co. Type distributing machine
Cozens, Ěra A., et al. Fork.
Craft, Thos., et al. Pen-holder
Craig, William. Fabric turfing machine
Crandall, Lucien*S. Electric signal
Crandall Typewriter Co. 'Iypewriter
Crane, Elliot H., et al. Fish hook
Crane, Thus., et al. Animal trap
Craney, Thomas. Electrolytic apparatus
Craney, Thos. Evaporator
Craney, Thos. Salt manufacturing machine
Cranston, J. H. Game
Crary, Jay Denison, et al. Non-refillable bottle
Crawford, Charles, et al. Electric ventilator
Crawford, Robert S., et al. Ball bearing axle box
Crawford, William H., et al. Fork
Crawford, William, et al. Wood-working machine
Crawford, William T. Railway gate
Crean, F. C. Car axle
Crean, F. C., et al. Brake
Credington, Herbert. Tap
Creedy, Major. Ash sifter
Creighton, Benoni E. P. Lantern
Crevier, Edward, et al. Clothes boiler
Crews, Jefferson P. Shaft tug.
Cripe, Samuel, et al. Dish washer
Cripps, Sylvester .J., et al. Mucilage holder
Crocco, A. B. Shoe holder
Crocker, William O. Turbine
Crombie, A. D., et al. Speed cianging mechanism
Crombie, H. S. Rivet setting machine
Cromer, Henry M. Hub attaching device
Crompton Loom Works. Lomm
Crompton Loom Works. L(om reed
Crompton Loom Works. Tuft inserter for looms
Cronstedt, Elias. Hydrant
Crosby, Daniel J. Comnecting rod for machinery
Crosby, David J., et al. Thill coupling
Crosby, Hartwell, et al. Lamp burner
Crosby, John H., et al. Underground electrical conductor and method of manufacturing same
Crossley, W. G. and E. A. Vehicle tire
Crossman, C. W. Bean harvester
Crossman, John A. Stove
Crossman, R., et al. Velocipede saddie
Crotty, John S. Dress stay
Crowe, Robie. Washing machine
Crowther, Benjamin, et al. Wheel bearing
Croxal, John W., et al. Mucilage holder
Crovier, Thos. W. Sash lock
Crun, A., et al. Bicycle driving mechanism
Crump. Samuel. Cylinder mould for paper machinery
Crump, William E., ett al. Bicyele whistle
Culley, James, et al. Unrefillable bottle
Cullison, O. Car fender
Culp, I. H. Koofing composition
Cummings, Charles Carleton, et al. Bicycle stand
Cummings, Harry H., et al. Speed changing mechanism
Cummings, Henry H. Gas burner safety attachment.
Cumminga, James F., et al. Underground conduit.
Cummings, Summer F. Ash pan
Cundall, John Samuel, Robert Dinsdale, William Denton and Heury Cordingley. Oil and gas motor engint
Cunin, (ieorge. Machine for making stovepipe elbows
Cunningham, Christopher. Smelting furnace
Curd, Amos, et al. Method of raising sunken vessels..
Curley, George. Pan cover
Curran, Edward J. Garment pocket
Currie, John. Strength-testing apparatus
Currier, Cyrus C. Apparatus for treating garbage
Currier, Cyrus C. Process of and apparatus for treating garbage
Currier, Edwin A., et al. Calculagraph
Currier, John W. Bicycle support
Curry, Frank C. Street sweeper
Curtice, William Hicks. Churn
Curties, W. W., et al. Bicycle driving machanism
Curties, Walter W. Bicycle driving gear
Curtis, Charles G. Turbine
Curtis, Charles (i. Turbine governor
Curtis, David W. Apparatus for measuring or weighing fluids.
Curtis, 1 avid W. Apparatus for treating inilk or cream.
Curtis, Warren. Paper pulp screening machine
Curtis, Rosel M. Matter for destroying thistles
Curtis, Waldo C., et al. Bohbin holder
Cushing, Harry M., et al. Cementing apparatus
Cuthbert, William N. Calenlating machine.
Cutter, S. M. Die for forming nails.

53,173
51,607
51,594,
51,776
51,500
51,867
53,042
54,334
52,808
51,970
51,416
54,148
52,457
51,728
51,963
52,278
51,264
52,736
53,286
51,867
53,660
50, 984
52,080
52,085
51,36 ${ }^{\prime}$
53,(644
52,036
53,327
51,647
52,407
51,174
52,833
52,308
51,218
22,136
53,535
53,233
22,498
52,044
53,543
53,412
51,732

Cutts, Charles D. Insect powder distributor
53,033
Dade, Henry E., et al. Binder and sheet therefor
51,242
Dagett, William R., et al. Electric switch for street railway
Daily, Asa (i. Cattle guard.
Dake, Edward B. Wheel rim former.
Dakin, Frederick B., et al. Mould for sanitary ware.
53,793
53, 527

Dilto Mat 53,394
alton, Manrice. Burner for hquid fuel.
Daly, Daniel A. Scoop shovel..
Daly, Richard C. Broom handle
Dame, John E. Steanı generator
Danby, Mark. Horse shoe.
Dancel, Christian. Sewing machine
Danforth, Eugene. Kettle
Daniels, F. H. Musical dial.
52,704
53,(645)
53,580
54, 133
54,135
$\boxed{2}, 356$
54,063
. 53,195
Daniels, Johu P. Alarm-lock for bicycles. 51,993, 51,998
I ancereau, Pierre. Roller bearıngs............. 51,783
Darby, George Washington. Ladder chair. 51,711
Darby, Ion, et al. Hydrocarbon burner. $51, \mathfrak{M j 7}$
Darby, Walter, et al. Hydrocarbon burner................. 51,967
Darby, Walter and Ion, et al. Stove....... 51,715
Darling, Edmund R. Key duplicating machine........... 51,766
Darrah, Samuel M., et al. (ias making system. 51,919
D'Artois, Joseph \mathbf{N}. Plough for ditching 51,636
Date, Frederick, et al. Electric soldering iron............ 51,555
Daughtrty, James I). Typewriter. $52,964,61,944$
Dauphinee, Stephen J. Valve. 54, $\mathbf{5 3}$
Davey, John Francis. Pegging machine....... 51,(630
IDavies, Charles, et al. Suction device........................ . . 53,146
Davies, Edward. Type protector. 53, 29 !
Davis, Adolphus. Filter........
53,055
Davis, Clarence L., et al. Means of hindering freezing in water tanks

51,767
Davis, Clifton H. Bottle stopper. 52,208
Davis, Ellery C., et al. Horse shoe... 54,013
Davis, Michael F. Oar. $82,815,52,816$

Davis, John Charles, et al. Apparatus for raising sunken vessels.

52,495
Davis, Joseph Phineas. Switch-board for telephone exchanges.

53,905
Davis, Joseph Phineas. Telephone switch.
Davis, Samuel Perry. Device for placing tips on billiard ctes

51,489
Davis, Simeon C. Iron fence post.. $\mathbf{5 3 , 3 2 5}$
Davidson, Arthur.J., et al. Loom. 51,253
I Javidson, Duncan A. Horse shoe. 52,578
Davidson, Meyer J. Ballmill........... 51,013
Davidson, Otis Everett. Fruit macerator and press. 52,510
Davidson, Robert. (irain pickling machine. 52,274
Davidson, Thomas C. Cooking utensil..... 53,257
Davidson, Thomas C. Creamer indicator. $\mathbf{5 3 , 1 4 4}$
Davidson, Thomas C. Stove pipe 52,361
Davison, Albert. Fence post. 52,122
Davison, Albert. Gate... 53,948
D'A vignon, Marie R. de L. E. Medicinal compound................... 52,700
Davy, Charles F. Tilting spring seat. 51,480
Davy Electrical Construction Co. Electric lamp. 52, 304

Dawson, Henry Y. Oil and gas engine. 5 . $\mathbf{5 3}$!
Dawson, James. Prairie fire extinguisher. 52,935
Day, John A. Office indicator. 33,288
Dazé, Alphonse. Medicinal compound. 53,349
Dean, Albert E., et al. Telegraph and telephone system. . 54,357
Dean, Harry C. Pneumatic tire.
$54,3: 7$
54,282
Dean. John, et al. Marine conveyance.
51,104
Iean, John Peter. Machine for clipping horses and shearing sheep.
: 33,472
Deaner, Lee H., et al. Garment adjuster.................... 5 . 5 ,480
Dearnley, Van Charles. (
De Camp, Ferdinand. Furnace for burning coal dust. $\mathbf{5 3 , 4 4 9}$
Decarie, F. L. Hose nozzle. 52,115
Decker, Charles H. Cash register . 53,537
Decker, Frank I. (Game. $\mathbf{5 4 , 2 7 9}$
Decker, Ira, et al. Water gauge. $5 \mathbf{5 2 , 5 0 0}$
Decker, M. M. Car compler.
Deere \& Co. Disc plough.
Dearing Harvester Co Mowing machine
Deering Mark I. Jar fastener.
1)ees, AnniéS., et al., Log sawing system...... 51,710

Deferari, (fiovanni 13. Medicinal compound................ . . 51,407
De Forrest, Stephen, et al. Metal can. $\mathbf{5 4 , 3 6 2}$
De Hoas, F. Alarm bell
54,146
Deininger, H. Fluid aging process. 54,345
Deininger, Michael F. Axle box. $52,43!$)
Deissler, Robert. Furnace . 52,26
Deissler, Robert. Locomotive draught regulator. . . . $52,284,52,285$
Deitz, Lewis. Bicycle lock.
51,718
De Kesel, Karel. Bee-hive. 54,248
De Lacey, James. Trace fastener. 53, 234
De Laney, E. (i. Kettle cleaner. 52,163
Delangle, Firmin. Food compound
51,098
53,309

De Geng, Henry L. Refractometer
De Lany, William. Vehicle wheel rim.
De Laval, CarlG. P. P'ressure regulating apparatus
De Laval, C. (i P. Means fur regulating motors.
Della Tiore, Frank, et al. Lubricator. .
De Moerhouse, E. Decorticating system.
Denayronze, Louis. (Gas lighting apparatus
D'Enghien, Charles D., and Alphonse D). and Sullivan D. Kiln for burning earthenware
Denison, Francis N. Dental motor stop motion
Denison, Francis N. Shaving brush and soap holder
Denison, Francis N. Sprinkler for plants, etc.
De Palacio, Martin A., et al. Conveyor....
Depeins, Lauran. Medical compound..
Depew, James, et al. Car coupler.
Depp, Leon, et al. Weather strip,
De Riar, Willis E. Oar lock
Derr, Heister C., et al. Railway switch
Deslandes, Jean 13., et al. Grain separating process.
De Souza, Antoine J. P. N. Traction motor..
Destruismaisons, J. W. P. Door.
Detzer, Henry E. Harness
Devers, William J., et al. Crank motion
Devine, Edward James. Electric signal for trains.
Devine, James J., et al. Electric ventilator.
Jevinney, Samuel C., et al. Nut and bolt lock
Dey, John. Workman's time record
Diamond Electric Co. Electric motor
Diamond Machine and Tool Co. Pedal and barrel
Diamond Match Co. Belt and apron adjuster
Diamond Match Co. Box filling machine
Diamond Match Co. Box making machine
Diamond Match Co. Box shuck making machine.
Diamond Match Co. Match making machine.
Diamond Match Co. Match making machine
Dibb, William, et al. Electric headlight.
Dibb, William, et al. Insulator.
Dick (The A. E.) Co. Pencil sharpener
Diks, William. Wrench.
Dickie, Byard. Indicator for setting axles.
Dickinson, Denison M., et al. Cultivator.
Dickson, Archibald A. Charcoal making system.
Dickson, Archibald A. Oro pulverizer.
Dickson, Edward. Gun powder.
Dickson, J., et al. Rail joint fastening.
Iickson, William H. Suppusitory, mold
1)ill, Thomas. Motor carriage.

Dillon, Robert. Saw-set
Dinkelspiel, P., et al. Life boat.
Dippo, (i. H. Car stop.
Ditchtield, John P., et al. Wood drilling machine
Dittrick, Rosco. Car fender
Divin, Samuel L., et al. Car coupler.
Dixon, George Thomas. Street scraper
Dixon, James, et al. Turbine.
Dixon, J. (i. Railway signal
Dixon, John G. Billiard marker's check.
Dixon, Thomas. Wrench.
Dixon, William H. Rock Drill
Iixon, Hugh. Bottle Stoppering device
Doane, S. ©. Wheelwright machine.
Jobbius, William E. Bath..
Dobbyn, Richard. Well caser.
Dobbe, W. H. Package filling and weighing machine.
Dobell, Tohn Laskey. Carbon manufacture
Doble, W. H. Weighing and package filling machine.
Dobson, A. Dust collector
Dobson, Joseph O., et al. Curtain stick forming machine
Iodd, Ernest J., et al. Buttle filling apparatus
Dodd, Wilis (x . Ore concentrator.
Dodge, Edwin C., et al. Lead pipe coupling
Dodge, James Mapes. Conveyor...
Dodge, I'T. Linotype machine
Dolmetseh, Willian H. Mechanical movement.
Donahoe, Hdward H. (Grease trap.
Donaldson, H. F. Hoist.
Donally, Melvin. Bottle washing machine.
Donath, Frank H. Mat.
Done, J., et al. Bearings and bearing surface
Donnelly, J. C. Match making machine.
Donavan, James. Lubricator.
Donovan, Thomas H. Boot and shoe counter.
Doolittle, Irwin Parker. Bicycle support
Doolittle, Perry Ernest. Brake mechanism for bicycles.
Doré, Aldé. Furnace dust preventer.
Doré, Elzéar. Cultivator.
Dorkins, John Thomas. Ventilator
Dorney, G. S. and R. J. Wire take-up
Doughtery, Albert G., et al. Riffe.
Dougherty, Thomas \vec{E}, et al. Raisin seeder
Doughty, H. J. Bicycle tire making machine.
Doughty, S. L., et al. Truck.
Douglas, Anna Marie. Bedstead for invalids.
ker
51,282
51,709
52,50)
52,507
53,462
54,213
51,031
51,926
54,326
50,997
52,416
51,217
53,669,
53,670
51,992
54,097
51,606
$54,11.9$
54,062
53,525
51,245
53,613
52,476
53,689
52,736
53,871
54,109
54,238
:54,299
52,468
52,467
52,465
52,466
52,469
53,601
51,145
51,756
52,038
52,842
53,633
53,573
51,750
51,749
51,662
53,302
50,942
54,081
52,176
52,186
52,095
52,619
52,083
52,381
53,960
52,048
52,194
64,421
54,038
51,102
52,397
52,216
51,133
51,010
52,063
51, (600
52,028
52,636
54,235
51,440
54,270
23,548
51,886
51,107
53,356
51,246
53,221
51,811
52,523
52,109
52,684
53,166
50,973
53,828
53,808
51,674
52,340
51,7f8
52, 1559
54,387
53,023
52,839
51,975
51,807

Douglas, W. Massage appliance.
52,184
51,211
54,196
Donglas, William, et al. Rug weaving system.
Dowling, Willard E. Sash holder
Down, Evan R. Meat curing apparatus and system
52,972,
Downes, Willian: A. (aage glass.
51,845
54,365
51,162
Downing, Edward H. Oil filter
53,888
Doyle, (ieorge A. Barrel support.
Irabsch, Adoly. Wilhelm Robert, et al. Drivg gear for cycles, etc.

53,869
51,289
$\begin{array}{lc}\text { Dredge, E. Folding box, basket, crate, etc. } & \mathbf{5 1 , 2 8 9} \\ \text { Drever, James, et al. Clasp for garment supporters. . . . } & \mathbf{5 3 , 7 0 8}\end{array}$
Drever, James, et al. Clasp for garment supporters.
Drewsen, Viggo. Apparatus for separating gases from liquids.

54,353
reyfus, Bernhard. Garter.
53,615
Driscoll, William. Foot guard for railway frogs. 52,784
Driver, Charles. Couch bed.. 51,51, 51,124

Drueding, Leonard H. A. (Aas buruer lighter.
Drummond Tobacco Co. Box or package
$\mathbf{5 1 , 4 8 7}$
$\begin{array}{ll}\text { Drummond Tobacco Co. Box or package } & \mathbf{5 1 , 4 8 5} \\ \text { Drury, Kobert, et al. Monument } & \mathbf{5 2 , 6 3 5}\end{array}$
Du Berger, Cyprien C. Adding machine. 52,902
Dubinsky, Moses, et al. Hood . $\mathbf{5 3 , 9 8 6}$
Du Bois, H. M., et al. Tire. 52,779
Dudley, George W. Adding and printing machine.. 52,023
Dudley, Jacob R., et al. Sleigh knee. 5 . 52,766
Duff, James R. Drill press.. 54,312
Duffek, Arthur, et al. Extirpator 51,310
Duffek, Arthur, et al. Typewriting telegraph................ 51,564
Duffield, William S., et al. Ready reckoner 51,038
Duffur W at Brake
Duffus, W., et al. Brake.
Dugan, Reuben A., et al. Railway frog.
52,159
52,247
Duhrberg, L. N., et al. Bicycle driving mechanism. 52,072
Duke, John F. Gas supplying apparatus for burners.
Dumoulin, Emilien. Method of making metal articles.
Duncan, George. Feed apparatus for printing machines. $\mathbf{5 1 , 6 2 2}$
Duncan, Joseph T. Lock for wagon bodies....... . . .
Dundonald, the Earl of. Cannon carriage and traction arrangement
he Earl of. Hand warming device...

Dunlap, Stewart. Oil can.
51,313
$\begin{array}{lll}\text { Dumlap, William H., et al. Bread raising apparatus } & . . . & 52,764 \\ \text { Duployer, Louis J. B. Cigarette filling machine } & 51,918 \\ \text { Di,073 }\end{array}$
51,918
54,073

Durack, Patrick H. Railway car replacer 5 . 54,074

Duval, Charles L. Guard for paper rolls..... 5 . 51,114
Dyer, Walter B. Typewriter prism pointer........ 5 . $\mathbf{5 1 , 0 1 4}$
Dyott, Denise. Bleaching compound for linen .
Eagle Pencil Co.
Pencil. . . .
Eagle Pencil Co. Pencil. .

Earle, Harry L., et al. Fastener for partible bodies.
Earle, Salger Reed. Furnace grate
53,799
Earle, Salger Reed. Furnace grate................................. Henry Mortimer, et al. Process of making stone.
Eastabrooks, John Howard, et al. Log sawing machine.
Eckred, John W, et al. Water elevator and carrier
Eclipse Non-refillable Bottle Co. Non-refillable bottle.
Economical Refrigerator Co. Refrigerator.
Eddy, Arthur J. Bicycle saddle.
Fdenborn, William. Machine for making wire fencing Edminster, Charles F. Scale.
Edwards, Henry. Medicinal compound
Effront, Jean. Worts fermentation system.
Efros, Charles, et al. Method of treating vegetable fibre
Eggleston, Rufus E., et al. Window nash fastener. .
Eisele, Stephen A. Truck bearing.
Eisenberg, C. Horseshoe
Eisenberg, Christian. Shoe fastening machine.
Eisenberg, Moses, et al. Hood.
Eldredge, A. W., et al. Steam engine..............................
Eldridge, R. C. and H M. Swivel....................................... $5 \mathbf{5 3 , 3 2 2}$
Eldridge, R. C. Stall
53,879
53,820
53,620
54,086
52,768
51,186
53,562
52,695
54,277
51,331
53,617

Eldridge, Reuben C. Snaj hook.
Eldridge, Samuel, et al. Window fastener.. 53,899

Electric arc extinguisher. The Canadian General Electric Co.
Electric motion arrester. The General Electric Co.
Electric switch. Henry B. Whitehead

Elliott, Andrew et al. Boot and foot protector 53,564
Elliott, Charles E., et al. Leather measuring machine.... $\mathbf{5 1 , 3 0 4}$
Elliott, David. Paper box
Elliott, Joseph H., et al. Piano attachment. 53,020
Flliott Paper Box Co. Pajer box...... 51,101
Ellis, (ieorge, et al. Coin freed electric meter. $\quad \mathbf{5 4 , 3 4 7}$
51,071
1,401

879

186

53,777
53,527
52,657
54,329
52,799
53,322
52,660
54,337
52,924

51,694
-

8

Fllis, Frederick A. Cycle frame.
Ellis, Frederick A. Methox of prearing allominum aloy tulkes.
Ellis, Frederick A. Metal woldening syat+m.
Ellis, Herbert H., et al. Roller hearing.
Ellis, James Mark and George L. Cant look
Ellis, Joseph. Sewer trap.
Ellis, Peter. Truck.
Ellis, William T. Car coupler.
Elmes, (ieorge, et al. Window screen and tly trap combined
Ehnore, R. P. Rock drill.
Elmsley, R., et al. Air pump;
Elson, Menry W., et al. Communion cup.
Emery, Charles 13. Stall Howr.
Emery, Charles (i. Air brake couphing
Emery, J. B., et al. Cementing apparatus.
Emmert, Edwin (f. Cattle guard
Empain, Edouard. Steam generator
Empire Self-Lighting Oil Lamp Co. Electric lighter for oil lamps.
Encke, Robert. Process of producing zine.
Engwall, O. F., et al. Opera giass.
Enquist, Frik' W. Carbonic acid sodium smbhate and magnesium carbonate
Epstein, Ludwig. Storage battery.
Erb, Paris. Brake.
Firkson, John A. Linotype machine.
Ernst, William Mr. Means for burning fuel
Errington, Franklin A. 'Tap.
Erwin, J. B., et al. Steam prump
Escher, Charles. Skylight support.
Esmond, Frederick C. Electric propulsion.
53,149 53,150
153,151, 53,152
53,597
50, 966
Esprersen, A. F. Shade
Essex, Stephen. Conveyor chain
Ethridge, Martin Van Buren, et al. Mail stamping machine
Eummelen, Henry.
Eummelen, Henry.
Eummelen, Henry.
Summelen, Henry. Rotary lirush
Eummelen, Henry, et all. Umbrella.
Eustace, John, et al. Wagon jack
Evans, Elbert J., et al. Stove leg
Evans, (ieorge H. Grating
Evans, George H. Hydraulic elevator seat
Evans, Horace M. Holder for ink wells and drinking culs
Evans, Horace, et al. I'ropeller.
Evans, T. A., et al. Filter for quicksand and weils
Evans, Thomas F., et al. Ventilator.
Eveland, William $\mathrm{L} . \mathrm{h}_{\text {, }} \mathrm{t}$ al. Thrust bearing
Everard, Charles. Bicycle.
Everett, Fred., et al. Trap for catching horn flies
Everitt, Walter F. Toy pistol
Ewing, Thomas. Telegraph.
Excelsior Wrapper Co. Machine for making excelvior wrap. $p^{\mu r} \mathrm{rs}$.
Fiwer, James A. Car wheel forging machine
Frackle, 1). P. Receipt blank
Fader, Silas. Car for coalete.
Fader, Silas, et al. Brake and fout rest for bicyclus
Fahlberg, Constantin. Saccharine making process.
Fair, Joseph Rowat, et al. Car coupher
Fair, Thomas S. Sieve and strainer
Fairbanks, Henry, et al. Suction device for paper making nachines.
Fairbrass, Herbert W. Keel, centre Woard, etc.
Fairchild, Newell Nathaniel. Hoop cutting nachine
Fairgrieve, A., et al. Conking utensil
Fairgrieve, Archibald Toaster
Falconer, David. Bicycle or sprocket-wher
Falk, George. Gun rack
Falkenberg, Eva M., et al. Tea pot.
Fandrey, Joseph. Truss.
Fane, Thomas, et al. Bicycle saddile
Fanning Ball-bearing Chain Co. Sprocket chain
Farini, G. A. Can carrier.
Farini, Guillermo A. Can burnishing machine.
Farish, N. Forceps.
Farmer, Francis M. Wire stretcher
Farmer, George B. Nasal inspirator.
Farnam, Jean C. Mittens and method of kniting them
Farrey, (deorge J., et al. Car coupler.
Fatkin, James. Wrench.
Faulkner, James Michael. Electric railway
Fauquier, Frederick (icorge. Tool for prosiectors
Favor, Milton M., et al. Shaft suppert
Fawcett, Robert C. Bicycle tool
Fawkes, F. (i., et al. Bicyele chain link
Fearen, Ddward, et al. Ore separating method
Febiger, John C. H•ating system.
Febiger, John C. Witer closet seat.
Feder, Harry. Skirt protector.
53,105
53,39;
53,202
53,520
53,772
52,47:
54,378
61,874

54,295
51,380
, 2,
50,846
53,952
21,933
51,473
53,310
53,9
51,68s
52,029
51,058
51,045
52,440
52,955
51,36:
52,557
02,134
:2,13
,122

53,012
61,691
53,121
50, 739
53,438
53,5108
54,104
21,7!3
54,250
23,044
6,943
5) 4,14

54,147
03,975
0,14

$53,1 \times 2$
54, 298
51,52:
51,502
3, (ix:)
53,609
. $1,1,608$,
$53,3 \geq 1$
$52,1 \geq 1$
52,025
52,065
53,910
51,525
53,266

51,4N8
54,311
53, 2×2
53,124
53,864
54,029
22,751
54,386
51,434
-1,
52,455

51,137
51,311

5toos
[4,301
52,827
52,606
53,558

53,213 Fordyce, Alexander Roberts. Metallic lathing
52,157 Forrester, lsatac N. Kotary engine
52,517 Forsyth, Henry H., and William H. Shade holding mechanism
Forsyth, Henry Hazlitt. Shade holder
53,256
Forsyth, Joseph E. Car coupler................................... 51, .653
52,224 Fortier, Gabriel F. Saddle bridge.
52,30! Fortier, Leonard A. Shor fastener.
22,3\$1 Fortier, Lucien N. Hot water furnace.
$53,85 \pi$ Vonte, Thomas 1. Commode.
20, 464 Foster, Alonzo M. Japping tiol for maple trees.
Fee, George, et al. Flectric register
51,853
Fellner, Christian, et al. Ammomia manufacturing system 52,893
Fenmo, //eph. Witer filter.
52,127
Fergusom, I avid 11. Methorl of treating mineral fibre.... 51,$121 ;$
Ferguson, E. I'. Seed drill.
51,250
52,442
5. 1,232

51,950
51,465
53,723
53.724

54,150
51,454
52,098
52,249
61,658
54,396
53,305
$51,5!4$
51,(880
52,888
53,184
53,199
53,811
51,260
61,145
53,02k
$54,26!)$
51,62!)
50,996
52,037
52,887
52,879
51,992
51,448
53,194
Flagg, (i. II. P. Polishing device..... $2,217,52,218$
Flagg Manufacturing Co. Stringed musical instrument $51,922,51,932$
Flannery, Patrick, et al. Animal trap. 62,979
Flaschsmann, Albert. Condfusation water conductor. . . 51,779
Flegal, Jarvey J. Hanger for coats, trousers, etc......... 53,437
Fleming, Charles R., et al. Filter for quicksand and wells. 54,147
Fleming, Horace I)ill., et al. Bank note binder. 53,030
Fleming, Jacol M. SAcreen . 53,389
Fleming, Janes. Stove . 53,078
Mleming, Susan, et al. Bicycle drive gear 52, tix

Fletcher, bernard M. Apparatus for ut...izing seatwates. 03,063

Fleu
Flohman, Gustaf F, teamomump 52,403
Flower, James M. Wrench....... 54, 318
Flower, dames M., et al. Chopper for vegetahles......... 52,801
Floyd, Charles A. Vehiele shaft. \quad. 1,091
Fogg, Adna J. Lard package . $54,21!$
Gog, berton il. Billard table cashion........................
Fotk, David II. Wire stretcher.................................... 3,949
Folk Ellis Patent Marine (iovernor and Safety Cut-uff Co.
Electrical cut-off for marine engines.
52, 68
54,384
Fonda, l)avid (). Roller for type writers.................. 51,432
Foote, 'Theodore M. Electric lamp carbon............. 51,784
Forbes, Arthur Allen. Let off mechanisu for looms. . . . 53,730
Forbes, Ehmer Abram, et al. Pen holder 53,790
Force William H at Fyelet
54,407
64,407
54,225
$54,2 \% 5$
51,226
22, 645
$54,2 \times 8$
-33,688
53,411
53,256

02,803
04,178
52, 876
53,227

Foster, James W., et al. Wreck raising apparatus. \quad. 1,0107
Foster, Mark W. Stove..... 53,088
54,111

Foster, Zelbulon. Tire
Fomitan, John C. Pump.
Fowler, Charles. Chothes drier.
Fowler, Frank T. Bicycle frame
Fowler, Hiram (i., et al. Boring tool
Fowler, Thomas, et al. Hoe.
Fowler, William M. Liquid meter
Fowler, William Miles. Bottle filling machine..
Fowler, William Miles. Liquid dispensing apparatus 51,369 ,
Fowler, William W. Box lid support
Fox, Albert E. Bicycle
Fox, Frank Averill, et al. Car coupler,
Fox, John H. Brake
Fox, Josiah B. Radiator.
Foxworthy, Mary J. Garment protector
Frank, Enil John. Knitting machine..
Frank, Lee. Soap cup.
Frankel, Simeon, et al. Animal brand.
Franklin, Henry H. Electrical signal for vessels
Frasch, H. Petroleum refining system.
Frasch, Herman. Linseed oil purifying system
Frasch, Herman. Metal mining system.
Frasch, Herman. Process of and apparatus for refining 1retroleum
Frasch, Herman. Process of refining petroleum
Frasch, Herman, et al. Means of increasing flow of oil weils
Fraser, Alexander, et al. Brake.
Fraser, Hugh (i., et al. Key board
Fraunfelter, kmmit E. Kailway gate.
Frazer, Johnson, et al. Shiugle planer.
Fréchette, Isaie. Hat pin.
Frederick, Menry J. Saw.
Freeman, Alson W., et al. Dipe wrench.
Freeman, s. A., et al. Butter and cheese cutter
Freman, William II. Insect destroyer.
Freeman, William J. and Edwin. Velocipede driving gear
Freese, Francis J. Wax pot.
Freese, Jicob A. Gate
French, Benson, et al. Steam engine
French, Charles A., et al. Window case and sasti fixture.
French, (iearge B. Hammock
French, (i. M., et al. Yump
French, Zachary T., et al. Triuming and chamnelling machine
French, Z. T., et :al. Sewing machine for soles
Frendenherg, Moise, et al. Teleplone
Friant, Thomas, et al. Carpet sweeper.
Frick, Cyrus R., et al. Staple driver.
Freidheim, Arthur. Stamping device for cartoons, cards, etc.
Friendlander, John. Gias burner......................51,957,
Friendlander, Edgar. Barrel or package charger or discharger.
Frieker, (suy Carey. Advertising apparatus.
Friese, (ireene William. Photography.
Frisbie, Willard.J. Under garments.
Fritz, George W., et al. Mining machine.
Frosel, William. Oil can..
Fruit Cleaning Co. Fruit seeder.
Fry, Henry Ement. Ore extraction system.
Fryer, J. W., et al. Valve.
Fuller, Henry F. Gas generator.
Fuller, Howard M., et al. Tule scraper
Funk, Williau K., et al. Tie plate
Furlong, Thomas. Pne Pmatic tire.
Furnier, Charles. Cartiage spring.
Furstenfeld, Valentine, et al. Wiagon brake.
Gadoury, Ophini L. Stove
Gagnon, lidace W. Box for holding bottles...
Gagnon, Edmond. Sad Iron
Gaherty, Denis. Bexm.
Gaisman, Henry J. Waist belt.
Galbraith, Rutert S . Bicycle mud guard.
Gale, Adelbert H. Spring mattress.
liale, Francis \mathbf{G}. Wire mattress and frame
Gallager, Henry, et al. Car coupher.
Gallanore, Charles Edward. Car coupler
Galt, John. Handle bar.
Gamble, George R. Draft equalizer
Gamble, Joseph W. Draft equalizer
Gandry, Louis H. lamper
Gardner, Charles Henry. Inkstand
Gardner, Guy Huggins. Pneumatic tire
Gardner, Perry (i. Spocket-wheel and chain.
(vare, Thomas, et al. Nut lock
Gargare, Louis. Sign Letteter.
Giartman, John E., et al. Rock drill.
'earvey, Pavid, et al. Car fender.
tiary, William N., et al. Filter for quicksand and wells.
Giaskins, Walter Augustus. Wedge for securing rails in their chairs
Gatchell, Charles H. Bicycle handle bar.
Gates, Elmer. Lom
Gates, Elmer. Lown

[^2]51,442
52,395
53,254
53,365
51,327
51,348
52,681
52,453
52,634
51,187
54,294
51,719
50,985
51,471
52,240
52,383
51,517
53,024
53,445
53,191
51, 123
53,576
53,725
53,726
51,676
151,893
52,159
53,125
54,401
52,817
53,761

52,336

53,6191
52,061
52,393
52,792
54,144
5:3, (i30)
53,477

53,484

51,321
51,431
51,863
53,280
51,576
51,934
54, 168
52,956
52,064
51,834
52,916
51,412
53,059

$51,7!4$
51,733

51,733
51,712
51,712
53,216
54,370
50,494
53,755
53,684
22,991
54,059
53,376
51,356
51,591
54,410
53,298
:11,920
52,050
52,401
$5 ., 808$
53,464
51,347
51,347
:3,350
33,678
:33,640
33,082
22,726
53,706
51,102
53,188
54,147
53,787
21,083

Gates, Henry L., et al. Can
51,103
Gathright, John R. and Josiah B. Railway street sprinkler. $\left\{\begin{array}{l}52,937 \\ 52,938\end{array}\right.$

Gaucher, Louis. Sap bucket cover and spout combined.... 52,715
(rauthier, Aristide J. Trunk handle..... 53,070
Gauthier, Dolphis and Alexander. Submarine search lamp. 54, 139
Gauthier, Edouard. Slide for coasting.....
Gee, Janes E. and William J. Floor washing machine.
Geering, Adolph. Ice shaver and scoop .
Gehman, Abraham B. Sign.
Geiger, Adolphe. Pump
Geiger, A. S., et al. Car track cleaner.

Geisler, Hugh P. Device for underwear. 51,026
Gem City Stove Manufacturing Co. Stove................. 51,277
Gendron, Octave. Corset clasp 53,404
General Compressed Air Co. Fluid pressure regulator..... 54, 106
(ieneral Electric Co. Car wheel............................ 52,033
General Electric Co. Electric brake........................ 54,206
$\begin{array}{llll}\text { (jeneral Electric Co. } & \text { Flectric motion arrester.............. } & \mathbf{5 1 , 6 9 4} \\ \text { (ieneral Electric Co. } & \text { Motor controller. }\end{array}$
(ieneral Electric Co. Motor controller.
(ienest, Ladger. Hydrant
(renett, Louis J. Car seal.
Gerlach, Frank W. Car compler.
54,245
53,845
53,845
51,470

(xibbon, William E. Petroleum enginc..................... 52,330
(iibls, Jasper B., et al. Printing press............................ 52,882
(iibeault, U. Railway frog.................................. . 52,166
(iibeault, U. Switch.: ... 52,167
(iibson, William. Tie for kags and bales.................... 51,792
Gierding, Charles E., et al. Vare register.................... 51,543
Gifford, John M. Car coupler......................... 51,704
(iilhert, George, et al. Bicycle eaddle bar..................... 51,759
(xillert, Justim. Wooden bicycle frame........................ 53,831

Gillespie, Ansley \& Dixon. Cap.
Gillespie, James Bell. Horseshoe 53, 583
Gillespie, Jonathan Mce., et al. Furnace boiler........... 51,208
Gillette, (ieorge D. Rotary cutter.
(iilliland, Lee Oliver. Roller bearing.
Gillis, Ronald. Sailing vessel.
tilman, James R. Buok holder

(ilman, Charles S. Arm rest. 54,040
Gilmore, Amella. Hair curler

iilmore, Evangeline. Grater................................ . 53,491
(iilmore, Harmon. Vehicle gear........................... 51,205
(iilpin, Albert De L. Egg crate....................... 52,373
(ilson, William, et al. Jack......................... 11, , ī58
(iintz, Benjamin V. Pue-umatic tire............................
(iiskme, John S. Means of increasing directive force of magnetic needles.
Glaholm, John W. Maritime vesse]
Clancy, Hemry M. Harvester.
52,9\%2

Glascock, Chas. O. and John W. Baby jumper and rocking chair

51,587
53,178
50,958

Gleman, fdward f., et al. lung for barrels.
Gleman, Jedward.d., et al. Bung for barrels................. 51,861
Glidden, John Willard, et al. Veteriuary mouth sieculum
53,735
Gloeckler, Guillaume, et al. Totalizing apparatus......... 51,342
flover, Amasa S. Sewage appratus 51,621
(ilover, George T. Logging machine.
Glover, lieorge T. Logging traction machine.
nover, fieorge W. Toilet cane..
53,942, 53,943
Hover, John. Fence wire strainer........................... 53,079
ioddard, Charles F. (ats engine.

goding, Henry F. Thill suport	52,456
goerdes, William F. Pneumatic tire	51,901
(fold, Edward E. Hose coupling	54,323

(ioldrick, George H., et al. Cattle guard 53,328
Goldschmidt, \mathbf{F}. Walk stick and umbrella...................... 52,332

Goltra, J. N. Giate Lace cutter
Goltra, . F. N. Gate.. 52,152
(iond, Daniel D., et al. Strek car 52,803
(icoot, D. I., et al. Railway ventilation car.............. 52,000
(icod, dohm. Spinning machine... 53,175

Goodell, Austin W. Slabsawing machine...................
Goodhue, Frimk M. and James E. Bicycle
52,417

53,364
52,404

54,228
54,237

54,237
53,456
51,901

11,343
04.152

54,371
51,861
$\begin{array}{r}53,384 \\ \hline 53,784\end{array}$

53,277
52,718

Goodison, John, et al. Threshing machine
Goodman, S. N. Lamp or lantern guard.
Goodrich, John C., tt al. Spinning top.
Goudson, (i. A. Type setting machine.
Gordson Type Casting and Setting Machine Co. Type setting nachine.
Goodwin, John, et al. Cleat for wires, ropes and cords
Gordwin, John Francis, et al. Water closet
Goodyear Shoe Machine Co. Sewing machine
Goold Bicycle Co. Pneumatic tire.
Goold Bicycle Co. Tire for wheels
Gordon, Margaret J. Butter naking machine
(gorin, Fred. P. Typewriting machine
Gornan, latrick, et al. Street sweeper
Gosselin, Joseph A. Milk receptacle
Gottwals, W. O. File for documents
Goucher, William E. Switch for electric lights.
(iould, Charles E: Bob-sleigh.
Gould Couplar Co. Car buffer
Gould Coupler Co. Car coupler.
......
Gould, Edward Saline Baring. Boat propelling alparatus.
(iould, Edward S. Baring. Electric battery
Gould, Fdwin, et al. Wood cutting machine
(Gould, Frank I). Tuoth brush.
Gould, John. Chain.
(Gould, M. I). Tire stretcher
(gould, Mortimer D. Tire shrinker
(toulet, Alphonse H. Ointment
Graber, Ellis, et al. Ruling machine
Grace, Patrick J. Mop and brush.
(iraff, Andrew. Bicycle tire.
Graff, Andrew. Ice bicycle tire
Graff, Andrew. Tire
Grottin, (ieorge Washington. Valve.
(Graf, F. J. Car fender.
(iraham, David F., et al. Street sweeping machine
Graham, Edword M. Bicycle frame
Granger, Arthur O. Gas apparatus
Granger, Arthur 0 . Mantle for lighting ly incandescense.
Grant, A. W. Wheel and tire
(irant, A. W., cet al. Curd dam
(irant, Charles A. Box or crate
Grant, Charles C. Nut lock
Grant, Joseph, et al. Method of raising sunken vessels
Graves, Albert H. et al. Electric switch .
Graver, Emeline. Filter
(riaves, Frederick L., et al. Spike pulling implement.
(iray, Alexander. Frabric making machine.
Gray, Frank. Merry-goround
(iray, Elisha. Telautograph..
($\mathrm{rray}, \mathrm{W} . \mathrm{H}$. , et al. Tire.
Gray, William 1). Sifting machine.
Green, Calvin C. Ditehing machine.
Green, Charles Edward. Means for repaining pievinatic tires.
Green, Freeman A. Monument.
Green, John Joselph, et al. Ready reckoner
Green, William W. Bicycle driving mechanism
(rrent , Oliver. Case
Greener, Jacob. Life saving apparatus.
Greenhow, Robert R., et al. Artificial fuel.
Gregg, Union A. Wire fastener and stretcher.
(iregg, Vincent E., et al. Joist and wall hanger
(irgory, Charles A. Picking rod and gas lighting device
Gregory, Lugene. Bookbinding system
Gregory, Bugene. Iice lox
Gregory, Bugene. Top.
Grenier, Simeon. Car compler.
Gridley, Francis Webster, et al. Changeable speed mechanism for bicycles.
Griebel, Louis L, et al. Nut.
Grier, William W. Wood indenting mechanism
tirigys, Stephen A. Flue support.
Grilli, Romer. Bicycle.
(irimm, Alvas. (Garment support.
(irimm Manufacturing Co. Sap, bucket
Grimnell, A. J. Saw-set.
Gros, Henry Nicholas. Advertising device
Gross, Augustus. Boot and shoe.
Grossman, (G . Cleaner for safety lamp cylinders
Grove, Abraham E., et al. Rail joint
Grover \& Co. Vaporizer.
(Grube, Friedrich, et al. Masut loiler heating system
Grube, Max. Machine for fixing threads in envelopes.
G irugin, Hugh P. Adjustable rotary screen
Girumbacher, Friedrich M. Timber preserving process
Grund, Gustav. Drawing loard, ete
Guerate P. E. Tap.
Guerard, P. E., et al. Hose coupling
(iuertin, Lewis H. Bicycle brake.
Guygenherimer, Harry, et al. Pocket lxokk..
Guilhert, John M. Safety pin.
Guilleaume, Franz, et al. Jar closure.

52,283
53,131
53,894
52,195
52,195
51,846
51,541
54,063
53,662
21,536
53,200
52,750
51,499
51,213
52,206
52,856
21,641
53,54
53,546
53,760
53,953
50,943
54,437
53,248
52,072
52,075
51,743
52,436
53,238
53,506
52,118
51,408
53,773
53,243
53,403
52,908
53,974
51,729
53,180
51,302
53,399
52,537
53,655
53,568
51,351
21,512
51,695
52,693
51,(85)
51,660
52,779
52,405

51,(035
53,147
51,038
52,009
:2,793
51,609)
52,649
52,857
53,572
51,335
51,437
51,112
53,046
$51,!03$
53,867
53,320
52,528
54,461
52,155
50,961
53, 18!
24,210
51,924
53,987
51, 166;
53, 860
2) 853

53,754
53,176
53,7:38
52,742
53,682
61,990
52,647
53, 1リ8
51,501
53,381
51,313

Guilleaume, Theodore Electro-conductor insulator.
54,432
53,000
51,923
52,377
53,6i4
51,540
54,138
51,032
51,032
52,769
54,416
51,196
53,804;
54,275
54,275
51,547
53,374
53,851
52,450
53,479
53,015
54,181
53,428
52,179
51,349
54,394
53,181
52,612
53.860

53,629
51,364
53,643
52,781
54,165
52,150
54,303
52,002
53,319
53,950
50,967

54,166
53,51:9
53,941
51,701
53,533
52,595
54,399
51,721
52,345
52,782
53,656
52,476
51,420
53,217
53,462
51,188
54,083
52,868
52,301
53,369
51,723
51,723
53,883
53,577
53,594
21,594
20,802
52,69\%
52,105
51,218
31,770
:33,740
53,922
i2,726
52,359
54,106
52, $\mathbf{5}$ (i)
53,477
51,271
53,477
54,366
54,012
54,075
54,301
53,143
53,713

Harland, Frank W., et al. Stove leg
Harley, William. Gate..
Harman, Thomas De R. Bicycle.
Harman, Thomas De R., et al. Bicycle brake mechanism.
Harmann, Wilhelm. Method of making vanilline.
Harmon, William I. Wedge.
Harris, A. B. B. Tie plate for railways.
Harris, Ada. Hair straightener
Harris, Agnes E. Garment supporter and fastener
Harris, Arthur. Bicycle, etc.
Harris, Cassius F., et al. Curtain pole.
Harris, Charles, et al. Ventilator
Harris, Robert H. Crank
Harris, Robert L. Foundation structure
Harris, Samuel J. Rubber boot
Harris, William E. Treatment of sheet metal
Harrison, Frank S. Corset fastener.
Harrison, Frederick. Skewer pointing machine
Harrison, John. Valve
Harrison, John C. Slot drill
Harrison, J. W. Coal mining machine
Harrison Safety Boiler Works. Feed water heater and puritier..
Harrison Safety Boiler Works. Steam separator.
Harrison, Samuel. Vice
Harrison, William, et al. Jar, etc..
Hartenstein, Jayues, et al. Steam engine.
Harth, John A., et al. Drill
Hartland, Frederick William Thomas, et al. Moulding machine
Hartmann, Dr. F. Sulphurous acid.
Hartmann, Ernest Louis, et al. Centrifugal sepaator for cream, etc
Hartmann, Sophus, et al. Power transmitting mechanism.
Hartshorn, E. F. Means of attaching window shades and rollers
Hartson, Charles T. Pedestal for show-cases, etc.
Harwich, Otto. Ship model
Hartwick, Rosiuna.f. Washboard
Harvey, George H., et al. Gas making system.
Harvey, Jerry E., et al. Method of producing vacuum in cow milkers
Harvey, Park Benjamin, et al. Curtain pole
Harward, Upton. Toy.
Haskell, David S., et al. Swivel
Haskins, J. W., et al. Bedstead fastening
Hasselberger, F. Pocket brok.
Hastie, William G., et al. Hydrocarion burneriz,
Hastie, William (i., et al. Hydrocarbon generation.
Hastings, Joel. Wrench.
Hasty, Joseph P. Switch for railways
Hatch, James E. Bicycle.
Hatch, James E. Cycle.
Hathaway, Russell, et al. Tack machine
Hathaway, (ieorge M. Hand grenade.
Hathaway, George M. Shell fuse.
Hauck, Th, eorge and Frank M. et al C...............230,
Hausmann, Fred., et al. Bottle labelling machine
Hauss, Augustus P. Mail puech
Hauss, Augustus Phillip. Mail bag
Hawkins, Harry C. Saw vice.
Hawks, Erastus L., et al. Street sweeping machine
Hawley, Hattie M., et al. Unibrella frame.
Hay, A rchie K., et al. Non-refillable bottle.
Hay, Edward H. G. (i. . Radiator
Hay, William A. Bicycle bell brake.
Hayes, H. O. Grate for heating purposes.
Haynes, Jacob P. and Charles R., et al. Beadstead...5i, $\mathbf{7} 24$,
Hays, Abbie T. Musical game
Hays, Hammond V., et al. Telephone exchange system
Hayward, H. A. Grinding machine
Hazard, Frederick J. H. Bicycle saddle.
Hazeltine, C. W. Pneumatic tire covering
Head, Edward F. Spoon.
Head, Katie D. Hat fastener.
Head, Katie D. Skirt holder.
Healy, W. Box blank making machine
Heard, Thomas. Nut leck
Heath, Cheston L., et al. Lantern
Heath, Thomas T. Type cutting machine
Heath, Thomas T. Typewriter.
Heath, Thonas T. Typographic machine
Heberling, Emna H. and William L. Koofers' seaming tool.
Hecht, Max, et al. Car fender
Heckman, James J., et al. Electric switch
Heffron, John, et al. Electric soldering ir.n.
Hefner, William H. Gate hinge.
Heibling, Joseph. Electrolytic manufacture of iron alloys.
Heilmann, Jean J. Electric locomotive
Heilmann, Jean I. Steam engine
Heilmann, Jean Jacques. Steam engine
Heinkel, George. Smoke condenser

51,793 52,364
54,377
54,308
51,092
53,003
52.840

52,543
51,921
53,250
51,312
53,977
. 3,267 ,
53,429
52,263
52267
52,555
51,009
51,135
51,899
51,760
52,536
52,668
52,669
54,451
53,397
52,338
52,252
53,715
52,045
51,481
53,539
54,203
52,4;1
51,395
:53,012
51,919
51,301
51,312
53,343
52, 37
53,212
53,340
54,429
54,428
51,(:04
52,494
54,293
52,850
51,222
51,229
51,230, 51,231
53,463
53,363
51,613
51,940
52,607
:53,403
52,804
:4,098
52,041
51,757
51,538
51,725
51,349
51,555
52,232
52,917
52,637
52,462
53,487
53,154
52,135
51,981
51,383
51,835
51,836
51,837
52,312
50,995
53,568
51,555
52,705
54,021
52,423
52,423
52,424
51,805

Heintzman, George Charles. Agraffe
51,607
53,793
52,173
21,473
51,702
53,879
53,172
50,955
53,246
54,447
54,051
52,995
52,506
51,693
51,392
51,514
53,516
50,999
52,679
53,764
62,061
51,234
52,436
51,4! \%
52,617
51,459
53,083
51,189
53,316
52.757

53, 479
52,872
54,340
52,059
52,421
52,769
51,043
52,811
53,329
51,857
52,499
53,341
53,474
54,009)
51,961
51,706
51,699
51,327
51,707
52,448
51,030
53,757.
51,384
53,862
52,248
:51,287
52,516
53,264
53,305
53,626
53,880
51,451
51,3:0
53,25
52,104
53,709
52,689
52,107
54,452
52,274
53,602
53,727
51,780
51,476
51,719
52,075
51,999
[00,951
53,768
52,745
53,809
52,420
52,852
50,952
51,291
51,383
53,84
52,2
Heinz, Wilian I., et al. Electric switch for street rail
Helder, Jan. Apparatus for making cheese
Hemphill, Zachariah, et al. Process of making stone.
Henderson, Daniel. File for filing metal
fenderson, Gideon E. Planetarium
Henderson, Mary F. Bicycle saddle
tenderson, Samuel J. Driving gear.
Hendy, John H. Hydraulic ram
Henkel, Paul, et al. safety check or boiler.
,
Eenshaw, Joshua. Bicycle stand
, filuble buttl
Hepworth, Lewis, et al. Ruling machine

解,
Heron, James. Crank drive
rreshoff John \mathbf{B} Furnace
ewitt, James. Valve
Hey, George W., et al. Electrical exchange system.
Heyman, Charles. stop cock lock.
Hibbert, Decatur H. Fish net.
ickey, John N., et al. Disc harrow
Hickson, Theodore W. Handle for cans and cases
Highee, John H. Bicycle
,
High, Frank G. Stove utensil.
Hilbert, Baptiste. Loom.
Hilgert, Mathew. Ventilated shoe
, Dan. L. Machine for making wire handles.
Hill, George W. Lock
Hill, Robert. Steel shingle.
, Wiliam H., et al. Boring tool

Hillyard, Robert W. Insect destroying machine..
Hon, Dawson Brown. Metal lath
Hinchan, wry
Hinkel, M. J., et al. Bottle stopper
Hinman, Bertrand C. Gold extractor and gold extracting
Hird, John P., et al. Fgg crate.
Hirsch, Ludwig. Lubricator
Hirth, Emil. Hook and eye.
Hitchins, Richard William. Machinery for producin \mathfrak{s} slabs of plaster
Hitchoock Lamp Co. Water closet flushing apparatus. .
Hitchcock, Robert. Lamp
Hoader, Henry M. Farrier s implement
Hoag, G. E. Lumber drier.
Hock. Louis Frederick. Hair pin
Hocking, Thomas. Cream separator
Hodder, Albert, E. Fabric weaving machinery
Hodges, John Earle, et al. Eilectric railway
Hodges, , John Earle, et al. Electric tramway
Hoepfner, Dr. Carl. Electrolytical production of nickel Hoff, Conard Henry. Tire.
Hoffiman (A. F.) Carbonating and Racking Co. Methox of charging liquids with gas
Hoffman, John D. Clasp for shoe lace
Hoffnan, William H. Valve
Hoffmann, Gustav. Coke ove
Hoffm-inster, Reinhard and Frederick. Electrical (iold mining machine
Hoffmeyer, Louis J. Foots oo
Hogg, Alfred. Steam engine operating system
Hogue, Lovren. E. Injector
Hoine, x. K (rrain mearare and register
Holden, William (r., et al. Lantern
Holland, Trevenen James. Electrolytic apparatus.........
Hollingshead, John S., et al. Brake for baby carriages...

Hollis, Joseph. Chain and chain-wheel
Hollis, Joseph. Velocipede brake.
Holman, William J. Jocomotive
Holmes, Andrew 1B. Ventilator and water escape
Holmes, Elijah H. (iauge.
Holmes, Frank C. Bicycle crank shaft
Holmes, Robert. Bicycle support and lock.
Holmes, Thomas. Picking for piston rods
Holtues, William J. Car standard
Holmquist, John, et al. Smoke jack
Holson, Albert I3., et al. Pace indicator.
Holsopple, Austin. Corn knife.
Holt, Addison C., et al. Labricator

Holtmann, Charles. Flectric signal.
Holton, Frank Dudley, et al. Candle holder and pocket toul.
Homestead Manufacturing Co. Valve.
Honig Max. Process of manufacturing extract for timning
Hoofnagle, Willian T. Tack driver
Honeer, Mary P. C. Skirt attachment
Hoover, Joseph H., et al. Nethod of prodacing vacum in cow-milkers
Hoover, Sidney A., et al. Lamp burner
Hope, G. Saw-set and gauge.
Hopekins, Kirk. Cereal hulling and cooking process.
Hopkins, Kirk. Hominy making process. .
Hopkins, Kirk. Washer and huller for cereals
Hopkins, Parazette. Iock cover.
Mopkins, Robert (i. Inkstand shield
Hopkins, William.J., et al. Vehicle spring
Hopkins, W. J., et al. Vehicle spring
Hopkinson, John. Switch for storage hatteries
Horgan, Charles D. Car coupler
Horn, Thomas W., et al. Globe for lamps
Horn, Thomas W., et al. Vault light.
Horneck, Robert. Fruit picker..
Horning, Sammel F. Door hanger and roller. .
Horsfield, Joseph W., et al. Game.
Horton, Ovanto M., et al. Sumke puritier and consmaner.
Horton, W. P., et al. Dental apparatus..
Hottinger, John. Ellipsogiaph..
Hough, John T., et al. Bank note binder.
Houle, Alfred. Medicinal compound
House, Warren 1). Flour sifter.
Housser, (idideon Buyd. 1 rive gear for bicycles.
Houston, Terome. Track sanding apparatus.
Houze, Leon, J., et al. Hose coupler
Hovenden, Thomas 1I. Calendar
Howard, (ieorge H., et al. Log sawing system.
Howard, Jyman I). Merry-go-romid.
Howe, Charles S., et al. Composition for repairing pioumatic vehicle tires.
Howe, Harlow H. Lawn mower sharpener.
Howe, Hexekiah. Stovepipe ventilator
Howe, John B. Hat finishing machine.
Howe, W. H. Flue cleaner
Hoyer, (iustav. Pipe joining system.
Heyt, Adrian H. Watt meter... .
Hoyt, Earas. (${ }^{\text {Gas making process. }}$
Hoyt, Lester E. Cattle stall..
Hoyt, Matthew La Rue. Centrifugal creamer.
Hoyt, Willard E., et al. Harvester.
Hubbell, C. H., et al. Wire and slat weaving machine..
Hubbell, Martin. Kail joint. .
Huber, E., et al. Carpet stretcher and tacker
Huckins, John Milton, et al. Process of making stone
Hudgins, William Willis. Jag holder
Huebel, Otto H. Soap cup.
Huffman, Richard, et al. Drill.
Hufty, Samuel, et al. Method of converting iron into steel
Hughes, J. L., et al. School desk and seat.
Inghes, John. Cork shaving machine...
Hughes, Joseph S. Wood pulp squeezer..
Hughes, Wilson A. Stove or fire place.
Hull, Eugene E. Sash holder..
Hull, Randolph P., et al. Imbrella frame
Humphrey, A. H. F. J. and H. S. Water heater.
Hunt, C. J., et al. Tack machine.
Hunt, Charles B. Sewing machine.
Hunt, Henry. Pencil.
Hunt, James W. Chimney top and ventilator.
Hunt, Nathaniel Frederick Mayer. Garment stay
Hunter, F. E. Box iron.
Hunter, Marcus E., et al. Marvester.
Hunter, W. H., et al. Bicycle stool and jemich.
Ifuntress, F. F. Head light
Huppert, Tohn. Animal trap.
Hurlhutt, F., et al. Dental spittoon
Hurschmann, Otto. Oil stove..
Hurt, Edwin (x. Pnemmatic tire plug tool
Hushand, Thomas I mome. Drip cup for umbrellas.
Hutcheson, J. J. Bath

52,604
54,027
33,218
52,820
52,686
23,372
-33,128
61,(i38
51,880
51,304
22,348
51,799
63,968
50,48
52,573
21,8:
52,762
53,838
51,065
22,8,89
21,301
22,328
52,2e3
04,271
54,202
33,847
51,402
20,915
51,761
52,14!
52,966
52,!20
51,151
51,152
53,378
5:2,6!6
31,006
51,720
52,148
51,421
53,030
53,351
53,119
53,696
52,711
54,328
51,851
51,710
53,675
53,1:M
22,889
54,089
51,140
53,324
52,967
51,094
51,747
, 51,122
53,801
52,4!0
54,102
51,317
52,414
53,87!
52,360
51,517
21,382
21,936
32,091
52,560
52,680
23,0:1
53,008
52,804
51,158
21,222
53,022
53,262
:1,642
53,734
52,154
52,490
53,323
22, (a7
24,148
53,169
51,786
52,441
53,71.2
22,234
Hutchinson, James J. Dicycle tire binder..
Hutchinson, William Austin. Sash holder.
Hutchinson, William F. Match coil carrier............................... 51,4
Hutchinson, William F . Stave making machine.
Hutchinson, William F., et al. Weod entting machine ... 50,943
Hutton, John, et al. Hydrocarton burner...51,62s, 54,437, 54,429
Hutton, John, et al. Hydro-carbon generator............... 54,428
Inxtable: William, et al. Stovepipe shelf and clothes drier combined.

53,036
53,818
51,841

51,027
Hyatt, William H. (iold extracting apparatus. 54,151
Hyle, Menry A. Axle box . 54,201
Hynds, (ratirge A. Tohaceo pipe......... 54,112
Ide, Alhert L. Engine.
53,848
52,925
Indianapolis Chain and Stamping Co. Process of making rivets, studs, ete,

54,281
Inglish, W. H. Saw-mill
Innan, Horace and Harry A. Machine for aplying adhe-
sive strips to loxes, ete
Inrig, Donald, et al. Foot and shoe
Iredale, Joseph H. Lamp.
Irvine, Robert. Embrella tent and holder
Irwing, Charles C., et al. Cheese knife
Irwin, Herbert E., et al. Ballot paper.
Irwin, Joseph l., et al. Car coupler
Irwin, Simmel. Car track cleaner
Irwin, Sammel, et al. Lubricator for vehicles
Irwin, sammel, et al. Medicinal compound.
Ives, F. E. Camera
Jaccard, Gustave I). Imbreda
Jackman, Wilbert .J. Hydro-carbon burner... 54,179
Jacks, Richard. Bandage.
-Jacks, Richard. Bootjack.
Dackson, Arthur S. Tablet for loottles.
Jackson, Chorles.J. Vice.
Jacksen, Charles I. Oil lamp and stove.
Dackson, Charles O. (ias valve
Jackson, Edward I., et al. Distilling apmaratus.
Jackson, (i. H. Ibevice for protection against roblers. .
Jackson, J. H. Bolster stake for wagons.
-Jackson, J. T., et al. Radiator.
Jackson, Sam., fet al. Radiator.
Kal fo.............................. . 54,101
Jacobs, Arthur 'T. Nipule forming machine. 54,233

James, Frederick R. (rame apparatus. 51,336
James, Frederick T. Cosmetic.......................... ... 51,491
Jameson, Rolert John. Press forstamping leathei. 53,746
Jamieson, J. Furnace
Jamieson, James H., et al. Whiffletree
Janin, A. F. R. Artificial stone...
22,172
53,007
...... 54,403
Jarke, Alexander and Agnes. Bicycle pedail....
Jardine, Robert et al. Boot and shoe polishing machine.. 51,840
Jarmain, Thomas M. Hay making machine..... 53,392
Jarvis, Frederick F: Sash fastener. 5 . 53,702
Jarvis, Fdgar 13. Kicycle saddle
Jeffery, Frederick W. Sales book. 51,428
Jeffery, Thomas 13. Wheel rim and tire. 483
Jenkins, Joseph H. Electric motor controller 51.697
Jenkins, William. Bicycle support. 53,441

51,946

Tensen Can Filling Machine Co. Soldering machine. $\left\{\begin{array}{l}51,947 \\ 51,948\end{array}\right.$
Jerome, W. C. Bottle
Jettey, Victor and Gitistave. Drill.
Jewell, Ira H. Distilling apraratus.
Jewell, Omar H. Filter.
Johannsen, Joachim. Steering apparatus.
Johns, (H. W.) Manufacturing Co. Electric switch.
Johns, /Zacharia David, et al. Heater.
Johnson, A. F., et al. Brick making machine.
Johnson, Axel. Can hlank cutter.
Johnson, (ieorge B., et al. Rotary cutter.
Johnson, George Washington. Calendar for jencils

- Johnson, Gustaf F. Wrench.

Johnsom, Gustaf E. Chalk liner
Johnsom, (:. W. Calendar

Johnson, Henry C., et al. Car compler. 5 54,230
Johnson, Isak. Motor
Johnson, Jackson. Pitchfork
Johnson, Moses. Hanres.
Joenson, Warren S. Heat regulator
Johnson. Warrens. Mechanical movement
Johnson, Williarn A., et al. Selvage weaving art and ap. paratus
Johnston, Andrew. Cultivator . 54,399
Johnston, Andrew. Cultivator tooth........
Johnston Audrew Eusilage cutter.
52,385

51,214
53,241
53,:940
51,843
53,086
54,220
53,610
52,117
52,485
51,116
52,652

52,901
50,964
51,671
51,944
23,425
53,113
52,879
T2, (i6i
52,625
54,101
1

491
53,74
2,172
:4,403
53,511
53,702

53,441
51,946

50,071
52,951
52,371
51,2,0
51,888
51,687
53,764
51,988
51,172
51,039
51,494
51,960
51,284
52,346
54,230
53,391
51,617
$5: 3,209$
52.258

52,257

Johnston, Walter Robert. Fire extinguisher
Johnston, W. F., et al. Seeding machine
Johnston, Willian. Camp stove.
Johnstom, William H. Lubricator
Joice, John J., et al. Plumb and level
Joly, John. Photugraphy in colours.
Joncas, J. C. Hay press
Jones, A. B., et al. Dental apparatus.
Jones, A. W., et al. Musical instrument
Jones, Budd Jay. Rail bond for electric railway
Jones, Charles C. Acetylene gas generator
Jones, Daniel. Sewing machine
Jones, Henry A. Furnace for deoxidizing.
Jones, H. H. Belt fastener.
Jones, J. A., et al. Car coupler
Jones, James W. Animal trap
Jones, J. E. Tension device for wire fences.
Jones, John M., et al. Mucilage bottle.
Jones, Joseph R., et al. Dental plugger.
Jones, L. M., ct al. Seeding machine.
Jones, Oscar.J. Hat securer
Jones, Reese C. A., et al. Fire kindler...
Jones, Richard. Swage gear
Jones, Samuel M., et al. Register for letter carriers.
Jones, William M. Bedstead
Jonsson, Stephen B., et al. Moving machine.
Jordan, Frank C. Electric signal clock
Jordan, John F. and Geo. A. Electric signal clock.
Jordan, F., et al. Car coupler.
Jordan, Thomas R. Envelope
Joslin, Frank A., et al. Rock driil
Joughins, George Robert. Car truck
Joynson, Frederick, et al. Jar, etc.
Judge, John S. Vayorizer and inhaler
Judson, Whitcomb L., et al. Fastener for partibie loodies.
Jukes, Elias A. Non-refillable vessels
Julien, Jules. Electric accumulator
Julien, Jules. Electrode
Julien, Jules. Storage battery
Juney, Frank ($:$. Plumb or level
Just, John A. Paving composition.
Kaemien, Falket. Stove.
Kammerer, Frank G. Car coupler.
Kane, Maurice. ('rain binder
Kane, Maurice. Grain binder knotter
Kane, Maurice. Mower.
Kane, Thomas. Gas engine
Kann, Myer Milton. Polishing material
Kantonowitz, Julius. Process of manufacturing starch
Kantz, Charles, et al. Valve.
Karlson, Frithiof, et al. Non-refilable bottle
Kay, Alexander, et al. Bicycle frame
Kavanagh William A., et al. Non-refiliable bottle
Kay, Thomas L. Electric elevator apparatus.
Kaye, Joe., et al. (iame.
Keating, John Joseph, et al. Fire kinding compound
Keating, Robert M. Bicycle frame
Keegan, Martin. Hammock support
Kreler, Calvin, et al. Device to prevent spreading in railway rails.
Keler, Willian Perry. Pump.
Keene, Carter 13., et al. Water heater for troughs
Keener, Daniel S., et al. Thill coupling
Keeran, William H. Writing tablet.
Keesee, Frank P., et al. Vending machine.
Kehle, Enil, et al. Camera
Kehle, Emil, et al. Chemical compound for photographic Jurposes.
th, H. D.
Keith, H. D. Sales book.
Keith, Jessie E., et al. Bicycle suport and holder
Keith, Nathaniel S. Gold and silver separation
Keller, Julius. Pneumatic tool.
Keller, Martha E. Pessary and womb battery.
Kelley, Charles. Envelope.
Kellner, Carl. Diaphragin for electrolytical apparatus
Kellner, Carl. Electrolysis of salts.
Kellner, Carl. Process of producing alkaline chlorates
Kellnor, Adolf, et al. Clothes lifter.
Kellogg, John H. Alimentary product
Kellow, Joseph, et al. Non-refilling bottle
Kellum, Samnel M. Artificial limb.
Kelly, John F. Electrical apparatus.
Kelly, John Forrest. Apparatus for detaching grounds in electric circuits.
Kelly, William Grant. Snap
Kelsey, Fred. W., et al. Nut lock.
Kemble, Edmund, et al. Music leaf turner.
Kemler, William Hernan. Metallic alloy. .
Kemper, Alfred C. Camera.
Kemfer, William, et al. Bottle..
Kempshall, Elzear. Button fastener.
Kempshall, Elzear. Eyelet.
Kempshall, Elzear. Lacing hook.

51,464
53,187
52,968
54,320
53,511
51, 125
53,651
52,148
52,667,
54,161
53,163
53,242
51,433
54,260
52.272

52,098
54,317
51,238
53,431
52,479
53,187
53,133
531,008
53,60
53,692
53,618
58,585
52,327
52, 162
51,185
51,102
53, 804
53,397
52,430
52,806
52,806
54
54,258
54,053
54,327
51,277
52,84!
52,087,

52,088
53,244

53,244
53,800
51,177
52,398
53,785
54,174
51,354
54,023
54,424
52,538
51,096
51,713
53,453
50,960
51,654
52,391
51,469
51,732
52,861
53,135
54,321
52,960
52,025
53,266
54,067
51,385
54,045
53,041
52,314
52,520
52,514
53,134
54,415
51,250
52,746
54,312
51,263
53,004
53,373
51.605

52,320
52,513
53,695
51,526
51,194
51,825

Kempter, Danicl E. Horseshoe nail
51,847
51,320
52,067
51,039
53,502
50,954
53,430
53,260
51.340

52,568
52,725
52,767

52,805

54,246
54,033
53,829
52,292
53,780
51,511
51,323

53,951

51,911
50,995
54,101
53,!02
53,863
52,291
53,835
52,863
53,127
53,616

52,495

52,347
52,288
54,011

52,884

51,199

53,098

51,090
51,380
51,953
52,831
52,408

53,436

52,106
52,134
51,164
53,029
52,017
53,820
53,775
53,789
$53,2 \times 3$
53,283
53,886
53,840
51,686
51,379
54,188
54,168
54,331
54,330
54,332
51,380
53,123
54,128
53,123
51,180
52,717
52,054
54,347
51,512
52,642
53,778
51,575
51,670
51,208
51,219
53,642
53,053
52,575
51,765
52,313
54,395
54,392
51,781
51,977
51,095
51,429
51,995
51,619
53,636
52,562
Kranse, Otto C . Shooting stand
Krause, Roswell F. Lawn mower grass carrier

Krebs, E. L. Suspender.
Kreiger, Frederick C. Horse collar
Kreimberg, F. W. Brush for taking electric current.
Kressel, Edward. Food compound
Krizik, Franz. Electric railway.
Krohne, Iver A., et al. Horseshoe
Krug, Hartman. Chair seat
Kubler, E. G., et al. Oil compound
Kubler, E. G., et al. Varnish.
Kuhn, Carl. Ball Joint
Kundtz, Theodor. Wheel rin?
Kundel, Neil. Washing machine.
Kunstwerber, Claviez \& Co. Creel.
Kunstwerber, Claviez \& Co. Plush making process and apparatus.
Kunzel, Charles A. Filter
Kunzel, Charles A. Ice making machine
Kurtz, 'Jennings U., et al. Child's crib
Kutzner, Emil, et al. Metal can sealing nachine.
Kydd, John H. Wheel rim.
Kyle, Morison. Shirt collar band
La Bauve, Odelon J. Wire stretcher and splicer.
La Baw, John W. Label holder
Labofish, Charles S. Calculating machine
Lacey, Thomas. Fire extinguisher.
Lackawanna Wheel Co. Bicycle crank shaft
Lacroix, Joseph. Pheumaticsole and heel
Ladue, George C. Fruit seeder.
LaFleur, B. Saw swage.
Lahey, John W. and Thomas W. Stave preparing machine
Laing, Alexander. Planetarium
Lajeunesse, Pierre, et al. Grain separator process
Lally, John. Fireplace throat.
Lamb, James D., et al. Car fender
Lamb, James G. Cold storage system and apparatus
Lambert, Chas. J. S. Refrigerator
Lambert, Frank. Typewriter.
Lambert, John W. Gas engine.
Lamm, George D., et al. Band cutter and feeder.
Lamont, Archibald. Railway car refrigerator system.
Lamos, (George W., et al. Gas engine and governor
Lamson, J. H., et al. Washine Machine
Landgraf, H. Knife sharpener.
Landon, David C. Hose reel
Landquiste, Charles P. et al. Non-refilable bottle
Landry, François, X. Stone cutting machine
Lane, George. Sod cutter
Lane, H. P., et al. Wood pulp molding process
Lane, William G. Coal dumping car
Lang, Herbert. Furnace.
Langewald, Alfred \mathbf{A}. Carding engine
Langlois, Sévère, et al. Milk puritier and cooler
Langworthy, Lucius H. Earth auger.
Lamphere, Walter I., et al. Sled..
Lansell, George. Pump.
Larimer, John J. Gate spring.
Larkin, Peter Charles. Packing machine
La Rose Car Brake Co. Brake for cars.
La Rose Car Brake Co. Railway brake
Larsen, Hakon S. Cork preparing machine
Larson, Petter A. Rotary engine.
La Rue Omer. Trap for sinks, ete.
Lassus, Jean B., et al. Hose coupler.
Last, W. H., et al. Tap.
Latham, Thomas W. Bicycle gear
Latour, Joseph O. B. Device for cutting channels in ice.
Laughlin Hough Drawing Table Co. Drawing table
Laughlin, John. Fodder cutter
Laughlin, Samuel J. Adjustable table.
Laughlin, Thomas. Sprinkler for potato vines
Lauritz, Knute, et al. Shingle planer.
Lautner, William C. Burial casket.
Lavender, C. F. Bicycle frame.
Lavender, C. F., et al. Bicycle saddile
Lawler, William F. Cattle salter.
Lawrence, George R. Electric flash light apparatus
Lawrence, John H. Hinge
Lawrence, Sydney. Marine propuision mechanism
Lawrence, W. H., et al. Milking machine
Lawson, Lewis E. Bicycle saddle
Lawthiam, Thomas, et al. Process of extracting metals from ores, etc
Lazard, Eugene. Fire arm
Leaker, Arthur A. Billiard table apparatus
Learmonth, George et al. Tobacco package.
Leask, John. Ribbon spool
Leatch, W. Metal bearing
Lebret, John C., et al. Means of hindering water tanks from freezing
Le Brocq, Richard F. Elevator safety device.
Lecavelier, A., et al. Clothes boiler
Lechner, Joseph. Trace releaser, holdback and brake
Leclair, Wilfrid. Hay press.

52,073
54,199
51,496
52,8.8
38,468
54,013
53,864

51,219

53,335
53,448
53,308
51,202
22,311
52,24;
54,045
53,377
50,950
21,898
-51,971
51,554
52,324
54,037
51,938
$51,2^{294}$
53,372
51,210
53,304
52,099
:1,569
53,339
54,062
53,407
54,073
51,931
52,511
54,169
51,316
51,361
54,007
54,099
22,160
:52,120
51,443
51,354
51,093
51, $\times 2.2$
22,687
52,723
53,668
53,497
54,061
51,423
51,868
23,312
51,427
51,839
52,855, 52,944
23,275
51,070
54,383
53,981
24,328
51,248
52,85 !
51,379
53,386
52,845
$51,80 \mathrm{~T}$
51,752
52,817
52,814
53,214
53,213
51,681
53,476
54,322
53,037
52,725
53,097
53,571
51,744
51,06fi
53,435
53,140
52,074
51,767
:22,713
53,327
52,822
53,685

Ledman, John, et al. Sled.
61,86x
Le Doux, Carl. Ore extractign
51,712
:52,765
Schuchardt Car Mantacturing Co. and John W
Schuchardt. Car coupler.
.52,626, 52,627,
Lee, George S. Brake
Lee, John. Building block
54,253

Leech, A. Machine for raising sunken vessels.............. 52,191
Tefeaux, John. Paddle wheel
51,281
Lefebvre, Mary E. Apparatus for making drawings..... 53, 153
Lufebure, Alexander. Signal for railways.......... 54,408

Le Flamboy, Asa N. Fence post 53,744
Leger, E. Display fixture arm 52,228

Lehmann, F. D. T., et al. Kiln.................................... 51,095
Leiger, George F., et al. Printing press feeding mechanism 52,474
Leighton, Edward J. Boot and shoe stretcher. 50,975
Leighton, Robert, et al. Auger for making post holes...... 53,515
Lemaire, Henri F. M. Cigarette making nachine 51,612
Lemay, Joseph O. Chair
51,012
51,012

Lemmon, Tames Q. Shaft support................................. 51,008
Lemond, Timothy. Fire escape. 52,493
Lemyre, E. Machine for making loops on binding wires.. 51,545
Lenney, Edward. Vehicle top................................. . 52,813
Lennon, James H., et al. Sign letter........ 51,089
Lemox, Levi.J., et al. Bicycle garment........................... 52,203
Lenz, Christian, et al. Paving machine................. . 51,012
Leonard, A. (x. Bucket and tank. 52,123

Letournean, Ioseph. Mitten.
64,367
54
Letson, A. F., et al. Bicycle
54,294
Le Vasseur, Joseph Naipolder. Method of expanding horse
shoe plates.
Levedahl, Axel, et al. Bicycle spoke washer.
Leventritt, Marion. Commercial paper blank.
Leveque, Cyrille. Voting machine
Levey, John. Cheese rack
Levy, Joseph L. Car truck
Lewinson, Julius N. Bicycle skirt
Lewis, Alvin. Feed trough
Lewis, Charles F et al. Miners cull
,ev, Thales., , ni. Niners candiesick.
, Crank H., et al. Crank motion
Lewis, W. H. and C. I. Flue lining. of, 1 .
Lewthwaitie, George \mathbf{W}. Paper naking machine $8,3,7$
Leynner, John (ieorge. Direct acting engine........ 53,711
Leyner, John (ieorge. Piston packing system.................... 52,791
Leyner, John freorge. Rock drill feed....................... 53,225
Leyner, John Ceorge. Rotary feeding mechanism for rock
drilling engines...
53,29

Libby, Henry F. Clamp for dental dams 51 ,0fio
Lightfont, Thomas B. Air cooling and drying apparatus.. $\quad 51$, , 643
Lighthouse, John C. Bicycle tire
Lillard, James Franços, et al. Washing machine
53,635
54,154
54,192
Lind, John. Vehicle Whetl.
Linde, R. Method of producing paste for electric accumulators.
Lindsay, A. L., et al. Thill or shaft
52,219
:3,596
Lindstrom, Conrad, et al. Bicyele supprort.
Lingwowl, Oliver, et al. Medicinal compound 51,116
Link, William H. Table and bath tub combined 53,962
Linstrom, Charles. Eccentric . 53, 447
Linstron, Charles. Tender tank for locomotives $53,8: 8$
Linthicum, Asa S. Seeder.
Lintott, (ieorge H. Tire tightener.
Lippitt, C. N. Lock
52,997
52,741
54,123
54,284
53,485
53,240
51,298

53,923
53,243
51,632
52,515
54,208
51,001
52,349
53,738
23,798
50946
50,986
52,129
54,048
53,222
53.483

01,38
53, 1
,633

9

$$
1,298
$$

53,503
$53,86!$
4,119
,

$$
\begin{aligned}
& \text { Lister, JThn T, et al. Incandeseent lamp. } \\
& \text { Littlefield, Irving O., et al. Tack holder fo }
\end{aligned}
$$

Livingston, W. Tie joint weight on treadles and levers.
Lynnstrom, Frederick. Steam generator and condenser. .
Lifewellyn, Thomas. Saucepan, etc
Lloyd, Noman Chester. Bread baking pan.....
Lloyd, William H. Water closet bowl.
Lachen, Francis M. Kefrigerator shelf
Locke, Charles S. Car jack.
Locke, Joseph, et al. Underground rlectrical conductor,
and method of manufacturing same
Liskow, Frich. Elastic tire.
Liskow, wrich. Rastic tire.................and method of manufacturing same...........................

51,763
51,761
52,149)
Loder, John S. Smelting furnace...
Loft, W. K. Wagon....................
(ombard, Frank, et al. Drop hammer
combard, Rolnert T., at al. Vehicle spring.
Lombard, R. T., et al. Vehicle spring

Lonergan, Stephen. File guard.
Long, Barnet, et al. Water gauge
Long, Frederick. Ore separatur.
Long Island Rubler Cycle Co. Bicycle tire
Long, Thomas. Apparatus for thawing explosives
Longley, John W., et al. Compesition for repairing phenmatic vehicle tires.
Longmore, Lewis F., et al. Lubricator
Longtin, Firmin. Ferry.
Lord, Allen P., et al. Nut and boit lock
Larin, Ernest T. Hook and eye
Lougheed, Aaron, et al. Lamp, burner
Laughlin-Hough Drawing Table Co. Adjnstable seat
Laughlin-Hough Drawing Tiffle Co. Black loard.
Lounsburg, William F. Telephone exchange
Love, John C. Electric railway
Love, John Charles. Electric tramways, etc
Lovejoy, Abbie, et al. Car coupler
Lovejoy, E. W., et al. Bed plate.
Lovell, A. K. Wrench.
Luyens, Charles, et al. Box making machine
Lozier, A. W. Bodkin.
Lucas, William A., et al. Thill coupling
Luce, William. Swimming appliance.
Luckenback, Frederick A. Gold extracting process
Luderritz, August (k . H. Liquid cooler.
Ludovic, Marie Joseph Etienne. Air charging device for air chambers
Luidemann, August. Pan.
Lundin, Johnnes M. J., et al. Switch lock
Lundquiste, Carl P. Bottle.
Lundy, Alpheus A. Music leaf holder
Lunn, George James. Bicycle.
Lunsden, James. Fastener for ropes, etc.
Lussier, John J. Envelope.
Lusted, Charles. Sleigh attachment.
Luter, Henry E., et al. Lantern
Lutz, Anton, et al. Diving apparatus.
Lutz, Anton, et al. Windmill.
Lyman, William Lincoln. Composition for closing apertures in pmeumatic tires
Lyons, Michael John, et al. Bath apparatus
MacArthur, S. Ore extracting process ind apparatus.
MacI)onald, Archibahd D. Telegraph relay.
Macdonald, de L. and A.C. Skirt binding system.
MacDonald, de L . and Alain C. Garment binding
MacFarlane, Alphonso, et al. Fire kindling compound
Mactiregor, Peter. Bicycle brake.
Mackay, William L., et al. Tire for bicycles
Mackenzie, A. G., et al. Brake for baby carriages
Mackenzie, Edwin Y. Bicycle
Mackenzie, James. Medicinal compound
Mackey, John J., et al. Electric register
Mackey, Samuel W. Buttle stopper.
Mackin, Alvie O. Derailing nwitch.
Mackin, Joseph. Coin-controlled vending machine.
Mackinnon, Robert F. A. Hub.
Mackintosh, James. Tea pot.
Maclaren, Alexander, et al. Harvester, thresher and separator.
MacLaren, David. Cash register.
Maclay, William P., et al. Leather dressing composition.
MacLeod, James D.' Insecticide for destroying horn flies.
MacPherson, Duncan. Kailway frog
Macy, Josiah H., et al. Petroleum preparing system...
Madgett, Thomas H., et al. Wcod working machine
Maendler, John G., et al. Mop wringer.
Maffey, William. Cook's cabinet.
Magalis, W. H., et al. Bedstead fastening
Magann, G. P., et al. Brake
Magee Furnace Co. Hot water heater.
Magoris, A. E. Brush.
Mahaney, Charles A. L., et al. Bedstead fastening.
Mahony, Michael. Builer.
Maiden, Rachel Fee. Cover for wash tubs
Maier, jr., John Daniel. Rule.
Mailhiot, Francois, et al. Tricycle
Mainer, Robert. Stove lid lifter
Mait, Joseph. Gold separator.
Majors, Albert D., et al. Snap hook
Malignani, Arturo. Incandescent lamp evacuating process.
Mallery, Stephen, et al. Jack.
Maloney, William. Sod cutter and cultivator
Mapas, Arthur. Moulding machine.
Malsness, Harvey C. Flour dresser.
Mann, Bridget R. Dish washer.
Mann, Josefh R. Edge tool.
Manning, Harry. Sewing machine
Manny, E. A. \& Co. Furnace for heating
Manny, Eugène S. Cistern
Manny, Fugene B. Slice for lock gates.
Manny, E. S. Stove.
Mansfield, James E., et al. Milk bucket

52,433
52,500
54,445
53,021
53,438
53,190
52,051
53,145
53,871
54,041
52,328
51,895
52,306
52,892
53,602
53,727
51,719
52,140
52,837
52,465
1,105
51,595
54,140
51,622
53,530
53,932
53,077
52,824
52,912
51,096,
51,097
52,589
53,676
51,351
52,362
51,383
52,501
54,126
53,714
51,927
52,108
51,775
52,563
52,830
51,713
52,850
53,693
52.275

54,029
52,547
51,853
51,262
53,415
53,460
51,459
54,386
51,762
52,212
52,489
52,790
51,195
51,930
53.650

53,231
54,442
53,212
52,159
52,798
52,(i48
53,212
51,736
53,816
53,852
52,948
51,838
52,141
53,385
51,778
51,658
54,373
53,715
53,317
53,223
53,916
53,094
52,207
53,521
53,859
51,983
53,522

Manttan, John. Venetian blind
53,301
Marchand. Richard. Feed water heater. 52,958
Marcon, William H. Method of making cloth boards..... 52,039
Markel, H. Wrench662
Markel, H. Wrench.
52,600
Markle, Robert 13. Pile.
52,800
54,346
Markoe, L. J. Kailway spike..
54,346
53,929
Marks, Louis B. Electric are lamp
52,338
Marley, Samuel. Steam engine
Marolf, Frederick J. Oil can......................................
Marsden, Mark Wossnop. Means for protecting, filling and packing vessels and other structures

51,283
Marsellis, Ford. Electric railway rail connection............ 54,381
Marsh, D. B. Stethescope
54,164

Marshall, John. Meat saw
52,459
Marshall, John. Meat saw...53,532
Marshall, Williain L. Land roller.............................. 52,348
Marshall, W. L. Seeder
52,348
52,151
Marteeny, Tillman A. Walking or skating cycle
53,540
Marter, César. Process of converting skins into horny naterial

53,736
Martin, Alonzo T. Sash balance, lock and fastener........ 51,411
Martin, H. Piano stool.
52,202
Martin, Harry K. Pail.
54,110
Martin, John M. Nut lock...................................... 53,443
Martin, John F. J., et al. Bicycle whistle................... 53,826
Martin, Oliver. Brush.
53,578
Martin, Samuel. Roller skate
52,486
Martin, Theodore. Window fastener 52,629
Martin, William'H. Elevated railway for cycles and cars. 53,701
Mason, Thomas Scott. Stand for bicycles
Mason, Walter Levy. Dental porcelains......................... 53,387
Massey, A. Brake.
52,076
Massey-Harris Co. Seeding machine.................................. 53,187
Mather, William. Art of and apparatus for making floor cloth.

51,120
Mathews, Frederick A., et al. Wind mill
51,477
Mathews, Joseph H. Hydro-carbon burner
Mathieu, Napoléon, et al. Hose coupling $\quad 52,647$
53,395
$\begin{array}{lll}\text { Matrai, Alexander. Wall, floor and ceiling construction .. } & \mathbf{5 3 , 9 2 8} \\ \text { Matteson, O. F., et al. Wire and slat weaving machine... } & \mathbf{5 4 , 1 0 2}\end{array}$
Matteson, O. F., et al. W
Mathew, Moody, \& Suns. Seeder.
54,102
53,656
53,656
53,511

Maundrell, Frank. Apparatus for producing and storing
acetylene gas. ..766
Manrer, Michael. Dress cutting system..226
Maxfield, Fred. E., et al. Bed plate..................................... 52,140
Maxim, Hiram S. Gun......
Maxwell, David, \& Sons. Lawn mower
51,386
May, Arthur F., et al. Coat and jacket supporting device. 51,243
Mayd well, Harry F., et al. Selvage weaving art and apparatus

54,426
Maydwell, Harry F., et al. Selvage weaving art and apparatus

54,426
Mayer, Daniel. Stringed musical instrument 51,128
$\begin{array}{ll}\text { Mayer, } \mathrm{F} \text {. Oil gas making machine........................... } & 51,928 \\ 53,451\end{array}$
Mayer, Herman. Sole
Maynadier, James Evelth. Garment stay
53,451
53,734
53,734
Maynard, Frederick T. Lawn mower.
53,832
Maytag, Fred Lewis, et al. Band cutter and feeder. $51,884,{ }_{51,703}^{51,885}$
McAulay, I. C. Pressure alarm for steam boilers........... 52,264
McAvity \& Sons. Tap for cream cans. 52,001
McBean, Duncan. Liquid motor...
McBerty, Frank K. Telephone switch board
53,641
53,967
McBerty, Frank Robert. Signalling apparatus for telephone lines
McBeth, W. Band saw guide.
53,909
McBeth, Duncan Campbell, et al. Drive gear for bicycles..

52,112

McCallum, Joseph. Inking mechanisun for printing presses 54,435
McCallum, J. H. K., et al. Air pump.
54,295
McCallum, W. Boiler
52,640
McCann, Edward: Railway rail fastener
54,211
McCarty, Joseph, et al. Pen-holder............................ 53,042

McCauley, Reuben A. Funeral carriage.
McClellan, Robert B. Hinge.
53,069
53,490
McCloskey, John P. Bicycle frame
52,182
McColl, F. P., et al. Brake.
McColl, F. P., et al. Car axle.
McConechy, James. Vehicle wheel
52,085
McCorechy, James. Vehicle whee …...................... 52,904
McCorme, ${ }^{2}$.
McComich. J. R, B. Turbine
52,047, 52,048
McCormick, John B. Turbine wheel mold
McCormick, John S. Harvester, thresher and separator.
McCreath, John. Wood drying system..
$\begin{array}{lll}\mathrm{McCreath}, \text {, John. Wood drying system...................... } & 53,523 \\ \text { McDaniel, William W., et al. Fruit evalorator........... } & 54,385\end{array}$
McDermit, Duncan H. Vending machine.................... 53,135

54,414
54,413
51,762

53,870

McDonald, Alexander. Excavator McDonald, I)., et al. Steam boiler MeDonald, James. 13arrel
McDonald, John 1). Smelting furnace
McDonald, John Donald. Harness wire cable coupling
Mcl)onald, William B., et al. Curling iron

McDonald, William T. B. Metal pipe
Mclonell, Thomas. Feed-water heater
McDonough, John J. Car coupler
McDougald, John, et al. Lowm
McDougall, Edwin B., et al. Metal can
McDongall, John William. Window frame and sash
McDougall, William C. Necktie fastener
McElroy, C. H., et al. Rail joint fastening.
McElroy, James F. Electric heater.
McElroy, James F. (Fas burner
McEwen, Alexander. Timber float
McFarland, Arthur W., et al. Egg crate
Mcliee, Jacob. Washing machine.
McGhee, George, et al. Vapour motor.
Mciitfin, John L. Valve
Mc(iill, John James, et al. Arc light
Mc(xinn, Patrick. Wagon.
Mc(xinty, Bernard. File for papers, ete
McGovern, Florence P. Cover for confectionery pails.
McGovern, F. P., et al. Bicycle stand.
McGrann, Bernard John. Vehicle seat
Mçrory, Henry A. Liquid level
McIntire, Charles S. Velocipede
McIntosh, William, et al. Organ.
McInturff, Malree W. Anvil.
McIntyre, John C. Corn silking machine
McIntyre, John C. Soldering iron.
McIntyre, William M. Iulley
McKay, Andrew B. Tongue for agricultural machines.
McKay, Joseph, et al. Cheese knife.
McKay Neverslip Shoe Company. Shoe
McKay Neverslip Sole Co. Leather recessing machine.
McKay, Robert. Shoe.
McKay, W.J., et al. Valve
McKendry, Robert, et al. Typewriting page-end alarm.
McKenna, John J. Bicycle support
McKenney, Franklin S. Button fastening.
McKenzie, James Leather washing machine.
McKenzie, Willian, et al. Violin.
McKinnon, James I). Amalgamator
McKinnon, Niel. Blind hinge.
McKnight, Alfred A. Machine gun.
McKnight, Henry J. Chinmey.
McKnight, John Wesley. (ias burner
McLean, John. Square and bevel.
McLeod, Donald.I., et al. Spoke thimble.
McLeod, John Morrison. Envelope
MeLeod, Nelson. Electric lighe apparatus
MeMartin, John A. Grinding dise
MeMillan, Alexander. Bedstead.
MeMillan, Alexander, et al. Belstead.
McMullen, William T., et al. Tire for bicycles.
McNaught, William Kirkpatrick, et al. Joaster
McNernev, P. Log loader
McOnat, Thomas. Timber gange.
Mcl'hee, Archibald. Post driving machine.
McPherson, Thomas C., et al. Mat. .
McRae, Findlay A. Tire ...
McShane, Robert. Soldering iron
McSherer, Jerome B, et al. Janlder.
McSween, W. D., et al. Car coupler.
McTammany, John. Counting aud registering aplaratus.
Mc'Tammany, John. Voting machine.
Meach, Alfred, et al. Tobacco package
Meadoweroft, John K. et al. Moistener.
Meakins, George H. Pipe coupling.
Mears, A. H., et al. Tap
Mecham, Adelbert. Brake for sleighs
Medart, Phillip and William. Machine for preparing tubes, rods, \&c.
Mee, Charles. Bicycle stand.
Meek, John E. Electric switch
Meeker, Stephen J. Car coupler.
Meeker, William. Ball bearing wheel
Mehling, John A. Cash register.
Mehling, John A. Coin or check box and register.
Meier, August H. Earth anger.
Meier, Edward 1). Steam generator.
Meigs, George Whitfield. Eyeglass and spectacle.
Meister, Samuel, et al. Vise.
Melville, Charles, et al. Wreck raising apparatus
Melzer, Josef. Multifuse switch
Mendelssohn, Herman E. Photographing system.
Menzie, Robert E. Cloth painting machine.
Mercer, Frederick 1). Grain binder
Mercer, Frederick D., et al. Ballot paper
Mercer, John S., et al. Grain binder

51,315
54,124
51,065
53,565
52,376
51,192
52,999
53,946
52,401
51,253
24,362
51,405
51,075
53,302
$.51,562$,
51,155;
51,624
51,439
52,516
53,742
51,16:
53,103
51,254
53,972
53,263
51,090
51,815
52,471
53,375
54,010
51,194
51,378
52,783
53,955
53,167
52,463
53,086
53,823
54,224
53, 223
51,804
53,186
52,276
53,294
52,344
54,216
51,73!
50,948
52,337
52,576
51,972
52,315
53,555
51,288
52,422
54,360
54,406
51,725
53,693
53,868
59
53, 495
$\begin{array}{r}53,995 \\ 51,59 \\ \hline\end{array}$
51,595
51,033
53,228
53,042
53,265
52,098
52,862
52, 865
53,435
52,809
52,584
51,248
52,007
52,552
51,816
51,(i87
53,526
53,42i
54,163
54,162
51,423
52,100
53,934
51,:166
51,065
53,405
51,332
51,849
53,245
54,220
53,245

Mergan, Henry Harry
Mergenthaler, Ottmar.
Vehicle thill
54,189
Merkley, J. C., et al. Stovepipe shelf and clothes drier
combined.
5lorepipe sheif and clothes drier 51,027

Merrel, Adolf, et al. Typewriting telegraph...
Merrell, I Baniel B. Manure spreader . 50,965
Merrick, Frank W. Welting strip. 52, , 005
Merrill, Freeman C. Harrow . 52,458
Merrill, Niel. Musical instrument.
Merrill, N., et al. Musical instrument.
Merriman, Willeve I.' Tail fastener.
54,161

Merriman, W. T. Non-refillable bottl
52,667
53,874
Merrman, W. T. Non-refilable bottle 52,473
Merritt, Otis J., et al. Sprocket chain coupling block 54,050
Merry, Fre derick H. Pneumatic handle.
54,069
53,068
Merton, William. Pnenmatic tired wheel system
54,011
Meserve, George W. Plate for the construction and protection of plastered walls

51,006
Metcalfe, Daniel. Wrench. 5 . 5 .513
Memier, Eloxie. Buckle............. 51,259
Menzies, (George. Sash fastener . 51,504
Meyer, J. 13ottle etc. 52,231
Meyer, Leonard. Stove..
Meyer, Svend M. Electric lighting mechanism for oil lamps.
Meyer, W. C., ot al. Sewing machine for soles
Meyer, Willian C., et al. Trinming and channeling machine.

53,954
53,280

Meyers, Charles S., et al. Brick making machine
Michaelson, Otto H. Jar and can filling apparatus..
Michigan Curset Co. Corset.
Micon, Benjamin. Book case.
Middleton Frank L et al Leather trimer.
Middleton, Leander, et al. Leather cutter..................... $52,8,8$
Miethe, Carl. Vehicle impelled by hand 53, 168
Milbourne, John P. Indicator for vfices, etc. 51,387
Miles, Annie Sarah. Fly escape. $51,5,7$
Millard, Fdward F. Pulp separator. 54, 281

Millea, John 1)., et al. Electric stop motion 52,710
Millea, Thos. D., et al. Electric stop motion.. 52,710
Millen, Thomas. Brake.
Millen, William. Can opener 53,049
Miller, Abraham O., et il. Draft equalizer. 52,415
Miller, Avard H. Bicycle riding teaching apmaratus.... 51,191
Miller, F. Dust collector.
Miller, Edwin D. and Frederick. Earth auger............. 52,352
Miller, (ieorge Harrison. Fence wire rerll and straightener 53,781

Miller, (ieorge Washington, et al. Mat....................... 51,033
Miller, Harvey Y., et al. Earth auger. 52,352
Miller, Horace Greeley. Perforator.......... 53,6i66
Miller, John I)., et al. Register for letter carriers. $\quad \mathbf{5 3 , 6 8 0}$
Miller, John J. A. Bed spring tightener.................... . . . 54,130
Miller, John S. Car stake
Miller, Mary, et al. Mop wringer
Miller, Mary, et al. Mop wringer. 5 . 51,858
Miller, Napoleon B., et al. Street sweeper.
Miller, Stephen A., et al. Draft equalizer 52,415
Miller W Pump
Millette, Napoleon J. Hair cutter.
Mills, Americus C. Label holder.
Milne, Alexander H., et al. Window
Milne, John. Cooking stove. .
Minder, Johann J. A. Dynamo.
Minter, Johann o. A., et al. Bicycle spring tire
Mirficid, Sanuel. Washing machine and churn.
Misner, Edgar D. Nicycle brake
Mistrot, Felix F. Showease
Mitchel, John 13., et al. Wheel rim
Mitchell, John H. Bicycle driving gear and brake
Mitchell, P. C., et al. Stovepipe joint lock.
Mitchell, Kichard R. Cistern
Mitchell, Valentine. Bobsleigh
Mitchell, William Frank. Trainer for bicycles
Mitchell, Will:am L. Stove.
Mobberley, Ernest. Juot or shoe
Moffat, Frederick W. Stove
Moffatt, Lewis Henry, et al. Depurator
Mohle, Frederick, et al. Street sweeper...............................
Moll, (ierard D., et al. Means of hindering freezing in water tanks.
Moller, Carl Nelson. Hat fastener.
Mond, Judwie. Apparatus for treating nickel ore.
Mond, Ladwig. Process of reducing certain metallic oxides Mond, Ludwig. Treatment of substances with gases
Monnier, Alfred P ., et al. Spinning top...
Monroe, E. E. ', P'encil.
Montgonery, Beanchamp H. Wheel hub
Montgmery, Samuel and John. Stock watering apparatus.

51,863
51,988
54,369
51,446
51,819
54,120
,

3,016

54),947

52,097
52,722
51,774
54,367
52,655
54,389
$54,2!1$
52,313
54,207
54,302
54,136
51,971
53,518
52,089
53,047
51,879
51,452
54,463
53,958
53,313
51,714
51,858

51,810
51,000

Montrois, Peter Byron. Hose-nozzle.
Mrory, Thomas A. Egg beater
Moonaw Car Coupler Co. Car coupler
Moomaw Car Coupler Co. Car coupler
Mooney, Lewis P., et al. Thill coupling
Moore, Charles Thomas. Typewriter
Moore, Daniel McF. Electric lighting process
Moore, David, et al. Book turner
Moore, Delmer H., et al. Seeder.
Moore, Guy S., et al. Non-refillable bottle.
Mcore, John. Drive chain.
Moore, John C. Reaper and harvester.
Moore, John Charles, et al. Ore separator
Moore, P. H. Wedge coupling for traces
Moore. Sammel J., et al. Bont and shoe.
Mcore, William C., et al. Compound for repairing pheumatic tires.
More, William J. Dredge bucket
Moore, William S. Fire alarm indicator
Moorman, Charles T. Vehicle axle lubricator
Moran, James. Furnace.
Morgan \& Wright. Sand blast
Morgan, Fred W., et al. Mandrel for tire sheaths
Morgan, Fred W., et al. Process of and apparatus for vulcanizing elastic
Morgan, F. W., et al. Pneumatic tire
Morgan, F. W., et al. Valve for pneumatic tires
Morgan, Henry W. Brake for baby carriages.
Morgan, H. Wire stretcher
Morgan, William H. Electric motor controller
Morgeneier, Rohert. Duplicating nachine.
Morley, William James. Swimming apparatus
Morral, Samuel Elsworth, et al. Machine for cutting green
Morral, William Wayne, et al. Machine for cutting green corn.
Morrill, Johin M. E. Boot holder for horses
Morris, Edmund. Luom for weaving cane.
Morris, Edmund. Machine for making woven fabrics
Morrisey, Michael, et al. Steam engine
Morrison, Angus. Bi cycle support
Morrison, George C. Hot water heater.
Morrison, (leorge Elliott, et al. Water closet
Morrison, Harry. Brake.
Morrison, Harry. Road breaking michine
Morrison, Harry. Sprocket wietel.
Morrison, James. Lubricator
Morrison, James. P'laster board.
Morrison, Roderick R. Spoke thimble
Morrison, William T. S. Bicycle ice creeper
Morrow, A. A. Cane hoist trip
Morse, Frederick A. Jiquid indicator.
Morse, Oscar E. Rotary engine
Morse, Oscar Ernest, et al. Combination tool
Mortenson, Andrew. Envelope
Mortimer, John D. D. Shiping receipt book
Morton, Edwin W., et al. Cash register.
Morton, Everett (x, et al. Chopper for vegetable matter.
Morton, Martin W. Bag holder.
Morton, Richard Noble, et al. Window case and sash fixture.
Moskowitz, Morris. Electric lighting system for railway cars.
Moskowitz, Morris. Means of generating electricity from car axles.
Moss, J. Car coupler
Muss, Robert E., et al Candle holder and pocket tool
Mossberg, Frank. Roller braring
Mossberg Wrench Co. Wrench.
Momlart, Adrien J. Lock.
Moulton, Luther V. Velocipede
Moyer, Charles H., et al. Music leaf holder
Mucke, Johann. Vaporizing burner for oil
Mueller, Oscar, et al. Keg pitching machine.
Mulkey, Alexander, et al. Curtain fisture.
Mulkins, H., et al. Plough
Mullen, Harker. Steam engine
Miuller, Frederick J. Umbrella
Miiller, Peter. Hoist for grain, etc.
Miller, Theodor. Cycle tire.
Multifuse Switch Co. Switch
Mumma, William S. Meat tenderer
Mummery, Edwin (f., et al. Burner for hydro-carbon
Mummery, Edwin (f., et al. Hydrocarbon burner.. 54,427 ,
Mummery, Edwin G., et al. Hydro-carbon generator
Mundey, Stanley. Mud guard for carriages
Mundt, August. Rule
Munn, Frank E. Envelope
Munn, L. (i., et al. Lamp chimney holder.
Munn, William. Fish cutting machine
Muntz, Henry, et al. Musical game
Munz, Charles W. Piano stool.
Murchey, William. Nipple cutting machine
Murmann, Frederick J. Bicycle sleigh

53,671
53,997
51,80fi
52,225
51,595
51,844
54,214
53,087
52,553
54,098
53,159
53,581
54,444
52,374
53,241
53,732
51,319
51,740
52,!927
51,812
53,971
53,482
51,225
52,175
52,643
51,219
53,205
53,287
54,363
52,86i6
51,468

51,468
53,072
51,226
52,645
52,799
53,026
53,368
51,541
54,017
51,206
53.982

52,981
53,313
53,555
53,560
52,365
52,353
51,079
51,58;
51,832
51,832
52,946
52,801
53,013
53,484
51,566
51,567
52,101
51,855
51,902
51,852
51,578
51,396
51,096, 51,097
53,717
51,722
54,2i8
52,644
52,262
23,593
53,691
54,028
53,405
53,285
51,628
54,429
54,428
51,667
53,672
54,070
52,213
51398
51,349
50,971
52,446
53,247

Murphy, J., et al. Opera glass
Murphy, John G. Gold extracting process and apparatus. Murphy, John J., et al. Bottle
Murphy, Lorenzo A., et al. Window
Murphy, Thomas. Furnace.
Murphy, T. L. Nozzle for hose.
Murphy, William D. Switch
Murphy, William. Washing machine
Murray, F. C., et al. Lubricator
Murray, John H., et al. Garment adjuster
Murray, William, et al. Non-retillable bottle.
Mushing, Edward. Handle car for bicycles.
Mushing, Edward, et al. Bicycle saddle car.
Myers, Angelo. Process of making fermented and distilled liquors
Myers, F. Spocket chain.
Myers, Frank L. Bung and bushing
Myers, Jacob. Shade roller tip.
Myers, Philip A. Hay carrier.
Myers, Phineas B. Apparatus for producing stage illusions
Myers, Simon S. Machine for making cans...
Myers, William R. Fire bucket.
Nadeau, Peter. Lubricator
Nalley, John T. et al. Snap hook
Nand, Jean. Hose coupling.
Nash, Samuel. Bicycle gear.
52,029
52,294
53,528
54,367
54,342
52,200
52,569
52,848
52,051
53,486
51,250
51,515
51,759
53,155
$\begin{array}{r}53,159 \\ \vdots 62,29 \\ \hline\end{array}$
54,425
52,909
53,236
51,051
51,020
52,716
51,015
53,385
.... 53,076
National Electric Car Lighting Systein. Electric lighting system for cars
National Electric Car Lighting Company. Means for generating electricity from car axles.

51,567

Naville, Aloys, et al. Electric gas apparatus... 54,275
Navlor, Charles F., et al. Waggon jack..................... 54,104
Nelson, G. E. Swath turning machine....................... $\quad 52,022$
Nelson, James, et al. Harvester . 50,958
Nelson, John A. Pipe joint.
53,625
Nelson, Searick F., et al. Piano
51,329

New Branston Two Reel Sewing Machine Co. Sewing machine

53,022
New, Edward. Brick
52,573
New York Venetian Blind Co. Venetian blind................................. 51
Newell, Edwin F. Blind slat journal........................ 51,456
Newell, John Hoitt. Wrench
51,363
Newman, M. Rogers, et al. Ore separating method 52,827
Newman, Thomas C. Bottle stopper, etc................. . . 50,946
Newton, A. F., et al. Marinє merry-go-round 54,419
Newton, Frederick N., et al. Car compler.
54,419
52,310
Newton, Herbert Bryan, et al. Car fender....................... 53,965
Newitter, Garson J., et al. Bottle.
53,653
Newitter, Garson J., et al. Non-refillable bottle
Nichols, Edwin C. Air compressing and storing machine.. 51,83
Nichol, Frank E., et al. Gas lamp suspension device..... 51,352
Nichol, John C. Fabricoid.
Nickel, Adam. Piano action.. . . $53,53,539$
Nicolle, P. Water closet.
Nicolle, Philip. Valise seat and lunch vessel combined..... 52,003
54,006
52,953

53,096
53,090

51,415

52,921
53.986

3,

Niedringhaus, Alexander. Manufacture of enamelled ware. 54,255
Nielson, Christen. Fifth wheel
Nissen, Peter N. Beot and shoe soles.
Noack, Adolph G. Hydraulic air compressor... $52,942, ~ ह 2,943$
Nobel, Alfred. Gas check for projectiles...............................
Noble, John Madison, et al. Envelope machine drying chain
Noble, John M., et al. Envelope machine counter
Nolan, Michael J. Bottle.
Norcross, George A. Register.
Nordheimer A \& S Pianodesk.
Norris Albert \mathbf{F} Piano pedal
Norris, James A. Mucilage holder 51,174
Northrop, Charles W. File.
Northron, James Henry. Loom
Nortum is Wicyele tricycle eto 51.96
Norton, Edward (.) Knife, etc....
Noxon, Townsend W. Mirror holder 53,099
Noyes, D. W. Pneumatic tire protector 52,153
Nutter, Seth C. Sleigh
Oberlaeuter, Hugo. Car coupler............................... 51,827
Oberlauter, Hugo. Car coupler.
O'Brien, Frederick J., et al. Non refillable bottle.
O'Brien, John F. Velocipede handle bar.
O'Conner Maurice M J O Bottle and stoppering device 53,138
O'Donnell, James. Non-refillable bottle..... 51,10t
Oehler, John. Electric signal 54, 544
Ogden, Mancelia Eugene. Fire extinguisher. 53,79
Ohlsson, Olof. Creamer.
Ohnemus Anton. Radiator
Older, Clark. Knitting machine
Oliver, Frederick W. Manufacture of inoulded articles..

Oliver, Robert M., et al. Water heater for troughs. .
Oliver, Thomas. Typewriter
Olmstead, Kussell (i. Street cleaner.
Olsen, George T., et al. Pace indicator
Omick, W. K., et al. Brake
Onderdonk, Lansing. Sewing machine
Onderdonk, Lansing. Sewing machine feeding device.
One Minute Churn Co. Churn
Oppermann, Emil L. and John. Process of extracting gold from ores.
Orcutt, E. L. Electric safety appliance for railroads.
Orme, Daniel. Gas meter
Orme, (reo. L., et al. Auto-bary..
Orr, Alfred, et al. (Germ excluding hood.
Orth, Charles A., et al. Telephone index
Oslorne, Byron E. Electric railway system.
Osborn, Walter A. Bicycle .
Osborne \& Co. Corn harvester
Osterhout, Frank F. Finger exercising device.
Ovens, Robert. Water closet flusher.
Ovens, Thomas. Pump
Ovenshire, E. A. Ball bearing
Overell, Melville J., et al. Keady reckoner
Overend, William J. Curry comb
Overholt, Roland I). Street sweeping machine.
Ovington, (ieorge. Sleigh runners for carriage axles.
Owen, James 1)., et al. Log rolling device.
Owen, O. L. Advertising block.
Owen, W. T., et al. Track cleaning and tire.preserving compound
Owens, Harrison. Chair
Owens, John L., et al. Milk waggon.
Owens, M. J., et al. Glass blowing machine....................... 52 ,
Oxenrider, James, et al. Boot and foot protector..
Pabst Hrewing Company. Keg pitching apparatus.
Pabst l3rewing Company. Process of and apparatus for obtaining carbonic acid gas...
Pacard, J. W., et al. Lock
Pacand, George H. Car coupler.
Packard, Nephi. Churn
Packer, George W. Fodder Shredder.
Packhan, Lewis C. Car coupler.
Paddock, John P. Tool carriage for lathes.
Pagan, Orestes, et al. Propeller.
Page, William H. Grate
Page, William H. Heating apparatus.
Painter, L. J. Sauce-pan.
Palmer, (x. J., et al. Ironing board.
Pahmer, Horace, et al. Sickle grinding machine.
Palmer, John M., et al. Pipe tongs.
Palmer, John M., et al. Wrench..
Palmiter, Samuel. Bicycle.
Panabaker, Reuben J. (irating machines
Paquette, George Edmond. Wheel.
Parcells, Henry A., et al. Hoe.
Pareant, Jean Baptiste. Water-wheel
Parentean, Maxime O., et al. Fyelet.
Paris, Thomas H. Dust collector.
Park \& Lacy Co., et al. Elevator.
Park, Louis C., et al. Amalgamator.
Parker, E. J. Dilator
Parker, George W., et al. Process of treating gypsumrock
$54,278,54,280$
Parker, Howard, et al. Suction device for paper making machines
Parker, Joel C. Dental swage
Parker, John E. Sand blast
Parker, McCluer H. Game holder
Parkes, Williaut T.J. Book holder.
Parks, (G. P., et al. Band car.
Parkinson, John Marshall. Detachable fastening for cufflinks.
Parmenter, i A. Street car fender.
Parmenter, James Spencer. Ink stand
larmly, S. P. Are lamp.
Parramore, R . W. Dress shield.
Parramore, R. W. Garment clasp.
Parsell, Orlando W. Weighing truck.
Parslow, Alfred H. Window sash lock and lift,
Parnnean, (i. M. Dust collector.
Parsons, Arthur E., et al. Flectric exchange system.
Parsons, George W., et al. Band cutter and feeder. 51,844 ,
Partrick, F. K. Bicycle chain.
Partridge, J. A. Stove-leg.
Patent Leather Protector Co. Enamel for leather.
Paterson, Thomas. Laundry case.
Pateson, Henry. Metal can
Patterson, Johin M. Harrow.
Pattison, Henry. Water distilling apmaratus.
Pattison, Sidney. Velocipede saddle.
Patton, Hedlev A. Axle for vehicles
Patton, Isaac 1'. Bicycle gear
Paul, Isaac H. Hose supporter

51,469
53,935
54,354
52,388
52,159
54,142
54,158

51,596
52,303
52,189)
52,482
54,467
51,381
53,582
51,878
54,193
52,334
54,454
52,395
52,174
51,038
53,318
53,(657
53,756
53,115
52,199
53,282
$5,4,376$
53,024
$52,13!$
53,564
51,722
53,752
51,249
51,820
51,820
51,305
51,201
51
53,707
51,365
53,956
53,921
51,293
22,100
51,450
52,!970
52,971
52,566
51,690
52,342
51,348
52,341
54,407
52,75s
52,781
53,791
52,656

51,488

52,524
53,971
53,045
51,438
52,161
(33,829
53,192
52,871
52, 65
$54,1 \times 8$
54,117
51,393
54,252
52,111
52,872
51, 885
52, 168
51,657
61,136
61,726
54,37:
51,080
52,257
21,974
:4,296

Paull, E. G., et al. Tack machine
51,222
Paulson, Anders, et al. Box making machine
52,465
Payette, Peter. Log chain
Payment, Joseph. Apparatus for shelling corn.
1'ayne, William J., es al. Koller bearing 53,520
Pealer, Elias O. Spoon bait
Pearce, W. J., et al. I rill
Pearsall, Alexander. Horse shoe
Pease, l. L. Structural arrangement for buildings... 5 . 5 , 164
Peay, W.alter W
Peay, W. W., et al. Disinfectant distributor.
Peck, E. E. Cunch
51,853
54,145
Peck, Orrim 13. Separator . 51,227 ,
Peckham, Edgar. Car truck
$51,227,51,228$
Peckover, James. Stone moulding tool
51, 862
Peddie, Frank J at al Letter and musage receiver...
Pedersen Nils. Wood pulp, puritier. 52,317
Peel, William C. C., et al Grate stove, furnace, etc. 53,577
Peele, John F. Plough stock.
51,997
Peele, Willian Charles Clement, et al. Kegister for beer engines
Peirce, Almy Le Grand. Military bicycle.................. . . . 0 . $5,8,813$
1'elatan, Louis J., et al. Gold extractor and process of extracting
Pelissier Rauul. Saccharine preparation system.....
Penberthy, William, et al. Handle bar for bicycles.
Pande bar for bicycles.
deton, Levi A. Window shelf
53,7
Pene, Antonio. Merdicinal compound
54,15
Peniakoff, Dimitry A. Method of obtaining aluminates, or silicates, etc
$54,125,54,059$
Pennock, Willard. Metallic car 54,125, 54,129
Pennycuick, James \mathbf{G}. (Globe for lamps. 51,151
Percival, John F., et al. Fire escape 51,735
I'ercival, William H., et al. Bicycle. 54,288
Perkins, Amos H. Asphalt pavement repairing apparatus. 51,574
Perkins, Charles E., et al. Switch for electric light. $\mathbf{5 1 , 1 4 3}$
Perkins, (iains W., et al. Carpet sweeper......... 51,034
Perkins, James 13.' Animal trap.
Perkins, John. Veterinary apparatus.
52,979
......... 51,741
Perkins, Pardon T., et al. Sea cock for vessels. 51,953
Perky, Henry D. Bread 52,428
Perlich, Albin. Burner for spirit gas 51,035
P'errin, William H. Plough
Perrin, Winfield M., et al. Car coupler. 53,8i6i
Peterkin, Charles R. Wheel rim 51,631
Peters, James T., et al. Nut lock . 52,896
Peters, Stephen R., et al. Shaft support 52,464
Peterson, Angus M. Steam engine..... 53,776
Pettibone, Muliken \& Co. Gas generator. 54,370
Penberthy Injector Co. Gage glass........... 54,365
Pewthers, Daniel Porter, et al. Lasting jack. 53,825
Pfaff, Luis. Threshing machine. .
Pfleegor, Thomas L. Vehicle seat lock
Pfund, Herman. Book handling device.
Philip, Jessie L. Sprinkler
Philippi, Al'red. Electric railway
Phihps, Juseph Franklin, te al. Steam pumep
Phillifs, Harry Codrington. Bicycle stand.
Phillips, Harry Codrington. Luggage carrier
Phillips, Samuel ID. Dam
Phillips, Spencer H., et al. Hame hook
. 52,382
Holder for reference books.
Philpott, William A., et al. Wire sewing machine
Pfineger, Ernest. Fish bait
Pickering, Barton. Electric light support
Pickernell, Frank A. Telephone and signal circuit
Pickernell, Frank Albert. Multiple telephone
Pickle, (Gabriel A. Soot-catcher
Pickles, Charles K., et al. Box or package.
Pickring, Charles. Smoke stack
Pieper, Carl, et al. Ammonia manufacturing system
Pieper, O. H. and A. F. Dental apparatus
Pierson, Ole I'. Fence machine
like, Charles F. Ore concentrator
Pike, Edward Ney Can opentr.
lillatt, Andrew. Furnact and fire bar.
Pillatt, Andrew. Furnace and fire bars
Pilon, Camil. Stirrer for ore-roasters
Pinder, J. H., et al. Lubricator
Pine, Charles C . String fastener
Piper, Edward S. Bicycle stall
l'jper, William F. Draft rigging
Pissinger, Jose ${ }^{\text {hh. Water gage. }}$
Pitcher, Franklin W. Calk machine
Pitkin, Walter J. Dinplay hook
Pitner, George M., et al. Curling iron.
Pittu an, Moses S. Railway switch.
53,278
53,352
51,150
52,6i(i3
53,649
53,821
51,461
53,812
52,244
51,583
53,983
52,936
54,153
53,010
51,558
53,906;
52,843
51,487
52,9!8
52,8:3
4, (16)!
53,797
5, 039
52,457
53,927
51,337
54,434
52,051
53,417
53,050)
54,325
51,962
51,132
51,956
51,1!2
53,230
Pittshurg Crushed Steel Co. Polishing material. 52,308

Plaissetty, Archille M. Mantle for lighting by incandescence 51,72!

Platz, Charles. Railway spike
Plows, Munter, et al. Water closet and tank
Plumbly, Frederick K. Crematory
Plunkett, Osborne, et al. Amalganator
Poesck, Caroline S. Toy and advertising device.
Poehlman, Henry E., et al. Electric railway
Poisson, Adolphe. Apparatus for suspending cards.
Poler, John W. Time recorder.
Polke, Josef. Parrel making machine.
Polke, Josef. Veneering apparatus.
Polke, orsef. Wood seasoning apparatus
Pollock, Charles Ver Treese. Syringe .
Pontin's Patent Butter Box Co. Box
Ponton, A. W. Current wheel
Poole, Robert B. (tuard rail
Poole, Staley I. Dise plow.
Pope, John L. Rail joint.
Pope, Manufacturing Co. Nipple forming machine
Popplewell, William R. Mop
Porter, Janes T. and John K. Track sanding device.
Porter, Joseph Y. Derailing switch.
Post, Jordan. - Support for wash tubs, ete.
Postlewait, J. Y., et al. Gas machine.
Postlewait, J. Y., et al. Gas making machine.
Postley, Mary F. Scoop knife.
Postley, Mary Frances. Corn holder.
Potter, Edward A. Tufting machine
Potter, Frederick A. Door fastener.
Potter, Frederick J. Merry-go-round.
Potter, Henry W., et al. Animal brand
Potter, Joseph H., Spraying machine.
Potter, William B. Electric arc extinguisher
Potthoff, W. F., et al. Malting apparatus.
Potts, Frank Ługene, et al. Pen holder
Potvin, Terence. Car coupler.
Pounder, David. Hay press.
Powe, William. Washing machine
Powell, Edwin. Furnace
Powell, Edwin A. Blind roller.
Powell, Joseph, et al. Velocipede saddle.
Power, Pomeroy W. Shaft bearing. .
Powers, Albert, et al. Waggon bake
Poyser, John. Loom
Poyser, John, et al. Loom let-off.
Prall, William E. Rotary engine.
Pramer, Philip M. Heel calk making machine.
Pratt, Charles H. Lace fastener.
Pratt, Edward. Knife for mowing and reaping machines
Pratt, H. C. Wire attaching device.
Pratt, Nathaniel P. Method of making sulphuric acid.
Pratt, Samuel Lee. Machine for providing lacings with wire tils.
Pratt, Williani. Can.
Pratt, William. Can and key opener
Pratt, William, et al. Rolling pin
Praugley, A. D. Bicycle lamp.
Prescott, Willian (reary. Valve
Presoon, (George S., et al. Thill coupler
Preston, 12. Smoke box.
Preston, Robert C., et al. Key for door locks
Price, Frank Alfred. Fountain ${ }^{k \times \prime}$ n
Price, T., et al. Wall paper trimmer
Pridham, S. S., ot al. Smoke condenser
Priegel, Otto. Twine holder.
Pringle, Alice N. China painting cabinet
Prin\%, Faustin. Dust collector.
Proctor, Walter J. G., et al. Moistener
Promenschenkel, C., et al. Fire escape.
Prosser, Thomas Henry. Clothes pin.
Prond, James P. E., et al. Caster.
Providence Knitting Machine Co. Kinting machine
Prowse, George R. Cooking range and stove.
Prufrock, Harry. Bed.
Publishing, Advertising and Trading Syndicate. Fabricmaking machine.
Publishing, Advertising and Trading Syndicate. Manufacture of moulded articles
Punchard, John H., et al. Hydro-carion burner
Punchard, Tohn H., et al. Stove.
Purcell, William W., et al. Child's crib
Purvis, William B., et al. Electric railway
Putnam, A. M., et al. Pump
Pyle, Lewis E., Musical instrument
Pyne, Rolert Allan, et al. Prucess of making stone
Quentin, Auguste. Heater for use with liquid hydrocarion
Quinlan, Andrew W., et al. Table
(Vuinn ($\mathrm{C} . \mathrm{F}_{\text {. }}$) Refrigerator Co. Refrigerator.
Quinn, Patrick H. Belt tightener and shifter.
(Vuinn, James. Fare box.
Ralbbi, Francis W., et al. Bicyclestand.
Rabus, (reorge F. Lathe cutter rest
Radspimer, Veitus, et al. Tube scraper.
Rahmer, Frederick W. Mucilage bottle.

51,325 51,064 53,619
53,791
52,847
53, $5: 4$
53,858
54,078
54,331
54,330
54,332
51,267, 61,268
54,085
52,621
52,251
51,444
54,3:38
54,233
51,572
54,103
53,414
52,443
52,026
52,056
51,055
51,894
53,926
51,004
52,540
53,024
53,664
53,478
54,135
53,7!9
54,265
52,952
53,249
51,023
53,330
54,297
52,586
52,991
51,232
54,466
53,251
54,182
52,413
51,582
52,732
52,895
51,909
51,561
51.560

52,249
54,289
53,768
53,966
52,106
53,235
51,368
53,608
51,803
52,325
53,362
53,569
52,80!
51,296
51,019
52,323
51,170
52,987
53,361
51,695
51,149
51,96
51,715
50,950
51,917
51,431
54.438

53,87!
52, 144
51,257
52,623
52,624
54,417
51,815
51,945
51,717
51,184

Ralph, William and Thomas, et al. Compound for repairing pnenmatic tires
53.732

52,87!
Ralston Still Manufacturing Co. Distilling apparatus
Ramsay, William B., et al. Station indicator............ $5 \mathbf{5 , 3 8 7}$
Ramsey. William H., et al Curtain stick forming machine 54,235
Rand, Charles Edwin. Process of and apparatus for gener- 53,753
ating and using gas
Randall, Franklin S. Covering for electric wires......... 51,235
Randel, William, et al. Window case and sash fixtures... 53,484
Rankin, John H. Splint
Rankin, Peterson, et al. Handle bar
52,544
53,464
Randsen, Wallace C. and Charles R. Caster. 52,914
Rapp, Alphons. Rinser for the nose and throat 51,506
Rasteter, William, et al. Draft equalizer................... 52,415
Rauber, Adoliph. Baking oven . \quad, 2,013
Raudolph, R. M., et al. Car coupler
52,013
52,098
Rauert, Henry A., et al. Bicycle garment guard and lock. 54,084 Raymond, E. A., et al. Buckle.
Raymond, Lewis C. Level.
23,534

Ryan, Edward W. Communion service. 51,088
Kyan, Thomas A. Valve
Ryan, Thomas W., et al. Cock
Read, Frederick William. Weed puller......................... 51,518
Read, John C. C., et al. Caster. 52, $\mathbf{5 2 3}$
Read, Orrin B. Shaft bearing . 52,587
Read, Thomas (reorge. Fifth wheel for vehicles....... . . 51,915 Read, W. A. Can.. 52,183 Reaser, Warren T. Method of hardening cast-steel. . . . 51,355
Reaser. Warren T. Valve support. 50,962
Reaume, Denis J., et al. Bicycle canopy 51,449
Rebenklan, E., et al. Box for coal, wood, etc 52,292
Recht, Leaney. Fan..... 54,043
Rector, F. M. Dust pan and ventilator 52,082
Redden, Allison \& Levi. Potato bug sprinkler 51,063
Redden, Lowell E. Car coupler.......... 52,703
Redfield, Charles T. Saw
Redifer, Charles J. Track brace
Redmian Thomas et al (ias lamp suspension device.... 5,504
Redmon, Alfred P. Car coupler. $\mathbf{5 3 , 3 0 6}$
Redway Manufacturing Co. Valve. 52,497
Reed, Adam, et al. Shoe
Reed, Charles I. Carpet swe puer
54,190
Reed, Harrison. Pipe connection $\mathbf{5 2 , 7 7 2}$
Reed, (The W. S.) Toy Co. Hinge . $\mathbf{5 2 , 3 0 5}$
Reed, William S. Means for playing stringed musical instruments

53,281
Reeves, Charles Johnston, et al. Tire for bicycles. 53,693
Reeves Pulley Co. Friction clntch........................... 53,337
Regan, James. Furnace grate.
53,743
Regan, Harry Clifton. Electric railway
Regan, Thomas. Torjedo boat.
Reiler, Henry, et al. Bank note binder
Reid, Douglas. Truss
53,882
51,414
Reid, 1ouglas. Truss 52,973
Reid, Joseph James. Paper display $\mathbf{5 2 , 7 4 7}$
Keid, Kenneth R. Hame tug plate. $\mathbf{5 2 , 4 2 6}$
Reid, Thomas. (iasoline engine.
52,426
52,978
Reid, W. F., et al. Nitro compound
Reily, Martin J., et al. Bung for barrels
Reinhart, John B., et al. Carpet stretcher and tackie...
Reinisch, Franz Josef. Methol of making lubricants. $5.5 \mathbf{5 3 , 3 5 8}$
Remsch, Franz Josef. Smoke consuming furnace. 52,894
Reissing, Heinrich. Beer jug. 52,522
Renne, William C. Lamp burner. 51,948
Renz, Carl J. Fountain pen .. .
Retcheson, William H. Cultivator Reynolds, Andrew J. Track cleaner

53,093
Reynolds, Andrew if. Track cleaner. 53,110
Reynolds, Andrew J., et al. Street sweeper. $5 \mathbf{5 1 , 4 9 9}$
Reynolds, David R. Bicycle lamp attachment 54, 285
Reynolds, Edward E., et al. Ore separator 51,573
Reynolds, George Lafayette. Horseshoe 51,527
Reynolds, George S. Ironing board . 53,540
Rhind, Frank, et al. Bicyele lamp
R34
Rhoades, Deloss. Waggon brake. 51.478
Rhoades, James W. Oil pump 53,141
Rhoderick, George Gray, et al. Railway spike 5 . 5,519
Rhodes, Charles M. Clock movenent
Rhodes, Charles M. Clock movement .
Rhodes, Chauncey, et al. Drill chuck.
$\mathbf{5 2 , 0 4 3}$

Rhodes, Chauncey. Jrill chuck. 51,626
Rhodes, Jay Byron, et al. Steam pump. $58,8,81$
Rhodes, Oreon S. Vaporgenerating and applying apparatus 52.297 Ribbe, Patl. Electrode for storage batteries 1,576

Rich, Benjamin $\mathrm{F}_{\text {. }}$ Reaping machine 5 . $\mathbf{5 3 , 6 3 2}$

Rich, Elisha B. Saw stretching machine. $\mathbf{5 2 , 3 7 2}$
Rich, Perley Edward. Trunk.................................. . 51,404
$\begin{array}{ll}\text { Richard, Francis H. Weighing machine. } & 51,292 \\ \text { Richards, Francis H. } & \mathbf{5 3 , 3 4 5}\end{array}$
Richards, Francis H. Weighing machine.................. . . . 51,169
Richards, James \mathbf{F}., et al. Mining machine. 51,794

53,769

Richardson, Clayton Millard. Heating drum
Richardson, Isaac, et al. Coin-controlled apparatus
Richey, H. D. Heel for shoes
Richman, H. J., et al. Truck.
Richman, W., et al. Truck.
Richmond. Vise.
Richmond, Don. L.
Richter, Dr, Adolf. Manger.
Richte 1 . Adolf. Note sheet for musical instruments
Richter, Dr. Adolf.
Damper for musical instruments. 51,35
Richter, Dr. Adolf.
Richter, Dr. Adolf. Tongue for music loses.
Richter, Dr. Adolf. Tune disc.
Richter, (ieorge Henry. Filing receptacle
Riddelle, Philip, S. Window sash
Riddelle, Philip Stover. Sash lock.
Ridyard, T. E., et al. Vegetable pulverizer
Ridel, Henry, et al. Water gage.
Riedl, Johnu. Damper for musical instruments
Ries, Rudolph W. Writing and weighing device holder.
Riley, Alfred Mathews, et al. Non-refillable bottle.
Kinn, James J. Tent.
Rinquette, Louis Come. Saw guard.
Rising, Walter William, et al. Violin
Ritchie, Enoch E. Washing machine
Ritchie, John. Protector for bicycles
Ritter, Frank. Dental chair
Rivero, Antomio M. Cane planter.
Rivers, Sophia M. Lap board.
Robbins, Joseph T. Hot water furnace
Roberts, Frank. Lobster canning system
Rolerts, W. D. Inck
Robertson, James C. Sled propelling device
Robertson, John. Methot of and machine for preparing
and administering liguid medicines.
Robertson, 'T. W. Chair.
Robidoux, George. Imitation Persian lamb fabric
Robin, Doseph T. Show case
Robins, Thomas. Conveyor belt.
Robinson, Alexander. Horse rake.
Robinson, Alexander, et al. Bottle filling mechanisin.
Robinson, Charles M. Hot air cabinet and screen.
Robinson, Frank M. Fish hook
Robinson, F. T. Bottle stopper.
Robinson, Willian. Stringed musical instrument
Robinson, William M. Car coupler.
Robischung, H. B. Brake beam.......................52,05s,
Robischung, H. B. Brake beam guard clamp.
Robischung, H. B. Brake beam hanger.
Robischung, H. B. Testing machine for brake beams.
Rochester Automatic Lubricator Co. Lubricator.
Rochester Bicycle Combination Holder Co. Luggage carrier
Rockwell, Joseph. Music rack
Rodelsperger, Herman. Apparatus for teaching arithmetic
Rodger, Davenant. Match making machine.
Redgers, James G. Rubber tire for vehicle wheels.
Rudwell, George James Bellamy. Sign letter
Roger, J. Ore crusher.
Kogers, Edgar B. Ladder chair.
Rogers, Enoch .J. Clothes pounder
Rogers, Henry A. and Isaac H., et al. Air blast amaratns
Rohrbeck, Emil. Method of gasifying inflammahle liquids
Romenesko, Joseph G. Lock for waggon seats.
Ruof, Williams. Hanger for folding doors
Rooker, Juhn S. Bee feeder
Rooney, John Joseph. Storage battery
Root, George Ingersoll, et al. Brake
Roper, David, et al. Wheel bearing
Rorabeck, F. C., et al. Electric headlight.
Rose, Jacob A. Sand hox
Rose, William, E. P. Wave motor.
Rosenholz, Alfred, et al. Electric railway
Ross, Archia L., et al. Rumner for sidewalks, etc
Ross, David A. Envelope.
Ross, Matt F. Piston head
Ross, Matt Fharles, H.A.F.L. Electric lamp.
Ross, W. T. Burner.
Rosenfeld, Jesse, et al. Bottle stopper.
Rosser, Thomas, et al. Machine for making fence grips and washers
Roth, Gilson W. Gas engine.
Rouderbush, Frank S. Handle bar for bicycles.
Rouland, Francis. Unrefillable bottle
Romse, Thomas. Pneumatic tired wheel.
Rowand $\mathrm{L}_{\text {rewis }} \mathrm{G}$. Electric circuit safety device
Rowell, E. T. et al. Lubricator
Rowland. S. D. Liquid concentration system
Rowse, Hidwin F., et al. Kail coupling.
Rowsom, A. W. Treble tree.
Roy, A. J. Station indicator
Roy, A. J., et al. Fish plate
Roy, Napoleon, et al. Jock
Rozell, Charles. Billet lowp
Rubber Tire Wheel Co. Wheel and tire.

53,687
51,241
52.674

51,:175
51,975
53,933
20,505
53,161
$51,485,53,160$
51,484
51,483
53,354
51,255
51,265
53,206
52,500
54,157
51,1×2
51,266
51,049
51,041
54,216
51,790
51,951
52,437
50,970
52,592
53,542
51,618
54,079
54,358
51,610
52,019
52,682
54,276
53,901
52,011
53,454
53,409
51,900
52,197
51,128
52,313
58, 53,272
53,273, 53,274
53,271
$53,2 i 0$
54,333
53,812
51,870
53,355
51,441
52,503
53,706
52,046
51,711
52,672
50,959
52,410
53,924
53,141
54,393
41,581
51,511
54,234
51,145
:33,819
:3,3:4)
53,654
52,945
54,418
53,865
52,743
52,2:5
31,262
52,941
51,84
53,774
54,433
02,102
51,244
22,051
22,113
53,969
53,591
52,132
51,247
52,906
53,759
53,180

Ruddell, Thomas. Pea harvester shoe and divider.
54,35
53,032
53,771
:62,812
51,077
51,400
52,986
51,367
53,371
54,180
53,36i
52,545
51,675
53,450
52,161
54,357
53,850
51,007
:4, 183
52,540
53,931
52,913
52,384
51,949
54,439
51,791
54,086
53,185
52,238
52,810
54,448
54,200
54, 138
52,470
51,(644
52,419
53,645
51,391
52,683
51,508
54,116
54,074
50,951
52,(653
52,485
52,886
54,215
52,824
: 0,95
61,546
53,549
54,2\%
52,024
52,691
51,329
53,814
54,329
54,097
51,994
52,235
54,108
51,197
54,134
51,028
54,185
51,685
52,322
52,559
52,992
51,445
54,186
53,074
53,067
52,960
54,321
51,887
51,344
53,201
52,501
54,126
51,144
54,283
52,864
53,461
52,265
53,571
53,885
53,655
51,475
01,275

Shultz, Charles W. Sleigh
Schulze, Gustav. Roofing t

Schwab, Nathan, et al. Non-refillable bottle
Schwah, N., et al. Bottle
Schwarizenhauer, Hermann. Screw
Schwarlyenhauer, Hermann. Stone driil
Schwartz, Charles I. Vehicle wheel.
Schwartz, Samuel L. Skate
Schwartze, Carl J. Telephonic apparatus.
Schwersenski, Mary J. Clothes-lifter.
Scott, Burton William, et al. Bicycle handle bar
Scott, Charles, et al. Brake roxd.
Scott, Charles H., et al. Ore concentrator
Scott, Christopher C., et al. Runner for sidewalks, etc
Scott, Jarres. Washing machine
Scott, Orlo J. Boiler feeder.
Scott, Walter A., et al. Machine for washing cereals.
Scott, William, et al. Window screen
Scott, William (i. Cultivator
Scott, William H., et al. Box or package
Scoville, E. N. Faucet
Scranton, Benjamin H. Electric soldering iron
Scribner, Charles E. Lock out system for telephones
Scribner, Charles F. Signal and lock out
Scribmer, Charles F . Telephone line system.
Scribner, Charles E. Telephone switch board annunciator circuit.
Scribner, Charles E. Telephone switch board apparatus. 53,455 ,
Scribner, Charles E. Telephone switch board signal
Scribner, Charles Ezra. Appazatus for telephone switch boards
Scribner, Charles Eara. Busy signal for telephone lines
Scribner, Charles Eara. Telephone circuit
Scribner, Charles Ezra. Telephone exchange system.
Scribner, (ieorge W., et al. Organ
Scribner, Walter K. Thill courling.
Scudder, John, et ai. Electric soldering iron.
Seaman, Richard S. Bottle
Sears, George. Punch, shears and tire up-setter
Sebastien, Marie C. V. Medicinal compound
Sebelin, August.J. T. Triple button.
Seeley, Harley S., et al. Car compler.
Seeley, William Elmer, et al. Car coupler
Seeley, Thomas. Saw swage
Sehler, J., et al. Bean harvester
Seigle, Adolph. Apparatus for treating liquids by means of heat.
Self-healing Pneumatic Tire Co. Pneumatic tire
Selk, Herinann. Sash
Sendering, Martin L. Vehicle spring
Senger, John H. Car coupler
Stmnox, Thomas H. Waterheater.
Severy, Melvin L. Printing apparatus.
Seward, William K., et al. Pump.
Seybold, William. Reed organ.
Seymour, Frederick H. Cash register.
Shadbolt, H. E. Machine for making excelsior wrapper
Shafer, Joseph. Wrench.
Shanks, Stephen C., et al. Electic register
Shannon, Oscar M. Bicycle support
Sharp, C. S. Corn harvester.
Sharpe, Edward S. Cash register.
Sharpington, Willian H. Pick, shovel, hoe, etc
Shaw, Charles J. Land roller.
Shaw, Charles 0 ., et al. Leather washing machine.
Shaw Electric Rasp Co. Rasp.
Shaw, George A., et a. Bicycle stool and pouch.
Shaw, George and Thomas, et al. Wood drilling machine
Shaw, Isaac E. Letter and message receiver
Shaw, John. Railway car. .
Shear, George, et al. Table.
Sheard, J. W., et al. Bearing and bearing surface.
Shearer, (ieorge 13. Harp.
Shedd, Charles W. Can filling machine.
Sheets, William H. H. Valve.
Shetfield Car Co. Cattle guard
Sheldon, H. A. Pump.
Sheldon, Mark A. Bicycle stand
Shelley, Russell T. Trunk lock.
Shelly, David. Unicycle.
Sheneman, E. M. Yeast.
Shepard, William Albert. Refrigerator.
Shepherd, Crutcher D. Horse shoe..
Sheridan, Joseph B. Hot water heater.
Sherman, William C. Vevice for preventing retilling of
bottles bottles.
Sheward, Edward G. Cycle frame attachment.
Shiels, Alexander. Cow milking machine
Shimer, Samuel J. Cutter head.
Shimp, Jacob A. Corn shock
Shipway, Thomas Henry. Garbage pit.
Shirk, George F. Machine for washing cereals
Shirk, George W. Calendar.
Shnicke, Otto. Oar.
Short, A. I. H., et al. Life boat.

51,731 53,658
53,674
54,049
53,697
52594
53,737
53,134
53,824
54,096
53,620
52,945
51,822
53, 107
51,148
52,802
52,36
51,487
51,069
51,555
53,551
53,553
$5.3,550$
51,559
, 53,456
53,903
53,720
$53,(1) 4$
53,458
51,194
53,211
51,555
52,488
52,976
51,542
53,975
53,080
51,719
53,081
T31,907
53,652
52,477
52,481
54,001
51,314
51,447
51,941
54,128
54,273
53,117
53,609
53,058
51,853
52,296
54,193
52,946
51,620
52,344
52,551
53,323
52,619
51,430
52,26!
51,257
52,109
51,905
51,565
53,698
53,827
52,018
53,833
52,614
53,489
54,137
53,400
52,014
51,798
51,249
51,303
53,408
51,830
52,289
51,727
51,148
59.170

54,173
52,186

Shortt, Edward (x . Air-brake coupling.
53,952
Shrewsbury, Charles P. Carbon manufactare................. 51,600
Shrock, Eli J. Windmill.
51,648
Shull, John H., et al. Sash pulley housing. 53,566
Shuman, Frank. Machine for making wire glass........ 53,914
Shupe, Wellington. Piano stool......... 51,646
Shutter, David H . Invalid lifting device..........................
Shuttleworth Electric Co.
Electro magnetic inducation
52,492

53,232
52,329
Sicard, William, et al. Band cutter and feeder............... 51,361
Siegel, Andrew, et al. Bottle labelling machine............ 53,363
Siemens \& Halske. Process of producing zinc. 51,688
Sigsby, William B. Trestle............................... 52,929
Silberberg, S. Vending and advertising machine......... 52,035
Silcott, Loudon. Boring tool. 52,527
Siler, Horace W., et al. Car coupler 53,269
Sillick, John. Root cutter............ 51,251
Silver, Albro, et al. Sign letter................................ 51,089
Silver, William. Car coupler................................... 51,460
Silver, William. Lubricator 51,782
Silverston, Anthony B. Fastener.............................. 51,627
Simmance, John F. Fluid meter............................. 53,512
Simmonds, Thomas Henry. Brake for bicycles, \&c........ 53,878
simmons, Edwin J. Level
53,038
Simmons, George, et al. Device to prevent spreading in
railway rails railway rails

51,654
Simonds, Thomas Henry. Steering gear for velcocipedes. 53,803
Simpson, George P. Machine for bending links........... 51,168
Simpson, J. W., et al. Disc harrow sharpener........... 52,067

Singer Safety Hook and Fye Co. Hook and eye........... 52,053
Sinton, Walter Iyon. Black board 53,126
Syolander, Eric O. Fire escape............................. 51,87i
Skanks, S. C. Sleeping car berth register................... 53,177
Skaptason, Rev. Magnus J., et al. Mowing machine...... $\mathbf{5 3 , 6 1 8}$
Skeil, Christian A. Riveting machine...... 52,331

Skinner, Joseph W Shoe shaper. 51,005
Slade, Samuel I. Hook and eye. 51,589
Slaght, Lewis H. Lawn mower sharpener.........................64,113
Slaght, Roxa. Lawn mower sharpener................................113
Slater, Charles E., et al. Shoe............................... 53,430

Slight, Emsley L., et al. Curtain fixture.................. . 54,268
Small, Abraham, et al. Nut and kolt lock......... .. 53,767
Small, Reid P. Evaporator for maple sap................... 50,978
Smith, A. A., et al. Lamp chimney and gas globe......... 53,181
Smith, Aaron F. Button fastener.... 51,526
Smith, Abraham L. Bicycle tire........... 53,021

Snith, A. L. Pneumatic tire................................. 54,24,
Smith and Anthony Co. Water closet bowl....... 52,515
Smith, Arthur L. Bicycle tire cover........................... 51.809
Smith, Benjamin. (夭as burner................................ 51,360
Sinith, B. F. Lock for bicycles.............. 51,304
Smith, Carlos A. Oil refining system....... 54,341
Smith, Charles E., et al. Fish brok 51,416
Smith, Dudley L., et al. Pump.................................. 51,640
Smith, Earle H. Sewing machine 51,397
Smith, Edwin F. and Frank A. Garment hook 54,400
Smith, E. H., et al. Wrench..... 52,676
Smith, Eugene P. Churn..789
Smith, Fzra W., et al. Buckle................................ 53,534
Smith, Frank O. Electricalarm 52,350
Smith, Frank S. Wrench. 53,059
Smith, Franklin De F. Sleigh knee............................... 52,766
Smith, Fred Clinton. Pump for oil cans 52,402
Smith, George. Steam hammer $1 \ldots \ldots$. . 52,610

Smith, George E., et al. Car coupler
. 3.0, 54,057
Smith, Henry T. Damper for stove pipes... 51,872

Sinith, James. Pneumatic tire tester
Smith, James E., et al. Gold extracting process and apparatus.

54,305

Smith, James H. Lubricator 52,290
Sinith, John. Driving gear chain 51,016
Smith, John. Suspender 53,554
Smith, John Addison. Straw cutter.................................. 50,983
Smith, John, et al. Bnok turner
Smith, John, et al. School desk and seat 52,091

Smith, J. S., et al. Surgical compresser $\mathbf{5 2 , 7 8}$

Smith, Mack T., et al. Mechanical movement
Smith, Peter James, et al. Cicycle driving gear
Smith, Philip (r., et al. Bicycle lock
Smith, Reuben A. Toy.
Smith, Samuel J. Bottle
Smith, Samuel N., et al. Boat propelling attachione
Smith, Samuel N., et al. Electric battery
Smith, Thomas Henry. Stop-motion for twisting machines
Smith, Wilber Brooks. Stamp
Snith, Wilson W. Corn harvester
Smoot, James Edward. Medicine case and saddle bag combined
Smyser, Henry E. Package making and filling machinery
Snowden, Edward P. Electric lamp hanger
Snowden, A. (t. Canister
Snyder, Emmanuel H. Garden rake
Snyder, John J. Pipe cleaner
Snyder, John W. Grain saving machine
Snyder, Lyman H. Floor and ceiling plates
Sobey, John S. Grater
Solar Kefining Co. Petroleum refining system
Somers, Thomas F. Corset display device.
Sommerfield, August. Window and blind
Sooy, Thomas. Ladder
Southam, Thomas L.: et al. Bicycle frame
Spangler, James M. Velocipede
Sparr, Benjamin F. Anti-friction bearings
Sparr, B. F. Sprocket chain
Spaulding, Warren W. Medicinal compound.
Spear, Ellis, et al. Leather cutter.
Spear, Ellis et al. Leather trimmer.
Spear, Riley R. Com planter.
Spears, Ralph R. Lathe for turning axle boxes
Spelman Manufacturing Co. Saw-set and tooth-holder
Spence, John. Fire escape
Spencer, G., et al. Smoke box
Spencer, H. P. G. Hinge
Spencer, Sidney F. Bicycle stand.
Spencer, Theodore, et al. Telephone exchange system
Sperry, F. A. Car wheel.
Sperry, Elmer A. Electric brake
Sperry, Elmer A. Electric car gearing
Sperry, Elmer A. Electric motor control system
${ }_{S p}$ perry, Elmer A. Electric current controler.
Sperry, Flmer A. Electric motor arrester.
Sperry, Elmer A. Motor controller
Spicer, David. Axle nut
Spielman, (xeorge D. Ink stand
Spunk, John L., et al. Glohe for lamps.
Spink, John L., et al. Vault light.
Sponabel, Isatac. Sickle grinding machine
Sponseller, John E. Band cutter and feeder
Spooner, Walter H., et al. Ore separator.
Sprague, D. A. Cheese press.
Sprague, E. Trestle
Sprague Manufacturing Co. Corn silking machine.
Sprague Manufacturing Co. Soldering iron
Springer, Elsbeny E., et al. Dish washer
Spriegel, John Willian. Nut lock.
Squire, R. M. Pianoforte.
Squires, William, et al. Bicycle gearing
Scacey, Henry B. Bicycle handle.
Stackman, Benjamin P. Steel iron manufacture
Standfield, Edwin R. Bicycle brake mechanism
Standish, P. H. Chain making machine
Standish, Thomas, et al. Valve.
Stanfield, Edwin R. Bicycle.
Stanley, Frank F. Nail presenting and driving mechanism
Stanley, John William. Hame fastener.
Stansbury, George F., et al. Buckle.
Stansel, Alonzo. Grain drill
Stansfield, James. Indian rubber and other socks or soles for boots and shoes
Stansfield, James. Manufacture of Indiain rubler socks.
Stansel, Thomas J. Electric annunciator.
Staples, J. H. Turbine
Star Knitting Co. Mittens and method of knitting them.
Stark, Joseph. Umbrella.
Starkey, W. L. School desk and seat
Starr, John J. Pulley
Steele, Bryan C., et al. Plough
Steele, John C. Road scraper.
Steenerson, Halver, et al. Horse shoe
Steffens, George W. Non-refillable bottle
Stehle, W. H., et al. Truck.
Steiner, Charles. Bearing rib for building purposes.
Steimert, Morris. Piano action.
Stempson, Walter F. Scales.
Stenberg, Lewis B., et al. Pijee wrench.
Stendah1, Anders. Lumber piling apparatus.
Stendelach, Carl F. Plh. M. Electrical contact apparatus.
Stenotype Co. of Portland. Linotyp machine
Stentiford, Albert I). Draw bar.

54,286
52,539
53,032
53,710
52,435
53,760
23,953
51,585
51,146
52,597
52,230
53,370
52,836
:2,243
:33,895
52,094
53,836
53,873
53,631
53,191
51,377
51,:13
51,829
54,023
51,445
51,875
52,147
54,143
52,878
52, 87
53,242
51,333
53,964
52,730
52,106
51,078
51,796
51,557
52,033
54,266
51,563
54,254
53,338
51,694
54,262
51,863
54,156
51,151
51,152
51,450
52,282
!1,573
52,777
:22,070
52,783
53,955
52,407
52,355
52,188
:5,031
53,284
51,152
54,308
53,048
53,334
54,377
: 1,300
52,984
53,534
52,795
53,844
:53,843
53,422
52,027
52,309
51,175
51,996
54,195
54,186
52,821
54,013
52,714
21,975
53,872
53,807
53,197
53,661
52,930
53,315
53,104
53,179

Stephens, James E. Cabinet	51,
Stephens, J. F. Dust collector	52,111
Stephens, Harry A. Ball hearing	
Stephens, John H. Game	
Stejhens, Samutl. Street cleaning machin	53,017
Stephens, Samuel. Street swee	
Stephens, William, Joseph and Hugh. Thrust bearing	53,182
Stephenson, Samuel. Washlward face.	53,624
Stephenson, William. Traction engine, thresher and gang plow combined	51,157
Stern, Arnold and Bemhard, et al. Bottle stopper	52,248
Stern Manuf. cturing Co. Photographic camera.	
Stern, Philip K. P'hotographic camera	53,854
Sterry, Thomas N., et al. Buttle	53,528
Sterzing, Fred. Clothes line	
Sterzing, Fred., et al. Washing machine	53,896
Stevens, Frank W., et al. Sash pulley housing	
Stevens, Fredl. E.f et al. Hair clipp	51,371
Stevens (ieorge F., et al. Hair clip	51,371
evens, John C. M chine for forming tubes, hollow	

clen, \&c., \&c
51,417
54, 131
51,477
53,034
52,177
51,665
53,433
51,339
52,698
54,077
53,851
51,976
53,640
53,966
51,922
51,952
53,620
53,235
52,989
53,658
53,419
54,095
52,531
53,721
53,722
51,683
51,272
50,974
51,124
51,544
52,707
52,06!
52,710
54,379
53,296
52,2×3
52,243
51,635
53,775
52,583
52,603
53,719
52,302
51,924
51,413
52,452
51,012
54,362
52,124
52,125
52,558
53,637
53,019
54,058
51,430
53,520
53,892
51,142
51,430
54,339
54,355
52,664
52,933
53,420
52,720
53,428
53,801
51,634
51,118
52,100
53,947
54,084

Swan, George E. Springs for hoots and shoes
Swanton, Frank W., et al. (irain cleaner
Swedlund, Erick J. Sprocket chain
Sweet, Orange M. Grain cleaner.
Swem, Lawrence W. Air pump.
Swem, L. W., et al. Gas making machine
Swem, L. W., et al. Gas machine
Swinglehurst, Harry. Knitting machine
Sword, K., et al. Stone pipe joint lock
Symons, John. Pillow sham holder
Tabor, Harris. Moulding apparatus.
Taeger, P. J., et al. Mode of sealing and opening tin cans and boxes.
Taggart, H. D., et al. Surgical compressor.
Taggart, Horace 1). Valve
Taillefer, Aimé. Sleigh.
Tarbell, Leonard F. Calk sharpener
Talveau, Augustin L., et al. Lubricator
Taylor, Charles H. Car coupler.
Taylor, Charles Iewis. Carpet support.
Taylor, Charles O. Fly exit. .
Taylor, Christopher. Fog signal
Taylor, David F. Flue thimble
Taylor, Francis A. Fifth wheel.
Taylor, Herbert A. Telegraph transmitter
Taylor, John Wright, et al. Cleat for wires, ropes and cords
Taylor, Joseph S., et al. Suction device
Taylor, Thomas S. Bicycle coupler.
Taylor, William J. Car wheel
Tear, Thomas J., et al. Bedstead.
Tear, Thomas J., et Ja. Bla......51,724, $51, \overparen{2} 25$,
Tebbetts, Charles J., et al. Advertising cabinet
Teed, Frank L., et al. Ore extracting process
Temple, Ansel F. Bicycle
Temple, Henry P. R. Dental notor stop-motion
Ten-Eyck, John (G. Advertising desk
Tennant, Joshua, et al. Pigment.
Tenny, Samuel A. Oar.
Tenny, Sanhorn G., et al. Harvester
Tercy, John R., et al. Waste heat utilizing apparatus
Teredo Proof Pile Co. Pile.
Terrill, A. M. Fruit-picker.
Terry, Henry C. Oil can and faucet.
Terry, John Rufus. Vehicle wheel.
Test, Charles Edward. Process of making studs, ett
Thatcher, Thomas, et al. Track cleaning and tire preserv ing compound.
Thaw, Charlie, et al. Fastener.
Thayer, Everett E. Kite frame.
Thayer, (ieorge A., et al. Pigment.
Thayer, Harry Bates. Spring jack for telephone switchboards.
Thayer, Silas \mathbf{R}. Label applying machine
The Bell Telephone Co. of Canada. Apparatus for telephone switchboards.
The Bell Telephone Co. of Canada. Busy signal for telephonelines.
The Bell Telephone Co. of Canada. Call counter for telephones.
The lbell Telephone Co. of Canada. Electric signalling system.
The Bell Telephone Co. of Canada. Multiple telephone.
The Bell Telephone Co. of Canada. Service register for telephones.
The Bell Telephone Co. of Canada. Signalling apparatus for telephone lines.
The Bell Telephone Co. of Canada. Spring jack for tele phone switchboards
The Bell Telephone Co. of Canada. Switchboard for telephone exchanges
The Bell Telephone Co. of Canada. System of current supply for telephone circuits
The Bell Telephone Co of Canada. Telepnone circuit.
The Bell Telephone Co. of Canada. Telepnone circuit
The Bell Telephone Co. of Canada. Telp phone signal.
The Bell Telephone Co. of Canada. Telephone switch.
The Cleveland Machune Screw Co. Belt shifter.
The Combined Weight and Cost Indicating Scale Co. Weight and cost indicating apparatus for scales.
The Morloid Manufacturing Co. Process of converting skins into horney material.
Theobald, John Jacob. Dumping waggon.
The Portable Refrigerator and Freezer Co. Refrigerator.
The Risdon Iron and Locomotive Works. Furnace
The Solar Refining Co. Process of and apparatus for refining petroleum.
The Solar Refining Co. Process of refining petroleum,
Theurer, Jacob F. Process of and apparatus oltaining carbonic gas.
Theurer, Jacob F., et al. Keg pitching machine.
Thibault, Joseph., Box.
Thiem, E. A. Tou-clip for bicycle pedals.
Thierkoff, Anthony W. Pump

51,800 50, 912 53,494 54,391 20,391
a, 000 Thomas, Joseph, et al. Refrigerator car
52,056 Thomas, Joseph, et al. Refrigerator crate.
52,026
51,113
52,089
51,912 Thonpson, Charles A. Pump and measure
51,891 Thompson, James Joseph. Mechanisum for propeiling railway cars, \&c.
Thompson, Join, et al. Bicycle
Thompson, Richard. Cock.
Thompson, Rolert H. Cash register.
Thompson, Thomas G., et al. Horse shoe
Thompson, W. Combination tool.
Thompson, William. Vise.
Thompson, william, and William Alexander. Vise....... 52,318
Thompson, Andrew, et al. Clasp for garment supporters. . 53,708
Thumson, Elihu. Alternating current regulation system.. 51,549
Thomson, Flihu. Alternating currents distribution system 51,551
Thomson, Elihu. Dynamo-electric machine.............. 53,603
Thomson, bilihu. Electric energy distribution system..... 53,659
Thomson, Elihu. Electric meter....................51,552, $51,6!6 ;$
Thomson, Elihu. Electric motor...................... . 51,550
Thomson, Elihu. Transformer..... 51,548
Thomson, James and George. Iron pipe..................... $51,3,34$
Thomson, Le Roy B., et al. Bicycle rest.
Thomson, W. A. Lock for electric lamp, hangers.
Thomson, William. Weight and cost indicating apparatus for scales
Thomson, Williain E., et al. Coin-actuated apparatus
Thome, Robert C.. et al. Type-writer page-end alarm.
Thornley, A. I. Car fender.
Thornycroft, Iohn I. Boiler
Thresh, John C. Disinfector
Thunderbolt, Edward. Governor for machinery. 53,745
Thurow, Emil. Masut boiler heating system.............. . 53,754
Tibbits, William A., et al. Coin-controlled machine...... 51,241

 Thimes Printing Co. (Hamilton, Canada). Telephone index 51,381 Timewell, Arthur T. Sack filling and sewing machine.... 51,233 Timmins, Thomas, et al. Apparatus for scraping the in-
terior of pipes 53,815
Tindal, Henry. Water purifying apparatus............... 52,826
Tippett, Harold P. Lubricator 52,860
Tilrent, Jean Marie. Dow hanging device.................. 52,241
Tobitt, James S. Toy

Toup, Grant, et al. Windmill.......................................53,371
Tourtel, John M. Gas meter. 54,455

Tracy, Edward A. Surgical splint.
Tralls, Seberecht. Treatment of manure...................... 53,795
53,794
53,906
53,724
53,909
53,907
53,905
53,721
58,722
53,904
23,902
53,! 08
53,765
53,733
53,736
54,004
53,900
53, 668
53,725
53,720
53,752
51,722
53,380
53,418
53,439

Tramblay, Felix. Box file..
$54,170,54,171,54,172$ Trapp, Samuel M. Furnace 52,222
 Travers, Vincent P., et al. Method of treating vegetable fibre
Travis, Charles L̈. Bicycle024,
Travis, Owen J., et al, Railway frog
Treasure, Frank R. Toy Trebilco, 1 .
et al. Tray for bottles.
Tredale, Joseph H. Bicycle lamp... Tremblay, Louis and Joseph. Shos upper.................. 52,947 Trengrove Improved Cycle Frame Co. Bicycle frame..... $\quad 51,425$ Trengrove, William Henry. Driving mechanism for cycles Trethewey, W. (i., et al. Lamp chimney holder.
Trethewey, William G., et al. Can labelling machine..... 53,427
Trevor, James Edward, et al. Envelope machine drying chain Trevor, James E., et al. Envelope machine counter \quad 53,090
Tribe, George Tbomas. Railway car. 52,585
 Trites, Willian F. Pipe tongs 52,970 Trites, William F., et al. Wrench 52,071
Tropenas, Alexander. Converter Truby, Jacob M., et al. Refrigerator..
Truby, Jacob M., et al. Refrigerator crate.
Trucks, Benjamin H. Engine.
Trudean, Arthur G. Electric heater
Trueman, Henry P. Pheumatic tire
Tuer, Joseph. Potato digger.
Tuerk, samuel O. Fan
Truesdale, William A. Hinge for trunks..
Truman, Charles. Journal for vehicles.

53,440
51,985

53,617
54,025

52,239
54,289

53,834

53,096
53,307
52,201
53,112
51,115
53,621
53,622
51,285
22,245
53,663
51,479
54,298
54,114
52,946
54,013
教

53,733
53,148
53,186
35,380
52,38
52,351
52,45
295

393

53,427

52,97
52,971
53,095
53,621

53,622
53,224

53,224
53,782
54,306
53,699
51,047
51,892
51,785

Tunstill, Carl., et al. Process of extracting grold from ores. Tupholme, B., et al. Coffee roasting system
Tupuer, Silas K., et al. Steam boiler.
Turner, Caleb K. Fifth-wheel. .
Turner, Peter F. Ball bearings
Turney, Eugene Thomas. l'rocess of and apparatus for generating and using gas.
Turnock, C. F. Saw machine
Tutthill, Stephen J. Hydraulic motor.
Tuttle C. I., et al. Auger for making post boles
Tuttle, Hosmer. Bicycle mechanical movement.
Twombly, Frank S. Milk safe
Tyler, George. Felly
Ufford, Albert. Display mechanism
Uhri, J. Box blank making machine
Ullgren, Johan D., et al. Art of straining tibrous substinces in solution.
Ulrich, Charles 13. Lifting device
Underhill, S. W. Heat conserver
Underwood, George B. Inhaler.
Unger, Amanda M. Dish washer
Union, Frank L., et al. Lathe for corners.
Union Special Sewing Machine Co. Sewing machine
Union Special Sewing Machine Co. Sewing machine feeding device.
United States Cycle Improvement Co. Velocipede.
United States Repair and Guaranty Company. Asphalt pavement repairing apparatus.
Urban, August, et al. Machine for sealing metal cans..
Urquhart, David I., et al. Golf club.
United States Cycle Improvement Co. Military bicycle...
Usher, Isaac. Ventilator for stables.
Utility Manufacturing Co. Can.
Vacuun Wet Machine Co. Suction device for paper making machines.
Vagt, Fritz H. Bicycle driving inachine.
Vail, Thomas J. Fire extinguisher.
Vallée, Joseph P., et al. Lock.
Van Denberg, Frank P. Flour
Vanderwot, Arthur L., et al. Log rolling device.
Vanderwort, John, et al. Log rolling device
Van Deusen, W. A. Silo.
Van Dyke, John Wesley, et al. Means of increasing flow of oil wells.
Van Dyke, John W., et al. Means of increasing flow of oil wells. .
Van Meter, Seymour Doss, et all. Bicycle seat.
Van Riper, Daniel R. Photographers'stove..
Van Ruymbeke, J. Evaporator.
Vanschaik, W. O., et al. Wrench.
Van Wormer, Adna. Head and neek protector.
Vanstman, F. T. and J. P. Non-refillable bottle.
Vanstone, Samuel. Nut blank.
Vanstone, Samuel. Nut-making machine.
Vaughn, Stephen K., et al. Cultivator.
Veazie, Henry A. Pneumatic wheel tire.
Veeder, Curtis H. Cyclometer.
Verdin, Alois N. Type-cutting machine.
Verdin, Alois N. Typewriter
Verdin, Alois N. Typographic machine.
Verity Plow Co. Plough
Verity Plow Co. Plough wheel adjuster.
Verity, Robsert Henry. Hlow
Vernon, William Elias. Fluid fuel burner.
Verrne, E. V. Gas regulator.
Viau, Charles T. Chocolate coating machine.
Vickers, Albert, et al. Insulator.
Victor, Jacob. Lunch box
Vincent, Robert (G . Spring mattress.
Vine, George, et al. Horse shoe.
Vodel, Anton. Woven fabric.
Vogel, W. Pillow or cushion.
Vogel, Charles C., et al. Cattle guard.
Vogler, Willi 1 m. Pillow.
Vogt, Mary M. Jevice for teaching vocal music.
Von Bokern, William. Non-refillable bottle.
Von Der Ropp, Baron A. Door closer and opener.
Von Lackum, P. Tail guard for horses.
Von Nollendorf, E. Electric lamp.
Voorhees, John Henry. Boiler tube cleaner.
Vose, Abby S. Buttonhole cutter.
Vose, Ambrose Stevens. Rotary cutter.
Vose, Ambrose Stevens. Rotary shaft and journal box
Voss, Carl, et al. Bicycle driving mechanism.
Wade, L. Gr. Campstool.
Wade, Lindley (x., et al. Car coupler
Wade, Lindley G. Nuwspaper-holder.
Wagener, Johannes T. Plant disinfection process
Wagener, Johannes T. Plant sprinkler.
Wagner, Frank. Obstetrical forceps...
Wagner, Frank A. Awning.
Wagner, J., et al. Car conpler
Wagner, Joseph I. Measure for cloth, ribbons etc.

51,996
52,055
24
2127
51,596
$\mathbf{i} 0,124$
51,814
52,875
53,753
52,600
52,532
53,515
53,207
54,093
54,240
54,45;
52,135
23,976
52,796
53,237
54,218
53,830
51,504
54, 142
54,158
54,010
51,574
51,898
53,101
53,813
50,987
51,103
51,488
54,300
52,549
52,906
51,896
53,115
53,115
52,021
51,893
51,676
52,82!
53,444
52,782
52,676
52,985
54,356
-54,430
54,431
53,573
-53,203
50,998
51,835
51,836
51,837
51,866
.53,504,
23,505
51,816
53,681
53,054
52,114
51,756
51,530
51,984
54,013
53,881
52,180
53,3:8
52,180
51, 09:8
$51,0,88$
52,368
52,825
52,079
52,370
53,9:10
53,514
53,762
53,741
52,238
53,208
52,310
54,080
51,590
51,771
51,066
55,392
52,162
53,192

Wagner Typewriter Co. Type writer
52,883
53,410
Waite, Benjamin C. Friction clutch.
Waldemamn, Carl. Fish drying system....................... 53,009
Waldo, Leonard, et al. Aluminium reducing process. $53,584,53,5,9$

Walker, Hiram. Shock-cover.
52,178
Walker, Howard, et al. Trap. for catching horn Hies........................ 51,55
Walker, John. Crushing mill. 51,125
Walker, John, et al. Machine for aplying adhesivematerial to envelopes.
53.855

Walker, Matthew C. Main tapping machine.................. 51,486
Walker, Louis C., et al. Telephone switch board. 52,620
Wall, (yeorge A. Electrical circuit closer and sprinkler... 53,937
Wall, (reorge H. Baggage loader.
53,492
Wallace, John A. Method of making and storing gas. 53,473
Wallace, John, et al. Vebicle thill.
54,189
Wallace, William K. Trace fastener. 51,734
Wallberg, Tvar A. F. Art of straining fibrous substances in solution
53.976

Waller, Thomas. Furnace for heating purposes $\mathbf{5 1 , 2 0 0}$
Wallingford, W. A. Oil can. 52,671
Wallner, Olof E. Auger.
53,507
Wallwork, Roughsedge, et al. Apparatus for painting. 53,739
Walmer, A.S. Calendar 42,146

Walsh, Richard S. Ice creeper . 51,2:6
Walsh, Thomas Herman. Car coupler.......... 53,866

Wandrosky, Hermmann. Photographic emulsion. 53,336
Wanless, William J., et al. Vise . $\boldsymbol{5 1 , 9 0 6}$
Ward, Charles E. Car coupling . 52,774
Ward, 1, Culinary implement. 52,137
Ward, George E., et al. Nut lock 52,896
Ward, James, et al. Car coupler . 53,4i3
Ward, John E., et al. Nut lock. 53,373
Ward, Joseph, et al. Box..... 53,459

Ward, Seth. Die for leather . 54,220 ,
Warner, Frederick. Horse collar.
54,222
Warner, Hein. Animal feeding device. $\mathbf{5 1 , 5 1 3}$

Warren, George. Kiln flue F3, 425
Warren, Herbert C. Gear-teeth making machine $51,054,53,106$
Warren, W. A. and M. F. Pneumatic tire. 52,052
Warry, James J. Velocipede, etc
53,589
Washburn, George A. Propulsion of vehicles, boats, etc
52,50

> sinking caissons.

54,272

Waters, Howard D. Valve
51,804
Waters, Wadsworth \mathbf{F}. Butter-worker. 53,016
Watson, Christopher H. Bicycle seat. 51,081
Watson, G. W. Package filling and weighing machint.... $5 \mathbf{5 , 0 6 3}$
Watson, G. W. Weighing and package filling machine... 52,028
Watson, R. Couch and burial casket..... 54,227
Watson, Thomas A. Fifth wheel. 51,788
Watters, Thomas J. Window creen and fly trap combined
Watters, Thomas J. Window screen and fly trap combined 54,267
Weatherbee, Uriah J. Stove....
Weathers, James. Anvil, vise and drill combined.
52,851
Weaver, Albert S. Bicycle83,84, 53,884
Weaver Jacquard \& Electric Shuttle Co. Electric shuttle. 51,571
Weaver Jacquard \& Nlectric Shuttle Co. Jaccquard loom. 54,263
Weaver Iacquard Electric Shuttle Co. Fabric weaving... 51,8tis
Weaver Jacquard Electric Shuttle Co. Loom...... 51,864, 54,251
Weaver, Martin L. Brake pipe coupler 50,980
Weaver, William. Filectric shuttle........... 5l,571
Weaver, William. Loom.
51,864
51,777
Webl, (reorge S. Wheel for vehicles .
Webb, (reorge S., et al. Bicycle spoke washer.
Webber, Wesley. Coin controlled gas vending machine... 51,286
Weber, John A. Buffer for railways. 51,787
Webster, H. A. Polishing device................................ 217 ,
Webster, Marold A., et al. Car fender.
52,218
53,965
Webster, Helen L. Sewing machine spool holder. 54, 175
Weed, George A. Car fender
Weed, Harry De Syne, et al. Changeablespeed mechanism for bicycles.

Weir, James L. Washing machine. $51,626,52,043$

Welch, Michael TI. Car coupler . 54,348
Welling, John C. Grain cleaner. 53,561
Wellington, Agnes B. Khgine
51,156

Wells, Arthur Collings, et al. Apparatus for painting.... 53,739
Wells, Arthur K. James. File. Wells, Arthur K. James. File.

51,389
Wells, (ieorge, et al. Figg beater
53,480
Velsbach Incandescent (aas Light Company. Apparatus
for producing light from hydrocarbon sil.
51,274
51,264
51,165
Welsbach Jncandescent (ias Light Co. Hydrocarbon burner
Welsh, Artemus. Spike extractor
53,915
53,764

Werner, Bernarch, et al. Furnace boiler
Werner, G. A., et al. Fountain pen.
Werry, James' Henry. Sprayer.
Wesselmann, B . Friction reducing device
Wesson, James Leonard. Electric switch
West, J. Harry, et al. Device for separating gas from water and oil.
West, John. Type casting pump
West, John. Type making composition.
West, Robert S. Disinfector.
Westhall, Charles. Bicycle lock
Westfall, O. J. Horse collar.
Westgate, Joseph J. Skirt binding system
Weston, E. D., et al. Ice tongs
West phal, Henry. Bicycle rack
Westword, Alfred. Beam supporting methorl.
Wheeler, Edmund S. Propeller.
Wheeler, Jaurens S. Waggon brake.
Whetler, L. E. Envelope and stamp sticker
Wheeler Saddle Co. Bicycle saddle
Wheless, Malone. Electric arc lamp.
Wheless, Malone. Electric railway
Wherry, Robert, et al. Curd dam.
Whistler, Garland N., et al. Smokeless gun Ixowder
Whitaker, W. W. (Hlove fastener
Whitcomb, Frank. Horse rake.
White, A. L. Organ action.
White, Charles E. Apparatus for producing light from hydrocarbon oil
White, Charles E. Hydrocarbon burner
White, Edward H. Piano
White, Frank. Step ladder
White, Frank and Ira F. Snap hook
White, Harry B. Flue cleaner.
White, Hawley C. Stereuscope.
White, John, et al. Berot and shoe polishing machine
White, Martha. Counter shaft.
White (S. S)) Dental Manufacturing Co. Dental engine.
White, (The S. S.) Dental Manufacturing Co. Dental engine
White, Thomas S. Carpet sweeper.
Whitehead, Henry B. Electrical switch
Whitman, John W. Windmill and pump.
Whitman, William E. Weeder.
Whitmore, Erwin W., et al. Lead pipe coupling
Whitworth, Thomas., Starch mangle.
Whitney Electrical Instrument Co. Wattmeter.
Whitney, Frank A. and Artemas W. Pipe wrenci......d cutter
Whitney, William A. Neck yoke
Whitney, Willie De L. Wire fabric making machine.
Wolton, William. Music stand
Wickliffe, Charles E. Bicycle lock.
Wicks, Lars T., et al. Disk harrow
Wiele, Paul M. Screw thread cutter
Wiechmann, F. (i. Process of treating sugar, etc.
Wilhanks, Oscar. Hoof trimmer.
Wilcox, H. W. Neck yoke
Wilcox, Myron H., et al. Valve.
Wilcox, Whitney J. Toy
Wilde, Daniel. Grain meter.
Wilder, Edgar A. Filter.
Wilder, L Machine gun.
Wilhelin, Walter Louis. Telephone transmitter
Wilkins, Edward, et al. Curtain fixure
Wilkinson, Frederick. Bicycle pump, handle and stand..
Wilkinson, Williain L. Stove
Will, Frederick. Cooking stove
Willan, John H. D. Filament and carbon
Willard, John W. Anti-rattler
Willeock, Stephen. Clock.
Williams, Adolphus, et al. Brake and foot rest for bicycles
Willians \& Co. Wrench
Williams, Benajich. Wrappers for newspapers, etc.
Williams, Charles A. Drill
Williams, Charles 1., et al. Piano attachment.
Williams, Edward L. Bicycle lamp.
Williams, George. Plant protector
Williams, J. A., et al. Wall paper trimmer.
Williams, James M. Milk can
Williams, John A. Vending machime
Williams, John R. Cigarette making machine.
Williams, John S. Pliers
Williams, Joseph. Litharge reducing system
Williams, Louis N. D., et al. Knitting machine
Williams, S. H. Burglar proof car.
Williams, Thomas J. Rubler heel.
Willians, William B. Gas burner.
Willis, Matthew. Lock.
Willis, Mathew, et al. Lock for boxes.
Willson, Russell A. Device for combining a soldering torch-acid bottle and blow pipe
Willson, Thomas L. Electric smelting.
Willson, Thomas L. Hydrocarbon gas.

51,208
52,617
51,326
52,116
51,568
54, 423
54, 349
54,350
52,630
51,978
52,105
52,55f
52,697
51.533

53,073
51,002
54,003
53,193
54,064
51,598
51,147,
51,497
51,302
51,129
54,087
54,388
22,688
51,274
51,165
53,(17)
-53,930
51,056
53,324
51,171
51,840
54,184
52,646
53,604
51,934
52,555
51,503
52,721
53,548
53,887
51,094
53,039
51,046
52,807
51,110
53,646
52,769
53,517
52,004
53,599
52,771
54,174
51,117
51,738
53,114
54,247
51,649
54,268
53,100
53,909
52,931
51,976
52,990
51,03.
52,910
54,446
52,512
52,012
51,278
53,020
53,132
53, 853
53,608
51,048
51,357
51,498
52,759
52,776
51,113
52,280
52,755
53,401
64,459
52,910
53,788
50,990
50,989

Willson. Thomas L. Method of producing and utilizing gas

53,647
Willson, Thomas Leopold. Electric furnace....................................
Willson, Thomas Le pold. Gas distribution system. 51,030
Willson, Thomas Leopold. Metallic carbides 50,988
Wilson, Andrew and Frank, te ai. Shaft bearing.......... 5 . 5 , 130
Wilson, Andrew, et al. Cream separator.
Wilson, Darius. (Gas regulator
52,38.
Wison Fire Extinguisher Co. Fire extinguisher........... . 52,030
Wilson, Frank, et al. Box................... 53,459
Wilson, Isaac A. Hand-power propeller...
Wilson, Janıes.
Filter.
W3,
Wilson, John W. Cyclometer.
Wilson, J. T. Building construction oystem 5 . 58
Wilson, Martin M. Spark arrester. .
Wilson, Odell. Vehicle gear. 51,535
Wilson, Rubert A. Wrench....................... 52,326
Wilson, William. Ventilated boot and shoe.... 5 . 5,988
Wilsom, William Cotter. Damping and erasing device.... 53,359
Wilson, William H. Fruit ladder....... 51,134
Wilson, William S. Pneumatic tire.......................... .
Wilts, John F. Box fastener . 53,989
Winans, Myron L. Holder for check-reins.................... 51,324
Windle, John W. Bicycle wheel carriage................... . 54,018
Windley, Samuel H. Hame hook.
Windsor, Charles, et al. Pneumatic tire inflater.......... . 53,314
Wine, Miletus J. Pump and measure. $5 \mathbf{5 , 0 2 5}$
Wineland (D. B.) \& Co., et al. Dutnping car......... 54,105
Wing
54,380
51,507
Winslow, William H. Tile framing process........... 54,397 , $5 \cdot 5,398$
Winston Cigarette Machine Co. Cigarettemaking machine. 51,625
Winter, George J., et al. Shoe.
54,190
Wiseman, Margaret. Wash board.
50,953
Wisewell, L. O. Stove truck. 52,169
Witcher, P. S. Portable dam 52,031
Withey, Henry. Wire fence weaving machine............. 53,102
Witmer, Benjamm. Mouth piece for musical instruments. 54,436
Witt, Otto, J. J. Inhaling disinfecting and perfuming apparatus.
Wittenberg, Frank. Match box
Woh, ohannes, H. H. Sewing machine attachment.
Wojciechonski, Joseph. Reed for musical instruments.
51,897
t, Henry G. Machine for making rubber articles. . 52,75
Wolf, Albert H., et al. Apparatus for raising sunken 54,287
Wolf, John Louis. Non-refillable bottle................... . . 52,185
Wolff, August. Lamp shade.... 53,667

Wolff, F. E., et al. Rolling pin . 52,249
Wolfendale, Charles E., et al. Mining machine.......... . . 51,794
Wolfıniiller, Alois. Velocipede. 52,561
Wolhaup Renjamin Tie-plate.
52,561
Wollaston, Charlton J. Electric battery 51,748
Wollert, Oscar Ehrenfried. Burner for gasifying and burn- 51,446
Wolstencroft, James. Pneumatic tool. 51,276
Woltmann, Henry, et al. Bottle... 53,695
Womer, Frank E., et al. Puinp. 51,640
Wood, Herbert James, et al. Weight and cost indicating apparatus for scales.

53,733
Wood, Horatio ($\mathbf{4}$. Non-refillable bottle. 52,738
Wood, .J. F. R. Tire . $5 \mathbf{5 3 , 2 5 9}$
Wood, John Henry. Art of building. 50,993
Wood, Lyınan B. Sprayer . 54, 5

Wood, N. B. Nut tapping machine. 53,586
Wood, Sylvester A. Chimney cleaner. $5 \mathbf{5 3 , 1 5 6}$
Wood, Thomas S. B. Mineral wool. 5 52,654
Wood, Anna. Grate drum heater . 41,769
Woods, Daniel Z., et al. Leather dressing composition..................... 589
$\begin{array}{ll}\text { Woods, John Jex, et al. Mechanical movement. } & 54,286 \\ \text { Woodard, Alvin Nelson, et al. Nut and bolt lock } & 53,767\end{array}$
Woodard, A. P. Jug bail
53,767
Woodbridge, Jonathan E. Electric light display system .. 51,580 Woodcock, William H. Roller bearing. 53,406 Woodman, George $\underset{\mathrm{F}}{\mathrm{F}}$. Steering apparatus for ships. $5 \mathbf{5 2 , 6 9 9}$ Woodward, Jabez, S. Watering trough 5 . $\mathbf{5 2 , 0 0 6}$ Woodworth, Albert C. Car fender. $5 \mathbf{5 2 , 4 0 9}$
Wooley, George. Bicycle rest. 52,599

Wootton, Rukert, et al. Tube drying machine...................... $5 \mathbf{5 , 9 7 3}$
Worms, Eugene:. Method of and apparatus for tanning hides 51,074
Worrall, Thomas H. Shaft drive and clutch.... 52,596
Worthington, H. K. Cons
Wright, Alexander H. Bagasse filter. $52,52,529$
Wright, C. H., et al. Vegetable pulverizer 53,206
Wright, Elmer H., et al. Flectric switch.................... . . . 53,568
Wright, Frank. Cuin freed fluid meter $5 \mathbf{5 1 9 , 1 9 8}$
Wright, Frank. Coin freed gas meter Wright, Fred C. Corset

Wright, Hugh. Whip and line holder..
51,053
51,466
51,493
52,778

Wright, Jacob P. Match making	53,601	York, Thomas and James. Furnace	52,062
Wright, John Albert. Drip cock for steam engines.	54,088	Young, J. Brooks., et al. Mail stamping machine	53,912
Wright, John J. Electric time indicator.	51,746	Young, Jackson B., et al. Invalid bed.. .	54,246
Wright, Newell S. Hydrocarbon burner 54,427 ,	54, 429	Young, James M. Hinge.	54,464
Wright, Newell S., et al. Hydrocarbon generator	54,428	Young, Mark, et al. Clothes pin	51,019
Wright, K., etal. Pneumatic tire	52,175	Young, Ralph S. Extension ladder and tire escape	54,014
Wright, Rufus. Process of and apparatus for vulcanizing		Young, Samuel L. Mucilage holder............. . .	51,174
elastic	51,225	Young, Thomas C., et al. Smoke purifier and consun	51,720
Wright, Rufus, et al. Mandrel for tire sheaths	53,482	Young, Wesley A. Kitchen cabinet	53,165
Wright, Rufus, et al Valve for pneumatic tires.	52,643	Young, W. S. Pıuning rod.	52,6635
Wright, William H. Bearing	52,775	Youngman, C. W. Means for repairing pneumatic tires for	
Wright's Gas Meter Syndicate. Fluid meter	53,512	bicycles........ $\quad . . .$.	51,655
Wurster, Casimer. Incandescent lamp... .	54,351	Yuen, Gim Fook. Rice cleaning machine	52,891
Wysong, Max. Wheel hub..	22,103	Zander, Frederick M. Carpet stretcher.	50,944
Yaggy, Levi W. Panoranic display device	53,471	Zantizinger, (ieorge B. Refrigerator............... 54,335 ,	54,33i
Yaggy, Levi W. Portfolio.	22,034	Zackendorf, A., et al. Malting apparatu	54,135
Yarington, (George W., et al. (ias engine and governor.	54,099	Zinke, Frederick C. Eraser......	51, inj
Yawkey, William C., et al. Underground conduit ...	51,730	Cimmerlin, H. F. and C. G. Display apparatus	52,523
Yeart. Emanuel M. Sheneman	54,137	Zinn, Claude V. Can opener..................	53,162
Yellott, (ieorge. Hydraulic ram and pump	51,645	Zinn, Jens. Military equipment	[4,149
Yetter, Boyd R., et al. Railway switch	54,115	Ziingel, Stanslav. Velocipede.	54,304
York, Harry, et al. Hand truck	52,491	Zweifel, John J. Cap	52,785
York, John W. Vehicle.	54,374		

ERIRATUM.

On page XX of Annual Index to Inventions, the words "Washing Machine. Enoch Ritchie. 51,79)" were inadvertently omitted.

Vol. XXIV.-No. 1. J A NUARY 31st, 1896.

Price free by post in Canada and the United States, $\mathbf{\$ 2 . 0 0}$.
SINGLE NUMBERS, - - - 20 Cts.

NOTICE.

All solicitors, agents or attorneys who, in circulars or advertisements, or othcrwise, refer to the Commissioner or Deputy Commissioner of Patents, or to any other official of the Patent Office, for evidence of their professional standing, do so without authority.

INVENTIONS PATENTED.

NOTE.-Patents are granted for 18 years. The term of years for which the foe has been paid, is given after the date of the patent.

No. 50,948. Suppository Machine and Monld.
(Machine et moule pour suppositoires.)

William Henry Dickson, assignee of Robert Murray Dickson, both of Ottawa, Ontario, Canada, 3rd January, 1896 ; 6 years. (Filed 14th December, 1895.)
Claim.-1st. A suppository machine comprising the tube A, provided with cap B, screwing thereto at one end, a screw shaft C, screwing through said cap and provided with a loose rotary plunger D, fitting within said tube, a crank handle E, or means for rotating said shaft, and a mould G, having one or more suppository recesses H, and provided with a door J, and fastening K, as set forth. 2nd. A suppository machine comprising a tube A, provided with a clamp \mathbf{M}, screw shaft C, plunger D, handle E, and mould G, as set forth.

No. 50, 9 43. Machine for Cutting Wood.

(Machine à decouper le bois.)

William F. Hutchinson and Edwin Gould, both of New York, State of New York, U.S.A., 3rd January, 1896; 6 years. (Filed 11th December, 1895.)

Claim.-1st. A wood cutting machine, comprising a plural series of band saws, the cutting portion of one series crossing above the

cutting portion of the opposite series, both such series running substantially horizontal and with their toothed edges uppermost, and a wood guide supported above the saws whereby a block of wood dropped upon the saws will be sawn and the pieces dropped between the saws, substantially as described. 2nd. A wood cutting machine, comprising a plural series of band saws, the cutting portion of one series crossing above the cutting portion of the other series, both such series running substantially horizontal and with their toothed edges uppermost, a wood guide supported above the saws to guide a block of wood to them, and means for adjusting the guide, substantially as described. 3rd. The combination with a series of band saws, of the wood guide enclosing adjoining sides of the work and serving as an abutment to guide the wood to the saws, the guide having slots therein to receive the saws, substantially as described. 4th. The combination of the supporting cross-bars, the saw guides carried thereby, the crossing series of saws travelling through the guides, a wood guide supported above the saws, and means for supporting the guide from the cross-bars, substantially as described. 5th. A wood cutting machine, comprising a double series of band saws, the cutting portion of one series travelling above the cutting portion of the other series and the two series crossing as specified, and an angular guide for wood held on adjustable supports above the saws and provided with slots to receive and guide the saws, substantially as described. 6th. The combination of the series of band saws, the drums which carry them, the sliding bracket supporting one of the drums, and a screw and gear mechanism for adjusting the bracket, substantially as described. 7th. The combination, with theduand saws, of an elongated brace for each saw, the brace being of substantially the same thickness as the saws and being supported at its ends while its top edge is fitted snugly to the lower edge of the saw, substantially as described. 8th. A wood cutting machine, comprising a plural series of band saws, the cutting portion of one series travelling above the cutting portion of the other series, each such series running substantially horizontal and with their toothed edges uppermost, a wood guide supported above the intersecting points of the saws to guide a block of wood to the saws, and a carrier travelling beneath the saws and adapted to receive the wood which drops from them, substantially as described.
No. 50,944. Carpet Atretcher. (Tendeur de tapis.)
Frederick M. Zander, Dayton, Ohio, U.S.A., 3rd January, 1896; 6 years. (Filed 11th December, 1895.)

Claim. - In a carpet stretcher, the combination with the herein described U-shaped metal frame and the adjustable bar connecting

the said frame with the foot of the operating lever, with the sliding block 3 , provided underneath with spurs, the bars 8 hinged at one end to the sliding block, and their opposite ends pivotally attached to and forming the fulcrum of the adjustable operating lever, substantially as and for the purpose herein set forth.

No. 50,945. Machine for Extracting Stumps.

 (Arrache souche.)

John A. Coates, Victoria, British Columbia, Canada, 3rd January, 1896; 6 years. (Filed 7th December, 1895.)
Claim.--1st. In a stump extracting machine, a fasteniug device for ropes consisting of a disc having side flanges to provide a circumferential recess, one of said flanges having two tangential grooves arranged on opposite sides of the middle of the disc, the other flange having a tangential recess, substantially as specified. 2nd. In a stump extracting machine, a frame consisting of a base, a series of standards, the lower end of which are secured to the base, and the upper ends of which are held together by a cap or head, a vertical shaft journalled in the cap or head and in the base, a drum loosely mounted on the shaft, a clutch member connected to the drum adapted to engage with a clutch member connected to and revolving with the shaft, substantially as specified. 3rd. In a stump extracting machine, a frame consisting of a base, a series of standards the lower ends of which are secured to the base, and the upper ends of which are held together by a cap or head, a vertical shaft journalled in the cap or head and in the base, a drum loosely mounted on the shaft, a clutch member connected to the drum adapted to engage with a clutch member connected to and revolving with the shaft, and a head removably connected to the drum, substantially as specified. 4th. In a stump extracting machine, a frame consisting of a base, a series of standards, the lower ends of which are secured to the base, and the upper ends of which are held together by a cap or head, a vertical shaft journalled in the cap or head and in the base, a drum loosely mounted on the shaft, a clutch member connected to the drum adapted to engage with a clutch member connected to and revolving with the shaft, a head removably connected to and revolving with the shaft, a head removably connected to the drum, and an arm seat connected to the upper end of the vertical shaft, substantially as specified. 5th. In a stump extracting machine, a frame consisting of a base, a series of standards, the lower ends of which are secured to the base, and the upper ends of which are held together by a cap or head, a vertical shaft journalled in the cap or head and in the base, a drum loosely mounted on the shaft, a clutch member connected to the drum adapted to engage with a clutch member connected to and revolving with the shaft, a head removably connected to and revolving with the shaft, a head removably connected to the drum, an arm seat connected to the upper end of the vertical shaft, and a lever adapted to raise the drum and disengage the clutch members, substantially as specified.

No. 50,946. Bottle Stopper, etc.

(Bouchon de bouteille, etc.)

Thomas C. Newman, Chicago, Illinois, U.S.A., 3rd January, 1896 ; 6 years. (Filed 11th December, 1895.)

Claim.-1st. The combination with a bottle, of a cork and lengths of wire which are suitably secured in said cork and extending longi-

tudinally therefrom down opposite sides of the bottle a suitable distance, and a seal for fastening the said wires together in such a manner as to prevent the withdrawal of said cork without breaking said wire or the said seal. 2nd. The combination with a bottle having longitudinal grooves extending down the side thereof, and label therefor, of a cork, two lengths of wire suitably secured in said cork and extending longitudinally down the sides of said bottle, and a seal for fastening the ends of said wire so that they pass under said bottle, as and for the purpose set forth. 3rd. The combination with a bottle having longitudinal grooves extending down the sides thereof, and having a concavity or pocket in the bottom of the same, and label therefor, of a cork, two lengths of wire suitably secured in said cork and extending longitudinally down the sides of said bottle in said grooves and under said label and to and beyond the bottom of the bottle, and a seal for fastening the lower ends of said wire, as and for the purpose set forth.

No. 50,947. Car Stake. (Epée de chars.)

John S. Miller, Truro, Nova Scotia, Canada, 3rd January, 1896; 6 years. (Filed 11 ti December, 1895.)
Cluim. - 1 st. The stake socket L, substantially as and for the purpose hereinbefore described. 2nd. The combination of the stake socket L, with the stake P, substantially as and for the purpose hereinbefore described. 3rd. The combination of the stake P, with the binding rod D, D, and the lock lever E, substantially as and for the purpose hereinbefore described. 4th. The combination of the stake socket L, and the stake P, with the binding rod D, D, and the lock lever E, substantially as and for the purpose hereinbefore described.

No. 50,948. Blind Hinge. (Penture.)
Neil McKinnon, Newport, Rhode Island, U.S.A., 3rd January, 1896 ; 6 years. (Filed 11th December, 1895.)
Claim. - In a blind hinge, the member C provided with a pintle f, having the squared or grooved upper end in combination with
the leaf D, prcvided with arms j, k, pivoted to swing vertically on the blind and provided with the head 15 , for engaging the upper

50948
end of the pintle, and a key adapted to be operated from the inner face of the blind and actuating said lever, substantially as described.

No. 50,949. Centripugal Churn. (Baratte centrifuge.)

Sydney Cheeld, Waterside Ironworks, Buckingham, England, 3rd
January, 1896; 6 years. (Filed 14th December, 1895.)
Chaim.-In a centrifugal churning apparatus, the combination with the revolving vessel A, of one or more stationary flanged scoops, vanes, or deflectors G of curved form, so placed that the outer part or front of the curve stands in a plane presented at a slight angle, or more or less tangentially to the inner surface of the said vessel, while the inner or hinder part of the scoop stands in a plane which, if extended, would pass clear of the axis, and at the same side thereof as the scoop, and cut the opposite side of the revolving vessel at a point nearly opposite that at which the front part of the scoop begins to act in the cream, substantially as described.

No. 50,950. Crib for a Child. (Berceau d'enfant.)

William W. Pursell and Jennings U. Kurtz, both of Berwick, Pennsylvania, U.S.A., 3rd January, 1896; 6 years. (Filed 9th December, 1895.)
Claim.-1st. In a crib, a rectangular main frame, in combination with a supplemental frame superposed thereon, and held in place by means of coiled wire springs, and downwardly extending spring arms, substantially as and for the purpose described. 2nd. In a crib, a rectangular main frame having a woven wire centre, in combination with a superposed supplemental frame secured thereto, and the side and end top rails pivoted to said supplemental frame, and supported by means of coiled wire spring sections, and the upwardly extending arms thereof, substantially as described. 3rd. In a crib, a rectangular main frame, in combination with a supplemental frame superposed thereon, side and end rails pivoted to the latter and adapted to be folded inward for the purpose described, the flexible and vertically compressible supporting legs, and the coupling plates having a hinged connection with the crib for attaching the latter pivotally to the side bar or frame piece of an ordinary bed, whereby the crib may be folded down at the side of the bed without being detached therefrom, substantially as described. 4th. In a crib, a rectangular main frame, in combination with flexible supporting legs each of which comprises a
rigid lower portion and an upper flexible portion, said lower portion being adjustable relatively to the upper portion whereby the height

of said flexible legs may be adjusted, and the spring-supported side and end top rails adapted to be folded inward, substantially in the manner and for the purpose described. 5th. A crib made in a form adapting it to be pivotally attached to an ordinary bed, and consisting of a rectangular main frame, side and end top rails, having a pivotal connection therewith and formed with dove-tailed grooves in their adjacent ends, dove-tailed corner blocks for securing the side and end top rails together, flexible supporting legs located beneath the main frame, and suitable coupling plates having a hinged connection with the crib for attaching the latter pivotally to said bed, all arranged and adapted to operate as specified. 6th. In a crib, a rectangular main frame, a supplemental superposed frame, and side and end rails pivoted thereto, in combination with the spring wire sections interposed between the main frame and the side and end rails for flexibly supporting the latter, and adapting them to be folded in the manner substantially as described. 7th. In a crib, a rectangiular main frame, a superposed supplemental frame supported thereon, the side and end top rails pivotally connected with said supplemental frame, the spring wire sections interposed between the main frame and the top rails, and the screws for fastening the downwardly projecting arms of the end rails to the supplemental frame, substantially as described. 8th. In a crib, a rectangular main frame, a supplamental superposed tubular frame, and the side and end top rails, in combination with a series of coiled spring wire sections for supporting the supplemental frame and top rail, arranged in opposing pairs or sets, one of said sections surrounding the supplemental frame, and extending thence downward to and secured to the main frame, and the other surrounding the supplemental frame and extending from thence upward to and connecting with one of the top rails, substantially as and for the purpose described, 9 th. In a crib, a main supporting frame, a supplemental superposed frame, and the side and end top rails pivoted thereto, in combination with a series of coiled spring wire sections arranged in pairs or sets, each alternate section surrounding the supplemental frame and extending from thence downward to and connecting with the main frame, and every other alternate section surrounding the supplemental frame and extending from thence upward to and connecting with a top rail, whereby the top rails are flexibly supported with relation to the main frame, and at the same time are adapted to be folded in the manner, substantially as and for the purpose described.

No. 50,951. Car Beat. (Sidge de chars.)

The Scarritt Furniture Company, assignee of Samuel Hoffman, both of St. Louis, Missouri, U.S.A., 3rd January, 1896; 6 years. (Filed 9th December, 1895.)

Claim.-In a reversible car seat, the combination of the plate A, having thereon the central bearing or boss B , and stops or lugs D , D , on opposite sides of said bearing, the seat supporting plate E , having a central bearing or bushing \mathcal{A}, rotatably connected with the boss or bearing B, and fulcrum lugs \mathbf{F}, \mathbf{F}, on opposite sides of said bushing G, and the intersecting arms K, K^{1}, pivoted to the fulcrum lugs and each having a cam L, to engage the stops D, D, the said central bearings being arranged with respect to the stops D, D, and fulcrum lugs so as to serve as a common support for the arms K, K^{1}, substantially as shown and described.

No. 50,952. Injector. (Injecteur.)

Looren Edwin Hogue, Greenville, Pennsylvania, U.S.A., 4th January, 1896; 6 years. (Filed 7th December, 1895.)
Claim.-1st. The combination in an injector, of a combining-tube having its upper end formed with upper and lower perforations 24 and 25 , and a surrounding chamber constructed with separated, bevelled, or inclined upper and lower ground valve seats 26 and 27 , and a vertically movable sleeve valve 28 , having its upper and lower end portions constructed with internal ground valves faces adapted to fit air and water-tight against the said bevelled or inclined upper and lower valve seats, for the purpose of sealing the upper and lower ends of the valve-sleeve air and water tight when a vacuum has been created and the injector is working to force water into a boiler, substantially as described. 2 nd . The combination in an injector, of a combining-tube having its upper end portion provided with a surrounding chamber constructed with upper and lower bevelled or inclined ground valve seats 26 and 27 of different diameter, and lateral perforations 19 between said valve seats, and a vertically movable, conical valve-sleeve having its upper and lower end portions constructed with internal valve faces adapted to fit air and water-tight against the said upper and lower valve seats, for sealing the upper and lower ends of the valve-sleeve air and water-tight when a vacuum has been created and the injector is working to force water into the boiler, substantially as described. 3rd. The combination with the overflow valve of an engine, of a lengthwise movable spindle adapted to bear against and hold the overflow valve rigid on its seat, and a set screw for holding the spindle in a fixed position, substantially as described. 4th. The combination with an injector having a pivoted, swinging overflow valve, of a lengthwise movable smooth spindle adapted to slide lengthwise in a bearing in the injector casing, and a device carried by the injector casing and adapted to bind against the surface of the said smooth spindle for holding the latter in a fixed position, substantially as described.

No. 50,953. Wash-Board. (Planche à laver.)

Margaret Wiseman, Clinton, Ontario, Canada, 4th January, 1896 ; 6 years. (Filed 12th December, 1895.)
Claim.-1st. The combination of a wash-board, of a soap tray removably connected to the wash-board, above the rubbing surface, substantially as specified. 2nd. The combination of a wash-board, horizontal grooves formed in the inner faces of the sides of the wash-
board, between the top of the rubbing surface and the top of the wash-board, and a soap tray supported in the horizontal grooves, a

series of perforations in the soap tray, and a flange extending along the front edge of the tray, substantially as specified.

No. 50,954. Pipe Fastener Por Fastening Metal Pipe
Joints. (Attache de tuyau de poêle.)

James L. Kennedy, Weeping Water, Nebraska, U.S.A., 4th January, 1896; 6 years. (Filed 7th December, 1805.)
Claim.-1st. A pipe fastener consisting of two bars, angular in form, and pivoted together at their angles, and means for retaining two of the limbs in parallelism, whereby the other two may be made to extend in opposite directions. 2nd. A pipe fastener consisting of two bars, substantially semi-circular in cross-section, and annular in form, pivoted together at their angles and means for retaining two of the limbs in parallelism, consisting of a thread thereon, and nut adapted to engage the thread, whereby the other limbs may be made to extend in opposite directions, all substantially as set forth.

No. 50,955. Driving Gear for Velocipedes.

(Mécanisme conducteur pour vélocipèdes.)

David S. Henderson, Brantford, Ontario, Canada, 4th January 1896; 6 years. (Filed 7th December, 1895.)
Cluim.-1st. In a driving gear for velocipedes, the combination of the crank hub, an enlargement for the crank hub, a bore through the enlargement at right angles to the crank axle, the crank fitted into the bore, substantially as specified. 2nd. In a driving gear for velocipedes, the combination of the crank axle, of a separable hub mounted on the crank axle, an enlargement for the separable hub, a bore through the enlargement at right angles to the plane of the crank axle, the crank, a turret for the crank, adapted to pass through the bore and lock the hub and the crank to the crank axle, and means for securing
the turret to the hub, substantially as specified. 3rd. In a driving gear for velocipedes, the combination of the crank axle, a recess in

a

the side of the crank axle, a separable hub mounted on the crank axle, an enlargement for the separable hub, a bore through the enlargement, the crank, a turret for the crank having a flattened surface, adapted to engage with the recess in the crank axle, substantially as specified. 4th. In a driving gear for velocipedes, the combination of the crank axle, a recess in the side of the crank axle. a separable hub mounted on the crank axle, an enlargment for the separable hub, a bore through the enlargement, the crank, a turret for the crank having a flattened surface, adapted to engage with the recess in the crank axle, and a sprocket-wheel connected to the hub, substantially as specified.

No. 50,956. Sash.Holder. (Arrête-croisée.)

George Edward Schairer, Saline, Michigan, U.S.A., 4th January, 1896 ; 6 years. (Filed 9th December, 1895.)
Claim.-1st. A sash-holder consisting of a spring having one edge bent back at an incline and a curved spreading extension and securing means engaging the extension for varying the pitch of the bent edge, substantially as described. 2nd. In a window, the combination with a frame, the stop) and sash, the latter having a bevelled side edge, of a fastener consisting of a substantially V-shaped spring interposed between the sash and frame with its apex adjacent to the stop, and arranged to press outwardly from the frame in the direction of and against the bevelled edge of the sash whereby the spring will force the sash against the stop, substantially as described. 3rd. A sash-holding spring, consisting of a strip of metal having its edge bent back to form a substantially V-shaped holding portion, the outer edge of the bent back portion being turned up to form a stop, and a securing means passing through the strip at a point beyond the V-shaped section, substantially as described.
No. 50,957. Cluteh for Machinery. (Embrayage.)

Joseph Samuel Beeman, Camberwell, Colony of Victoria, 4th January, 1896 ; 6 years. (Filed 12th December, 1895.)

Claim.-1st. In clutches for machinery, a spring as \mathbf{F} in combirfation with the two engagement members of a clutch, substantially as and for the purpose set forth. 2nd. In clutches for machinery, a flexible or spring plate as H in combination with the two engagement members of a clutch, substantially as and for the purpose set forth. 3rd. In clutches for machinery, in combination a spring as F, a loose clutch member as G, and a tlexible plate as H, substantially as and for the purposes set forth. 4th. In clutches for machinery, in combination a non-spring plate as \mathbf{H}, the blocks as I, having antifriction points as I^{1}, and faces cut aslant as I^{2}, and provided with a flexible medium at their base, substantially as and for the purposes set forth. 5 th. In clutches for machinery, a block as A, having an annular recess as A^{3}, and on which is mounted a plate as H, substantially as and for the purposes set forth. 6th. In clutches for machinery, in combination the plate as H^{2}, screws as \mathbf{H}^{3}, annular plate as \mathbf{H}^{1}, and flexible backing plate as K,'substantially as and for the purposes set forth. 7 th . In clutches for machinery, in combination, the stud as E , clutch plate as H , flexible backing plate as K, and block as A, substantially as and for the purpose set forth.
No. 50,958. Grain Binder. (Lieuse d grain.)

Henry Michael Glancy and James Nelson, both of Belhaven, Ontario, Canada, 4th January, 1896; 6 years. (Filed 7th December, 1895.)
Claim.-1st. In a harvester binder, the combination with the binding attachment of a receptacle adapted to receive the grain shelled by the binding attachment during the binding of the sheaf, substantially as specified. 2nd. In a harvester binder, the combination with the binding attachment of a receptacle located below the binding attachment to receive the grain shelled during the binding of the sheaf, consisting of telescopic sections, and means for supporting the sections in position, substantially as specified. 3rd. In a harvester binder, the combination of the binding attachment of a receptacle located below the binding attachment, consisting of telescopic sections, stays connected to the receptacle and to the under side of the deck, a rail connected to the main frame of the binder, and travellers connected to the receptacle adapted to travel on the rail, substantially as specified. 4th. In a harvester binder, the combination with the binding attachment of a receptacle located below the binding attachment, consisting of a stationary section, and a movable section adapted to slide into or out of the stationary section, a grating for the top of the sliding section, slotted plates connected to each side of the sliding section, overlapping the sides of the stationary section, bolts passing through the slot in the plates and through the sides of the stationary section, stays connected to the said bolts and to the under side of the deck of the harvester binder, substantially as specified. 5th. In a harvester binder, the combination with the binding attachment of a receptacle located below the hinding attachment, consisting of a stationary section, and a movable section adapted to slide into or out of the stationary section, a grating for the top of the sliding section, slotted plates connected to each side of the sliding section, overlapping the sides of the stationary section, bolts passing through the slot in the plates and through the sides of the stationary section, stays connected to the said bolts and to the under side of the deck of the harvester binder, a rail connected to the nain frame of the binder, and travellers connected to the stationary section adapted to move on the said rail, substantially as specified. 6th. In a harvester binder, the combination with the binding attachment of a receptacle located below the binding attackment, consisting of a stationary section, and a movable section adapted to slide into or out of the stationary section, a grating for the top of the sliding section, slotted plates connected to each side of the sliding section, overlapping the sides of the stationary section, bolts passing through the slot in the plates and through the sides of the stationary section, stays connected to the said bolts and to the under side of the deck of the harvester binder, a rail connected to the main frame of the binder, travellers connected to the stationary section alapted to move on the said rail, arms extending from each end of the rail, resting on the top of the main frame, and bent downwardly parallel with the inner face of the main frame, and hook-shaped, and L-shaped clip fitted on the hook-shaped end of the said arms, extending up the onter side of the main frame, the top of each of the clips bifurcated to receive the arms of the said rail, a plate fitted on the bifurcated end of each of
the said clips, and nuts holding the said plate tightly against the top of the said arms, substantially as specified.

No. 50,959. Hydraulic Air-Blast Apparatus.

 (Appareil soufflant hydraulique.)

Henry Austin Rogers, and Isaac H. Rogers, both of Bingham Canon, Utah, U.S.A., 4th January, 1896; 6 years. (Filed 14th December, 1895.)
Claim.-A hydraulic air-blast apparatus, comprising a straight hollow cylinder open at one end and contracted at the opposite end, an air pipe connected to said contracted end, and a water nozzle located in the cylinder and provided with two branches extending in opposite directions from the median plane of the nozzle and longitudinally of the cylinder, substantially as described.

No. 50,960. Hammock Supporter.

(Support de hamac.)

Martin Keegan, sr., Trenton, New Jersey, U.S.A., 7 th January, 1896 ; 6 years. (Filed 13th December, 1895.)
Claim.-In a folding hammock support the beam A, A, formed of two or more component parts joined together by the hinge X, having projecting sides X^{11}, overlapping and bracing the juints of said beam, and also having the folding arms \mathbf{A}^{1}, pivoted in pairs to opposite sides of the beam A, A, and secured thereto in working position by hooks b, and staples b^{2}, and having bracketts a^{2}, fitted to their outer extremities, in combination with the side stays D , swivel ears C^{5}, castings C^{3}, fore-feet C , and back stays B , all substantially as shown and described.

No. 50,961. Garment Supporter.
(Support de vêtement.)

Alva Silas Grimm, St. Mary's, West Virginia, U.S.A., 7th January, 1896; 6 years. (Filed 13th December, 1895.)
Claim.-1st. A garment supporter, consisting of a suitable belt, vertically adjustable bars connected thereto, hinged or jointed
brackets upon the upper ends of the arm having laterally extended and elongater loops, and suitable arms attached to the bracket, said elongated loops and arms adapted for the attachment thereto of suitable elastic button-loops, substantially as and for the purpose set forth. 2nd. A garment supporter, consisting of a suitable belt, suitable bars adjustably connected thereto, a spring latch device for holding the bars in their adjusted position. jointed brackets upon the upper ends of the bars provided with laterally extended and elongated loops, and spring wire arms connected to the brackets, substantially as and for the purpose specified.

No. 50,962. Rolling Support for Balanced Slide Valves. (Support pour tiroir équilibré.)

Warren Tyler Reaser, Lincoln, Nebraska, U.S.A., 7th January, 1896 ; 6 years. (Filed 16th December, 1895.)
Claim.-A rolling support for balanced slide valves consisting of a single hollow casting having opposite parallel side plates, integral segmental bearing ends connecting the ends of the side plates, toothed segments formed integrally at the ends of one of said side plates at one side edge of the bearing ends, an interior central longitudinal brace web integrally connecting said bearing ends, and an integral central transverse brace connecting the opposite side plates at their centers and integrally intersecting said brace web at right angles thereto, substantially as set forth.
No. 50,963. Button for Sashes, Etc.
(Bouton pour croisées, etc.)
Fig. 1

John Burns, Mineapolis, Minnesota, U.S.A., 7 th January, 1896 ; 6 years. (Filed 9th December, 1895.)
Claim. - s a new article of manufacture, a button for sashes, screens, doors, etc., comprising the body portion, having the straight back surface and provided with the central passage and the abrupt shoulder or offset, said parts operating substantially as and for the purpose set forth.

No. 50,964. Boot-Jack. (Tire-bottes.)
Richard Jacks, Quincy, California, U.S.A., 7th January, 1896 ; 6 years. (Filed 9th December, 1895.)
Claim.- 1st. A device for putting on boots, comprising an open frame or stirrup, a semi-cylindrical rib or support secured beneath said stirrup, and a roller interposed between the side arms or ears of said stirrup, substantially as and for the purpose described. 2nd. In a boot-jack, an open frame or stirrup, in combination with a roller mounted within said frame or stirrup at or near the top thereof, and a rearwardly projecting fork located about in the same horizontal plane with said roller, all arranged and adapted to operate in the
manner specified. 3rd. In a boot-jack, an o quen frame or stirrup made from a single piece of sheet metal, comprising an extended

base, inclined side arms at right-angles to said base, and a rearwardly extending fork also formed integrally with said stirrup, in combination with a roller interposed between the side arms of said stirrup, and a semi-cylindrical rib or support located beneath said stirrup, substantially as and for the purpose described.

No. 50,963. Manure Spreader.

(Machine a distribuer le fumier.)

Daniel Bolivar Merrell, Avon, New York, U.S.A., 7 th January, 1896; 6 years. (Filed 11th December, 1895.)
Claim. - 1st. In a manure spreader, the combination with feeding devices, of the two beaters arranged at an angle to each other, and driving devices for rotating said beaters, substantially as described. 2nd. In a manure spreader, the combination with the reciprocating bottom haviug the pointed rear end, and a feeding device operated thereby, of the two rotary beaters at the rear of said bottom arranged at an angle to each other, substantially as described. 3rd. In a manure spreader, the combination with the two reciprocating bottom sections having the inclined rear ends, the ratchet-bar between them, one of said sections having a ratchet, and the follower having the two pawls, of the two rotary beaters at the rear, set at an angle to each other, substantially as described. 4th. In a manure spreader, the combination with the body and feeding devices, of two lower rotary beaters arranged at an angle to each other and a transversely extending rotary beater or spreader arranged over the two lower beaters, substantially as described. 5 th. In a manure s preader, the combination with the sides and feeding devices, of the bottom, having the stationary and the adjustable abutments, and the rotary cam arranged between then for causing the reciprocation of said bottom, substantially as described. 6th. In a manure spreader, the combination with the reciprocating bottom composed of the two sections, one of them facing the ratchet, the stationary ratchet between, and the movable follower having the pawls, of the rotary shaft having the cams, the stationary abutment on each of the bottom sections, the movable abutments and connections for simultaneously adjusting the latter, substantially as described. 7 th. In a manure spreader, the combination with the reciprocating bottom section, the stationary roller thereon, the adjustable slide having the inclined edges, and the roller, and the adjustable wedge engaging said slide, of the rotary shaft having the cam engaging the rollers, substantially as described.

No. 50,966. Sash Balance. (Contre-poids de croisee.)

Joseph Herry Bane, Boston, and Leonide Brodeur, Barre, both of Massachusetts, U.S.A., 7 th January, 1896; 6 years. (Filed 14th December, 1895.)
Claim. -1 st. In a window-sash balance, a pivotal housing, a spring carried thereby, an adjusting device connected with the spring and adapted for engagement with a fixed support, a friction. wheel
mounted to revolve within the said housing and adapted for engagement with a sash, discs mounted to revolve in the said housing-

and provided with ratchet-wheels, and pawls carried by the frictionwheel and engaging with the said ratchets, as and for the purpose set forth. 2nd. In a window-sash balance, a casing adapted to be introduced in the hanging style of the sash and provided with an opening in its face place, a housing pivoted in the said casing, a spring extending below the pivot of the housing, an adjusting device carried by the casing and connected with the said spring, a friction-wheel mounted to revolve in the housing and extending through the opening in the face plate of the casing, and friction dises controlled by the friction-wheel when said wheel is turned in a predetermined direction, as and for the purpose specified.
No. 50,967. Apparatus for Raising and Lowering Window-Sashes. (Appareil pour soulever et abaisser les croisees.)

Watkin Hall, Great Crosby, England, 7th January, 1896; 6 years. (Filed 10th December, 1895.)
Cluim.-1st. The improvements in apparatus for opening and closing railway carriage and other window-sashes, which consists in supporting them on endless chains passing round rotatable chainwheels or pulleys fixed to the door or frame and counterbalanced by springs, whereby the sashes are in stable equilibrium in all positions, and so require little force to move them up or down or hold them in position, substantially as described. 2nd. The improvement in or appertaining to apparatus for opening and closing railway carriage and other window-sashes, which consists in supporting the sashes on
a travelling band or chain counterbalanced by a spring or springs and operated through suitable interposed gearing by means of a handle, thereby raising or lowering the sashes, also means for locking same in any desired position, substantially as described. 3rd. The arrangement substantially as set forth in figure 7 for counterbalancing a window-sash or the like by means of springs coupled to and acting on one or more eccentrics, whereby the sash is in stable equilibrium in all positions, and the variation of the spring resistance overcome. 4th. In combination with a window-raising device, one or more counterbalancing springs and eccentrics arranged in such manner that as the force of the spring increases the leverage thereon is reduced, and thus the pressure of the spring is counterbalancing the sash is practically uniform. 5th. The general arrangement and construction of the improved apparatus for opening or closing railway carriage or other window sashes, substantially as described and shown on the accompanying drawings.

No. 50,968. Corrugated Spring Steel Tyre.
(Bandage en ressort d^{\prime} acier.)

William George Crossley, and Eliza Anne Crossley, both of Auckland, New Zealand, 7th January, 1896; 6 years. (Filed 10th December, 1895.)
Chaim.-1st. In a corrugated spring steel tire substantially as described the two corrugated hoops C, C, and H, H, H. 2nd. The combination in a corrugated spring steel tyre, substantially as described of one or more rims of steel spcured to the two corrugated hoops together with the spoke connections.
No. 50, 96 g. Conveyor Chain. (Chaîne sans fin.)

Stephen Essex, Providence, Rhode Island, U.S.A., 7 th .January, 1896; 6 years. (Filed 17 th December, 1895.)
Claim.-1st. A chain link having a hooked portion and a bearing shoulder adjacent thereto and at the front side of the hook socket to bear on the side bar of the adjacent link forward of the fulcrum point thereof to hold the links substantially in the same plane and rigid against movement in one direction, substantially as described. 2nd. A chain link having a hooked portion and a bearing shoulder adjacent thereto and at the front side of the hook socket to bear on
the side bar of the adjacent link forward of the fulcrum point thereof to hold the links substantially in the same plane and rigid againts movement in one direction, said shoulder being carried by an extension of the side bar bent over the hoop socket to the front side thereof, substantially as described. 3rd. A chain link, having a hooked portion and an extension from the side bars bent over the hook socket and forming a lateral extension of the hook, said extension providing a shield for the joint between the links and having a bearing shoulder at the front in the plane of the upper sides of the bars. 4th. In combination in a link chain, the hook having the hook portions with the side bar extensions having bearing shoulders at their front ends to bear on the side bars of the adjacent links forward of the fulcrum point whereby the links will be maintained in the same plane against movement in one direction and the flights or carriers attached to the rigid side of the said chain, substantially as described.

No. 50,970. Cane Planter. (Plantoir.)

Antonio Martin Rivero, Havana, Cuba, 7th January, 1896; 18 years. (Filed December 6th, 1895.)
Claim.-1st. In a cane planter, a dropping box adapted to receive the cane to be planted, knives held to reciprocate across a face of the box, cutting the introduced cane into lengths, and a regulating device carried by the box, whereby the cane may be cut into long or into short lengths, substantially as shown and described. 2nd. In a cane planter, a planting box provided with a removable partition and an opening at one of its ends divided by the said partition, the box being open at its lower end, a knife held to reciprocate across the open end of the box, and means, substantially as described, for regulating the length of the cut cane, as and for the purpose specified. 3rd. In a cane planter, a planting box having an opening at one of its ends, the said end being inclined in direction of the oppositeend of the box, a knife held to reciprocate across the opening in the box, a partition located within the box and extending up to the open portion thereof, the said box being provided with an opening at its lower end, and an interchangeable driving mechanism operating the said knife, as and for the purpose set forth. 4th. In a cane planter, a planting lox having an opening at one of its ends, and means for adjusting the length of the cane to be contained in the box, a knife held to reciprocate across the opening in the end of the box, doors located within the box and capable of transversely closing same, trip devices carried by the door and operating from the knife, and means, as shown and described, for reciprocating the knife, substantially as and for the purpose set forth. 5th. In a cant planter, a furrow opener provided with an essentially inverted V-shaped share, whereby a furrow is made comprising a central ridge, and a ditch at each side of the ridge, enabling two pieces of cane to be planted in the furrow, substantially as specified. 6th. In a cane planter, the combination with the planting box adapted to receive cane, having a partition dividing it into compartments, and a knife reciprocating across both compartments, of a plough provided with fenders at its sides, the said fenders being located beneath the planting box, one at each side, the plough being connected with the forward end of the fenders, and a substantially inverted V-shaped share, whereby a furrow is made with two separate troughs, and whereby the cane from each compartment of the drop box will be deposited in an independent trough in the same furrow, as and for the purposes specified. 7 th. In a cane planter, the combination with a furrow opener and a planting box located above the opener, provided with a reciprocating knife, and means for driving the same, and devices for regulating the length of the cane to be cut, of a furrow closer located at the rear of the furrow opener, a lever connected with the furrow opener, through the medium of which the said opener may be raised or lowered independently of the furrow closer, or whereby the closer may be elevated with the furrow opener, and an independent lever controlling the movement of the furrow closer, as and for the purpose set forth. 8th. In a cane planter, a marker pivotally connected with the planter at the rear thereof, and capable of being carried from side to side of the planter, sockets adapted to receive the carrying arm of the marker, and means substantially as desc.ibed, for holding the marker in the prosition in which it is set, as specified. 9th. In a cane planter, the combination with the wheels thereof, of scrapers attached to fixed supports, extending
diagonally across the wheels, engaging with said wheels at an angle to their periphery, and having their faces convex, as and for the purpose specified.
No. 50,9\%1. Piano Stool. (Banc de piano.)

Charles Munz, Detroit, Michigan, U.S.A., 7 th January, 1896; 6 years. (Filed December 14th, 1895.)
Claim.-1st. In a stool, the combination of the standard having a vertical aperture therein, the seat, the tube depending centrally from the seat, a rack bar pivotally supported in the lower end of the aperture in the standard and extending into the tube, and a pawl pivoted in the tube and adapted to engage the rack bar, substantially as described. 2nd. In a stool, the combination of the centrally apertured standard, the seat, a tube depending centrally from the seat, a rack bar having a head at its lower end, a bearing in that standard in which said head is pivoted, said rack bar extending in which the said head is pivoted, said rack bar extending into the tube, a pawl pivoted in the tube and adapted to engage said rack bar, and a spring actuated pin extending to the side of the seat for controlling said pawl, substantially as described. 3rd. In a stool, the combination with the base, the seat, the tube depending centrally from the seat, the rack bar entering said tube, a conical head F, at the lower end of said rack bar, two part bearing embracing said head and in which the rack bar is pivotally supported, a pawl pivoted in the tube and adapted to engage with the rack bar, and a pin extending to the side of the seat for actuating said pawl, substantially as described. 4th. In a stool, the combination of the standard for supporting the seat, a socketed base in which said standard turns, a head at the lower end of said standard, a pivot block made in two halves and adapted to embrace the pivotal point at the lower end of the socket in the standard and devices for detachably securing the pivot block in position, substantially as described. $\tilde{5}$ ih. In a stonl, the combination of the standard, a rack bar pivotally supported in an aperture therein, a seat, a centrally depending tube on the seat entering the aperture in the standard, a pawl lever pivoted in the tube, and an elastic support for the seat, substantially as described. 6th. In a stool, the combination of the standard, a rack bar pivotally supported in an aperture therein, a seat, a centrally depending tube on the seat entering the aperture in the standard, a pawl lever pivoted in the tube, and a spring connecting the upper end of the rack bar with the pawl lever, substantially as described. 7 th. In a stool, the combination of the standards, a rack bar pivotally secured in an aperture therein, a seat, a tube depending from the seat and embracing the rack bar, a pawl lever pivoted in the tube, the spring connected to the top of the rack bar and the bottom of the pawl lever, the lugs q q on the pawl lever, and lugs e on the rack bar acting as stops to limit the movement of the tube, substantially as described. 8th. In a stool, the ratchet and pawl raising and lowering device, of the push pin for the pawl formed of the pin k, having the grooves m, and apertures i, the wire pin h, engaging the pawl lever and lying in the groove, the offset i, entering the aperture j, and the securing block secured in the groove over the pin, substantially as described.

No. 50,97t. Mill Por Pulverizingand Amalgamating

 ©res. (Moulin pour pulvériser et amalgamer le minerai)John W. Bailey, Denver, Colurado, U.S.A., 7 th .January, 1896 ;
fi years. (Filed December 16th, 1895.)
Claim.-1st. In an ore pulverizing and amalgamating device, the combination of opposing crushing surfaces whereby the ore is pulverized and an amalgamating device consisting of a metal plate, and between the crushing surfaces, and en opposite sides of the space between the crushing surfaces, and electrically connected so as to
form respectively anode and cathode, substantially as set forth 2nd. In an ore pulverizing and amalgamating device, the combina-

tion of opposing crushing surfaces whereby the ore is pulverized, and an amalgamating device consisting of suitable electrodes, insulated from each other and from the crushing surfaces. and so situated that the entire space within which the crushing takes place is within the sphere of the electrical action between the electrodes, substantially as described. 3rd. In an ore pulverizing and amalga mating device, a cylindrical pan, a cylindrical muller, means for rotating said muller within said pan, an annular insulated trough filled with mercury situated below the periphery of the muller, an annular insulated metal plate situated above the periphery, and suitable electric connections whereby the metal plate becomes an anode and the mercury a cathode, substantially as described. 4th. In an ore pulverizing and amalgamating device, the combination of opposing crushing surfaces, whereby the ore is pulverized, an amalgamating device consisting of a metal plate, and a mercury trough situated on opposite sides of the space between the crushing surfaces and electrically connected so as to form respectively anode and cathode, a reservoir and connections whereby a continuous flow of an electrolytic solution through the space between the crushing surfaces is maintained, and one or more secondary amalgamating devices to which the pulp and solution pass continuously after the action of the primary amalgamator, substantially as described. 5th. In an ore pulverizing and amalgamating device, the combination of opposing crushing surfaces, whereby the ore is pulverized, an amalgamating device consisting of a metal plate, and a mercury trough situated on opposite sides of the space between the crushing surfaces and electrically connected so as to form respectively anode and cathode, a reservoir and connections wherehy a continuous flow of an electrolytic solution through the space between the crushing surfaces is maintained, one or more secondary amalgamating devices to which the pulp and solution pass continuously after the action of the primary amalgamator, and suitable electrical connections within said secondary amalgamating devices to maintain an anode and cathode therein, substantially as described.

No. 50,973. Counter for Boots and Shoes.
(Contre-fort pour les chaussures.)

Thomas H. Donovan, Washington, Columbia, U.S.A., 7 th January, 1896 ; 6 years. (Filed December 18th, 1895.)
Clain.-1st. The combination with an aluminum boot or shoe counter, of a metallic spring embedded in the outer rear face of the counter, substantially as described. 2nd. The combination with an aluminum boot or shoe counter having its rear portion provided with metallic spring, of elastic connections whereby the counter is permitted to yield to the movements of the heel of the wearer, substantially as shown and described. 3rd. The combination with the insole of the boot or shoe, of an aluminum counter secured to the insole by means of flat elastic strips passed through elongated openings provided adjacent to the inner edges of the bottom portion of the counter, said strips being nailed or otherwise fastened to the insole, substantially as shown and described.

No. 50,974. Carriage Axle. (Essieu de voiture.)

Thomas J. Storey, Brockville, Ontario, Canada, 7 th January, 1896 ; 6 years. (Filed December 16th, 1895.)
Ctaim.-1st. A spring eushion or pad for lubricating carriage axles, comprising a flat curved spring G, and a pad of absorbent material \mathbf{F}, at the conrex side, as set forth. 2nd. A carriage axle having the spindle A, provided with a longitudinal groove or recess E, and a spring (x, in said recess having a cusbion or pad of absorbent material \mathbf{F}, and a lubricant, as set forth. 3rd. The combination with a carriage axle having the spindle arm provided with a longitudinal groove or recess F , of a chshion or pad of absorbent material F, and a spring (a , in said recess supporting said cushion, as set forth. 4th. A carriage axle having the spindle provided with a longitudinal groove or recess, a spring in said recess or groove and having a cushion or pad of absorbent material F, said spindle having a shoulder J, peripherally grooved, a packing H, of absorbent material in said groove, and an absorbent felt washer K, intervening the axle box and the axle nut, as s.t fortb.
No. $\mathbf{5 0}, \boldsymbol{9} \boldsymbol{5}$. Device for Stretehing Boots and Ghoes.
(Appareil à élendre les chaussures.)

Edward James Leighton, Boston, Massachonsetts, U.S.A., Sth January, 1896 ; 6 years. (Filed December 19th, 1895.1
Claim.-1st. In a stretcher for boots and shoes, a last in sections, connected together by a loose hinge, as the bar C , having loose notches c, engaged by a pin a^{+}in each section, so that the said sections may separate laterally on parallel lines and also swing toward and from each other while held against longitudinal movement, in combination with means as the heart E and screw I) whapted to force the sections apart, all substantially as herein specified. ond. In a stretcher for boots and shoes, a last divided longitudinally into, sections $\mathbf{A}, \mathbf{A}^{1}$, on a line extending centrally from the rear nearly to the point and thence to one side, so that the undivided point is carried on one of said sections, in combination with means as the heart \mathbf{E} and serew D for separting the sections, all substantially as specified. 3rd. In a stretcher for loonts and shoes, the heart E and lugs ε thereon, the screw D and collar 1$)^{2}$ engaged between the lugs, in combination with each other and with the last sections $\mathrm{A}, \mathrm{A}^{1}$, and screw-threaded boss C^{1} engaged therewith, all substantially as herein specified. 4th. In a stretcher for boots and shoes, the heart E and lugse thereon, the screw 1) and collar 1)2 ${ }^{2}$ thereon engaged between said lugs, in combination with each other and with the bearing surface \mathbf{E}^{1} in the heart, adapted to receive the end thrust of the screw and relie ve the strain on said lugs and collar, all substantially as berein specified. 5th. In a stretcher for boots and shoes, the last sections $\mathrm{A}, \mathrm{A}^{1}$, the har C having the boss C^{1} and notches c, pins θ^{+}in the sections, engared in said notches, in combination with the screw D received in said hoss and carrying a heart F adapted to separate the sections when the screw is turned, and with means as the yoke H and loop, H^{*} carried hy the said serew and adjustable thereon, substantially as herein specified. 6th. In a stretcher for boots and shoes, the last sections A, A^{\prime}, hinged together and adapted to be separated by turning the serew rod I), in combination with the latter and with the yoke H and loo, $H^{: s}$ adapted to engage the interior of a shoe at the rear, the said yoke having an opening h larger than the said rod, and screw-threaded to match to the pitch of the threads thereon, so that the yoke will slide freely on the rod and engage therewith when required by the interlocking of the screw-threads on each, all substantially as herein specitied.

No. 50,976. Wind Mill Regulator.

(Régulateur de moulin a vent.)

Arthur S. Clark, Saline, Michigan, U.S.A., Sth January, 18!6; 6 years. (Filed December 18th, 18:5.)

Claim.-1st. In a windmill regulator, the combination of a ratchet wheel, a stationary pawl, a pawl operated by the windmill, and de-

vices for shifting the ratchet wheel in and out of engagement with the pawls, substantially as deseribed. 2nd. In a windmill regulator, the combination of a ratchet wheel, a huh upon which it is journalled, an eceentrically arranged supporting shaft therefor, a stationary pawl, a pawl operated by the windmill, and means controlled by the float for rocking the hub, whereby the ratchet wheel is moved in and out of engagement with the pawls, substantially as described. 3rd. In a windmill regulator, the combination of the ratchet wheel having a holding pawl and an actuating pawl operated by the windmill, of an eccentric for shifting the wheel, a weighted lever for rocking the eccentric and a comnection for operating the weighted lever, substantially as described. 4th. In a windnill regulator, the combination of a ratchet wheel having a bolding pawl, an actuating pawl operated by the windmill, an eccentric for shifting the wheel, a weighted lever for rocking the eccentric, a lever commected to the float for operatiog the weighted lever, the parts being arranged with a lost motion between the float operated lever and the weighted lever, and between the weighted lever and the eccentric, substantially as described. 5th. In a windmill regulator, the combination of a lracket, a shaft pivoted therein, an open eccentric thereon, an interior? notched wheel journaled thereon a stubshaft on the bracket projecting through the eccentric, a weighted lever fulcrumed about the stub shaft, comnected at one end to the pump rod, and carrying a pawl at the immer end, a stationary pawl beside the wheel and adapted to engage the toothed rim thereof, a comection with lost motion between the weighted lever and the eccentric, and a lever pivoted on the stub shaft beside the weightedlever and having a comnection with lost motion with said weighted lever and operating means for said lever.
No. 50,98\%. CuItivator. (Cullivateur.)

Walter Couthard, Oshawa, Ontario, Canada, 8th January, 1896; 6 years. (Filed August 2nd, 1895.)
Claim. -1 st. In cultivators or seeders, a pole yoke with slots and notehes, or holes, in the sides as described, in combination with an axle, a sleeve bracket, a pole, a frame and a bolt, substantially as and for the purposes described. 2nd. In cultivators or seeders, a tooth holder furnished with jaws to grip the transverse bars of the sectional drag bars and projections to grip the same, and a bolt and nut, substantially as and for the purpuses described. 3rd. In cultıvators or seeders, in which sectional drag bars are used, the combination of a tooth clip fastened to the transverse bar with a single bolt and arranged to move transversely on a single transverse bar, substantially as and for the purposes described. 4th. In cultivators or seeders, i tooth holder furnished with jaw's to grip the transverse bar of the sectional drag hars in combination with such drag bars,
projections f, g, a bolt and tooth, substantially as and for the purposes described. oth. In cultivators or seeders, an elongated washer having its opening at one end and large enough to adnit a pressure spring rod, and contracted at the other soas to fit grooves in the rod, in combination with the pressure spring rod and spiral spring, substantially as and for the purposes described.

No. 50,978. Evaporator for Hoiling Sap.

(Appareil évaporatoire pour la sève.)

Reid Page Small, I)unham, Quehec, Canada, 8th January, 1890; 6 years. (Filed July 27th, 1895.)
Cluim.-1st. An evaporator for boiling sap in sugar and syrup making, having separate sugar and syrup boiling sections detachably connected together and communicating with each other by a horizontal tubular connection. for the purpose set forth. 2nd, An evaporator section for boiling sap in sugar and syrup making, having a corrugated bottom and an emptying chamel extending transversely of the corrugations, communicating with and being common to all, with suitable outlet for the purpose set forth. 3rd. An evap)orator for boiling sap in sugar and syrup making, having separate sugar and syrupboiling conpartments, a horizontal tubnlar communicating passage between them, and an automatically operated valve, for controlling the flow through such passage, for the purpose set forth. 4th. In an evaporator for boiling sap in sugar and syrup making, the combination with corrugated section and an emptying channel extending transversely of the corrngations and communicating therewith and provided with suitable outlet and suitable gates located in said channel, for the purpose set forth. 5th. In an evaporator for boiling sap in sugar and syrup making, a boiling section having a corrugated bottom and an emptying channel extending transversely of the corrugations, communicating with and being common to all, with suitable outlet, a second section and an automatically controlled passage between the two sections, for the purpose set forth. 6th. In an evaporator for boiling sap, in sugar and syrup making, the combination with the separate sections provided with suitable openings, of the tube a having flange a a^{1} whereby it is soldered to one of the sections, and retaining nut a^{2}, for the purpose set forth. 7 th . In an evaporator for boiling sap in sugar and syrup, making, the combination with the separate sections provided with suitable openings 5 of the tube a, having flange a^{1}, retaining nut a^{2}, a for automaticilly between sueh section and a lever, float and valve for automatically opening and closing such tubular connection, for the purpose set forth.

No. 50,9\%9. Type Writing Machine. (Clavigraphe.)

Aaron E. Bergey, Toronto, Ontario, Canada, 8th January, 1896 6 years. (Filed Ju ee 5th, 1895.)
Clain.-1st. In a machine of the class described, an operating finger key consisting of a finger clasping upper portion, a shoulder beneath such portion and a tapered stem of less diameter than the pose specified. extending downwardly from same, as and for the purpose specified. 2nd. In a typewriting machine, in combination a swinging tilting plate suitably pivoted, adjustable lengthwise, and having a broad end provided with radial sets of holes, a type plate adjustably connected to the broad end of the said plate, and provided underneath with suitable type, a finger key provided with a tapered lower projection designed to fit into one of the holes of the plate, and a solid platen secured in the hase board, as and for the a swinging tilting plate suitably pivoted machine, in combination having a broad end provided whity pivoted, adjustable lengthwise, and having a broad end provided with radial sets of holes, a type plate vided undernetect to the broad end of the said plate, and protapered lower projection desige type, a finger key provided with a plate, and an arm provided with to fit into one of the holes of the plate, and an arm provided wich a notched end to form a guide for the finger key, as and for the purpose specitied. 4th. In a typeone end, of the bed plate formed with a spring plate secured at outwardly extending guife arm provided with a provided with an in the spring plate directly beneath the centre of the notch of swinging tilting plate provided with sets of holes in its broad of a and a type plate connected to the broad plate underneath, a finger key designed to fit into, one or other of the holes of the sets, and a in the spring puate, as and for the pord directly underneath the hole in the spring plate, as and for the purpose sperified. 5th. The combination with the spring plate having an opening at its front end,
the swinging tilting plate adjustable lengthwise having a broad end and a type plate situated below the broad end and connected to it, and provided with type as specified, of an inking pad secured upon the end of the spring plate, and having an opening corresponding in size and position to the opening in the front end of the spring plate, as and for the purpose specified. 6th. In a machine of the class described, a swinging tilting plate having a broad end and a type plate situated beneath, adjustably connected to the broad end and having an upwardly extending finger, and a slot in the narrow portion of the swinging plate in which the said finger fits, and is adjustable as and for the purpose specified. 7 th. In a machine of the class described, a swinging tilting plate having a broad end, sets of holes made therein and side notches, of a type plate situated beneath and having an upwardly extending flange with overturned lips extending into and over the edge of such notches and limiting means for the longitudinal movement of the type plate in relation to the broad end, as and for the purpose specified. 8th. In a machine of the class described, a swinging tilting plate having a broad end, sets of holes made therein and side notches, of a type plate situated beneath and having an upwardly extending flange with overturned lips extending into and over the edge of such notches, and a finger e^{3} extending upwardly from the type plate and notch d^{2} to receive such finger, as and for the parpose specified. 9th. In a machine of the class described, in combination an alarm situated in the base board, a spring plate, means for depressing the spring plate and a spring hammer forming parts of the spring plate and designed to be brought in contact with the alarm upon the depression of the plate when the sheet of paper does not intervene, as and for the purpose specified. 10th. In a type writing machine, the combination with a ratchet bar for moving the paper and having a cross bar secured to its front end, of a broad loopshaped spring clamping plate held on the cross bar and provided with opening fingers as and for the purpose specified. 11th. In a type writing machine, the combination with a ratchet bar for moving the pajer having a cross bar secured to its front end, of a broad loopshaped spring clamping plate provided with a central noteh \mathbf{H}^{2}, and the pins h^{2}, secured in one of the holes h^{1}, of the cross bar \mathbf{H}^{1}, as and for the purpose specified. 12th. The combination with the ratcbet bar adquted to have the sheet of paper connected at one end thereto and held in suitable guide-ways, of a rocking detent pivoted in the base board provided with a dog-shaped end, spring held to such ratchet bar, and having an inclimed cap, J^{2}, and the spring plate A, and nieans for depressing the same upon the cap, J^{2}, as and for the purpose specified. 13rd. The combination with the ratchet bar and rocking detent having the dog-shaped end operated as specified, of a guiding plate \mathbf{H}^{3}, as and for the purpose specified. 14th. The combination with the ratchet bar and rocking detent having the dog-shaped end operated as specified, of a pin M, having its inner end located opposite to the spring-held, dog-shaped end of the rocking detent as and for the purpose specitied.
No. 50,980. Brake Pipe Coupling.

> (Joint pour tuyau de frein.)

Martin L. Weaver, Hornellsville, New York, U.S.A., 8th January, 1896; 6 years. (Filed May 14th, 1895.)
Claim.-1st. A brake pipe coupling having two ports adapted to be interchangeably used, one of which ports is unobstructed and the other being provided with a self closing valve. 2nd. A valve made of molded flexible material in one piece provided with an imperforate head, a gasket or flange, an intervening neck provided with lateral ports and a longitudinal port through the gasket and neck connecting with the lateral ports. 3rd. A pivoted or swiveled brake pipe coupling nember having opposite arms one of which is provided with an open port, and the other with a self closing valve. 4th. A pivoted coupling having opposite arms provided with ports in each end thereof one unobstructed and the other having a valve, a pivot spindle or plug, a collar fast on the plug, and a latch engaging the plug for locking the coupling when its arms are reversed. 5th. In a pipe coupling, the combination of a gasket seat having recesses, and a gasket retaining ring having projections thereon adapted to engage said-recesses, one of the parts being can-faced. 6th. The combination of the hollow brake pipe spindle or plug having a latAral port, a two armed coupling swiveled thereon, and ports in each arm of the coupling, one of which is open and the other provided with a self closing valve. 7 th. The combination of the hollow brake
pipe spindle or plug, a pivoted coupling swiveled thereon, having one arm unobstructed and the other provided with a valve, a collar fast upon the plug, a lock stop upon the collar, a latch or lock upon the coupling adapted to engage the lock stop, a spring interposed between the collar and coupling, and a nut for adjusting the tension. 8th. A detachable brake pipe coupling located upon one car and provided with a valve, combined with a similar coupling upon an adjoining car and unprovided with a valve, and adapted to be coupled to each other.

No. 50,981. Manufacture of Iodine Compound.

(Fabricalion d'un compose d'iodure.)

Dr. Alexander Classen, Aix la Chapelle, Germany, 8th January, 1896 ; 6 years. (Filed February 6th, 1s95.)
Claim.-1st. The process for the manufacture of new iodine compounds wherein the oxy derivatives of triphenylmethane and its an alogues or the oxy derivatives of the substitution products derived from triphenylmethane and its analogues, or the secondary aronatic amines such as diphenylamine and its analogues or their derivatives or the tertiary amines corresponding to these secondary mines are treated with iodine or substances yielding iodine, substantially as herein described. 2nd. As a new manufacture tri-iodo aurine and its salts. 3rd. As a new manufacture, tri-iodo rosolic acid, and its salts. 4th. As a new manufacture, tetrai wo-phenol phthalein and its salts. 5th. As a new manufacture di iodo carbazol. 6th. As a new manufacture di-iodo-dipphenyl amine. 7th. As a new manufacture di-iodo nitrosso diphenylamine. 8th. As a new manufacture acetyl di-iodo diphenylamine. Ith. As a new manufacture, benzoyl di-iodo diphenylamine. 10th. As a new manufacture acid derivatives of di-iodo diphenylamine.
No. 50,982. Receipt Book. (Livre de quittance.)

John D. D. Mortimer, Stockton, California, U.S.A., 8th Jannary, 1896 ; 6 years. (Filed September 29th, 1894.)
Claim.-1st. As an improved article of manufacture, the shipping receipt-book herein described, consisting, essentially, of the covers A, suitable connected together, the shipping order detachably connected to a stub, which in turn is permanently comnected to the covers, the detachable shipping-receipt arranged after the shippingorder and next to the same, said shipping receipt being detachably connected to a stub, which in turn is permanently connected to the covers, the permanent or stationary shipping-receipt arranged after the detachable shipping-receipt, and next to the same, the said permanent shipping receipt, which is designed to remain in the book and form a permanent record, being permanently connected to the covers, the flap, K, attached to the cover A, the waxed paper I, the pasteboard bar a, provided with the holes F , the carbon sheets H, G, attached to the clottr J, and the cloth, \mathbf{J}, all substantially as shown and described. 2nd. A shipping receipt-book substantially as described, provided with an original and two duplicate sheets, in combination with the holding flap K, attached to the inside of one of the covers, and the carbon attachment consisting of the waxed paper I, the pasteboard bar a, provided with the holes F, and the carbon sheets \mathbf{H}, \mathbf{G}, attached to the cloth J, which is attached to the bar a, all substantially as shown and described. 3rd. As an improved article of manufacture, the shipping receipt-book herein described, consisting, essentially, of the covers A, suitably connected together, the shipping order B, detachably connected to a stub, which in turn is permanently connected to the covers, the detachable shipping-receipt C, arranged after the shipping-order and next to and narrower than the same, said shipping-receipt C, being detachably connected to a stub, which in turn is permanently connected to the covers, the permanent or stationary shippingreceipt D, of same width as and arranged after the detachable ship-ping-receipt C, and next to the same, the said permanent shippingreceipt, which is designed to remain in the book and form a per manent record, being permanently connected to the covers, the flap K, attached to the cover A, the waxed paper I, the pasteboard bar a, provided with the holes F, the carbon sheets H, (i, attached to the cloth J, and the cloth J, all substantially as shown and described.

No. 50,983. Straw Cutter. (Hache-paille.)

John Addison Smith, Palermo, Ontario, Canada, 8th January, $1896 ; 6$ years. (Filed November 14th, 1895.)
Claim.--1st. In a straw cutter, a fan box containing a series of fans made to operate in the fan box attached to the cutter wheel, and a conveyor attached to the fan box, for blowing the cut feed away from the machine to any desired spot a distance from the straw cutter, substantially as described. 2nd. In a straw cutter, the combination of the top, feed roller, a frame attached to the said roller and a spiral spring secured to the frame of the roller and to the under frame of the machine to pull down the top roller to the proper feeding distance from the lower roller, substantially as specified. 3rd. In a straw cutter, a shaft H journalled in an auxiliary frame inside of the main frame, having a sprocket wheel m upon its outer end, a shaft o on the outside of the main frame, having a sprocket wheel n keyed on one end of it, and connected with the sprocket wheel m by an endless chain q, a bevel wheel r, keyed on the opposite end of the shaft 0 , made to mesh into a corresponding bevel wheel s, on a shaft 2 attached to the lower feed roller \mathbf{R} to rotate it, a pinion w, on the shaft 2 made to mesh into a corresponding pinion v on the shaft u attached to the top roller Q to rotate it, sprocket wheels G and I on their resper'i: e shafts. J, H, a sprocket chain K passsing around them, a clutch , Hevice () and lever P for reversing them, the gear wheel L on the shatt H, a gear wheel M on the man shaft B, an intermediate pinion N eonnecting the said two gear wheels all constructed and arranged to reverse the feed rollers when desired, substantially as specified. 4th. In combination with a straw cutter, a moveable carrier made to operate in the feed box to carry the feed to be cut to the rollers and cutter, substantially as described.

No. 50,984. Automatic Railroad Gate.
(Barrière de chemin de fer automatique.)

William Thomas Crawford, Tampa, Florida, U.S.A., 8th January, $1896 ; 6$ years. (Filed Novemker 20th, 1895.)
Claim. - -1st. The combination of a counter-balanced arm adapted when free to occupy a normal position, actuating devices located on each side of the arm and operatively connected together and to the said arm, a locking mechanism for each arm actuating device normally occupying an operative position, and a trip for each locking mechanism so disposed that the approaching train will operate the trip on the approach prior to operating the said arm actuating device and throw the lock connected therewith out of operative relation, the arm actuating mechanism when operated being held by the lock at the departure side, and the trip at the latter side being operated by the departing train to release the said arm actuating devices, substantially as described. 2nd. The combination of a supporting post, counter-balanced vertically swinging gate-arms, having spring.
joints, a bell, a movable flag-staff, operating devices within the post for the gate-arm, the flag-staffi and the bell, a spirally flanged rockshaft journalled along one of the track-rails, connections between the rock-shaft and the gate operating devices within the post, a pedal located beside the track beyond the rock-shaft, and flexible comnections from the pedal to the bell and flag operating devices, all sul)stantially as shown. 3rd. The combination, with gate arms arranged to return automatically to their open pesition, of a spirally flanged crank-shaft at each side of the crossing, counecting mechanism between crank-shafts whereby they are compelled always to move together, an automatic locking device at the outer end of each shaft consisting of a grooved and notched cam wheel 55 thereon, together with a trinsverse rock-shaft 56 , having pins 57 and 58 to engage said cam-wheel, and a returning spring 60 , and a relieving arm on shaft 56 , by which the pins are released from the cams as the train is departing, substantially as shown. 4th. The combination of the two, flanged cranked-shafts, the notched and grooved cam-wheels on the outer ends of said shafts, the two transverse rock-shafts, provided with pins for engaging the cam-wheels, the relieving arms, and the lever and cable connections uniting the two sets of devices to each other and to the guard devices at the crossing, substantially as shown. 5th. The connbination of movable arms pivoted on suitable standards, a flag-staff, flag operating mechanism located in said standards, apparatus located on the track for operating the arms froin a distance, and track irons more remote from the crossing for actuating the flag operating mechanism, all substantially as shown. 6th. The combination of the gate arms, the flanged crank shafts located at a distance from the crossing, one on each side therenf, working connections between said shafts whereby they move in unison, cams on the outer ends of said shafts, rockshafts located transversely between the rails, having pins for engaging the cams, springs on the latter shafts, and bearings therefor, all substantially as shown. 7 th. The combination of the pedal 47 , the crank-shaft 36 oscillated thereby, the flag shaft 30 , the double crankshaft 32, the connections between the cranks of the said three shafts whereby the oscillations of shaft 36 are transmitted to the flag, the arm 30 o projecting from the flag-shaft, the wheel on the gate-shaft and the two pins $26 a$ and $26 b$ projecting therefrom, all substantially as shown. 8th. A gate arm, consisting of an inner pivoted and weighted section 40, having ears at its outer end, an outer section 42, pivoted between said ears, and a spring loop 43, bearing against the inner end of arm 42, and having its ends coiled around the ends of pivot 41, whereby the two arms are normally held in line with each other, all substantially as shown.

No. 50, 985. Automatic Power Brake.

(Frein automatique.)

John H. Fox, New York, State of New York, U.S.A., 8th January, 1896; 6 years. (Filed December 5th, 1895.
Clain. -1 st. In an emergency air-brake valve, the combination with an arm for actuating the valve lever, of a valve casing, a valve lever pivoted adjacent thereto and provided with a trip to engage the arm, a valve with stem and suitable connection to the valve lever, a pawl for locking the valve when opened, and means for disengaging the pawl, substantially as herein set forth. 2nd. In an emergency air-brake valve, the combination with the casing A, having the fort B for attachment to its support, and the lug I) formed upon one side of the casing, of the forked lever K having a trip, L pivoted in its outer end, and having the cranks E projected to the centre line upon opposite sides of the casing, the removable cap containing the valve seat F, with valve (i having a grooved stem (\boldsymbol{r}^{1} projected outside of the cap, the cross head H^{K} secured upon the stem, the links J connecting the cranks with the cross head, and provided with one or more ratchet teeth, aud the pawl o secured upon the casing, and provided with a handle projected beyond the side of the casing, as herein set forth. 3rd. The means for auto matically actuating an air-brake valve, consisting in a bearing having a rock shaft connected by snitable means with a tread lever. switch, or draw bridge, a dog attached to such shaft, and springs fulcrumed upon the bearing and operating normally to hold the dog in the path of the brake valve lever if such connections are broken. 4th. In a dog for actuating an air-brake valve, the combination with the arm M having the the-head M^{\prime}, of the ribs (Q projecting upon
the arm heyond the sides of the head, as herein set forth. 5th. The combination with the brake valve and a brake valve lever having a transverse pin as described, of the pivoted trip L with stops to limit its motion upon the pin, and the trip heing weighted to throw its forward edge L at an inclination opposite to its operative inclination, as and for the purpose set forth. 6th. In a device for automatically stopping railway trains, the combination with the brake valve lever carried by a moving train, of a dog mounted movably beside the track and adapted when set to engage the brake valve lever, a primary tread lever beside the track rail with connections for setting the dog in the path of the brake lever by the depression of such tread lever, and a secondary tread lever with connections for retracting the dog by the depression of such secondary lever, substantially as herein set forth. 7th. A device for automatically stopping railway trains upon a given block or section of railway track, comprising dogs mounted movably in suitable bearings beside the track at opposite ends of such block, and adapted when set to engage a brake valve lever upon a moving train, a primary tread lever beside the track rail with connections for setting both dogs, and two secondary levers near the opposite ends of the section, with connections to the dogs, adapted by the depression of either of such levers by the passing train to retract the dogs and elevate the primary tread lever, substantially as herein set forth. 8th. An overlapping safety block system, comprising a series of primary tread levers mounted at the side of the rail, one at the middle of each block, dogs mounted morably at the side of the track at the opposite ends of each block, and adapted when set to engage a brake valve lever upon a moving train, with suitable connections to the primary lever for setting such dogs by the depression of the lever, a secondary lever near each end of the block with suitable connections to both of the dogs for retracting the same by the depression of such lever, and the primary lever of each section being arranged for actuation by the moving train in advance of the last secondary lever of the preceding block, whereby the dogs at opposite ends of each section are set in an operative position before the dogs upon the next preceding block are retracted, substantially as herein set forth.
No. 50,986. Hicycle Spoke Washer.
(Rondelle de rais de bicycle.)

Axel Levedahl and George Sherman Webb, both of Aurora, Illinois, U.S.A., 8th January, 1896; 6 years. (Filed December 6th, 1895.)

Cluim.-A vehicle wheel provided with a wooden rim, wire spokes having headed parts or nipples engaging said rim, and circular spoke washers having central concavities, within which the heads of the spokes or nipples are situated and provided with down turned, toothed, marginal Hanges, said rim being provided with recesses surrounding the spoke holes, and having marginal grooves, into which grooves said flanges are inserted and into the wood at the bottom of which the teeth of the flanges are forced whereby the portions of the rin on opposite sides of the spoke holes are firmly clamped together against splitting.
No. 50,987. Means for Ventilating Atables.
(Moyen de ventilation pour etables.)

Isaac Usher, Thorold, Ontario, Canada, 8th January, 1896; 6 years. (Filed December 20th, 1895.)

Claim.-1st. A means for ventilating a stable, consisting of a series of perforated nozales, located on the Hoor level, a fresh air duct, and a connection between the feesh air duct and the perforated nozzles, substantially as specified. 2nd. A means for rentilating a stable, consisting of a series of perforated nozales, located on the thoor level, a fresh air duct, a connection between the fresh air duct and the perforated nozzles, and a ventilating shaft extending from the upper part of the stable through the roof to carry off the foul air and gases, substantially as specified. 3rd. A means for ventilating a stable, consisting of a fresh air duct located below the level of the floor of the fued-walk, a feed-tromgh below the level of the feed-walk and adjacent thereto, a series of partitions dividing the feed-trough into compartments, a perforated nozale located on the top of each of the partitions, and a branch pipe connecting the perforated mozales with the fresh air duct, substantially as specified. 4th. A means for ventilating a stable, consisting of a fresh air duct located below the level of the floor of the feed-walk, a fred-trough below the level of the feed-walk and adjacent thereto, a series of partitions dividing the feed-trongh into compartments, a perforated nozale located on the top of each of the partitions, a branch pipe comnecting the perforated nozales with the fresh air duct, and a ventilating shaft adapted to convey the foul air and gases from the upler part of the stable, substantially as specfied.

No. 50, 8 ss. Metallic Carbides and the Production Thereof. (Carbure métallique.)

Thomas Leopold Willsom, New York, State of New York, U.S. A., 8th Jamuary, 1896 ; 6 years. (Filed August 27 th, 1894.)
Chaim.-1st. The new commercial product hereinbefore described, being a crystalline carbide of calcium or analogous metal, said carbide capable of mutual decompsition with water to form a hydrocarbon gas. 2nd. The new commercial product hereinbefore described being erystalline calcium carbide. 3rd. The new commercial product hereinbefore described, being calcium carbide existing in an aggregated mass resulting from its soliditication from the state of tusion. 4th. As a new manufacture, a crystalline metallic carbide capable of reaction with water, enclosed in a vessel or covering to protect it from moisture, wherehy it is preserved against the action of the moisture of the atmosphere until ready for use. sth. The described process of producing a crystalline metallic carbide having a reaction with water, which consists in subjecting the oxide of cal. cium (or analogous metal) with carbonaceons matter, to electric smelting. 6th. The described process of producing erystalline calciun carbide consisting in subjecting lime and a rarbonaceous substance to intense heat in an electric furnace.

No. 50,989. Production and use of Hydrocarbon Gias.

(Production de gaz à hydrocarbures.)

Thomas L. Wilson, New York, State of New York, U.S.A., 8th Jannary, 18:9; 6 years. (Filed August 30th, 18!4.)
Cham.--1st. The described process of producing hydrocarbon gases, which consists in first treating in an electric furnace a compomind of a metal of the gromp existing in the native state as carbonates, to form a carbide of such metal, and second mutually decomposing such carbide with water to generate a hydrocarbon gas. 2nd. The described process of proclucing acetylene, which consists in first treating calcium oxide with carhonaceous matter in an electric furnace, to produce calcium carbide, and second mutually decomposing the calcium carbide with water to liberate acetylene. 3rd. The described yrocess of producing ilhuminating gas, which consists in first treating calemm oxide with carbonaceoris matter in an electric furnace to produce calcium carbide, mutually decomposing this carbide with water to generate acetylene and mixingoxygen therewith. 4th. The described process for producing ilhminating gas, which censists in first treating calcium oxide with carbonaceous matter in an electric furnace to produce calcinm carbide, then covering said carbide to exclude moisture until ready for use, and finally mutually decomposing the carbide with water to generate acetylent. 5th. The process of making and nsing commercial illuminating gas of high luminosity, which consists in combining water and calcium carlide, collecting the resulting acetylene, storing the same in a suitable receptacle, and fimally homing the same with the addition of oxygen, in a svitable burner, thereby producing an illuminating frame. 6th. The process of making and using commercial illumsnating gas of high luminosity, which consists in combining water and calcium carbide, collecting the resulting acetylene, storing the same in a suitable receptacle. mingling the same with a suitable quantity of oxygen or air, and finally burning the same with the addition of oxygen, in a suitahle burner, thereby producing an ilheminating Hame. Tth. The process of making and using commercial illuminating gas of high luminosity, which consists in combining water and calcimm carbide, collecting the resulting acetylene, storing the same in a suitalle receptacle into which it is caused to pass by its own pressure of generation, and tinally burning the same with the addition of oxygen, in a suitable burner, therehy producing an illuminating Hame. Sth. As a new composition of matter, useful for purposes of combustion, acetylene gas, oxygen and nitrogen mingled together in substantially the proportions stated.

No. 50,990. Process of Flectric Smelting.
(Fonderie électrique.)
Thomas Leopeld Willson, New York, State of New. York, U.S.A., 8th January, 1896; 6 years. (Filed January 21th, 1895.)
Olfim.- 1st. The process of electric smelting which consists in subjecting a pulverized material to be reduced and a pulverized reducing agent to the action of an electric arc formed by an alternating current. 2nd. The process ef electric smelting which consists in feeding a pulverized material to be reduced and a pulverized reducing agent to an electric are formed by an alternating current, whereby by the pulsations of the arc the materials are progressively drawn withon its influence. 3rd. The process of producing calcium carbide, which consists in feeding pulverized lime and carbon into an electric arc formed by an alternating current.
No. 50, 991 . Machine for Making Crimped stove Pipe Elbows. (Machine pour faire des coudes de tuyau de poêle gaufrés.)

George Cmin, Montreal, Quebec, Canada, 8th Jannary, 1896;6 years. (Filed september 17th. 1s\%5.)
Claim.-1st. In a pipe-rlbow machine, the combination with the driving shaft C, the two eccentrics J) and E, and means for connecting the said eccentrics to the said shaft alternately, of a crimping device operatively connected to the eccentric 1), and dises for compressing and smoothing the crimp, operatively connected to the eccentric E, substantially as set forth. 2nd. In a pipe-elbow machine, the combination with the driving shaft C , provided with a slot (${ }^{\text {a }}$, of the eccentrics I) and E mounted on the said shaft, and provided with notches, the rod sliding in a hole in the shaft \mathbf{C}, and provided with the cotter I for alternately coupling the said eccentries to the shaft, a cam plate secured on the shaft C, and tappet mochanism secured to the said rod and operated by the said cam, whereby the said ror is reciprocated in the shaft, substantially as set forth. 3rd. In a pipe elbow machine, the combination with the rod M, and driving mechanism for reciprocating it, of the wedge m secured to the said rod, the jointed frame r resting on the said wedge, and the crimping device supported by the said frame, and raised and lowered by the said wedge, substantially as set forth. 4th. In a pipe-elbow machine, the combination with the yoke Y, formed of two separable parts provided respectively with the curved guide grooves V and W, and the revoluble shaft provided with right and left hand screw threads engaging with the said parts of the yoke and afforoing a means for opening and closing it, of the crimping device provided with guide bolts sliding in the said grooves, and driving devices operating to raise and lower the said crimping device, substantially as set forth. 5th. In a pipe-elbow machine, the combination, with the stationary guides 8 , of the slide 6 working in the said giaides, the frame consisting of the cross-piece r secured to the said slide and the pivoted links r^{1}, r^{2}, the crimping device pivotally connected to the said links, the wedge m, arranged moder the sadid cross-piece and slide, and means for reciprocating the wedge and thereby raising and lowering the crimping device, substantially as set forth. 6th. In a pipe-ellow machine, the combination, with the mandrel N^{1}, of the disc U pivoted to the disc U^{1}, the piston 'T sliding therein, the disc ['I secured to the said piston, the reciprocatory cross-head f provided with the slot e^{5}, the rod c^{2}, provided with a pin e^{4} sliding in the said slot, the front end of the said rod being comnected to the said discs, and piston, and the rod r^{3}, pivoted to said cross-head and comected to the dise U, substantially. as and for the purposes set forth. 7th. In a pipe-elbow machine, the combination, with the mandrel N^{1}, and the ring $\mathrm{P}^{{ }^{1}}$, sliding thereon ant provided with clamping devices for the tube to be crimped, of the reciprocatory cross-head e, the rack bars provided with ratchet teeth and secured to the said ring, the pawls pivoted to the cross-head and ringaging with the rack bars, and stop pawls for preventing the reverse motion of the rack bars, substantially as set forth. Sth. In a piperelbow machine, the combination, with the mandrel N^{\prime}, and the ring P^{\prime}, sliding thereon and provided with clamping devices, of the toothed rack bars and the weights attached to them and operating to pull the said ring rearwardly along the mandrel, the reciprocatory cross-head e, and the pawls pivoted to it and engaging with the rack bats, the stop pawls l, and pivoted link mechanisin operating to raise the said qawls simultaneonsly, thereby permitting the said ring to slide back, substantially as set forth. Ith. In a pipe-ellow machine, the combination, with the reciprocatory cross-heade, provided with pawls t^{2}, and tappet d^{*}, the rack hars engaring with the said pawls, the mandrel, and the ring sliding on the mandrel, secured to the rack bars, and provided with clamp-
ing devices, of disengaging mechamism for stopping the machine, provided with an opegating rod having a shoulder d^{1}, the spring actuated lever 16 normally supporting the end of the said rod, and a projection on one side of one of the rack bars for operating the said lever and lowering the end of the said rod, thereby permitting the tappet to strike the said shoulder and operate the said disengaging mechanism, substantially as set forth. 10th. In a stove pipe-ellow crimping machine, the combination of the hinged sections S^{5}, and S^{0}, and the crimping jaws $S^{1}, S^{2}, S^{3}, S^{+}$, adjustably attached thereto. 11th. In a stove pipe-elbow crimping machine, the smoothing dise pivoted to the reciprocating dise by the central convex boss, as set forth. 12th. In a pipe-elkow machine, the combination, with a stationary mandrel, and a ring sliding thereon and provided with clamping devices for the tube to lo. crimped, of a yoke for supporting the tube at the free 4 nd of the mandrel, a vertically sliding crimping device arranged in front of the said yoke, the compressing and smoothing discs arranged inside the tube at the free end of the mandrel, reciprocatory driving mechanism and intermediate connections operating to advance the said ring and tube step by step and to reciprocate the said discs, reciprocatory driving mechanism for operating the crimping device when the said discs are pushed forward, and a driving slaft provided with automatic coupling devices connecting it with the two said driving mechanisms altornately, substantialiy as and for the purpose set forth.

No. 50,992. Machine for Cleaning Grain.

(Machine pour nettoyer le grain.)

Frank W. Swanton, Superior, Wisconsin, and Colin Beaton, Duluth, Minnesota, both in the U.S.A., 9th January, 1896; 6 years. (Filed December 3rd, 1895.)
Cluim.-The combination of the tank A partly filled with water, the reet B, the conveyors D) and E, the carriers G, (i, the conveyor box S, S, and the spouts Z and H in one machine, which is constructed and operated, substantially in the manner and for the purpose hereinbefore set forth.
No. $\mathbf{5 0 , 9 8 3}$. Construction of Buildings.
(Construction de bâtisses.)

John Henry Wood, Montreal, Quebec, Canada, !th January, 1896 ; 6 years. (Filed December ! th, 1895.)
Claim.--1st. A building wall composed of studding, lathing and a plastic body, the latter applied on the interior sides of the lathing, extending through the slits therein and sprata over the exterion surfaces thereof, for the purposes set forth. 2nd. A building wall composed of studding, inside and outside lathing and a plastic body adapted to fill all intervening spaces and form a cover for the whole, for the purpose set forth. 3rd. A building wall composed of interior studding, inside and ontside lathing and a p^{\prime} astic body introduced into the intervening space and extending through the slits of the lathing to the exterior surfaces thereof over which it is spread, for the purpose set forth. 4th. A building wall composed of studding, lathing and a plastic body, the latter consisting of mortar and a lathing, extending through the slits therein and spread over the exterior surfaces thereof, for the purjoses set forth. 5th. A building wall composed of studding, outside lathing over the two outside faces of same, projecting strips on the inside face of the studding and rumning lengthwise thereof, inside lathing secured to said strips and a plastic body introduced to fill the spaces between the inside and outside lathing and to extend through the slits in and he spread over the exterior surfaces of the ontside lathing, for the purpose set
forth. forth.

No. 50,994. Bieycle Frame. (Cadre de bicycle.)

Lucien Barnes, sr, and Charles Oscar Barnes, both of Syracuse, New York, U.S.A., 9th Jannary, 1896; 6 years. (Filed
December 9th, 1895.)

Claim.-1st. In a bicycle frame, the crank hanger composed of a. tube divided transversely, a splice uniting the tube sections, and

frame members secured to said hanger. 2nd. In a bicycle frame, the crank hanger composed of separate tube-sections united end to end, and frame members secured to said hanger at the junction of the tube-sections. 3rd. In a bicycle frame, the crank hanger composed of separate tube sections united end to end and formed with orifices, and tubular frame members, each of which is inserted at one of its ends into one of said orifices and secured to the interior of said hanger. 4th. In a bicycle frame, the crank hanger composed of separate tube sections united end to end and formed with orifices at the junction of said sections, and tubular frame members each of which is inserted at one end into one of the aforesaid orifices and terminated with a flange secured to the interior of the hanger, as set forth. 5th. In a bicycle frame, the crank hanger conjosed of weparate tube sections abutting end to end, and formed with orifices at the junction of said sections, a ring section splicing the tubesections together, and tubular frame members, each of which is inserted at one end into one of the aforesaid orifices, and terminated with a flange secured to the interior of the hanger, as set forth. 6th. The combination of a crank hanger composed of separate tube sections united end to end and formed at their junction with orifices intersecting each other, and tubular frame members each inserted at one end into one of the aforesaid orifices, and terminated with a flange secured to the interior of the hanger and with an inward deflection of said flange fastened to a corresponding deflection of the adjacent member, as set forth and shown. 7th. In a bicycle frame, the head A formed in one piece of metal tube, and with the thimble a, a integral therewith, as set forth and shown. 8th. In a bicvcle frame, the head A, formed of a single blank of sheet metal having latemal extensions on its two end portions, the main portion of said blank being bent into shape of a tube, and the aforesaid extensions bent into shape of tubular thimbles, and all permanently unitul at the meeting edges of the blank, as set forth. Oth. The head A formed in one piece of metal tube, and with the thimble a, a, integral therewith, and with shoulders a^{1}, a^{1}, on said thimbles. in combination with the frame members B and B^{1} secured to said thimbles and abutting against the aforesaid shoulders, as set forth. 10th. The combination with the post C, of the bushing C^{1} secured to the interior of said post and projecting from the end thereof, the sleeve b embracing the projecting portion of the bushing and resting on the end of the post, and formed with the thimble b^{1}, and the strut 13 secured to said thimble, as set forth. 11th. The fork crown F composed of two plates constituting the front and rear halves of said crown, said plates being formed with the tubular central portion c, and tubular end portions d, d, and permanently united at their meeting edges, in combination with the head A and steering fork, as set forth. 12th. The fork crown F composed of the front and rear plates F^{1}, F^{1}, formed in their adjacent sides with coinciding semi-tubular central portions c, c, semi-tubular end portions d, d, and intermediate depressions e, e, and rivets f, f, passing through the depressed portions of the plate and tying the same together in combination with the front post A, and fork legs i, i, jermanently secured in the tubular portions of said plates, as set forth.

No. 50,995. Car Fender. (Defense de chars.)

Max Hecht, and Frederick Christian Kewnekr, both of Jersey City, New fersey, U.S.A., 9.h January, 1896; 6 years. (Filed December 21st, 1895.)
Claim. -1 st. A fender or guard for railway cars, consisting of the frame mounted ypon rollers, the lever for retaining said frame in position beneath the platform of the car and means for projecting said fender in front of the car, substantially as described. 2nd. A
fender or guard for railway cars, consisting of the main or front portion covered with wire, mesh or similar material, and provided

with rearwardly extending portions carrying rollers, and the inclined frames secured beneath the car and supporting said fender, substantially as described. 3rd. A fender or guard for railway cars, consisting of the main portion provided with rollers, the inclined frames secured upon the under side of the car, the lever pivoted to the car and connected with said main portion to operate the same and means for retaining said lever in position, substantially as described. 4th. A fender or guard for roller cars, consisting of the inain portion provided with rollers, the inclined frames secured upon the under side of the car, the lever pivoted to the car and connected with said main portion to operate the same and the segmental rack-bar also secured to said car and adapted to engage said lever to retain the fender in position beneath the car, substantially as described.

No. 50,996. Automatic Rheostat. (Rhéstat automatique.)

The Canadian General Electric Company, Toronto, Ontario, Canada, assignee of Jonathan P. B. Fiske, Lynn, Massachusetts, U.S.A., 9 th January, 1896 ; 6 years. (Filed July 27 th, 1894.)

Claim.-1st. The combination with a rheostat of two series of contact plates connected to succeeding points thereof, a second set of contact plates connected to the line terminals, switch arms provided with brushes for establishing connection between each of the latter set of plates and one of the two series contact plates respectively, and an electric motor connected to the rheostat terminals. 2nd. The combination with a rheostat of two series of contact plates connected to succeeding points thereof, a second set of contact plates connected to the line terminals, switch arms provided with brushes for establishing connection between each of the latter set of plates and one of the two series of contact plates respectively, an electric motor connected to the rheostat terminals, an actuating ppring for the said switch arm and an automatic stop for the said spring controlled by a magnet in a circuit shunting the motor armature. 3 rd. The combination with a rheostat of two series of contact plates connected to succeeding 1 xints thereof, a second set of contact plates connected to the line terminals, switch arms provided with brushes for establishing connection between each of the latter set of plates, and one of the two series of contact plates respectively, an electric motor connected to the rheostat terminals, and actuating sping for the said switch arm and an automatic stop for the said spring controlled by a magnet in a circuit shunting the motor armature, a magnet in the main line and contacts contiolled
thereby for cutting out the first-named magnet. 4th. In a rheostat having a series of contact plates connected to successive points in the resistance coils, a switch arm for bringing the said coils into or out of the said circuit, a spring drum actuating the switch arm and an automatic detent for the said drum. 5th. In a rheostat having a serits of contact plates connected to successive points in the resistance coils, a switch arm for bringing the said coils into or out of the said circuit, a spring drum actuating the switch arm, an antomatic detent for the said drum, and a buffer for limiting the movement of the said drum. 6th. In an automatic rheostat, a switch arm and an actuating spring therefor, combined with a detent having a controlling electro-magnet, the said detent having a bevelled point engaging a similarly shaped notch on a part connected to the switch arm. Tth. In an automatic rheostat, the combination with a series of contact plates connected to successive points in the resistance coils, a second contact plate connected to the line terminal, a switch arm carrying an insulated brush adapted to connect the said second contact plate with the said series of contact plates, an actuating spring engaging the metallic part of the said switch arm, and an automatic stop for the said arm. Sth. In an automatic rheostat, the combination with a series of contact plates connected to succeeding points in the resistance coils, a switch arm adapted to connect the main line with the said plates successively, a counection between the terminal of the said coils and the armature circuit of an electric motor, and a connection from the opposite terminal of the coils to the field magnet circuit of the motor whereby the said resistance may be transferred from the armature circuit to the field magnet circuit alternately. Oth. In an automatic rheostat, the combination with a base plate of a series of contact plates mounted thereon with intervening insulation, a spring actuated switch arm mounted centrally upon the same plate and a detent for the said arm with a controlling magnet therefor also mounted upon the plate so as to form a part of the same structure. 10th. In an automatic rheostat for controlling electric motors, the combination with a series of contact plates connected to succeeding points in the resistance coils, a spring actuated switch armi adapted to pass over the said contact plates and mounted concentrically therewith on a common base plate, a detent for the said switch arm, a controlling shunt magnet for the said detent, a magnet in the main line controlling the said shunt magnet, both magnets being mounted to form a common structure with the rheostat, and terminal posts also mounted on the aforesaid base plate and connections therefrom connecting the main line to the motor armature and to the notor field magnet respectively. 11th. In an automatic rheostat, the combination with a series of contact plates connected to succeeding points in the resistance coils, a switch arm adapted to pass wer the said contact plates snccessively, a drum carrying the said arm, a coiled spring concentric with the said drum, a detent for the drum controlled by a shunt magnet, and a magnet in the main line controlling two contacts connected to opposite terminals of the said shunt magnet respectively, the said magnet in the main line being adjusted to respond to an abnormal current. 12th. In an automatic rheostat, the combination with a series of contact plates connected to succeeding points in the resistance coils, a switch arm adapted to pass over the said contact plates and provided with an actuating spring, a detent for the said arm, a magnet controlling the said detent for the said arm, a magnet controlling the said detent and a circuit extending from the terminals of the said magnet to one or more distant push buttons whereby the said resistance may be controlled from any distant point. 13th. In an automatic rheostat, the combination, with a central drum, an actuating colifed spring therefor, switch arms extending oppositely from the said drum and carrying insulated brushes, two series of contact plates corresponding to the said switch arms respectively and connected to succeeding points in the rheostat coils, two additional sets of contact plates concentric with the former series of plates respectively, so as to be connected therewith by the brushes upon the switch arms, a connection from each of the said two plates to the main line, a connection from the rheostat coils to the armature circuit of the motor, and a second connection therefrom to the field magnet circuit of the motor, a detent for the drum, and two magnets mounted on the same structure with the switch arms and contact plates, one of the said magnets being in a shunt emrcuit and controlling the aforesaid detent and the second magnet adapted to control the shunt magnet and adjusted to respond to an abnormal current. 14th. In an automatic rheostat, the combination with a central drum, an actuating coiled spring therefor, switch arms extending oppositely from the said drum and carrying insulated brushes, two series of contact plates corresponding to the said switch arms respectively and connected to sneceeding points in the rheostat coils, two additional sets of contact platex concentric with the former series of plates respectively so as to be connected therewith hy the brushes upon the switch arms, a connection from each of the said two plates to the main line, a connection from the rheostat coils to the armature cir cuit of the motor, and a second connection therefrom to the field magnet circuit of the motor, a detent for the drum, two magnets mounted on the same structure with the switch arm and contact plates, one of the said magnets being in a shunt circuit and controlling the aforesaid detent and the second magnet adapted to control the shunt magnet and adjusted to respond to an abmormal current, and a circuit extending from opposite terminals of the shunt magnet to $a^{\text {d }}$ distance where it is provided with one or more push buttons for controlling the rheostat.

No. 50,997. Combination shaving Brush and soap
Holder. (Savonnette et porte-savon combinés.)

Francis Napier Denison, Toronto, Ontario, Canada, 10th January, 1896; 6 years. (Filed September 5th, 1895.)
Claim.-1st. A combined brush and soap holder, comprising a tubular casing having a longitudinal slot formed in the side thereof, a sliding ring within said casing adapted to receive a cylindrical bar of soap, and means for connecting the bar of soap with said sliding ring and for operating the same, said casing being provided with a removable head at one end and with a brush at the other, sulstantially as described. 2nd. A combined brush and soap holder, comprising a cylindrical casing having a longitudinal slot in the side thereof, and a removable head, a sliding band or ring within said casing, and a sliding band or ring on the outside thereof, said bands being adapted to be connected by means of a pin passed therethrough and through the slot in the tubular casing, said casing being also provided at one end with a brush, substantially as shown and described. 3rd. A combined brush and soap holder comprising a cylindrical casing having a longitudinal slot in the side thereof, and a ren:oval head, a sliding band or ring within said casing, and a sliding band or ring on the outside thereof, said bands being adapted to be connected by means of a pin passed therethrough and through the slot in the tubular casing, said casing being also provided at one end with a brush, which is connected therewith by means of a head secured to said casing and provided with a tubular extension adapted to receive the head of the brush, substantially as described. 4th. A combined brush and soap holder, comprising a tubular casing adapted to receive a cylindrical bar of soap, and having a removable head, said casing being also provided with a brush at one end thereot and a receiver therefor, one end of which is closed, and the other end of which is open and adapted to be closed by the removable head of the holder, substantially as shown and
described. described.

No. 50,998. Cyclometer. (Cyclomètre.)

Curtis Hussey Veeder, Hartford, Connecticut, U.S.A., 10th January, 1896 ; 6 years. (Filed October 16th, 1895.)
Claim. - 1st. In a cyclometer, the combination with a chambered support, and an actuating shaft, of index rings mounted to revolve on said support, a series of transmitting gears disposed within the chamber of said support and adapted to transmit movement from each of said index rings to the next in order, the hubs of said gears bearing uattened, spring arms supported within the chamber and bearing upon the opposite flattened faces of said gear-hubs, and means for actuating the first of said rings from said actuating shaft, substantially as set forth. 2nd. In a cyclometer, the combination with a chambered support and index rings nounted to revolve on said support, of an actuating shaft, a series of transmitting gears disposed within the chamber of said support and adapted to transmit movement from each of said index rings to the next-in order, a differential gear wheels, an eccentric fixed on said shaft and two differential gear wheels mounted on said eccentric and meshing respectively with the aforesaid stationary internal gear and with an internal gear secured to the first of said index rings, substantially as set forth. 3rd. In a cyclometer, the combination with a chambered support and index rings mounted to revolve on said support, of an actuating shaft, a series of transmitting gears disposed within the chamber of said support and adapted to transmit novement from each of said index rings to the next in order, a disc fixed against the tric fixed on said shaft and two differential form on said disc, an eccentric fixed on said shaft and two differential gear wheels fixed together and mounted on said eccentric and meshing respectively with the
aforesaid internal gear and with an internal gear formed on the first of said index rings, substantially as set forth. 4th. In a cyclometer, the combination with a support and index rings mounted to revolve on said support, of an actuating shaft, a series of transmitting gears adapted to transmit movement from each of said index rings to the next in order, a shouldered eccentric mounted on said shaft, two gears mounted on said eccentric and connected to move together being retained in place by the head or shoulder of said eccentric, a fixed internal gear within which one of said first named gears is adapted to engage as it is rolled by the eccentric, and an internal gear connected to the first of said index rings and adapted to be engaged by the other of said first named gears, substantially as set forth. 5th. In a cyclometer, the combination with a support, a series of index rings mounted to revolve on said support, an actuating shaft and a series of transmitting gears to transmit movement from each of said index rings to the next in order, of an actuating wheel secured to said shaft, a spring interposed between said wheel and said support, a shouldered eccentric carried by the other end of the shaft, and differential gears mounted on said eccentric to transmit movement therefrom to the first of said index rings and held by said shouldered eccentric and said spring acting through said shaft against said support whereby accidental movement of said actuating wheel, shaft and gearing is prevented, substantially as set forth.
No. 50,999. Tie-Plate. (Plaque de traverse.)

William Riley Funk and Arthur G. Henry, both of McFarland, Kansas, U.S.A., 10th January, 1896 ; 6 years. (Filed November 30th, 1895.)
Cltim. -1st. A tie-plate composed of two adjustable sections designed to be arranged at opposite sides of a rail, and each comprising a plate consisting of a downwardly offset inner portion designed to be located beneath a rail, and an upper outer portion forming an upper inner shouler to engage the bottom flange of a rail and having a lower outer shoulder for engaging the cross-tie, said plate being provided at its outer portion with a spike opening, whereby the said outer portion is adapted to support the neck of the spike and to bind the latter against a rail, substantially as described. 2nd. The combination with a rail, and a cross-tie provided below the rail with recesses, of a tie-plate composed of two sections located at opposite sides of the rail, and each consisting of a plate having a downwardly offset inner portion located in a recess of the cross-tie and having a bevelled lower face, and an upper outer portion arranged on the upper face of the cross-tie, said section being provided with a central spike-opening and having an upper inner shoulder to engage the bottom flange of the rail and a lower outer shoulder for engaging the rails, substantially as described. 3rd. A tie-plate section or plate having a downwardly offset inner portion with a bevelled lower face, and provided with an upper outer portion, and having an intervening vertical shoulder, the inner portion being designed to be placed beneath a rail, whereby the shoulder and the outer portion will form a support for the rail, substantially as described.

No. 51,000 . Apparatus for Watering Stock.

(Appareil pour abreuver le betail.)

Samuel Montgomery, Toledo, Ohio, U.S.A., and John Montgomery, Jarvis, Ontario, Canada, 10th January, 1896; 6 years. (Filed December 26th, 1895.)

Claim.-1st. The combination in a stock watering apparatus, of the elongated casing A, having upper central bowl D, provided with adjustable float E, connected to water inlet valve \mathbf{F}, by ueans of the adjustable vertical rod H, connected to lever I, pivoted at 3 , and to lever J, pivoted to said valve, both said levers and rod connected centrally at 4, and a series of drinking bowls C, having lower shanks suitably threaded to receive and connect to a series of sections of horizontal pipes B, substantially as described and set forth. 2nd. In a stock watering apparatus, the elongated casing A, having water inlet pipe K, provided with valve F, which is governed by the float E, in bowl D, by means of the adjustable vertical rod H , connected to levers I and J, the sectional pipes B, with drinking bowls C, having opening into said pipes, in combination with the heating device consisting of the vessel M, having outer cone O, connected to one said section of pipe B, intermediate between the float bowl and first drinking bowl, and having an inner conical chimney U, with inner bent pipe Y, heated by a lamp, and the return pipe N, substantially as described and set forth. 3rd. The heating apparatus consisting of a water vessel A, in combination with, and connected to the horizontal pipes B, by means of its conical tube O, and return pipe N, the inner conical chimney U, having bent pipe Y, the lamp R, on a bottom supported by springs S, the receptacle P, having upper flanges to slide in the lips 10 , and lower base provided with pivoted curved and bent lever handle T, pivoted at V, and connected to spring by rod 13, substantially as described and set forth. 4th. The combination in a stock watering apparatus, of the water inlet casing having regulating float bowl, and a series of horizontal pipes connected to said casing provided with a series of drinking bowls, and the heating apparatus, as described, located intermediate and below the casing A, and the first drinking bowl, and connected to the said horizontal pipes by means of its vertical cone O, and return pipe, substantially as described and set forth.

No. 51,001. Car Jack. (Cric de chars.)

Charles S. Locke, Joliet, Illinois, U.S.A., 10th January, 1896; 6 years. (Filed December 21st, 1895.)
Claim.-1st. A car jack comprising the combination of the stirrup B, having its ends terminate in upwardly extending arms provided with hooks A, on their upper ends, the jack screw S, fitting a screw threaded bore in said stirrip, the hooks A, the chain R, for connecting said hooks and the flexible means secured to said hooks for detachably connecting said stirrup and hooks all arranged to operate, substantially as and for the purpose set torth. 2nd. The combination of the stirrup B, having the upwarelly extending arms provided with hooks A, Jack screw S, hooks A, chain R, for connecting said hooks and chains C, for detachably connecting said hooks and stirrup all arranged to operate, substantially as and for the purpose set forth. 3rd. A car jack comprising the combination of a hook or hooks adapted to catch over the top of a car wheel, a stirrup or bar adapted to be placed under the housing of the axle box and having a jack screw for engaging said housing, and a chain or chains or other flexible and detachable means for connecting said hooks and stirrup, and hooks, all arranged to operate, substantially as and for the purpose set forth.

No. 51,002. Propelling Device. (Appareil de propulsion.)
Edmund Sergeant Wheeler, Troz, New York, U.S.A., 10th January, 1896; 6 years. (Filed December 21th, 1805.)
claim.-1st. The combination with the forward upright fork of a bicycle, of a shaft supported near the upper end thereof, gear wheels mounted on said shaft and separate handle bars mounted at the upper end of said forward upright fork and provided with segnental gears which are adapted to operate in connection with said gearwheels to revolve the shaft, on which they are mounted in the for ward direction, substantially as shown and described. 2nd. The combination with the forward upright fork of a bicycle, of a shaft supported near the upper end thereof, gear wheels mounted on said shaft, separate handle bars mounted at the upper end of said forward upright fork and provided with segmental gears which are adapted to operate in connection with said gear wheels to revolve the shaft on which they are mounted in the forward direction, said shaft being also provided with a sprocket wheel on which is adapted to be
mounted a drive chain which connects with a sprocket wheel mounted on the axle of the forward wheel of the bicycle, substantially as

shown and described. 3rd. The combination with a bicycle of a shaft supported by side arms which are secured to the upper end of the forward upright fork and project forwardly and upwardly, a wheel or dise secured to said shaft, two gear wheels mounted on said shaft, one of which is located at each side of said wheel or disc, separate handle bars revolvably mounted in the upper end of said fork, two segmental gears mounted thereon and adapted to operate in connection with said gear wheels which are free to revolve on said shaft in the backward direction and provided with means whereby they revolve the shaft when turned in the forward direction, and said segmental gears being adapted to operate alternately in connection with said gear wheels, said segmental gears being also operated by said handle bars and being raised and lowered by the handles connected therewith, substantially as shown and described. 4th. The combination with a bicycle of a shaft supported by side arms which are secured to the upper end of the forward upright fork and project forwardly and upwardly, a wheel or disc secured to said shaft, two gear wheels mounted on said shaft, one of which is located at each side of said wheel or disc, separate handle bars revolvably mounted in the upper end of said fork, a segmental gear mounted on each and adapted to operate in conrection with said gear wheels, which are free to revolve on said shaft in the backward direction, and provided with means whereby they revolve the shaft when turned in the forward direction, and said segmental gears being adapted to operate alternately in connection with said gear wheels, said segmental gears being also operated by said handle bars, and being raised and lowered by the handles connected therewith, and said shaft being also provided with a sprocket wheel and the axle of the said forward wheel of the bicycle being provided with a corresponding sprocket wheel and a drive chain mounted on said sprocket wheels, substantially as shown and described.

No. 51,003 . Metal Can, etc. (Bidon en métal, etc.)

Summers Brown, Sydney, New South Wales, Aisstralia, 10th January, 1896 ; 6 years. (Filed Angust 14th, 1895.)
Claim.-1st. The combination and arrangement with a can or canister, of a lid or cover soldered at the edge of its outside flange to said can or canister, and having its top more or less away from the top of said can or canister, and having its said edge of its outside flange adapted to cut away, plane or scrape the jointing solder or seal between said can or canister and said lid or cover to release the latter, substantially as herein described and explained. 2nd. The combination and arrangement with a can or canister, such as A, having a bulging or enlargement such as A^{1}, of a lid or cover such as B, having a flange such as B^{1}, and chisel edge such as B^{2}, and a ring or solder such as A^{2}, holding the underface such as B^{3}, from the top edge such as \mathbf{A}^{3}, substantially as herein described and
explained and as illustrated in the drawing. 3rd. A hermetically sealed can or canister, adapted to be opened by the cutting away, planing or scraping of the soldered joint between it and the flange of an outside lid or cover by movement of the edge of said flange, substantially as herein described and explaned.

No. 51,004. Door Securer. (Arrête-porte.)

Frederick Augustus Potter, New York, State of New York, 10th January, 1896 ; 6 years. (Filed December 21st, 1895.)
Claim.-1st. A door securer consisting of two flat plates sliding one upon the other, and having their ends bent as shown, each of said plates being provided with several horizontal rows of elongated openings not in vertical alignment with each other, and adapted when said plates are moved to register with each other, in combination with a wedged-shaped key adapted to pass through the openings in said plates, and move one of the latter horizontally, substantially as shown and described. 2nd. A door securer consisting of the plates A, B, b, said form of plate being provided with several horizontal rows of elongated openings, those in one row being slightly in advance of those in the adjacent row, the said plates B, b, being also provided with oppositely arranged elongated openings, also arranged slightly in advance or each other, but ascending in a direction different from those in said plate A, and a wedgeshaped key adapted to pass through said openings, and slide the plate B upon the plate A, substantially as described. 3rd. A door securer consisting of the plates A,B,b, constructed and arranged substantially as described, the said plate B having its rear end bent and provided with an opening g, the said plate b being provided with the lugs or projections c, and a wedge-shaped key adapted when the device is not in use, to pass through said opening g, and under the lugs c, substantially as described.

No. 51,005. Shoe Shaper.

(Appareil pour donner la forme aux chaussures.)

Joseph Werthemer Skinner, La Crosse, Wisconsin, U.S.A., 13th January, 1896; 6 years. (Filed December 26th, 1895.)
Claim.-1st. A shoe shaper consisting of a wire spring formed with a hook 10, adapted to attach one end of said shoe-shaper to the toe of a shoe, and with the points 12 and 13 , adapted to attach the other end of said shoe-shaper to the heel of a shoe, and provided with the slide 16, adapted to clamp said points 12 and 13 into the heel. 2nd. A shoe-shaper consisting of a wire spring, formed with a hook 10 at one end and provided at the other end with the rubber bearings 14 and 15, and the slide 16, adapted to clamp said rubber bearings upon the heel of said shoe. 3rd. The combination, in a wire spring shoe-shaper, of the hook 10 located at one end of said shoe-shaper, the points 12 and 13 and the bearings 14 and 15 located at the other end of said shoe-shaper, and the slide 16 .

No. 51,006.

Metal Corner Plate etc., Por the Construction and Protection of plastered Walls. (Plague d'incoignure etc. pour la construction et protection des murs platres.)
Georg W. Meserve, Boston, Massachusetts, U.S.A., 13th January, 1896; 6 years. (Filed December 24th, 1895.)
Claim.-1st. The combination with the securing strip of the perforated sheet metal corner plate secured thereto as and for the
purpose set forth. 2nd. The herein described metallic corner plate perforated for the passage of the mortar therethrough outside of and

Fig. 1 :

beyond the lathing or securing strip, and provided with the straight, smooth wire edge, substantially as shown and described.

No. 51,00\%. Pneumatie Bicycle Brake. (Frein pneumatique de bicycle.)

Robert Sampson, Quebec, City, Quebec, Canada, 13th January, 1896; 6 years. (Filed December 24th, 1895.)
claim.-1st. A bicycle having an air brake secured to the frame above the steering wheel to operate against the tyre, and applied by a squeezing motion of the hand, as set forth. 2nd. In combination with a bicycle, a pneumatic hand brake having a pedal or foot brake 10, as set forth. 3th. An air brake for bicycles, said brake comprising a plate 2 , clipped to the frame a, a brake shoe 4, and plate 3, hinged to said plate 2, an air cushion, bag or chamber 6, intervening said plates and a tube 7, connected to said cushion and terminating in a compressible air bulb 8 , so that by squeezing the bulb the cushion will be dilated and force the brake shoe against the tyre to apply the brake, as set forth. 4th. A bicycle having an air brake secured to the frame to brake upon the tyre, said brake comprising a plate 2 , clipped to the frame a, a shoe 4, hinged thereto, an air cushion 6 , intervening said plate and shoe, a rubber bulb 8 , and tube 7, inflating said cushion, and a spring 10, to lift the shoe when the air pressure is off, as set forth.

No. 51,008. Shart Support. (Support de limonière.)

, ames Q. Lemmon, Latrobe, Pennsylvania, U.S.A., 13th January, 1896; 6 years. (Filed December 23rd, 1895.)
Claim.-The combination with an axle and a shaft, of a shaft support comprising a horizontal bracket arm secured to the axle and extending forward therefrom and curved upward at its front end, a curved plate secured to the lower face of the shaft and projecting laterally therefrom and provided with an opening, and having a transverse rib 15 located at the back of the said opening, and a curved brace arranged in the opening of the plate and pivoted at its lower end to the bracket arm and provided at its upper end with a handle, and having a recess or notch adapted to engage the rib 15 of the plate antomatically when the shaft is raised, substantially as described.

No. 51,009. Corset Fastener. (Attache de corset.)

Frank Speny Harrison, Englewood, New Jersey, U.S.A., 13th January, 1896; 6 years. (Filed December 21st, 1895.)
Claim.-1st. The combination with a pair of corset steels or stays, of plates secured to one of them, and adapted to extend across the cther, said plates being provided at their free ends with circular openings or eyes having outwardly directed extensions and supplemental spring plates secured thereto, the free ends of which are a dapted to cover said circular openings or eyes, said circular openings or eyes being also adapted to receive heads or hooks formed on the other steel or stay, substantially as shown and described. 2nd. A fastening device for corset steels or stays, comprising spring plates secured, to one of them and adapted to extend across the other, the free ends of said spring plates being provided with circular openings or eyes having outwardly directed extensions, supplemental spring plates secured thereto, at one end, and the free ends of which are adapted to cover said openings or eyes, said openings or eyes, said openings or eyes being also adapted to receive heads or hooks formed on or secured to the opposite steel or stay, substantially as shown and described.

No. 51,010 . Well Caser. (Appareil pour garnir lcs puits.)

Richard Dobbyn, Shetland, Ontario, Canada, 13th January, 1896; 6 years. (Filed October 29th, 1894.)
Claim.-1st. A frame A, in combination with the levers C, C, pivotally secured thereto, and formed with the shoulders C^{1}, and with the bevelled or curved portion C^{2}, substantially as and for the purpose set forth. 2nd. A frame A, and levers C, C, formed with the shoulders \mathbf{C}^{1}, in combination with the post \mathbf{F}, and arms \mathbf{E}, \mathbf{E}, substantially as and for the purpose set forth. 3rd. A frame A, and levers C, C, formed with the shoulders C^{1}, and with the bevelled or curved portion C^{2}, in combination with the post \mathbf{F}, guide \mathbf{G}, and arms \mathbf{E}, \mathbf{E}, suhstantially as and for the purpose set forth. 4th. A frame A, formed with the recesses a^{1}, bail B, levers C, C, formed with the shoulders C^{1}, and curved portions C^{2}, and springs D , in combination with the post F , guide G, and arms \mathbf{E}, \mathbf{E}, substantially as and for the purpose set forth. 5 th. A frame A, formed with the recesses a^{1}, bail B, levers C, C, formed with the shoulders C^{1}, and with the bevelled or curved portions $\mathrm{C}^{\mathbf{2}}$, socket blocks $d^{\mathbf{1}}$, and springs 1 , in combination with the post F, guide G, and arms E, E, substantially as and for the purpose set forth.

No. 51,011. Optical Fore Sight for Fire Arms, Etc. (Mire optique pour armes à feu.)

Lyloyd Heber Chase, Namoi, Hawthorn, Road, Caulfield, Victoria, Australia, 13th January, 1896; 6 years. (Filed January I6th, 1894.)

Claim.-1st. A foresight for rifles and other firearms and ordnance consisting of a single or compound lens or a portion of a lens, the focal length of which is the distance between it and the back-sight, substantially as herein described and explained. 2nd. A foresight in which the lens has its lower part cut away, substantially as and for the purposes herein described and explained. 3rd. A foresight in which the lens or portion of a lens, (as the case may be), is provided with a casing having clips, substantially as and for the purposes herein described and explained. 4th. A foresight in which the lens or portion of a lens (as the case may be), is provided with a casing adapted to be screwed or otherwise fitted into the ordinary tubular foresight of ordnance, substantially as herein described and explained. 5th. A foresight in which the lens is provided with a casing having a socket piece adapted to be fitted over the base of an ordinary foresight for ordnance, substantially as herein described and explained.

No. 51,012. Machine for Paving Streets.
(Machine pour paver les rues.)
Christian Lenz and Johannes Stumpf, both of Berlin, Prussia, Germany, 13th January, 1896; 6 years.(Filed December 3rd, 1895.)

Claim.-1st. A street pavment ramming machine, consisting of a movable frame and a battery of rammers supported at their lower

ends by cross beams of the frame and at their upper end by adjusting stem rods, carrying block upon the rammers and cams supported upon a revolving shaft to lift the blocks and rammers and let them drop, substantially as described. 2nd. A street pavement ramming machine, consisting of pyramidal side frames, a rectangular cap frame connecting the same, a double battery of rammers having stems at their upper ends supported in the cap frame, cross bars for guiding and holding the lower ends of the rammers, cams supported upon parallel shaft, each to operate a set or battery of rammers and geared to an operating shaft, substantially as described. 3rd. A street pavement ramming machine, comprising pyramidal side frames a rectangular cap frame, the cross bars arranged in pairs beneath the transverse cap pieces and secured at their ends to the vertical posts of the side frame, rammers held at their lower ends between said cross bars, stem rods carrying adjustable blocks secured to the upper ends of said rammers and held within guide bearings in the frame, and cams supported upon shafts geared together and arranged to lift the adjustable rammer blocks, substantially as described. 4th. The combination with the frame of a rammer having side plates g, rammer block h, bearing block i, screw threaded rod 1 , and a cane adapted to revolve between said side plates to operate the rammers, substantially as described. 5th. A ramming machine for laying pavements, comprising a frame mounted upon rollers, rammers adapted to lift and fall within said frame, a bracket secured to the frame and carrying friction and gear wheels to drive said rollers, a vibrating arm and pawl to operate the friction wheel and an eccentric and rod for moving the machine intermittently, substantially as described.
No. 51,o13. Ball-mill. (Moulin a broyer.)

Meyer Joseph Davidson, Paris, France, 13th January, 1896; 6 years. (Filed December, 18th, 1895.)
Claim.-In ball-mills working by means of a drum, filled with balls, the application of spiral grooves, which move the balls and the material passing through the drum from a central inlet at one end to a peripheral discharge at the other end, forwards and backwards during the rotation of the drum, essentially as described.

No. 51,014. Washing Compound.

(Composition pour laver.)

Denise Dyotte, Montréal, Québec, Canada, 13 janvier, 1896 ; 6 ans. (Filed December 3rd, 1895.)
Résumé. - Sel de citron, soda, caustic, sel de tarte, anımoniaque, dans les proportions et pour les fins sus-mentionnées.

No. 51,015. Lubricator. (Graisseur.)

Peter Nadeau, Mont Carmel, Comté de Champlain, Québec, Canada, 13 janvier, 1896; 6 ans. (Filed October 4th, 1895.)
Résumé.- 1° Un graisseur pour essieux de voiture composé d'une boito D, a laquelle est fixé le tube E, terminé par le cône J, et pourvu du robinet F. 2° Ca combinaison du graisseur ci-dessus décrit avec un essien de voiture percé d'un trou B, et d'une ouverture C, permettant à l'huile de se répandre à l'intérieur du moyeu de la roue, le tout tel que décrit et pour les fins indiquées.
No. 51,016. Driving Chain for Cycles, Etc.
(Chaîne sans fin pour cycles, etc.)

John Smith, Birmingham, England, 13th January, 1896; 6 years. (Filed December 26th, 1895.)
Claim.-1st. The improved blocks or connecting pieces as B for cycle and other driving or gearing chains, having cycloidal or curved bearing surfaces, substantially as set forth. 2nd. The combination, in a cycle or other driving or gearing chain of side plates or links as A, with blocks or connecting pieces as B having cycloidal or curved ends, substantially as set forth.

No. 51,017. Supporter for Car Axles.

(Support pour essieux de chars.)

Reinhold Bettermann, Johnstown, Pennsylvania, U.S.A., 13th January, 1896 ; 6 years. (Filed December 26th, 1895.)
claim.-1st. The herein-described supporter for car-axles, consisting of a clamping-member having a semi-cylindrical portion and end-wings, adapted to be attached to the car-body, and a saddleblock provided with a projecting-pin adapted to seat in a socket of the axle, substantially as set forth. 2nd. The herein-described supporter for car-axles, consisting of a clamping-member having a collarportion through which the axle can pass, and wadapted to abut against the side of the car-body, and a saddle-block provided with a projecting-pin adapted to seat in a socket of the axle, substantially as set forth. 3rd. The combination, with an axle provided with side sockets, of supporters consisting of clamping-members, saddleblocks seated in said clamping-members, and pins projecting from the saddle-blocks and entering the sockets in the axle, substantially as set forth.

No. 51,018. Self-Diling Journal Bearing.

(Graisseur automatique pour coussinet de tourillon.)

David Lee Altman, Fau Claire, Wisconsin, U.S.A., 14th January, 1896 ; 6 years. (Filed December 26th, 1895.)
Claim.-1st. A self-oiling journal bearing, provided with a central oil well, conmmunicating at or near its upper end with a filtering chamber adapted to contain a filtering material and leading to the journal or shaft, and a wheel adapted to be secured on the shaft and extending into said well to take up the lubricant and deliver the same to said filtering chamber, substantially as shown and described. 2nd. A self-oiling journal bearing, provided with a central oil well communicating at or near its upper end with a filtering chamber adapted to contain a filtering material and leading to the journal or
haft, a wheel adapted to be secured on the shaft and extending into said well, to take up the lubricant and deliver the same to said

filtering chamber, and a plug for holding the filtering material in place in the said chamber, and for closing the upper end thereof, substantially as shown and described. 3rd. A self-oiling journal bearing, comprising a box having a chamber through which is adapted to pass the shaft or journal, and a spring pressed scraper adapted to engage said shaft in said chamber, to scrape off the lubricant and permit the latter to flow into said chamber, substantially as shown and described. 4th. A self-oiling journal bearing, comprising a box having a chamber through which is adapted to pass the shaft or journal, a spring-pressed scraper adapted to engage said shaft in said chamber, to scrape off the lubricant and permit the latter to flow into said chamber, and a spring for holding said scraper in contact with the shaft, substantially as shown and described. 5th. A self-oiling journal bearing, comprising a box having a chamber through which is adapted to pass the shaft or journal, a springpressed scraper adapted to engage said shaft in said chamber to scrape off the lubricant and permit the latter to fow into said chamber, a central oil well adapted to contain the lubricant, and a return channel leading to said well, and in communication at its outer end with said chamber, substantially as shown and described. 6th. A self-oiling journal bearing, provided with a box having a central oil well, return channels leading thereto, and a filtering and draining pipe connected with the outer end of one of said channels, substantially as shown and described.

No. 51,019. Clothes Peg. (Epingle à linge.)

Thomas Henry Prosser, Boyer, and Mark Young, Frankston, both
in Victoria, Australia, 14th January, 1896; 6 years. (Filed December 21st, 1895.)
Claim.-1st In a clothes peg, the combination of a centre bar B, indents G, H, and loops C and d on opposite sides of a central plane \mathbf{P}, \mathbf{P}, substantially as set forth and illustrated. 2nd. The combination of centre bar B, loops C, c, and I, d, and indents (, H , substantially as and for the purposes set forth. 3rd. The combination with a centre bar B , of arms E, e, extending downward from opposite sides thereof and ending in a catch K, k, said arms diverging sufficiently wide apart from m to m^{1} in the plane M, M, to freely inclose between them any line with which it is intended that the peg may be used, substantially as and for the purposes set forth. 4 th. The combination of bar B, indents ($\mathbf{i}, \mathrm{H}, \mathrm{loops} \mathrm{C}, c, \mathrm{D}$, d, offsets F, f, arms E, e, and catch K, k, substantially as and for the purposes set forth.

No. $\mathbf{5 1 , 0 2 0}$. Machine for making Can Bodies.

(Machine pour faire les boîtes métalliques.)

Simon S. Myers, Assignee of Joseph Haas, both of Philadelphia, Pennsylvania, U.S.A., 14th January 1896; 6 years. (Filed December 20th, 1895.)
Claim-1st. In a machine of the class described, the combination of a former, firmly adjusted to, and extending horizontally from, the forward end, a vertically moving bending frame under said former, consisting of a series of yokes connected in longitudinal align-
ment having invertedly curved seats conforming with the shape of the former, a pair of pivoted clamp arms having lower extensions di-

verging in opposite directions and means for operating said parts, sulstantially as described. 2nd. In a machine of the class described, the combination of a former, means for bending sheet metal thereover clamp arms having lower extensions, a vertically movable bar, and rollers carried by said bar and engaging said extensions of the clamp, arms, substantially as described. 3rd. In a machine of the class described, the combination of a former, a bending frame comprising a series of yokes, guide rods depending from said bending frame, a bracket having arms through which said guide rods pass, and means for raising said bending frame, substantially as described. 4th. In a machine of the class described, the combination of a former, a bending frame, compressing a series of yokes, guide rods depending from said bending frame, a bracket having arms through whitch said guide rods pass, a lifting arm engaging the under side of said bending frame, a rock shaft, and another arm secured to the rock shaft and engaging the said lifting arm, substantially as described. 5 th. In a machine of the class described, the combination of a former, bending mechanism coacting with said former, a pair of clamping arms having lower extentions, a vertically movable bar, rollers adjustably mounted in said bar guide rods engaging said bar, and means for operating the several parts, substantially as described. 6th. In a machine of the class described, a rigidly adjusted horizontally extending former having underneath a series of invertedly curved yokes connected at required distances apart in longitudinal alignment by a rod firmly adjusted through orifices at ther lower turn, a pair of pivoted clamping arms having lower extensions diverging in opposite directions held in position by pairs of rollers adjustable within a slot of a vertically movable curved bar, the upper terminals of said pivoted clamping arms being provided with removable jaws extending the full length of the former, said jaws being held in position by setscrews, a rock shaft, removing rods, a connecting bar attached to said rods a lever said bar is secured, a second connecting bar also attached to said lever, a second lever to which the second connecting rod is secured, and a rock arm attached to the second lever and the rock shaft, substantially as described. 7th. In a machine of the class described, the combination of a former, means for bending sheet metal thereover, mechanism for operating the same, ejector for discharging the can and mechanism operated independently of the forming mechanism for actuating the ejector, substantially as described. 8th. In a machine of the class described, the combination of a former, means for bending sheet metal thereover, an ejector far discharging the can, mechanism controlled by the operator for actuating the ejector in one direction and means for automatically returning the ejector to its position of rest substantially as described.
No. 51,021. Venetian Blind. (Persienne.)

The New York Venetian Blind Company, assignee of Pher Walfrid Brundin, both of New York, State of New York, U.S.A., 14th January, 1896 ; 6 years. (Filed December 23rd, 1895.)

Claim.-1st. In Venetian blind operating apparatus, a pivot stud and a ratchet in combination with a roll having one or more gravitating pawls, slats suspended from said roll and a cord for turning said roll, the said combination including but a single roll whereto all the other elements are connected, substantially as described. 2nd. In a Venetian blind, the combination of the eccentrically separately pivoted rocking bar with the slats and the straps connecting said rocking bar and slats, the hangers, the pivot studs attached to the rocking bar and turning in the hangers, and means to raise and lower the slats, substantially as described. 3rd. In a Venetian blind, the combination of the eccentrically pivoted rocking bar, with the slats and straps connecting said rocking bar and slats, a cord for operating the rocking bar, the automatic ratchet and pawl for controlling the rocking bar, and the spur for raising the said rocking bar controlling pawl, substantially as described. 4th. The roller having a pivot turning in the bored and notched hub rigidly attached to the hanger, and the pawls pivoted on the end of the roller, substantially as described. 5th. In Venetian blind operating apparatus a pivot stud and a ratchet in combination with a roll having one or more gravitating pawls, slats suspended from the roll and a cord for turning the roll the rocking bar, its rack mechanism and means for operating said bar, substantially as described. Gth. In Venetian blind operating apparatus, the combination of the roller, the slats suspended from the roller, an automatic stop device for the roller consisting of a notehed hub and gravitiating pawl a cord for both operating the roller and regulating the stop device and the rocking bar, its rack mechanism and means for operating said bar, substantially as described. 7th. The combination of the roll, a notched hub and gravitating pawl stop devices and a cord for turning it, with the slats, the rocking bar from which the slats are suspended, and the slat raising and lowering cords, said cords and the cord for turning the roll being respectively wound on the roll reversely, said cord for turning the roll also serving to operate the rocking bar substantially as described. 8th. The combination of the roll, a notched hub and gravitating pawl stop devices, and a cord for thrning the roll, with the slats, the rocking bar from which the slats are suspended, said bar mounted eccentrically to its longitudinal axis, and the slat raising and lowering cords and the cord for turning the roll being respectively wound on the woll reversely, substantially as described. 9th. The combination of the roll, a notched hub and gravitating pawl stop, devices, and a cord for turning the roll, with the slats, the rocking bar having a toothed rack, and the slat raising and lowering cords, said cords and the end for turning the roll being respective wound on the roll reversely, substantially as described. 10th. The combination of the roll, a notched hub and gravitating pawl stop devices, and a cord for turning the roll, with the slats, the rocking bar from which the slats are suspended and the slat raising and lowering cords, said cords and the cord for turning the roll being respectively wound on the roll reversely and the cord for turning the roll extended around the rocking bar for turning it, substantially as described. 11th. The combination of the roll, a notched hub and gravitating pawl stop devices, and a cord for turning the roll with the slats, the rocking bar from which the slats are suspended and which is pivoted eccentrically to its longitndinal axis, the rack and pawl stop devices for said bar, and means for rocking the bar to open and close the slats, substantially as described. 12th. The combination of the roll, a notched hub and gravitating pawl stop devices and a cord for turning the roll, with the slats, the rocking bar from which the slats are suspended, and which is pivoted eccentrically to its longitudinal axis, and the rack and pawl stop device for said bar, said cord for turning the roll being extended around the rocking bar for actuating it, substantially as described. 13th. The combination of the roll, a notched hub and gravitating pawl stop devices and a cord for turning the roll, with the slats, the rocking bar from which the slats are suspended, and which is pivoted eccentrically to its longitudinal axis, the rack and pawl stop device for said bar, the stud for raising the pawl out of the rack and the spur for terminating the throw of the pawl by said stud, substantially as described. 14th. The combination of the hanger suspending hooks, the roll suspended by hangers, the roll pivoted in said hangers, slats suspended from the roll and the prongs of the hangers above the eyes of the hangers and bearing against the sides of the hooks to prevent swinging of the hangers by jerks of the roll turning cord, substantially as described.

No. $51,022$. Mechanism for Holding spring-Actuated Shades. (Mécanisme pour stores actionnés par un ressort.)

Henry Hazlitt Forsyth, sr., and Henry Hazlitt Forsyth, jr., both of Chicago, Illinois, U.S.A., 14th January, 1896; 6 years. (Filed December 21 st, 1895.)
Claim.-1st. In a holding mechanism for spring actuated shades a spring actuated rod slidably mounted in the shade and having a bearing end projected beyond the side margin thereof, the rod having a portion offset or eccentric to a plane passing through the bearing end, substantially as and for the purpose described. 2nd. In a
friction holding mechanism for spring actuated shades, a rod carried by the shade and having a bearing end normally held in frictional contact with a fixed part of the window and its body offset or eccentric to its bearing end whereby the position of the lower margin of the shade with reference to the window may be varied and the body of the rod may rock axially to the bearing end, substantially as described. 3rd. In a holding mechanism for spring actuated shades, a spring actuated rod slidably mounted in the shade and having a bearing end projected beyond the side margin thereof, the projected end being offset from the body of the rod, substantially as and for the purpose described. 4th. In a holding mechanism for spring actuated shades, the combination with a spring actuated rod slidably mounted in the lower margin of the shade and having one end projected beyond the side margin thereof, the projected end being offset from or eccentric to its body, and means for withdrawing the rod against the action of the spring, substantially as described. 5th. In a holding mechanism for spring actuated shades, the combination with a tube to be carried by the shade, of a spring actuated rod slidably mounted within the tube and having a bearing end projected beyond the tube, the body of the tule being eccentric to the bearing end whereby it may rock abont said bearing end as an axis, substantially as described. 6th. In a holding mechanism for spring actuated shades, the combination with a tube to be carried by the shade, of a spring actuated rod slidably mounted within the tube and having a projected portion eccentric to the body of the tube and a swivelling tip holder mounted in said projected portion, substantially as described. 7 th. In a holding mechanism for spring actuated shades, spring actuated rods slidably mounted in the shade and having bearing ends projecting beyond the margins thereof, the rods each having a portion offset or eccentric to a plane passing through the bearing ends, groove stops in which the tips of the rods work, and locks in the path of the tips, substantially as described. 8th. In a holding mechanism for spring actuated shades, the combination with a metal tube, a frictional holding rod slidably mounted therein and having an actuating spring, said tube having its walls slotted between its ends, a hand piece projecting through the slot of the tube and detachably connected with the rod, a fixed block embraced by the walls of the tube at the slot and affording a stop for the movable holding rod and an escutcheon detachably secured to the block, substantially as described. Ith. In a holding mechanism for spring actuated shades, the combination with a tube having a slotted aperture to receive a hand piece and a cover plate detachably $\mathrm{s} \in$ cured to the tube over the aperature thereof, said cover plate having its body laterally curved and its margin curved on a smaller radius than its body whereby to impinge the shade, substantially as described. 10th. In a holding mechanism for spring actuated shades, the combination with a tube having a slotted apertire to receive a hand piece, and a cover plate detachably secured to the tube over the aperture thereof, said cover plate having a depending lip, substantially as and for the purpose described. 11th. In a friction holding mechanism for spring actuated shades, a rod carried by the shade and having a bearing end offset or eccentric to its body, whereby the position of the lower margin of the shade with reference to the window may be varied and the body of the rod may rock axially to the bearing end, substantially as described.

No. 51,023. Furnace. (Fournaise.)

Edwin Powell, Pittsburg, Pennsylvania, U.S.A., 14th January, 1896; 6 years. (Filed December 21st, 1895.)
Claim.-1st. The combination, substantially as set forth, of a furnace or fuel chamber, a firebed therein which is closed to access of air from below it, an air supply passage above said firebed, a combustion chamber, an exit throat or passage connecting the fuel chamber at or near its firebed, with the combustion chamber, and a gas conduit leading from the fuel chamber, above the normal plane of incandescence therein, to a point of discharge adjacent to the discharge outlet of the exit throat or passage and exterior to the bed of incandescent fuel. 2nd. The combination, substantially as set forth, of a furnace or fuel chamber, a firebed therein which is closed to access of air from below it, an air supply passage above said firebed, a combustion chamber, and passages connecting the fuel chamber and combustion chamber, said passage leading out of the fuel chamber at or near the point or level of highest incandescence, and above the normal plane of incandescence respectively, and discharging exterior to the bed of incandescent fuel. 3rd. The combination, substantially as set forth, of a furnace or fuel chamber, a firebed therein which is closed to access of air from below it,
an air supply passage leading into the fuel chamber above the normal upper level of the charge of fuel, a door or register controlling said passage, a combustion chamber, an exit throat or passage leading from the fuel chamber at or near the level of the firebed, to the combustion chamber, and a gas conduit leading from the fuel chamber, above the normal upper level of the charge of fuel, and discharging exterior to the bed of fuel, to the combustion chamber. 4th. The combination, substantially as set forth, of a furnace or fuel chamber, a firebed therein which is closed to access of air from below it, an air supply passage above said firebed, a combustion chamber, an exit throat or passage leading from the fuel chamber at or near its firebed, to the combustion chamber, and a gas conduit leading from the fuel chamber, above the normal plane of incandescence therein, to the combustion chamber, and having its discharge outlet wholly exterior to the fuel chamber, and open to the products of combustion delivered through the exit throat or passage. 5th. The combination, substantially as set forth, of a furnace or fuel chamber, a firebed therein which is closed to access of air from below it, an air supply passage above said firebed, a combustion chamber, an exit throat or passage leading from the fuel chamber at or near its firebed, to the combustion chamber, and a gas conduit leading from the fuel chamber, above the normal plane of incandescence therein, to the combustion chamber, and having a discharge outlet therein, independent of, and adjacent to, that of the exit throat or passage.
No. 51,0R4. Heating Device Applicable to Lamps. (Fourneau-lampe.)

Boulton D. Bowron, Hamilton, Ontario, Canada, 14th January, 1896 ; 6 years. (Filed 20th December, 1895.)
Claim.-In a lamp heating device, the circular metallic plate having raised border and central depression with central aperture, the circular channels 9 , and a series of intersecting channels 12 , the three spring prongs curved as at 5 and 6 , and connected to said plate by means of the bars 3 , formed by the adjacent apertures 2 , and 4, of said plate, all arranged and combined, substantially as and for the purpose hereinbefore set forth.

No. 51,0.25. Oxide of Lead. (Oxide de plomb.)

Thomas Benfield, Newark, New Jersey, assignee of John W. Coghlan, Chicago, Illinois, both in the TT.S.A., 14th January, 1896; 6 years. (Filed December 31st, 1895.)
Claim.-1st. The process of making an oxide of lead consisting, in first agitating in a suitable vessel metallic lead in a comminuted form in the presence of water, and simultaneously introducing air into and throughout the mass, for the purpose of pulverizing or partially oxidizing the same, secondly, separating the pulverized and partially oxidized lead from the coarser particles of metallic lead and again subjecting it in a second vessel to further agitation in the presence of water simultaneously with the introduction of an oxidizing gas into and thronghout the mass for completing the oxidation, substantially as described. 2nd. The process of making an oxide of lead consisting, in first agitating in a suitable vessel metallic lead in a comminuted form in the presence of air, and water for the purpose of pulverizing and partially oxidizing the same, secondly, filtering the pulverized and partially oxidized lead from the metallic leal, and thirdly, subjecting said pulverized and partially oxidized lead to agitation in the presence of water and an oxidizing gas.

No. $51,0 \% 6$. Suspenders for Drawers.
(Bretelles pour caleçons.)

Hugo P. Geisler, Saginaw, Michigan, U.S.A., 14th January, 1896 ; 6 years. (Filed December 12th, 1892.)
Claim.- In combination with the clasps C, providing means of attaching to the tops of drawers, and with means of adjusting upon the web A, and the elastic web B, the woven, knitted or cloth web A , and the elastic web B , with button D , and button holes a, a, a, substantially as and for the purposes described.
No. 51,02\%. Combined Stove-pipe shelf and clothes drier. (Tablette pour tuyaux de poêle et séchoir a linge combinés.)

William Huxtable and J. Colin Merkley, both of Chesterville, Ontario, Canada, 14th Jannary, 1896 ; 6 years. (Filed December 24 th, 1895.$)$
Claim.-1st. A combined stove pipe shelf and clothes drier, comprising the supporting ring \mathbf{H}, having an outwardly projecting flange A^{1}, or sectional bearings, and horns A^{2}, below the flange, the shelves' C, having a bifurcated tang. C^{1}, provided with lugs C^{2}, to hang the shelf from the horns and drier arms 1, supported by the bifurcated tang of the hanging shelf and engaging the flange A^{1}. 2nd. The conbination with the ring A, having a flange A^{1}, and horns A^{2}, in pairs, of the shelves \mathbf{C}, having a bifurcated tang \dot{C}^{1}, provided with lugs C^{2}, to support the shelves in a hanging positison from said horns. 3rd. The combination with the ring A, and shelves C, of the radial drying arms \mathbf{D}, as set forth.

No. 51,028. Moccasin or Pack. (Mocassin.)

George Schmidt, Delhi, Ontario, Canada, 14th January, 1896; 6 years. (Filed October 25th, 1895.)

Claim.-1st. A moccasin or pack having an upper B, provided with ears C, and the vamp C, quarter D, and tongue F, sewn or

riveted to said ears. 2nd. A maccasin or pack having a heel stiffener J, provided with an ear K, said ear stitched to the quarter D, on the outside.

No. 51,029. Garment. (Vêtement.)

John R. Ball, Toronto, Ontario, Canada, 14th January, 1896; 6 years. (Filed December 4th, 1895.)
Claim.-1st. In a garment, the combination of a coat sleeve or pant leg, a hem for the same, a lining, one edge of which is sewn to the hem, the other edge sewn to the coat sleeve or pant leg, a fold in the lining, stitched to the hem in such a manner that the fold will hold the coat sleeve or pant leg in its original length, and when the stitching of the fold is cut the coat sleeve or pant leg can be lengthened to the extent of the fold without re-sewing, sulstantially as specified.

No. 51,030. Device for Exterminating Flies, etc.
(Appareil pour détruire les mouches, etc.)

Robert William Hillyard, Ottawa, Ontario, Canada, 14th January, 1896; 6 years. (Filed December 9th, 1895.)
Clain.-1st. A spraying device for exterminating flies, bugs, or insects on animals or plants of any kind, comprising a hand bellows removably attached to a receptacle for holding liquid or fuid which is drawn up through tube C, by the suction of the air forced through the tube B , by the hand bellows and discharged in the form of spray for the purpose specified. 2nd. A spraying device comprising hand bellows D , air tube B , liquid tube C , liquid receptacle or can A, stopper a, handle \mathbf{F}, and with or without slot d, all arranged and combined substantially as and for the purpose hereinbefore set forth.

No. 51,031. Incandescent Gias Light.

(Lumière incandescente a gaz.)

Louis Denayrouze, 70 Boulevard, Victor-Hugo, Neuilly, France, 14th January, 1896 ; 6 years. (Filed October 14th, 1895.)

Claim.-1st. In incandescent gas lightning, the method of effecting an intimate mixture of the gas and air by subjecting these on their

way to the burner to the action of revolving blades or vanes within a chamber communicating with the burner, substantially as described. 2nd. In combination with an incandescent gas burner, apparatus for effecting the intimate mixture of the gas and air consisting of a chamber comected on the one hand with the supply of gas and air and on the other hand with the gas burner and containing vanes or blades rotated by any source of power, so as in acting upon the entering gas and air, to effectually mix them together before passing off to the burner, substantially as described. 3rd. In combination with an incandescent gas burner, alparatus for effecting the intimate mixture of gas and air consisting of a chamber connected with the burner and containing vanes or blades rotated by any source of power, for mixing the air and gas entering the chamber, a chamber below the mixing chamber into which the gas passes and from which it issues into the mixing chamber through annular orifices surrounding tubular channels extending through the lower chamber, through which channels the outer air enters, substantially as described. 4th. In combination with an incandescent gas burner, apparatus for effecting the intimate mixture of the gas and air, consisting of a chamber connected in the one hand with the supply of gas and air, and on the other hand with the burner, and containing vanes or blades rotated by an electromotor, so as to effect the intimate nixture of gas and air, before passing to the burner, substantially as described. 5th. In combination with an incandescent gas burner, apparatus for effecting the intimate mixture of the gas and air consisting of vanes rotated by an electro-motor, and a valve controlling the gas supply which valve is opened by an electro-magnet on the closing of an electric circuit in connection therewith, substantially as described. 6th. In combination, with an incandescent gas burner, apparatus for effecting the intimate mixture of the gas and air consisting of vanes rotated by an electro-motor, a valve controlling the gas supply which valve is opened by an electro-magnet on the closing of an electric circuit in connection therewith, and ar electric igniting device actuated by the current that operates the said gas valve so as to produce a spark of extra current by the separation of two conducting parts of the electric circuit, substantially as described. 7 th. In combination, with an incandescent gas burner, apparatus for effecting the intimate mixture of gas and air consisting of vanes rotated by clockwork mechanism worked by a spring, substantially as described. 8 th. In combination, with an incandescent gas burner, apparatus for effecting the intimate mixture of gas and air consisting of vanes rotated by clockwork mechanism worked by a spring, and remontoire device worked either by an electric current or by any other motive power for winding up said spring again as it unwinds, substantially as described. Ith. In combination, with an incandescent gas burner, apparatus for affecting the intimate mixture of gas and air, consisting of vanes rotated within a casing by a jet or jets of gas or air under pressure acting tangentially upon the vanes air or gas being drawn through central openings into the casing by the suction there produced by the centrifugal action of the vanes, substantially as described.

No. $\mathbf{5 1 , 0 3 2}$. Chime Clock. (Pendule d carillon)

Reinhold E. Gunther, Assignee of stephen Willcock, both of Toronto, Ontario, Canada, 14th January, 1896; 6 years. (Filed July 31st, 1895.)

Claim.-1st. In a clock and in combination with the time and striking movements thereof, a chime movement mechanism between

said time and chime movements adapted to set said chime movement in operation, and a connection between, said chime and striking movements, so arranged that said striking movement is set in motion by the operation of said chime movement, substantially as described. 2nd. In a chime clock, a chime movemant, located substantially in the same plane as a time movement and operated by a wire reciprocated by a disc connected to the centre arbour of the time movement, in combination with a striking movement having a wire rigidly connected to lts starting spindle, the lower end of witch lies in the path of a pin attached to one of the wheels of the chime movement, substantially as and for the purpose specified. 3rd. In a chime clock, and in combination with the chime drum, count wheel and lock arms thereof, a rock arm \mathbf{F}, a disc H, connected with the centre arbour of the time movement and having pins $(\dot{x}$, projecting therefrom arranged to operate said arm \mathbf{F}, at each quarter revolution, and a connection between said rock arm and the chime movement, substantially as described. 4th. In a chime clock, a chime drum making two revolutions in the hour, a count wheel making one revolution in the hour, in combination with suitable stopping and starting mechanism operated by an arm adapted to engage with notches in the count wheel, a reciprocating wire operated by a disc connected to the centre arbour of a time movement, and a wire rigidly attached to the starting spindle of a striking movement, its lower end lying in the path of a pin on the count wheel, substantially as and for the purpose specified. 5th. In a chime clock, a chime drum making two revolutions in the hour and carried by a spindle deriving motion from the main wheel of the movement, a count wheel making one revolution in the hour and carried by an independent spindle also deriving motion from the main wheel, a locking disc carried by a spindle geared to the chime drum spindle, a warning wheel carried by a spindle geared to the locking disc spindle, suitably carried and operated lock arms adapted to engage with the count wheel, locking disc and warning wheel, a wire adapted to raise the said locking amms and operated from a disc connected to the centre arbour of a time movement, and a striking movement having a wire rigidly connected to its starting spindle, the lower end of which lies in the path of a pin attached to the above mentioned count wheel, substantially as and for the purpose specified. 6th. In a chime clock, the combination of the following elements, the chime drum J, carried by the spindle I, revolving twice in the hour and deriving motion from the main wheel A, the count wheel G, revolving once in the hour and carried by the independent spindle F, deriving motion from the main wheel \mathbf{A}, the locking disc \mathbf{N}, provided with four notches and carried by the spindle \mathbf{M}, geared to the chime drum spindle I, the warning wheel R, carried by the spindle Q, geared to the locking disc spindle M, the pin o, the spindle U, carrying the lock arm V, and arm a, the spindle b, carrying the arms c, n and d, the wire e, pivoted rock arm f, disc h, carrying one or more pins g, wire l, pin j, on the count wheel G, and starting spindle m, substantially as and for the purpose specified. 7 th . In a chime clock, a chime drum making two revolutions in the hour and carried by a spindle deriving motion from the main wheel of the movement, in combination with a count wheel making one revolution in the hour and carried by an independent spindle also deriving motion from the main wheel, a locking disc carried by a spindle geared to the chime drum spindle, a warning wheel carried by a spindle geared to the locking disc spindle and suitably carried and operated lock arms adapted to engage with the count wheel locking
disc and warning wheel, substantially as and for the purpose specified. 8th. In a chime clock, a chime movement comprising the following elements, the chinie drum J, carried by the spindle I, revolving twice in the hour and deriving motion from the main wheel A, the count wheel G revolving once in the hour, and carried by the independent spindle F, deriving motion from the main wheel A, the locking dise provided with four notches and carried by the spindle M, geared to the chime drum spindle I, the warning wheel R, carried by the spindle (Q, geared to the locking disc spindle M, the pin o, the spindle U, carrying the lock arm V, and $\operatorname{arm} a$, and the spindle b, carrying the arms c and n, substantially as and for the purpose specified. 9th. In a chime clock, a resonating chamber provided with a sound outlet and having a vibratile wall or sound board to which is connected the gong or bell, substantially as and for the purpose specified. 10th. In a chime clock, a resonating chamber provided with a sound outlet and having two vibratile walls or sound boards, to one of which is connected the gong or bell, substantially as and for the purpose specified. 11th. In a chime clock, a resonating chamber provided with a sound outlet and having a vibratile wall or sound board, in combination with a bent standard rigidly connected to the centre of the said vibratile wall, a weight carried by the said standard and a gong carried by the said weight, substantially as and for the purpose specified. 12th. In a chime clock, a resonating chamber having a vibratile wall or sound board, to which a gong or bell is connected in combination with deflectors suitably held between the said vibratile wall and the wall opposite thereto, and a suitable outlet in one of the side walls of the chamber towards which the said deflectors direct the sound, substan tially as and for the purpose specified. 13th. In a chime clock, a resonating chamber comprising the side walls $C^{1}, D^{1}, \mathbf{E}^{1}, F^{1}$, and the vibratile walls or sound boards $\mathrm{G}^{\mathbf{1}}, \mathbf{H}^{\mathbf{1}}$, to one of which is rigidly connected one or more gongs K^{1}, in combination with the curved deflec tors $\mathrm{L}^{\mathbf{1}}$, connected to the side walls $\mathrm{E}^{\mathbf{1}}, \mathrm{F}^{\mathbf{1}}$, one of which is provided with suitable sound outlets, substantially as and for the purpose specified. 14th. In a chime clock, a resonating chamber comprising the side walls $C^{1}, \mathbf{D}^{\mathbf{1}}, \mathbf{E}^{1}, F^{1}$, and the vibratile walls or sound boards $\mathbf{G}^{1}, \mathbf{H}^{\mathbf{1}}$, in combination with the standard I^{1}, the weight J^{1}, the gong K^{1}, and the curved deflectors L^{1}, connected to the side walls $\mathbf{F}^{1}, \mathbf{F}^{1}$, the walls \mathbf{F}^{1}, being provided with a series of holes M^{1}, substantially as and for the purpose specified. 15th. In a chime clock, the combination of the side walls $\mathbf{C}^{1}, \mathbf{D}^{\mathbf{1}}, \mathbf{E}^{\mathbf{1}}, \mathbf{F}^{\mathbf{1}}$, the sound board G^{1}, having a hole therein, the sound board H^{1}, the bent standard I^{1}, passing through the hole b^{1}, and rigidly secured to the sound board H^{1}, the weight J^{1}, the gong K^{1}, and the curved deflectors L^{1}, connected to the side walls $\mathbf{E}^{1}, \mathbf{F}^{1}$, the latter wall being provided with a series of holes \mathbf{M}^{1}, substantially as and for the purpose specified.

No. 51,033. Mat. (Paillasson)

Thomas Channing McPherson, Beaver Falls, and George Washing. ton Millar, Rochester, both of Pennsylvania, U.S.A., 14th January, 1896; 6 years. (Filed December 17th, 1895.)
Claim.-A mat composed of flat strips of metal bent to form a succession of Us opening alternately on opposite sides, these strips being fitted together in parallel position, the bases of the Us of one strip entering somewhat within the mouths of the U_{s}, in the adjacent sections and flexibly connected by cross rods, the mat being $r^{e v e r s i b l e}$ and flexible in both directions, substantially as described.

No. 51,034. Magnetic Electric Light Holder.
(Porte lumière électrique.)

Martin H. Collom, Denver, Colorado, U.S.A., 15th January, 1896 ; 6 years. (Filed July 30th, 1895.)
Claim.-1st. The combination with the lamp, of the socket and the magnet having exposed magnet pole surfaces. 2nd. The combination of the lamp and mechanism for connecting it in circuit, of the casing M , having the hub 3 , the magnet P^{1}, having exposed pole pieces, the non-conductive ring O, and cap N. 3rd. The combination with an incandescent electric light and socket, of a magnet in circuit, either forming a part of, or connected to said socket, and having exposed pole surfaces adapted to contact with magnetic surfaces. 4th. The combination with an incandescent electric light socket, of a magnet in circuit therewith, having magnetic exposed surfaces, and mechanism for securing said magnet to said socket, and a suitable casing for the same. 5th. The combination with the lamp and socket, of a magnetic device in circuit therewith, and adapted to magnetically suspend incandescent electric lights from magnetic surfaces. 6th. The combination of the lamp, the socket, and an electro-magnet in circuit, having its pole or poles exposed, and adapted to contact with magnetic surfaces, whereby said lamp and socket may be placed in contact with and by means of magnetic attraction, may be adjustably and removably suspended from magnetic surfaces. 7th. In a nagnetic device for temporarily suspending incandescent electric lights from magnetic surfaces, the lamp socket, a magnet secured thereto in circuit therewith having exposed polar surfaces, a casing inclosing said magnet and secured to said casing through which the exposed polar surfaces extend.

No. 51,035. Burner for Spirit-Gas Incandescent Hght. (Bec a gaz.)

Albin Perlich of Eutritrsch-Leiprig, Germany, 15th January, 1896; 6 years. (Filed June 28th, 1895.)
Claim.- 1 st. In a burner for spirit-gas incandescent light, the combination of the burner head D, which heats the spirit-gas passing through it before its consumption, and besides radiates warmth which serves for the gasification of the spirit with the hollow-ring A, containing the wicks, as described. 2nd. In a burner for spiritgas incandescent light, the combination of the openings a, and of the pipe b, which conduct the gas into the burner head D , and of the pipe f, as also of the four cornered tubular frame g, provided with openings i, for the transmission of the heated gas with the hollow ring A, the pipes k, for the admission of the air, and the circular slit m, for letting out the combustible mixture towards the sieve surface n, of the burner, as described. 3rd. In a burner for spirit-gas incandescent light, the arrangement for the preliminary warming of the incandescent light burner, consisting of the burner w, with slanting hole w^{1}, and conducting plate y^{1}, as described. 4th. In a burner for spirit-gas incandescent light, the extinguishing arrangement consisting of the channels u, t, and the cone s, above the spirit level in the receptacle B, as described.

No. 51,036. Distribution and Use of Illuminating Gas. (Distribution du gaz.)

Thomas Leopold Willson, New York, State of New York, U.S.A., 15th January, 1896; 6 years. (Filed November 3rd, 1894.)
Claim.-1st. The improved system of gas distribution, which consists in forcing a fixed combustible gas from the works into the mains at high pressure, distributing it through the mains at such pressure to the points of consumption and then reducing it to the low or normal pressure at which it is supplied to the burners. 2nd. The improved system of gas distribution, which consists in forcing a fixed combustible gas from the works into the mains at high pressure, distributing it through the mains at such pressure to the points of consumption and there reducing the pressure to a low or normal pressure for supplying the burners, mixing the gas with a suitable proportion of air for properly diluting it, and then conducting it to the burners. 3rd. The improved system of gas distribution, which consists in generating acetylene gas, forcing it at high pressure through the mains to the points of consumption, there reducing it to a low or normal pressure, then mixing it with a suitable proportion of air and then conducting it to the burners. 4th. The improved gas apparatus, consisting of means for generating a fixed illuminating gas, means for forcing the same at high pressure into the mains, the said mains leading to the points of consumption, a pressure reducing valve at each such point, a mixer at each such point adapted to mix with the gas a certain proportion of air, and a pipe leading from said mixers to the burners.
No. 51,037. Electric Furnace. (Fournaise Electrique.)

Thomas Leopold Willscn, New York, State of New York, U.S.A., 15th January, 1896; 6 years. (Filed September 9th, 1895.)
Clain.-1st. The combination in an electric furnace, of a carbon having a greater diameter at the place where the current enters it than at the place where the current is delivered from it, substantially as described. 2nd. The combination in an electric furnace, of a carbon having a decreasing diameter toward the point of delivery of the current, substantially as described. 3rd. The combination of a carbon holder and a carbon, the said carbon having a greater diameter within the holder than at its point of entry into the holder, and a support within said holder upon which the weight of the carbon is carried, substantially as described. 4th. The combination of a carbon having a tapering head and a carbon holder having a reversed taper fitting the taper of the head of the carbon, thereby supporting the said carbon, and ensuring contact by the weight of the carbon, substantially as described. 5 th. The combination of a carbon and a carbon holder, the said carbon having a greater diameter within the holder than at its point of entry into the holder, and the said holder having a socket with a side opening
through which to introduce the head of the carbon, substantially as described.

No. 51,038. Ready Calculator. (Calculateur.)

Melville James Overell, William Snowden Duffield, and John Joseph Green, all of Hamilton, Ontario, Canada, 15th January, 1896; 6 years. (Filed October 9th, 1895.)
Claim.-1st. A ready calculator comprising a stationary circle of months tabulated with radial date spaces, a rotatable dise with a corresponding number of radial spaces on the circumferential edge and numbered from 1 to 365 , a pointer on the edge of the disc radially opposite the day number 365 and arranged to pass over the stationary date spaces and an arm pivotally swung upon the same centre as the disc and provided with an index 1 ointer as and for the purpose specified. 2nd. A ready calculator comprising a stationary circle of months tabulated with radial date spaces, a rotatable disc with a corresponding number of radial spaces on the circumferential edge and numbered from 1 to 365 , a pointer on the edge of the dise radially opposite the day number 365 and arranged to pass over the stationary date spaces, a stop adjacent to the pointer and extending upwardly from the edge of the disc and an arm pivotally swung upon the same centre as the disc and provided with an index pointer as and for the purpose specified. 3rd. A ready calculator comprising a stationary circle of months tabulated with radial date spaces, a rotatable dise with a corresponding number of radial spaces on the circumferential edge and numbered from 1 to 365 , a pointer on the edge of the disc radially opposite the day number 365 and arranged to pass over the stationary date spaces, an arm pivotally swung upon the same centre as the disc and provided with an index pointer and a slot in the arm arranged to pass circumferentially over the day spaces on the disc as and for the purpose specified. 4th. A ready calculator comprising a stationary circle of months tabulated with radially date spaces, a rotatable disc with a corresponding number of radial spaces on the circumferential edge and numbered from 1 to 365 , a pointer on the edge of the disc radially opposite the day number 365 and arranged to pass over the stationary date spaces, an arm pivotally swung upon the same centre as the dise and provided with an index pointer and knob arranged near the end of the arm as and for the purpose specified. 5 th. The combination with the plate having a tabulated circle of months with spaces A and A^{1}, of the disc B having the day spaces B, the arm D provided with an index pointer D^{2} and the plate E secured to the disc B by the cleat O and provided with a pointer E^{1} and vertical stop E^{2} forming portion of the plate as and for the purpose specified.

No. 51,039. Rotary Cutter. (Coupoir rotatoire.)

Christopher George Bartlett Johnson, Chelsea, and Charles Edgar Keniston, Somerville, both of Massachusetts, U.S.A., 15th January, 1896; 6 years. (Filed December 23rd, 1895.)

Claim.-The herein described rotary cutter, consisting of an annular grooved holder having longitudinal recesses combined with longitudinal grooved cutter blocks journalled in said recesses, each such cutter block having an eccentric trunnion received in a notched adjustable ring, and means for securing said ring and cutter blocks in their adjusted positions to the holder, substantially as and for the purpose set forth.
No. 51,040. Device for Hitching Horses. (Enrênoire.)

Thomas Agnew, Evanston, Illinois, U.S.A., 15th January, 1896 ; 6 years. (Filed December 23rd, 1895.)
Claim.-1st. The combination with a wagon or like vehicle, of a rod carried below the vehicle and longitudinal therewith, a sleeve in sliding engagement with the rod, a lever pivoted to the sleeve and adapted to project forwardly and downwardly for engaging the road-bed, and a cord leading forwardly from the sleeve, substantially as described and for the purpose set forth. 2nd. The combination with a wagon or like vehicle and with its reach, of a rod parallel with and fixed to the reach, a sleeve upon and in sliding engagement with the rod, a lever having one of its ends pivoted to the sleeve, such lever projecting forwardly and being of greater length than the distance from its pivotal point to the level of the bottom of the vehicle wheels, a cord leading forwardly from the sleeve, and a cord leading upwardly from the lever into the body of the vehicle, substantially as described and for the purpose set forth.
No. 51,041. Saw Guard. (Garde-scie.)

Louis Come Ringuette, Rhinelander, Wisconsin, U.S.A., 15th January, 1896; 6 years. (Filed December 26th, 1895.)
Claim...-1st. The combination with a knot sawing machine, provided with a circular saw and a receiving table located directly above said saw, of a saw-guard capable of being swung laterally away from the saw for giving access to the latter, and comprising a horizontal portion, a curved downwardly and forwardly extending portion, a pendant vertical flange arranged upon one side of the saw and extending downwardly to the forward end of the guard, the horizontal portion of said guard being provided with a pair of longitudinally elongated slots providing for the longitudinal adjustment of the saw guard as a whole, one of said slots being closed and constituting a pivot slot, and the other being T-shaped or provided with a lateral branch opening out at one side of the longitudinal portion, substantially as specified. 2nd. The herein described sawguard formed to partially cover a circular saw for the purpose specified, and adapted to be swung laterally away from the saw, and extended to form a horizontal bar portion, said bar being provided with a closed longitudinally elongated pivot slot, and also with a longitudinally elongated slot having a lateral opening, and fastening devices passing through both slots, and securing the guard to the saw table, substantially as and for the purpose described.

No. $51,042$. Chair. (Chaise.)
Juseph Onésime Lemay, Montreal, Quebec, Canada, 15th January, 1896 ; 6 years. (Filed December 27th, 1895.)

Claim.--1st. A chair having a compartment B, as shown, said compartment being covered by the folding seat of the chair, which

is hinged to the frame of the chair, substantially as shown and for the purposes described. 2nd. A chair having its seat hinged to the front frame, and having a portion of the chair back rigidly attached to its rear edge, substantially as shown and for the purposes described. 3rd. A chair having in the underpart of its frame, a compartment for holding articles and which is covered by a folding seat, and to which folding portion there is secured a foot rest, and a folding part of the chair back, substantially as shown and for the purposes described.

No. 51,043. Velocipede. (Velocipede.)

Bohn Chapin Hicks, Chicago, Illinois, U.S.A., 15th January, 1896 ; Gyears. (Filed December 27th, 1895.)
Claim.-1st. In a velocipede, the combination of a main frame provided with a front stearing wheel, seat or saddle, with an auxiliary frame flexibly connected therewith to the rear of the seat and provided with at least two wheels arranged longitudinally with respect to each other, a sprocket wheel on a portion of the main frame, a sprocket wheel on the driving wheel, a chain connecting the two, and means for preserving the desired distance between the two sprocket wheels and permitting the free movement of the driving wheel, substantially as described. 2nd. In a vehicle, the combination of a main frame having at least one supporting wheel, and inverted V-shaped auxiliary frame connecting with the main frame at or near the rear end and provided with at least two wheels arranged longitudinally with respect to each other, and a flexible bar connection between the rear end of the main frame and the auxiliary frame, substantially as described. 3rd. In a vehicle, the combination of a main frame carrying a part of the supporting wheels, an inverted V-shaped auxiliary frame connected with the main frame at or near the rear end, and provided with at least two wheels arranged longitudinally with respect to each other, a pair of links connecting the rear end of the main frame with the auxiliary frame, and a second pair of links flexibly connecting the bearing bracket of the main frame with the lower portion of the front leg of the auxiliary frame, to preserve a desired distance between such points, and form through the auxiliary frame a compound flexible connection, substantially as described. 4th. In a vehicle, the combination of a main frame provided with a front steering wheel, an auxiliary frame flexibly connected with the main frame at or near its rear portion, consisting of at least two depending members, the front deperiding member being rigid and provided with a driving wheel, the rear depending member being pivotally connected to the auxiliary frame and provided with a supplemental wheel, a pair of link bars flexibly connecting the rear portion of the main frame with the auxiliary frame, and a second pair of links connecting the bearing bracket of the main frame with the bearing portion of the lower portion of the front depending leg of the auxiliary frame, substantially as described. 5th. In a velocipede, the combination of a main frame provided with a front steering wheel and other usual parts, an auxiliary frame flexibly connected thereto in the rear of the seat por-
tion and provided with at least two wheels arranged longitudinally with respect to each other, one a driving wheel and the other a supplemental wheel, and a curved spring flexibly connecting the auxiliary with the main frame so as to permit of an independent vertical movement of the driving wheel, and maintain a longitudinal rigidity of the frame, substantially as described. 6th. In a velocipede, the combination of a main frame provided with a front steering wheel and other usual parts, an auxiliary part flexibly connected thereto in the rear of the stat portion, and provided with at least two wheels arranged longitudinally with respect to each other, one a driving wheel and the other a supplemental wheel, a curved spring flexibly connecting the auxiliary with the main frame so as to permit of an independent vertical movement of the driving wheel, and maintain a longitudinal rigidity of the frame, and a bar or bars pivotally connecting the axle of the driving wheel with the main frame, substantially as the crank shaft to preserve a desired distance between the two and permit the free movement of the driving wheel, substantially as described. 7th. In a velocipede, the combination of a main frame provided with a seat or saddle and front wheel by which the structure is guided and steered, with an auxiliary frame pivoted to the main frame to the rear of the seat portion, and provided with at least two wheels arranged substantially in line with each other, one a driving wheel and;the other a supplemental or auxiliary wheel, substantially as described.

No. 51,044. Electric Alarm Mail Box.

(Boîte à lettres à avertisseur électrique.)

Edward Charles Turner Belding, Chicago, Illinois, U.S.A., 15th January, 1896; 6 years. (Filed December 27th, 1895.)
Claim,-1st. In combination, a mail-box containing electrical con-tact-mechanism in circuit with the electric alarm apparatus in a house, a push-button device controlling said contact-mechanism, and a secondary electric sounder inside the box in the circuit of said contact-mechanism, whereby operating the push-button device to close the circuit actuates the house-alarm and the secondary sounder in the main-box, substantially as and for the purpose set forth. 2nd. In combination, a mail-box provided with a :novaple insertion-slot cover, a secondary electric sounder, and push-button device, all in normally open circuit with each other and in circuit with the electricalarm apparatus in the house, whereby closing the circuit by operating either the push-button or cover actuates the house-alarm and also the sounder in the mail-box, substantially as and for the purpose set forth. 3rd. In combination with a door, a push-button device having a bridging button-spring, an insulating projection on the door, a pair of terminals adjacent to the door, and a lateral connecting bridge therefor, said terminals being engaged by said projection in the closed condition of the door to maintain them normally out of contact with the said lateral bridge and released to contact with said lateral bridge by opening the door, said button spring extending into position to bridge across said terminals by operating the pash-button and the terminals being included in an electric circuit arranged for connection with the f lectric-alarm apparatus in a house, substantially as and for the purposes set forth. 4th. An electricalarm mail-box comprising, in combination with the casing having a door and an insertion slot provided with a movable cover, a pushbutton device having a spring v, terminals v^{1} and v^{2}, and insulating projection i, normally engaging said terminals, a terminal t^{1}, in position to be engaged by said cover and a companion terminal t, said terminals being included in an electric circutit in the box arranged for connection with the electric-alarm circuit in a house, and an electric-sounder in the casing in said box-circuit, substantially as and for the purpose set forth. 5th. A portable electric-alarm mailbox comprising in combination with the casing having a door \mathbf{D} and an insertion slot C^{1}, provided with a movable cover C , a pushbutton device \mathbf{E}, terminals r^{1} and v^{2}, and terminals t, and t^{1}, in an eleciric-circuit in the box arranged for connection with the electric alarm circuit in a house, an electric-sounder F, in the casing in said box-circuit and a speaking-tube section r, in the casing in alignment
with an opening r^{1}, in the back thereof, the whole being constructed and arranged to operate, substantially as and for the purpose set forth.

No. 51,045. Secondary Voltaic Battery. (Pile secondaire.)

Ludwig Epstein, Westminster, England, 15th January, 1896; 6 years. (Filed December 28th, 1895.)
Claim.-1st. In a secondary voltaic battery casings inclosing the positive plates, and extending below them, their walls being porous except in their lower parts substantially as and for the purpose set forth. 2nd. In a secondary voltaic battary having negative plates coated with zinc and mercury amalgam, troughs holding the lower edges of the negative plates, substantially as and for the purpose set forth.

No, 51,046. Neck Yoke. (Volée d'avant.)

Williaw A. Whitney, Byron, Illinois, U.S.A., 15th Junuary, 1896 ; 6 years. (Filed December 28th, 1895.)
Chaim.-1st. In a neck yoke, the combination of a base portion, a pole socket having a headed shank and means for forming a connection between the base and socket, consisting of a two part bushing held by the base and by which the socket is supported. 2nd. In a neck yoke, the combination of a base provided with a slotted extension, a pole socket provided with a shank, a two part bushing located within the extension, having their meeting faces recessed and receiving the shank. 3rd. In a neck yoke, the combination of a base provided with an extension slotted through its top, bottom, and rear sides, and having an enlarged recessed portion exteuding through the top a cylindrical bushing in two lengthwise sections having their meeting faces recessed, a pole socket having a shank with an end conforming to the recessed faces of the bushing and located therein.

No. 51,047 . Revolving Fan. (Eventail tournant.)

Samuel Obediah Tuerk, Fulton, New York, U.S.A., 15th January, 1896; 6 years. (Filed December 28th, 1895. .)
Claim.-1st. A fan-motor comprising a motor, a shaft driven thereby, an inclosing case, fans mounted upon it and means to transmit the rotation of said motor shaft to said case at a reduced
rate of speed, in combination. 2nd. A fan-motor comprising a motor, a shaft driven thereby, a pulley upon and driven by said shaft, wheels driven by said pulley and mounted in swinging yokes, a case inclosing the motor and driven by said wheels, and fans mounted upon said case, in combination. 3rd. A stationary motorbox provided with a tubular stem, motor-shaft journaled therein and means to rotate it, in combination with a case inclosing the motor box and journaled upon the stem thereof, fans mounted upon said case and means to transmit the rotation of said shaft to said casing to operate said fans. 4th. A motor-box and motor suspended from a suitable support, a shaft and pulley thereon driven by the motor, a case inclosing said motor-box and wheels mounted in yokes swinging upon said box carrier and engaging with, supporting, and driving said case, and fans mounted upon and rotated with said case, in combination. 5th. The combination with suitable supports, and a motor fan, of an intermediate connection comprising threaded bars vulcanized into the ends of a piece of rubber whereby said fan is elastically supported. 6th. The combination with a suitable support, and a motor-fan, of an intermediate elastic connection to take up the vibrations etc., and comprising threaded bars vulcanized into a piece of rubber and flanged substantially as shown. 7 th. The combination with a motor fan and a suitable support therefor, of an intermediate elastic connection to take up the vibration etc., and comprising a rubber body, threaded bars connected thereto, and wire connected to said rubber to limit its longitudinal elasticity.
No. 51,048. Milk Can. (Bidon à lait.)

James M. Williams, Pittsburg, Pennsylvania, U.S.A., 15th January, 1896; 6 years. (Filed Dec. 30th, 1895.)
Claim.-1st. A milk can having its lower portion strengthened by folds of metal integral with the body and bottom portions, said folds extending above the bottom, substantially as set forth. 2nd. A milk can having its body strengthened at its upper and lower ends by folds of metal integral with the body, bottom and brest portions, respectively, the upper strengthening folds extending below the upper end of the body and the lower folds extending above the bottom, substantially as set forth. 3rd. In a milk can, the combin: ation of a body portion having the metal at its ends folded back upon the body, and a bottom portion having a flange and an external band, the flange and band forming a groove for the reception of the lower end of the body, the edges of the band and the body fold being seamed together, substantially as set forth. 4th. The combination of a can having its body formed with an external projection and a cover having a depressed or recessed central portion and a broad circumferential rim, the recess or depression in the cover having an internal diameter not less than the external diameter of the projection on the projection on the bottom, and the circumferential rim being adapted to afford a comparatively broad bearing or supjort for the bottom of a superposed can, substantially as set forth.

No. 51,049. Tent. (Tente.)

James Joshua Rinn, San Francisco, California, U.S.A., 15th January, 1896; 6 years. (Filed Feb. 12th, 1895.)
Claim.-1st. In a tent, a flap having a stiffened edge combined with latching or locking devices. 2nd. In a tent, a flap having a pocket on its edge, and an inserted strip combined with latching or locking devices whereby it is connecter to the pole or other part of the tent. 3rd. The rigid strip on the edge of the flap, combined with a universal joint on the pole or rigid part of the tent. 4th. The sliding universal joint combined with a rigid strip, and with
latching or locking devices arranged to engage by sliding movement. 5th. The stiffened flaps slitted around horizontally at the top either

with or without ventilating flaps. 6th. The locking or latching devices within the tent pole or other equivalent part with an entering stud on the flap and releasing devices. 7th. The tubes combined with the flaps, the latching or locking devices within the tubes. 8 th. In combination with the stiffening strip, a detachable hook connection with a universal joint, on the pole or equivalent part.
No. 51,050 . Attachment for Sewing Machines.
(Attache pour machines à coudre.)

Johannes Heinrich Herman Wohl, Sande, Germany, 15th January, 1896 ; 6 years. (Filed April 10th, 1895.)
Claim.--In the improvements in attachments for sewing machines the plate a-fixed to the sewing machine, and provided with an interchangeable fastener having a guide f, for the band and a guide g, for the cord being guided by rollers carried by the plate a, and by a guiding pin k, constructed and arranged, substantially as hereinbefore described.

No. 51,051. Apparatus for Producing stage Illusions.
(Appareil illusoire pour theatres.)

Phineas Barton Myers, Brooklyn, New York, U.S.A., 15th January, 1896; 6 years. (Filed December 28th, 1895.)
Claim.-1st. A stage apparatus consisting of a string, a series of perforated boxes movable thereon, and a hand rope for operating the boxes, substantially as specified. 2nd. A stage apparatus consisting of a string, a series of suspended perforated boxes having upwardly and downwardly projecting tongues, means for connecting the tongues, and a spring and hand rope connected to the end boxes, substantially as specified. 3rd. A paper box for stage illusions, having a perforated bottom, slotted end faps a^{5}, a^{6}, and perforated tongues projecting from such flaps, substantially as specified. 4th. A paper box for stage illusions, having a perforated and slotted bottom a^{2}, an open top a^{1}, slotted end flaps a^{5}, having perforated tongues a^{13}, and slotted end flaps a^{6}, having perforated tongues a^{17}, substantially as specified.

No. 51,05\%. Medicinal Compound.

(Composition medicinale.)

Robert James Walter Atwood, Victoria, British Columbia, Canada, 15th January, 1896; 6 years. (Filed April 2nd, 1895.
Clain.--A compound composed of the four first-named drugs substantially in the proportions following, viz. :-Tinct. opii., one and a-half drachm. Acid sulph. aromat., one and a-half drachm.

Spts. aeth. nitrosi., one drachm. Syrup tolu., (U.S.,) 1870, one and a-half ounce, with any saccharine or neutral substance for the purposes above set forth.
No. 51,053. Coin Feed Gas Meter.
(Gazomètre actionné par une pièce de monnaie.)

Frank Wright, Westminster, England, 18th January, 1896; 6 years. (Filed October 15th, 1895.)
Claim.-1st. In coin freed gas meter apparatus, the combination of a horizontal-wheel adjustably geared to the counter gear of the meter and having through it holes for passage of coins, a cylinder mounted above the wheel with a side slot for introduction of a coin and a heavy plunger, a gas valve arranged below the cylinder and kept closed by a loaded lever, also under another part of the wheel a hole for passage of coins to a shoot and receptacle, substantially as and for the purposes set forth. 2nd. In coin freed gas meter apparatus, in combination with the counter spindle of the meter, a sli eve thereon, geared to the coin freed mechanism and having on it a toothed wheel, a disc on the spindle carrying a spring slide with tooth adapted to engage with the wheel, two discs each inwardly flanged over half of its circumference and adjustable in position relatively to one another, substantially as and for the purposes set forth.
No. 51.054 . Machine for Generating Giear Teeth.
(Machine pour tailler les engrenages.)

Herbert Curtis Warren, Hartford, Connecticut, U.S.A., 18th January, 1896; 6 years. (Filed October 14th, 1895.)
Claim. -1 st. In a machine for generating gear-teeth, a motary. reciprocating gear-blank carrier, and means for automatically actuating said gear-blank carrier, in combination with a rotaryreciprocating cutter-tool carrier, and means for imparting rotaryreciprocating movements to said cutter-carrier in a path transvereely of the longitudinal axis of, and in synchronism with said gear-blank carrier, substantially as described. 2nd. In a machine for generat-
ing gear-teeth, in combination, a gear-blank-carrier, and a cutting tool carrier operatively connected for synchronous, rotary-recipro cating movements, relatively, about a common centre, and means for imparting rotary-reciprocating movements to said carriers, synchronously, substantially as described. 3rd. In a machine for generating gear-teeth, in combination, a gear-blank carrier supported for ratory-reciprocating movements about its axis, a cuttercarrier supported for rotary-reciprocating movements in a direction coinciding with the direction of movement of the gear-blank carrier, a rotary cutter carried by said cutter-carrier in position and adapted for acting upon the gear-blank carried by the blank-carrier, and mechanism for actuating said parts synchronously, substantially as described. 4th. In a machine for generating gear-teeth, in combi nation, a gear-blank carrier, mechanism for imparting to said car rier rotary-reciprocating movements about its axis, a cutter-carrier, and synchronizing mechanism operatively connecting the gear-blank carrier and cutter-carrier, and adapted for imparting rotary-reciprocating movements to the cutter-carrier transversely of the axis of the gear-blank carrier, and also for effecting synchronous move ments of said cutter-blank carrier and gear-blank carrier, substantially as described. 5th. In a machine for gentrating gear-teeth, a gear-blank carrier, and a cutter-varrier, in combination with an actuating connector between, and adapted for effecting a synchronous oscillating movement of, said gear-blank carrier and cutter carrier, substantially as described, and for the purpose set forth. 6 th. In a machine for generating gear-teeth, the combination of an oscillatory gear-blank carrier, an oscillatory cutter-carrier, and car-rier-actuating means in operative connection with, and simulta neously imparting oscillatory movements to, said gear-blank carrier and cutter-carrier, respectively, in relatively-coinciding directions. 7 th. In a machine for generating gear-teeth, in combination, an oscillatory gear blank carrier, an oscillatory cutter-carrier and means in operative connection with, and adapted for imparting oscillatory movements of relatively-varying velocities to, said gear-blank carrier and cutter-carrier, synchronously. 8 th. In a machine of the class specified, the combination with a rotary-reciprocating blank-carrier, and with means for automatically imparting rotary-reciprocating movements to said blank-carrier, of a rotary cutter supported for oscillatory movement, and means for imparting rotating and advancing movements to the cutter in the plane of its cutting edge, and means for imparting oscillatory movements to said cutter in synchronism with the rotary-recipro catory movements of the blank-carrier, substantially as described, and for the purpose set forth. 9th. In a machine of the class specified, in combination, a blank-carrier, and a cutter-carrier operatively connected for synchronous oscillatory movements about axes radiating from a common centre; a rotary cutter-carrier by the cuttercarrier, and actuating mechanism in connection with, and adapted for synchronously and automatically imparting oscillatory movements to, the blank-carrier and cutter-carrier, and means for rotating the cutter and advancing said cutter toward the centre from which the axes of said blank-carrier and cutter-carrier radiate, substantially as described, and for the purpose set forth. 10th. In a machone for generating gear-teeth, in combination, a blank carrying spindle, actuating mechanism for autonatically imparting rotary-reciprocating movements to said spindle, a cutter-carrier, means for oscillating said cutter-carrier in a plane transversely of the axes of, and in synchronism with, and in a direction corres ponding to the direction of movement of, the blank-carrying spindle, a rotary cutter movably carried by said cutter-carrier, and a cuttercarrier rotating and feeding means for rotating said cutter-carrier, and for imparting advancing movement thereto, in a plane intersecting the axial plane of said spindle, substantially as described. 11th. In a machine of the class specified, the combination of an oscillatory gear-blank carrier, a rotary cutter supported for oscillatory movement, actuating means connecting the gear-blank carrier and cutter, and adapted for imparting oscillatory movements to the gear-blank carrier, and for simultaneously imparting to the cutter a progressive cutting movement in a cinuous path transversely of the axial line of the blank-carrier, substantially as described, and for the purpose set forth. 12 th. In a machine for generating gearteeth, in combination, a gear-blank carritr adapted for rotary reciprocating movements about its axis, actuating mechanism for said gear-blank carrier, a rotary cutter supported and adapted for intermittent advancing movements in a plane intersecting the axial plane of the blank-carrier, cutter-actuating mechanism co-operating with the blank-carrier-actuating mechanism for effecting synchronous of said two actuating mechanisms, and means for intermittently advancing the cutter along the blank carried by the blankcarrier in a plane corresponding to the longitudinal plane of the face of the tooth being generated, and also for oscillating the cutter in a plane substantially concentric to the axis of the blank-carrier, and transversely of the tooth being generated, substantially as described. 13th. In a machine for generating bevel-gear teeth, in combination, a gear-blank cartier supported for rotary-reciprocating movements about its axis, a rotary cutter supported for intermittent advancing movement in a plane intersecting the axial plane of the blankcarrier, and also for transverse and rotary-reciprocating movements, cutter-feeding mechanism in connection with, and adapted for advancing, the cutter along the blank carried by the blank carrier, and synchronizing actuating mechanisms co-operatively connecting the blank-carrier and cutter, and adapted for synchronously imparting rotary-reciprocating movements to the blank-carrier and cutter
in corresponding directions, substantially as described and for the purpose set forth. 14th. In a machine for generating gear-teeth, the combination with the oscillatory gear-blank carrier and its actuating mechanism, of a rotary tooth-generating cutter in position and adapted for acting upon the gear-blank carried by the blank-carrier, and cutter-controlling mechanism, substantially as described in operative connection with the cutter and with the gear blank-actuat ing mechanism, and adapted for moving the cutter progressively forward along the tooth-forming face of the gear-blank in a plane corresponding to the longitudinal plane of the gear-tooth, and for oscillating said cutter transversely of the longitudinal plane of the gear-tooth in synchronism with the oscillatory movement of the gear-blank carrier, substantially as described, and for the purpose set forth. 15th. In a machine for generating gear-teeth, in combination, an oscillatory holder for the gear-blank, registering mechanism carried by the gear-blank holder, and adapted for intermittently rotating the blank-holder an aliquot part of a complete rotation, a tooth-generating cutter supported for rotary and transverse oscillatory msements, and gear-blank and cutter actuating and controlling mechanism, substantially as described, co-operatively connecting the blank-carrier and cutter, and adapted for synchronously oscillating said blank-carrier and cutter in coinciding directions and in substantially-concentric planes, and means for moving the cutter progressively along the tooth-forming face of the gear-blank, during the oscillatory movement of said cutter, substantially as described. 16 th. In a machine for generating gear-teeth, an oscillatory gear-blank carrier, a rotary cutter, an oscillatory cutter-carrier, an actuating-connector between the gear-blank carrier and cuttercarrier, and adapted for synchronously oscillating the gear-blank and the cutter in coinciding directions, and in planes substantially concentric to a common centre, and means for rotating and advancing the cutter relatively to the gear-blank, substantially as described and for the purpose set forth. 17 th . In a machine for generating bevel-gear teeth, in combination, a gear-blank carrier supported for rotary-reciprocating movements about its axis, a rotary cutter supported for intermittent advancing movements in a plane intersecting the axial plane of the blank-carrier, and also for transverse and rotary reciprocating movements, cutter feeding-mechanism in connection with, and adapted for advancing the cutter along the blank carried by the blank carrier, and synchronizing actuating mechanism co-operatively connecting the blank-carrier and cutter, and adapted for synchronously imparting rotary reciprocating movements of relatively varying velocities to the blank-carrier and cutter in corresponding directions, substantially as described and for the propese sec forth. 18th. In a machine for generating gear-teeth, the combination of an oscillatory gear-hlank carrier, and an oscillatory cutter-carrier slide, both supported for radial movements relatively to a common centre, and means, substantially as described, for simultaneously oscillating the gear-blank carrier and cutterslide carrier about said common centre, and for moving said blankcarrier and cutter slide carrier radially of said common centre, for the purpose set forth. 19th. In a machine for generating gear-teeth the combination with an intermittently-rotative gear blank carrier, and with means for intermittently rotating said gear-blank carrier, of a cutter slide carrier supported for oscillatory movementstrans versely of the gear-blank carrier, and having a cutter-slide supforted for radial movements, relatively to the base of the cutterslide carrier, oscillating mechanism operatively connecting the blank-carrier and cutter-slide carrier, and adapted for synchronously oscillating said carrier in corresponding directions, and actuating mechanism, substantially as described, in position, and adapted for intermittently imparting an advancing movement to the cutter slide substantially as described and for the purpose set forth. 20th. In a machine for generating bevel-gear teeth, in combination, a cutter-slide carrier, and a gear-blank carrier supported for synchronous oscillatory movements about intersecting axes, and means in operative connection with, and adapted for synchronously oscillating said cutter-slide carrier and blank-carrier, substantially as described and for the purpose set forth. 21st. In a machine of the class specified, an oscillatory blank carrier, and an oscillatory cutter carrier supported with their axes radiáing from a common centre, and adapted for radial and substantially-concentric adjustments relatively to the common centre, from which the axes of said carriers radiate, and for synchronous oscillatory movements, in combi nation with independent adjusting means for the blank-carrier and for the cutter-carrier, and adapted for inderendently adjusting said carriers concentrically of, and toward and from, said common centre, and actuating mechanism operatively connecting said carriers and adapted for synchronously oscillating said carriers in cor responding directions, and at relatively different velocities, substantially as described and for the purpose set forth. 22 nd . In a machine for generating gear-teeth, in combination, a cutter-carrier supported for oscillatory movements about a fixed axis, a rotating cutter supported for movement radially of the axis of said carrier, means for oscillating said cutter-carrier, and an oscillating gear-blank carrier supported for radial and concentric adjustments, relatively to an axis having an arbitrarily-fixed relation to the axis of the cutter-carrier, and means for automatically scillating the gear-blank carrier in synchronism with, and in a direction corresponding to the direction of movement of the cuttercarrier, substantially as described, and for the purpose set forth 23rd. In a machine for generating gear-teeth, the combination with the cutter-slide carrier supported for oscillatory movement about a
relatively-fixed axis, and with the cutter-slide and the rotating cutter supported for radial movement, relatively to the axis of said cutter-slide carrier, of a gear-blank carrier supported for angular adjustment, relatively to the axis of the cutter-slide carrier, and adapted for oscillatory movement about said axis, and two co-acting actuators operatively connected together for synchronous movement, and one of which is operatively connected with, and is adapted for oscillating, the cutting-slide carrier, and the other of which is operatively connected with, and is adapted for oscillating, the gearblank carrier, substantially as described, and for the purpose set forth. 24th. In a machine for generating gear-teeth, in combination a gear-blank carrier, and a cutter-carrier supported for oscillatory movements about a common centre, a rotative cutter movably carried by the cutter-carrier with its periphery in a plane radial to the axis of the gear-blank carrier, and adapted for movement toward and from said common centre, means in connection with and adapted for moving, said cutter toward and from said common centre, and means for oscillating the cutter-carrier and gear-blank carrier in synchronism, substantially as described, and for the purpose set forth. 95 th. In a machine of the class specified, in combination, a gear-blank carrier supported for oscillatory movement about a rela-tively-fixed axis, a cutter-carrier supported for oscillatory movement about a relatively fixed axis, means for oscillating said carriers in synchronism and in coinciding directions, and with relatively-varying velocities, a pair of rotative cutters supported by the cuttercarrier with their peripheries in planes radial to a common axis, and operatively connected for angular adjustment relatively to, and transversely of each other, and means for adjusting said cutters relatively to each other, substantially as described. 26 th. In a machine for generating gear-teeth, the combination with the oscillaatory gear-blank carrier and oscillatory cutter-carrier, and with actuating mechanism for imparting comparative movements of rela-tively-varying velocities to said blank-carrier and cutter-carrier, of adjusting mechanism for effecting a change in the relative velorities of said blank-carrier and cutter, substantially as described. 27 th. In a machine of the class specified, in combination, a
gear-blank carrier supported for rotary-reciprocating movements, an actuator in operative connection with said blank-carrier, a cuttercarrier supported for oscillatory movement about a relatively-fixed axis, an actuator in operative connection with the cutter-carrier, a synchronizing connector between, and operatively connecting, the cutter-carrier, the cutter-carrier actuator, and a blank-carrier actuator, a rotative cutter adapted for movement transversely of the blank-carrier, and actuating mechanism in operative connection with the cutter-carrier actuator and blank-carrier actuator, and simultaneously actuating the cutter-carrier and blank-carrier, substantially as described and for the purpose set forth. 28th. In a machine for generating gear-teeth, in combination, a gear-blank carrier supported for oscillatory movement, a cutter-carrier embodying an oscillatory member, supported for oscillatory movement in a path transversely of the axial line of the blank-carrier, and a cuttercalrier supported by the oscillatory member for movement transversely of the path of movement of said member, actuating mechanism connected and adapted for antomatically oscillating said cuttercarrier and blank-carrier in synchronism, a cutter-slide-actuating device controlled by the oscillatory movement of the cutter-carrier, and adapted for automatically advancing said cutter-slide, toward and from the axial line of the cutter-carrier, substantially as described. 29th. In a machine for generating gear-teeth, the combination with the gear-blank carrier, and with means for automatically oscillating said carier, of an oscillatory cutter-carrier in operative connection with the gear-blank carrier, and comprising a cutter-slide-carrying member supported for oscillatory movements trans versely of the axis of the blank-carrier, a radially-disposed cutterslide supported on said cutter-slide-carrying member for adjustment in a plane corresponding with the path of movement of said cutter-slide-carrying member, and also supported for reciprocatory movement in a plane transversely of the path of novement of said carry. ing member, and means for simultaneously oscillating said carrying member, and advancing the cutter-slide in synchronism with the oscillatory movement of the blank-carrier, substantially as described and for the purpose set forth. 30th. In a machine for generating gear-teeth, in combination, a gear-blank carrier, a cutter-carrier, means for imparting comparative oscillatory movements to said blank-carrier and cutter-carrier, synchronously, and adjusting means for changing the relative velocities of said gear-blank carrier and cutter-carrier, substantially as described. 31st. In a machine for generating gear-teeth, a blank-carrier, and a cutter-carrier operatively connected for synchronous rotary-reciprocating movements about their axes radiating from a common centre, in combination with mechanism for simultaneously actuating said carriers, and with means for changing the range of movement of one carrier relatively to that of the other carrier, substantially as described. 32nd. In a machine for generating gear-teeth, a gear-blank carrier, and a cutter-carrier operatively connected together for synchronous rotary-reciprocating movements about a common centre, in combination with actuating mechanism operatively connecting and ments of relatively-varying velocities to rotary-reciprocating movements of relatively-varying velocities to said gear-blank carrier and cutter-carrier in synchronism, and adjusting means in connection with said actuating mechanism, and adapted for effecting a change in the relative velocities of said gear-blank carrier and cutter-carrier,
substantially as described. 33rd. In a machine for generating gear-
teeth, in combination, an oscillatory gear-blank carrier, an oscillatory cutter-carrier, actuating mechanism in connection with, and adapted for synchronously imparting comparative oscillatory movements of relatively-varying velocities to said gear-blank carrier and cutter-carrier, and an adjusting device in connection with said actuating mechanism, and adapted for effecting a change in the velocity of one carrier relatively to that of the other carrier, substantially as described. 34th. In a machine for generating gearteeth, in combination, an oscillatory gear-blank carrier, an oscillatory cutter-carrier, a gear-blank-carrier actuator, a cutter-carrier actuator, means in connection with, and adapted for imparting comparative movements of relatively-varying velocities to, said actuators, and an adjusting device in connection with said actuators, and adapted for effecting a change in the relative velocities of said actuators, substantially as described. 35th. In a machine for generating gear-teeth, the combination with the oscillatory blankcarrier and its actuator, and with the oscillatory cutter-carrier and its actuator, of a shiftable reciprocating connector intermediate to the blank-carrier actuator and cutter-carrier actuator, and adapted for synchronously actuating the blank-carrier and the cutter-carrier actuator, and driving mechanism in operative connection with one of said actuators, substantially as described and for the purpose set forth. 36th. In a machine of the class specified, the combination with the blank-carrier and its actuator, of an oscillatory cuttercarrier having a sector at one side thereof, a reciprocatory rack in mesh with said sector, actuating mechanism for said rack, and a connector between said rack and the gear-blank-carrier actuator, substantially as described. 37 th. In a machine of the clase specified, the combination with the oscillatory blank-carrier and its actuator, of an oscillatory cutter-carrier, and a cutter carrier actuator operatively connected for synchronous movement with the Blankcarrier actuator, and consisting of a sector carried by the cutter-carrier, a slide supported for vertical reciprocation, and having a rack in mesh with the sector, a driving-wheel, and a pitman adjustably connected at one end with the driving-wheel and pivotally connected at its opposite end with the rack-slide and adapted for reciprocating said rack, to impart oscillatory movements to the cutter-carrier and blank-carrier in synchronism, substantially as described. 38 th. In a machine of the class specified, in combination, a cutter carrier supported for oscillatory movement, a blank carrier supported for rotary-reciprocatory movements, a cutter-carrier actuator having a vertically-reciprocating member, a blank carrier actuator having a horizontally-reciprocating member, a transverse-bar carried by the reciprocating member of one of said actuators, and having a sliding-connection with the reciprocating member of the other of said actuators, and means for reciprocating said transverse-bar, to synchronously actuate the cutter-carrier and the blank-carrier, substantially as described, and for the purpose set forth. 39th. In a machine of the class specified, the combination with the oscillatory cutter-carrier and its actuator, and with the rotary-reciprocatory blank-carrier and its actuator, of a transverse bar adjustably carried by one of said actuators, and having a sliding connection with the other of said actuators, and actuating mechanism in connection with the traverse-bar carrier, and adapted for synchronously actuating the cutter-carrier and the blank-carrier, substantially as described. 40th. In a machine of the class specified, the combination with the cutter-carrier having a reciprocatory member, and with a blank-carrier actuator and its reciprocator member, of a traverse bar pivotally connected, approximately mid way of its length to one of said reciprocatory nuembers, and having a sliding-connection with the ther of said reciprocatory members and adjusting means in connection with said traverse-bar and its carrier, and adapted for effecting a change in the angular relation of said traverse-bar to said reciprocating members, substantially as described. 41st. In a machine of the class specified, a cutter-carrier actuator having a vertically-reciprocatory member, and a blankcarrier actuator having a horizontally-reciprocatory member, in combination with a transverse-bar having sliding connection with the horizontaily-reciprocatory member, and having a pivotal con nection with the vertically-reciprocatory member, an adjusting device carried by the vertically-reciprocating member, and in operative connection with the traverse-har, and an indicator co-operat ing with said adjusting device, to indicate the angular position of the traverse-bar relatively to the horizontally-reciprocating members, substantially as described. 42nd. In a machine of the class specified, two independent radius-bars supported for oscillatory movement, and having concentric axes at the inner ends thereof, and supported at their outer ends for transverse adjustment relatively to each other, in combination with two independent cutter-carrying slides supported by the two radius-bars, respectively, for movement longitudinally of said bar, oscillating mechanism in operative connection with the radius-bars, and feeding mechanism in operative connection with, and adapted for simultaneously imparting, a feeding movement to the two cutter-slides, substantially as described and for the purpose set forth. 43rd. In a machine of the class spe cified, the combination with the two transversely-adjustable, cutter-slide-carrying radius-bars, and with the cutter-slides carried thereby, of a pair of feed-screws carried by the two radius-bars, respectively having screw-threaded bearings in the two cutter-slides, respectively, a telescopic universal shaft, journalled at opposite ends in bearing upon the two radius-bars, respectively, and operatively connected with the feed-screws by means of gearing, and means subetantially as described, for actuating said shaft and feed-screws, simulta-
neously, substantially as described. 44th. In a machine of the class specified, the combination with the blank-mechanism frame having a segmental guideway, of a slide supported for adjust:ment concentric with said guideway, and having transverse blank-carriersupporting bearings, and a blank-carrier supported for longitudinal adjustment and rotary reciprocations in said bearings, and comprising a cylindrical bearing or sleeve supported for longitudinal adjustment in the bearings of the slide, and carrying means for adjusting the same transversely of said slide, and a blank-carrying spindle carried for rotary reciprocations in said cylindrical bearing, and adapted for longitudinal movement with said bearings, substantially as described. 45th. In a machine of the class specitied, the combination with the oscillatory cutter-carrier and its actuator, of a rotary-reciprocatory gear-blank carrier supported for radial and concentric adjustment, relatively to an arbitrarily-fixed axis, an actuator in operative connection with said blank-carrier, and also in operative connection with the cutter-carrier actuator, and an index device carried by said gear-blank-carrier, and adapted for indexing the gear-blank, substantially as described. 46th. In a nachine of the class specified, the combination with the oscillatory cutter-carrier and its movable cutter-slide, and with the cuttercarrier actuating rechanism, of a stopping device controlled by the movements of the cutter-slide, and adapted for antomatically stopping the operation of the actuating mechanism and cutter-slide, substantially as described. 47 th . In a machine of the clas specified, the combination with the oscillatory and radially movable cutterslide, and with the cutter-slide-actuating mechanism embodying two shiftable clutch-members, of a shifting device in operative connection with one of said clutch members, and adapted to be automatically operated by the radial movement of the cutter-slide, to throw the clutch-members out of operative engagement, and stop the movement of the cutter-slide, substantially as described. 48th. In a machine for generating gear-teeth, the combination with the frame-work, of a segmental cutter-carrier guideway, and a segmental blank-carrier guideway in rectangular disposition relatively to each other, and their geometrical axes in substantially the same plane, a cutter-carrier movably supported on the cutter-carrier guideway, a blank carrier movably supported on the blank-carrier guideway, and means for actuating said carriers, substantially as described. 49th. In a machine for generating gearteeth, the combination with the frame-work having a verticallydisposed segmental guideway, of a segmental gear-blank-carrier slide adjustably supported by said guideway, a rotary-reciprocatory blank-carrier tdjustably carried by said slide, and means in operative connection with, and adapted for imparting a rotary-reciprocatory movement to the blank-carrier, substantially as described. $50 t h$. In a machine for generating gear-teeth, the combination with the frame-work having the segmental blank-carrier-supporting guideway, and with the rotary-reciprocating blank-carrier, of a pinion carried by said carrier, an oscillatory segmental rack supported for oscillatory movements, and a pair of gears intermediate to and operatively connecting the oscillatory rack and the pinion upon, the blank-carrier, substantially as described, and for the purpose set forth. 51st. In a machine for generating gear-teeth, the combination with the frame-work, and with the rotary-reciprocatory blankcarrier, of a segmental rack pivotally supported for oscillatory movement, in a bearing upon the frame, a train of gears operatively connecting the blank carrier and oscillatory rack, and means in operative connection with, and adapted for oscillating, said rack, substantially as described. 52 nd . In a machine for generating gearteeth, the combination with the frame-work, and with the cuttercarrier and gear-blank carrier, of two oppositely-disposed sectors, one of which is in operative connection with the cutter-blank carrier, and the other of which is in operative connection with the gear-blank carrier, and both of which are operatively connected together for synchronous movenent, and means for synchronously actuating said sector, substantially as described, and for the purpose set forth. 53 rd . In a machine for generating gear-teeth, the combination with the frame work having a segmental guideway, of the blank-carrier slide adjustably carried by said guideway, a rotaryreciprocatory blank-carrier supported for transverse adjustment, relatively to said slideway, a driven-gear carried by said carrier, a driving-gear in mesh with said driven-gear, a bevel-gear carried by the driving-gear, an oscillatory segmental bevel gear in mesh with the first-mentioned bevel-gear, and means, substantially as described, for oscillating said segmental gear, to impart rotary reciprocatory movement to the gear-blank-carrier, substantially as described.
No. 51,055. Pineapple Knife. (Couteau pour ananas.)
Mary Frances Postley, New York, State of New York, U.S.A., 18th January, 1896; 6 years. (Filed October 14th, 1895.)
Cluin.-1st. A device for cleaning, paring and otherwise treating fruits and vegetables, comprising a handle with one end of which is connected an attachment, comprising a tubular section, or base which is cut away on the opposite side and provided with a cutting edge and a curved point, substantially as shown and described. 2nd. A device for cleaning, paring and otherwise treating fruits and vegetables, comprising a handle with one end of which is connected an attachment, comprising a tubular section, or base which is cut away on the opposite side and provided with a cutting edge and a curved point, said handle being also provided with a fender or guard, substantially as shown and described. 3rd. A device for paring,
pealing, cutting and otherwise treating fruits and vegetables, comprising a handle as A, to one end of which is secured a tubular

attachment the sides of which are cut away, one side being cut a way in the form of a double or ogee curve, whereby a curved cutting blade is formed provided with a curved projection or point, substantially as shown and described.
No. 51,056. Snap-Hook. (Crochet \mathfrak{a} ressort.)

Frank White and Ira F. White, both of Pomona, California, U.S.
A., 18th January, 1896 ; 6 years. (Filed October 16th, 1895.)

Claim.-An improved snap hook consisting of a blank adapted to be bent into shape, having a front portion to form the book-head and nose thereof, a rear portion to form the lugs for the end of the loop, and an intervening body portion the side portions of which are cut to form an elongated slot in the back of the body, and having also a recess in its back central portion as an outlet for sand, a slidable bolt adapted to be seated in said barrel having a knob with bevelled under portions to project through the slot formed by the cut out sides the body portion, and a loop or eye on the rear extremity of the barrel portion, substantially as herein described.

No. 51,057. Umbrella. (Parapluie.)

Gustave J. Jaccard, Bayonne, New Jersey, U.S.A., 18th January, 1896; 6 years. (Filed October 18th, 1895.)
Claim.--1st. An umbrella frame, comprising a plurality of ribs having braces hinged thereto, said ribs being provided with balls or spheres at their upper ends and said braces having balls or spheres at their lower ends, and two sectional collars mounted upon a stick or rod, the upper one of which is stationary and the lower slidable upon said stick, which collars are provided with spherical sockets adapted to engage respectively with the balls or spheres of the ribs and braces, substantially as shown and described. 2nd. In a umbrella frame, the combination of a plurality of ribs having braces hinged thereto, said ribs being provided with balls or spheres at their upper ends and said braces having balls or spheres at their lower ends, with two sectional collars mounted upon a stick or rod, the upper one of which is stationary and the lower slidable upon said stick or rod, which collars are provided with spherical sockets adapted to engage respectively with the balls or spheres of the ribs and braces, substantially as shown and described. 3rd. In an umbrella frame, the combination of a plurality of metallic ribs having braces hinged thereto, said ribs being provided with spherical knobs upon their upper ends and said braces having spherical knobs at their lower ends, and two collars mounted upon a stick or rod, which collars comprise two sections tach and contain spherical sockets which engage with the spherical knobs of the ribs and braces, substantially as shown and described.

No. 51,05s. Process of Manufacturing Carbonic Acid, Etc. (Procédé de fabrication d'acide
carbonique, etc.) carbonique, etc.)
Frick W. Encquist, Flushing, New York, U.S.A., 18th January, 1896; 6 years. (Filed July 22nd, 1895.)

Claim.-1st. The process of treating a solution of nitre-cake or another alkaline acid sulphate with magnesite, substantially as described. 2nd. The process of producing carbonic acid and an alkaline sulphate and magnesium sulphate by treating a solution of an alkaline acid sulphate with magnesium carbonate or magnesite, thereby evolving carbonic acid gas and causing an alkaline reaction, thus precipitating iron, aluminous and silicious matters and other impurities, substantially as described. 3rd. The process of treating a hot solution of nitre cake with magnesite and separating the excess of Clauber's salts by means of crystalization, then purifying the same, sulostantially as described. 4th. The process of treating a solution of an alkaline acid sulphate with magnesite, and a corresponding alkaline chloride, forming carbonic acid, an alkaline sulphate and magnesium chloride, substantially as described. 5th. The process of treating a solution of an alkaline acid sulphate with magnesite, producing carbonic acid, an alkaline sulphate. and a mother liquor containing an alkaline sulphate and magnesium sulphate, and decomposing the same with a corresponding alkaline hydrate or carbonate. forming magnesium hydrate or carbonate and a corresponding alkaline sulphate.

No. $5 \mathbf{1 , 0 5 9}$. Manufacture of Aluminate, etc.
 (Fabrication d'aluminite etc.)

Dimitry Alexandrowitch Penickoff, Petersburg, Russia, 18 th January, 1896; 6 years. (Filed 11th June, 1895.)
Claim.-The treatment of substances containing alumina or silicic acid, by means of the sulphates of alkalies or alkaline earths in the presence of metal sulphurets for the obtainment of silicates, or aluminates and lye products such as hydrochloric acid, chlorine or chloride of aluminium according to the particular method of operation adopted as hereinbefore explained.

No. 51,060. Rubber Dam Clamp.

(Serre-châssis pour serrement en caoutchouc.)

SV060
Henry Forest Libby, Boston, Massachusetts, U.S.A., 18 th Junuary, 1896; 6 years. (Filed 17 th October, 1895.)
Chaim.-A rubber dam clamp, having two arms, one adapted at its end to engage and clasp a tooth at the outer side thereof and a clasping shoe pivoted to the end of the other arm and provided above its pivot with a clasping edge to engage and clasp said tooth at its neck and at the inner side thereof, to carry the end of said other arm below said neck and hold the same in prosition by engagement of its clasping edge with the neck of said tooth, whereby the tooth receives much of the pressure necessary to retain the clamp in position, substantially as described.

No. 51,061. Dreas Stay. (Baleines de robes.)

Allen Bagly, Ipsilanti, Michigan U.S.A., 18th January, 1896 ; 6 years. (Fled 18th July, 1895.)
Claim.-1st. A dress stay formed with a woven fabric having metal blades woven into the fabric as an integral part of the structure thereof substantially as set forth. 2nd. A dress stay formed with a woven fabric having metal blades interwoven thereinto as a component part of the structure of the fabric, said fabric having lateral selvedges through which the stay may be stitched into place, substantially as set forth. 3rd. A dress stay formed with a woven fabric having metal blades interwoven thereinto, said fabric woven with lateral flexible selvedges through which the stay may be stitched into place, the ends of the stay being provided with shields substantially as set forth. 4th. A dress stay formed with a woven fabric having stiffening blares interwoven thereinto as an integral part of the structure of the fabric, the threads of said fabric woven, to form lateral selvedges, shields covering the ends of said fabric and staples inserted through said fabric outside said blades and having their prongs compressed upon the shield on the side thereof opposite the head of the staple, substantially as set forth.

No. 51,062. Steel Harrel. (Baril en acier.)

John McDonald, Petrolea, Ontario, Canada, 18th January, 1896; 6 years. (Filed 2nd July, 1895.)

- Claim.- 1st. A body R, of a barrel formed of steel, iron or other equivalent material, and metal clips C, C, secured thereto, in combination with hoops D, D, of wood or other equivalent material, the accidental displacement of the latter being avoided and completely prevented ly bending up the ends of said clips C, after the hoops D have been driven thereon, substantially as and for the purpose set forth. 2nd. A body R formed of steel, iron or other equivalent material, in combination with hoops D, D, the central one of the latter being thicker or set out further from the body of the barrel than the other on end hoops, or gradually decreasing the thickness of said hoops from the centre to each end, whereby the bilge is formed in said hoops in place of in said body, substantially as and for the purpose set forth. 3rd. A body R, of a barrel constructed of steel, iron or other equivalent material formed by bending in a cylindrical or other suitable form a flat sheet of metal, and overlapping the side edges of said sheet, and rivetting and soldering or otherwise securing the overlapping edges together to form a tight joint at this point, and metal clips C, C, secured to said body, in combination with the hoops D, D, of wood or other equivalent material, the accidental displacement of said hoops being avoided and completely prevented by bending up the ends of said clips C , after the hoops D have been driven thereon, substantially as and for the purpose set forth. 4th. A body K , of a barrel formed of steel, iron or other equivalent material, and the metal clips C, C, and heads or ends H, H, formed with the flanges A, in combination with the hoops D, D, formed of wood or other equivalent material, the central one of which sets out further from the body than the other or end hoops, or gradually decreasing the thickness of the hoops from the centre towards each end for the purpose of forming the bilge to the barrel in the hoops, and not in the body, the accidental displacement of said hoops being avoided and completely prevented by the bending up of the ends of the clips C, after the hoops D have been driven thereon, substantially as and for the purpose set forth.
No. 51,063. Machine for Sprinkling Paris Green on Potatoes. (Arrosoir pour patates.)

Allison Redden and Levi Redden, both of Kentville, Nova Scotia, Canada, 18th January, 1896; 6 years. (Filed 5th August, 1895.)

Claim.-The combination of the wheels A, B, C, the handles I, I, the arms E, L, the adjusting levers $1,2,3$, and the equalizing rods 4,4 , substantially as and for the purpose hereinbefore set forth.
No. 51,064. Fhushing Tank. (Cuvette pour latrines.)

Charles Malcolm Cookson and Hunter Plows, Victoria, British Columbia, Canada, 20th January, 1896; 6 years. (Filed 29th August, 1895.)
Claim. - 1st. A closet bowl constructed in a series of sections, being of elongated form and adapted to be covered by a seat containing a multiple of holes, as and for the purpose specified. 2nd. An extension closet bowl adapted to accommodate a seat containing a multiplicity of holes and provided with a marginal rim, a flushing pipe located beneath the rim or flange of the bowl, a second flushing pipe entering the body portion, and a flushing tank adapted to supply water to the said flushing pipes, as and for the purpuse set forth. 3rd. In water closets, a flushing tank provided with a siphon, a service box in which a leg of the siphon in entered, a service pipe supplying water to the tank outside of the service box, a tilting receptacle located within the service box and receiving water from the siphon, and fushing pipes connected with the said service box, as and for the purpose specified.
No. $\mathbf{5 1 , 0 6 5}$. Implement for Driving Tacks.
(Machine à chasser la broquette.)

William T. Hooknagle, Baltimore, Maryland, U.S.A., 20th January, 1896; 6 years. (Filed 22nd Oct., 1895.)
Claim. - 1st. The combination of a plunger tube, an inclined guide or race-way leading to said tube, a step or seat at the end of the race-way for a single tack, a driving plunger which serves when down to hold the single tack on its seat and a retainining device between the plunger and race-way for holding the column behind the seat when the plunger is up, substantially as described. 2nd. The combination of a plunger tube, a plunger reciprocating in and guided by said tube, a ract-way opening laterally into the tube, means for delivering the tracks singly to the passage, and a magnet opposite the delivery end of the race-way to draw the tacks from
the raceway and hold them in position to be driven by the plunger, substantially as described. 3rd. In a tack-driving implement, the combination of a plungor tube or barrel, a stepped race-way, leading to said tube, a retainer for retaining the column behind the foremost tack, and a stationary magnet opposite the race-way for seating and holding the tack, in the plunger-tube, substantially as described. 4th. In a tack-driving implement having a magnetic tack lifter arranged at one side of the tack receptacle, the combination with such lifter, of a hopper or chute and an armature arranged as and for the purpose described.

No. 51,066. Billiard Table Apparatus.
(Appareil pour Tables de billard.)

Arthus Albert Leaker, Montreal, Quebec, Canada, 20th January, 1896; 6 years. (Filed 4th September, 1895.)
Claim. -1 st. In a billiard table apparatus, the combination of an adjustable rim in sections provided with inflated and cloth covered cushions and adjustable pockets and an ordinary table to which the sections are clamped. 2nd. A billiard cushion consisting of an inflated tube attached to a suitable rim und covered with cloth as described.
No. 51,067. Wreck Raising Appliance.
(Appareil de sauvetaye.)

James Bell, West Derby, Williain Charles Melville, Liverpool, and James Willian Foster, Seacombe, all in England, 20th January, 1896; 6 years. (Filed 9th October, 1895.)
Cluim.-1st. In appliances for raising sunken ships, a pontoon having transversely arranged wells or spaces through which the ropes used to lift the ship are passed, by which such ropes may be placed and held at any desired point laterally on the pontoon, and a vertical or substantially vertical pull or strain is put upon the pontoons when raising the ship. 2nd. In appliances for raising sunken ships, a pontoon having a plurality of comparatively long and narrow transverse wells u in and thought it, through which the lifting ropes are adapted to be passed to the wreck at any point, and longitudinal chambers running transversely to said wells at each side of the pontion, between the ends of said wells and the ponton sides. 3rd. In appliances for raising sunken ships, pontoons arlapted to be placed and used on either side of the vessel to be raised, having transversely arranged wells through them, through which the lifting
ropes are passed, and a winch above each of said wells, having a rope winding barrel for hauling up the lifting ropes, and a secondary revolving reel or barrel for holding the unused portion of the ropes, substantially as described. 4th. In appliances for raising sunken ships, pontoons adapted to be placed and used on either side of the vessel to be raised, having transversely arranged wells through them, through which the lifting ropes are passed, a winch above each of said wells, having a rope winding barrel for hauling up the lifting ropes, and a secondary revolving rell or barrel for holding the unused portion of the ropes, and a plurality of compartments in the pontoon adapted to be filled with and emptied of water, substantially as described. 5th. A pontoon for raising sunken ships, comprising a plurality of water tight compartments at either side, formed by longitudinal bulkheads, as f, ond transverse bulkheads j^{2}, and intermediate chambers between said compartments, substantially as set forth. 6th. A pontoon for raising sunken ships, coniprising transverse wells b through which the lifting ropess are passed, longitudinal compartments at each side of the pontoon between said wells and the sides of the pontoon, intermediate chambers between the side compartments and the wells, duplex hollow bollards e on the deck of the pontoon at either side, and in line with the transverse wells, a hollow box kelson i serving as a water conduit, running through the side compartments, and valves in each of said compartments in said kelson, having their operating means disposed within said hollow bollards, substantially as set forth. 7th. The combination in a sunken ship raising pontoon, of longitudinal compartments at each side of the ponteron, a hollow kelson i running through said compartments, a valve j in each of said compartments arranged in connection with a seat in the bottom of the kelson, and having an actuating spindle extending to the deck of the pontoon, substantially as set forth.

No. 51,068. Food Compound. (Composé alimentaire.)

Firman Delangle, Lyon, France, 20th January, 1896; 6 years. (Filed 18th April, 1895.)
Claim.-A food compound consisting of sterilized raw meat dried and ground to an impalpable powder, and chocolate, cocoa, paste, and like products mixed together in about the proportions stated.
No. 51,089. Faucet. (Robinet.)

Elijah Upson Scoville, Manluis, New York, U.S.A., 20th January, 1896 ; 6 years. (Filed 21st May, 1895.)
Claim.--1st. A faucet having its valve-seat facing toward the liquid-receiving end of the faucet, and a valve riding on said seat and pressed thereon by force of the liquid entering the faucet, as set forth. 2nd. A faucet composed of separable parts, one of which is provided with a valve-seat adjacent to the other part and with a discharge duct leading from said valve seat, and a valve riding on said seat and presenting its back toward the liquid-inlet in the other of the aforesaid parts, as set forth. 3rd. A faucet composed of separable parts, one of which is provided with a valve-seat at the end adjacent to the other part, and with a discharge dact leading from said valve-seat, and the other of said parts provided with a chamber surrounding the valve-seat, and a valve sliding on said seat and presenting its back toward the liquid-inlet of the faucet, as set forth. 4th. A faucet composed of separable receiving and discharging sections, the discharging section provided with a valve-seat on the end adjacent to the receiving-section, a discharge-duct leading from said valve-seat, and a port extending from the valve-seat through the discharging-section, a handle extending through the aid part for operating the valve, the receiving section forned with a chamber surrounding the valve seat, and the valve riding on said seat and presenting its back toward the liquid-inlet of the valve, as set forth. 5th. The combination of the receiving section C formed with the chamber c, the discharge section C^{1} formed with the valve-seat e, within said chamber and with the discharge-duct h, and jort l extending from said valve-seat, the valve v sliding on said seat, a valve-operating stem connected to the discharging-section, and havthe finger r extending into the aforesaid port and engaging the
valve, as set forth. 6 th. The combination of the section C formed
with the chamber c, the section C^{1} formed with the valve-seat e within said chamber and with the discharge-duct $h, j^{\text {ort }} l$, and the recess f, the valve v riding on said seat, the cap D secured over said recess and provided with the internally screw-threaded hub j, the stem p working in said hul, and the finger r extending from said stem through the aforesaid jort and engaging the valve, as set forth. 7 th . The combination of $t^{t} \mathrm{se}$ section C formed with the chamber c, the section C^{1} formed with the valve-seat e inside of said chamber, and with the discharge-duct h, port l and recess f, the valve v riding on said seat, the cap D, provided with the internally screw-threaded bub j, the stem p having a screw-threaded portion working in said hub, and the finger r swivelled on said stem and extending through the port l, and engaging the valve, as set forth. 8tn. In combination with section C, formed with the chamber c, the section C^{1}, formed with the valve-seat e, inside of said chamber and with the discharge-duct h, port l, and recess f, the valve v, riding on said seat, the cap D, provided with the internally screw-threaded hub j, the stem p, working in said hub and provided with the collar t, and the finger r, formed with the slot t^{1}, and crotch t^{11}, over said slot and detachably connected thereby to the stem, as set forth and shown. 9th. In combination with the faucet section C^{1}, valve \boldsymbol{v}, and the cap D, provided with the internally screw-threaded hub j, the stem p, formed with the bushing s, screw threaded externally and internally and working. in said hub, the screw-threaded stemextension $p^{\mathbf{1}}$, working in said bushing, and the finger r, extending from said stem-extension and engaging the valve as set forth.

No. 51,070. Machine for Cutting and Grinding ©ork.
(Machine pour dégrossir et couper le liège.)

Hakon Segvart Larsen, Christiana, Norway, 20th January, 1896 ; 6 years. (Filed 8th May, 1895.)
Claim. - 1st. In a machine for cutting or grinding corks, the combination with a reservoir for the corks adapted to be moved step by step, of a rotatable disc having a cutting or grinding surface and a device adapted to catch hold of and to rotate said corks while being treated by the said disc, substantially as described. 2nd. In a machine for cutting or grinding corks, the combination with a reservoir, a rotary dise having a circular cutting edge or a plane grinding surface, of a pair of spindles adapted to be rotated at certain intervals and carried by a swinging frame adapted to be moved to and fro in front of the said cutting or grinding tool, substantially as set forth. 3rd. In a cork grinding machine, the combination with a rotary disc having a grinding surface on one of its sides, a shaft upon which the said dise is mounted, and a cam mechanism for imparting to the shaft at intervals an axially reciprocating move ment, substantially as and for the purposes described. 4th. In a cork grinding or cork cutting machine, a device for catching hold of and rotating the cork piece while it is treated by the cutting or grinding disc and for transporting the cork pieces one by one from a magazine for the corks, consisting in combination with a swinging frame which is swung laterally at intervals of a turning spindle N , and a rotary catch-spindle 0 , said spindles being adapted to bold the cork pieces between pointed discs on their ends, the turning spindle being at intervals put in rotation by a shaft T, journalled in the swinging frame and having a friction wheel U, only gears with a frection wheel on the driving shaft of the machine, when the swinging frame is in its working position, substantially as described. 5 th. In a cork cutting or grinding machine, a wheel B, having on its periphery teeth A, between which and springs E , the cork pieces are placed, said wheel being moved step by step so that the corks are transported one by one in front of the cutting or grinding tool to be caught between the ends of the spindles in the swinging frame, substantially as described.

No. 51,071. Apparatus for Feeding Sheets of Paper to Printing Machines. (Mécanisme d'alimentation du papier aux presses à imprimer.)

George Duncan, Liverpool, England, 20th January, 1896; 6 years. (Filed September 11th, 1894.)
Claim. -1st. In apparatus for feeding sheets of paper to printing machines, the combination of adhesive discs or rollers mounted to rotate and to rise and act vertically above the sheets to be fed with actuating devices for securing such rotation and rising thereof, take-off grippers, and sheet separators to brush in form, substantially as described and shown: 2nd. In apparatus for feeding sherts of paper to printing machines, the combination with the feeding devices in the form of adhesive discs or rollers, of disengaging gear or appliances in lever and detent form for stopping the machine when a sheet fails to be fed, substantially as described and shown. 3rd. In apparatus for feeding sheets of paper to printing machines, compres. sing adhesive discs or rollers, appliances in pusher and stop form for straightening or bringing the sherts into position, substantially as described and shown. 4th. In apparatus for feeding sheets of paper to printing machines, the combination of adhesive dises or rollers, actuating apparatus, sheet separators, and take-off griperers, substantially as shown and for the purposes set forth. 5th. In apparatus for feeding sheets of paper to printing machines, the combination of adhesive discs or rollers, actuating apparatus, sheet separators, take-off grippers, and sheet straightening devices, substantially as shown and for the purposes set forth. 6th. In apparatus for feeding sheets of paper to printing machines, the combination of adhesive discs or rollers, actuating apparatus, sheet separators, takeoff grippers sheet straightening devices, and disengaging gear, substantially as shown and for the purpose set forth.
No. 51,0yR. Dyeing Machine. (Machine à teindre.)

Tom B. Bowers, Chester, Pennsylvania, U.S.A., 20th January, $1896 ; 6$ years. (Filed June 6th, 1895.)
Claim. - 1 st. In a dyeing machine, the combination of the kettle, the perforated cylinder having doors in its sides, means for rotating said cylinder, and a cover having side doors through which access can be had to the cylinder doors, substantially as described. 2nd. In a dyeing machine, the combination of the kettle, the perforated cylinder divided into compartments by longitudinal plates and supported in the kettle by a central shaft to which the plates are attached, doors in the sides of the cylinder for access to the compartments and means for rotating the cylinder, with the cover having a flue, and doors in the side of the cover through which access can be had to the doors of the cylinder, and the rear door in the cover for access to the kettle, substantially as described. 3rd. The combination, in a dyeing machine of the kettle, the perforaterd cylinder having a central shaft journalled on the kettle, the worm gearing for rotating said cylinder, the longitudinal division plates in the cylinder, the perforated doors in the sides of the cylinder,
and means for closing them substantially as described, with the arched cover having a rear door for access to the kettle, and the sliding doors in front, through which access can be had to the cylinder doors, said cover having guides for the sliding doors, all substantially as and for the purpose set forth.

No. 5l,073. Oil Filter. (Filtre.)

William J. Bailey, Evansville, Indiana, U.S.A., 21st January, 1896 ; 6 years. (Filed 28th December, 1895.)
Claim.-1st. The combination of a filter having a sub-chamber, a second chamber with which the upper part of said first chamber is directly connected, a third chamber located above said second chamber, an air vent leading from the second chamber upward into the third chamber, and a filtrant interposed between said second and third chambers, substantially as set forth. 2nd. The combination of the tank c, the chamber A fitting in the upper end of said tank and having a perforated filtrant cup or box a depending from the bottom thereof, the removable perforated cap, fitting in said cup or box, the tank Garranged below the tank c, and having a false bottom provided with openings, a perforated filtrant box arranged on said bottom over said openings therein, the air vent J and a stand pipe extending upward in said tank c, and communicating with the tank G^{1} beluw said false bottom, substantially as set forth. 3rd. The combination with the chamber for the reception of the crude oil, and a second chamber for the filtered oil, of a filtrant interposed between said chambers and being composed of charred bone, pulverized with silk, cheese cloth and wool, substantially as set forth.

No. 51,074. Device and Apparatus for Tanning Hides. (Appareil pour tanner les peaux.)

Eugène Worms, Paris, France, 21st January, 1896; 6 years. (Filed January 9th, 1896.)
Claim. - 1st. The process of tanning hides, which consists in gradually heating them and the tanning liquor within a closed vessel under exclusion of the air, so as to prevent oxidation of the liquor, the degree of heating being regulated by a safety valve in combination with the use of a thermometer and pressure gauge, while at the same time the water is expelled from the cells of the tissue of the hides by effecting its decomposition by an electric current, substantially as described. 2nd. In the process of tanning
under the combined action of heat and electricity, a tanning liquor consisting of the combination of tanning with vegetable solvents, substantially as described. 3rd. Apparatus for carrying out the process of tanning under the combined action of heat and electricity, consisting of the combination of a closed revolving drum with hollow trunnions, a safety valve upon one of the said trunnions for regulating the pressure and temperature, and appliances for subjecting the hides within the drum to the action of electric currents, substantially as described.

No. $51,0{ }^{2} 5$. Fastener for Neckties. (Agrafe de cravate.)

William C. McDougảll, Cheboggan, Michigan, U.S.A., 21st January, 1806 ; 6 years. (Filed 8th January, 1896.)
Claim.-The improved necktie fastener, composed of the slotted shield, the metal guard which is bent over the edges of the slot and secured by clips, the latch plate pivoted to looth shield and guard, and the U-shape spring attached to the guard and lateh plate and lying flat upon the latter, as shown and described.
No. 51,076. Pneumatic Tire. (Bandage pneumatique.)

David Watson Alexander, Toronto, Ontario, Canada, 21st January, 1896; 6 years. (Filed January 2nd, 1896.)
Claim.-1st. A pneumatic tire comprising an envelope having on one edge a double flap integral and having inserted between it the flap of the opposing edge, the parts being cemented together and of equal total thickness as the remaining portion of the leather, as and for the purpose specified. 2nd. A pneumatic tire comprising an envelope having on one edge a double flap integral, and having inserted between it, the single flap of the opposing edge, the parts being cemented together and of equal total thickness as the remaining portion of the leather, and a row of stitching for securing the inner two edges together, such stitching being covered by the outer edge flap, as and for the purpose specified. 3rd. The combination with the tire having the edges suitably secured internally, of the A^{1}, through the inner flap opposing flap a^{4}, with a row of stitching A^{1}, through the inner flap a^{4} and the flap a^{5}, as and for the purpose specified. 4th. The combination with the tyre having the ends of the leather suitably secured together, of the opposing flaps having the opening in them, staples extending through one flap and openings in the outer flap, and a wire extending through the outer ends of the staples, as and for the purpose specified.
No. 51,077. Sand-Band. (Garde-poussière.)
Harry W. Russell, Dowagiac, Michigan, U.S.A., 21st January, 1896 ; 6 years. (Filed January 2nd, 1896.)

Cheim.-A sand-band, comprising a ring-shajed section a straddling section on which serews the ring-shaped section, and a wedge

engaging the said straddling section, the axle and the ring shaped section, to fasten the several parts in position on the axle, substantially as shown and described.

No. 51,078. Hinge. (Charnière.)

Oliver H. P. G. Spencer, Mount Carmel, Illinois, U.S.A., 21st January, 1896; 6 years. (Filed January 2nd, 1896.)
Clain.-1st. The combination of a hinge having a projection at the outside, said projection having a transverse groove formed in it, a bracket piece formed to fit the transverse groove in the said projection and adapted to be secured to the frame of the door, and means for securing said projection to the bracket plate, substantially as set forth. 2nd. The coubination of a hinge, having a projection at one side, said projection having a transverse groove formed in it, a bracket piece provided with a reduced central portion to fit the transverse groove of the projection on the hinge and shoulders at opposite sides of said reduced central portion to engage the opposite sides of said projection on the hinge, and means for securing said projection to the bracket piece, substantially as set forth. 3rd. The conibination of a hinge provided with a perforated projection at one side, a bracket piece adapted to be secured to a door frame, and having a projecting threaded bolt to pass through the perforation in the projection on the hinge, and a nut screwing on said bolt outside said perforated projection and adapted to clamp, the same to the bracket plate, substantially as set forth.

No. 50,079. Rotary Engine. (Machine rotatoire.)

Oscar Firnest Morse, Dillon, Montana, U.S.A., 21st January 1896 ; 6 years. (Filed 2nd January, 1896.)

Claim. -1st. In a rotary engine, the combination with a steam cylinder, of the piston carriereccentrically mounted therein, the transversely reciprocating pistons in said carrier, and mechanism, comprising fixed eccentrics and eccentric plates movable transversely of the pistons for causing said reciprocations during the rotary motion of the carrier, substantially as specified. 2nd. In a rotary engine, the combination with a steam cylinder, of the piston carrier therein and rigidly mounted on a driving shaft, the transversely movable pistons mounted in said carrier, a yoke plate having an elongated opening surrounding a hub on the carrier, an eccentric plate engaging with the yoke plate, and a fixed eccentric on which the eccentric plate rotates, substantially as specified. 3rd. In an engine, the rotary, chambered cut-off valve, the rotary regulating valve therein, and mechanism for moving the regulating valve longitudinally of the chambered valve for regulating the opening of a steam port, substantially as specified. 4 th. In a rotary engine, the combination with the valve for regulating the opening of a steam port, substantially as specified. 5th In a rotary engine, the combination with the rotary pistons and the driving shaft, of the chambered cut-off valve, a shaft extended therein and receiving rotary motion from the driving shaft, a regulating valve on the shaft within the chamber of the cut-off valve, and a governor operating by centrifugal action to draw the valve bearing shaft longitudinally outwards, and the spring for moving said shaft in the opposite direction, substantially as specified. 6th. The combination with the rotary cut-off valve having the steam chamber and the ports of the regulating valve in said chamber having a segmental cut-away portion and a projecting portion and mechanism for causing a rotary motion of the valve and also a movement longitudinally of the cut-off valve, substantially as specified. 7th. The combination with the rotary cut-off valve having the steam chamber and the port, of the regulating valve, the shaft carrying the same and adapted to have a slight rotary movement relatively to the regulating valve, a centrifugal governor for moving the shaft in one direction, a spring for moving it in the other direction, and a tension device for the spring substantially as specified.

No. 51,080. Apparatus for Distilling Water.

(Appareil à distiller l'eau.)

Henry Pattison, Windsor, Nova Scotia, Canada, 21st January, 18:9; 6 years. (Filed 31st December, 1895.)
Cluim. -1st. A condenser of the class described comprising a boiler, a cylinder opening therein and provided with one or more spaces ! !, the walls of which form condensing surfaces, and troughs for conducting the condeusation from said walls to an outlet through the cylinder. 2nd. A condenser comprising a boiler, a cylindrical body opening therein and provided with a series of annular spaces conical in cross-section, the walls of which form condensing surface over the boiler, a drop opening through the cylinder and provided with ports, and troughs for conducting the condensation from said walls to the ports. 3rd. The boiler A, and cylinder E, in combination with the spaces g, in said cylinder, the cover, the cock D opening into said spaces, the nipple d, the drip k, having ports and the troughs t, m, leading to said ports all being arranged to operate, substantially as specified.

No. 51,081. Attachment for Bicycle Seats.

(Attache pour siege de bicycle.)
Christopher H. Watson, Rivorside, California, U.S.A., 21st January, 1896 ; 6 years. (Filed 31st December, 1895.)
Claim.-1st. A bicycle seat support, comprising a tube containing a spiral spring and a fluid under pressure, and a saddle tube fitted
to slide in said spring tube and supporting the saddle, substantially as shown and described. 2nd. A bicycle seat support, comprising a

spring tube having an air valve for charging the spring tube with compressed air, a saddle tube fitted to slide in the said spring tube, and a saddle held on the upper end of said saddle tube, substantially as shown and described. 3rd. A bicycle seat support, comprising a spring tube having an air valve for charging the tube with compressed air, a saddle tube fitted to slide in the said spring tube, a saddle tube fitted to slide in the said spring tube, a saddle held on the upper end of said saddle tube, and a spring held in the said spring tube and engaging the saddle tube, substantially as shown and described. 4th. A bicycle seat support, comprising a centre brace having a spring tube provided with an air inlet valve, a saddle tube fitted to slide in said centre brace and provided at its lower end with a piston, a bicycle seat having its post secured in the upper end of said saddle tube, and means, substantially as described, for limiting che sliding motion of said saddle tube in said centre brace, as set forth. 5th. A bicycle seat support, comprising a centre brace having a spring tube, provided with an air inlet valve, a saddle tube fitted to slide in said centre brace and provided at its lower end with a piston, a bicycle seat having its post secured in the upper end of said saddle tube, means, substantially as described, for limiting the sliding motion of said saddle tube in said centre brace, a keeper held on said saddle tube next to said piston, and a apring held in the tube in the centre brace and engaging said keeper, substantially as shown and described.

No, 51,088. Machine for Sharpening Calksfor Horge Shoes. (Appareil pour aiguiser les crampons de fer à cheval.)

Leonard Franklin Tarbell, Wesley, New York, U.S. A., 21st January, 1896 ; 6 years. (Filed 30th December, 1895.)
Claim.--1st. In a machine for sharpening toe and heel calks for horse shoes, a horizontally movable sliding die-holder, mounted in slideways in the frame of the machine, carrying at its front end a hardened steel die, and means for giving in its required movements forward and back, in combinaton with an eccentric cam having a hardened steel die in its working face, and provided with trunnions
mounted and adapted to rock in boxes located in the forward portion of the machine and resting upon downward yielding supports, arms connected with said eceentric cam, and means, substantially as above described for operating it. 2nd. In a machine for sharyening toe and heel calks for horse shoes, the combination with a horizontally movable die holder mounted in the frame of the machine and provided with a die at its front end, and means for moving it, of an eccentric cam provided with a die and mounted in vertically movable boxes, springs for keeping said boxes upward, and means connected with a treadle for operating the eccentric die, substantially as described. 3rd. In a machine for sharpening to and heel calks for horse shces, the combination of the eccentric cam and die, with the boxes in which it is mounted, and a series of fric tion rollers secured in a recess in the working side of each box, substantially as described. 4th. In a machine for sharpening toe and heel calks for horse shoes, the combination with the eccentric 12, and means for operating it, of a ring 13 surrounding the eccentric and inclosed between the rear ends of the horizontally movable die portion and a cross bar 14, for the purposes described. Sth. In a machine for sharpening toe and heel calks for horse shoes, the combination with the platform upon which the front end of the shoe rests, of a vertically adjustable cross-bar 38, for ssupporting the rear ends of the shoe, for the purposes described.; .nan

No. 51,083. Handle Bar por Bicycles.

-.....) (Poignée de manche de bicycle.)

Charles Henry Gatchell, Boston, Massachusetts, U.S.A., 21st January, $1896 ; 6$ years. (Filed 28th December, 1895.)
Clain.-1st. In a handle-bar for bicycles, a bicycle handle-bar having a movable latch adapted to engage in a complemental locking nember on the steering head and an internal spring whereby said latch is yieldingly held in its bar-locking position in its relation to said steering head, all substantially as and for the purpose hereinbefore set forth. 2nd. In a handle-bar for bicycles, a bicycle handlebar having a movable latch adapted to engage a complemental locking nember on the steering bead of said bicycle, an internal spring whereby said latch is yieldingly held in its bar-locking position relative to said steering-head, a movable trigger projecting from the handle-bar near its outer end, a connection between said trigger and latch, all substantially as and for the purpose hereinbefore set forth. 3rd. In a handle-bar for bicycles, a bicycle handlehar having in its central portion a carrier, a latch secured to said carrier and projecting through slots in the bar, a spring whereby the spring is yieldingly held at one extreme of its movement, a trigger pivoted to the handle-har near one end thereof and projecting laterally therefrom, and a flexible connection within said handlebar between said trigger and carrier, all suhstantially as and for the purpose hereinbefore set forth. 4th. In a handle-bar for bicycles, a socket provided with a series of locking members and a circumferential slot, combined with a handle-bar rotatable in said socket and provided with a stop or irojection located in said slot and movable longitudinally but not laterally therein and with a movable latch adapted to engage the locking member of the socket, all substantially as and for the purpose bereimbefore set forth. 5th. In a handle-bar for bicycles, the combination of a socket provided with a series of locking members and a handle rotating in said socket and provided with a movable latch and adapted to engage said locking member on this socket, a spring attached to said latch and trigger and flexible connection for retracting said latch, all substantially as and for the purpose hereinbefore set forth. 6th. The combination of the handle-bar socket having a shank, a handle-bar rotatable in the socket and having curved outer portions, complemental locking members carried by the handle-bar and socket in various positions, and a shank receiving socket or bushing adapted to be secured to a bicycle steering head and provided with means for detachably holding the shank, the latter being rotatable in the socket to permit the handle-bar to be adjusted length wise of the bicycle, all substantially as and for the purpose hereinbefore set forth.

No. 51,084. Heatinc: and Ventilating Stove-Drum

(Poele sourd pour chauffage et ventilation.)

George Bellamy, Shoal Lake, Manitoba, Canada, 21st January, 1896; 6 years. (Filed 31st December, 1895.)
Claim.-1st. A ventilating drum for stoves and furnaces, said drum having a return flue or flues, and an inlet ventilating air pipe
or pipes at top for connection with air pipes from the floor or other parts of a room, as set forth. 2nd. A stove heating-drum having a

return flue or flues, an inlet at top for connection to pipes leading to different parts of a room, a check damper K, suitably located, and a damper or dampers in said pipes, as and for the purposes set forth.

No. 51,085. Lubricating Axle. (Boîte a graisse.)

John Tudor Richards, Gardiner, Maine, U.S.A., 21st January, 1896 ; 6 years. (Filed 20th December, 1895.)
Claim.-1st. An axle journal having a collar on one end and screw threaded on the other end, said journal having a longitudinal groove formed therein, said groove terminating at both ends a sufficient distance from the collar and screw threaded portion of the journal to leave an unbroken surface or bearing between the groove and the collar and screw thread, and the journal provided with a hole leading from the groove through the journal to the surface of the journal, substantially as set forth. 2nd. An axle journal having a longitudinal groove formed therein extending nearly the length of the journal, a hole leading from the groove to the surface of the journal and a short groove extending from the longitudinal groove in a spiral direction toward one end of the journal, said short groove adapted to the collect any oil which works toward that end of the journal and conduct it back into the longitudinal groove substantially as set forth. 3rd. An axle journal having a longitudinal groove formed in its upper surface, short spiral grooves extending from the longitudinal groove toward the ends of the axle journal, and a hole leading from one end of the longitudinal groove in the axle journal to the opposite surface, substantially as set forth. 4th. An axle journal having a longitudinal groove formed in its upper surface, holes leading from the ends of this groove through the journal to the opposite surface of the journal, and short spiral grooves leading from the longitudinal groove to the ends of the axle journal, substantially as set fort.

No. 51,086. Food for Birds. (Nourriture pour les oiseaux.)

Bartholomew Cottam, London, Ontario, Canada, 21st January, 1896 ; 6 years. (Filed 26th December, 1895.)
Claim.-A composition made up of the materials and substantially in the proportions by the process and for the purposes set forth. The essential and medicinal elements of the above composition are, lina-farina, honey, carbo-legnic, maw seed, capsicum, saffron and cuttle fish bone; these ingredients in the composition are brought together in the proportions in which the best effect can be produced. The other ingredients are only intended as a vehicle to carry the active principles of the essential ingredients into the system.

No. 51,087. Trangmitting Mechanism for Cyclea. (Mécanisme de transmission pour cycles.)

Gerard Beokman, New York, State of New York. U.S.A., 21st January, 1896; 6 years. (Filed 23rd December, 1895.)
Claim.-1st. In a cycle, the combination of a pedal and its shaft, a wheel or part to be driven by said shaft, and unattached thereto, and a two-part friction device, the members of which are secured respectively to said shaft and driven part, and are movable diametrically with relation to each other, whereby a varied pressure upon the pedal by the foot of the rider, will produce a correspondingly varied degree of rotation of said driven part, substantially as set forth. 2nd. In a cycle, the combination of a pedal and its shaft, the latter furnished with an attached friction-member having a cylindrical surface, and a non-attached wheel or driven part provided with a hollow cylindrical friction-member which approximately fits the friction-member on the shaft, the said shaft and driven part being diametrically movable with relation to each other whereby a varied pressure upon the pedal by the foot of the rider, will vary the degree of rotation of said driven part, substantially as set forth. 3 rd . In a rear-driven bicycle, the combination of a sprocket wheel journalled on the stationary part or frame of the machine, and having a friction drum, a pedal and its shaft, the latter journalled in a part or frame which is movable with relation to said wheel support, the said shaft being furnished with a cylindrical friction-member approximately fitting within said drum, whereby a varied pressure upon the pedal by the foot of the rider, will vary the degree of rotation of the sprocket wheel, substantially as set forth. 4th. In a rear-driven bicycle, the combination of a sprocket wheel, having an attached friction drum, a fixed yoke, supporting said wheel, and its shaft, a friction cylinder secured to the shaft and approximately fitting with the drum, and a supporting yoke for said shaft, which yoke is mounted to swing with relation to said fixed yoke, to allow a variably close engagement between the friction drum and cylinder to be affected by a varied pressure upon the pedal, substantially as set forth. 5th. In a cycle, the combination of a perial and its shaft, a wheel or part to be driven by said shaft, and unattached thereto, and a two-part friction device, the members of which are secured respectively to said shaft and driven part, and are movable diametrically with relation to each other. whereby a varied pressure upon the pedal by the foot of the rider, will produce a correspondingly varied degree of rotation of said driven part, and co-operating therewith, a hand operated mechanism attached to the frame of the machine suitably connected to control the relative diametric movement of said members, and partially or wholly counteract or augment, the frictional transmitting effect of the foot pressure by the independent action of the hands of the rider.

No. 51,088. Communion Cup. (Coupe de communion.)

Edward W. Ryan, Ypsilanti, Michigan, U.S.A., 21st January, 1896; 6 years. (Filed 26th October, 1895.)

Claim.-1st. A communion service cup comprising a base having an irregularity at its edge, and a tapering bowl having its upper edge inclined upwardly from its rear to its front, substantially as described. 2nd. The combination with a base having a seat formed with an irregularity in its wall, of a cup comprising a base having an irregularity conforming substantially to the irregularity of the seat, and a bowl having its upper edge inclined throughout from rear to front, substantially as described.

No. 51,089. Drnamental Gign Letter.

(Lettre pour enseignes.)

Albro Silver and James H. Lennon, both of Lindsay, Ontario, Canada, 22nd January, 1896; 6 years. (Filed 24th September, 1895.)

Claim.-1st. A sign letter for attachment to a wire, glass or other base moulded of a porous composition so that the cement used in attaching it to the base will dry through the body of the letter, substantially as and for the purpose specified. 2nd. A sign letter for attachment to a wire, glass or other base, moulded of plaster of Paris, and soaked when dry in oil, substantially as and for the purpose specified. 3rd. A sign letter for attachment to a wire, glass or other base, moulded from plaster of Paris, soaked when dry in oil and covered on its outer surface with a facing of paint, gold aluminum or other leaf, substantially as and for the purpose specified. 4th. A sign letter moulded of plaster of Paris, and soaked when dry in oil, in combination with a glass or wire base and a cement of shellac or varnish, substantially as and for the purpose specified. 5th. A sign letter moulded of plaster of Paris, and soaked when dry in oil and covered with a facing of paint, gold, aluminum or other leaf, in combination with a glass or wire base and a cement of shellac or varnish, substantially as and for the purpose specified. 6th. A sign letter moulded of a porous composition with a raised or angular outer surface, and a flat surface which may be cemented to a wire glass or other base, substantially as described and for the purpose specified. 7th. A sign letter moulded of a porous composition, soaked when dry in oil and formed with a rased or angular outer surface covered with paint, gold, aluminum or other leaf, and with a flat surface which may be cemented to a wire, glass or other base, substantially as and for the purpose specified. 8th. The process of forming a sign letter for attachment to a wire, glass, or other base, which consists in moulding the letter of plaster of Paris, drying it and then soaking it in oil, substantially as and for the purpose specified. 9th. The process of forming a sign letter for attachment to a wire, glass or other base, which consists in moulding the letter of plaster of Paris, drying it, soaking it in oil and then covering its outer surface with a facing of paint, gold, aluminum or other leaf, substantially as and for the purpose specified.

No. 51,090. Confectionery Pail Cover.

(Couvercle de seau.)

William Frederick King and Arthur Stanley King, assignees of Florence Patrick McGovern, all of Ottawa, Ontario, Canada, 22nd January, 1896; 6 years. (Filed 7th January, 1896.)
Claim. - 1 st. The combination of a rim B adapted to fit the upper rim of a pail, hooked lugs b on said rim adapted to engage projections on said pail, lugs b^{1} formed on the upper part of said rim by incissions, a lid rim C pivotally connected to said rim and provided opposite said pivot with a notch c, a transparent panel C^{1} in said lid rim, a spring D secured to the underside of said rim B, opposite said pivot and projecting outside and provided with an upwardly projecting shoulder d, adapted to engage the notch c, substantially as set forth. 2nd. The combination of a circular rim consisting of a horizontal and vertical flange adapted to fit freely upon the upper rim of a pail or the like, downwardly projecting upwardly hooked lugs on the vertical flanges of said rim adapted to engage suitable ears on the pail and hold said rim to said pail, a lid pivotally secured to the flat flange of said rim and having a transparent panel, lugs
formed in the upper or horizontal flange of the rim and acting as guide and stop respectively, a flat spring secured to the underside of

the rim under the guide lug and provided with an upwardly projecting shoulder and having its free end projecting slightly out of the vertical flange and a notch in the rim of the lid adapted to be engaged by said shoulder, substantially as set forth. 3rd. The combination of a circular rim consisting of a horizontal and vertical flange adapted to fit freely upon the upper rim of a package, downwardly projecting upwardly hooked lugs on the vertical flange of said rim adapted to engage suitable ears on said package, a lid pivotally secured to the flat flange of the rim and consisting of a rim with a transparent panel, lugs formed in the horizontal or upper flange of the rim ard acting as guide and stop respectively, and a when closed, substantially a holding said rim and lid connected when closed, substantially as set forth. 4th. The combination of a rim consisting of an upper or horizontal flat and an outer vertical flange and another rim forming a lid somewhat smaller pivotally connected to the former, a lug formed by an incission in the upper or flat rim and having the incised portion raised, a flat spring secured transversely to the underside of said flat rim under said lug near the inner edge and its free end projecting through the outer vertical flange and provided with an upwardly projecting shoulder, and a notch in the lid rim adapted to be engaged by said shoulder, substantially as set forth.

No. 51,091. Vehicle Shart, etc. (Limonière de voiture, etc.)

William Alfred Bromwich, London West, Assignee of Charles
Ashburnham Floyd, London, both in London, England, 22nd January, 1896 ; 6 years. (Filed 30th December, 1895.)
Claim.-1st. The herein described improvement in the shafto of vehicles, which consists in providing the front end of each shaft with a terminal loop or eye in position for the attachment thereto of the back band, substantially as and for the purpose specified. 2nd. The herein described improvement in the shafts of vehicles, which consists in providing the front end of each shaft with a terband, the loop being provided with a cross-stay for the of the back thereto of the trace, substantially as specified for the attachment
described combined improvement in shafts and harness, substantially as specified.

No. 51,092. Procegs of Manufacturing Vanilline.

(Procéde de Fabrication de Vanilline)

The Firm of Haarmann and Reimer, Holzminden, Assignee of Wilhelm Haarmann, Hoxter, both in Germany, 22nd January, 1896; 6 years. (Filed 4th July, 1894.)
Claim.-1st. The herein described process for manufacturing Vanilline from isoeugenol, consisting in oxidizing isoeugenol in a strong alkaline solution by means of peroxides and especially by means of peroxide of sodium.

No. 51,093. Machine for Cutting Stone.
(Machine à tailler la pierre.)

Françis Zavier Landry, Sherbrooke, and Jean Baptiste Biron, Stoke, both of Quebec, Canada, 22nd January, $1896 ; 6$ years. (Filed 17th June, 1895.)
Claim.-1st. In a machine for cutting stones, the combination of a frame, a rod carried freely in bearings in such frame, a wiperwheel with projections upon one face thereof, such wiper-wheel being suitably mounted in the frame and having an operative connection with such rod, a yielding resistance device carried by the frame and having one end adapted to bear upon such projection from the wiper-wheel as such wiper-wheel rotates, for the purpose set forth. 2nd. In a machine for cutting stones, the combination of a frame, a rod carried freely in bearings in such frame, a wiper-wheel with projections upon one face thereof, such wiper-wheel being suitably mounted in the frame and having an operative connection with such rod, a yielding resistance device, consisting of a bar of inverted Tform, such bar being guided in such frame and having its cross-arm adapted to bear upon one of such projections from the wiper-wheel as such wiper-wheel rotates, and a bow spring having one end connected to the frame and its other end bearing upon said bar, for the purpose set forth. 3rd. In a machine for cutting stones, the combination of a frame, a rod carried freely in bearings in such frame, a wiper-wheel with projections upon one face thereof, such wiperwheel being suitably mounted in the frame and having an operative connection with such rod, a yielding resistance device consisting of a bar of inverted T-form with one half of its cross-arm horizontal and the other half off-set, such bar being guided in such frame and having its cross-arm adapted to bear upon one of such projections from the wiper-wheel as such wiper-wheel rotates, and a bow spring having one end connected to the frame and its other end bearing upon said bar, for the purpose set forth. 4th. In a machine for cutting stones, the combination of a frame, a rod carried freely in bearings in such frame, a wiper-wheel with projections upon one face thereof, such wiper-wheel being suitably mounted in the frame and having an operative connection with such rod, a yielding resistance device consisting of a bar of inverted T-form guided in such frame, and having its cross-arm adapted to bear upon one of such projections from the wiper-wheel as such wiperwheel rotates, and a bow spring having one end adapted to bear upon said cross-arm and its other end perforated to take over a screw-threaded bolt. carried rigidly by said frame, and bear against a nut movable upon said bolt, for the purpose set forth. 5th. In a machine for cutting stones, the combination of a frame, a tool carrying rod carried by such frame a wiper-wheel suitably mounted in the frame, anoperative connection between such wiper-wheel and rod, a device for assisting the fall of the rod consisting of a flat spring curved at one end, pivotally connected at its curved end to the top of the frame, and arch adjustably connected to such frame and adapter to stradle such spring near such curved end, and the straight end of such spring bearing upon such rod, when it is raised, and means for operating such wiperwheel for the purpose set forth. 6th. In a machine for cutting stones, the combination of a stationary table portion carrying adjustable rails and a rack, a frame having a sliding connection with
such rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiperwheel mounted rigidly upon a horizontal shaft carried loosely in bearings in such frame about midway of its length, an equalizing device adapted to act upon such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such shaft by a feather and groove connection, a horizontal shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such latter shaft, a train of gears comnecting one of the gears on the former shaft with the gear on the latter shatt, a pinion mounted upon and connected to such latter shaft by a feather and groove connection, such pinion adapted to be aljusted into and out of engagement with the rack, a device for assisting the fall of such rod, means for adjusting such rails with relation to the table and for adjusting the pinion into and out of engagement with the rack, for the purpose set forth. 7th. In a machine for cutting stones, the combination of a stationary table portion carrying adjustable rails and a rack, a frame having a sliding connection with such rails, a rototably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal shaft carried loosely in bearings in such frame about midway of its length, an equalizing device adapted to act upon such a wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such shaft by a feather and groove connection, a horizontal shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such latter shaft, a train of gears connecting one of the gears on the former shaft with the gear on the latter shaft, a pinion mounted upon and connected to such latter shaft by a feather and groove connection, such pinion adapted to be adjusted into and out of engagement with the rack, a device for assisting the fall of such rod, consisting of a flat spring connected at one end to such frame, and arch adjustably connected to such frame so as to straddle such spring the free end of such spring being located in a position to bear upon such rod when it its raised, means for adjusting such rails with relation to the table and for adjusting the pinion into and out of engagement with the rack, for the purpose set forth. 8th. In a machine for cutting stones, the combination of a stationary table portion carrying adjustable rails and a rack, a frame having a sliding connection with such rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal shaft carried loosely in bearings in such frame alout midway of its length, an equalizing device consisting of a yielding resistance carried by the frame, adapted to bear upon a projection from such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such shaft by a feather and groove connection, a horizontal shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such latter shaft, a train of gears connecting one of the gears on the former shaft with the gear on the latter shaft, a pinion mounted upon and connected to such latter shaft by a feather and groove comnection, such pinion adapted to be adjusted into and out of engagement with the rack, a device for assisting the fall of such rod, means for adjusting such rails with relation to the table and for adjusting the pinion into and out of engagement with the rack, for the purpose set forth. 9th. In a machine for cutting stones, the sombination of a stationary table portion carrying adjustable rails and a rack, a frame having a sliding connection with sush rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal shaft carried loosely in bearings in such frame about midway of its length, an equalizing device consisting of a yielding resistance carried by the frame adapted to bear upon a projection from such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such shaft by a feather and groove connection, a horizontal shaft mounted near the base of such frame, a gear wheel mounted rigidly upon latter shaft, a train of gears connecting one of the gears on the former shaft with the gear on the latter shaft, a pinion mounted upon and connected to such latter shaft by a feather and groove connection, such pinion adapted to be adjusted into and out of engagement with the rack, a device for assisting the fall of such rod, consisting of a flat spring connected at one end to such frame, an arch adjustably connected to such frame so as to straddle such spring, the free end of such spring being located in a position to bear upon such rod when it is raised, means for adjusting such rails with relation to the table and for adjusting the pinion into and out of engagement with the rack, for the purpose set forth. 10th. In a machine for cutting stones, the combination of a stationary table portion carrying adjustable rails and a rack, a frame having a sliding connection with such rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal shaft carried loosely in bearings in such frame about midway of its length, an equalizing device consisting of a yielding resistance carried by the frame, adapted to bear upon a projection from such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such shaft by a feather and groove connection, a horizontal shaft mounted near the base of such frame, a gear-wheel mounted rigidly upon such latter shaft, a train of gears connecting one of the gears on the former shaft with the gear on the latter shaft, a pinion mounted upon and connected to
such latter shaft by a feather and groove connection, such pinion adapted to be adjusted into and out of engagenent with the rack, a device for assisting the fall of the rod consisting of a flat spring curved at one end, pivotally connected at its curved end to the top of the frame, an arch adjustably connected to such frame, and adapted to straddle such spring near such curved end, and the straight end of such spring bearing upon such rod when it is raised, means for adjusting such rails with relation to the table and for adjusting the pinion into and out of engagement with the rack, for the purpose set forth. 11th. A machine for cutting stones consist ing of stationary table portion having two guides, two or more supporting ledges, and a vertical bearing all of which being formed integral with the upper surface of said table portion, a screw bolt carried rotatably in said bearing, adjustable flanged rails, and a rack resting upon said supporting ledges and connected rigidly together hy two or more cross-bars, two of which are adapted to have a sliding comection with such guides, a frame having a sliding comnection with such rails, and a pair of downward projections, from the underside of the base thereof, provided with flanges adapted to take under the flanges of said rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal shaft carried loosely in bearings in such frame about midway of its length, an equalizing device adapted to act upm a projection from such wiper wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such shaft by a feather and groove connection, a horizontal shaft mounted near the base of such frame, a gear-wheel mounted rigidly upon such latter shaft, a train of gears connecting one of the gears on the former shaft with the gear on the latter shaft, a pinion mounted upon and connected to such latter shaft by a feather and groove connection and adapted to be adjusted into and ont of engagement with the rack, a device for assisting the fall of such rod and means for adjusting the pinion into and out of engagement with the rack, for the pur pose set forth. 12th. A machine for cutting stones, consisting of a stationary table portion having two guides, two or more supporting ledges, and a vertical bearing, all of which being formed integral with the upper surface of said table portion, a screw bolt carried rotatally in said bearing adjustable flanged rails, and a rack resting upon said supporting ledges and connected rigidly together by two or more cross bars, two of which are adapted to have a sliding comnection with such guides, a frame having a sliding connection with such rails, and a pair of downward projections, from the underside of the base, thereof, provided with flanges adapted to take under the flanges of said rails, a rotatably adjustable vertical rod carried freely in bearings in such frame. cross-head secured upon such rod, a wiper-wheel mounted rigidl: umon a horizontal shaft carried loosely in bearings in such frame ainut midway of its length, an equalizing device adapted to act upom a projection from such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such shaft by a feather and groove connection, a horizontal shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such later shaft, a train of gears connecting one of the gears on the former shaft with the gear on the latter shaft, a pinion mounted upon and connected to such latter shaft by a feather and groove connection, and adapted to be aljusted into and out of engagement with the rack, a device for assisting the fall of such rod, consisting of a flat spring connected at one end to such frame, and arch adjustably connected to such frame so as to straddle such spring the free end of such spring being located in a position to bear upon such rod when it is raised, and means for adjusting the pinion into an out of engagement with the rack, for the purpose set forth, 13th. A machine for cutting stones, consisting of a stationary table portion having two guides, two or more supporting ledges, and a vertical bearing, all of which being formed integral with the upper surface of said table portion, a screw bolt carried rotably in said bearing, adjustable flanged rails and a rack resting upon said supporting ledges and connected rigidly together by two or more cross bars, two of which are adapted to have a sliding connection with such guides, a frame having a sliding connection with such rails, and a pair of downward projections, from the underside of the base thereof, provided with flanges adapted to take under the flanges of said rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal shaft carried loosely in bearings in such frame about midway of its length, an equalizing device consisting of a yelding resistance carried by the frame, adapted to act upon a projection from such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such shaft by a feather and groove connection, a horizontal shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such latter shaft, a train of gears connecting one of the gears on the former shaft with the gear on the latter shaft, a pinion mounted upon and connected to such latter shaft by a feather and groove connection, and adapted to be adjusted into and out of engagement with the rack, a device for assisting the fall of stich rod, means for adjusting the pinion into and out of engagement with the rack, for the purpose set forth. 14th. A machine for eutting stones, consisting of a stationary table portion having two guides, two or more supporting ledges and a verticle bearing, all of which being formed integral with the upper surface of said table portion, a screw bolt carried rotatably in said bearing, arljus table flanged rails and a rack resting upon said supporting ledges
and connected rigidly together by two or more cross bars, two of which are adapted to have a sliding connection with such guides, a frame having a sliding connection with such rails, and a parr of downward projections, from the under side of the base thereof, pro. vided with flanges adapted to take under the flanges of said rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel, mounted rigidly upon a horizontal shaft carried lowsely in bearings in such frame about midway of its length, an equalizing device consisting of a yielding resistance carried by the frame, adap,ted to bear upon a projection from such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such shaft by a feather and groove connection, a horizontal shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such latter shaft, a train of gears connecting one of the gears on the former shaft with the gear on the latter shaft, a pinion mounted upon and connected to such latter shaft by a feather and groove connection and adapted to be adjusted into and out of engagement with the rack, a device for assisting the fall of such rod, consisting of a flat spring connected at one end to such franue, an arch adjustably connected to such frame so as to straddle such spring, the free end of such springs being located in a position to bear upon such rod when it is raised, and means for adjusting such rails with relation to the table and for adjusting the pinion into and out of engagement with the rack, for the purpose set forth. 15th. In a machine for cutting stones, the combination of a stationary table portion carrying rails and a rack, a frame having a sliding connection with such rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal upper shaft carried loosely in bearings in such frame about mid way of its length, an equalizing device adapted to act upon such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such upper shaft by a feather and groove connection, a horizontal lower shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such lower shaft a train of gears connecting one of the gears on the upper shaft with the gear on the lower shaft, such train of gears being mounted in a bracket mounted loosely upon such lower shaft, and adapted to be adjusted to cause such train of gears to engage one of the pinions carried upon such upper shaft, a pinion mounted upon and connected to such lower shaft by a feather and groove connection, and adapted to be adjusted into and out of engagment with the rack, a device for assisting the fall of the rod, means for adjusting such rails with relation to the table, for adjusting the pinion into and out of engagement with the rack, and for adjusting said bracket, for the purpose set forth. 1fth. In a machine for cuting stones, the combination of a stationary table portion carrying rails and a rack, a frame having a sliding connection with such rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross head secured upon such rod, a wiper wheel mounted rigidly upon a horizontal upper shaft carried lonsely in bearings in such frame about midway of its length, an equalizing device adapted to act upon such wiper wheel, a feed device consisting of two pinions of different sizes mounted upon and comnected to such upper shaft by a feather and groove comnection, a horizontal lower shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such lower shaft, a train of gears connecting one of the gears on the upper shaft with the gear on the lower shaft, such train of gears embodying two gear wheels of different dia meters, and being mounted in a bracket mominted loosely upon such lower shaft, and adapted to be adjusted to cause either of such gear wheels of different diameters of such train of gears to engage one of the pinions carried upon such upper shaft, a pinion mounted upon and connected to such lower shaft by a feather and groove connection, and adapted to be adjusted into and out of engagement with the rack, a device for assisting the fall of the rod, means for adjusting such rails with relation to the tabie, for adjusting the pinion into and out of engagement with the rack, and for a(justing said bracket, for the purpose set forth. 17 th. In a machine for cutting stones, the combination of a stationary table portion carrying adjustable rails and a rack, a frame having a sliding cnnnection with such rails, a rotatably adjustably vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal upper shaft carried loosely in bearings in such frame about midway of its length, an equalizing device consisting of a yielding resistance, carried by the frame and adapted to act upon a projection from such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such upper shaft by a feather and groove connection, a horizontal lower shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such lower shaft, a train of gears connecting one of the gears on the upper shaft with the gear on the lower shaft, sucl. train of gears embodying two gear wheels of differ ent diameters, and being mounted in a lracket mounted loosely upon such lower shaft, and adapted to be adjusted to canse either of such gear wheels of different diameters, of such train of gears to engage one of the pinions carried upon such upper shaft, by ${ }_{a}^{a}$ pinion mounted upon and connected to such lower shaft justed into and out of engagement with the rack, a device for assisting the fall of the rod consisting of a flat spring curved at one end, pivotally connected at its curved end to the top of the frame,
an arch adjustably connected to such frame and adapted to straddle
such spring near such curved end, and the straight end of such spring bearing upen such rod when it is raised, means for adjusting such rails with relation to the table, for adjusting the pinion into and out of engagement with the rack, and for adjusting said bracket, for the purpose set forth. 18th. In a machine for cutting stones, the combination of a stationary table portion carrying rails and a rack, a frame having a sliding connection with such rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal upher shaft carried loosely in bearings in such frame about midway of its length, an equalizing device consisting of a yielding resistance, carried by the frame and adapted to act upon a projection from such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such upper shaft by a feather and groove connection, a horizontal lower shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such lower shaft, a train of gears comnecting one of the gears on the upper shaft with the gear on the lower shaft, such train of gears embodying two gear wheels of different diameters and being mounted in a bracket mounted at its lower end lousely upon such lower shaft, and being adapted to be adjusted to cause either of such gear wheels of different diameters, of such train of gears, to engage one of the pinions carried upon such upper shaft, a pinion mounted upon and connected to such lower shaft by a feather and groove connection, and adapted to be adjusted into and out of engagement with the rack, a device for assisting the fall of the rod consisting of a flat spring curved at one end, pivotally connected at its curved end to the top of the frame, an arch adjustably connected to such frame and adapted to straddle such spring near such curved end, and the straight end of such spring bearing uron such rod when it is raised, means for automatically adjusting such bracket, consisting of a rocker pivoted to the base of said frame, a rod having a sliding comnection at one end to said bracket and being pivotally connected at its other end to said base, a link connecting said rod and rocker, a pair of engaging stops carried by one of such rails and with which said rucker is adapted to engage and means for adjusting the pinion into and out of engagenent with the rack, for the purposie set forth. 19th. A machine for cutting stones, consisting of a stationary table portion having two guides, two or more supporting ledges, and a vertical bearing formed integral with the upper surface of said table portion, a screw borlt carried rotatably in said bearing, adjustable flanged rails and a rack resting upon said supporting ledges and connected rigidly together by two or more cross bars, two of which are adapted to have a sliding connection with such guides a frame having a sliding connection with such rails, and a pair of downward projections from the underside of the base thereof, provided with flanges adapted to take under the flanges of said rails, a rotatably adjustable vertical rod carried freely in said bearings in such frame, a cross head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal upper shaft carried loosely in bearings in such frame about midway of its. length, an equalizing device consisting of a yielding resistance carried by the frame and adapted to act upon a projection from snch wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such upier shaft by a feather and groove connection, a horizontal lower shaft mounted near the base of such frame, agearwheel mounted rigidly upon such lower shaft, a train of gears connecting one of the gears on the upper shaft with the gear on the lower shatt, such train of gears embodying two gear wheels of differ ent diameters and being mounted in a bracket mounted at its lower end loosely upon such lower shaft, and being adapted to be adjusted to cause either of such gear wheels of different diameter, of such train of gears to engage one of the pinions carried upon such upper shaft, a pinion mounted upon and connected to such lower shaft by a feather and groove connection, and adapted to be adjusted into and out of engagement with the rack, a device for assisting the fall of the rod consisting of a flat spring curved at one end, pivotally connected at its curved end to the top of the frame, an arch adjustably connected to such frame and adapted to straddle such spring near such curved end, and the straight end of such spring bearing upon such rod when it is raised, means for automatically adjusting such bracket. consisting of a rocker pivoted to the base of said frame, a rod having a sliding connection at one end to said bracket and being pivotally connected at its other end to said base, a link connecting said rod and rocker and a pair of engaging stops carried by one of such rails and with which said rocker is adapted to engage and means for adjusting the pinion into and out of engagement, with the rack, for the purpose set forth. 20th. In a machine for cutting stones, the combination of a stationary table portion carrying rails and a rack, a frame having a sliding connection with such rails, a rotatably adjustable vertical rod carried freely in bearings in such frame, a cross-head secured upon such rod, a wiper-wheel mounted rigidly upon a horizontal upper shaft carried loosely in hearings in such frame alout midway of its length, an equalizing device consisting of a yielding resistance carried by the frame and adapted to act upon a projection from such wiper-wheel, a feed device consisting of two pinions of different sizes mounted upon and connected to such upper shaft by a feather and groove connection, a horizontal lower shaft mounted near the base of such frame, a gear wheel mounted rigidly upon such lower shaft, a train of gears connecting one of
the gears on the upper shaft with the gear on tte lower shaft, such
train of gears embodying two gear wheels of different diameters and being mounted in a bracket mounted at its lower end loosely upon such lower shaft, and being adapted to be adjusted to cause either of such gear wheels of different diameters, of such train of gears to engage one of the pinions carried upon such upper shaft, a pinion mounted upon and connected to such lower shaft by a feather and groove connection, and adapted to be adjusted into and out of engagement with the rack, a device for assisting the fall of the rod, consisting of a flat spring curved at one end, bivotally connected at its curved end to the top of the frame, an arch adadjustably connected to such frame, and adapted to straddle such spring near such curved end, and the straight end of such spring bearing upon such rod when it is raised, means for automatically adjusting such bracket, consisting of a rocker pivoted to the base of said frame, a rod having a sliding connection at one end to said bracket and being pivotally connected at its other end to said base, a link connecting said rod and rocker and a pair of engaging stops constructed of U-form, one leg of each stop being extended in width and the other leg bored and screw-threaded to receive a thumbscrew, and said stops being located with one leg of each on either side of said rails, the leg of extended width being upon the inside thereof in order to be engaged by said rocker, and means for adjusting the pinion into and out of engagement with the rack, for the purpose set forth.

No. 51,094. Watt Meter. (Metre Watt.)

The Whitney Electrical Instrument Company, Saco, Maine, assig nee of Adrian H. Hoyt, Penacook, New Hampshire, both in the U.S.A., 22nd January, 1896 ; 6 years. (Filed 18th July, 1895.)

Claim.-1st. In a wattmeter, the combination with field coils of comparatively low resistance in series with the load, of armature coils of comparatively high resistances in shunt to the load, an indicator attached to one of said sets of coils, and adapted by its movement from a predetermined position to indicate the presence of a current in said coils, a spring or weight adapted to oppose the movement of said indicator, an adjusting device for said spring or weight, and a pointer cooperating with said adjusting device in conjunction with a calibrated scale, substantially as described. 2nd. The combination with the movable member of an electric measuring instrument, of a device adapted to retain said movable member in a predetermined position from which it is adapted to be moved by the influence of an electric current, and means for adjusting said device to bring said novable member to said predetermined position before the instrument is connected in circuit preparatory to taking a reading, as and for the purpose described. 3rd. The combination with the movable member of an electric measuring instrument having an indicator adapted by its movement from a predetermined position to indicate the presence of an electric current in the circuits of the instrument, of an adjustable spring adapted to oppose the movement of said movable member, and having a pointer cooperating with a suitably calibrated scale to indicate in units of electrical measurement the amount of force required to balance the effect of the electrical current in moving said member, an additional spring adapted to hold said movable member in said normal predetermined position, and means tor adjusting said additional spring to compensate for defects tending to move said novable member from its normal position when no current is present in the instrument, substantially
as described. 4th. The combination with the movable member of an electric measuring instrument, of means for locking said armature stationary when the instrument is not in use, substantially as described. 5th. In an electrical measuring instrument, the combination with a movable member or armature, consisting of coils pivoted at right angles to their axes in inductive proximity to fixed coils and normally held out of contact therewith by means of a light spring, of a locking device consisting of a plate or spring adapted to be pressed against one of said movable coils and thereby to hold it in contact with the fixed coil adjacent thereto, and an operating device adapted to thus press said spring or plate into contact with the said movable coil, as and for the purprse described.

No. 51,095. Kiln. (Four.)

Fredrich D. T. Lehmann and Peter N. Kohlsaat, both of Chicago, Illinois, U.S.A., 22nd January, 1896; 6 years. (Filed 25th July, 1895.)
Claim.-1st. A kiln provided with walls having an insulating air space therein, said kiln being adapted to be set up with the bricks and removed when said bricks are burned, substantially as described. 2nd. A kiln provided with floor, walls and covering having insulating air spaces therein, said kiln being adapted to be set up with the brick and removed when said brick are burned, substantially as described. 3rd. A kiln provided with floor, walls and covering having insulating air spaces therein, and a movable chimney, said kiln being adapted to be set up with the brick or tile to be burned and removed when said brick or tile are burned, substantially as described. 4th. A kiln provided with walls of hollow tile adapted to be set up with the brick or tile to be burned and removed when said brick or tile have been burned, substantially as described. 5 th. A kiln provided with floor, walls and covering of hollow tile adapted to be set up with the brick or tile to be burned and removed when said brick or tile have been burned, substantially as described. 6th. A kiln provided with floor, walls and covering of hollow tile, an underground chimney flue having openings at intervals within said kiln and connecting with a movable chimney adapted to be advanced with said kiln to provide a continuous draft in one direction, substantially as described. 7th. A kiln having hot air flues in the walls thereof, whereby the forward sections of the kiln not in action are heated to a low degree to partially dry the brick or tile to be burned therein, substantially as described. 8th. A kiln having a floor of hollow tile provided with openings at intervals to create a more perfect draft within said kiln, walls of hollow tile set up upon each side of said floor, and a covering of hollow tile adapted to be laid upon the brick or tile to be burned and between said walls and provided with openings at intervals through which fuel is fed to the kiln, substantially as described. 9th. A kiln having a floor of hollow tile provided with openings at intervals to create a more perfect draft within said kiln, and transverse flues adjacent the ground to form an exit for dampness arising therefrom, wall of hollow tile set up upon each side of said floor, and a covering of hollow tile adapted to be laid upon the brick or tile to be burned and between said walls and provided with openings at intervals through which fuel is fed to the kiln, substantially as described. 10th. A kiln provided with floor, walls and covering of hollow tile, and an underground chimney flue having openings at intervals within said kiln and connected with a chimney, substantially as described.

No. 51,096. Advertising Pusyle。

(Jeu de patience 'de publicite.)

Joseph Wood Horsfield, Oxford Road, Joe Kaye, Crackenedge, and Herr Von Charles Deornly, 5 Alfred Place, all in Deusbury, England, 22nd January, 1896; 6 years. (Filed 21st September, 1895.)

Chaim.-The new puzzle or game comprising a board with two bisecting equitateral triangles and series of circles or spaces of other shape marked thereon, also the numerals 1 to 12 marked or printed on 12 counters of whatever configuration or design, to be so arranged that the sum total of any four counter horizontally or diagonally placed along the six sides of the two triangles shall add to 26 , also the three alternate external counters shall add to 26 , also the six internal counters surrounding the name 26 puzzle shall add to 26 , the counters being in all cases placed thus, first row one counter,
second row four counters, third row two counters, fourth row four counters, fifth row one counter, as shown on diagrams of different

designs therewith, and substantially as hereinbefore set forth and described.

No. 51,097 . Music Lear Folder. (Porte-feuille de musique.)

Alpheus A. Lundry and Charles H. Moyer, both of Fenwick, Ontario. Canada, 22nd January, 1896; 6 years. (Filed 25th October, 1895.)
Claim.-As an improved article of manufacture a music leaf holder having in combination with a music rack of an instrument a longitudinal strip B , the member C having integral arms designed to overlap the edges of said strip B, the jaw F pivoted to integral lugs on said member C, a slight projecting portion on the underside of said jaw and a spring \mathbf{H} having one end securely held to member C its free end bearing against the said projecting portion substantially as shown and described.
No. 51,098. Device Por Teaching Vocai Music.
(Appareil pour enseigner la musique vocale.)

51098
Mary M. Vogt, Rochester, New York, U.S.A., 22nd January, 1895 ; 6 years. (Filed 25th October, 1895.]
Claim.-1st. A device adapted to be placed upon the face to aid in singing, consisting of two slotted, curved, overlapping bars and a fastener therefor, each bar being provided at its free end with a pad or cushion in position to press the side of the face, substantially as
shown and described. 2nd. A device to be worn upon the face by. a person learning to sing, consisting of two curved, overlapping bars, formed with slots in the contiguous parts, and a fastener for said bars occupying the slots, the bars being adjustable upon each other and of a yielding nature, and eacin provided with a pad to press the cheek of the wearer, in combination with elastic holders, secured to the bars in position to pass over the head and back of the neck respectively, substantially as shown and described.

No. 51,099. Glectrical Quarter Saver and Etopping Device for Knitting Machines. (Appareil d^{\prime} arrêt électrique pour machînes à tricoter.)

Herbert Theodore Ballard, Toronto, Ontario, Canada, 22nd January, 1896; 6 years. (Filed 24th Oct., 1895.)
Claim.-1st. In a knitting machine, a quarter saver and stopping device comprising an arm for supporting the yarn, a lever for producing a tension on the thread and having one end designed to come in contact with the machine and electrical means connected to the tension lever and frame for instantaneously stopping the rotation of the shaft upon the breaking of a thread as and for the purpose specified. 2nd. The combination with the arm secured on a suitable standard and provided with a tubular thread guide and supporting roller, of a tension lever provided at one end with a roller under which the thread passes and having a brush at the other bent end, and suitably supported on standards and electrical means for throwing in a suitable device for instantaneously stopping the rotation of the shaft when the thread is broken and the lever tilted so as to throw the brush against the sinkers as the cylinder rotates as specified. 3rd. The combination with a rocking spring-held detent and arm on which it is supported and insulated from the cylinder, of the cylinder and frame and electrical means for communicating motion to a stopping device for the main shaft as and for the purpose specified. 4th. The combination with a rocking detent secured on the lower end of the vertical spindle, a forked arm for supporting the spindle and a spring for holding the detent normally against the web, of the cylinder and frame, and electrical means for communicating motion to a stopping device for the main shaft as and for the purpose specified. 5th. The combination with a rocking springheld detent and arm on which it is supported and insulated from the cylinder and a vertical rod insulated from the arm, of a wire lead to the frame from the vertical rod and a wire lead from the arm to an electrically actuated device for operating the stopping device on the main shaft as and for the purpose specified. 6th. The combination with the cylinder, gear ring, pinion L, spindle and pinions I^{1}, of the main shaft with pinion k, supported in a suitable bracket M secured to the frame of the machine, an insulated magnet. J, and armature J^{1}, electrical means from the magnet to a circnit closing device actuated by the breaking of a thread and mechanism interposed and controlled by the armature between such armature and a clutch on the main shaft, as and for the purpose specified. 7th. The combination with a circuit closing device operatively connected to the cylinder and various
means for closing such device, of the magnet J^{1}, electrially connected through the frame and by wire to the point at which the circuit is to be closed, an armature co-acting with the magnet and a suitable clutch connected to the main driving pulley, which is loosely journalled on the shaft, an arm with the lower forked end designed to extend into a groove in the cone-shaped collar, a spring connecting this arm to the supporting bracket, a spindle for supporting the arm adjustably in the sleeve secured to the frame, a lever for adjusting this spindle and means interposed between the arm and the magnet, and the lever and the magnet, whereby when the circuit is thrown in and the armature drops, the arm is drawn inwardly, as and for the purpose specified. Sth. The combination with a circuit closing device operatively connected to the cylinder and various means for closing such device, of the magnet J^{1}, electrically connected through the frame and by wire to the point at which the circuit is to be closed, an armature co-acting with the magnet, and a suitable clutch connected to the main driving pulley, which is loosely journalled on the shaft, an arm with the lower forked end designed to extend into a groove in the cone-shaped collar, a spring connecting this arm to the supporting bracket, a spindle for supporting the arm adjustably in the sleeve secured to the frame, a lever for adjusting this spindle, a rod K supported on the arm O, and provided at its inner end with a dog-shaped end R^{2}, the spring-held lever S, the lever T, provided with circular notch t^{2}, and the lever U , provided with a pin u, and arranged to have its lower end rest against the side of the block J^{2} on the armature, as and for the purpose specified. 9th. The combination with the lever Q, connected by the pin to the rod P, of the spring-held lever S, armature J^{2}, and magnet J, electrical connections as specified and locking means interposed between the armature and springheld arm (), as and for the purpose specified.

No. 51, 100. Composition for Covering Roofi.
(Composition à toiture.)
Fis.

Daniel Allen, Galt, Ontario, Canada, 22nd January, 1896 ; 6 years. (Filed 29th November, 1895.)
Claim.-1st. The combination of composition or paste E, composed of one part mica, one part soapstone, and a sufficient quantity of J apan to form a paste, coat of sand $(x$, layer of felt A for foundation, said felt secured to roof by nails varied in space according to pitch of roof, substantially for the purpose hereinbefore described. 2nd. The combunation with one part nica, one part soapstome, and sufficient Japan to form composition or paste E, coat of said G, and layer of felt A for foundation, substantially as hereinbefore set forth.

No. 51,101. Paper Rox. (Boîte en papier.)

The Elliott Paper Box Company, assignee of David Elliott, both of 'Toronto, Ontario, Canada, 22nd January, $1896 ; 6$ years. (Filed 27th July, 1895.)
Claim.-1st. A blank for a folding box cut to form in one piece the bottom A, the sides B and C, the ends D and E, the cover F,
flap J, and tongues K, the L-shaped connecting sections G, provided with slits H, and two tongues I, connected to each of the ends D and \mathbf{E}, substantially as described and for the purpose specified. 2nd. A blank for a folding box cut to form in one piece the bottom A, the sides B and C, the ends D and E, the cover F, flap. J, and tongues K, the L-shaped connecting sections G, provided with slits H, and two tongues I, connected to each of the ends I and E , and faps L and M, substantially as described and for the purpose specified. 3rd. A blank for a folding box cut to form in one piece the bottom A, the sides B and C, the ends D and E, the connecting sections G provided with slits H, and two tongues I, connected to each of the ends D and E, substantially as described and for the purpose specified.
No. $51,102$. Rock Drill. (Machine à percer.)

William H. Dixon, John E. Gartmann, and Frank A. Foslin, all of Denver, Colorado, U.S.A., 22nd January, 1896; 6 years. (Filed 10th August, 1895.)
Cluim.- 1st. In a rock drill, the combination with the track and the frame movable thereon, on the reciprocating ram mounted on the movable frame and provided with a spiral groove, a loose collar surrounding the ram, said collar being provided with a rachet zone, a fastening device passing through an aperture in the collar and projecting into the spiral groove of the ram, means attached to the movable frame for locking the collar against longitudinal movement on the ram, a dog supported on the moveable frame, engaging the ratchet zone and locking the collar against rotary movement in one direction, but allowing it to move in the opposite direction, whereby as the ram is reciprocated, it is given the necessary partial rotation between strokes, substantially as described. 2nd. In a rock drill, the combination with the track and the frame movable thereon, of the reciprocating ram mounted on the movable frame and provided with a spiral groove, the rotating cam for moving the ram in one direction, the spring for moving it in the opposite direction, a loose collar having a ratchet zone, said collar surrounding the ram, a fastening device passing through an aperture in the collar and projecting into the spiral groove of the ram, means attached to the novable frame and engaging the collar whereby the latter is locked against longitudinal movement on the ram, and a dog supported on the movableframeand engaging the ratchet zone of the collar, wherehy the latter is locked against rotary movement in one direction, but permitted to rotate in the opposite direction, substantially as described. 3rd. In a rock drill, the combination with the track and the movable frame mounted thereon, of the reciprocating ram mounted on the movable frame and provided with a spiral groove, a cross-head attached to the ram, a shaft journaled in the movable frame and carrying cams adapted to engage the cross-head of the ram as the shaft is rotated, aspring surrounding the ram and engaging a stop on the movable frame at one extremity and another stop on the ram at the opposite extremity, a loose collar surrounding the ram and provided with a ratchet zone, a fastening device passing through an aperture in the collar and projecting into the spiral groove of the ram, means attached to the movable frame and engaging the collar whereby the latter is locked from longitudinal movement on the ram, and a dog supported on the movable frame and engaging the ratchet zone of the collar, whereby the latter is locked from rotary movement in one direction but permitted to rotate in the opposite direction, substantially as described. 4th. In a rock drill, the combination with the reciprocating ram, the feed screw and the rack bar, of means for actuating the feed screw con-
sisting of a ratchet fast on the screw shaft, a rocker plate pivoted on said shaft and carrying a dog engaging the ratchet, a lever engaging one end of the rocker plate, a spring engaging the other end of said plate, and a cross-head carried by the ram and adapted to engage the lever which lies in its path, substantially as described. 5th. In a rock drill, the combination with the track and frame inovably attached thereto, of the reciprocating ram, the feed screw swivelled in the movable frame, a cogged rack attached to the track and engaged by the feed screw, a ratchet made fast on the feed screw, a rocker plate mounted on the screw and carrying a dog engaging the ratchet, and means whereby the feed screw is actuated, said means consisting of a lever fulcrumed on the movable frame and adapted to engage one end of the rocker plate, a spring engaging the other end of said plate, and a cross-head fast on the ram and adapted to engage the lever, substantially as described. 6th. In a rock drill, the combination with the stationary track, the movable frame mounted thereon, the reciprocating ram mounted on the movable frame and provided with a spiral groove, the rotating cam for moving the ram in one direction, a spring for moving it in the opposite direction, a ratchet collar surrounding the ram, a device passing through the collar and projecting into the spiral groove of the ram, said ratchet being locked from longitudinal movement and from rotation in one direction, a rack bar attached to the track, a feed screw engaging the rack bar, a ratchet fast on the feed screw, a rocker plate movable on the feed screw, a dog carried by the rocker plate and engaging the ratchet, a lever engaging one end of the rocker plate, a spring engaging the other end of said plate, and a cross-head fast on the ram and adapted to engage the lever, substantially as described. 7 th. In a rock drill, the combination with the feed screw and suitable operating mechanism of the track, a rack bar having a vertical movement on the track but locked against longitudinal movement thereon, a key located in a groove formed in the rack bar and having a longitudinal movement, pins attached to one part (the key or the rack bar), and passing through slots formed in the other part, said slots being parallel with the plane of the machine, and means for attaching the key to the track consisting of pins attached to one part and passing through slots formed in the other part at an angle to the plane of the machine, substantially as described.

No. 51,103. Jacketed Can. (Bidon-enveloppe.)

51103
The Utility Manufacturing Company, Assignee of Henry Lewis, Gates and Myron Whiting Clark, all of Milwankee, Wisconsin, U.S.A., 22nd January, 1896; 6 years. (Filed 23rd August, 1895.)

Claim.-1st. A jacketed-can having a folded end of its body projected beyond the adjacent end of the jacket the length of the fold, a flange-extension of this fold laid against said jacket as a means for holding the same in place, and an end-piece joined to said fold. 2nd. A jacketed can having a folded end of its body projected beyond the adjacent end of the jacket the length of the fold, a flangeextension of this fold laid against said jacket as a means for holding the same in place, and an end-piece donble seamed to said fold. 3rd. A jacketed can having the borly portion thereof and a flanged endpiece united by an inturned bead, and an outwardly extended flange of the can body, resulting from the beading operation, laid against the jacket as a means for holding the same in place. 4th. A jacketedcan having the body portion thereof and a tlange end-piece united by an inturned bead, an outwardly extended flange of the can-body, resulting from the beading operation, laid against the jacket as a means for holding the same in place, a shield opposing the bead, and the flange of the end-piece turned over on the shield. 5th. A jacketed-can having the upper portion of its body provided with an outwardly extended flange and suitably connected to an end-piece, the lower portion of said body and a flanged end-piece united by an inturned bead, another ontwardly extended fiange of the can-body, resulting from the beading operation, a shield opposing the bead, the flange of the latter end-piece turned over on the shield, and koth of said outwardly extended can-body flanges laid against the jacket as a means for holding the same in place. 6th. A jacketed-can having the body portion thereof provided with upper and lower flanges laid against the jacket, as a means for holding the same in place, longitudinal metal strips provided with transverse depressions and having the ends thereof caught between said jacket and canbudy flanges, and handles engaging said depressions. 7th. A jacketed-
can having the upper portion of its body provided with an outwardly extended flange and an inturned bead, an end-piece that rests on the bead, pivotal latches on the end-piece engagable with indentations or slot in the can-body, the lower portion of said can-body and a flanged end-piece united by an inturned bead, another outwardly extended flange, resulting from the union of the aforesaid can-body and latter end-piece, a shield opposing the lower bead, the flange of the lower end-piece turned over on the shield, and both of said outwardly extended can-body flanges laid against the jacket, as a means for holding the same in place.

No. 51,104. Marine Conveyance. (Bicycle-radeau.)

John Dean and Charles Russell Carpenter, both of Rachine, Wisconsin, U.S.A., 23rd January, 1896 ; 6 years. (Filed 20th September, 1895.)
Cluim.-1st. A portable raft comprising parallel knock-down trusses each of which has a hinged forward section, transverse braces joining the trusses, bicycle-supports and propulsion-mechanism in connection with the frame embodying said trusses, braces and supports, inflatable flexible floats secured to the trusses, suitable means for transmitting power from a bicycle on the raft to said propulsionmechanism, and other suitable means for insuring deflection of said forward portion of the raft incidental to movement of the handlebar of said licycle. 2 nd . A raft provided with pivotally adjustable propulsion-mechanism, a bicycle arranged on the raft, suitable means for communicating motion from the bicycle to the propulsion-mechanism, and a hanger for this propulsion-mechanism in adjustable connection with said bicycle adjacent to the saddle of the same. 3rd. A raft comprising a main-frame, an auxiliary-frame in pivotal connection with the main one, a propeller wheel having its shaft in bearings on the auxiliary-frame, suitable means for communicating motion from a bicycle on the raft to the propeller-wheel shaft, and other suitable means for regulating the adjustment of said auxiliary frame. 4th. A portable raft comprising a knock down frame consisting of hinged-joined sections and inflatable flexible floats in detachable connection with the frame, bicycle supports and stays on the frame, a propulsion-mechanism attachable to said frame, and suitable means for communicating motion from a bicycle on the raft to said propulsion-mechanism. 5th. A raft provided with propul-sion-mechanism, a friction drum in gear with the propulsion-mechanism, stanchions on the the raft, and supporting devices having verticl adjustable connection with the stanchions, whereby a portion of a bicycle engaged with the supports may be raised or lowered to regulate the contact of its driven wheel with said friction-drum. 6th. A portable raft coniprising a knock-down frame and inflatable flexible floats, a pair of parallel longitudinal stays connected to transverse forward brace-members of the frame, a clamping-yoke joined to the stays, stanchions rising from said frame, a propulsion-mechanism for the raft, and suitable means for communicating motion to this mechanism from a bicycle mounted on the stanchions and front brace nembers of said frame, the stays and clamping-yoke serving to secure the front wheel of said bicycle.
No. 31,105. Bodkin. (Poinçon.)

Abraham Whitton Lozier, New York, Assignee of Frank Darling Arthur, Scarborough, both in the State of New York, U.S.A., 23rd January, 1896; 6 years. (Filed 15th October, 1895.)
Claim.-The bodkin, comprising a strip of spring metal folded upon itself, the folded parts being provided with correspondingly narrowed portions for the reception of a sliding clasp and the free ends of the folded parts being provided with holding jaws turned inwardly and arranged to lap past each other when the jaws are closed, and a clasp surrounding the narrowed portions and adapted to slide towards and away from the holding jaws to lock and release them, substantially as set forth.

No. 51, 106 . Device to prevent Reniling of Bottles.

(Appareil pour empêcher le remplissage des bouteilles.)

James O'Donnel, Hamilton, Ontario, Canada, 23rd January, 1896 ; 6 years. (Filed 31st December, 1895.)

Claim. -1st. The combination of the separate neck C, having an interior contraction K, forming central vertical aperture H, with

channels J, the lower larger part having an interior shoulder F, to rest upon the cork wasber E , and cemented to and around the neck of a bottle A, substantially as described and set forth. 2nd. The combination of the separate neck C, having an interior contraction K, forming central vertical aperture, with channels J, the lower larger part cemented to a bottle neck, and the loose air cap acting in the said separate neck, substantially as described and set forth. 3rd. The loose air cap, with or without its central and interior conical plug 2 , in combination with the interior of the seperate neck, having a contraction forming central vertical aperture, and channels and the lower enlarged part rigidly secured to the neck of a bottle, substantially as described and set forth.

No. 51,10\%. Linotype Machine. (Machine linotype.)

The National Typographic Company, New York, State of New York, Assignee of Philip Tell Dodge, Washington, Columbia, both in the U.S.A., 23rd January,1896; 6 years. (Filed 21st Cctober 1895.)
Claim.-1st. In combination with a series of matrices or dies each having the same character repeated in different forms, a composing mechanism for selecting and assembling said matrices in line and means under the control of the operator for controlling the longitudinal adjustment of each matrix in relation to others in a composed line, whereby the line may be composed in whole of either form of character, or in part of each. 2nd. In combination with a series of matrices each having duplicate characters in variant forms as described, the composing mechanism, and the movable switch whereby the longitudinal adjustment of the matrices in relation to each other may be controlled at will. 3rd. In combination with a series of matrices each having characters repeated as described,
a composing mechanism, means for determining the longitudinal adjustment of the matrices in relation to each other, and a mold adapted to interlock with the matrices in the composed line and retain them in their adjusted positions. 4th. In combination with the matrices having their characters repeated as described, and an assembling block provided with a plurality of sustaining shoulders whereby the matrices in the closed line may be maintained in different positions. 5th. In a linotype machine, and in combination with matrices each having a plurality of characters at different heights, a support for the composed matrices, provided with a plurality of horizontal shoulders adapted to sustain the matrices in the line at the different elevations to which they may be respectively adjusted.

No. 51,108. Axle Cooler. (Refroidissoir d'essieux.)

The Cook Cooler Company, assignee of Miles P. Cook, both of Flint, Michigan, U.S.A.., 23rd January, 1896; 6 years. (Filed 30th December, 1895.)
Claim.-1st. The combination with a journal and its bearing, of a conduit for water having a nozzle arranged to deliver the water against the upper rear portion of the journal below the bearing, as and for the purpose described. 2nt. The combination with a car axle box, brass and journal having a collar at its outer end, of a laterally swinging tank loosely and detachably supported on the car adjacent to the journal and below the frame, a nozzle connected with the tank, means for supporting its end in the box, and a jet on its end directed upward and adapted to direct the stream of water between the upper rear face of the journal and the brass, substantially as described. 3rd. The combination with a car axle box and a journal, of a brass having recesses along its edges, a detachable swinging tank supported adjacent to the journal on the car, a nozzle connected with the tank, means for supporting the nozzle with the end in the box, and a jet on the nozzle directed upwardly so that its discharge will be directed into the said recess at the rear of the journal, substantially as described. 4th. The combination with a car axle box and a journal, of a detachable tank flexibly swung from the under side of the car adjacent to the box, a support on the box, a nozzle or pipe slidingly engaging in said support and having a lateral discharge against the journal, and a connection between the nozzle and tank whereby the swinging of the tank cansed by the motion of the car will direct the cooling fluid along the face of the journal, substantially as described. 5th. A car axle cooler conuprising a tank detachably swung from the car adjacent to the axle, free to oscillate transversely of the car, a nozzle connecting with the tank slidingly supported on the box and discharging against the journal, the parts being so arranged that the oscillation of the tank will reciprocate the nozzle, substantially as described. 6th. In a car axle cooler, the combination with a journal box, of a detachable tank, a nozzle, a connection between the nozzle and the tank, the nozzle arranged on the box for the nozzle comprising a flexible joint, substantially as and for the purpose described. 7 th. In a car axle cooler, the combination with the journal box, the detachable tank, its nozzle and a clamp on the box, of a ring on the nozzle, and an eye on the clamp with which said ring loosely engages, substantially as and for the purpose described. 8th. In a car axle cooler, the combination with the tank, of a flexible discharge pipe therefrom, a rigid nozzle carried by said flexible pipe, a clamp on the box with which said nozzle has a sliding engagement, a guide rod connecting the nozzle and a support for the rod on the tank, substantially as described. 9 th. In a journal box cooler, the combination with the journal and brass, of a nozzle having its discharge arranged in close proximity to the edge of the brass and free to move back and forth, and means for reciprocating the nozzle comprising a transversely swinging tank, and a connection between the same and nozzle, substantially as described. 10 th. In a railway car, the combination with an axle box, the journal and brass, of a longitudinally reciprocating liquid distributing nozzle in the box at one side of the journal, and means for supplying a liquid to the nozzle during its movement, substantially as described. 11th. In a railway car, the combination with
an axle box, its journal and brass, of a freely swinging tank on the car, a nozzle freely supported to move longitudinally at the side of the journal, a flexible connection between the tank and nozzle whereby the movement of the tank is imparted to the nozzle, substantially as described.

No. 51,109. Poll Book. (Livre de scrutin.)
D.D.

Samuel E. St. Onge Chapleau, Ottawa, Ontario, Canada, 23rd January, 1896; 6 years. (Filed 27th November, 1895.)
Claim. - 1 st. As a new article of manufacture, a poll book, containing all the known blank forms arranged in the successive order in which they are required to be used at an election, bound as shown and for the purpose set forth. 2nd. A pool book containing all the blank forms shown in the schedule to the Dominion Election Act, also, other blank forms, not therein shown, made up in suitable numbers, the original being bound with the book proper, and the remainder being made detachable by means of a temporary binding. 3rd. The combination in a poll book of perforations such as $i i$ cut through one side of the cover of the book and through the margin of all the detachable blank forms, and means, sach as a cord, for binding the same substantially as shown and for the purposes set
forth. 4th. In a pool book, a blank form showing the satemen forth. 4th. In a pool book, a blank form showing the purposes set the poll, having the columns d and d^{1}. and heavy lines \dot{e} and e, so disposed that the sum total of all the entries correspond with the number of ballot papers delivered for use at such poll, the whole suitably labelled and indexed, substantially as described and for the purposes set forth.
No. 51, 110. Music Holder, Ete. (Porte-musique, etc.)

William Molton. Hamilton, Ontario, Canada, 23rd January, 1896.; 6 years. (Filed 29th October, 1895.)
Claim. - 1st. In a music holder and folder, the combination of the outer covers provided with horizontal plates secured thereto, said plates formed with their outer folded ends secured to said cover, by rivets 6 , the inner plates F, secured to said plates forming stops 8 ,
and 9 , the plate D, arranged to hinge to the plate E , and partially
covered and secured to the central vertical plate C, having slotted projections 4, for adjustable central rod M, provided with a series of bent rods N, and the rods J, capable of adjustment in arms I, pivoted in sliding supports H , substantially as described. 2nd. In a music holder and folder, the combination of the covers A, having plates E, secured thereto forming a space between said covers and plates, with stops 8 , and 9 , and binged to plate D, which is secured to central plate C , bent to form slotted projections with slots for rod M, the series of folding rods N, the adjustable rods J, in arms I , pivoted in sliding supports H , the inner covers B , provided with the springs K, and secured to said plate C, and the music holder fastening O, and P, provided with catch R, and pin 15 , substantially as described. 3rd. The combination, in a music holder, folder and stand of the attachment consisting of the elongated plate S , having lower hook, and upper sliding hook arranged to clip the music holder at plate C, as set forth, the said upper hook having projection 19, having opening, and capable of adjustment by means of its slot, and outer rigid plate, having guide and stop pins 18, the spring plate V, formed with lip Y, for insertion of upper part of flanged plate 20 of stand, and the lower slotted and locking slide 22 , provided with lower projection and rigid plate 24, having guide pins 25 , substantially as described. 4th. In a portable music holder and tolder, the combination of the covers \mathbf{A}, having central plate \mathbf{C}, and hinged plates E, provided with the adjustable handle rods J, having arms pivoted in sliding supports H, and the fastening supports O, and P, of equal projection with said slides H, substantially as described.

No. 51, 111. Valve for Surgical Syringea.

(Soupape pour seringues de chirurgic.)

Horace D. Taggart, Akron, Ohio, U.S.A., 23rd January, 1896; 6 years. (Filed 28th October, 1895.)
Claim.-1st. An improved valve for surgical syringes, consisting of a hollow cone-shaped rubber valve, cut centrally downward from its apex a short distance, substantially as shown and described. 2nd. An improved valve for surgical syringes, consisting of a rigid separable hollow case, with tapering ends to enter the tubes, and a valve consisting of a cone of flexible material, cut centrally lengthwise toward its base, and retained in said case, subsantially as shown and described. 3rd. A valve for surgical syringes, consisting of a hollow rigid separable case, a hollow cone-shaped valve cut centrally lengthwise from its apex, and a hollow bushing arranged to be inclosed by said cone-shaped valve within said case, substantially as shown and described.
No. 51,112. Dice Box. (Cornet ades.)

Eugene Gregory, Ann Arbor, Michigan, U.S.A., 23rd January, 1896 ; 6 years. (Filed 28th October, 1895.)

Cluin.- $\mathbf{1 s t}$. In a dice box, the combination of a foot piece terminating in a table at its upper end, and a covering hood made in parts adapted to be closed by the hand of the operator, and to drop apart to disclose the interior of the box when not so closed. 2nd. In a dice box, the combination of a f(x)t-piece terminating at its upper end with a table, a flange surrounding said table, and a hood made in parts adapted to close over and conceal said table, and to open and disclose said table. 3rd. In a dice box, the combination of a flanged table, a hood made in parts hinged to said table and adapted to move from a position of closure to a position of disclosure of said table, and stops limiting the closing movement of said hood pieces, substantially as described. 4th. In a dice box, the combination of a flanged table, and a hood made in two parts closing together in the form of a hemisphere, substantially as described.

No. 51,113. Knitting Machine. (Machine à tricoter.)

Louis Napoleon Devon, William and Harry Swinglehurst, both of Philadelphia, Pennsylvania, U.S.A., 23rd January, 1895; 6 years. (Filed 26th October, 1895.)
Claim.-1st. In automatic knitting machines, means for moving the needles out of and into operative positions in relation to the cams in narrowing and widening the fabric, the said means comprising pickers mounted upon a frictionally operated ring or bar, and adar ted to be stopped by the bits of the needles, one of the said pick. ers acting upon the bits of the needles to move them in one direction, and the other acting upon the bits of the needles to move them in the opposite direction, substantially as hereinbefore described. 2nd. Providing the pickers with operating stems or shanks located in different planes and combining therewith a bar or bars movable into line with the operating stem of either picker, substantially as hereinbefore described. 3rd. The means employed for operating the picker operating bars, the said means comprising a vibrating frame, a pair of arms pivoted thereon and carrying the picker operating bars, a wedge for separating the said arm and a spring for drawing them together, substantially as hereinbefore described. 4th. Mounting the pickers on the frictionally operated ring or bar so that they can be moved in and out thereon, and thus carried into and out of range of the operating bar or bars, substantially as hereinbefore described. 5th. The means employed for moving a number of needles out of action smultaneously, the said means comprising a series of jacks in line with the needles, a segment for moving the said jacks, a cam for actuating the said segment, and means for moving the segment into range of the cam, substantially as hereinfefore described. 6th. The means employed for moving different sets of needles into and out of action simultaneously, the said means comprising the needle jacks, two segments for acting thereon, a cam for operating the said sagments, two notched levers for moving the said segments into and out of range of the cam, two cams set so as to follow each other in their action on the notched levers, pattern chain having links of different heights, and connections whereby the said pattern chain is caused to operate the cams which act upon the notched levers, substantially as hereinbefore described. 7th. The reversing clutch mechanism comprising a rotating wheel, a reciprocating wheel, a clutch drum having a sliding bolt adapted to engage with either wheel, and a pivoted toe on the said bolt adapted to project beyond the bolt on one side, and thus prevent engagement of the bolt with the reciprocating wheel except when the latter is travelling in one and the same direction, substantially as hereinbefore described. 8th. The means for shifting the position of the reversing clutch, the said means comprising a rock shaft moved in one direction ly a spring, an arm engaging with a retaining catch for holding the said rock shaft in one position, a lever hung to the rock shaft and adapted to be acted upon by a cam for moving the said shaft against the action of the spring, a second lever for mov-
ing the said first mentioned lever into the path of the cam, and a trip lug for engaging successively with the said second lever and with the retaining catch, substantially as hereinbefore described. Yth. The speed changing mechanism comprising the fast and slow pulleys, the loos epulley between them, the duplex belt shifter, a shifting rod constructed to engage with an arm on the reversing clutch mechanism, and devices for releasing the shifting rod from such engagement, substantially as hereinbefore described. 10th. The means for varying the draft of the needles, the said means comprising a cam lever for raising and lowering the needle cylinder, a cam and connections for moving the said lever to and fro, and ratchet and pawl mechanism for automatically operating the said cam at intervals, substantially as hereinbefore described. 11th. The means for holding and releasing the needle cylinder, comprising the split clamp, a threaded wedge bolt for expanding the same, and a lever nut applied to the said wedge bolt, substantially as hereinbefore described. 12th. The extra thread controlling mechanism comprising a pair of clamping jaus for the said extra thread, a lever having a cam lug for opening the movable jaw, and constructed so as to form slack thread after the jaws are closed, and devices acted upon by a pattern chain for moving the said lever, substantially as hereinbefore described. 13th. The extra thread controlling mechanism provided with means for operating it, so as to release the extra thread on starting the heel, and to confine the said thread in finishing the heel, and also with supplementary operating devices, whereby the extra thread is released for but part of a course, in forming circular courses of stitches at the centre of the heel, substantially as hereinbefore described. 14th. The cam cylinder having a preliminary draw-down cam and a set of needle pickers, both provided with levers, whereby they may be thrown into and out of action, in combination with a double disc, one part of which acts upon the lever mechanism of the cam, and the other upon the lever mechanism of the pickers, substantially as hereinbefore described. 15th. The lever 211 having three pins, the first for acting upon the mechanism for raising half of the needles out of action simultaneously, the second for acting upon the lever mechanism of the preliminary drawdown cam, and the third for acting as a stop to prevent further rotation of the cam cylinder, substantially as hereinbefore described. 16th. The mechanism for vibrating the frame carrying the bars for operating the pickers, the said vibrating mechanism including cams which act upon a roller controlled by an arm on the clutch shifting shaft, so that it is put out of range of the cams when the nachine is. rotating, and into range of the sand cams when the machine is reciprocating, substantially as hereinbefore described. 17 th. The mode hereinbefore described of forming a heel u'on a sock or stocking, the said mode consisting in first forming a gra " ially narrowed web with main and extra threads upon certain of lice needles, then forming a series of continuous courses of stitches upen all of the needles, and stopping the feed of the extra thread in that portion of each course which extends over the instep, and then forming a gradually widened web with both threads upon the same needles upon which the narrowed web was produced, substantially as hereinbefore described. 18th. A sock or stocking having a heel composed of main and extra threads, and having a series of continuons circular course of stitches interposed between the gradually widened webs which form and shape the heel, the extra thread being removed from that portion of each of the interposed circular courses which extends over the instep.

No. 51,114 . Protective Guard for Paper Rolls.
(Protecteur pour rouleaux de papier.)

Charles Louis Duval, Bayonne, New Jersey, U.S.A., 23rd January, 1896; 6 years. (Filed 25th October, 1895.)
Claim.-1st. The adjustable guard consisting of the flexible cylindrical portion C and the sectional turned-over portions DD ${ }^{1}$ arranged to play upon each other and permit the adjustment of the guard, the ends of the portion I) being turned over the alternate portions D^{1} as at \mathbf{E}, and hooks or fastening devices c being formed integrally with the said guard, substantially as set forth. 2nd. The adjustable guard consisting of the flexible cylindrical portion C and the sectional turned-over portions DD' arranged to play upon each other and permit the adjustment of the guard, and means for securing the ends of the said guard together, substantially as set forth. 3rd. The flexible adjustable guard consisting of a metallic plate or blank having turned up sectional portions DD ${ }^{1}$ interlocking and playing upon each other to permit the adjustment of the said guard, and means for securing the ends of the said guard together, substantially as set forth. 4th. A guard for the purposes
described consisting of a cylindrical portion C and the sectional end portion D, the sections of such end portion interlocking and playing upon each other to permit the adjustment of the said guard, substantially as set forth. 5th. A guard for the purposes described consisting of a flexible cylindrical portion C and a turned-up and sectional end portion D and a fastening device struck up or formed integrally with the said guard, substantially as set forth.

No. 51,115 . Ink Stand etc. (Encrier etc.)

John B. Thomas, Lakewood, New Jersey, U.S.A., 23rd January, 1896 ; 6 years. (Filed 18th Octuber, 1895.)
Claim.-1st. In a fountain ink stand, the combination of a base, and a curved tube as B, secured thereto, or connected therewith, one end of said tube being longer than the other, and the longer end being closed and the shorter end open, substantially as shown and describer. 2nd. In a fountain ink stand, the combination of a base, and a curved tube as B, secured thereto or formed thereon, one end of said tube being longer than the other and closed, and the shorter end being directed upwardly and open, and the end thereof, being cut away at an angle to the perpendicular, substantially as shown and described. 3rd. In a fountain ink stand, the combination with a base as A, of a bent or curved tube as B, secured thereto, or formed thereon, one end of said tube being longer than the other, and directed upwardly and outwardly, and the end thereof, being cut away at an angle to the perpendicular, substantially as shown and described. 4th. The combination with a base as A, of a bent or curved tube secured thereto, one end of which is inclined upwardly and closed, and the other end of which is inclined upwardly and open, and provided with a removable cap, the closed end of the tube being longer than the open end, substantially as shown and described. 5th. The combination with a base as A, of a bent or curved tube secured thereto, one end of which is inclined upwardly and closed, and the other end of which is inclined upwardly and closed, and the other end of which is inclined upwardly and open, and provided with a removable cap, the closed end of the tube being longer than the open end, and said removable cap being provided with a brush, substantially as shown and described.

No. 51,116. Medicinal Compound.

(Composition médicinale.)

Samuel Irwin, and Oliver Lingwood, both of Waterloo, Ontario, Canada, 23rd January, 18:6; 6 years. (Filed 16th October, 1895.)

Claim.-A compound composed of a combination of three ingredients, viz.: -A, Essence of cloves, 5 per cent, B, sulphate of magnesia, 90 per cent, C , infusion of pepperment, 5 per cent, substantially in the proportions and for the purposes set forth.

No. 51,117. Mechanical Toy. (Jouet mécanique.)

Whiting Jerome Wilcox, Cornwall, Connecticut, U.S.A., 23rd January, 1896; 6 years. (Filed 14th October, 1895.)
Claim.-1st. The combination with a squirrel house or cage. having a drum mounted in connection therewith at one end thereof, of a spring operated mechanism, a shaft passing through said drum and rigidly connected therewith, and adapted to be operated by said mechanism, a figure within said drum designed to represent a squirrel or other animal, said figure being also pivotally connected with said
shaft and a figure within the house or cage designed to represent a squirrel or other animal, and the separate parts of said figure being

in operate connection with said shaft and pivotally connected with the body portion thereof, whereby the shaft is revolved, the figure within the house or cage appears in the act of eating, substantially as shown and described. 2nd. In a mechanical toy, the combination of a house or cage, and a roller mounted at one end thereof, and rigidly connected with a shaft by which it is adapted to be revolved, a springdrum mechanism for revolving said shaft, and figures within the drum*and within the cage or house, said figures being designed to represent squirrels or other animals, and being in operative connection with said shaft, whereby, when the shaft is revolved, the figure within the drum appears to revolve the drum and the figure within the cage or house appears in the act of eating, substantially as shown and described. 3rd. In a mechanical toy, the combination of a house or cage, a spring drum rigidly mounted on a shaft at one end thereof, a spring operated mechanism for revolving said shaft. one end of which is projected into said house or cage, a figure designed to represent a squirrel or other animal within the drum, and pivotally connected with said shaft by means of a rod or arm which passes through a slot in the back of the figure, and a figure within the house or cage designed to represent a squirrel or other animal, and the fore legs and the head and tail of which are pivotally connected with the body thereof, a lever pivotally supported beneath the figure, which is in operative connection with the said shaft, said lever being also in operative connection with the pivoted tail, the pivoted head and the pivoted fore legs of the figure, substantially as shown and described.

No. 51,118. Fishing Reel. (Rouet de pêche.)

Thomas James Sutton, New York, State of New York, U.S.A., 23rd January, 1896; 6 years. (Filed 14th October, 1895.)
Claim.-1st. In a reel or similar device, the combination, with a reel supported in a frame, through one end of which one end of the reel shaft extends and has mounted thereon a pinion of a casing connected with said end and forming a chamber inclosing said pinion, a crank the shaft of which passes through said casing and is provided in said chamber with a pinion mounted thereon, a lever pivotally supported in said casing, one end of which extends through the side thereof and the other of which is provided with a pinion which gears with said pinion on the crank shaft and is adapted to be placed in gear with said pinion on the reel shaft, and a spring connected with said lever, the normal operation of which is to hold the pinion on the lever out of gear with the pinion on the reel shaft, and means for connecting said pinions and holding them in gear, substantially as shown and described. 2nd. The combination, with a reel, support provided with end pieces, of a reel supported thereon, one end of the shaft of which extends through one of said end pieces and is provided with a pinion mounted thereon, a casing secured to said end piece and forming a chamber, in which is located said pinion, a crank the shaft of which extends inwardly through said casing and is provided with a pinion mounted thereon, a lever also pivotally mounted in said casing, one end of which extends through the side
thereof by which the same is supported, and the other end of which is provided with a pinion in gear with the pinion on the crank shaft and adapted to be placed in gear with the pinion on the reel, a spring connected with said lever operating to hold the pinion thereon out of gear with the pinion on the reel, an arm or plate mounted in said casing and extending over said lever, and means for operating the latter to place the gear thereon in connection with the gear upon the reel shaft and locking the parts in said position, substantially as shown and described. 3rd. The combination, with a reel support provided with end pieces, of a reel supported therein one end of the shaft of which extends through one of said end pieces and is provided with a pinion mounted thereon, a casing secured to said end piece and forming a chamber, in which is located said pinion, a crank the shaft of which extends inwardly through said casing and is provided with a pinion mounted thereon, a lever also pivotally mounted in said casing, one end of which extends through the side thereof by which the same is operated and the other end of which is provided with a pinion in gear with the pinion on the crank shaft and adapted to be placed in gear with the pinion on the reel, a spring connected with said lever operating to hold the pinion thereon out of gear with the pinion on the reel, an arm secured in said casing and extending over said lever, each of said parts being provided with a perforation adapted to mesh when the lever is operated to place the pinion thereon in gear with the pinion on the reel shaft, and a spring bolt or pin extending throug the casing and adapted to enter said perforations and lock the partsin gear with the reel shaft, substantially as shown and described. 4th. The combination, with a frame provided with said pieces, of reel, one end of the shaft of which extends through one of said end pieces and is provided with a pinion mounted thereon, of a bracket or support secured to said end piece and inclosing said pinion and end of the shaft, and provided with a screw - threaded projection, through which extends a screw - threaded pivot, which operates in connection with the ead ot the reel shaft, of a casing secured to said end piece and forming a chamber, a crank shaft extending through said casing and having mounted thereon within said chamber a pinion, a lever also pivotally supported in said chamber, one end of which extends through the side thereof, and the other end of which is provided with a pinion in gear with the pinion on the crank shaft, and means for operating said parts so as to alternately place the pinion on the lever in and out of gear with the pinion on the reel shaft, substantially as shown and described. 5th. The combination with a frame provided with end pieces and a reel supported therein, the shaft of said reel being provided at each end with a recess adapted to receive the pointed end of a pivotal support, of screw threaded pointed pivotal supports, one of which passes at one end through a screw-threaded projection on the end piece and provided with a set-nut, the other end of the reel shaft passing through the end piece or plate and provided with a pinion mounted thereon, and a bracket secured to said end piece and provided with a tubular screw-threaded projection adapted to receive the screw-threaded pivot for said end of the reel shaft, a setnut mounted on said pivot and operating in comection with said projection, and a casing inclosing said bracket and pinion, through the centre of which the screw-threaded projection on the bracket passes, and a crank the shaft of which extends through said casing and is provided with a pinion mounted thereon in said chamber, and means for alternately placing said pinion in an out of gear with the pinion on the reel shaft, substantially as shown and described.

No. 51,119. Process of Obtaining a Flavouring and Colouring Extract. (Procedé pour oblevir une composition à colorer et donner de la saveur.)
Joshua Tennant and George Adelbert Thayer, both of Carson City, Michigan, U.S.A., 23rd January, 1896; 6 years. (Filed 30th December, 1895.)
Claim.-1st. The method of extracting the flavouring matter from sugar, maple or other woods, consisting of first boiling the finely divided wood in pure drinking water in a close vessel, evaporating the solution to a semi-solid mass, removing the precipitated insoluble tauntates, secondly redissolving this semi-solid mass with a fresh quantity of pure drinking water, boiling, and thirdly, filtering this solution, evaporating to dryness the filtrate, and reducing the dry residue to a powder, substantially as set forth. 2nd. As a new article of manufacture, an anhydrous powder, obtained from the wood of the maple or other sacchariferous tress, substantially as set forth.

No. 51, 120. Apparatus for and Manufacture of Mosaic

 Floor Cloth. (Fabrication de toile de plancher.)William Mather, Salford Iron Works, Manchester, England, 23rd January 1896; 6 years. (Filed 17th August, 1895.)
Claim.-1st. The herein described method of manufacturing mosaic floor cloth by passing differently coloured sheets of plastic material between successive pressing rollers, and a pattern drum into the spaces of which tessere of the material are thus pressed, exuding such of the tesserie as are not to form part of the pattern, then exuding all the rest and pressing them on a travelling fabric backing, and finally passing the backing and tessere ketween pressing cylinder and pressing rollers, or between pairs of pressing rollers, so as to cause the whole to cohere and form a continuous sheet of mosaic cloth. 2nd. For operating in the manner set forth
in the preceding claim, a machine comprising a pattern drum with its pressing rollers, cam bars and scraping blades and conveyors, a

pair of chains geared to the drum with means of holding and stretching the backing fabric, and a pressing cylinder and rollers constructed and arranged substantially as described and illustrated by the accompanying drawings. 3rd. The pattern drum having spaces separated by thin cutting blades and provided with plates and spring urged stems, in combination with several pressing rollers, corresponding stationary bars having cam ribs, troughs having scraping blades and conveyors and with an extension cam bar, substantially as described. 4th. In combination with this pattern drum, the pair of chains gearing with teeth on the drum, and having pins to hold the backing fabric, the wheels over which and the inclined guides through which the chains pass, eubstantially as described.

No. 51,121. Cattle Stall. (Stalle pour bestiaux.)

Merrill J. Drown, Lester E. Hoyt and Joel W. Davis, all of Barboo, Wisconsin, U.S.A., 24th January, 1896; 6 years. (Filed 26th December, 1895.)
Claim.--A stall for cattle comprising the stationary floor portion D, a support C^{1}, having the horizontal portion arranged beneath the rear end of the stationary floor portion D, the stationary floor B, supports C, arranged between the floor B, and the support C^{1}, the movable or adjustable floor bearing on the horizontal portion of the support C^{1}, supports C , and floor B , a feed trough carried by the stationary floor portion D, and adapted to rest over and cover the space between the said floor portion and the adjustable floor fortion, the stationary side walls arranged on the floor portion 1 , the posts L, connected to and rising from the movable or adjustable floor, the movable side walls or gates interposed between the stationary side walls and the posts L, and pivotally connected at their lower forward corners with the stationary side walls, ropes connected with the gates adjacent to their free ends and adapted to close the tear ends of the stall ropes Q, connected to said vertically movable side walls or gates and taking over sheaves arranged above the walls, weights connected to said ropes, and a rope S connected with the ropes Q, all substantially as and for the purpose specified.

No. 51,122. Cattle Stall. (Stalle pour bestiaux.)

Merril J. Drown, Lester E. Hoyt, and Joel W. Davis, all of Baraboo, Wisconsin, U.S.A., 24th January, 1896 ; 6 years. (Filed 26th December, 1895.)
Chim.-1st. A stall for cattle comprising the beams C, extending in the direction of the length of the stall, stringers of a less height than the beams arranged at intervals between the same, the stationary floor portions E, arranged upon the stringers between the beams, the movable floor portion F, also arranged upon the stringers between the beams, the stationary side walls connected to and rising from the beams C, the posts K, arranged at the rear ends of the stationary walls and journalled in the beams C , so as to enable them to turn, uprights J , connected to and rising from the beams C ,
adjacent to the rear ends thereof, and comprising parallel bars, and vertically movable side walls or gates pivotally connected to the

posts K, and adapted to rest between the bars of the uprights J, substantially as specified. 2nd. A stall for cattle comprising the beams C, extending in the direction of the length of the stall, stringers of a less height than the beams arranged at intervals between the same, the stationary floor portion \mathbf{E}, arranged upon the stringers between the beams, the movable floor portion F, also arranged upon the stringers between the beams, the stationary side walls connected to and rising from the beams C, and having stop plates F^{1}, at their rear ends, uprights J, connected to and rising from the beams C , adjacent to the rear ends thereof and comprising parallel bars, the posts K, arranged at the rear ends of the stationary walls and journalled in the beams C, and adapted to be engaged by the stop plates \mathbf{F}^{1}, spring \mathbf{E}^{1}, connecting the posts K, and the stationary walls, vertically movable side walls or gates pivotally connected to the posts K, and adapted to rest between the bars of the uprights J, and adapted to be swung across the stalls, and a suitable means for holding the walls or gate ins such position, substantially as specified.

No. 51, 123. Process of Purifying Oil.

(Procede pour épurer l' huile.)

The Cleveland Linseed Oil Company, assignee of Herman Frasch, all of Cleveland, Ohio, U.S.A., 24th January, 1896; 6 years. (Filed 29th Nov., 1895.)
Claim.-1st. The process of purifying linseed or similar oil, con taining solvent such as naphtha together with the coagulable mucilaginous or albuminous matter extracted with the fatty matter, by evaporating the naphtha at a temperature suitably below $212^{\circ} \mathrm{F}$. to be non-coagulative of said mucilaginous or albuminous matter, (preferably about or below $140^{\circ} \mathrm{F}$.) with the aid of low tension steam passed through said oil and having a temperture suitably below 212° F. to be non-coagulative of its said mucilaginous or albuminous matter, substantially as described. 2nd. The process of purifying linseed or similar oll, containing solvent such as naphtha together with the coagulable mucilaginous or albuminous matter extracted with the fatty matter, by evaporating the naphtha at a temperature suitably below $212^{\circ} \mathrm{F}$, to be non-coagulative of said mucilaginous or albuminous matter (preferably about or below $140^{\circ} \mathrm{F}$.) with the aid of dry heat and of low tension steam passed through said oil and having a temperature suitably below $212^{\circ} \mathrm{F}$. to be non-coagulative of its said mucilaginous or albuminous matter, substantially as described. 3rd. The process of purifying linseed or similar oil, containg solvent such as naphtha together with the coagulable mucilaginons or albuminous matter extracted with the fatty matter, by evaporating the naphtha with the aid of dry heat and low tension steam in two stages, in both of which the oil is kept at a temperature suitably below $212^{\circ} \mathrm{F}$. to be non coagulative of said mucilaginous or albuminous matter, (preferably about or below $140^{\circ} \mathrm{F}$.,) and in both of which low tension non coagulative steam is passed through said oil, the temperature of the oil being lower and a less volume of steam being passed through the oil in the first than in tha second or later stage, wherein the temperatures of the oil and of the injected steam are preferably about 140° F., substantially as described.

No. 51,124 . Apparatus for Propelling Vessels.

(Appareil de propulsion pour vaisseaux.)
Carl August Gindo Storz, Frankfort-on-Main, Germany, 24th January, 1896; 6 years. (Filed 9th Feb., 1894.)

Claim.- 1st. A rotary propeller, comprising a drum-shaped body d, having peripheral blades or vanes b, and partly surrounded by a

casing d, at the side of a ship, substantially as set forth. 2nd. A. rotary propeller having a body or drum d, provided with peripheral blades or vanes b, diagonally or spirally to the axis, and a casing d, partly open and including the propeller more or less, and guide plates e, as set forth. 3rd. An axial propeller having a hollow cylindrical body a, provided with tangentially arranged blades or vanes b, and provided with ends b, to exclude air and water, a casing d, partly inclosing the propeller, and guide plates e, said propeller arranged to operate, as and for the purpose set forth.

No. 51, 125. Process of photographing in Colours.

(Procédé de photographie colorée.)
John Joly, Dublin, Ireland, 24th January, 1896; 6 years. (Filed 18th May, 1895.)
Claim.--1st. Taking a photograph through a parti-coloured screen substantially as described. 2nd. A transparent screen for use in taking a photograph bearing a pattern in dyes or pigments having different selective light-absorption properties, substantially as described. 3rd. A transparent screen bearing a pattern in the primary colours substantially as described for use in viewing a photographic image taken through a screen such as described in the preceding claim. 4th. A transparent screen for use in taking and viewing a photograph bearing a pattern in the primary or approximately primary colours and in such dyes or pigments as havesuitable selective light-absorption properties, substantially as described. 5th. In photography the sub-division of the image by means of a screen on which are lines ruled in several tints and in close juxtaposition thereby producing compound colour sensations, substantially as described. 6th. An opaque screen for use in taking a photograph bearing a transparent pattern substantially as described. 7 th. The combination in a sensitive plate for use in photography of a pattern in the primary colours a sensitive film and a corresponding pattern on the surface of the sensitive film in suitable selective light-absorptive dyes or pigenents substantially as described. 8th. In a camera the combination of a uniform colour screen of suitable selecting tint, an opaque screen bearing a transparent pattern and a sensitive plate, substantially as and for the purpose described. 9th. The combination in a sensitive plate for use in photography of a sensitive film and a layer or stratum of distributed colour dyes or pigments in alotted order or places suitable for taking and also for viewing in the desired colours a photographic image. 10th. The combination in a photographic camera of a lens to project an image upon a parti-coloured screen such as described but lar'ger than the sensitive tilm and a reducing lens to focus the image formed upon the said screen on to the sensitive plate.

No. 51,126. Art of Treating Mineral Fibre.

(Art de traiter des fibres minerales.)

David H. Ferguson, Montreal, Quebec, Canada, 24th January, 1896; 6 years. (Filed 30th March, 1895.)
Claim.-1st. The method or process of treating mineral fibre in the production of rigid non-conducting coverings and the like which consists in forming the material loosely in moulds and treating the article with inorganic binding material in solution whereby when dry the article will be hard rigid and stone-like at its surfaces and soft in its interior, substantially as set forth. 2nd. The method or process of treating mineral fibre in the production of non-conducting coverings and the like which consists in first forming the material loosely in moulds, then treating the surfaces with a binding material as silicate of soda in solution to set the article in its moulded form, then further treating the surfaces with a binding material as calcium chloride in solution then drying and finally dressing or finishing whereby a hard stone-like crust is imparted to the surfaces of the
article while the interior remains soft, substantially as set forth. 3rd. As a new article of manufacture a rigid non-conducting covering or like article composed of mineral fibre chemically hardened on its surfaces and soft in its interior, substantially as set forth.
No. 51,127. Piano Desk. (Piano-pupitre.)

Albert Nordheimer and Samuel Nordheimer, assignee of Owain Martin, all of Toronto, Ontario, Canada, 24th January, 1896 ; 6 years. (Filed 25 th October, 1895.)
Claim. - 1st. In a plano, the combination of the piano front, a desk pivotally connected to the piano front, a lever having an outwardly extending arm pivotally connected to the desk, a vertical guide, and means for movably connecting the outwardly extending arm of the said lever to the said guide, substantially as specified. 2nd. In a piano, the combination of the piano front, a desk pivotally connected at one end to the piano front, a substantially U-shaped lever, the middle part of which is pivotally connected to the opposite end of the desk, vcrtical guides, and means for movably connecting the opposite sides of the said lever to the said guides, substantially as specified. 3rd. In a piano, the combination of the piano front, a desk hinged at its upper end to the piano front, the back of the desk provided with a series of brackets, a U-shaped lever the middle part of which is pivotally held by the said brackets, the opposite sides of the U -shaped lever provided with outwardly flaring flanges, and vertical guides for each of the said flanges, substantially as specified. 4th. In a piano, the combination of the piano front, a desk hinged at its upper end to the piano front, the back of the desk provided with a series of brackets, a U-shaped lever the middle part of which is pivotally held by the said brackets, the opposite sides of the U-shaped lever provided with outwardly flaring flanges, vertical guides for each of the said flanges, and a spring connected to the middle part of the U -shaped lever adapted to hold it in any set position, substantially as specified.

No. $\mathbf{5 1 , 1 2 8}$. Musical Ingtrument. (Instrument de musique.)

Daniel Mayer, Assignee of William Robinson, both of London, England, 24th January, 1896; 6 years. (Filed 23rd October, 1895.)

Claim.-1st. In a musical instrument the combination of two resonators strings extended between the two and connected to both and connectors connecting the resonators to the frame of the instrument. 2nd. In a musical instrument the combination of two resonators and strings extended between the two and connected to both substantially as set forth. 3rd. The combination with a musical instrmment of a resonator of perforated plate substantially as set forth. 4th. In a musical instrument the combination with the usual resonator of a second resonator of perforated plate tongues in this resonator strings extended between the two and connected to both and screwed connectors connecting the resonators tc the frame of the instrument sulistantially as set forth. 5th. In a musical instrument the combination with the usual resonator of a resonator of perforated plate tongues in this resonator and connectors connecting it to the frame of the instrument substantially as set forth. 6th. In a musical instrument the combination with the usual resonator of a resonator of perforated plate tongues in this resonator and strings extending between the two and connected to both resonators substantially as set forth. 7 th. In a musical instrument the combination with the usual resonator of a resonator of perforated plate and tongues therein substantially as set fort. Xth. In a musical in strument the combination with a resonator of tongues substantially as set forth.

No. 51,129. Smokeless Gun Powder.

(Poudre à canon sans fumée.)
The American Smokeless Powder Company, New York, Assignee of Garland Nelson Whistter, Fort Wadsworth, and Henry Chappell Aspinwall, West New Brighton, all in the State of New York, U.S.A., 24th January, 1896; 6 years. (Filed 13th .June. 1895.)

Claim.-1st. A smokeless powder, composed of nitroglycerine, rinitrocellulose, a nitrate and a neutralizer of free acid, the proportion of nitrate to the trinitrocellulose being about forty-five parts of nitrate to one hundred parts of trinitrocellulose, or so that the combustion of the trinitrocellulose shall be substantially similar to that of the nitroglycerine. 2nd. A smokeless powder mixture, containing nitroglycerine, trinitrocellulose, a nitrate, a neutralizer of free acid and a deterrent, either petrolatum or a resin. 3rd. A smokeless powder mixture containing nitroglycerine, trinitrocellulose, a nitrate and the fossilized gum kauri.

No 51,130 . Bicycle Support. (Support de bicycle.)

John Winick Currier, Los Angeles, California, U.S.A., 24th January, 1896 ; 6 years. (Filed 7 th January, 1896.)
Chaim.-1st. The combination with a bicycle, of a support therefor consisting of a stationary member adapted to be attached to the bicycle frane, and a movable member pivotally secured to said stationary member, and automatically locked in its operative position, substantially as described. 2nd. The combination with a bicycle, of a support therefor consisting of a stationary member adapted to be attached to the bicycle frame, and a movable member pivotally secured to said stationary member and provided with a socket for the reception of a locking bolt, and the said locking bolt adapted to enter said socket, substantialiy as described. 3rd. The combination with a bicycle, of a support therefor consisting of a stationary member adapted to be attached to the bicycle frame, and a movable member pivotally secured to said stationary member, and a locking device operated by the said movable member to project into the path of movement of the spokes of the bicycle wheel, substantially as described.

No. 51,131. Process of Treating Furniture Polish.

(Procédé puur le traitement de poli à meubles.)

Carl Ferdinand Franz Bratsch, Berlin, Germany, 24th January, 1896; 6 years. (Filed 26st Dec., 1895.)
Claim.-1st. The process of treating furniture polish which consists in subjecting it to repeated filtration and agitation, thereby removing the vegitable wax, and preventing deterioration and formation of oil deposit on the polished surfaces. 2nd. In the treatment of furniture polish, the addition of stick-lac and subsequent filtration, thereby expediting the extraction of the vegetable wax and producing greater hardness and resistance to temperature changes. 3rd. The process of treating furniture polish by abstraction of the vegetable wax therefrom and the addition of an ethereal oil such as lavender oil or rosemary oil, to compensate for the reduced pliancy and polishing power, substantially as set forth. 4th. The manufacture of furniture polish by disolving stick-lac, shellac, and a relatively small amount of benzoin gum, in alcohol and then filtering until a clear filtrate is obtained, substantially as set forth. 5 th. The composition for furmiture or other polish comprising shellac which has been freed from vegetable wax and alcohol, substantially as set forth 6th. The composition for a furniture or other polish, comprising a solution of stick-lac, shellac, alcohol and lavender, rosemary or like oil, the said composition being freed from vegetable wax, substantially as set forth.

No. 51,13\%. Toe-Calk Machine.

(Machine a faire des crampons.)

Franklin W. Pitcher, assignee of Eugene Childs and William Sangster, all of Boston, Massachusetts, U.S. A., 24th January, 1896; 6 years. (Filed 31st December, 1895.)

Claim.-1st. In a toe-calk machine, the recessed anvil-block, having a calk-forming lodge and the cutter and reversible anvil for

cutting and forging, secured to said block, in combination with a clamp for holding fast the heated end of the bar, movable dies for forming a spur upon its forward end, and a cuttirg die for serving the calk, substantially as set forth. 2nd. In a toe-calk machine, the anvil-block, the clamp serving to hold the heated bar thereon, the spur-forging dies and the cutters, in combination with a movable support for the hot end of the bar before and after the calk is severed, such support being withdrawn out of the way of the pinchers when required, substantially as set forth. 3rd. In a toecalk machine, the anvil-block, the clamp and bar support, and the forging dies and cutters, in combination with an adjustable pivoted stop for regulating the length of the calk and adapted to be removed from and restored to its position near the anvil without disturbing its adjustment, substantially as set forth. 4th. In a toe-calk machine, the anvil, stop, clamp, forging dies and cutters, in combination with a push-off device comprising a reciprocating rod working througb the anvil-block and reversely actuated by cam and spring, substantially as set forth. 5th. In a toe-calk machine, the anvil, stop, bar-support, forging dies and cutters, in combination with a pivcited clamping arm having a laterally recessed head, an adjustable clamping-bar located in said recess, and adjusting screws bearing upon the sides and end of said bar to properly locate and securely hold it, substantially as set forth.

No. 51,133 . Portable Ghower Bath Apparatus (Appareil de douche portatif.)

William Emmert Dobbins, Ashburne, Pennsylvania, U.S.A., 24th January, 1896; 6 years. (Filed 23rd December, 1895.) 1-8

Claim.-1st. A portable shower apparatus consisting of a detachable douche, folding distending bands, detachable distending mechanisin for distending said bands and for centrally supporting said douche, and a water-proof screen open at top and bottom and secured to said distending band, substantially as described. 2nd. A portable folding shower apparatus consisting in a flexible tubular waterproof screen open at top and bottom, a hinged distending band provided in the upper end of said screen, detachable distending mechanism adapted to said band for distending the same, detachable douche adapted to be centrally supported within said band when distended upon said distending mechanism, and a flexible hose connected with said douche, substantially as described. 3rd. In a portable shower apparatus, an elongated tubular water screen of flexible water-proof material, collapsible distending band provided upon the upper edge of said screen and removable rods or chains adapted to said bands for distending the same, substantially as described. 4th. In combination with a tubular elongated water screen composed of thin flexible water-proof material, a folding distending flexible band provided in the upper end of the screen, adjustable distending mechanism for distending said band and holding the screen open at top, and means for suspending said band to the ceiling, substantially as described. 5th. A folding portable shower apparatus consisting of the bands A, A^{1}, hinged as at a, a^{1}, distending rods or chains b, adjustably secured to said bands A, A^{1}, and tubular water-proof screen secured to the lower edge of said bands, substantially as described. 6th. In a portable shower apparatus, collapsible distending bands $\mathrm{A}, \mathrm{A}^{1}$, hinged as at a, a^{1}, detachable distending rods or chains b, and tubular flexible screen secured to the bands $\mathbf{A}, \mathbf{A}^{1}$, and shot weighted at its lower end in a seam provided for the purpose substantially as described. 7th. A portable folding shower apparatus consisting of hinged collapsible flexible bands A. A ${ }^{1}$, hinged as at a, a^{1}, detachable distending mechanism consisting of a central plate \mathbf{A}^{2}, and rods or chains b, secured thereto adapted to engage in said hands, douche D and means for keying said douche to said plate, a flexible rubber hose secured to said douche and flexible water-proof screen provided upon the distending bands $\mathbf{A}, \mathrm{A}^{1}$ weighted at its lower end, and means for suspending said band and screen, substantially as described.
No. 51,134. Fruit Ladder. (Echelle pour fruits.)

Williain H. Wilson, Belmont, Nova Scotia, Canada, 24th January, 1896; 6 years. (Filed 20th June, 1895.)
Claim.-1st. The centre-piece A, sulstantially as and for the purpose hereinbefore described. 2nd. The combination of the stationary part B, B, with the centre-piece A, substantially as and for the purpose hereinbefore described. 3rd. The combination of the movable part, or extension piece C, C, with the centre-piece A, and the stationary part B, B, substantially as and for the purposes hereinbefore described.

No. 51,135 . Machine for Pointing Butehers' Skewers. (Machine pour aiguiser les brochettes des

 bouchers.)Frederick Harrison, Owen Sound, Ontario, Canada, 24th January, 1896; 6 years. (Filed 14th December, 1895.)
Claim.-1st. In a skewer pointing machine, a table having the form of an ellipse and made adjustable endways and sideways, substantially as shown and for the purpose described. 2nd. In a skewer pointing machine, a combination of the hopper W, the roller Z, the short corrugated feeding roller V, the table L, L, the cutter
head S, S, journalled inside the ellipse of said table, the belts \mathbf{H}, \mathbf{H}, and the carriers g, g, substantially as shown and for the purpose

set forth. 3rd. In a skewer pointing machine, a combination of an elliptical table such as L, L, the cutter head S, S carried by a shaft, journalled within the elliptical table, and the belts \mathbf{H}, H, substantially as shown and for the purposes set forth. 4th. A cutter for a skewer pointing machine having a head with bevelled sides, a set of curved and bevelled knives b, b, and a set of straight bevelled knives c, c, substantially as shown and for the purposes set forth.
No. 51,136. Laundry Case. (Armoire de buanderie.)

Thomas Paterson, Peterborough, Ontario, Canada, 24th January, 1896; 6 years. (Filed 30th November, 1895,)
Claim.-The combination of the frame A, covering B, hanging attachment C, and fastener E, in such a manner as to produce a laundry case, substantially as and for the purposes bereinbefore set forth.

No. 51, 137. Wrench. (Clé à écrou.)

James Fatkin, Aspin, Colorado, U.S.A., 24th January, 1896; 6 years. (Filed 8th November, 1895.)
Cluim.--1st. In a wrench, the combination with a handle having a fixed jaw and pivot-lugs, of a pivot journalled in said lugs, a sliding jaw adjustably mounted on the pivot, and a screw for securing the pivot and adjusting the sliding jaw, substantially as described. 2nd. In a wrench, the combination with a handle having a fixed jaw and pivot-lugs, of a pivot journalled in said lugs, a sliding jaw adjustably mounted on the pivot, and a screw having a threaded connection with the pivot for securing it in place and adjusting the movable jaw thereon, substantially as described. 3rd. In a wrench, the combination with a handle having a fixed jaw and pivot-lugs, of a pivot journalled in said lugs, a sliding jaw adjustably mounted on the pivot having an axial movement with relation to the handle, and a screw for securing the pivot and adjusting the movable jaw to and from the fixed jaw, substantially as described. 4th. A wrench, the same comprising a handle, a fixed jaw securely attached to the handle and located at an angle thereto, a slide-way formed upon the inner face of the shank of the fixed jaw, a sliding and slotted block fitting in said slide-way, its upper end comprising the inner or movable jaw of the wrench, a pivot-nut passed through the slot in the said block and pivoting the same in the slide-way, and an adjusting screw loosely carried by the block and having threaded connection with the pivot-nut, as and for the purpose specified. 5th. In a wrench, the connbination, with a handle, a shank at an angle to the handle, a fixed jaw projecting from the end of the shank, and apertured lugs formed upon the inner face of the said shank, of a block provided with a longitudinal slot, and having sliding movement between the said lugs, a pivot-
nut journalled in the lugs and passing through the slot in the block, pivoting the same, the upper end of the block constituting the lower or inner jaw of the wrench, and an adjusting screw held to turn loosely in the block, being capable of manipulation at one end of the block, the said adjusting screw being passed throngh an aperture in the pivot-nnt, the wall of which is threaded to receive the thread of the adjusting screw, as and for the purpose specified.

No. 51,138 . Fastening for Knives etc.

(Altache pour couteaux etc.)

Edward Quincy Norton, Daphne, Alabama, U.S.A., 24th January, 1896; 6 years. (Filed 4th November, 1895.)
Claim.-1st. The combination with a handle, provided with a back spring as A, of a blade or other implement provided with a shank and head in which is formed a slot, which opens adjacent to the spring at the inner side of the head, said slot being extended into the shank, and provided with a circular enlargement or cavity at one side thereof, through which passes a pivotal pin by which it is connected with the handle, substantially as shown and described. 2nd. The combination with a handle, provided with a back spring as A, of a blade or other implement or tool, adapted to be pivotally connected with the end thereof, and said blade or other implement being provided with a head and a shank in which are formed an inclined slot, which opens inward!y and the inner end of which is provided with a circular cavity or recess through which the pivotal pin passes, said blade or other implement being also provided with a shoulder which is adapted to abut against the end of the spring, when the blade or other implement is opened, substantially as shown and described. 3rd. The combination with a handle, provided with a back spring as A, of a blade or other implement or tool, adapted to be pivotally connected with the end thereof, said blade or other in plement being provided with a head and a shank in which is formed an inclined slot, which opens inwardly and the inner end of which is provided with a circular cavity or recess through which the pivotal pin passes, said blade or other implement being also provided with a shoulder which is adapted to abut against the end of the spring, when the blade or other implement is open, and said circular cavity or recess in the shank, at the end of the slot, being formed on the side thereof, adjacent to the spring when the blade or other implement is closed, substantially as shown and described. 4th. A knife blade or other implement provided with a head and shank said head and shank being provided with a slot which opens at the inner portion of the head adjacent to the edge of the blade and expends to near the central portion of the shank, where it is provided on the inner side thereof, with an enlarged circular cavity or recess, which is adapted to receive the pivotal pin, by which the blade or other implement is connected with the handle, substantially as shown and described. 5th. The combination with a handle as A, composed of separate sides between which is pivoted a spring as B , of a blade or other implement having a head and shank, and provided with a slot, formed therein, which exterds through the head and shank, and opens at the inner outer portion of the head, and the inner end thereof which occupies the central portion of the shank, being provided one side with a circular cavity or recess through which the pivotal pin passes, said blade or other implement being also provided with a shoulder which abut against the spring when the blade or other implement is open, and the end of the shank being rounded or circular, substantially as shown and described.
No. 51,139. Trap. (Attrape-insecte.)

Silas P. Burgess, Springfield, Massachusetts, U.S.A., 25th January, 1896; 6 years. (Filed 2nd November, 1895.)

Claim.-1st. An insect trap made of paper, having an exterior surface of paper, and provided with conical tubes penetrating to within said box, a transparent top, and a cover for said top, substantially as described. 2nd. As a new article of manufacture, an insect trap comprising a paper box provided with a series of truncated conical tubes of the same material projecting within the said box.

No. 51,140 . Mat Pouncing Machine.
(Machine à finir les chapeaux.)

John Brice Howe, Danbury, Connecticut, U.S.A., 25th January 1896 ; 6 years. (Filed 2nd November, 1895.)
Claim.-1st. In a hat pouncing machine, the combination with a rotary lathe, of a rotary pouncer head and automatic means for moving the head from the tip to the brim in a single oblique straight line over the surface of the hat, substantially as described. 2nd. A hat pouncing machine comprising a rotary lathe, a rotary po'incer head, a lever supporting the same, and a reciprocating and oscillating rigid arm to which said pouncing lever is hinged, the combined movements of said arm imparting to said lever a movement in one direction, substantially as described. 3rd. A hat pouncing machine comprising a rotary lathe, a movable pouncer head, a lever to which said pouncer head is attached, a rock shaft on the machine, and an angle arm slidable on said rock shaft, but oscillating therewith, said pouncing lever being hinged to said angle arm, substantially as described. 4th. The combination with a rotary lathe, of a hat pouncing machine, of a rotary and obliquely movable pouncing head, and means for operating the same comprising an adjusting device whereby the speed of said head on its axis may be varied, substantially as described. 5th. The combination with a rotary lathe, of an angle arm, a cam attached thereto, a bracket and
stationary pin to engage said cam, a feed shaft upon which said stationary pin to engage said cam, a feed shaft upon which said
cam is slidably mounted and axially fixed, with means for operating said feed shaft, and a pouncer lever carried by and adjustable upon the angle arm, substantially as described. 6th. A pouncing machine con,prising a head, and a ferd shaft and mechanism for operating the head including an angle arm slidably mounted and axially fixed on the the feed shaft, a slide block fitted in a slot of the arm, a pouncer lever hinged thereto, and adjustable mechanism interposed between the lever and arm where by the weight of the arm is counterbalanced, all substantially as described. 7th. A hat pouncing machine, comprising a feed shaft, an angle arm slidably mounted and axially fixed thereon, a slide block fitted into a slot of the arm, a pouncer lever hinged thereto, a bracket secured to the arm, and an operating lever connected with said bracket and with the hub of the pouncing lever to vertically adjust the latter, substantially as describer. 8th. In a hat pouncing machine, the combination with a pouncer head, of a driving shaft D carrying a disc, operative connection between said disc and said head comprising a friction wheel engaging with said disc, a slide carrying the friction wheel provided with an attached rod, and an operating lever whereby the position of the slide and wheel are changed with relation to the disc, substantially as described. 9th. The combination with the main shaft, of a lathe shaft B having a worm secured thereto, a longitudinal shaft V carrying a loose gear having a clutch face, an operative clutch member k splined upon the longitudinal shaft, a sleeve connected with said member k, a cam carried by the sleeve of the movable clutch member and engaging a
stationary pin, and operative mechanism for shifting said sleeve and stationary pin, and operative mechanism for shifting said sleeve and clutch member, substantially as described. 10th. The combination with a rotary lathe, of a pouncer head and a pouncer lever provided with a base to receive the shank of the pouncer head, with a yielding connection between the pouncer and the lever, and means for operating the pouncer head, substantially as described. 11th. The combination with a rotary lathe, of a pouncing lever having a collar and provided with a base to receive the shank of a 1 wuncer head, the pouncer head mounted therein and provided with a stud, a
spring coiled upon the lever and having one end secured to said
stud, and the other end connected to the collar on the lever, and means for operating the pouncer head, substantially as described. 12 th. The combination with a pouncing lever carrying a pouncing head, of a shaft to which said lever is hinged and provided with a ratchet, a lever g journalled upon the shaft, a spring-actuated slide mounted upon the lever and provided with a lug to engage the ratchet, a torsional spring connecting the lever to a collar upon the pouncing lever, means for operating the pouncer head carried by the lever, substantially as described. 13th. A hat pouncing machine, comprising a pouncing lever carrying a pouncing head, a shaft V, and means for driving the same, a disc and drum loosely mounted thereon, a chain connecting said disc with the pouncer lever, a spring coiled upon the drum and connecting the same with the disc, and mechanism for connecting the drum with the shaft, substantially as described. 14th. A hat pouncing machine comprising a pouncing lever, a shaft V, carrying a clutch member x, a sleeve upon the hub of said clutch, a rock shaft \mathbf{F}, carrying a cam, a sleeve surrounding said cam, a lever connecting the sleeve of the cam with the sleeve of the hub, of said clutch member, a winding drum carrying the other member of the clutch, a disc carried by the shaft V, means for connecting the drum and the disc and a chain connecting the disc with the pouncer lever, substantially as described. 15th. The combination with a rotary lathe and a driving shaft, of a pouncer lever, a pouncer head carried thereby and provided with tension mechanism connecting said pouncer head and lever with the driving shaft, whereby the pressure of the pouncer upon the hat may be increased as the pouncer decends, substantially as described. 16th. A hat pouncing machine, comprising a lathe, a pouncing lever, a pouncer head carried by said lever, a shaft V, with means for operating the same,"a sleeve t, mounted on said shaft, a drum carried by said sleeve a spring fitting a peripheral groove in the drum and secured at one end to the latter and at the opposite end to a disc, said disc mounted upon the shaft and flexibly connected to the pouncer lever, and a weight carried by said disc, substantially as described. 17th. A hat pouncing machine comprising a driving shaft, a pouncer lever with operating connections between the two, a main driving wheel mounted upon said shaft and having a clutch face, a slidable clutch member carried by the shaft, a lever with operative connections between it and the sliding clutch member, a rock shaft provided with an operating crank J^{1}, and operative connections between the rock shaft and the lever, a cam on the rock shaft and a fixed pin co-operating therewith, whereby the movement of the machine is controlled, substantially as described. 18th. The combination with a lathe having a slide and a lever connected therewith, of a shaft k^{1} mounted in the framework, a cam on said shaft, a pinion carried by said shaft, a rack engaging said pinion, a feed shaft, an adjustable cain carried by the feed shaft and connected to the rack, and a pouncing lever with suitable driving connections, substantially as described. 19th. A hat pouncing machine comprising a lathe, a pouncing lever, a pouncer head carried by said lever, a shaft 42 with means for operating the same, a sleeve 52 , mounted on said shaft, a krum carried by said sleeve, a spring fitting a peripheral groove in the drum and secured at one end te the latter and the opposite end to a disc, said disc mounted upon the shaft and flexibly connected to the pouncer lever, and a weight carried by said disc, substantially as described. 20th. A hat pouncing machine comprising a driving shaft, a pouncing lever with operating connections between the two, a driving .wheel 76 , mounted upon said shaft and having a clutch face, a slidahle clutch member 76 , carried by the shaft, a lever 79 , with operative connections between it and the slidable clutch member, a rock shaft provided with an operating handle, and operative connections between the rock shaft and the lever 79, a cam on the rock shaft and a fixed pin co-operating therewith whereby the movement of the machine is controlled, substantially as described.

No. 51,141. Primm Pointer for Type Writers.
(Empointeur de prisme pour clavigraphes.)

Walter Bockins Dyer, Pottsville, Pennsylvania, U.S.A., 26th January, 1896 ; 6 years. (Filed 31st October, 1895.)

Claim.-1st. A prism pointer for type writers, the same constituting a support for the type-writing ribbon at the point of impact at the type writer bar of the type writer, as and for the purpose specified. 2nd. A prism pointer for type writers, the same consisting of a rear section adapted for connection with the rear portion of the basket or frame surrounding the same, being connected with a yoke thus forming a bow, adapted to be located over the centre of the basket, and a forwardly extending member located over the forward central portion of the said basket and loading to the central portion of the said yoke or bow, as and for the purpose set forth. 3rd. A prism pointer for type writers, the same consisting of a body section adapted for connection with the rear portion of the type writer basket or frame surrounding the same and terminating at its forward end in a yoke centering the said body section, and an indicating member leading from the centre of the said yoke to the forward portion of the type writer basket or its frame, as and for the purpose specified. 4th. A prism pointer for type writers, the same consisting of a rear bar adapted to clamp around the upper portion of the rear type bar hanger frame, having side members converging at their inner ends and a yoke connected with the said side members, and an indicating or pointing member connected with the central portion of the yoke and adapted for attachment to the forward central portion of the upper supports for the type bars, the type writting ribbon being adapted to pass over the central prortion of the said attachment, whereby the attachment also forms a support for the said ribbon, as and for the purpose set forth. \tilde{t} th. The combination, with the basket or type frame of a tyle writer and the ribbon thereof, of a prism pointer, the same consisting of a rear bar adapted for attachment to the said basket or type frame, provided with converging side members connected at their inner ends to a yoke, and a yielding indicating member leading from the said yoke in a forwardly direction, being fitted for attachment to the forward central portion of the said type frame of the type writer, as and for the purposes specified.

No. 51,142. Autograph Register.
(Registre autographique.)

George A. Norcross, George R. Sullivan and James O. Sullivan, all of San Antonio, Texas, U.S.A., 25th January, 1896; 6 years. (Filed 20th September, 1895.)
Claim. -1st. In an autograph register, the combination with a casing having a writing plate, a plurallity of paper feed-rolls mounted therein, a common direction or guide roller arranged at one end of the writing plate, and means for feeding and cutting the strips supplied by said feed-rolls, of a carbon or duplicating paper supply roll arranged parallel with and contiguous to one side edge of the writing plate, and adapted to contain a single continuous strip of carbon or duplicating paper, and holding devices arranged contiguous to the opposite side edges of the writing plate, and disconnected throughout their length from the writing-plate, whereby the carbon or duplicating paper may be extended around the same to provide for carrying said paper across the plate and doubling it upon itself to form a plurality of layers, substantially as specified. 2nd. In an autograph register, the combination with a casing having a writing plate, and a plurality of paper feed rolls mounted therein, a direction or guide roller being arranged at one end of the writing. plate, of a carbon paper supply roll arranged parallel with and adjacent to one side of the writing-plate and adapted to contain a single concinuous sheet of carbon or duplicating paper, holding-bars pivotally connected at one end to the casing approximately in the plane of the writing-plate, and adapted to normally rest upon said plate parallel with and contiguous to its side edges, the carbon or duplicating paper from said supply roll being adapted to be extended transversely across the writing-plate, carred around the opposite holding-bar and returned to the side adjacent to the supply roll with its extremity secured by means of the holding-har adjacent to the supply-roll, and feeding devices for operating the strips of paper supplied by the feed-rolls, sulustantially as specified. 3rd. The combination with a casing having a writing-plate, paper supply rolls, means for guiding the strips from said rolls, and carbon or duplicating paper holding devices for maintaining carbon or duplicating paper in operative relation with the strips as they traverse the writing-plate, of feeding devices, a platform or platen arranged adjacent to the feeding devices, printing mechanism having a typecarrying follower arranged to approach and recede from the plane of the platform or platen, means for operating said follower, and a
cutting device operatively connected with the follower, substantially as specified. 4th. The combination with the casing having a writing plate, paper supply rolls, guiding and feeding devices for the strips, and means for holding carbon or duplicating paper in operative relation with the portions of the strips which are upon the writing plate, of a platform or platen, a type-carrying follower arranged to approach and recede from the plane of the platform or platen, means for operating said follower, and a cutting device comprising a stationary blade arranged adjacent to one edge of the platform and platen, and a movable blade arranged in operative relation with the stationary blade and connected with the follower, substantially as specitied. 5th. The combination with a casing having a writing-plate, paper supply rolls arranged in the casing, means for guiding and feeding the strips from the paper rolls, and holding devices to maintain carbon or dublicating paper in operative relation with said strips upon the writing plate, of a platform or platen, a reciprocal type-carrying follower, mounted for movement perpendicular to the plane of the platform or platen, means for operating said follower, a stationary cutting blade fixed to one edge of the platform or platen, movable cutting blades pivotally connected at their outer extremities to the platform or platen contiguous to the stationary blade, and links connecting the free ends of said movable blades with the follower, substantially as specified. 6th. The combination, with a casing having a writing plate, paper supply rolls arranged in the casing, paper guiding and feeding devices, and means for holding car.on or duplicating paper in operative relation with the strips on the writing-plate, of a platform or platen, a typecarrying follower arranged. to approach and recede from the plane of the platform or platen, means for operating said follower, inking mechanism having a ribbon arranged in contact with the type on the follower, and opposite ribbon rolls or spools mounted in and carried by the follower and holding said ribbon in its operative position, and cutting devices operatively connected with the tollower, substantially as specified. 7th. The combination, with a casing having a writing plate, paper supply rolls, guiding and feeding devices for the paper strips, and means for holding carbon or duphicating paper in operative relation with the strips upon the writingplate, of a platform or platen, a follower arranged to approach and recede from the platform or platen, means for operating the follower, a type-block fitted in a seat or recess in the face of the follower, journal-blocks removably fitted in cavitics at opposite ends of the type-blocks, ribbon rolls or spools mounted in said journal blocks, a ribbon attached at its ends to said ribbon rolls or spmols and extending across the face of the type-block, and cutting devices operatively connected with the follower, substantially as specified. 8th. The combination with a casing, paper supply-rolls, and feeding and guiding devices for the paper strips, of printing mechanism, means for operating the printing mechanism, cutting devices operatively connected with the printing mechanism, and permanent filing means arranged within the casing and having a filing-pin, and movable filing springs connected with the printing mechanism and arranged to engage checks or severed portions of the paper strips with the filing-pin, substantially as specified. 9th. The combination with a casing, paper supply rolls, paper guiding and feeding devices, cutting devices, and means for operating the same, of filing mechanism having a filing pin, filing springs arranged in operative relation with filing-pin and adapted to engage checks or severed portions of the paper strips as they leave the cutting devices, and connections between the filing mechanism and the cutting devices, substantially as specified. 10th. The combination with a casing, paper supply rolls, guiding and feeding devices for the paper, cutting devices, and means for operating the same, of filing mechanism having a pivotal filing-pin, an actuating spring connected to said filing-pin for maintaining the latter in its operative position, filing springs arranged to engage the checks or severed portions of the paper strips as the leave the cutting devices, and operating connection between the filing springs and the cutting devices, substantially as specified. 11th. The combination with a casing, paper supply rolls, guiding and feeding devices for the paper strips, rack-bars, and means for reciprocating the same, and cutting devices operatively connected with the rack-bars, of filing mechanism having a filingpin, and filing springs connected together for simultaneous move ment, the arms of one of said springs extending through slotted or elongated openings in the rack-bars, substantially as specified. 12 th. The combination with a casing, paper supply rolls, guiding and feeding devices for the paper strips, rack-bars, and means for reciprocating the same, said rack-bars being provided with slotted or elongated openings, and cutting devices operatively connected with the rack-bars, of filing mechanism having a filing-pin and oppositelydisposed looped filing springs 36 and 37 , the former of which is provided with eyes engaging the sides of the latter and the latter of which is provided with a reduced tongue or loop to engage the checks or portion of the paperstrips and depress them upon the filing-pin, said spring 36 having its arms extended through the said openings in the rack-bars, substantially as specified. 13th. In an autograph register, the combination with a writing-plate, supply rolls and duplicating devices, of paper feeding devices, printing mechanisin having a follower, cutting mechanism for severing the paper strips, filing mechanism having a movable part, and comnections between the movable part of the filing mechanism and the follower of the printing mechanism, the feeding devices being independent of the printing and filing mechanisms to provide for forming checks of varying lengths, substantially as suecified.

No. 51,143. Electric Switch. (Aiguille électrique.)

Ernest Blasser and Charles Edwin Perkins, both of Boston, Massachusetts, U.S.A., 2ε th January, 1896 ; 6 years. (Filed 12 th January, 1894.)
Claim.-1st. In an electric switch the combination with an electric lamp and suitable conductors, of a key and spindle, the spindle provided with an insulated plate having thereon two conducting posts, and adapted by means of the key to be brought into, or removed from, contact with two conducting posts, electrically connected respectively with said conductors, so that the electric circuit can be made and broken, the spindle, plate and posts being contained within a solid shell connected with a tube in which the conductors are placed, substantially as and for the purpose above described. 2nd. In an electric switch the combination of the key A, the spindle B , the plates $\mathrm{F}, \mathrm{F}^{1}$, provided with the posts $\mathbf{H}, \mathrm{H}^{1}$, and the ring \mathbf{G}, ${ }^{\text {the }}$ plate I^{1}, provided with posts $K, \mathrm{~K}^{1}$, and the electric conductors P, Q, and R, substantially as and for the purpose above described.
No. 51,144 . Button Hole Attachment for Sewing Machines. (Attache pour machines a faire les boutonnières.)

John Davis, Brooklyn, New York, U.S.A., 25th January, 1896; 6 years. (Filed 30th October, 1895.)
Claim.-1st. In a sewing machine attachment, the combination with a cloth clamp slide, of a double rack pitman connected with said slide, a rotary shaft receiving motion from the needle bar, and a segmental pinion driven by the said shaft, and alternately engageable with the racks of said pitman, the diameter of the pitch line of the pinion being equal to the distance between the pitch lines of the double rack, substantially as described. 2nd. In a sewing machine attachment, the combination with a cloth clamp slide, of a rotary shaft, receiving motion from the needle bar, a segnental pinion on the shaft, a slotted, double rack pitman, the slot of which embraces said pinion to permit the racks to be alternately engaged thereby, and an adjustable stroke lever connecting said pitman with said cloth clamp slide, substantially as described. 3rd. In a sewing machine attachment, the combination with a cloth clamp slide, and a rotary shaft receiving motion from the needle bar, of a segmental pinion on said shaft, a slotted double rack, the slot of which embraces the pinion and the teeth of which are alternately engageable by said pinion, a slotted arm rising from the cloth clamp slide and a slotted
lever pivoted to the frame and also pivotally connected to said pitman, and an adjustable stud connecting the lever and said arm through the slot therein, and securable in any desired position on said lever for varying the longitudinal teed of the cloth clamp, slide, substantially as described. 4th. In a sewing machine attachment, the combination with a slotted cloth clamp slide mounted for sliding and vibratory motion, an oscillator cam wheel receiving motion from the needle bar and having a peripheral zig-zag cam channel, a pivoted lever engaging said cam channel and provided with an adjustable cross head engaging the slot of said cloth clamp slide, a switching cam wheel having a periphera! cam channel constituted with two straight sections and two camming or inclined sections, a pivoted lever engaging the channel of the switching cam wheel, and an adjustable cross head on the switching lever, engaging the slot of said cloth clamp slide, substantially as described. 5th. In a sewing machine attachment, the combination with a slotted cloth clamp slide mounted for longitudinal and vibratory motion, of a switching cam wheel receiving motion from the needle bar, a pivoted lever subjected to the action of said cam wheel, and an adjustable cross head on the pivoted lever engaging the slot of said cloth clamp slide and securable on said lever at any point, either in line with the levers' fulcrum, or remote therefrom, for converting the device from a buttonhole worker into a pocket tacker, or vice versa, substantially as described. "ith. In a sewing machine attachment, the combination with oscillating and switching cam wheels, of a pivoted lever receiving motion from the needle bar and provided with a pawl engaging a ratchet wheel on the oscillator cans wheel shaft, and a friction clutch device on the switching cam wheel shaft operated by said pawl bearing lever on the oscillator cam wheel shaft, whereby the switching cam wheel may be driven from the same device which drives the oscillator cam wheel, substantially as described. 7th. In a sewing machine attachment, the combination with a suitable case or support, of a cloth clamp slide mounted for sliding and vibratory motion, and a pair of vibrating levers operated from the needle bar, and provided with cross heads engaging slots in said cloth slide, at least one of which cross heads is adjustable and adapted to be moved on to the pivotal centre of its said lever, whereby the device may be converted from a button-hole worker into a pocket or seam tacker, or vice versa, substantially as described.

No. 51,145 . Electric Head Light.

(Lanterne de locomotive Electrique.)

William Dibb, Frank Clayton Roraback and Albert Christopher Fisher, all of Syracuse, New York, U.S.A., 25th January, 1896; 6 years. (Filed 24th September, 1895.)
Claim. - 1st. The combination with a central board adapted to be secured upon a support, as the dash of a car, positive and negative angular brackets secured upon said board and insulated therefrom, and wires connected to said brackets, of a reflector, a stem thereon adapted to be inserted into said brackets, contact points thereon adapted to make a crrcuit with said brackets when said stem is inserted thereinto, a lamp, connected to said stem and wiring connecting said lamp, to said contact points. 2nd. A head-light comprising a contact board, spring-fingers normally in circuit with wires connected to them, a second negative pole upon said board and a reflector stem adapted to break the circuit through said fingers, and make it through the positive pole of said circuit and the second negative pole aforesaid, and a lamp connected to said poles.

No. 51, 146. Marking Stamp. (Etampe.)

Wilber Brooks Smith, assignee of Frank M. Bulkley, both of Bridgeport, Connecticut, U.S.A., 25th January, 1896; 6 years. (Filed 22nd October, 1894.)
Claim.-1st. The combination of a holder or carrier having a character-sustaining rib or surface and removable characters or types constructed to be applied to said rib or surface, as described. 2nd. The combination of a holder or carrier having a charactersustaining rib with undercut sides and removable characters or types constructed to grasp and be held by said rib, as described. 3rd. The combination of a holder or carrier having a charactersustaining rib, with removable characters or types having spring flanges or lips to grasp said rib, as described. 4th. The combination of a rotary holder or carrier having a circumferential rib and a plurality of removable characters or types adapted to be applied to said rib, as described.

No. 51,14\%. Electric Railway Aystem.

(Systeme de chemin de for electrique.)

The Electro-Magnetic Traction Company, assignee of Malone Wheless, both of Washington, Columbia, U.S.A., 25th January, $1896 ; 6$ years. (Filed 2nd November, 1895.)
Claim.-1st. An electric railway system comprising a car provided with a pair of shoes insulated from each other and from the body of the car, a source of electrical supply having its opposite poles connected to said shoes respectively, and a motor connected by one of its poles to one of said shoes only, and having its opposite pole connected to one of the track rails, in combination with track terminal pins in pairs held in boxes set at such intervals apart that the contact shoes on the car will reach one pair before they leave the other, a cable and feeder therefrom connected to those track terminals through which the motor circuit is completed, normally open contacts in each feeder connection, an armature for closing said contacts, a pick-up magnet for each armature, having its energizing coil connected to its appropriate pair of track terminal pins wherehy when the car shoes meet a pair of track terminals a circuit including the pick-up magnet of those terminals, and the source of electrical supply on the car will be closed, with the result of energizing the pickup magnet and thus closing the normally open contacts in the feeder connection appropriate to the track terminals on which the car shees rest, substantially as set forth. 2nd. The combination of the box, the insulated track terminals A, A^{1} held in and projecting through the cover of the box, the cable I), the feeder connection between the cable and track terminal A, the normally open contacts in said feeder connection the armature for clising said contacts, and the pick-up magnet secured to and carried by the box cover and having its energizing coil connected to the terminals A, A^{1} respectively, substantially as and for the purposes hereinbefore set forth. 3rd. The combination of the box, the insulated track terminals A, A^{1}, the cable, the feeder connection between the cable and terminal A, normally open contacts in said feeder connection, the armature for closing said contacts, and the pick-up magnet provided with two coils or windings, the one ! connected to the terminals A, A^{1}, the other 8 included in the feeder connection, substantially as and for the purposes hereinbefore set forth.

No. 51, 148 . Machine for Washing Cereals.

(Machine pour laver les céréales.)
Walter A Scott and Charles F. Shirk, buth of Duluth, Minnesota, U.S.A., 25th January, 1896 ; 6 years. (Filed 26th December, 1895.)

Claim.-1st. In a ceral washing machine, the combination of a water-tank, an inclined washing box with its lower end within said
tank and in communication therewith, a perforated diaphragm within said incined washing-box and forming a false bottom for the same, a

fresh water supply pipe discharging into the said washing-box above and beyond said tank, a discharge pipe for said tank, a surface dis. charge pipe at or slightly below the water line in said tank at one end, a water-jet or steam-jet pipe at or slightly below the water line of said tank, and at the opposite end, a screw discharging into the lower end of said washing-box, substantially as described. 2nd. In a cereal washing machine, the combination of a water-tank having a surface discharge opening extending across it at one end, an inclined washing-box with its lower end within said tank and provided with qpenings in its sides and an opening in its bottom directly above the tank, a perforated diaphragin within said inclined washing-box and forming a false bottom for the same, a fresh water supply pipe discharging into said washing-box above and beyond said tank, a discharge pipe at the bottom of said tank, a water or steam jet entering the tank at or below the water line at the end opposite from the broad surface discharge opening, and a cereal supply pipe discharging into the lower end of said washing-box, substantially as described. 3rd. In a cereal cleaning apparatus, the combination with an inclined washing-loox having a perforated false bottom, and a true bottom which is open or unclosed along a portion of its length, and is provided with side openings for the insertion of a scrubbing implement below its false bottom, of a water tank located under the unclosed portion of the true bottom of the washing-box, and also provided with side openings for the insertion of the scrubbing implement underneath the perforated false hottom of the washing box, substantially as described. 4th. In a cereal cleaning apparatus, the combination with the inclined washing-box provided with a per forated false bottom, a partly open true bottom, and a screw con veyor, of a fresh water supply pipe entering an opening in the top of the washing-box between its ends, and an entrance pipe for the cereals, and a discharge pipe for the cleaned cereal, and with a water tank having a water and refuse draw-off passage, and an overflow scum passage, of a steam jet or water pipe entering the water tank above the submerged portion of the washing-box and discharging steam or water along the surface of the water in the tank, and thereby forcing the scum and impurities toward and into the scum passage, substantially as described.

No. 51, 149. Manufacture of Moulded Articles.

(Fabrication d'objets moulés.)

The Publishing Advertising and Trading Syndicate, Assignee of Frederick Weaver Oliver, all of Tondon, England, 25th January, 1896 ; 6 years. (Filed 5th November, 1895.)
Cluinu.-1st. Moulding articles from a mixture of absorbent ma terial and liquid celluloid. 2nd. Molding articles from a mixture of absorbent material and liquid celluloid by forcing it through heated dies into a heated mould open at one end.

No. 51, 150. Device for Handling Rooks.

(Appareil pour le maniement des livres.)

Herman Pfund, Madison, Assignee of August Charlie Jacobi, Middleton, both in Wisconsin, U.S.A., 25th January, 1896 ; 6 years. (Filed 28th October 1895.)
Claim.-1st. A device for handling books, the same comprising a handle of any suitable length, a flanged plate rigidly secured to the handle and provided with diagonal slots, a jaw having lugs loose in the plate-slots, a sliding rod on said handle, and a link connecting the rod with one of the jaw-lugs. 2nd. A device for handling books, the same comprising a handle of any suitable length, a diagonally slotted and flanged plate rigidly secured to the handle, a foot-piece on the plate, a jaw having lugs loose in the plate-slots, a sliding rod on said handle, and a link connecting the rod with one of the jawlugs. 3rd. A device for handling books, the same comprising a handle of any suitable length, a flanged plate rigidly secured to the handle, a jaw having loose play on the plate, a jaw operating rod having loose play on said handle, a rack on the aforesaid handle, a slotted rack-engaging lever-dog, and a fulcrum-pin carried by the rod in loose engagement with the dog-slot. 4th. A device for handling books, the same comprising a handle of any suitable length, a flanged plate rigidly secured to the handle, a jaw having loose play on the plate, a jaw-operating rod loose on said handle and provided with a grip having longitudinally extended ears united by a fulcrum-pin, a rack on the aforesaid handle, and a slotted
rack-engaging lever-dog in loose engagement with said fulcrum-pin. 5 th. A device for handling books, the same comprising a handle of

$5-1 / 50$
any suitable length, a diagonally slotted and flanged plate fast on the handle, a foot-piece on the plate, a jaw having lugs loose in the plate-slots, a stay-bar fast on the lugs, a link loose on one of said lugs under a bent down end of the bar also engaged with this lug, a sliding rod on said handle in engagement with the link, a fulcrumpin carried by the rod, a rack on the aforesaid handle, and a rackengaging lever-dog having a slot engaged by said fulcrum-pin.
No. 51,151. Globe for Lamps.
(Globe de verre pour lampes.)

John Lawrence Spink and Thomas Walter Horn, as trustees, assignees of James Giray Pennycuick, all of Toronto, Ontario, Canada, 25th January, 1896; 6 years. (Filed 28th October, 1895.)
Claim.-1st. As a new article of manufacture, a glass bowl or globe for electric and other lamps molded in one piece, substantially of the shape of the half of a lemon, and having a series of circular horizontal prismatic ribs moulded thereon, substantially as and for the purpose specified. 2nd. A glass bowl or globe for electric and other lamps of curved outline in vertical section molded in one piece, and having a series of circular horizontal prismatic ribs molded thereon and shaped either to refract or reflect, substantially as and for the purpose specified. 3rd. A glass bowl or globe for electric and other lamps molded in one piece, substantially of the shape of the half of a lemon, having a series of circular horizontal prismatic ribs molded thereon, in combination with a curved reflector fitted to the top of the bowl, substantially as and for the purpose specified. 4th. A glass bowl or globe for electric and other lamps, of curved outline molded in one piece with a large opening at the top and a small one at the bottom, and having a series of circular horizontal prismatic ribs molded thereon, substantially as and for
purpose specified. 5th. A glass bowl or globe for electric and other lamps, molded in one piece substantially of the shape of the half of a lemon, having a series of circular horizontal prismatic ribs molded thereon, the upper face of each prismatic rib being set at an angle of one hundred and five degrees to a tangent of the side of the bowl and the lower face similarly set at an angle of forty-five degrees, substantially as and for the purpose specified. 6th. A glass bowl or globe for electric and other lampe molded in one or more pieces, having a series of circular horizontal prismatic ribs molded thereon, the whole being bowl-shaped in vertical section, substantially as and for the purpose specified.

No. 51, 152. Vanit Light. (Lumiere voîte.)

John Lawrence Spink and Thomas Walter Horn, as trustees, assignees of James Gray Pennycuick, all of Toronto, Ontario, Canada, 25th January, 1896; 6 years. (Filed 4th November, 1895.
Claim.-1st. As a new article of manufacture, a vault light having one or more prisms cast on its under surface and a series of tits on its upper surface, substantially as and for the purpose specified. 2nd. As a new article of manufacture, a vault light having a series of tits cast on its upper surface and two prisms on its under surface, one prism having a reflecting surface set at substantially an angle of forty-tive degrees to the horizontal, and the other having a reflecting surface similarly set at an angle of fifty degrees to the horizontal, substantially as and for the purpose specified. 3rd. As a new article of manufacture, a vault light having two prisms cast on its lower surface, one prism having the internal angles at its base in cross section respectively eighty-five degrees and forty-five degrees, and the other having the internal angles at its base respectively eightyfive and fifty degrees, substantially as and for the purpose specified. 4th. As a new article of manufacture, a vault light having two prisms cast on its lower surface, one prism having the internal angles at its base in cross section respectively eighty-five degrees and fortyfive degrees, and the other having the internal angles at its base respectively eighty-five and fifty degrees, the latter prism being so proportioned that its lower edge extends below the level of the lower edge of the former, substantially as and for the purpose specified. 5 th. As a new article of manufacture, a vault light having its upper surface set at a slight angle to its under surface and two prisms cast on its under surface, one prism having a reflecting surface set at substantially an angle of forty-five degrees to the horizontal, and the other having a reflecting surface similarly set at an angle of fifty degrees to the horizontal, substantially as and for the purpose specified. 6th. As a new article of manufacture, a vault light having its upper surface set at a slight angle to its under surface, and a rabbet formed round its sides and having two prisms cast on its under surface, one prism having a reflecting surface set at substantially an ancle of forty-five degrees to the horizontal, and the other having a reflecting surface similarly set at an angle of fifty degrees to the horizontal, substantially as and for the purpose specified. 7th. As a new article of manufacture, a vault light having its upper surface set at a slight angle to its under surface, the lower surface having one or more prisms cast thereon, and the upper surface a series of tits, substantially as and for the purpose specified. 8th. As a new article of manufacture, a vault light having its upper surface set at a slight angle to its under surface, and a rabbet formed round its edges, a series of tits cast on its upper surface and two prisms on its lower surface, one prism having the internal angles at its base in cross section respectively eighty-five degrees and forty-five degrees, and the other having the internal angles at its base respectively eighty-five degrees and fifty degrees, substantially as and for the purpose specified. 9th. A plurality of prismatic vault lights having rabbeted edges, in combination with an iron frame having deep supporting ribs running in the direction in which the light is thrown by the prisms and shallow supporting cross ribs, the frame and ribs bring suitably flanged to engage with the rabbeted edges of the prismatic vault light, substantially as and for the purpose specified.

No. 50. 153. Leather Strap for Handles, Etc.

(Courroie de cuire pour manches, etc.)

Friend Johnson Bringham, Chicago, Illinois, U.S.A., 25th January, 1896 ; 6 years. (Filed 20th January, 1896.)
Claim.-1st. A strap having a seamless channel formed in the thickness of the leather and a filling in said channel forming a raise or bead on the surface of the leather, ubstantially as described. 2nd. A strap having a longitudinal seamless channel open at each end combined with an expanding filling therein. 3rd. A strap having a seamless longitudinal channel, an expanding filling therein forming a beaded surface and extensions beyond the channel, substantially as described 4th. A strap having a seamless longitudinal channel, an expanding filling therein, forming a beaded surface, and lateral margins 1 , substantily as described. 5th. A strap having a seamless longitudinal channel, a flat lower face and a filling expanding the upper face, substantially as described. 6th. A strap having a longitudinal channel, a filling therein and seamless end portions having lateral openings therethrough, substantially as described.
No. 51,1 t. Art of and Apparatus for Converting Heat Into Work. (Appareil pour convertir la.chaleur en_travil.)

Agness Bates Willington, New York, Executrix of Arthur Mellen, late of New York, U.S.A., 28th.January, 1896 ; 6 years. (Filed 11th Nov., 1895.)
Claim.-1st. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid at a regulated temperature from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, heating the working substance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 2nd. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the maximum temperature of the circulating Huid, heating the working substance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 3rd. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the minimum temperature of the circulating fluid, heating the work suhstance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator substantially as described, 4 th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the maximum and minimum temperature of the circulating
fluid, heating the working substance by the surrender of heat thereto by the circulating fluid and discharging the circulating fluid from the pressure generator, substantially as described. 5th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing the working substance, heating the working substance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 6th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the maximum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 7th. The improvement in the art of converting heat into work by the agency of vajour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the volume of the circulating fluid so as to maintain substantially constant volume, heating the working substance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 8 th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid at a regulated temperature from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the volume of circulating fluid so as to maintain a substantially constant volume, heating the working substance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 9th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the minimum temperature of the circulating fluid, regulating the volume of the circulating fluid, so as to maintain a substantially constant volume, heating the work ing substance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 10th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the maximum temperature of the circulating fluid, regulating the volume of the circulat ing fluid, so as to maintain a substantially constant volume, heating the working substance by the surreuder of heat thereto by the circulating thuid, and discharging the circulating fluid from the pressure generator, substantially as described. 11th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat, regulating the quantity of working substance in the pressure generator to maintain a substantially constant volume, heating the working substance by the surrender of beat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 12th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissocated from said supply or source of heat and containing the working substance, regulating the quantity of working substance in the pressure generator to maintain a substantially constant volume, regulating the maximum pressure in the pressure generator, heating the working substance by the surrender of heat thereto by the circulat ing fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 13th. The improvement in the art of converting heat into work by the agency of vapour pressure which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regu lating the volume of the circulating fluid so as to maintain a substantially constant volume, regulating the quantity of working substance in the pressure generator to naintain a substantially constant volume, heating the working substance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 14th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid at a regulated temperature from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the volune of the circulating fluid so as to maintain a substantially constant volume, regulating the quantity of working substance in the pressure generator to maintain a substantially constant volume,
heating the working substance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator, substantially as described. 15th. The impovement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fuid from a supply or source of heat to a pressure generatur, thermally dissociated from said supply or source of heat and containing the working sulstance, regulating the maximum and minimum temperature of the circulating Huid, regulating the quantity of working substance in the pressure generator to maintain a sulstantially constant volume, heating the working sulustance by the surrender of heat thereto by the circulating fluid, and discharging the circulating fluid from the pressure generator. substantially as described. 16th. The improvement in the art of converting heat into work by the agency of the vapour pressure, which consists in passing a circulating fluid at a regulated speed from a supply or scurce of heat to a pressure generator thernally dissociated from said suphly or source of heat and containing the working substance, reculating the maximum temperature of the circulating fluid, regulating the volume of the circulating fluid so as to maintain a substantially constant volume, regulatiug the quantity of working substance in the pressure generator to , naintain a substantially constant volume, heating the working suib. stance by the surrender of heat thereto, ly the circulating ure generator, sulbstantially as described. 17 th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consi-ts in passing a circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, applying the circulating fluid to heating the hotter and colder parts of the working sulstance successively by passing it downward through the pressure generator, and discharging the circulating fuid from the pressure generator, sulstantially as described. 18th. The improvement in the art of converting heat into work by the agency of vapuour pressure, which cunsists in passing a circulating fluid at a regulated temperature from a supply or source of heat to a pressure generator thermally dissociated from said supply or somrce of heat and containing the working substance, applying the circulating Huid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, and discliarging the circulating fluid from the pressure generator, sulstantially as described. 19th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the minimum temperature of the circulating fluid, applying the circulating fluid to heating the hotter and colder parts of the working sulbstance successively by passing it downward through the pressure generator, and discharying the circulating fluid from the pressure generator, substantially ${ }^{\text {as }}$ described. 20th. The improvement in the art of converting heat into work by the agency of vapour prexsure, which consists in passing a circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from said sulpply or source of heat and containing the working substance, regulating the maximum temperature of the circulating fluid, applying the circulating fluid tr heating the hotter and colder parts of the work ing substance successively by passing it downward through the pressure generator, and discharging the circulatirg fluid from the pressure generator, substantially as described. 21 stst. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissuciated from said supply or source of heat and containing the working substance, regulating the volunne of the circulating Huid to maintain a substantially constant volume, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, and discharging the circulating fluid from the pressure generator, sulstantially as described. 2:2nd. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a suyply or
source of heat to a pressure generatur thermally dissociated from source of heat to a pressure generatior therrially discociated from
said suuply or source of heat and containing the working subtance said sup, hy or source of heat and containing the working substance,
regulating the maximum and minimum temiterature of the circulating Huid, regulating the volune of the circulating fluid to maintain a sulstantially constant volume, applying the circulating fluid to heating the hotter and colder parts of the working substance successively hy pasking it downward through the pressure generator, and discharring the circulating fluid from the pressure generator, sub)stantially as deseribed. 23 rid. The improvement in the art of converting heat into work hy the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure gen-rator thermally dissuciated from said supply or source of heat and containing the working substance, regulating the maximum and minimum temperature of the circulating fluid, regulating the volume of the circulating fuid to maintain a sulustantially constant volume, regulating the volume of the working substance to maintain a substantially constant volume, applyying the circulating
fluid to heating the hotter and colder marts fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator,
and discharging the circulating fluid from the pressure generator, substantially as described. 24 th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, passing the circulating fluid through passages first in the steam space and then in the water space of said generator and downward from the hotter to the colder parts of the working substance, and discharging the circulating fluid from the pressure generator, substantially as described. 25th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing the working substance, heating the working substance by the surrender of heat thereto by the circulating fluid, applying the vapour pressure and then exhausting the vapour into a condenser and cooling it by the circulating fluid after the latter is discharged from the pressure generator, substantially as described. 26th. The im provement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid at a regulated temperature from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing the working substance, heating the working substance by the surrender of heat thereto by the circulating fluid, applying the vapour pressure and then exhausting the vapour into a condense and cooling it by the circulating fluid after the latter is discharged from the pressure generator, substantially as described. 27th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissoci ated from the supply or source of heat and containing the working substance, regulating the minimum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto by the circulating fluid, applying the vapour pressure and then ex hausting the vapour into a condenser and cooling it by the circulating fluid after the latter is discharged from the pressure generator, substantially as described. 28th. The improvement in the art of con verting heat into work by the agency of vapour pressure, which con sists in passing a circulating fluid at a regulated speed, from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing the working substance, heating the working substance by the surrender of heat thereto by the circulating fluid, applying the vapour pressure and then exhausting the vapour into a condenser and cooling it by the circulating fluid after the latter is discharged from the pressure generator, substantially as described. 29 th. The improvement in the art of con verting heat into work by the agency of vapour pressure, which consists in passing a circulating fluid from a sipply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing the working substance, regulating the maximum and minimun temperature of the circulating fluid, heating the working substance by the surrender of heat thereto by the circulating fluid, applying the vapour pressure and then exhausting the vapour into a condenser and cooling it by the circulating fluid after the latter is discharged from the pressure generator, substantially as described. 30th. The improvement in the art of converting heat into work by the agency of vapour pressure which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat, and containing the working substance, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, applying the vapor pressure and then exhausting the vajour into a condenser and cooling it by the circulating fluid after the latter is discharged from the pressure generator substantially as described. 31st. The improvenient in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid at a regulated temperature from a supply or sc urce of heat to a pressure gen erator thermally dissociated from the supply or source of heat and containing the working substance, heating the working substance by the surrender of heat thereto by the circulating fluid, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 32 nd. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a contimuously moving circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the maximum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto by the circulating fluid, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 33rd. The improvement in the art of converting heat into work by the agency of vapor pressure, which consists in passing a continuously moving circulating fluid from a supply or source of beat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the minimum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto by the circulating fluid, and returning the circulating fluid to the circulating fluid sup ply or source of heat, substantially as described. 34th. The im-
provement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid from a supply or source of heat to a pressure gene rator thermally dissociated from said supply or source of heat and containing the working substance, regulating the maximum and mini mum temperature of the circulating fluid, heating the working sub stance by the surrender of heat thereto by the circulating fluid and returning the circulating fluid to the circulating fiuid supply or source of heat, substantially as described. 35th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continn ously moving circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing the working substance, re gulating the maximum temperature of the circulating Huid, heating the working substance by the surrender of heat thereto by the circulating fluid, and returning the circulating fluid to the circulating fluid supply or source of beat, substantially as described. 36th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the volume of the circulating Huid so as to maintain a substantially constant volume heating the working substance by the surrender of heat thereto by the circulating fluid, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 37 th. The improvement in the art of converting heat into work by the agency of vapor pressure, which consists in passing a continuously moving circulating fluid at a regulated temperature from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the volume of circulating fluid so as to main tain a substantially constant volume, heating the working substance by the surrender of hat thereto by the circulating fluid, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 38th. The improvensent in the art of converting heat into work by the agency of vapour pressure which consists in passing a continuously moving circulating fluid at a regulated sueed from a supply or source of heat to a pressure gene rator thermally dissociated from said supply or source of heat and containing the working substance, regulating the naximum tempe rature of the circulating fluid, regulating the volume of the circulating fluid so as to maintain a substantially constant volume, heating the working substance by the surrender of heat thereto by the cir culating fluid, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 39th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid at a regulated temperature from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the volume of the circulating fluid so as to maintain a substantially constant volume, regulating the quantity of working substance in the pressure generator to mantain a substantially constant volune, heating the working substance by the surrender of heat thereto by the circulating fluid, and returning the ciroulating fluid to the circulating fluid supply or source of heat, substantially as described. 40th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid at a regulated speed froma supply or sourct of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the maximum temperature of the circulating fluid regulating the volume of the circulating fluid so as to maintain a substantially constant volume, regulating the quantity of working substance in the pressure generator to maintain a substan tially constant volume, heating the working substance by the sur render of heat thereto by the circulating fluid and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 41st. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid at a pressure generator themally dissociated from said supply or source of heat and containing the working substance, applying the circulat ing fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 42nd. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the maximum temperature of the circulating fluid, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 43rd. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid from a supply or source of heat to a pressure generator thermally dissociated
from said supply or source of heat and containing the working sub. stance, regulating the volume of the circulating fluid to maintain a substantially constant volume, applying the circulating fluid to heating the hotter and colder parts of the working substance successively ly passing it downward through the pressure generator, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 44th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, regulating the maximum and minimum temperature of the circulating fluid, regulating the volume of the circulating Huid to maintain a substantially constant volume, aplying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward throngh the pressure generator, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 45th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating thuid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, passing the circulating fluid through uniformly distributed and closely spaced passages first in the steam space and then in the water space of said generator and downward fron the hotter to the colder parts of the working substance, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 46 th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continitously moving circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing the working substance, heating the working substance by the surrender of heat thereto by the circulating fluid, applying the vapour pressure and then exhausting the vapour into a condenser and cooling it by the circulating fluid after the latter is discharged from the pressure generator, and returning the circalating fluid to the circulating finid supply or source of heat, substantially as described. 47th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fiaid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing the working substance, regulating the minimum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto by the circulating fluid, applying the vapour pressure and then exhausting the vapour into a condenser and cooling it by the circulating fluid after the latter dis discharged from the pressure generator, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 48 th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing the working substance, regulating the maximum and minimum temperature of the circulating fluid, heating the working substance by the surrender of heat theretoby the circulating fluid, applying the vapoun pressure and then exhausting the vapour into a condenser and cooling it by the circulating fluid after the latter is discharged from the pressure generator, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 49th. The improvement in the art of converting heat into work by the agency of vapour pressure, which consists in passing a continuously moving circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from said supply or source of heat and containing the working substance, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, applying the vapour pressure and then exhausting the vapour into a condencer and cooling it by the circulating fluid after the latter is discharged from the pressure generator, and returning the circulating fluid to the circulating fluid supply or source of heat, substantially as described. 50th. The process of generating or increasing vapour pressure by beating a working substance which consists in passing the heating agent downward from the top to the bottom of the working substance and preventing downward circulation of the working substance in the boiler, substantially as described. 51st. The process of generating or increasing vapour pressure by heating a working substance, which consists in passing a heat conveying fluid downward in uniformly distributed and closely spaced passages from the top to the bottom of the working substance, substantially asdescribed. 5 ind. The process of generating or increasing vapour pressure by heating a working substance, which consists in passing a heat conveying Huid and the working substance through a pressure generator in opposite currents, the heat conveying fluid passing downward and the working substance upward, and preventing downward circulation of the working substance, substantially as described. 53 rd . The process of generating or increasing valour pressure by heating a working substance, which consists in passing a heat conveying fluid downward through the working substance uniformly distributed and closely spaced passages extending horizontally through successive layers of the working substance, substantially as described. 54th. The process of generating or increasing vapour
pressure by heating a working substance, which consists in passing a heat conveying fluid downward through first the steam space and then through the water space in uniformily distributed and closely spaced passages extending horizontally through successive layers of the steam and water or other working substance, substantially as described. 55th. The process of condensing cr cooling vapour, which consists in passing the vapour and cooling fluid through a condenser in opposite directions vertically, the vapour passing downward and the cooling liquid upward through uniformily distributed and closely spaced passages, substantially as described. 56th. The process of and cooling liquid through a condenser in opposite directions vertically, the vapour passing downward from the top to bottom of the condenser with the cooling liquid passing upward from loott.in to top, of the condenser, the passages for the cooling vapour fluid consisting of uniformly distributed and closely spaced passages extending horizontally through layers of the other substance, substantially as described. 57 th. The process of condensing or cooling vapour, which consists in passing the vapour through a series of passages immersed in a cooling liquid, and circulating said liquid by continuously withdrawing liquid from the top and injecting it upward at different points at the bottom of the liquid with sufficient force to maintain a constant agitation of the surface of the cooling liquid, substantially as described. 58th. The process of condensing or cooling a valour, which consists in passing the vapour through a series of passages inmersed in a cooling liquid, circulating said liquid by continously withdrawing liquid from the top, and injecting it upward at different points at the bottom
of the liquid with sufficient force to maintain a constant agitation of the surface of the cooling liquid, and maintaining a current of air over the top of the liquid, substantially as described. 59th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connestions from the heater to the pressure generator for the circulating fluid, and means for regulating the minimum temperature of the circulating fluid, substantially as described. 60 th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, and means for regulating the maximum temperature of the circulating fluid, substantially as described. 61st. The combination with a heater, of a pressure generator thermally dissociated from the beater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, and means for regulating the maximum temperature and speed of the circulating fluid, substantially as described. 62nd. The combination with a heater, of a pressure generator thermally
dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, and means for regulating the minimum temperature of the circulating fluid, substantially as described. 63rd. The combination with the heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator, and return to heater for the circulating fluid, means for regulating the minimum temperature for the circulating fluid, and a circulating yump, substantially as described. 64th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance connections from the heater to the pressure generator and return to heater for the circulating fluid, and means for regulating the temperature of the circulating fluid, substantially as described. 65th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return
to heater for the circulating fluid, and means for regulating the maximum and minimum temperature of the circulating fluid, substantially as described. 66th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, and means for regulating the circulating
speed of the circulating fluid, substantially as described. 67 th. The speed of the circulating fluid, substantially as descrifed. 67 th. The combination with a heater, of a pressure generator thermally
dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, and means for regulating the maximum temperature and circulating speed of the circulating fluid, substantially as describer. 68th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, and secondary connections for the circulating fluid cutting ont the pressure generator, substantially
as described. 69th. The combination with a generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, secondary connections for the circulating fluid cutting ont the pressure generator, and means for controlling said secondary con-
nections by the temperature of the circulating fluid, substantially as described. 70th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, secondary connections for the corculating fluid cutting out the pressure generator, means for regulating the maximum temperature of the circulating fluid, and means for controlling said secondary connections by the temperature of the circulating fluid, substantially as described. 71st. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator, and return to heater for the circulating fluid, and a secondary circulating connection for cutting out the pressure generator, substantially as described. $72 n d$. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, a secondary circulating connection for cutting out the pressure generator, and means for controlling said secondary connection by the temperature of the circulating fluid, substantially as described. 73 rd . The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the cir culating fluid, a secondary circulating connection for cutting out the pressure generator including an evaporative tank, and means for controlling said secondary connection by the temperature of the cir culating fluid, substantially as described. 74th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater, a circulating fluid supply, and means for regulating the volume of the circulating fluid, substantially as described. 75 th . The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater, an expansion tank on said connections, a supply tank, connections between said supply and expansion tanks, and means for regulating said connections controlled by the circulating fluid in the expansion tank, substantially as described. 76 th . The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater, a circulating fluid supply and means for regulating the volume of circulating fuid, and means for regulating the temperature of the circulating fluid, substantially as described. 77 th . The combination with a heater, of a pressure generator thermally dissociated from: the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater, a circulating fluid supply and means for regulating the volume of the circulating fluid, and means for regulating the minimum temperature of the circulating fluid, substantially as described. 78th. The combination with a heater, of a pressure generator thermally dissociated from the heater for apply a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater, a circulating fluid supply and means for regulating the volume of the circulating fluid, and means for regulating the maximum temperature and speed of the circulating fluid, substantially as described. 79th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, and means for regulating the volume of working substance, substantially as described. 80th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, a circulating fluid supply. means for regulating the volume of working substance, substantially as described. 81st. The The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, means for regulating the temperature of the circulating fluid, a circulating fluid supply, means for regulating the volume of circulating fluid, and means for regulating the volume of working substance, substantially as described. 82nd. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, means for regulating the maximum temperature and speet of the circulating fluid, a circulating fluid supply, means for regulating the volume of circulating fluid, and means for regulating the volume of working substance, substantially as described. 83 rd . The combination with a heater, of a pressure generator thermally dissociated from the heater and having uniformly distributed and closely spaced passages extending downward through the working substance, and connections between the through the working substance, and connections between the
heater and said passages at the top of the pressure gene-
rator for the circulating fluid, substantially as described. 84th. The combination with a heater, of a pressure generator thermally dissociated from the heater and having continuous miformly distributed and closely spaced passages extending horizontally and downward through successive layers of the working substance, and connections between the heater and said passages at the top of the pressure generator for the circulating fluid, substantially as des cribed. 85th. The combination with a heater, of a pressure genera tor thermally dissociated from the heater and having continuous uniformly distributed and closely spaced passages extending horizontally and downward through successive layers of the steam space and working substance, and comnections between the heater and said passages at the top of the pressure generator for the circulating fluid, substantially as described. 86th. The combination with a heater, of a pressure generator thermally dissociated from the heater and having small uniformly distributed and closely spaced continuous passages extending horizontally and downward through successive layers of the steam space and working substance, and connections between the heater and said passages at the top of the pressure generator for the circulating fuid, substantially as described. 8ith. The combination with a heater, of a pressure generator thermally dissociated from the heater and having passages extending downward through the working substance, connections between the heater and said passages at the top of the pressure generator for the cir culating fluid, and means for regulating the temperature of the cir culating fluid, substantially as described. 88 th. The combination with a heater, of a pressure generator thermally dissociated from the heater and having passages extending downward throngh the working substance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, and means for regulating the minimum temperature of the circulating fluid, substantially as described. 89th. The combination with a heater, of a pressure generator thermally dissociated from the heater and having passages extending downward through the working substance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, and means for regulating the maximum and minimum temperature of the circulating fluid, substantially as described. 90th. The combination with a heater, of a pressure generator thermally dissociated from the heater and having passages extending downward through the working
substance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, and means for regulating the speed of the circulating fluid, substantially as described. 91st. The combination with a heater, of a pressure generator thermally dissociated from the heater and having passages extending downward through the working substance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, and means for regulating the maximum temperature and speed of the circulating fluid, substantially as described. 92nd. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, means for applying the vapour pressure and a working substance condenser for the pressure generator, connections between the pressure generator and condenser for the circulating fluid, wherein further heat is abstracted from the circulating fluid and the fluid then applied to condensing the working substance, and connections for the return of the circulating fluid from the condenser to the heater, substantially as described. 93rd. The combination with a
heater, of a pressure generator thermally dissociated from the heater heater, of a pressure generator thermally dissociated from the heater
for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, a thermostat on said connections and means controlled by said thermostat for regulating the temperature of the circulating fluid, substantially as described. 94th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, a thermostat on said connections, secondary connections for the circulating fluid cutting out the pressure generator, and means controlled by said thermostat for controlling said secondary connections, substantially as described. 95th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, a thermostat controlled by the temperature of the circulating fluid, and means controlled by said thermostat for regulating the minimum temperature of the circulating fluid, substantially as described. 96th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, a thermostat on said connections between the heater and pressure generator, and means controlled by said thermostat for regulating the temperature of the circulating fluid, substantially as described. 97 th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, thermostats on said connections on each side of the pressure generator and means controlled by said thermostats for regulating the maximum and minimum temperature
of the circulating fluid, substantially as described. 98 th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, comnections from the heater to the pressure gen erator and return to heater for the circulating fluid, thermostats on said connections on each side of the pressure generator and means controlled by said thermostats for regulating the maximum temperature and speed of the circulating fluid, substantially as described. 99th. The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working substance, connections from the heater to the pressure generator for the circulating fluid, a circulating pump, a by-pass for the circulating fluid about said circulating pump, a valve controlling said by-pass and means for controlling said valve in accordance with the temperature of the circulating fluid, substantially as described. 100th. A boiler having uniformally distributed and closely spaced passages for a heating agent extending from the top downward through the space for the working substance, substantially as described. 101st. A builer having miformly distributed and closely spaced passages through it from top to bottom for a heating agent, and from bottom to top for the working substance, substantially as described. 102 nd. A boiler having an inlet at or near the top and outlet at or near the the bottom for a heating agent, and an inlet at or near the bottom and outlet at or near the top for the working substance, and uniformly distributed and closely spaced passages connecting the respective inlets and outlets, substantially as described. 103rd. A boiler having a small uniformly distributed and closely spaced passages for a heating agent extending downward from the top through the space for the working substance, substantially as described. 104th. A boiler having uniformly distributed and closely spaced passages for a heating agent extending horizontally and downward through successive parts and from the top toward the bottom of the space for the working substance, substantially as described. 105th. A boiler having uniformly distributed and closely spaced passages for a heating agent extending horizontally and downward through successive parts of the steam space and from the top toward the bottom of the space for the working substance, substantially as described. 106th. A boiler having small uniformly distributed and closely spaced passages for heating agent extending horizontally and downward through successive parts and from the top toward the bottom of the space for the working substance, substantially as described. 107 th . A boiler hiving small closely spaced passages for a heating agent extending horizontally and downward through successive parts and from the top toward the lootom of the space for the working substance, and sheets of wire gauze between and in contact with the horizontal layers of passages, substantially as described. 108th. A boiler having an initet and outlet for a heat conveying circulating fluid and an inlet and out!et for working substance, and uniformly distributed and closely spaced passages for the circulating fluid within the space for the whoing substance, substantially. 109th. A boiler having an inlet and outlet for a heat conveying circulating Huid and an inlet and outlet for working substance, and miformly distributed and closely spaced passages for the circulating fluid through both the steam space and water space, substantially as described. 110th. A boiler having an inlet and outlet for a heat conveying circulating fluid and an inlet and outlet for working substance uniformly distributed and closely spaced passages for the circulating fluid extending horizontally through successive vertical parts of the space for the working substance, substantially as described. 111th. A boiler having an inlet and outlet for a heat conveying circulating fluid, and an inlet and outlet for working substance, and small uniformly distributed and closely spaced passages for the circulating fluid extending horizontally through successive vertical parts of the space for the working substance, substantially as described. 112th. A boiler having an inlet and outlet for a heat conveying circulating fluid, and an inlet and outlet for working substance, and small uniformly distributed and closely spaced passages for the circulating fluid textending horizontally through successive vertical parts of both the steam space and water space, substantially as described. 113th. A boiler having an inlet and outlet for a heat conveying circulating fluid, and an inlet and outlet for working substance, prassages for the circulating fluid within the space for the working substance, and a blow-off valve for the liquid working substance controlled by the boiler pressure, substantially as described. 114th. An apparatus for the transfer of heat from one fluid to another having uniformly distributed and closely spaced passages for the fluid from which heat is to be transferred extending from the top downward through the space for the fluid to which heat is to be transferred substantially as described. 115th. The combination with a casing having an inlet at or near the top and outlet at or near the bottom for fluid from which heat is to be transferred, an inlet at or near the bottom and outlet at or near the top for fluid to which heat is to be transferred from the first mentioned fluid, and uniformly distributed and closely spaced passages for one of the fluids connecting its respective inlet and outlet and extending through the space for the other fluid, substantially as described. 116th. The combination with casing p, having a connection at top and bottom, of casing B inside said casing, having a connection at topand bottom, uniformly distributed and closely spaced tubes extending transversely through said casing B , and partitions 17 dividing said casing p outside casing B into horizontal chambers, substantially as described. 117 th. The combination with casing p, having a connection at top and bottom, of casing
B inside said casing, having a connection at top and bottom, small closely spaced tubes n extending transversely through said casing B , and partitions 17 dividing said casing p outside casing B into horizontal chambers, substantially as described. 118th. The combination with a casing having a fluid connection at opposite ends, of small closely spaced tubes extending transversely through said casing, chanbers arranged longitudinally of said casing and communicating with the opposite ends of series of tubes, and a fluid connection with the end chambers, substantially as described. 119th. The combination with an open tank having a perforated bottom, of passages through said tank for fluid to be cooled, and a circulating pump for withdrawing the cooling liquid from the top and injecting it through the perforated bottom of the tank, substantially as described. 120th. The combination with an open tank having a perforated top and bottom, of passages through said tank for fluid to be cooled, and a circulating pump for withdrawing the cooling liquid from the top and injecting it through the perforated bottom of the tank, substantially as described. 121st. 'The combination with an open tank having a perforated top and bottom, of passages through said tank for fluid to be cooled, a circulating pump for withdrawing the cooling liquid from the top and injecting it through the perforated bottom of the tank, and means for maintaining an air blast over the top of the tank, substantially as described. 122 nd . The combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating the working sulstance, connections from the heater to the pressure generator and return to heater for the circulating fluid, an expansion engine having cylinder jackets, and comections for circulating a part of the circulating fluid through said jackets, substantially as described.
No. 51,155. Thermodynamic Process and Apparatus. (Procédé et appareil thermodynamıque.)

Agnes Bates Wellington. New York, State of New York, U.S.A., executrix of Arthur Mellen, State of New York, aforesaid 2sth January, 1896; 6 years. (\mathbf{H} iled 11th November, 1895.)
Chin. - 1st. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure gen::a tors, applying said working substancex in expansion engines, anct applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, substantially as described. 2nd. The thermodynamic process, which consists in heating a circulating fluid, passing the heated circulating fluid through a series of pressure generators and applying it to beating working substances in said pressure generators, applying said working substances in expansion engines, and applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, substantially as descriled. 3rd. The thermodynamic process, which consists in passing a circulating fluid through a series of condensers and applying it to cooling working substances therein whereby the circulating fluid is somewhat heated, then further heating the circulating fluid, then passing the heated circulating fluid through a series of pressure generators and applying it to heating working substances therein, applying said heater working substances in expansion engines, and exhausting said engines into said condensers, substantially as described. 4th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators. applying said working substances in expransion engines, applying the circulating fluid to condensing the working substances exhansted from some or all of the successive engines, and repeating the operation with the circulating fluid, heating the circulating fluid before entering the hot circuit and cooling it after leaving the hot circuit, substantially as deseribed. 5th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhansted from some or all of the successive engines, and returning the condensed working substances to their respective pressure generators, substantially as described. (ith. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in sand pressure generators, applying said working substances in expansion engines, aprlying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, returning the condensed working substances to their respective pressure generators, and repeating the operation with the circulating fluid and working substances, heating the circulating fluid before entering the hot circuit and cooling it after leaving the hot circuit, substantially as described. Fth. The thernodynamic
process, which consists in passing a circulating fluid partly liquid and partly gaseous through a series of pressure generators and applying it to heating working substances in said pressure generators applying said working substances in expansion engines, and applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, substantially as described. 8th. The thermodynamic process, which consists in passing a circulating fluid partly liquid and partly gaseous through a series of pressuse generators and applying it to heating working substances in said pressure generators, applying the working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, and heating the circulating fluid befrre entering the hot circuit, substantially as described. 9th. The thermodynamic process, which consists in passing a circulating fluid partly liquid and partly gaseous through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substancees in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, and repeating the circuit with liquid portion of the circulating fluid, heating the circulating fluid before entering the hot circuit, and cooling the liquid portion of the circulating fluid after leaving the hot circuit, substantially as described. 10th. The thermodynamic process, which consists in passing fuel through a series of condensers and applying it to cooling working substances therein, then burning the fuel in a heater, pas sing the gases of combustion through a series of pressure generators and applying them to heating working substances therein, applying said heated working substances in expansion engines, and exhausting said engines into said condensers, substantially as described. 11th. The thermodynamic process, which consists in passing fuel through a series of condensers and applying it to cooling working substances therein in conjunction with a circulating fluid, then burning the fuel in a heater and thus heating the circulating fluid, passing the gases of combustion and circulating fluid through a series of pressure generators and applying them to heating working substances therein, applying said heated working substance in expansion engines, and exhansting said engines into said condensers, substantially as described. 12th. The thermodynamic process, which consists in passing fuel through a series of condensers and applying it to cooling working substances therein, in conjunction with a circulating fluid, then burning the fuel in a heater and thus heating the circulating fluid, passing the gases of combustion and circulating fluid through a series of pressure generators and applying them to heating working substances therein, applying said heated working substances in expansion engines, and ex hausting said engines into said condensers,cooling the circulating fluid after leaving the hot circuit and repeating the operation with the circulating fluid in conjunction with another supply of fuel, substantially as described. 13th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, and using the circulating fluid thus heated in the cold circuit as hot circulating fluid for other series working at lower maximum temperatures, cooling the circulating fluid after leaving the hot circuit of the different series, substantially as described. 14th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to con densing the working substance exhausted from some or all of the successive engines, and using the circulating fluid thus heated in the cold circuit as hot circulating fluid for other series working at lower maximum temperatures, cooling the circulating fluid after leaving the hot circuit of the difierent series, and repeating the operation, heating the circulating fluid before re-entering the hot circuit of the first series, substantially as described. 15th. The thermodynamic process which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure gentrators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhansted from some or all of the successive engines, passing the circulating fluid from the condensers through another series of pressure generators working at lower maximum temperatures than the first mentioned series and applying it to lieating working substances therein, applying said working substances in expansiou engines, applying said circulating fluid to condensing the working substances exhansted from some or all of said engines, and so on, if desired, for other series working at successively lower maximum temperatures, cooling the circulating fluid after leaving the hot circuit of each series, substantially as described. 16th. The thermoxlynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said workking substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, passing the circulating fluid from the condensers through another series of pressure generators working at lower maximum temperatures than the first mentioned series and
applying it to heating working substances therein, applying said working substances in expansion engines, appyying said circulating fluid to condensing the working sulstances exhausted from some or all of said engines, and so on, if desired, for other series working at successively lower maximum temperatures, cooling the circulating fluid after leaving the hot circuit of each series, and repeating the opration with the circulating fluid, heating it before re-entering the hot circuit of the first series, sulstantially as described. 17 th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some of the successive engines and car rying it through or past one or more of the condensers for the working sulstances without applying to condensing the working sulstance therein, substantially as descriled. 18th. The thermodynamic proceess, which consists in passing a cir culating fluid through a series of pressure generators and applyng it to heating working substances in said pressure generators. apply ing said working substances in expansion engines, applying the cir culating fluid to condensing the working, substances from some of the successive engines, and exhausting the other engines into the circulating fluid, sulbstantially as described. 19th. The thermodynanic process, which cousists in passing a circutating fluid through a series of pressure 'generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substances from sone of the successive engines and exhausting the other engines into the circulating fluid, and repeating the operation, heating the circulating fluid lefore entering the hot circuit, substantially as described. 20th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substancess from the successive engines, and exhausting into the circulating fluid certain expansion engiues the working sulstances of which are not heated by the circulating fluid, substantially as described: 21 st. The thermodynamic prycess, which consists in passing a circulatiug fluid through a series of pressure generators and ayplying it to heating working substances in said pressure generators, aplyying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the pressure generatorrs, and cooling the circulating fluid after leaving the hot circuit by applying it to heating working substances for one or more engines, the exhaust from which is not condensed by the circulating fluid, substantially as described. 22nd. The thermodynanic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substance exhausted from sone or all of the pressure generators, cooling the circulating fluid after leaving the hot circuit by aplyying it to heating working substances for one or more engines, the exhaust frons which is not condensed by the circulating fluid, and repeating the operation with the circulating fluid, heating it before entering the hot circuit, substantially as described. 231d. The thermmdynamic process, which consists in passing a circulating fluid through one or more pressure generators and applying it to heating working substances therein, heating the circulating fluid after leaving each of said pressure generators, passing said heated circulating fluid through a series of pressure generators and applying it to heating working substances therein, apulying said first and last meentioned working sulhstances in expansion engines, and applying said circulating fluid to conden sing the working substances exhausted fron some or all of said engines, substantially as described. 24th. The thermodynamic process, which consists in passing a cirIulating fluid through one or more pressure generators and applying it to heating working substancest therein, heating the circulating fluid after leaving each of said pressure generators, passing said heated circulating fluid through a series of pressure generators and spplying it to heating working substances therein, applying said tirst and last mentiomed working substances in expansion engines, applying said circulating fluid to condensing the working substances exhausted from some or all of said engines, and repeating the operation with the circulating fluid, heating it before entering the first pressure generator and cooling it after leaving the hot circuit. substantially as described. 25th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and aphying it to heating working substances in said pressure generators, itplying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive enginus, heating the circulating fluid before entering the hot circuit by the waste heat of gas or other engines working at a temperature alove the maximum of the hot circuit, substantialy as described. 26th. The thernodynamic process which consists in passing a circulating fluid throngh a series of pressure generittors and applying it to heating working substances in said pressure generators. applying said working substances in expansion engines, applying the circulating fluid to condensing the working sabstances exhausted to from some or all of the successive engines, heating the
circulating fluid before entering the hot circuit by the waste beat of gas or other engines working at a temperature above the maximum of the hot circuit, and repeating the oprration with the circulating Huid, cooling it after leaving the hot circuit, substantially as described. 22 th. The thermodynamic pr.cess, which consists in passing a circulating fluid through a series of pressure generators and aplying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substance exhausted from some or all of the successive engines, heating the circulating fluid entering the hot circuit by the waste heat of gas or other engines working at a temperature alove the maximum of the hot circuit, and cooling the circulatiug fluid after leaving the hot circuit by applying it to heating working substance for one or more expansion engines, the exhaust from which is not condensed by the circulating fluid, substantially as described. 28th. The thermodynamic process, which consists in pas sing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substance exhaustrd from some or all of the successive engines, heating the circulating fluid before entering the hot circuit by the waste heat of gas or other engines working at a temperature a above the maximum of the hot circuit, cooling the circulating fluid after leaving the hot circnit by applying it to heating working substance for one or nure extransion engines, the exhaust from which is not condensed by the circulating fluid, and releating the operation with the circulating fluid, substantially as described. 29 th. The thermorlynamic process, which consists in passing circulating fluid thrungh one or more pressure generators and applying it to heating working substances therein, heating the circulating fluid after leaving each of said pressure generators, passing said heated circulating fluid through a series of pressure generators and applying it to heating working substances therein, apylying said first and last mentioned working substance in expansion engines, applying said circulating fluid to condensing the working sulstances exhausted from some or all of said engines and heating the circulating fluid for the first mentioned pressure generators by the waste heat of gas or other engines working at a temperature alove the maxinum of hot circuit, substantially as described. 30th. The thermodynamic process, which consists in passing a circulating fluid through one or more pressure generators and applying it to heating working substances therein, heating the circulating fluid after leaving each of said pressure generators, pas sing said heated circulating fluid through a series of pressure generators and applying it to heating working substances therein, applying said first and last mentioned working substances in expansion engines, applying said circulating fluid to condensing the working substances exhansted from some or all of said -engines, and heating the circulating fluid for the first mentioned pressure generators by the waste heat of gas or other engines working at temperatures above the maximum of hot circuit, and repeating the operation with the circulating fluid, cooling it after leaving the hot circuit, substantially as described. 31 st . The thermodynamic process, which consists in passing a circulating fluid through one or more pressure generators and applying it to heating working substances therein, heating the circulating tuid after l-aving each of said pressure generators, passing said heated circulating flud through a series of pressure generators and applying it to heating working substances therein, applying said tirst and last mentioned working sulstances in expansion engines, aphlying said circulating fluid to condensing the working substances exhausted from some or all of said engines, heating the circulating fluid for the first mentioned pressure generators by the waste heat of gas or other engines working at a temperature alove the maximum of hot circuit, and cooling the circuiating fluid after leaving the hot circuit by applying it to leating working substance for one or more expansion engines, the exhaust from which is not condensed by the circulating fluid, substantially as described. 32nd. The thermodynamic process, which consists in passing a circulating fluid through one or more pressure generators and applying it to heating working sulstances therein, heating the circulating fluid after leaving each of said pressure generators, passing said heated circulating fluid through a series of pressure generators and applying it to heating working substances therein, applying said first and last mentioned working substances in expansion engines, applying said circulating Hluid to condensing the working substances exhausted from some or all of said engines, heating the circulating fluid for the first mentioned pressure generator: by the waste heat of gas or other engines working at a temperature above the maximum of hot circuit, cooling the circulating fluid after leaving the hot circuit by applying it to heating working substance for one or more expansion encines, the exhaust from which is not condensed by the circulating fluid, and repeating the operation with the circulating fluid, sulstantially as described. 33rd. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators, and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating
fluid to condensing the working substance exhausted from some or all of the successive engines, and regulating the maximum temperature of the circulating fluid, substantially as described. 3th. The thermodynamic process, which consists in
passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substance exhausted from some or all of the successive engines, and regulat ing the minimum temperature of the circulating fluid in the hot circuit, substantially as described. 35th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substance exhausted from some or all of the successive engines, regulating the maximum temperature of the circulating fluid, and the maximum temperature of the circulating fluid, and the minimum temperature of the circulating fluid in the hot circuit, substantially as described. 36th. The thermodynamic process, which consists in passing a circulating fluid at a regulated speed through a series of pressure generators and applying it to heating working substances in said pressure generators, apllying said working substances in expansion engines, and applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, substantially as described. 37 th. The thermodynamic process, which consists in passing a cir culating fluid at a regulated speed through a series of pressure gen erators and applying it to heating working substances in said pres sure generators, applying said working substances in expansion en gines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, and regulating the maximuin temperature of the circulating fluid, substantially as described. 38th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators by passing it downward through the working substances, applying said working substances in expansion engines, and applying the circulating fluid to condensing the working subsstances exhausted from some or all of the successive engines, substantially as described. 39th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to - heating working substance in said pressure generators by passing it downward through the working substances and preventing downward circulation of the working substances, applying said working substances in expansion engines, and applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, substantially as described. 40th. The thermodynamic process which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators and applying it to heating working substances in said pressúre generators by passing it downward through the working substances in uniformly distributed and closely spaced passages, applying said working substances in expansion engines and applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, substantially as described. 41st. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators, and applying it to heating working substances in said pressure generators by passing it downward through the working substances in uniformly distributed and closely spaced passages having thin heat transmitting walls, applying said working substances in expansion engines, and applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, substantially as described. 42nd. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators by passing it downward
through the working substances in passages having thin heat transthrough the working substances in passages having thin heat transmitting walls, applying said working substances in expansion engines, and applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, substantially as described. 43rd. The thermodynamic process, which consists in passing a circulating fluid at a regulated speed through a series of pressure generators and applying it to heating working substances in said pressure generators by passing it downward through the working substances, applying said working substances in expansion engines, and applying the circulating fluid to condensing the working substances exhausted from some cr all of the successive engines, and regulating the maximum temperature of the circulating fluid, substantially as described. 44th. The thermodynamic process, which consists in passing a circulating fluid at a regulated speed through a series of pressure generators and applyrators by passing it downward through in said pressure genein uniformly distributed and closely spaced passages having thin heat transmitting walls, applying said working substances in working substances exhausted the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, and regulating the maximum temperature of the circulating which cousists inly as described. 45th. The thermodynamic process sure generators and applying it to heating working substances in said pressure generators, applying said working s:ibstances in expansion engines, applying the circulating fluid to condensing the
engines, regulating the maximum temperature of the circulating fluid, and repeating the operation with the circulating fluid, heating the circulating fluid before entering the hot circuit and cooling it after leaving the hot circuit, substantially as described. 46th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, regulating the minimum temperature of the circulating fluid, and repeating the operation with the circulating fluid, heating the circulating fluid lefore entering the hot circuit and cooling it after leaving the hot circuit, substantially as described. 47th. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, regulating the maximum temperature of the circulating fluid and the minimum temperature of the circulating fluid in the hot circuit, and repeating the operation with the circulating fluid, heating the circulating fluid before entering the hot circuit, and cooling it after leaving the hot circuit, substantially as described. 48th. The therinodynamic process, which consists in passing a circulating fluid at a regulated speed through a series of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, and repeating the operation with the calculating fluid, heating the circulating fluid before ent 6 ring the hot circuit and cooling it after leavingthe hot circuit, substantially as described. 49th. The thermodynamic process, which consists in passing a circulating fluid at a regulated speed through a serios of pressure generators and applying it to heating working substances in said pressure generators, applying said working substances in expansion engines, alplying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, regulating the maximum temperature of the circulating fluid, and repeating the operation with the circulating fluid, heating the circulating fluid before entering the het circuit and cooling it after leaving the hot circuit, substantially as described. 50th. 'The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators by passing it downward through the working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, and repeating the operation with the circulating fluid heating the circulating fluid before entering the hot circuit and cooling it after leaving the hot circuit, substantially as described. 51st. The thermodynamic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substancts in said pressure generators by passing it downward the working substances and preventing downward circulation of the working substances in the pressure generators, applying said working substances in expansion engines, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, and repeating the operation with the circulating fluid, heating the circulating fluid before entering the hot circuit and cooling it after leaving the hot circuit and cooling it after leaving the hot circuit, substantially as described. 52nd. The thermodynamic process, which consists in passing a circulating fluid through a serien of pressure generators and applying it to heating working substances in said pressure generators by passing it downward through the working substances in uniformly distributed and closely spaced passages having thin heat transmittig walls, applying the circulating fluid to condensing the working substances exhausted from some or all of the successive engines, and repeating the operation with the circulating flud, heating the circulating fluid before entering the hot circuit and cooling it after leaving the hot circuit, substantially as described. 53rd. The method of increasing the efficiency of engine syatems employing boilers dissociated from the heater which consists in applying the fuel in condensing the working substances, then burning the heated fuel in the heater, and applying the gases of combustion in heating the working substance, substantially as described. 54th. The method of increasing the efficiency of engine systems employing a circulating fluid for heating and condensing the working substance, which consists in applying the fuel as part of the circulating fluid in condensing the working substance and then burning the heated futl in the heater for beating the circulating fluid, substantially as described. 55th. The method of increasing the efficiency of engine systems employing a circulating fluid for heating and condensing the working substance, which consists in applying the fuel as part of the circulating fluid in condensing the working substance and then burning the hated fuel in the heater for heating the circulating fluid, and then applying the gases of combustion as a part of the circulating fluid in heating the work ing substances, substantially as described. 56th. The method of increasing the efficiency in systems employing a circulating fluid for heating and condensing the working substance for a series of engines, which consists in cutting out the circularing fluid from one or more
of the condensers and substituting another condensing material,
substantially as describod. 57 th. The method of increasing the efficiency of systems employing a circulating fluid for heating and condensing the working substances for a series of engines, which consists in heating the circulating fluid in part by condensing the working substance of one or more engines working at or above the maximum temperature of the series, sulstantially as described. 58 th. The method of utilizing the thermal interval between the temperature of combustion and maximum temperature of the circulating fluid, m thermodymanic systems, employing a circulating fluid for heating the working substance, which consist in heating the circulating fluid by the waste heat from gas or other engines working in said interval, substantially asdescrited. 59th. The thermodymanic process, which consists in passing a circulating fluid through a series of pressure generators and applying it to heating working substances in said pressure generators, then applying said circulating fluid to another circulating fluid and applying the second circulating fluid in a series of pressure generators working at a lower maximum temperature than the first-mentioned series, applying the working substance in expansion engines, and applying the circulating Huids to condensing the working substances exhansted from some or all of their respective series of engines, substantially as described. 60th. The combination with a series of expansion engines, and pressure generators and condensers therefor, provided with passages for apply ing a circulating fluid to heating and condensing the working substances, of comections between said passages through the series of pressure generators and some or all of the condensers for the circulating fluid, substantially as described. 61st. The combination with a series of expansion engines, and pressure generators and condensers therefor provided with passages for applying a circulating fluid to heating and condensing the working substances, of a beater, and connections between said passages through the series of pressure generators and some or all of the cond+nsers and through the heater for the circulating fluid, substantially as described. 62nd. The combination with a series of expansion engines, and pressure gen erators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances of a cooler, and comnections between said passages through the series of pressure generators, and cooler and some or all of the condensers for the circulating fluid, substantially as described. (i3rd The combination with a series of expansion engines, and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of a heater, a cooler, and connections between said passages through the series of pressure generators, the conler, some or all of the condensers and the heater for the circulating fluid, substantially as described. 64th. The combination with a series of expansion engines, and pressure generators and condensers therefor, working in closed cycle and provided with passages for applying a circulating fluid to heating and condensing the working substances, of connections between said passages through the series of pressure generators and some or all of the condensers for the circulat ing fluid, substantially as described. 65th. The combination with a series of expansion engines, and pressure generators and condenser: therefor, working in closed cyele and provided with passages for applying a circulating fluid to heating and condensing the working substances, of a heater, a cooler, and comections between said passages through the series of pressure generators, the cooler. some or all of the condensers and the heeuter for the circulating fluid, sub stantially as described. 66th. 'The combination with a series of +x pansion engines, and pressure generators and condensers therefor, provided with separate passages for applying liguid and gasecus elements of a circulating fluid to heating and condensing the work ing substances of connections for the circulating fluid between said passages through the series of pressure generators and some or all of the condensers, substantially as descrihed. (ifth. The combination with a series of expansion engines, and pressure generators and con densers therefor, provided with separate passages for applying liquid and gaseous elements of a circulating flind to heating and condens ing the working substances, of a heater, and commections for the cir culating fluid between said passages through the series of pressure generators and some cr all of the condensers and through the heater, substantially as described. 68th. The combination with a series of expansion engines, and pressure generators and condensers therefor provided with separate passages for applying liquid and gaseous elements of a circulating fluid to heating and condensing the work ing substances, of a heater, a cooler, connections for the liquid ele ment of the circulating fluid between said passiges through the series of pressure generators, the conder, some or all of the condenser, and the heater, and connections for the gaseous element through some or all of the condensers, the heater, and the series of pressure generators, substantially as described. 69th. The combination with a series of expansion engines, and pressure generators and conden sers therefor, provided with passages for applying the gases of com bustion to heating the working substances and the fuel tocondensing the working substances. of a heater in which the fuel is burned, and connections between the passages througli the condensers to the heater for the fuel and from the heater through the series of pressure generators for the gases of combustion, substantially as described. 70th. The combination with a series of expansion engines, and pres sure generators and condensers therefor, provided with passages for applying fuel and a circulating fluid to condensing the working sub stances, and for applying the gases of combustion and circulating fluid to heating the working substances, of a
heater for burning the fuel and thus heating the circulating fluid, a nd connections between the passages for the fuel and gases of combustion, and between the passages for the circulating fluid through the condensers, the heater, and the series of pressure generators, substantially as described.' 71st. The combination of a plurality of series of expansion engines, the successive series working at lower maximum temperatures, and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, coolers for the different series, connections for the circulating fluid in each series through the series of pressure generators, the cooler, and some or all of the condensers, and connections for the circulating fluid between the passages of each series and the next, substantially as described. iznd. The combination of a plurality of series of expansion engines, the successsve series working at lower maximum temperatures, and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, a heater, coolers for the diffecent series, connections for the circulating fluid in each series through the series of phessure generators, the cooler and some or all of the condensers, and connections for the circulating fluid hetween the passages of each series and the next and from the cold circuit of the cold series through the heater to the hot circuit of the hot series, substantially as described. 73 rd . The combination with a series of expansion engines, and pres. sure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of connections for the circulating fluid between said passages through the series of pressure generators and the condenser and by-passes provided with valves for cutting the circulating fluid out of one or more of the pressure generators, substantially as des cribed. 74th. The combination with a series of expansion engines, and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of connections for the circulating fluid through the series of pressure generators and the condensers. and by-passes for cutting the circulating fluid out of one or more of the condensers substantially as described. 75th. The combination with a series of expansion engines, and pressure generators and condensers therefor provided with passages for applying a circulating fluid to heating and condrnsing the working substances, of con nections for the circulating fluid through the series of pressure generators and the condensers, hy-passes for cutting the circulating fluid out of cone or more of the condensers, and means for introducing another condensing agent in place of the circulating fluid when cut out, substantially as described. 76th. The combi nation, with a series of expansion engines, and pressure generators and condensors therefor, provided with passages for applying a cir culating fluid to heating and condensing the working substances, of one or more cold internal engines having pressure generators pro vided with passages for applying a circulating fluid to heating work ing substance and comnections for the circulating fluid between said passages through the series of pressure generators and pressure generators of the cold internal engines, and some or all of the condensers, substantially as described. 77th. The combination with a series of expansion engines, and pressure generators and condensers therefor, provided with passages for applying a circulating fiuid to heating and condensing the working substances, of one or more cold interval engines having presiure generators provided with passages for aplying a circulating fluid to heating working substance, a heater, and connections for the circulating fluid between said passages through the suries of pressure genpratorn and pressure genera tors of the cold interval engines, some or all of the condensers and the heater, sulstantially as described. isth. The combination with a series of expansion eng. nes, and pressure generators and conden sers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of a heater, one o. more h,t interval engines and condensers therefor, provided with 1 tssages for applying a circulating fluid to heating and condensing working sulstances, and connections for the circulating fluid between said passages through some or all of the condensers, the heater, the successive generators of the hot interval engines and return to heater from each pressure generator, and the series of pressure generators, substantially as described. 79th. The combination with a serips of expansion engines, and pressure generators and condensors therefor, provided with passages for applying the circulating fluid to heating and condensing the working substances, of a heater, one or more hot interval engines and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing working substance, a cooler, and connections for the circulating fluid between said passages through the heater, the successive pressure generators of the hot interval engines and return to heater from each pressure generator, the series of pressure generators, the cooler, and some or all of the condensers, and return to heater, substantially as described. soth. The combination with a series of expansion engines, and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of one or more gas or other heating engines working ahove the maximum temperature of the hot circuit, passages for heating the circulating fluid by the waste heat of the heating engines, and connections for the circulating fluid between said passages of some or all of the condensers, heating engines, and pressure genera tors, substantially as described. 81st. The combination, with a series of expansion engines and pressure generators and condensers
therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of one or more gas or other heating engines working above the maximum temperature of the hot circuit, passages for heating the circulating fluid by the waste heat of the heating engines, a cooler, and connections for the circulating fluid between said passages of some or all of the condensers, heating engines, pressure generators and cooler, sulstantially as described. 82nd. The combination, with a series of expansion engines and pressure generators and condensers theretor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of one or tmore gas or other heating engines working above the maximum temperature of the hot circuit, passages for heating the circulating fuid ly the waste heat of the heating engines, one or more cold interval engines hav ing pressure generators provided with passages for applying a circulating fluid to heating working substances, and connections for the circulating fluid between said passages of some or all of the condensers, the heating engines, pressure generators, and the pressure generators of the culd inter"al engines, substantially as described. 83rd. The combination, with a series of expansiom engines and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of une or more gas or other heating engines working above the naximum temlerature of the hot circuit, passages for heating the circulating fluid
by the waste heat of the heating engines, by the waste heat of the heating engines, a heater, one or more hot interval engines and condensers, therefor, provided with
pastages for applying a circulating fluid to heating and
ander comdensing the working substances, one or more cold interval engines having pressure generators, brovided with passages for applying a circulating fluid to heating working sulbstance, and connections for the circulating fluid between said passages of some or all of the condensers, the heating engines, the heater, the suceessive pressure generatcrs of the hot interval engines and return to heater from each pressure generator, and the series of pressure generators and pressure generators of the cold interval cngines, substantially as describel. 84th. The combination with a series of expansion engines and presssure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of one or more gas or other heating engines working above the maximum temperature of the hot circuii, passages for heating the circulating fluid by the waste heat of the heating engines, a heater, one or more hot interval engines and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, and connections for the circulating fluid between said passages of some or all of the condensers, the heating engine, the heater, the successive pressure generators of the hot interval engines and return to heater from each pressure generator, and the series of pressure
generators, sulstantially as describect. 8 th. The conbbination with generators, sulstantially as describect. 85th. The combination with
a series of expanasion engines, and pressure peneraturs and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, of a heater, a cooler, connections for the circulating fluid between said passages through the series of pressure generators, the cooler, some or all of the condensers and the heater, and means for regulating the maximum temperature of the circulating fluid, substantially as desribed. 86 th. The combination with a series of expansion engines, and pressure generators and condensers thert for, provided with passages for applying a circulating fluid to heating and condensing the working substances, of a heater, a cooler, connections for the circulating fluid between said passages through the series of pressure generators, the cooler, some or all of the condensers and the heater, and means for regulating the minimum temperature of the circulating fluid in the hot circuit, substantially as described. 8tth. The combination with a series of expansion engines, and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating aud erndensing the working sulstances, of a heater, a conler, conreetions for the circulating fluid letween said yassages through the series of pressure generators, the cooler, some or all of the condensers and the heater, and means for regulating the maximum temperature
of the circulating fluid and the minimum temperiture of the circulating fluid in the hot circuit, sulstantially as described. 88th. The combination with a series of expansion engines, and pressure generators and condensers therefor, povided with passages for applying a circulating fluid to heating and condensing the working substances, of a heater, a cooler, comnections for the circulating fluid bet ween said passages through the series of pressure generators, the cooler, some or
all of the condensers and the heater, and means for regulating the all of the condensers and the heater, and means for regulating the maximum temperature and speed of the circulating fluid, substanti-
ally as described. צitth. The combination with a series of expansion engines, and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and con-
densing the working sulbtances of a dencing the wurking sulstances, of a heater, a cooler, connections for the circulating fluid hetweens said passages, through the series of pressure generators, the ceroler, cume or all of the condensers and
the heater, aud means for levern the e eater, and means for requlating the specd of the circulating
fuid, sulstantially as descriled. 90 th. The combination with fluid, substantially as described. 9 oth. The comblination with a
series of expansion - ncines, and pressure series oxpansion engines, and pressure generators aud condensers heating and condensing the working substances, the passages of the pressure generators extending downward through the working sulstances, of a heater, a cooler, and connections for the circulating fluid between said passages, through the series of pressure gene-
rators, the cooler, some or all of the condensers and the heater, substantially as described. 91st. The combination with a series of expansion engines, and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, the passages of the pressure generators extending downward through the working substances and being uniformly distributed and closely spaced, of a heater, a cooler, and connections for the circulating fluid between said passages through the series of pressure generators, the cooler, some or all of the condensers, and the heater, substantially as described. 92 nd. The combination with a series of expansion engines, and pressure generators and condensers there for, provided with passages for applying a circulating fluid to heating and condensing the working substances, the passages the pressure generators extending downward through the working substance and being uniformly distributed and cloosely spaced and having thin heat transmiting walls, of a heater, a cooler, and connections for the circulating fluid between said passages through the series of pressure generators, the cooler, some or all of the condensers and the heater, substantially as described. 93 rd. The combination with a series of expansion engines and pressure generators and condensers therefor, provided with passages for applying a circulating fluid to heating and condensing the working substances, the passages of the pressure generators extending downward through the working substance and having thin heat transmitting walls, of a heater, a cooler, and comnections for the circulating Huid between said passages through the series of pressure generators, the cooler, some or all of the condensers and the heater, substantially as described. 94th. The combination with a series of expansion en gines, and pressure generators and condensers therefor, provided with prassages for apylying a circulating fluid to heating and condensing the working substances, the passages of the pressure generators extending downward through the working substance, of a heater, a cooler, and connections for the circulating fluid between said passages through the series of pressure generators, the cooler, some or all of the condensers and the heater and means for regulating the maximum temperature and speed of the circulating fluid, substantially as descriled. 95th. The combination with two series of expansion engines working at different maximum temperatures, and uressure generators and condensers for said engines, provided with passages for applying a circulating fluid to heating and condensing the working substances, of connections in each series for circulating fluid between said passages through the series of pressure generators and some or all of the condensers, and a transmitter on said connections whereby the circulating fluid of the hot series in passing from the hot to the cold circuit heats and is coolled by the circulating fluid of the cold series in passing from the cold to the hot circuit, substantially as described. 96th. The combination with a series of expansion engines and pressure generators and condensers therefor, provided with pasrages for applying the circulating fluid to heating and condensing the working substances, of a heater, connections tetween said passages through the series of pressure generatord and some or all of the condensers. and through the heater, for the circulating fluid and connections from the heater passing through the sucressive pressure generators and carrying gases of conbustion, substantially as descriled. 9ith. The combination with a series of expansion engines and pressure generators and condensers therefor, provided with passages tor applying the circulating fluid to heating and condensing the working substances, of a heater, connectio is between said passages through the series of pressure generators and some or all of the condensers, and through the heater, for the cir culating fluid, and connections for carrying air to the heater through the successive condensers and carrying the gases of combustion from the heater through the successive pressure generators, substantially as described. 98th. The combination with a heater and a series of pressure generators and condensers working at successively lower temperatures, of connections for carrying fuel to the heater through the successive condensers, and carrying gases of combustion from the heater through the successive pressure generators, substantially as described. 99th. The conbination with a series of pressure gen rators or condensers having passages for applying a circulating fluid to heating on condensing working substances, of connections between the passages of the different pressure generators or condensers and by-passes for cutting out one or more of said pressure generators or condensers, substantially as described. 100th. The combination with a series of condensers having passages for applying a circulating fluid to heating working substance, of connections between the passages of the different condensers, by-passes for cutting out the circulating fluid from one or more of said condensers, and connec tions for supplying another cooling medium to said condensers, substantially as described. 101st. A briler having small passages for a heating agent, provided with thin heat transmitting walls, substantially as described. 102nd. A boiler having small passages for a heating agent extending downward through the fluid to be heated and provided with thin heat transmitting walls, sulstantially as described. 103rd. A boiler having unifcrmly distributed and closely spaced passages for a heating agent extending downward through the fluid to be heated and provided with thin heat transmitting walls, substantially as described. 104th. A boiler having small uniformly distributed and closely spaced passages for a heating agent extending downward through the fluid to be heated and provided with thin heat transmitting walls, substantially a described. 105th. A series of boilers working at successively lower
temperatures and having small passages for the heating agent provided with thin heat transmitting walls, substantially as describer. 106th. A series of boilers working at successively lower temperatures and having uniformly distributed and closely spaced passages for the heating agent extending downward through the fluid to be heated, and provided with thin heat transmitting walls, substantially as described.
No. 51,156 . Step-Series Engine Process and Apparatus. $\mathbb{F}_{\text {, }}$ (Machine"d vareur multiple.)

Agnes Bates Wellington, New York, State of New York, U.S.A., Exantrix of Mellen Wellington, State of New York, aforesaid, 28th January, 1896; 6 years. (Filed 11th November, 18!5.)
Claim.-1st. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating Huid, applying the working substance in an expansion engme, apllying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 2nd. The step-series engine process, which consists in passing a circulating fluid at a regulated temperature from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a seeond expansion engine, and so on, if desired, for other steps, substantially as discrilhed. 3rd. The step series engine process. which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, regulating the maximum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 4th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, regulating the minimum temperature of the circulating fluid, heating the working substance by surrender of heat thereto from the circulating Huid, applying the working substance in an expansion engine, ap ${ }^{\text {n }}$ ying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. Sth. 'The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally discociated from the supply or source of heat and containing a working substance, regulating the maximum and minimum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhanst from said engine to heating a second working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 6th. The step-series engine process, which consists in passing a circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating flud, aplying the working substane in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance
in a second expansion engine, and so on, if desired, for other steps, substantially as described. 7th. The step-series engine process, which consists in passing a circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance regulating the maximum temperature of the circulating Hlid, heating the working substance by surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. Sth. The step-series engine process, which consists in passing a circulating fluid from a supply or source of beat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance. applying said second working substance in a second expansion engine, regulating the quantity of each working substance to maintain the working volume substantially constant, and so on, if desired, for other steps, substantially as described. !th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, regulating the maximum pressure of the working substances by varying the surface exposure between the working substance and the heating substance, and so on, if desired, for other steps, substantially as described. 10th. The step-series engine process, which consists in passing a circulating fluid from a supply or sounce of heat tri a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, aplying the exthaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, regulating the quantity of the working substances to maintain the working volume substantially constant, regulating the maximum pressure of each working substance by varying the surface exposure between said working substance and the heating substance, and so on, if desired, for other steps, substantially as described. 11th. The step series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat, and containing a working substance, regulating the maximum and minimum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, regulating the quantity of working substance to maintain the working volume substantially constant, and so on, if desired, for other steps, substantially as deccribed. 12th. The step. series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, regulating the maximum tempera ture and speed of the circulating fluid, beating the working sulstance by the surrender of heat thereto from the circulating Hluid, applying the working substance in an expansion engine, applying the exhanst from said engine to heating a second working substance, applying said second working substance in a second expansion engine, regulating the quantity of the working substances to maintain the working volume substantially constant, and so on, if lesired, for other stops, sutbstantially as described. 13th. Thestepseries engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, regulating the maximum and minimum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, regulating the quantity of the working substances to maintain the working volume substantially constant, regulating the maxinum pressure of the working substances by varying the surface exposure between the working sabstance and the heating substance, and soon, if desired, for other steps, substantially as described. 14th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, regulating the maximum temperature and speed of the circulating fluid, heating the working substance by the surrender of heat thereto from the circulating thid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, regulating the quantity of the working substances
to maintain the working volume substantially constant, regulating the maximum pressure of the working substances by varying the surface exposure between the working substance and the heating substance, and so on, if desired, for other steps, substantially as described. 15th. The step-serie's engine process, which consists in passing a circulating fluid from a supply or somrce of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, applying the circulating
fluid to heating the hotter and colder parts of the working substance sucessively by passing it downward through the pressure generator, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working sulstance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 16th. The step-series engine process, which consists in passing a circulating fluid at a regulated temperature from a supply or source of heat to a pressure generator themally dissociated from the supply or source of heat and containing a working substance, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward
through the pressure generator, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 17 th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thernally dissociated from the supply or source of heat and containing a working substance, regulating the minimum temperature of the circulating fluid, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 18th. The step-series engine process, which consists in passing a circulating fluid at a regulated speed
from a supply or sonrce of heat to a pressure generator thermally from a supply or source of heat to a pressure generator thermally
dissociated from the supply or source of heat and containing a work ing substance, applying the circulating fluid to heating the hotter and colder parts of the working substance suceessively hy passing it downward through the pressure generator, applying the working substance in an expransion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, and so on, if
desired, for other steps, substantially as described. 19th. The stepdesired, for other steps, substantially as described. 19th. The step-
series engine process, which consists in passing a circulating flud at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, rezulating the maximum temperature of the circulating fluid, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 20th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat to a pressure genetator thermally dissociated from the sup. ply or source oi heat and containing a working substance, beating the working substance by the surrender of heat theneto from the circulating fluid, applying the working substance in an expansion engine, aplylying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine and returning the corled working substance to its pressure generator to be reheated, and so on, if desired for other steps, substantially as described. 21st. The step-series engine process which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or surce of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhalust from said engine to heating a second working sulstance, applying said second working substance in a second expansion engine, requlating the quantity of the working substances to maintain the working volume substantially constant, and returning the cooled working substances to their pressure generators to be reheated, and so on, if desired, for other steps, substantially as described. 22nd. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working sulstance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, regulating the maximum pressure of the working substances by varying the surface exposure between the working substance and the heating surface, and returning the cooled working substances to their pressure generators to be reheated, and so on, if desired, for other steps, substantially as described. 23rd. The step-
series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance, applying said second working substance in a second expansion engine, regulating the quantity of the working substance to maintain the working volume substantially constant, regulating the maximum pressure of the working substances by varying the surface exposure between the working substance and the heating substance, and returning the cooled working substances to their pressure generators to be reheated, and so on, if desired, for other steps, suhstantially as described. 24th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pwessure generator thermally dissociated from the smply or source of heat, and containing a working substance, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, applying the working substance in an expansion engine, applying the exhanst from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance, applying said second working substance in a second expansion engine, and so on if desired, for other stops, substantially as described. 25th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat, and containing a working substance, applying the circulating fluid to beating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance and preventing downward circulation of the working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 26 th. The stepsuries engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat, and containing a working substance, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance in uniformly distributed and closely spaced passages, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 27.th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance in uniformly distributed and closely spaced passages having thin heat transmitting walls, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 28th. The step-series engine process, which consists in passing a circulating flud from a supply or source of heat to a pressure generator thermally dissciciated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 29th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, hrating the working substance by the surrender of heat thereto from the circu lating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and col der parts of a second working substance successively by passing it downward through said working substance and preventing down ward circulation of the working substance, applying said second working substance in a second expansion engine, and so on, it desired, for other steps, substantially as described. 30th. The step series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said en
gine to heating the hotter and colder parts of a second working sub
stance successively by passing it downward through said working substance in uniformly distributed and closely spaced passages, applying said second working substance, in a second expansion engine, and so on, if desired, for other steps, substantially as described. 31st. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively ly passing it downward through said working substance in uniformly distributed and closely spaced passages having thin heat transmitting walls, applying said second working sabstance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 32nd. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to x^{4} pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhanst from said engine to heating a second working substance by passing it through said working substance by passing it through said working substance in passages having thin heat transmitting walls, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 33rd. The step-series engine process, which consists in passing a circulat ing fluid at a regulated temperature from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance in uniformly distributed and closely spaced passages having thin heat transmit ting walls, applying said second working substance in a second expansion engine, and so on, if desired, for other stem, substantially as described. 34th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, regulating the minimum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance in uniformly distributed and closely spaced passages having thin heat transmitting walls, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 3ith. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working sulstance, regulating the maximum and minimum temperature of the circulating fluid, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance in unformly dis tributed and closely spaced passages having thin heat transmitting walls, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 36th. The step-series engine process, which consists in passing a circulating fluid at a regulated speed from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, heating the working substance by the surrender of heat thereto from the circulating fluid, applying the working substance in an expansion engine, applying the exhaust from said engine to heatmg the hotter and colder parts of a second working substance successively by passing it downward through said working substance in unifornily distributed and closely. spaced passages having thin heat transmitting walls, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as des cribed. 37 th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of heat to a pressure generator thermally dissociated from the supply or source of heat and containing a working substance, regulating the maximum temperature and speed of the circulating fluid, heating the working substance by the surrender of heat thereto from the circulating fuid, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance in uniformly distributed and closely spaced passages having thin heat transmitting walls, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 38th. The step-series engine process, which consists in passing a circulating fluid from a supply or source of
heat to a pressure
generator thermally
dissuciated
the supply or source of heat and containing a working substance, regulating the maximum temperature and sleed of the circulating fluid, applying the circulating fluid to heating the hotter and colder parts of the working substance successively by passing it downward through the pressure generator, applying the working substance in an expansion engine, applying the exhaust from said engine to heating the hotter and colder parts of a second working substance successively by passing it downward through said working substance in uniformly distributed and closely spaced passages having thin heat transmitting walls, applying said second working substance in a second expansion engine, and so on, if desired, for other steps, substantially as described. 39th. The step-series engine process, which consists in generating or increasing vapour pressure in a working substance, applying said working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance by passing it downward through the working substance, and so on, if desired, for other steps, substantially as described. 40th. The step-series engine process, which consists in generating or increasing vapour pressure in a working substance, applying said working sulstance in an expansion engine, applying the exhaust from said engine to heating a second working substance by passing it downward through the working substance and returning the cooled exhaust to its pressure generator to be re-heated, and so on, if desired, for other steps, substantially as described. 41st. The step-series engine process, which consists in generating or increasing vapor pressure in a working substance, aplying said working substance in an expansion engine, applying the exhaust from said engine to heating a second working substanct by passing it downward through the working substance and prevent ing downward circulation of the working substance, and so on, if desired, for other stepe, substantially as described. 42nd. The stepseries engine process, which consists in generating or increasing yapour pressure in a working substance, applying said working substance in an expansion engine, applying the ex haust from said engine to heating a second working sub. stance by passing it downward through the working substance in uniformly distributed and closely spaced passages, and so on. if desired, for other steps, substantially as descriked. 43rd. The stepseries engine process, which consists in generating or increasing vapour pressure in a working snbstance, applying said working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance by passing it downward through the werking substance in uniformly distributed and closely spaced passages extending horizontally through successive layers of the warking substance, and so on, if desired, for other stens, sl' stantially as described 44th. The step-series engine process, which consists in generating or increasing vapour pressure in a working substance, applying said working substance in an expansion enfone, applying the exhaust from said engine to heating a second working suhstance by passing it downward through the working substance in uniformly distributed and closely spaced passages extending horizontally through successive layers of the steam space and working substance, and so on, if desired, for other steps, substantially as described. 45th. The step-series engine process, which consists in generating or increas ing vapour pressure in a working substance, applying said working substance in an expansion engine, applying the chaust from said engine to heating a second working substance ly passing it through the working substance in passages having thin heat transmitting walls, and so on, if desired, for other steps, substantially as described. 46th. The step-series engine process, which consists in generating or increasing vapour pressure in a working substance, applying said working substance in an expansion engine, applying the exhaust from said engine to beating a second working substance by passing it through the working substance in small closely spaced passages having thin heat transmitted walls, and so on, if desired, for other steps, substantially as described. 47th. The step-series engine process, which consists in generating or increasing vapour pressure in a working substance, applying said working substance in an expansion engine, applying the exhanst from said engine to heating a second working substance by passing it downward through the working substance in small closely spaced passages having thin heat transmitting walls, and so on, if desired, for other steps, sub stantially as described. 48th. The step-series engine process, which consists in generating or increasigg vapour pressure in a working substance, applying said working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance ly passing it downward through the working substance in passages having thin heat transmitting walls and preventing downward circulation of the working substance, and so on, if desired, for other steps, substantially as described. 49th. The step-series engine process, which consists in generating or increasing vapor pressure in a working substance, applying said working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance by passing it downward through the working substance in uniformly distributed and closely spaced passages having thin heat transuitting walls, and so on if desired, for other steps, substantially as described 50th. The step-series engine process, which consists in generating or increasing vapour pessure in a working substance, applying said working substance in an expansion engine, applying the exhaust from said engine to heating a second working substance by passing it downward through the working substance in unifornly distri-
buted and closely spraced passages extending horizontally through successive layers of the working substance and having thin heattransmitting walls, and so on, if desired, for other steps, substanti ally as described. 51st. The step-series engine process, which con sists in generating or increasing vapour pressure in a working substance, applying said working sulustace in an expansion engine, applying the exhaust from said engine to heating a second working substance by passing it downward through the working substance in uniformily distributed and closely spaced passages extending horizontally through successive layers of the stean space and work ing sulbstance, and having thin heat transmitting walls, and so on, if dessired, for other steps, suthstantially as described. 52nd. The step series engine pressure in a working substance, applying said working substance in an expansion engine, applying the exhanst from said engine to heating a second working sulbstance by passing it downward through the working sulstance in small uniformly distributed and closely slaced passages having thin heat transmitting walls, and so on, if desired, for other stejs, substantially as described. 53rd. In a stepseries engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, comnections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working snbstance. one or more second ary pressure generators and expansion engines and connections for the exhanst from the expansion engines to the next pressure gene rator, substantially as described. 5tth. In a step-series engine, the combination with a heater, of a pressure generator thermally dis sociated from the heater for applying a circulating fluid to heating a working sulstance, connections from the heater to the pressure generator for the circulating fluid, means for regulating the temperature of the circulating fluid, an expansion engine operated by said working substance, oue or more secondary pressure generators and expansion engines, and connections for the exhaust fron the expansion engines to the next pressure generators, sulsstantially as described. 55 th. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, comnections from: the heater to the pressire generator for he circulating fuid, means for regulating the minimum tempera ture of the circulating fluid, an expansion engine operated by said Working substance, one or more secondary pressure generators and xpansion engines and comnections for the exhaust from the ex pansion engines to the next pressure generator, sulsstantially as described. 56th. In a step-series engine, the combination with heater, of a pressure generator thermally dissociated from th heater for aplying a circulating fluid to heating a working substance comnections from the heater to the pressure generator for the cir culating fluid, means for regulating the maximum and minimum temperature of the circulating fluid, an expansion engine operated by said working sulstance, one or more secondary pressure genera tors and expansion engines and connections for the exhanst frum the expansion engines to the next pressure generator, substantially as described. 57 th. In a step-series engine, the combination with a heater, of a pressire generatur thermally dissociated from the heater for applying a circulating fluid to heating a working substance, con nections from the heater to the pressure generator and return to heater for the circulating fluid, an expansion engine oplerated by said working substance, one or more secondary pressure generator and expansion engines and connections for the exhanst from the xpansion engines to the next pressure generator, substantially as described. osth. In a step-series engine, the combination with a heater, of a pressure generatur thermally dissociated from the heater for alplying a circulating fluid to heating a working substance, con nections from the heater to the pressure generator and return to heater for the circulating flaid, a circulating pump, an expansion engine operated by said working substance, one or more secondary pressure generators and expansion engines and connections for the exhaust from the expansion engines to the next pressure generator, sulstantially as described. 59th. In a step-series engine, the combination with a heater, of a pressure generator thernally dissociated from the heater for aphlying a circulating fluid to heating a working substance, connections from the heater to the pressure generator and return to heater for the circulating fluid, means for regulating the temperature of the circulating fluid, an expansion engine operated by said working sulustance, one or more secondary pressure generators and expansion engines to the next pressure generator, substantially as descriled. 60th. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working sulstance, connections from the heator to the pressure generator and return to heater for the circulating fluid, means for regulating the minimum temperature of the circulating fluid, an expansion engine operated by siid working substance, one or more secondary pressure generators and expansion engines and connections for the exhaust from the expansion engines to the next pressure generator, substantially as described. 61st. In a step-series engine, the comblination with a heater, of a pressure generator ther mally dissociated from the heater for applying a circulating fluid to heating a working subbstance, cennections from the heater to the pressure generator and return to heater for the circulating fluid, means for regulating the maximum and minmum tenperature of the circulating fluid, an expansion engine operated by said working
substance, one or more secondary pressure generators and ex pansion engines and connections for the exhaust from the expansion engines to the next pressure generator, substantially as describedi. 62nd In a step-series engine, the combination with a heater, of a pressure generator thernally dissociated from the heater for applying a cir culating fluid to heating a working sulsitance, comnections from the heater to the pressure generator and return to heater for the circulating fluid, means for regulating the circulating speed of the circu lating fluid, an expransion engine operated ly said working substance, one or more secondary pressure generators and expansion engines and connections for the txhaust from the expansion engines to the next pressure generator, substantially as described. 63rd. In a stepseries engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, connections from the heater to the pressure generator for the circulating fluid, secondary connections for the circulating fluid cutting out the pressure generator, means for controlling said secondary connections, an expansion engine operated by saic working substance, one or more secondary pressure generaturs and expansion engines and connections for the exhaust from the expansion engines to the next pressure generator, substantially as described. 64th. In a step-series engine, the combination with a heater, of a pressure generatur thermally dissociated from the heater for applying a circulating fluid to heating a working substance, comnections from the heater to the pressure generator for the zirculating fluid, an expansion engine operated by said working substance, one or more secomiary pressure generators and expansion engines, comuections for the exhaust from the expansion יngines, to the next pressure generator, and neeans for regulating the quantity of the working substances in the pressure generators to main tain a substantially constant volume, substantially as described 65th. In a step-series engine, the conlbination with a heater, of a pressure generator thermally dissociated from the heater for apply ing a circulating flidid to heating a working substance, connections from the hatater to the pressure generator for the circulating fluid an expansion engine operated ly said working substance, one or more secondary pressure generators and expansion engines, commec tions for the exhaust from the expansion engines to the next pressure the surface expusure hetween the working substance and the heating substance, substantially as described. 66th. In a step series generator, means for regulating the pressure generators by varying engine, the combination with a heater, of a pressure generator ther mally dissociated from the heater for applying a circulating fluid to heating a working substance, connections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators and expansion engines, connections from the expansion engines to the next pressure generator, means for regulating the quantity of working substance in the pressure generators to main tain a substantially constant volume, and means for regulating the pressure in the pressure generators by varying the surface exposure hetween the working substance and the heating substance, substantially as described. 67th. In a step-series, the combination with a heater, of a pressure generator therwally dissociated from the heater for applying a circulating fluid to heating a working substance. con nections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators and expansion engines, connections for the exhaust from the expansion engines to the next pressure generator, and means for returning the cuoled exhaust to the pressure generators to be re-heated, substantially as described. $68 t h$. In a step series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for apply ing a circulating fluid to heating a working substance, connections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators and expansion engines, comneetions for the exhaust from the expansion engines to the next pressure generator, means for returning the cooled exhaust to the pressure generaturs to be reheated, and means for regulating the volume of of the working substance in the pressure generators to maintain a substantially constant volume, sulbstantially as described. Gyth. In a step-series engine, the combination with a heater, of a pressure generator thernally dissociated from the heater for applying a circulating fluid to heating a working sulstance, connections from the heater the oressure generator for the circulating fluid, an expansion Angine operated by said working sulstance, one or more secondary pressure generators and expansion engines, connections for the exhaust from the expansion engines to the next pressure generator, means for returning the cooled exhanst to the pressure generators to be reheated, and means for regulating the pressure in the pressure generators by varying the surface exposure between the working sulstance and heating substance, substantially as described. 70th. in a stpp-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, cunnections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working sulstance, one or nore secondary pressure generators and expansion rngines, commections for the exhanst from the expansion engines to the next pressure generator, means for returning the coroled exhanst to the pressure generatiors to be reheated, means for regulating the volume of the working sulstance in the pressure generators to maintain a substantially constant
volume, and means for regulating the pressure in the pressure generators by varying the surface exposure between the working substance and the beating substance, substantially as described. 71st. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, connections from the heater to the pressure generator for the circulating fluid, an expansion engine operated ly said working substance, one or more secondary pressure generators and expansion engines, connections for the exhaust from the expansion engines to the next pressure generator, means for returning the cooled exhanst to the pressure generators to be reheated, and liquid blow-off valves for the pressure generators through which working subsitance is blown back to the pressure generator in which it was cooled on an excess of pressure in the pressure generator in which it is heated, substantially as described. $72 n$. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, connections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said workng substance, one or more st condary pressure generators and expansion engines, connections for the exhanst from the expansion engines, to the next pressure generator, means for returning the cooled exhaust to the pressure generators to be reheated, means for regulating the volume of the working substance in the pressure generators to maintain a substantially constant volume, and liquid blow-off valves for the pressure generators through which working
substance is blown back to the pressure generator in which it was cooled on an excess of pressure in the pressure generator in which it is heated, substantially as described. 73rd. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater and having uniformly distributed and closely spaced passages extending downward through the working substance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more sec ondary pressure generators and expansion engines, and connections for the exhaust from the expansion engines to the next pressure generator, substantially as described. 74th. In a step-series engine, the combination with a beater, of a pressure generator thermally dissociated from the heater and having uniformly distributed and closely spaced passages extending horizontally and downward through successive layers of the working substance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators and expansion engines, and connections for the exhaust from the expansion engires to the next pressure generators, substantially as described. 75 th. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater and having uniformly distributed and closely spaced passages extending horizontally and downward through successive layers of the steam space and working substance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or hoore secondary pressure generators and expansion engines, and connections for the exhaust from the expansion engines to the next pressure generator, substantially as described. 76 th . In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater and having uniformly distributed and closely spaced passages extending downward through the working substance, connections between the heater and said passages at the top, of the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators having uniformly distritributed and closely spaced passages extending downward through the working substance, expansion engines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passages at the top of the next generator, substantially as described. 77 th. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater and having uniformly distributed and closely spaced passages extending downward through the working snbstance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or nore secondary pressure generators having uniformly distributed and closely spaced passages extending horizontally and downward through successive layers of the working substance, expansion engines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passages at the top of the next generator, substantially as described. 78 th. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater and having uniformly distributed and closely spaced passages extending downward through the working substance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators having uniformly distributed and closely spaced passages extending horizontally and downward through successive layers of the steam space and working substance, expansion engines for said secondary pressure generators, and connections for the exhaust from the ex, pressure generators, and connections for the exhaust from the ex,
pansion engines to said passages at the top of the next generator
substantially as described. 79th. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater and baving uniformly distributed and closely spaced passages extending downward through the working substance, connections between the heater and said passages at the top of the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators having uniforinly distributed and closely spaced passages with thin heat transmitting walls and extending horizontally and downward through successive layers of the working substance, expansion engines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passages at the top of the next generator, substantially as described. 80th. In a step-series engine, the combination with a heater, of a pressure generator thernally dissociated from the heater and having uniformly distributed and elosely spaced passages extending downward through the working substance, comnections hetween the heater and said passages at the topof the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators having uniformly distributed and closely spaced passages with thin heat transmitting walls and extending through the working substance, expansion engines for said secondary pressure generators, and connections for the exhanst from the expansion engines to said passages of the next generator, substantially as described. 81st. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, connections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators having uniformly distributed and closely spaced passages extending downward through the working substance, expansion engines for said secundary pressure generators, and comections for the exhaust from the expansion engines to said passages at the top of the next generator, substantially as described. 82 nd. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, connections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working snbstance, one or more secondary pressure generators baving uniformly distributed and closely spaced passages extending horizontally and downward through successive layers of the working substance, expansion engines for said secondary pressure generators, and connections for the exbaust from the expansion engines to said passages at the top of the next generator, substantially as described. 83rd. In a step-series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, connections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generatcrs having uniformly distributed and closely spaced passages extending horizontally and downward through suceessive layers of the stean space and working substance, expansion engines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passages at the top of the next generator, substantially as described. 8ith. In a step series engine, the combination with a beater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, connections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators having uniformly distributed and closely spaced passages with thin heat transnitting walls and extending horizontally and downward through successive layers of the working substance, expansion en gines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passages at the top of the next generator, substantially as described. 85th. In a stepseries engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid ing a working sulstance, connections from the heater to the pressure gr nerator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators having uniformly distributed and closely spaced passages with thin heat transmitting walls and extending through the working sub stance, expansion engines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passages of the next generator, substantially as described. 86th. In a step-series engine, the combination with a primary pressure generator and an expansion engine, of one or more secondary pressure generators having uniformly distributed and closely spaced passages extending downward throngh the working substance, expansion engines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passayes at the top of the next generator, substantially as described. 8ith. In a stepseries engine, the combination with a primary pressure generator and an expansion engine, of one or more secondary pressure generators having uniformly distributed and closely spaced passages extending horizontally and downward through successive layers of the working substance, expansion engints for said secondary pressure generators, and comnections for said secondary pressure generators, and comnections for the exhaust from the expansion engines to said passages at the top of the next generator, substantially as described.

88th. In a step-series engine, the combination with a primary pressure generator and an expansion engine, of one or more second ary pressure generators having uniformly distributed and closely spaced passages extending horizontally and downward through successive layers of the steam space and working substance, expansion engines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passages at the top of the next generator, substantially as described. 89th. In a step-series engine, the combination with a primary pressure generator and an expansion engine, of one or more secondary pressure generators having uniformly distributed and closely spaced passages with thin heat transinitting walls and extending downward through the working substance, expansion engines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passages at the top to the next generator, sulstantially as described. Y0th. In a step-series engine, the com bination with a primary pressure generator and an expansion engine, of one or more secondary pressure generators having passages with thin heat transmitting walls extending through the working substance, expansion engines for said secondary pressure generators, and connections for the exhaust from the expansion engines to said passages of the next generator, substantially as described 91st. A boiler having its interior space divided by a series of par allel plates extending transversely to the boiler casing and placer side by side with spaces between them, alternate spaces connecting respectively with supply spaces for heating fluid and fluid to be heated, substantially as described. 92nd. A boiler having its interior space divided by a series of indented or corrugated parallel plates extending transversely to the boiler casing and placed side by side with spaces between them, alternate spaces connecting respectively with supply spaces for heating fluid and fluid to be heated, sutstan tially as described. 93rd. A boiler having its interior space divided by a series of vertical parallel plates extending transversely to the woiler casing and placed side by side with spaces between them, and having an inlet at the toi and outlet at the bottom for the heating fluid, and an inlet at the bottom and outlet at the top for the fluid to he beated, said pair of inlets and outlets connecting respectively with alternate spaces between the plates, substantially as described. 94th. A boiler consisting of a plurality of sections placed side by side, each section consisting of parallel plates with passages between them formed by indentations or corrugaticns in the plates, substan tially as described. 95th. A boiler consisting of a plurality of sec tions placed side by side, each section consisting of parallel plates with serpentine passages between them formed by indentations or corrugations in the plates, substantially as described. 96th. A woiler consisting of a plurality of sections placed side by side, each section consisting of parallel plates having passages between them alternately contracted and expanded in cross section and formed by indentations or corrugations in the plates, substantially as described. 7 th. A boiler consisting of a plurality of sections placed side by side, each section consisting of parallel plates having passages bet ween them formed by intersecting spherical or spheriodal indentations in the plates, substantially as described. 98th. A boiler con sisting f a plurality of sections placed side by side, tach section consisting of parallel plates having zig-zag passages between them formed by intersecting stapgered spherical or spheroidal indentations in the plates, substantially as described. 99th. A boiler con sisting of a plurality of vertical sections placed side by side with passages between them formed by indentations or corrugations in the plates and extending horizontally and vertically, and having an nlet at the top and outlet at the bottom for the heating fluid, and an inlet at the bottom and outlet at the top for the fluid to be heated, said pairs of inlets and outlets connecting, one with the passages within the sections and the other with the space between the sections, substantially as described. looth. A boiler section consisting of parallel plates with passages between them formed by indentations or corrugations in the plates, substantially as described. 101st. A bialer section consisting of parallel plates having serpentine passages between them formed by indentations or corrugations in the plates, substantially as described. 102 nd . A boiler section consisting of parallel plates brazed together at the edges only and having passages between them formed by indentations or corrugations in the plates, fubstantially as described. 103rd. A boiler section consisting of parallel plates having passages between them of irregular cross section alternately contracted and expanded and formed by indentations or corrugations in the plates, substantially as described. 104th. A boiler section consisting of parallel plates having passages between them formed by intersecting spherical or spheroidal indentations in the plates, substantially as described. 105th. A boilersection consisting of parallel plates having passages between them, each passage being formed by intersecting staggered spherical or spheroidal indentations in the plates, substantially as described. 106th. In a step series engine, the combination with a heater, of a pressure generator thermally dissociated from the heater for applying a circulating fluid to heating a working substance, con nections from the heater to the pressure generator for the circulating fluid, an expansion engine operated by said working substance, one or more secondary pressure generators and expansion engines, con nections for the exhaust from the expansion engines to the next pressure generator, and a pipe from the heater passing to the successive pressure generators and carrying the waste gases of combustion for heating the working substances, substantially as described.

No. 51, 157 . Combined Traction Engine, Thresher Feeder and Gung Plow. (Locomobile a traction, machine a battre alimentateur et charrue a socs multiples.)

William Stephenson, Morris, Manitoba, Canada, 28th January 1896 ; 6 years. (Filed 11th January, 1896.)
Claim-1st. The combination substantially as specified, of a traction engine and a threshing machine, the latter carried on a plat form attached to the engine and devices for transmitting power from the engine to the threshing portion, substantially as described. 2nd. The combination of a threshing machine, self-feeder and a traction engine, the latter supporting and carrying the former, and devices for transmitting power from one to the other, substantially as specified. 3rd. The combination of a traction engine, a thresh ing machine, the latter carried by the former, with devices for trans mitting power from one to the other, and a gang-plough all, substantially as and for the purpose specified. 4th. The combination of a traction engine, a threshing device carried by and operated with engine, a self•feeding attachment, and a gang of ploughs attached thereto, all operated by the engine through pulley shafts and belts, substantially as described and for the purpose described. 5th. The combination with a traction engine, of an upright post attached to the front of the boiler, sills attached to the jost to support a plat form, upright posts attached to the platform, and horizontal and diagonal braces attached thereto from the main post in front of the boiler, all substantially as and for the purpose set forth. 6th. In combination with a traction engine, a platform attached to the en gine for supporting and holding a threshing machine in operation a platform for an operator to receive and bag the grain, a platform to receive the straw, and an opening in the latter for the exit of straw after being threshed, not required as fuel for the boiler, all substantially as and for the purpose specified. 7th. The combination with a traction engine, of upright posts secured to the axle of the boiler by curved iron brackets, each having an eye on the lower end to receive the and of the axle, and the upper part bolted to the uprights, cross beams attached to the upper portion of the uprights and to the vertical portion of the boiler, sills secured to the lower end of said posts, carrying platforms for threshing, receiving and bagging the grain, all substantially as specified. 8th. The combination with a traction engine, of platforms $\mathrm{P}, \mathrm{O}, \mathrm{S}, \mathrm{T}$, the vertical posts ($, \mathrm{W}, \mathrm{W}, d, q, g$, and sills b, R, and then intermediates, brackets c, c, shaft B, and opening a in platform T, all substantially as and for the purpose specified. 9th. In a feeder for threshing machines, the combination of two carriers, one above the other, provided with suitable pulleys and belts for their operation in carrying sheaves to the cylinder. 10th. In a feeder for threshing machines, two carriers one above the other, the lower one having spikes attached to the slats or cross-bars, and the upper carrier having knives secured to the movable portion of the carrier, both car riers having pulleys and belts and devices for operating them simultaneously from the cylinder shaft of a threshing machine, at different rates of speed for the purposes set forth. 11th. In a feeder for threshing machines, the lower carrier provided with a sheet metal shield, having longitudinal slots through which spikes, attached to the slots, pass and assist in carry ing up the sheaves to the cylinder. 12 th . In combination with the upper and lower calriers, of the friction-wheel T^{1}, on the shaft 0 of the upper carrier and made to engage with the grooves k^{1}, of the grooved friction-wheel U^{1}, to transmit motion by a belt Z^{1}, to the pulley \mathbf{F} and lower carrier, substantially as specified. 13th. The friction-wheel made in two separate halves, feather-keyed on the shaft V^{1}, and each half pressed to the other by a spring on each side to form an adjustable groove k^{1}, by the Haring margins of each half of the wheel, to receive and frictionally grip the side edges of the friction-wheel T^{1}, for transmitting motion from one to the other for the purpose specified. 14th. The combination with the upper carrier, of a shield W^{1}, the same provided with longitudinal slots for the knives l^{1} to operate in, similar to the spikes operating in the slotted shield over the lower carrier. 15th. The combination of lower carrier having spikes e^{1}, the upper carrier having knives 1^{11}, the taid carriers operating on their respective shafts, and provided with belts, pulleys and friction-wheels to drive the carriers, from the source of power, substantially as and for the purpose specified 16 th. The combination of the frame 4 , diagonal beams 8,8 , and
devices attached thereto for allowing the ploughs 9 to rise and fall independently to adapt themselves automatically to the unevenness of the ground, substantially as specified. 17 th. The combination of a traction engine, platforms secured to the same, a threshing machine supported by and carried on the engine, and a frame carrying adjustable gang ploughs, and a roller, all substantially as specified.

No. 51,158 . Water Heater. (Calorifère)

Alfred H. Humphrey, Fred J. Humphrey and Herbert S. Humphrey, all of Kalamazoo, Michigan, U.S.A., 28th January, $1896 ; 6$ years. (Filed 18th July, 1895.)
Clairn.-1st. In a water heater, the combination with the base A, the burner chamber A^{1}. and the upper casing B, of a suitable burner \mathbf{E}, in the burner chamber, the central water pipe 1 , the water disc D, the descending delivery pipes a, a, from the water disc, the concentric tubes $\mathrm{C}, \mathrm{C}^{1}$, and C^{11}, with trough shaped corrugations, the delivery cock K , for drawing off the water and the valve $e e^{11}$, in separate chambers united by a single stem and beld to place by spring i^{1}, all formed and arranged substantially as described for the purpose specitied. End. In a water heater, the combination with a suitable heating apparatus below, of the casing 13, the tubes $\mathbf{C}, \mathrm{C}^{1}$, and C^{11}, with spiral trough-shaped corrugations sloping down towards the wall of the tubes to retain the water and carry it around said tubes, said tubes forming annular concentric chambers, the delivery pipe for the water at the top of the tubes in said chamber, and open passages between said tubes for the passage of heat, all formed arranged and combined substantially as and for the purjose specified. Brd. In a water heater, the combination of a tube, with spiral trough-shaped groove adapted to receive the water it the top and convey it in spiral trough-shaped grooves down the tubes, and a suitable heater to heat the walls of the tube opposite the passing water for the purpose specified. 4th. In a water heater, a tube C, of sheet metal with trough-shaped corrugations a supply pipe a, to deliver water on one side of said tube, and a burner \mathcal{F}, to deliver heat on the opposite side all formed arranged and combined as described. 5th. In a wafer heater using gas as a fuel the combination of the valve casing F , with partition \mathbf{F}^{2}, across it forming two valve chambers, the valve stem c, passing through said valve chambers, the elastic rubber tube on the valve stem for holding said valves against their seats, the water pipe g, to admit water to one valve which actuates it and admit. gas to the burner and control it all formed, arranged and combined, for the purpose specified. 6th. In a valve nechanism for a water heater, the combination of the valve casing F, a partition across the same to divide it into two chambers, a valve e^{1} in the uper chamber, a valve e^{11} in the lower chamber both securely attached to said valve stem, a spring i to act upon said valve stem to hold the valvese nomally against their respective seats, the burner \mathbf{E}, supported on a collar N^{1}, around the lower part of said valve casing containing an annular groove s surrounding said valve casing, openings u through said valve casing into said annular space, a vertical groove m^{1}, in the interior of said collar N^{1} and projecting up therefrom, an aperture m, through the valve casing alove the valve e^{11}, over which the groove m^{1}, will pass when the burner is swung around all formed arranged and combined, as and for the purpose hereinbefore specified. Tth. In a water heater, the combination of a suitable valve casing F, with a partition across the same dividing it into two independent valve chambers, a valve stem passing through both of said valve chambers, valves c^{1}, e^{11}, in the said valve chambers
adapted to fit against their respective valve seats, a spring on said value stem to force the valves normally against their respective valve seats, a main burner F, with a collar n^{2}, around the walls of the lower of said valve chambers so that it is revoluble thereon, an annular passage s cut in the inner journal part of the collar around said valve casing F. apertures u, u through the walls of said valve chamber opening into the annular passage s, and an aperture K leading to the burner from said annular passage, a small auxilliary burner (i extending along the upper side of said main burner \mathbf{E}, a groove n^{1} cut in the bearing part of said gas valve chamber and connected to said burner G, an auxilliary branch pipe from collar \mathbf{N}^{1}, connecting the passage n^{1}, to gas pipe h, a passage m^{\prime}, in the collar N^{1}, in the bearing portion extending upward from the annular passage s, an aperture m, through the valve chamber above the valve e^{11}, and a groove n^{1}, ont into the passage so that the main burner will only be lighted when water is passing through the valve e^{11}, into the heater above and so that the burner can be lighted when drawn to the outside from the passage of the gas throngh the aperture m, through the passage m^{1} into the burner all formed arranged and combined, substantially as described, for the purpose specified. 8th. In a water heater using gas as a fuel, the combination of the upper reseptacle for the water, a burner E below consisting of concentric hollow rings sawed with vertical slits through the sides of the rings leaving the tops of them whole all formed arranged and combined, as and for the purpose hereinbefore st torth. 9th. In a water heater, the combination of the valve casing F, the partition F^{1}, dividing the same into the upper and lower chamber, the water pipe g, connecting to the upper chamber through a suitable stop cock to the valve, the gas jipe h, connecting to the lower chamber with a suitable stop cock therein, a gas valve c^{11} adapted to fit against a suitable seat in the lower chamber, a cylindrical valve e^{1}, with an aperture t, to one side adapted to reciprocate in a suitable seat in the upper chamber an aperture being through the chamber at that point to register with the aperture t, and a rubber tube i, secured to the partition and to the valve stem connecting the two valves to return the valves to their seats when pressure is removed. $10 t h$. In a water heater, the combination of the valve casing F, the partition $\mathbf{F}^{\mathbf{1}}$, dividing the same into the apper and lower chamber, the water pipe g, connecting to the upper chamber through a suitable stop cock to the value, the gas pipe h, connecting to the lower chamber with a suitable stop cock therein, a gas valve e^{11} adapted to fit against a suitable seat in the lower chamber, a cylindrical valve e^{1}, with an aperture t, to one side adapted to reciprocate in a suitable seat in the upper chamber, an aperture being through the chamber at that point to register with the aperture t, the said valves being adapted to return to their seats when pressure is removed.

No. $51, \mathbf{1 5 9}$. Device to Prevent the Refiling of Bottles.

(Apparail pour empêcher le remplissage des bouteilles.)

Charles Booker, Toronto, Ontario, Canada, 28th January, 1896; 6 years. (Filed 30th Jaly, 1895.)
Claim. - 1st. In a device to prevent the refilling of bottles, a bottle having an interior groove in combination with a stopper combosed of upper half C , and lower half C^{1}, provided with cork ring and joined together, the uper half having an ammar groove for split spring ring I , a central dise, connected by means of wings 10 , forming openings 12 , the rigid guard having wings connected to its lower concaved central piece 7 , having central pin 8 , to fit socket in valve F, having wings, said socket having a slight spiral spring, to
engage with said pin of guard, substantially as described and set forth. 2nd. In a device to prevent the refilling of bottles, a bottle having an interior groove, in combination with a stopper composed of upper half C, and lower half C^{1}, provided with cork ring and joined together, the upper half having a central dise, connected by means of wings 10 , forming openings 12 , the rigid guard having wings connected to its lower concaved central piece 7 , having central pin 8 , to fit socket in valve F, having wings, said socket having a slight spiral spring, to engage with said pin of guard, substantially as described and set forth. 3rd. In a device to prevent the refilling of bottles, the valve F, having three wings and socket, containing spiral spring, the pin 8, of a guard having wings and central opening 14, in combination with a stopper having seat and opening for said valve, and upper openings 12 , and dise 9 , substantially as described and set forth. 4th. In a device to prevent the refilling of bottles, the stopper provided with a split spring ring fitting in a groove in said stopper and a groove in the neck of a bottle, a central dise connected to stopper by means of wings forming openings 12 , in combination with a rigid guard having central opening and wings to connect to lower piece 7 , having shank 8 , to engage with spiral spring in socket of valve F, on seat with central opening at lower end of said stopper having outer ring \mathbf{E}, substantially as described and set forth.

No. 51, 160 . Method of Testing Gas Mains.
 (Méthode de faire l'essai des tuyaux de conduite du gaz.)

Adolphe Bowvier, Lyons, France, 28th January, 1896; 6 years. (Filed 13th August, 1895.)
Cluim.-1st. The method of testing gas mains as described. 2nd. The method of testing gas mains by the application of siphon test boxes to a system of gas mains, for dividing them into sections which can be completely isolated the one from the other by introducing water into the siphon test boxes. 3rd. The method of testing gas mains by means of siphon test boxes and a portable gasometer, for the purpose of testing sections of gas mains for leaks and measuring their importance.

No. 51, 161. Apparatng for Cooling or Condensing Fluids. (Appareil pour refroidir ou condenser les fluides.)

George A. Barnard, New York, U.S.A., 28th January, 18.6; 6 years. (Filed 1.7 th June, 1895.)
Claim.-1st. In an apparatus for cooling or condensing fluids, the combination of an inclosing case or shell, tluid supply and discharge passages leading to and from said case, an interposed piled or woven rod or wire filling, and an exhaust steam connection, substantially as set forth. 2nd. In an apparatus for cooling or condensing fluids, the combination of an inclosing case or shell, fluid supply and discharge passages leading to and from said case, a piled or woven rod or wire filling interposed, in separate bodies, between the supply and discharge passages, an exhaust steam connection leading into the case between the bodies of filling, and a feed water receptacle located within the case adjacent to the exhaust steam connection, substantially as set forth. 3rd. In an apparatus for cooling or condensing fluids, the combination of an inclosing case or shell, fluid supply and discharge passages leading to and from said case, a delivery receptacle below the case, a lifting device for elevating liquid from the delivery receptacle to the supply passage, a piled
or woven wire or rod filling interposed, in separate bodies, between the supply and discharge passages, and an exhaust steam connection leading into the case between the bodies of filling, substantially as set forth. 4th. In an apparatus for cooling or condensing fluid, the combination of an enclosing case or shell, fluid supply and discharge passages leading to and from said case, an interposed piled or woven rod or wire filling, an air blast pipe discharging into and through said filling, and an exhaust steam connection, substantially as set forth. 5th. In an apparatus for cooling or condensing fluids, the combination of an inclosing case or shell having fluid supply and discharge passages leading to and from said case, a filling or body of piled or woven rods or wires interposed between said supply and discharge passages, and means for admitting a fluid body under pressure in contact with fluid passing from the supply duct and percolating through said filling towards the discharge passage, substantially as set forth.
No. 51, 162. Dil Filter. (Filtre a huile.)

Edwa d Hill Downing, Vancouver, British Columbia, Canada, 28th January, 1896 ; 6 years. (Filed 7th November, 1895.)
Claim.-1st. In an oil filter, the combination of a tank A, having a chamber B securely fixed to its bottom, and provided with openings b at its base, and strainers b^{1} around and from its centre at the top, a tube C passing through its centre and securely fastened thereto, and a funnel I carrying a strainer i, engaging the top of the said tube, all substantially as and for the purposes set forth. 2nd. In an oil filter, the combination of a tank A, a chamber B, with a tube C, and a reservoir \mathbf{E}, encircling the tube C , and resting upon a seat D , and being provided with two or more recess openings F, which are provided with strainers e, and sponge-carrying frames f, an air tube e^{1}, and being connected from the outside by a tap G, substantially as and for the purposes set forth. 3rd. In an oil filter, the combination of a tank A, a chamber B, a tube C, carrying a reservoir E, which is provided with sponge-carrying recesses, and an escape air pipe e^{1}, with its mouth arranged adjacent to a series of apertures a, in the upper part of the tank A, a water gauge H securely fixed on the exterior of the tank, with a point h for high water mark, fixed in a horizontal line with the bottom of the recess openings in the oil reservoir, and adjacent to the water gauge, substantially as and for the purposes set forth. 4th. In an oil filter, the combination of a tank, having its bottom arranged some distance from its exterior support, and a tap M connecting to its interior immediately above the said bottom, a second tank placed as shown, upon its top, having its bottom fixed about the centre of its cylindrical part, and said bottom sloping, substantially as and for the purposes set forth. 5th. In an oil filter, the combination of a tank, being provided with suitable means for passing oil through an aqueous bath to a reservoir, a second tank arranged as shown upon the tank A, and divided by a sloping partition at or near its centre, an escape tap L fixed in the said bottom, a tap C fixed upon its exterior and connecting with the upper part of the said tank at a point approximate to the lower side of the sloping partition, and a strainer M depending at its centre, as shown, all substantially as and for the purposes herein set forth.

No. 51,163. Antomatic Sarety Attachment for ©as Burners. (Attache de surêté automatique pour bruleurs a gaz.)

Henry Havelock Cumming, Malden, Massachusetts, U.S. A., 28th January, 1896; 6 years. (Filed 7th November, 1895.)

Claim.-1st. The combination with a gas burner and its cock, of safety device made operative by the opening of the cock, means for

$5-1163$
retarding the operation of said safety device, and a heat-actuated device whereby the operation of the said safety device is prevented when the gas is burning. 2nd. The combination with a gas burner and its cock, of a retarded electric circuit closer made operative by the opening of the cock, and a heat-actuated device whereby the operation of said circuit-closer is nullified when the gas is burning. 3rd. The combination with a gas burner and its cock, of an electric circuit, a retarded circuit-closer made operative by the opening of the cock, and a thermostatic circuit-breaker adapted to be operated by the heat of the gas flame at said burner and to nullify the action of the circuit-closer. 4th. The combination with a gas burner and its cock, of an electric circuit, a movable circuit-closer, a motor for said circuit-closer adapted to be set for action by the opening of the cock, said motor having means for retarding the movement of the circuit-closer, and a heat-actuated nullifying device adapted to be operated by the heat of the flame at the burner. 5th. The combination with a gas fixture, of a movable electric circuit closer, a movable guide or tube pivotally connected to the fixture and adapted to oscillate thereon, said guide directing the movements of said circuit-closer, and connections between said guide and the gas-cock, whereby the guide is caused by the opening of the cock to direct the circuit-cloter to its circuit-closing position. 6th. The combination with a gas-fixture, of a bracket attached to said fixture, a crankshaft journalled in said bracket, a clamp or holder affixed to said shaft, a tube secured to said clamp and having contact-points at one end included in an electric circuit, a gravitating circuit-closer in said tube, and connections between the crank-shaft and the gascock, through which the tube is moved by the movements of the cock, the tube being provided with means for retarding the gravitating motion of the circuit-closer, as set forth.

No. 51, 164. Automatically Dperated Vaeunm Brake.

(Frein à air actionné automatiquement.)

Robert Andrew Kiskadden, Pittsburg, Pennsylvania, U.S.A., 28th January, 1896; 6 years. (Filed 9th May, 1895.)

Claim.-In a vacuum, the combination with a brake cylinder having its opposite ends open to the atmosphere of the annular heads secured to the opposite ends of said cylinder with their openings coinsiding with the bore thereof, each of said heads having a diametrical web provided with a central perforated boss, the pistons arranged in said cylinder and having piston rods which pass in opposite directions through and are guided in the said central perforated lugs of the cylinder heads, a receiver having an air inlet a safety valve controlling said air inlet, a pipe connecting the said reservoir with the central portion of the brake cylinder between the pistons therein a three-way cock in said pipe, said cock having a passage extending diametrially through in and affording communication between the brake cylinder and the resevoir and being further provided with a radical passage extending at right angles to said diametrical passage and affording communication with the atmosphere, means for operating said cock whereby said brake cylinder is alternately placed in communication with said reservoir and with the atmosphere, an air pump connected to said receiver and adapted to exhaustthe air therefrom and aneceentric mounted on the car axle where by said pump is operated while the car is in motion, substantially as set forth.

No. 51,165. Hydrocarbon Burner.

(Foyer à hydro-carbure.)

The Welsbach Incandescent Gas Light Combany, assignee of Arthur Otes Granger, both of Montreal, Quebec, Canada, assignee of Charles E. White, Kansas City, Missouri, U.S. A., 28th January, 1896; 6 years. (Filed 25th Oct., 1895.)
Claim.-1st. A hydro-carbon burner comprising a body portion having a passage through it forming a mixing chamber, an annular cap forming with the body portion a vaporizing channel and having an upwardly extending flange, a perforated screen carried by the cap beneath the top of the flange, the perforations of which are directed towards the flange, an inlet pipe connected with the vaporizing channel and an outlet pipe extending beneath and adapted to discharge into the mixing chamber, substantially as described. 2nd. A hydro-carbon burner comprising a body portion having a groove in its top and having a passage through it forming a mixing chamber, an annular cap having screw threads adapted to engage screw threads on the body portion and fitting over the groove in the body portion, so as to make a vaporizing channel, the cap being provided with an upwardly extending flange, a perforated screen carried by the cap beneath the top of the flange having its perforations directed towards the flange, an inlet pipe connected with the vaporizing channel, an outlet pipe extending beneath and adapted to discharge into the mixing chamber, substantially as described. 3rd. A hydrocarbon burner comprising a body portion, having a groove in its top and having a passage through it forming a mixing chamber, an annular cap having screw threads adapted to engage screw threads on the body portion having an upwardly projecting flange, an inwardly projecting shoulder beneath the top of the flange adapted to cover the groove in the body portion and so form a vaporizing channel, the upper surface of said shoulder being inclined downwardly toward the centre and supporting a perforated screen, an inlet pipe connecting with the vaporizing channel an outlet pipe extending beneath and adapted to discharge into the mixing chamber, substantially as described.

No. 51,168 . Method of and Machine for Cleaning the Wire Gauze Cylinder of Safety Lampe. :(Méthode et machine pour nettoyer les cylindres en gaze de lampe de surête.)

Gottfried Grossmann, Dortmund, Germany, 28th January, 1896; 6 years. (Filed 19th April 1895.)
Claim.-1st. The method of cleaning the wire gauze cylinders of miners safety lamps, by revolving the same between two or more rotating brushes and under a fat brush, while an inner rotary brush is revolved inside the cylinder in the opposite direction to the same or in the same direction at a different speed. 2nd. The use and arrangement of a machine for cleaning wire gauze cylinders of safety lamps, containing a vertical rotary brush over which the cylinder is fixed upon a rotating plate or equivalent, two or more vertical rotary brushes acting on the sides of the cylinder and a flat brush acting on the top of the same, said rotary brushes and cylinder being rotated in opposite directions or at different circumferential speeds. 3 rd. In a machine for cleaning the wire gauze cylinders of safety lamps by revolving brushes the arrangement of two or more hollow shafts with rotary brushes for cleaning the outside of the cylinder upon stationary spindles placed at different distances from the wire cylinder and adjustable relatively thereto.

No. 51,167. Gas etc., Motor Engine. (Moteur.)

Peter Burt and George McGhee, both of Glasgow, Scotland, 28th January, 1896; 6 years. (Filed 23rd January, 1894.)
Claim.-lst. A gas or combustible vapour motor engine comprising two motor cylinders 1 and 2 fitted respectively with pistons 19 , 20 , piston rod 18 working fluid tight through cylinder cover 16, casings 14, 15 each having ports o, p, q controlled by a piston valve on rod J wrought by valve shait m geared two to one with crankshaft 5 , all arranged and operating substantially as hereinbefore described and shown. 2nd. The combination with a gas engine comprising a motor cylinder 2 having a motor piston 20 and connecting rod 4 giving one impulse every two revolutions to a crank-shaft

5 , of a second motor cylinder 1 mounted concentric with cylinder 2 and fitted with a piston 19 on piston rod 18 having packing rings 22 sliding inside a liner 21 in cylinder cover 16, and having a valve case with ports o, p, q controlled by a piston valve, all arranged and operating substantially as hereinbefore set forth and shown. 3rd. In a gas engine comprising two 4 stroke cycle motor cylinders and pistons, the combination with each cylinder and communicating therewith of a valve case having located about midway therein a motor fluid inlet port p and alongside said port p a small ignition port q, and also towards the controlling valve G an exhaust port 0 , said ports being controlled by a balance piston valve G on a rod reciprocated by mechanism geared two to one off crank-shaft, all as and for the purposes described and shown. 4th. In a gas engine, the combination of two 4 stroke cycle motor cylinders communicating each with a valve chamber, having towards one end a motor fluid inlet port P, controlled by a piston valve \mathbf{H}, and towards the other end of said case and igniting port q controlled by a balance piston valve G, and the cylinder port X^{1} located midway, all as and for the purposes set forth and shown.

No. 51,168. Machine for Bending Links.
 (Machine pour plier les mailles.)

Geurge Percy Simpson, Montreal, Quebec, Canada, 28th January, 1896; 6 years. (Filed 30th March, 1895.)
Claim.-1st. The combination of the dies A, A, and the mandrel D, so as to swing the dies round the mandrel on the pivots V, V, substantially as and for the purpose hereinbefore set forth. 2nd. The setting of the grooves \mathbf{E}, \mathbf{E}, in the dies \mathbf{A}, \mathbf{A}, at an angle, substantially as and for the purpose hereinbefore set forth.

No. 51,169. Weighing Machine. (Pont abascule.)

Francis H. Richards, Hartford, Connecticut, U.S.A., 28th January, 1896; 6 years. (Filed 11th November, 1895.)
Claim.-1st. In a weighing-machine, the combination with a bucket having a closer, and with a valve. of means for actuating the valve to open and close the same independently of the operation of the bucket-closer, and mutually-dependent means operative, respectively, with the valve and with the closer for reciprocally limiting the opening movement of the closer by the non-closing of the valve, and the opening of the valve by the non-closing of the closer. 2nd. In a weighing machine, the combination with a scale-beam, a valve mechanism, a bucket carried by the scale-beam, and a closer for the bucket, of means in position and adapted for actuating the valve mechanism on the descent of the scale-beam for reducing the supplystream, a stop-arm on the valve mechanism, and means in connection with the bucket-closer and in position and adapted for engaging said stop-arm during the load-force period to hold the valve mechanism against return movement during said period. 3rd. In a weighing-machine, the combination with a scale-beam, a valve mechanism, a bucket carried by the scale-beam, and a closer for the bucket, of means actuated by the poising-movement of the beam for reducing the supply-stream and locking the valve mechanism against closing, means actuated by the overpoisemovement of the beam for releasing the valve mechanism and cutting off the supply-stream, a stop-arm on the valve mechanism, and means in connection with the bucket closer and in position and adapted for engaging said stop-arm during the load-force period to hold the valve mechanism against return movement during said period. 4th, In a weighing machine, the combination with a valve
mechanism, and with a bucket having a closer, of two coacting stops, one operative with the valve, and the other operative with the closer.

and in position and adapted, each to serve as a stop device for the other, substantially as described. 5th. In a weighing-machine, the combination with a valve mechanism having a stop-arm, and with a bucket having means for closing the same, of a stop adjacent to the valve mechanism and connected with the bucket-closing means and in position and adapted for engaging said stop-arm to hold the bucket closing means closed when the valve mechanism is open, and for engaging said stop-arm to hold the valve mechanism closed when the bucket-closing means is open, substantially as described. 6th. In a weighing-machine, the combination with valve mechanism, and with bucket mechanism having a closer, of a pivotally-supported swinging stop operative with the closer, and having its pivot in fixed relation with one of said mechanisms and movable therewith, whereby said stop has a swinging movement with said mechanism and reltively thereto, and a stop carried by, and operative with, the other of said mechanisms, said stops having coacting portions in position and adapted to serve, each as a stop device for the other stop, substantially as described. 7th. In a weighing-machine, the combination with a valve mechanism, and with a bucket having a closer, of a pivotally supported swinging stop having its pivot in fixed relation with the bucket and movable therewith, connecting means operative from the closer and pivoted to said stop, substantially midway between said first-mentioned pivot and the free end of the stop whereby said stop has a multiplied swinging movement with the bucket and relatively thereto, and stop carried by, and operatlve with, the valve, said stops having their free ends in position and adapted to serve, each as a stop device for the other, substantially as described. 8th. In a weighing-machine, the combination with a bucket having a closer, and with a valve, of means actuating the valve independently of theoperation of the closer, and a valve-stopoperative with the closer and independently of the operation of the valve, and in position and adapted for intercepting the opening movement of the valve on the opening of the closer. 9th. In an automatic weighing-machine, the combination with a scale-beam, valve mechanism, a bucket, means for closing the bucket and the regulator, of means in position and adapted for actuating said valve mechanism upen the descent of the scale-beam, and thereby cutting off the supply-stream, a stop-arm upon the valve mechanism, and means in connection with the bucket closing means and in position and adapted for engaging said stop-arm during the load-force period to hold the valve mechanism against return movement during said period, substantially as described. 10th. In an automatic weighing machine, the combination with a scale beam, valve mechanism, a bucket, means for closing the bucket, and a regulator, of means in position and adapted for actuating said valve mechanism upon the descent of the scale beam and thereby reducing and cutting off the supply-stream, a stop arm upon the valve mechanism, and means in connection with the bucket-closing means and in position, and adapted for engaging said stop-arm during the load-force period to hold the valve mechanism at any point of its closing movement against return movement during said period, substantially as described. 11th. In an automatic weighing machine, the combination with a scale-beam, valvemechanism, a bucket, means for closing the bucket, and a regulator, of means actuated by the poising-movement of the beam for reducing the supply-stream and locking the valve mechanism against closing, means actuated by the overpoise-movement of the beam for releasing the valve mechanism and cutting off the supply stresm, a
stop-arm upon the valve mechanism, and means in connection with the bucket-closing means, and in position and adapted for engaging said stop-arm during the load-force period to hold the valve mechanism against return movement during said period, substantially as described. 12th. In an automatic weighing-machine, the combination with a scale-beam, valve mechanism, a bucket, means for closing the bucket, and a regulator, of means actuated by the poising movement of the beam for reducing the supply stream, a stop adapted to lock said valve mechanism against closing at the end of the reducing movement, means actuated by the overpoise-movement of the beam for releasing the valve mechanism and cutting off the supply stream, a stop arm upon the valve mechanism, and means in connection with the bucket-closing means in position and adapted for engaging said stop arm during the load-force period to hold the valve mechanism at any point of its closing movement against return movement during said period, substantially as described. 13th. In an automatic weighing machine, the combination with a scalebeam, valve mechanism, and a bucket, of means controlled by the descent of the scale-beam for actuating said valve mechanism, and thereby cutting off the supply-stream, a detent for said valve mechanism, a latch adapted to engage said detent upon the descent of the beam, and thereby prevent return movement of the valve mechanism, and means controlled by the opening of the bucket for holding said latch in engagement with the detent upon the return of said bucket, substantially as described. 14th. In an automatic weighing-machine, the combination with a scale beam, valve mechanism, a bucket, means for closing the bucket, and a regulator, of means connected with the bucketclosing means and in position and adapted for closing the valve mechanism and releasing said bucket-closing means ruring the loadforce perior and preventing return movement of said valve mechanism during said period, and means also connected with the bucketclosing means and in position and adapted for locking said bucketclosing means closed, and opening the valve meceanism during the reactive-period, substantially as described. 15 th. In an automatic weighing-machine, the combination with a scale-beam, valve mechanism, a bucket, means for closing the bucket, and a regulator, of means connected with the bucket-closing means and in position and adapted for closing the valve mechanism and releasing said bucket-closing means during the load-force period, and preventing return movement of said valve mechanism during said period, and means also connected with the bucket-closing means and in position and adapted for simultaneously locking said bucket-closing means closed, and releasing the valve mechanism during the reactiveperiod, and subsequently opening said valve mechanism during said period, substantially as described. 16th. In an automatic weighingmachine, the combination with a scale-beam, valve mechanism, a bucket, a regulator, and a stop-arm upon the valve mechanism, of mutually-dependent means co-operating with said stop-arm and in position and adapted, respectively, for closing the valve mechanism and opening the bucket during the load-force period, and mutallydependent means connected with the regulator, and in position and in position and adapted for closing the bucket and opening the valve mechanism during the reactive-period, substantially as described. 17 th . In an automatic weighing-machine, the combination with a scale-beam, valve mechanism, a bucket, a regulator, and a stop-arm upon the valve mechanism, of mutually-dependent means co-operating with said stop-arm and in position and adapted, respectively, for releasing and closing the yalve mechanism, and preventing the opening of the same and opening the bucket during the load-force period, and mutually-dependent means connected with the regulator, and in position and adapted for closing the bucket and opening the valve mechanism during the reactive-period, substantially as described. 18th. In an automatic weighing-machine, the combination with a scale-beanc; valve mechanism, a bucket, a regulator, and a stop-arm upon the ivalve mechanism, of mutually-dependent means co-operating with said stop-arm and in position and adapted, respectively, for closing the, valve mechanism and opening the bucket during the load-force period, and mutually-dependent means connected with the regulator and in position and adapted for successively closing the bucket and opening the valve mechanism during the reactive-period, substantially as described. 19th. In an automatic weighing-machine the combination with a scale-beam, valve mechanism, a bucket, means for clusing the bucket, and a regulator, of means connected with the bucketclosing means and in position and adapted for closing the valve mechanism and releasing the bucket-closing means during the loadforce period, and for preventing return movement of said valve mechanism during said period, and means connected with the regulator for locking said bucket-closing means closed and opening the valve mechanism upon the ascent of said regulator, substantially as described. 20 th . In an automatic weighing-machine, the combination with a scale-beam, valve mechanism, a bucket, means for closing the bucket, and a regulator, of means connected with the bucket-closing means and in position and adapted for closing the valve mechanism and releasing the bucket-closing means during the load-force period, and for preventing return movement of said valve mechanism during said period, and means connecterd with the regulator for successively locking said bucket-closing means closed, and opening the valve mechanism upon the ascent of said regulator, substantially as described. 21st. In an automatic weighing-machine, the combination with a scale-beam, valve mechanism, a bucket, and a regulator, of means connected with the bucket-closing means and
in position and adapted for closing the valve mechanism, and releasing the bucket-closing means during the load-force period, and for preventing return movement of said valve mechanism during said period, means connected with the regulator for locking said bucketclosing means closed, and opening the valve mechanism upon the ascent of said regulator, and means actuated by the closure of the bucket for unlocking the valve mechanism and permitting said return movement thereof, substantially as described. 22nd. In an automatic weighing-machine, the combination with a scale-bearn, valve mechanism, a bucket, means for closing said bucket, and a regulator, of means in position and adapted for actuating said valve mechanism upon the descent of the scale-beam, and thereby cutting. off the supply-stream, a detent for said valve mechanism, a latch adapted to engage said detent upon the descent of the beam, and thereby prevent return movement of the valve mechanism, means connected with the bucket-closing means and in position and adapted for bringing said latch into engagement with the detent upon the release of said bucket-closing means, and for maintaining said latch and detent in engagement upon the return of the bucket, and means also connected with the bucket-closing means and in position and adapted for locking said bucket-closing means closed, and opening the valve mechanism during the reactive-period, substantially as described. 23rd. In an automatic weighing-machine, the combination with a scale-beam, valve mechanism, a bucket, means for closing said bucket, and a regulator, of means in position and adapted for actuating said valve mechanism upon the descent of the scale-beam and thereby cutting-off the supply-stream, a detent for said valve mechanism, a latch adapted to engage said detent upon the descent of the beam and thereby prevent return movement of the valve mechanism, means connected with the bucket-closing means in position and adapted for bringing said latch into engagement with the detent upon the release of said bucket closing means, and for maintaining said latch and detent in engagement
upon the return of the bucket, and means connected with the re gulator for locking said bucket-closing means closed and opening the valve mechanism upon the ascent of said regulator, substantially as described. 24 th. In an automatic weighing-machine, the combination with a scale-beam, valve mechanism, a bucket, means for closing said bucket, and a regulator, of means in position aud adapted for actuating said valve mechanism upon the descent of the scale-beam, and thereby cutting off the supply-steam, a detent for said valve mechanism, a latch adapted to engage said detent upon the decent of the beam and thereby prevent return movement of the valve mechanism, means connected with the bucket closing means and in position and adapted for bringing said latch into engagement with the detent upon the release of said bucket-closing means, and for maintaining said latch and detent in engagement upon the return of the regulator, and means connected with the regulator for successively locking said bucket-closing means closed and opening the valve mechanism upon the ascent of said regulator, substantially as described. 25 th. In an automatic weighing-machine, the combination with a scale-beam, valve mechanism, a bucket, means for closing said bucket, and a regulator, of ineans in position and adapted for actuating said valve mechanism upon the descent of the scale-beam, and thereby cutting off the supply-stream, a detent for said valve mechanism, a latch adapted to engage said detent upon the descent of the beam and thereby prevent return movement of the valve mechanism, means connected with the bucket-closing the eans and in position and adapted for bringing said latch into engagement with the detent upon the release of said bucket-closing means, and for maintaining said latch and detent in engagement upon the return of the bucket, means connected with the regulator for locking said bucket-closing means closed, and opening the valve mechanism upon the oscent of said regulator, and means actuated by the closure of the bucket for unlocking the valve mechanism and permitting said return movement thereof, substantially as described

CERTIFICATES OF THE PAYMENT OF FEES FOR FURTHER TERMS HAVE bEEN attaChed to THE FOLLOWING PATENTS.

4205. EDWARD DUMMER, 2nd term of No. 35,712, from the 7 th day of January, 1896. Paper Feeding Machine, 3rd January, 1896.
4206. HENRY LOWELL LEACH, 2nd term of No. 35,817, from the 17 th day of January, 1896. Track Sanding Apparatus, 4th January, 1896.
4207. JOSIAH ATKINS PARKER, 2nd term of six years of No. 41,454, from the 4th day of January, 1896. Telegraphic Apparatus, 4th January, 1896.
4208. FRED WILLIAM SNOW, 2nd and 3rd terms of No. 36,158 , from the 16 th day of March, 1896. Switch Stand, 7th January, 1896.
4209. FRED W. SNOW, 2nd and 3rd terms of No. 37,301, from the 3rd day of September, 1896. Switch Stand, 7th January, 1896.
4210. J. \& J. TAYLOR (assignees), 3rd term of No. 23,186, from the 14th day of January, 1896. Fire-proof Safe, January 7th, 1896.
4211. PERRY BROWN, 2nd term of No. 35,711, from 7th January, 1896. Car Couplings, 7th January, 1896.
4212. THE RATHBUN COMPANY (assignee), 3rd term of No. 23,596 , from the 13 th day of March, 1896. Process of Manufacturing Terra Cotta Lumber, 7th January, 1896.
4213. CHARLES WALDO ADAMS, 3rd term of No. 23,158, from the 13th day of January, 1896. Slashed Metallic Screening, 7th January, 1896.
4214. CHARLES WALDO ADAMS, 3rd term of No. 23,427, from the 15th day of January, 1896. Process of Making Metallic Screening Material, 8th January, 1896.
4215. CHARLES WALDO ADAMS, 3rd term of No. 23,480, from the 23rd January, 1896. Machine for and Process of Preparing Metallic Screening, 8th January, 1896.
4216. CHARLES FAWCETT, 3rd term of No. 23,204, from 15th January, 1896. Culinary and Agricultural Boilers, 8th January, 1896.
4217. WESLEY HOWELL, 2 nd term of No. 35,791 , from the 16th day of January, 1896. Liquid Fuel Burner, 8th January, 1896.
4218. THOMAS H. ADAMS, 3 rd term of No. 23,239, from the 19th day of January, 1896. Inhaler, 9th January, 1896.
4219. FREDERICK DUNCAN MERCER and JOHN SMITH MERCER, 2nd term of No. 35,738, from the 12th day of January, 1896, Harvester Binder, 11th January, 1896.
4220. WILLIAM ALEXANDER BERNARD, 2nd term of No. 35,834, from 20th January, 1896. Pliers, Pincers, and Similar Tools, 11th January, 1896.
4221. DOBSON and CRAWFORD (assignee), 2nd term of No. 35,816 , from the 17 th day of January, 1896. Bolting Reel, 11th January, 1896.
4222. HUGO KRANZ and HENRY ALETTER, 3rd term of No. 23,136, from 11th January, 1896. Stretcher for Felt Boots, Shoes and Stockings, 11th January, 1896.
4223. ALBERT BAUR, 2nd term of No. 36,015 , from the 19th January, 1896. Process of Making Artificial Musk, 13th January, 1896.
4224. THE BELL TELEPHONE COMPANY (assignee), 2nd term of No. 36,537, from 4th of May, 1896. Electrical Fire Alarm, 13th January, 1896.
4225. THE BELL TELEPHONE COMPANY (assignee), 2nd and 3 rd terms of No. 36,002 , from the 17 th day of February, 18!6. Telephone Exchange Apparatus, 13th January, 1896.
4226. DANIEL CONBOY, 2nd term of No. 35,810 , from the 17 th January, 1896. Knob-eyelet for Carriage-Top Curtains, 13th January, 1896.
4227. JOHN MILNE, and term of No. 38,277, a re-issue of No. 35,887 , from the 28th day of January, 1896. Warehouse Scales, 13th January, 1896.
4228. JOHN B. F. HERRESHOFF, GEORGE H. NICHOLS, and WILLIAM HENRY NICHOLS, 3rd term of No. 23,436, from the 16th day of February, 1896. Sulphuric Acid Tower, 14th January, 1896.
4229. WILLIAM ALEXANDER COWAN, 2nd term of No. 35,866 , from the 22 nd day of January, 1896. Whip Socket and Rein Holder Combined, 14th January, 1896.
4230. C. B. TAGGART, 2nd term of No. 35,776, from the 15th day of January, 1896. Washing Machine, 15th January, 1896.
4231. KILGOUR BROTHERS (assignee), 2nd term of No. 35,888, from the 28th day of January, 1896. Payer Bag, 15th January, 1896.
4232. J. O. WISNER, SON \& CO. (assignee), 3rd term of No. 23,224 , from the 16 th day of January, 1896. Seeding Machine, 15th January, 1896.
4233. THOMAS RILEY, and term of No. 35,827, from the 19th day of January, 1896. Valve, 15th January, 1896.
4234. MATHIAS JENSEN and THE JENSEN CAN FILLING COMPANY (assignee), 2nd term of No. 36,153, from the 16 th day of March, 1896 . Machine for Forming Sheet Metal Can Bodies, 16th January, 1896.
4235. WILLIAM WALLACE HORR, 2nd term of No. 35,911, from the 2nd day of February, 1896. Pump, 17th January, 1896.
4236. HELEN DOIG KYDD and THOMAS W. KYDD, 2nd term of No. 35,839, from 20th January, 1896. Snow Skate, 17th January, 1896.
4237. FRANKLIN S. McKENNEY, 2nd term of No. 35,823, from the 19th day of January, 1896. Lacing Eye, 18th January, 1896.
4238. FRANKLIN S. MCKENNEY, 2nd term of No. 35,824, from the 19th day of January, 1896. Fastening for Lacing Gloves, 18th January, 1896.
4239. FRANKLIN S. MoKENNEY, 2nd term of No. 35,825, from the 19th day of January, 1896. Lacings for Gloves, 18th January, 1896.
4240. HOWARD MATRAVERS ASHLEY, 2nd term of No. 35,822 , from the 19th day of January, 1896. Machinery for Making Hollow Glass Articles, 18th January, 1896.
4241. GEORGE P. RISHEL, 2nd term of No. 35,894, from the 29th day of January, 1896. Wire Fencing, 20th January, 1896.
4242. CHARLES AVERY, 3rd term of No. 23,290, from 30th day of January, 1896. Fence Rail Fastener, 21st January, 1896.
4243. THOMAS TOMLINSON, 2 nd term of No, 35,941 , from the 3rd day of February, 1896. Seal Trap for Catch Basins, 21st January, 1896.
4244. THE GENDRON MANUFACTURING COMPANY (assignee), 2nd term of No. 35,878, from the 23 rd day of January, 1896. Wagon, 22nd January, 1896.
4245. THE GENDRON MANUFACTURING COMPANY
(assignee), 2nd term of No. 35,873, from the 23rd day of January, 1896. Detachable Sleigh Runner, 22nd January, 1896.
4246. PITT WILLIAM STRONG, 3rd term of No. 23,604, from the 15th day of March, 1896. Milk Weighing Can and Cunveyor, 22nd January. 1896.
4247. PITT WILLIAM STRONG, 3rd term of No. 23,630, from the 24th day of January, 1896. Cheese Vat, 22nd January, 1806.
4248. EUGENE CAREZ, 2nd and 3rd terms of No. 37,542, from the 6th day of October, 1896. Saccharification of Amylaceous Matter, 23rd January, 1896.
4249. CLEMENS VON BECHTOLSHEIM, 2nd term of No. 35,981 , from the 13th day of February, 1896. Centrifugal Separator, 23rd January, 1896.
4250. DANIEL BOLWER MERRELL, 2nd term of No. 35,983, from the 24th day of February, 1896. Manure Spreader, 24th January, 1896.
4251. RUBY Z. CURTIS, 2nd term of No. 42,341, from the 20th March, 1896. Churn, 29th January, 1896.
4252. JAMES SPENCER PARMENTER, 2nd term of No. 35,957, from the 6th day of February, 1896. Drying Kiln, 30th January, 1896.
4253. DANIEL R. SILLESKY, 2nd term of No. 35,953, from the 6th day of February, 1896. Shirt, 31st January, 1896.

TRADE-MARKS

Registered during the month of January, 1896, at the Department of AgriculiureCopyright and Trade-Mark Branch.

5510. ASPHALTINA COMPANY OF AMERICA, Syracuse, New York, U.S.A. Compositions for Sewer pipes, Electric Conduits, and Roofing and Paving, 2nd January, 1896.
5511. GEORGE FREDERICK MARTER, Toronto, Ont. Spices, Coffees, Extracts, Baking Powder and Herbs. 4th January, 1896.
5512. THOMAS CORNER \& R. CROMWELL CORNEh, New York, N.Y, U.S.A., trading as CORNER BROTHERS \& COMPANY'. Dry and Pickled Fish of all kinds. 4th January, 1896.
5513. THE METALLIC ROOFING COMPANY OF CANADA, LIMITED, Toronto, Ont. Paints and Preservative Compounds for Metal or Wood, 4th January, 1896.
5514. PETER GRAHAM PILKIE, Lindsay, Ont. A Cure for Diphtheria, 8th January, 1896.
5515. JOSEPH ADOLPHE CHRISTIN, Montreal, Que. Seltzer Water, 8th January, 1896.
5516. THE GOLDIE \& McCULLOCH CO. Ld., Galt, Ont. A High Speed Engine, 9 th January, 1896.
5517. THE WESTERN NEW YORK PRESERVING AND MANUFACTURING COMPANY, Springville, N.Y., U.S.A. Steamed Hominy (Hulled Corn), 13th January, 1896.
5518. WHLLIAM H. H. CHILDS \& FVERSLEX CHILDS, New York, N.Y., U.S.A., trading as THE MICA KOOFING COMPANY. Two Ply Roofing Felt, 14th January, 1896.
5519. WILLIAM H. H. CHILDS \& EVERSLEY CHILDS, New York, N.Y., U.S.A., trading as THE MICA ROOFINGCOMPANY. Three Ply Roofing Felt, 14th January, 1896.
5520. GEORGE ROBERT EDGAR KENNEDY, Beebe Plain, Stanstead Co., Que. Fire Extinguishers, 17 th January, 1896.
5521. E. A. SMITH, St. John, N.B. Flour, 20 th January, 1896.
5522. WATSON GRIFFIN, Montreal, Que. A Newspaper, 21st January, 1896.
5523. J. WALTER ALLISON \& FREDERICK J. WARD, Halifax, N.S., trading as JOHN P. MOTT \& CO. Soap, 25th January, 1896.
5524. WILLIAM BRAMLEY, Montreal, Que. Jewellery, 27th January, 1896.
5525.6 ONFIDA COMMUNITY LIMITED, Kenwood, Madison Co., New York,
5525. $\}$ U.S.A. Animal Traps, 27 th January, 1896.
5526. GEORGE A. McGOWAN, Kingston, Ont. Cigars, 30th January, 1896.

ฮั29. THE DURABLE PRINTERS' ROLLER COMPANY, LIMITED, London, England. Composition for the manufacture of Printers Rollers, 30th January, 1896.

COPYRIGHTS Entered during the month of January, 1896, at the Department of AgricultureCopyright and Trade-Mark Branch.

8296. DON"T TELL MOTHERTHAT HER BOY WENT WRONG. Sung and \& Co., Toronto, Ont., 2nd January, 1896.
8297. DE 'POSSUM DADDY STOLE. (CoonSong.) Words and Music by Charles Harvey. Whaley, Royce \& Co., Toronto, Ont., 2nd January, 1896.
8298. THE FANDANGO WALTZES. By Nathan Osborne. Op. 4. Whaley, Royce \& Co., Toronto, Ont., 2nd January, 1896.
8299. WHO'S YUUR FRIEND ? Words and Music by Harry Von Tilzer. Whaley, Royce \& Co., Toronto, Ont., 2nd January, 1896.
8300. I WILL COME BACK TO YOU. Words and Music by Roma. Whaley, Koyce \& Co., Toronto, Ont., 2nd January, 1896.
8301. TABLEAU STÉNOGRAPHIQUE, à l'usage des Ecoles. (Duployé.) Joseph de LaRochelle, Montréal, Qué., 3 janvier 1896.
8302. CHRYSANTHEMUM TWO-STEP. By Frank E. Blachford. The AngloCanadian Music Publishers' Association (L'd.), London, England, 3rd January, 1896.
8303. BELL TELEPHONE COMPANY OF CANADA, LIMITED, OTTAWA EXCHAN!'E SUBSCRIBERS' DIRECTORY, JANUARY, 1896. The Bell Telephone Company of Canada, (L'd.), Montreal, Que., 3rd January, 1896.
8304. PRÉCIS DE MÉDECINE VÉTÉRINAIRE, à l'usage des Cultivateurs. Par Joseph Alphonse Couture, Québec, Qué., 4 janvier 1896.
8305. THE SONG OF THE SOUTHERN MAIDEN. Words by W. W. Wakelanı. Music by Albert Nordheimer. A. \& S. Nordheimer, Toronto, Snt., 6th January, 1896.
8306. A FOUNT OF MUSIC. Song. Words from James Russell Lowell. Music by J. Lewis Browne. Whaley, Royce \& Co., Toronto, Ont., 7th January, 1896.
8307. THE GLOBE FIRE. Descriptive Song. Words by A. C. Lawrence. Music by W. A. Hewton. Whaley, Royce \& Co., Toronto, Ont., 7th January, 1896.
8308. APPEAL REPORTS. Volume XXII. The Law Society of Upper Canada, Toronto, Ont., 7th January, 1896.
8309. ONTARIO REPORTS. Volume XXVI. The Law Society, etc., 7th January, 1896.
8310. THE CANADIAN MAGAZINE, JANUARY, 1896. The Ontario Publishing Co. (L'd.), Toronto, Ont., 7 th January, 1896.
8311. EXERCICES ORTHOGRAPHIQUES. Cours de Première Année. Par F. P. B. Jean Routhier, Montréal, Qué., 7 janvier 1896.
8312. PETIT DICTIONNAIRE OU LEXIQUE ORTHOGRAPHIQUE. Par L. F. F. C. Jean Routhier, Montréal, Qué, 7 janvier 1896.
8313. CALENDAR DESK PAD, 1896. Re The Toronto Steel-Clad Bath \& Metal Company (L'd.), and The Booth Copper Company, Toronto. Arthur George Booth, Toronto, Ont., 7th January, 1896.
8314. THE COMBINED DOMINION POCKET DIARY AND MEMORAN. DUM, 1896. The Copp, Clark Co. (L'd.), Toronto, Ont., 9th January, 1896.
8315. HEARTEASE HYMNS AND OTHER VERSES. By William P. McKenzie, Toronto, Ont., 9th January, 1896.
8316. THE GOLFERS. Morceau de Danse. Par R. Humphreys. The AngloCanadian Music Publishers' Association (L'd.), London, England, 10th January, 1896.
8317. RITUAL OF THE CANADIAN ORDER WOODMEN OF THE WORLD. The Canadian Order of the Woodmen of the World, London, Ont., 10th January, 1896.
8318. UNDER THE STANDARD. Song. Words by Clifton Bingham. Music by Chas. A. E. Harriss. Whaley, Royce, \& Co., Toronto, Ont., 13th January, 1896.
8319. SUPPLEMENTUM AI GRADUALE. (Livre.) C. O. Beauchemin et fils, Montréal, Qué., 14 janvier, 1896.
8320. SUPPLEMENTUM AD ANTIPHONARIUM. (Livre.) C. O. Beauchemin et fils, Montréal, Qué., 14 janvier, 1896.
8321. NORA. Words and Music by L. J. Doyle. Whaley, Royce \& Co., Toronto, Ont., 15th January, 1896.
8322. THE TENDERLOIN TWO-STEP. By Charles Harvey. Whaley, Royce \& Co., Toronto, Ont., 15th .January, 1896.
8323. NOBODY WANTS IO PLAY WITH ME. (Pathetic Song and Chorus.) By Thos. M. Bowers. Whaley, Royce \& Cu., Toronto, Ont., 15 th January, 1896.

8324 BELL TELEPHGNE COMPANY OF CANADA, (LIMITED), HAMILTON AND DUNDAS EXCHAN(1ES, SUBSCRIBFRS' 1IRECTORY, ONTARIO DEPARTMENT, JANUARY, 1896. The Bell Telephone Company of Canada, Limited, Montreal, Que., 16th January, 1896.
8325. THE CIRCUIT GUIDE-SPRING ASSIZES, 1896. By George Allan Kingston, Toronto, Ont., 18th January, 1896.
8326. WE STAND TO GUARD. (Poem.) By William Thomas James, Toronto, Ont., 18th January, 1896 .
8327. MÉRE MARIE-ROSE. (Fondatrice de la Congrégation des SS. Noms de Jésus et de Marie an Canada.) Par F'idelis. Les Sceurs de la Congrégation des SS. Noms de Jésus et de Marie, Hochelaga, Qué., 20 janvier, 1896.
8328. FASHIONS. (An Illustrated Monthly Journal for Canadian Women. Volume I, Number 3, Toronto, January, 1896.) David Irvine Barnett, Toronto, Ont., 20th January, 1896.
8329. TEACHFRS' MANUAL OF NATURE LESSONS FOR THE COMMON SCHOOLS. By John Brittain. J. and A. McMillan, St. John, N.B., 20th January, 1896.
8330. THE MUSICIAN ; A LEGEND OF THE HARTZ MOUNTAINS. Poem which is now being preliminarily published in separate articles in WALSH'S MA(iAZINE, Toronto, Ont. (Temporary Copyright.) Frank Waters, Cornwall, Ont., 21st January, 1896.
8331. THE POETICAL REVIEW. (A brief notice of Canadian Poets and Poetry ; By Alexander Charles Stewart, Toronto, Ont., 23rd January, 189.
8332. CANADA LAW JOURNAL. (Vol. XXXII, No. 1, January 16th, 1896.) Arthur Henry O'Brien, Toronto, Ont., 23rd January, 1896.
8333. JUST OUTSIDE A MILLIONAIRE'S DOOR. Words and Music by Gussie L. Davis. Whaley, Royce \& Co., Toronto, Ont., 24th January, 1896.
8334. OUT ON THE STREET. Words and Music by James Fax. Whaley, Royce \& Co., Toronto, Ont., 24th January, 1896.
8335. THE CANAIMIAN LAW LIST 1896. Edited by Henry Ryerson Hardy, Toronto, Ont., 24th January, 1896.
8336. THE GLOBE ANNUAL AND ENCYCLOPADIA OF USEFUL INFORMATION, 1896. The Art Publishing Co., Toronto, Ont., 25th January, 1896.
8337. GRAMMATICAL ANALYSIS. (Explained and illustrated, with a large number of carefully selected sentences and passages for practice. Parts I and II.) By H. I. Strang, B.A. The Copp, Clark Co., (Ltd.), Toronto, Ont., 25th January, 1896.
8338. CANADA LAW JOURNAL. (Vol. XXXI.) Arthur Henry O'Brien, Toronto, Ont., 27 th January, 1896.
8339. LOUSIANA LOU. Words and Music by Leslie Stuart. The Anglo-Canadian Music Publishers' Association (Ltd.), London, England, 27th January, 1896.
8340. DARKIES' HOLIDAY. (Schottische or Barn Dance.) By Felix Burns. Patey \& Willis, London, England, 28th January, 1896.
8341. GLENGARRY LANCERS. (On Scotch Airs.) Selected and arranged by Felix Burns. Patey \& Willis, London, England, 28th January, 1896.
8342. A PROMISE OF LOVE WALTZ. Composed by Felix Burns. Patey \& Willis, London, England, 28th January, 1896.
8343. THE PROBLEM SOLVED. (A Social Statute to Mitigate the evils of Poverty.) By Caleb Platt Simpson, London, Ont., 28th January, 1896.
8344. THE GASCOIGNE GRAND MARCH. By Beatrice Glen Moore. F. Gillespie Peters, Montreal, Que., 28th January, 1896.
8345. BABY'S LULLABY. (Song with Lullaby.) Words and Music by S. T. Church. The Anglo-Canadian Music 'Publishers' Association, (Ltd.), London, England, 29th January, 1896.
8346. THE TORONTO CITY DIRECTORY, 1896. The Might Directory Company of Toronto (Ltd.), Toronto, Ont., 29th January, 1896.
8347. THE DOCKET. (A Record of the Courts. Volume VII, No. 1, December, 1895.) Editor, A. H. O'Brien, M.A. Robert Reid Cromarty, Toronto, Ont., 29th January, 1896.
8348. GEMINI ANI LESSER LIGHTS. By "Kim Biler." Province Publishing Company, Victoria, B.C., 30th January, 1896.
8349. DÉLICE DU C(EUR. (For Mandolins and Guitar.) By Geo. F. Smedley, Toronto, Ont., 30th January, 1896.
8350. A BRIGAND BOLD. Words by Leddie Warren. Music by Charles A. E. Harriss. Whaley, Koyce \& Co., Toronto, Ont., 30th January, 1896.
8351. NOW I LAY ME DOWN TO SLEEP. Words by Engene Field. Music by Charles A. E. Harriss. Whaley, Royce \& Co., Toronto, Ont., 30th January, 1896.
8352. MOTHER'S BIRTHDAY. (Waltz Song and Chorus.) Words and Music by George J. App. Whaley, Royce \& Co., Toronto, Ont., 30th January, 1896.

[^0]: 59

[^1]:

[^2]: \qquad ..

