The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleurCovers damaged/
Cruverture endoinmagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée
\square
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Colowsed ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored anó/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Quality of print varies/
Qualité inégale de l'impression
Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Gé, érique (périodiques) de la livraisonAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

damaian Sarianturist.

HORTICULTURAL AND AGRICULTURAL CENTRAL CLUB. SUbJECt-manures.

The third regular mecting for discussion of this Club took place on 1st Λ pril, Col. Thomson, Vice President, in the chair.

Professor II. Y. IIind, M. A., Trinity College, read the following paper "On the preservation of Farm Yard Manures, with some remarks on the sudden appearance of Rust, Blight, and Mildew, and suggestions as to a remedy."
The variety of new or modifed views respecting the relative importance of different kinds of plant food which are periodically presented to the public under the shadow of great and trustworthy names, is a proof that the question is still involved in much obscurity and well deserves the most careful attention and study.

It cannot now be doubted that it would be very unwise to pen our faith exclusively upon the application of any artificial organic manure, it would be equally injudicious to lay too much stress upun the constant but bare renewal of the mincral elements of the soil renewed by crupping; and we should not the less fall into error if we were to abjure all linds of manures and rely altogether upon the exalted physical and chemical pruperties of the suil, induced by deep spade husbandry and drainage. We must avoid all extremes, and in deciding upon the kind of plant food to be administered, or the mode of administration, we must be guided, firstly, by the sources from which plants derive their food; secondly, by ceonomical. considerations, the physical condition of the soil, and the peculiarities of climate.

In this paper I prupose to limit myself to a discussion of the sources, preservation and distribution of une kind of plant food which is universally acknowledged to be necessary, and to lie within our immediate reach. Indeed, the majority of scientific and practical farmers beliere it to be the most important clement of stable and organic manures, (guano, \&c., \&e.,) and a few, regard it as the main spring of vegetable growth and luxuriance.

Nitrogen, in the free state or in the form of ammonia and nitric acid, has, probabiy, excited mure discussion aid led to a larger number of experiments in relation to vegetables than any other clement or compound which assists in bui. ling up their structure. Its importance cannot be orer-estimated, the simple fact that no flesh forming principles and nu seeds can be formed by regetables in the absence of nitrogen is sufficient testimony to the nature of this most inert and tractible element.

How often has the question been avked,-is free nitrogen directly absorbed by vegetables from the atmosphere? And how repeatedly and with what force of illustration and argument has the question been answered in the negative. Latterly the subject has again excited attention, and an able advocate for the direct absorption and assimilation of Nebrague from the atmosphere been found in M. Ville.* It is unnecessary here $\{0$ refer further to this difficult and unsatisfactory subject; and for present purposes it is siffiojent to assume that nitrogeu is not directly; absorbed from air, but that before entering into plants for assimilation it takcs the form of ammonia or nitric acid.

Ammonia we know sxists in the atmosphere, probably to the extent of one part in ten million parts on the average. At times the quantity of Ammonia present is much greater than the above ratio, at other periods less. Rain water contains on an average nearly one part of Ammonia to the million, and of nitric acid about five parts to the million. \dagger Dew always contains ammonia, and mists have prevailed so rich in this substance that the water had an alkaline reaction. Barra? analyzed the water collected in the rainguage of the observatory atParis. He found that in one year, 10.74 lbs . of amm.onia fell with the rain, and 10.7 lbs . of nitric acid. In July he found the amount of the ammonia to be the greatest; in September the amount of nitric acid to be the greatest. The ammonia was least.in Maroh.and increased gradually to July. In August it diministied suddenly, and continued to diminish until October, attaining its second maximim in Febraary. These observations although very interesting are not satisfactory, beccause they were made in the neighborhood of a great city. Hence we find that Boussingault discovered much less ammonia in the air far away from towns-a gallon of rain water containing only one twenty-fifth of a grain of ammonia. As a general fact, however, the water collected during fogs was extraordinary rich in Ammonia, containing on anarerage one thitd of a grain to the gallon-but an instance has been known-before referred to-of a gallon of water from a fog containing not lepss than four grains of Ammonia. The cunstant presence of this substance in the atmosphere is not only now fally establizhed, but its inflaence upon vegetable growth in'this gaseops form is of the highest interest, and possibly, of the highest importance.

The experiments of M: Ville apon the effects of ammonia in air upon regetation show how rapidly and remartably its infuence is felt. If ammonia be.artificially introduced into air in the same proportional ayerage as carbonic acid is found to. be constantly present, rianely, about one part in 2500 parts. of air, its influence soon shows itself u pon the leayes, which continually acquire a deeper and deeper tint. The presence of such timmoniacal vapouts not only stinulates vegetation, but cnanges the growth of the plant, and conajes the developenent and enlargement of particular organs. Tu prosecuting e sexies of experiments on the phenomena of vegetation. with a view to dycertain wheether nitrogen was direetly absorbed from the atmosphere and assimilated, Mr Boussingaill observed the growth of minate green cryptogamia on the outside of the flower pots pribich had been exposed to the air, but he failed to detect any vegetable growth on tho ose from vhich fress air had been carefully excluded. The suda en growth of yarieties of fungt during misty weather has often been noticed, and thicir appearance may be accelerated by the introduction of a small quantity of vapotir of ammonia into any conifined space where they are observed. I am not aware that any extensive experiments have been made upon the growth of fangi in an atmosphere rich in ammonia, such as certain fogs. I have, howevẹ, remarked with surprise their absence in an titmosphere from. Which ammoniacal vapours were,probably absisrictēd by powdered chezroal, without, however, drawing any conchsions

[^0]from the observation uritilattreicted by the curious discovery of M. Boussingault, that fogs are eminently rich in áménonia, The preseece of alarge quantity of zhis important plant food in certain fogsis hot. difficult te accóunt for, : Nốt only does thie griadually increasing quistity of aquagois vapour in the atmosphere before the positive appearance of mist in any locality, collect and condénse rare and widely diffused gmmoniacal rapours, but the exhclations from the soil produced by debompoising vegetable matter, are arrested and ajoumulate. The period of the year fhen fogs rich in ammonia maxy be expected depends naturally upon the frequency iof the fall of rain-upon the moisture of the atmosphere, and upon the winds \cdots In-Ganada it appears reasonable' to sappose that we may expect to: find fogs richinin ammonix during the hot months of July:and August, when the rain fall is not so great :as in:September. During these months mist frequently kang over the fields, particularly in Tow situations. The exhalation of vapour of water from the leavees of plaints being then checked, and their juices partially : stagnating in amatmosphere oftex rich in ammoniacal vapours, all the conditions for the appearance of the fungus called "Riast". on the stems and leaंves of the c'cerealls appeair to be fulfilled.. : It is commonly remarked that rast is most prevalent on new landy this is perhaps explained by the large amount of vegétable matter thrown' into a state of decomposition iby access of air and the consequient production of ammoniax. Thereisno doxbt that miuch of the ammonia thius generated would combihe: with vegetableacids, and be fixed liby claýj. \&ce... but some portion could not:fail to combine with carbonic acid and escape into air in the form of the volatile carbonate, as is observed to ia greater degree on thanure heaps
 mistregard new landas:a stotehouse of ammonia andother plant food; which become liable to volatiize when liberated by too free sin exposure to air without proper precautions. . If the siupposition' be corirect that "Rust'" 'is mailly 'occasioned" by the concurrence of mists:or fogs:in. Juily and August inch in ammoniaj; and that the active agent in inducing the sudden appearance of that destructive parasite is really ammonial'vapours, we havè a.iemedy: at haind. which promiseg, , when properly: and carefully applied, if not entirely to checel; at leastiso fay to arrest the growth of the parasite as' to claim a geíeral -trials especially as its effects would probably prove equally availing in arresting mildew and blight: What we require is an a apailable absorbent of ammonia aindits volatile coroppounds,notam absorbent which will destroy this valuable plant food; but one which possesses the properizof of inducing it to assame anotherform;'perhapaéqually a áailable as: afertilizer; although:of.much sloweraction. Recent: observations shiow that powdered charcoal:answers. these 'requirements: Charcoal not only absorbs ammonia to an immense extent, but:it also oxidizès it to sitric acid, and thus reiders it teemperately inert, buthotunavailable to futúre fertilization. Powdered charcoal is distributed with the utimost ease over large ayeass Being an extremely light substance: and easily rednced to a in fine state of \ddagger division, the least breath Qf :air is: $\mathrm{zafficient} \mathrm{to} \mathrm{cargy} \mathrm{it} \mathrm{for} \mathrm{hindreds} \mathrm{of} \mathrm{yards:} \mathrm{Any} \mathrm{one:} \mathrm{who}$ tries the experimentiof geitly'shakinga moslin bage :containing coarsely powdered charcoal, in a gentle wind, will:find that the operation of sowing, as we may technically express it, a ten acre field, would certainly not costone-tenth part of the labour of sowing the same field with plaster;, and as that operation is not unfrequentin this country, a pragtical guide is at once ffurnisted of the amount of labour the operation involves. Powdèred charcoal thus:sown is very uniformly distributed by the deast motion of aire and its effects are marvellons! In a stable, for example; strongly smelling of aminonia'from fermenting uriné, an ounce of powdered charcoal, shìken by moañs of a muslin bag or ańy fine netióork, rapidily and aniformly. distributes itself, and instantly absorbs the ammoniacal vapouss: A ccarions instance of the action of this deodorizer occurred at Balaclaya during the heat of sommer; when the stench Was almost intolerable in thant painfully celèbrated hàrbour. A simp load of eharcoil :arrived, packed in bags, and the men who wére engagedin transferring the cargo to
the shore were covered with the dust, as was every objectin the neighbourhoud-the stench whioh before prevailed, suddenly and completely disappeared.

Nothing is more dimple than the manufacture of charcoal-a fem billets of wood are to be piled like cordwood, then wiell covered with sods, with the exception of two orificess, one to admit a liftle fire, and the other to allow the smoke to escape, until the heiaphas well taken, and then to be firmly closed for the purpose of allowing slow combustion to go on in the absence of air. Whan cool the charcoal may be orushed in a stout canvass bag by a lever, not by. blows, and when sifted furnishes the required material for sowing.

To return to the sibject of ammonia, we may examine its relation to the soil, and scknowledging the well known fact of its constant presence in rain water reasonably infer its accumulation in the soil. Professor Way, indeed, has arrived at the conolusion that rich loamy land of the Tertiary Drift contains ammonia within available depths for vegetables at the rate of one toin per acre. The form in which ammonia is contained in the soil, renders it, in general, useless to vegetables, it may be liberated however by certain processcs practicably applicable. Together with potassa, this important plant food is separated by clay from its soluble salts, hence from rainwater, however rich in ammonia. This accumalation in a comparatively inert condition is also greatly increased by certain vegetable acids, the result of the partial decomposition of leaves, roots, \&cc.; during the further decomposition of these bodies soluble salts of ammonia are liberated, hence one advantage of ploughing. But. if We are permitted to reason respecting the great operations of nature, guiled by the infinitely smaller but not less characteristic results of chemical analysic :ut the laboratory, we arrive at prcperties of clay soil, in connection with other? dies, of singular interest and perhaps of equal importance. Ammonia forms with certain consitiaents of the soil, chemical compounds very.sparingly soluble in water (sillcate of alumina and ammonia) -oze gallon of water dissolves, when pare, about one grain of this coinpound. Now, although an acre of wheat exhales, during the period of its growth, upwards' of 1,$000 ; 000$ lbs. of this soluble salt. of ammonia, yet it. is not to be supposed that the quantity derived from this source riould serve the exigencies of the plant or materially facilitate its productiveness-if:all were absorbed and assimilated; it would certainly assist in:the development of the straw and ensure the growth of twisty-fipe bushels to the acre; but we cannot be permitted to suppose that total cibsorption, under ordinary circumstañces, woold take place. Mr. Way, howiever, has ascertained that water, saturatea. with carbonio acid, dissolves more than double the quantity of this ammoniacail compound, and further, that the addition of 1.97 peri ceni. of common salt or about in the strength of sea water, dissolves not-less than 23 grains per gallon. There is great difficulty in proving the existence of this compound of fint, alumina and ammonia in soillt ; there is no difficalty whatever in making it in the laboratory, and as.all the materials are present in the soil, and as common salt acts in an hitherto unexplained manier upon clay, it is at least desirable that this matter should also be experimentally investigated by the agricultural portion of our clab, the nijre especially as Ithink that a remarkable field for its elicidation lies before us. We know that many fertile soils in Canada have become what is termed exhausted, and yet rpon analysis; theses soils yield a very considerable amount' of all the materials whici plants require for their growth-but at the saxae time a märkéd sinalliness in the quantity of common salt. is to be noticed, a very soiuble:substance, and one which plays an important part in effecting the soIubility of certain varieties of plant food. It appears ta be desirable that the exhausted flats of the Thames and other localities, phich have been cropped fur 20 to 40 years without manuring, should be tried with eommon salt;; say a dose of three bushels to the acre. I think we should find upon theoretical grouads the application of common silt as a solvent, of considerable value in. many parts of Canada, especially in those parts of thé country which are evidently of freshi wator or lacnstrine
origin, and from whioh this valuable body has been continually weshad during ages of rainfall.

We may now pass on to the second form in which nitrogen enters into plants, namely, that of nitric acid. The supposition that nitric acid plays as important a part as ammonia, in the nutrition of vegetables is fast growing into a firm belief in the minds of many distingaished agricultural chemists. The theory of the production and preservation of nitric acid is by no means enveloped with so mach mystery as that of ammonia. Nitric acid is a constant constituent of the -atmosphere, and may be largely produced by electrical agencies, such as flashes of lightning. It is also to a great extent the result of the oxidation of ammonia in various ways. As a general rule it may be stated, that any organic compound containing nitrogen, andergoing the putrefactive fermentation in the absence of lime, potasi, \&o., gives off its nitrogen in the form of an ammoniagal compound, bat in the the presence of lime potash, \&ce., the nitrogen assumes the form of nitric acid. This is merely one of those numerous and most interesting chemical changes which are induced by the influence of presence. Lime, that great antagonist of ammonia, when brought into contact with perfectly fresh urine; defermines the conversion of the whole of the compounds ctataining nitrogen (urea, uric acid;) into nitric acid; but if any decomposition has taken place preyious to the application of the lime, all the ammonia produced (carkpate of aminonia from urea); is driven off.

The formation of nitric acid by the influence of charcoal is well worthy of practical study. If we cover the dedd body of a dog, a horse, or any other animal with a layer of roughly crushed charcoal some 2 or 3 inches in thickness, not only will the decomposition of the animal matters take place with remarkable rapidity and without any odour, but in the charcoal.we shall find the animal constituents in the form of nitric ucid, sulphuris deid, and phosphoric acid, the bones alone resisting "the rapid process of destruction induced by the charcoal. The nitrogen, the sulphur and the phoshorus of the animal body will be found oxidized to their respective acids, and some of them associated with a limited-quantity of base.

And here it may be remarked, that that element of manures which is considered next to nidrogen in value as a plant food, ramely, phosphorus, is not generally recognized as possessing impoitant fertilizing properties in the absence of nitrogen compounds. In other words; the presence of ammonia or nitric acid is necessary, in order that the phosphates may aequire their proper value as plant.food.

Having thus briefly adverted to the sources of the most important nitrogen food of plants; ammonia and nitric acid, it only remains to consider the method of theit preservation and distribution. It is exceedingly neéessary in Canadian Husbandity to keep in view the second axiom laid down at the commencement of this paper,that we should be guided by economical considerations in the preservation and distribution of our plant food, - we:may therefore pass over-allso called:special mañures with the exception of common salt; gyissum, anid spent wood ashes, and devote exclusive attention to what every farmer has the oppoitunity of accumulating and preserving, namely, the valuable portions of Farm Yard Manure.

No single fact in agricultural science has been so exclusively proved as that the urine of animals forms the richest and most valuable portion of their excrements, consequently of farm yard manure. I think that in the present condition of hasbandry in this country we are justified in assuming that the forcing elements of farm-yard manure, such as the nitrogen compounds, are without any question or comparison by far. the most valuable Our soile still contain abandance of phosporic acid, sulpuhric acid and potash, in a condition capable of being dissolved by water, without any artificial application beyond the mineral constitiuents of farm yard manture,-and if we look well to that grand element of feitility, and the preseivation of its most valuable but
rolatile constituents, we shall exhibit the truest économy and'arrive at the most profitable results.

In preserying and distributing farm-jardmanute, we cannot advocate, for obvious reasonis, (climate,'seeds of weeds s. \&o.): the immediate ploughing in of the fresh manure, as now so warmfy recommended in Europe, because in general, however clearly the adyantage of tiese methods might appear yet they would scarcely be economically practicable among farmers with us, I think we must look to the application of those substances easily acceasible, and in rolving, no money outlay, which possess the property of arresting volatile exhalations, and retaining in a light and available form the element. Two of these are easily procured on every farm; the third is not expensive, when its powerful effects are duly considered. Partially burnt clay and crushed charcoal furnish us with the materials we are in search of A manure heap sheltered from the sun and rain, and having its draininge together with those of the stables, cow-houses, \&c., well-collected into a simple, inexpensive, but properly closed tank, may remain continually accumplating in dimensions, quantity, and yaluable properties, if time after time thin layers of partially burnt (black brrnt) clay and charcoal are strewed cyer fit and in the fank, Partially barnt clay has the property of fixing ammonia to a remarkable extent, and is easily propared during the process of making charcoal. Such substancer as gypsum, sulphate of iron, sulphuric acid, \&o., so generally and adiantageously used in Europe, and to far lesa extent on thie continent, are not specially referred to here, as it seems essential in our farming practice to make the farm produce as much as possible of every item required. The third article to which I am tempted to call your farourable attention, for reasons before mentioned, is common salt. I think that a limited application of this substance on our lacustrine drifts, simultaneously with farm-gard manure, wquld be found eminently serviceable, and certainly worthy of trial.
[An interesting discussion followed on the subject of liquid manure, \&c., a portion of which we may be able to give in our next issue. Ed.]

Kicring Comrs;-Mr. W. I. F. Jones; of Asbary, gives us the following mode of breaking colts of the bad habit of kicking:- Whenever a colt kicks he takes. hold of the head and neck genty, by clapping his arm around and holding on to the nose until he ceases to struggle, patting him occasionally and speaking kind words to him. By doing this a few times, he says the worst case can be cured- Prairie Faimer:

Mice rast Witier. The R. N. Yoker sajs there has been a gemeral destruction of trees during the last winter throughont the Western States. Many spirited géatlemen determined not to give up the experiment, have teplaced their lost, trées, still hopeful of their eventual success. The mice have degtroyed thonsands of apple trees, as wallets; cherry, pear, and peach trees, to the great disappointment of thope who relied on their frees for spring sales.
 as a simple and invaluable remedy for rheumatism:-"Take a half pint:of spirits of tarpentine, to which add half an ounce of camphor; let it stand till the camphor is dissolved, then rub it on the part affected; and it will never fail of removing the complaint. Flannels should be applied after the part is well fomented with turpentine. Repeat the application morning and evening. It is said to be equally ayailable for burns, scaids, bruises and sprains, never failing of sucंcess."
 lard is an antidote to strychicia. It was discovered in an attempt to poison a dog by placing the strychnis upon meat. The meat was near a jar of refuse lard, and after the meat had been eaten, the dog devoured the lard, and to the surprise of the person waiching thigeffect of the poison, it, failed of producing any effect, although ure, grain had been swallowed: The experiment was repeated nine different times with like results and eleven times without the lard, in every instanca proving fatal.

GRAIN MFIRKET AND HARFEST PROSPECTS IN ENGLAND.

We havo not been much in the liacit of adrising our readers as to holding or gelling their produce: Ite" would be a haqardous duty to tindertake, and its porformanco, no doubts would often be as pnsutisfactory to us as to them: "Wo prefer to let our roadera judge for themselvigs on suck:sabjects. 'At the same time, we can see no risk or impropriety in placing before thom'such facts and statomente as may enable them to tormi a better opinion of the future than thes could do without them.

A great deal has been said an the newspapers about the fall of prices as a consequence of peace, and farmers have bean adrised to sell their whest at any price above a dollar, rather than keep it, longer, But, so far, these predictions have not been borne out enitirely by events. Prices have fallen, it is true ; bue the most recent adrices do not warrant the belief, that a much greater reduction will take place before harvest. "We sub: join the "Agricultaral Report" of the Mark Lane Express of 5th May; on the markets and harvest prospects of Great Beitain. The Exipressis the nost relinble nowspapex authority from which we cain quote ${ }^{\dagger}:-$

APBII.

The long continuance of cold easterly winds has had the effect of keeping vegetation in check in all parts of the country; and the want of the usual supply of moisture:at this period of the year, has been productive of some inconvenience to our grazieris, whose pastures are unusually bare of grass. Nevertheless, our accounts of the general appearance of the wheat plant are rery favorable, notwithstanding that it has made comparatively little progresse: Barleys, too, though not mưch above ground, have required moisture; whilst oate, boand and peas have been greatly in want of raih. rhie bactward state of the spring has compelied modt of the leading Etockinasters to purchase laga quantities of hay-which is daily becoming tery scarce-ata heayy outlay of capital; indeea; in some quarters neatly or quite the whole of 'the winterfs supply of tưthips' \&c., is now exhausted. Both beasts a hid gheen, ho fever, hape been remarkably heplthy, and scarcely any losses have resulted from disease: We find; however, that the lambing season has not tarned out so farourrable as in some previous years-namexous. lonses having been sustained in'the noithern" aistrictes.'

The close of warlike operations thas hád its aćcustomed influence upon the corn trade. Buyers, under the impresepion that "peace signifies "plenty") and with: the growing conviction that we shall recoive imbense quantities of food from thie Baitic and Black Seas; as well as the Sea of Azoff, hare operated with great caution; and not a fer of our far: mers have evinced much anxiety to become sellers even at reduced rates. The trade has therefore been in aminactivestates. and prices have had.a downward tendency. Now, to us, it is a matter of great donht:whether we:shali F ceive eqyithing like the ganatity of corn from:Russia: this jpear that many parties seem to anticipate ; and this opinion is, in a great measure; confirined byinumeroü* adyices frememerchante long refident inthe northern 'and southerc ports: :Ihey intimate that the quantity of grain, toco, at the various seaports ready for shipment, is unusually small; suct they contend that, OWing to tho unusually severe sacrifice oflife daring the last tore Jears, and to the immennennubers of people drawn from the land for military purposes, it vill be impossible bo bring down from the interior very large supplies of grain during the next three or four month. But assuming that we shall receive $1,000,000$ qrs. of wheat from all Russian ports thinis year, the yractical man must at once see that that amount of supply- when our tants are fairly considered -cañot have a very dépressing influence apon valué We are not arguing in favout of any permatent sutance in the quotations; becanse we consider such an event most unlikely; but at the same time our impression is that we shall niot import more corn than can be conyeniently consumed. "In confirmation of oux views ix reference to the export of food froin Rusiot, we midy quote the following from: St. Petens burg:-"We are informed thatit the concluision of the trat was followed in liondon by a rapid fall in the price of Russian commodities, partly provoked by the notion that Rusgia has accumulated quantities of merohandise of all sorts during the war, and that it must now dispose of them at o low fgure. Tn calloulating thus the English merchantit
forget that throughout the war Russian exports have continued by way of land, and that thus we shall not be compelled to sell the old stocks cheaply. The supposition of ' n grent quantity of Russian merchandise prepared in anticipation is equally erroneons. Russia cannot at this moment expori any other grain than that alroady found in our sca-ports, or in their neighbourhoot, since there would not be time to bring anything from the interior for the navigation of this year. The corn in store in the southern ports will have probably been already purchased on the account of Fronch merchants. It is only, then, between the autumn and next, spring that. GreatBritain can hope to find corn cheaper in Russia than in America" "We mustry as a matter of course, receive the above with some reserve; but, at the same time, it is evident that from the crippled state of the resources of Russia, a very large outllow of grain cannot be expected; hence, it follows that a low range in the value of English produce is an event not likely to happen this year.

The enormops produce of the potato crop in all parts of the United Kingdom last year, and the fine condition in which it was secured for winfer use, are now more and more apparent. Even up to the present time, immense quantities are coming forward perfectly found and fit for use. This important feature has no doabt greatly interfered with the consumption of the better kinds of food, and assisted to keep prices in check. The present prices in the London market vary from 35s. to 95 s . per ton.

In Ireland and Scotlend agricultural operations are very forward ; indeed, they have experienced no interruption during the whole of the month. Shipments of grain to England have been small, and prices almost generally have been drooping.

How to Start Melons.-A correspondent of the Country Gentleman gives the following plan for starting melons:-
"My plan for obtaining early plantes is, to construct a rude basket or wicker-work of willow or other twigs, sonething like a bird's nest, without the inside filling up. Make a hole in the soil of the hot-bed of sufficient size to admit the basket, fill up, plant and cover the seeds, rake ard smoth the surface. When the weather is warin enough, and sufficiently settled to admit of outside planting. I make my hills, and lift the little baskets containing the plants, and carefully remove them to their places, where they quickly strike through the open net work of the basket into mother earth, and soon repay all trouble for giving them 'a start in the world:";

Soir foz Fruit Thazs.-Fine fruit can only be grown upon a.soil naturally or artificially dry cnd firm. A wet soil, or a very loose.peaty one, never produces fine fruit. Sandy soils, grayelly soils or clayey soils, as well as what are called loamy soils, can all be made to grow fine fruit, if properly caltivated, provided the subsoil is porous enough to permitithe water to escape rapidly downwards a sufficient depth to-allow the roots of trees af least three feet of soil which is neyer filled with stagnant moisture-and the graater the depth of perfectly drained soil, the greater the certainty of success.

Aariculuidur Expericenr.- A carious circumstance connected with the:growth of clover in, that by cuitting the cloter twice and removing allithe hayy, a much better wheat crop is obtained than by feeding it off by sheop, even if nome:artificial food. is used. This is owing to the fact that the growth of roots of clover in the land is in exact proportion: to the growth of the leaves in the air. Wach leaflet that shoots upward sends a xadicle of root do wnward. If the leaf be bitten off or destroyed, its rudicle: ceases to groso. It therefore follows that graving clover by sheep maturially diminishes thie amount of regetable matter accumulated in the soil by the roots; and consequen'tly the produce of the succeeding crop."

The above is sustained by the following:-
"A frierd of mine in Nonthamptonshire had a field of clover; it was divided into two portions, both were cutat midsummer, and one part was then fed off 7 ith sheep, and the other left to grow till September, when it was again cut and the hay Temoved. Equal portions of the several pieces were then compared. Where the clover had been cut once and fed off, he got 35 cwt. of clover roote per acre; Where he cat twice, he got 75 cwt , thare been a difference of two tons of vegetaple matter per acre,':

- Vegetably Seasongrs, Parsley, celery, thyme, sage, onions, garlic, and otherseasoners, shonld not be putinto soups or' stews until the soup is nearly done; cho fine, and put in five mantes before the soup is taken from the fire.

SKIN DISEASES OF DOMESTIOATED ANIMATCN.

This is a topic demanding the earnest attention of stock-breeders and farmers gencrally. Skin diseases, produced by insects, are by no means uncommon, and seriously affect the breeding and feedingqualities of animalg. Till recently, but littlie scientifio progress had been made in regard to the natural history and treatment of these parasites. Professor Simonds, the Veterinary Inspector of the Royal Tnglish Agricultural Society, recently delivered a. Lecture before the Council on this subject, from which the following statements are gleaned:-

All domesticated animals are more or less affected by peculiar parasitical insects; which may be divided into three g eat classes-1. Insects attacking the external parts of the body, on which they pass through the whole period of their existence, as the acari, producing scab, mangi, \&c. 2. Insects which pass their larta condition only on the skin, as a tempotary nidus, from which they escape as flies on aassuming, their winged condition. 3. Insects, most destructive to animal life, lodged in the internal organs and capities of the body. Some confusionhad arisen from giving dif, ferent names in case of lower animals to diseases identical in their charecter; the mange and scab in the horse apd sheep being analogous to the itch or scabies in the human subject. It would be more simple to in ilude all such diseases under the general term ""scabies."

It is well known, both in Canadarand Europe, that the scab often leads to serious losses to flockmasters, by its tendency to deteriorate the wool and tine general condition of the animal. Its eause was not satisfactorily determined; till a German physiologist, who clearly proved the wide'distribution of acari or mites, in' dirt or filth; sugar, cheese, flour; and most vegetable substances. He found that the male and female acarus of the horse and of the sheep possessed well-defined chatracters in the case of each of those animals, the former being the cause of the mange, and the latter of the scab. These mites have the power of travelling from one animal to another; and the scab disease of, sheep will sometimesiaffect the whole flick; if not arrested. From carefully conductéd experiments, Professor Simonds coneluães that the mites belonging to one class of animals could not engender the same disease on the bodies of another class; that the mite which produced scabon sheep was not capabie of producing mange on the fiorse or dog. This conclusion, however, from recent experiments made in Germiny, may be regarded as somẹwhat doubtful.
The deposition of the acari on the skin of sheep and the development of the scab ,disease, may be traced as follows:-" First, a slight-rednessicomesion the' ${ }^{\text {ghini }}$, albu" minous fluid is exuded, which mats the adjoinivg wool, In a few days; definiterpain is felt by the animal, which violently attempts to scratchi iiself by rubbing the part against any resisting object. The irritation extends to ten or tivelve inches. The disease makes rapid progress. Acari had travelled over other parts of the Bodyt In sisteen days, fifty or sixty eggs of the acarus were found at the base of the wool: Large thickened crusts of a white appearance were formed: The Thealth of the animal ardi its skin became generally affected. Large scales or scabs ensued; which; on
being raised, a great number of acari could be detected. Inflammation ensued on the skin. The itch in tho hitman sunbject arose from the same cause; the acarus burrowed beneath the scale of the epiderimis, or outer skin. This affection was known to be more communicable when the person was warm in bed, the acari then coming frelyout and extending their opeations. The itoh-mite in innuated itself within the gkin, while the nites of the borse and sheep made their attacks upon the skin," These minute creatures are wonderfully endued with a power of extacting the juices of the skin by their suctorial dises, of adhering to the wol or hair by their hooklets; and their trumpet-shapen appendages enable them to hold thenselves secorely by valves to flat surfaces. The female mite is larger than the male, and is adapted to propagation, while the male is peculiarly formed for sucking the skin; the disease is the result of their jointaction... Professor Simonds had found fhese seak-mites alive and-vigoroue fourteen days after they had been remotyed from the backs of sheep; and he considèrs that thérè is great hisk to any fresh healthy flook occupying the ground from whioh infected sheép liad been rèmovèd less: thạn two or thiree weeks.
The cure of scab is not generally a simple process. The cause must bé thoroughly removed, viz., the destruction not only of the mites, but their eggs also. Many 'of the proposed remedies destroy the insects", but not the egge, which in a few days may turn out à fresh swarm of living oreatures. Dippings, ointments, \&c:, óccasionally; all falled, by not reaching the eggo. Arsenical appliẹations are more potent; but from their virulent poisonous nature, require the greatest carëin applying. The preferable form of such solution is that of arseniate of poptash, blended with vegetable infugions, spech as those of foxglove, henbane, dock-roots, grge Two onnces of common arsanic and two ounces of carbonate of dime, boilod, together, in a cuart of water, putil, dissolved, Fhen a further quantity of water may be added, To this gallon of squation; a gallon of vegetable infusion may be added, made by pouring a gallon of boiling water over four ounces of foxglove leaves, and allowing the infusion to remain till cold, when it may be poured off. Half a pint of it, at intervals of a few days, should be sprinkled (from a bottle, through a quill in the sork), on the skin at the back and gides of the sheep. Two or three dressings will generally be found sufficient to cure the most. inveterate cases of. scab.

Parasitical insects often travel ta other animals; and without producing the ideni: tical diseases as they do on the animals, to which they paturaily. belong, neverthèless they frequently occasion a greati amount of local inritation of an annoying character on the okin. Pooltry: sometimes swarm withingects, especially lice and mitos, which often tratel to ather animals. Horses may:appear:to have the mange, shile the effect is'simply'the inflammation produced by poiltry tioks, 'and admit of easy cure by. means:of oil impregnated with sulphur.

The woarbles belong: to a class of parasitical insects, which pass onily one period of their existeace in the ekin of animals, the period of heir lantyo or:griub state, before they asenme their winged form as ficas. Small tamicurs are commonly seen on thie backs of the farmer's best-doing stpck, each cortaining a lange maggot, grub, or bot, the larver state of the: gad. or breeze:fly. Some:species; of this tly deposit thieir eggs in the rostrile of sheep and in the hair and skin of horises, when they are hatched;
being licked up by the horse, and passing into the stomach, and afterwards through the intestinea as bots. The cattle gad-fly deposits its very minute egg on the skin ofthe animal, which, being hatohed by heat, passes beneatk the scarf skin, and lays secure, feding on the unctuous secretions of that integument. It.afterwards burrows into the skin, and insinuates itself-below it, and thus xemains secure all winter. In spring diffused swellings are observed on the brokg of catitle, which give pain on pressure, in consequence of inflammation. The gryblime in its nidus, or nest, within the true sking, till the approach of suminer, when its whita colour becomes dark, and it makes its way out of its retreat. On the ground it boon assumes the chrysalis state, escapes from its shell as a gadilly, layn its egge, and dies. The eggs again produce gribs, and-the same wonderful cycle of changes succeeds. It is the same with the bots of the horse. When they loat af maturity their power of attaching themselves to the stomach, thay slipped theit holdings, and passed out of the stomach through the intestines to the ground, when they assumed the chrysalis state and became flies. The egg of the sheep-gad-fly was deposited about the middie or latter end of summer. The sheep were then herded together with their heads down, and violently stamping with their feet. The fly at length deposited its egg in their nostrils, and the hatched grub penetrated through the intermediate cavities to the frontal sinuses, when a plate of bone prevented its getting intp the brain. Various affections in the brain of sheep, such as rextigg, gig. giady, tarnsiok, gogzles, \&c., have Been erroncously ascribed to the gad-fyy but they have a totally different origin, viz, axising from the formation of little sacs or bladderss containing hydatids. 'The mange in dogs is owing to the dog-fiea; an insect that was the fraitfut source of diseased action of the animal's skin, when it. genexated and passed throrgh all its various gradations of existence.
The prevention of contagion among anfinals may be summed up in two wordsimproved management. Cleaniiness, ventílation, exercise, nutritious diet, and tempeitance, have effected the most beneficial changes on the human race; within a comparatively short period of time; and it is but reasonable to conclade that similaz causes. Will produce similar resalts among our domeaticated animais. We have get múch to leayn and do in Canada in relation to these important matters.

CABrots. - What would be the result if every farmer in the United States should raise one acre of carrotss" An acre will produce fron 400 to 1,400 bushes, and when mised with grain; is of equa! value por bushel for foed of hill kinde of stock, and for-milch cowis still moxe. Another advantage of the crop is that it is equal to a good dressing of manure for the succeeding crop of any other farm product. Do, we conjure you, plant carrots.Tribune.
Tar Use of Oru.-In this country, chiildren aze "perpetaully watered,". as though they were amphibious animals. In the East: Indies, children are rarely wasbed with water: bat they are oiled eyery day. A child's head cai be kept much oieaner if oiled, than withoat it, and many young people with hectio cheels would probably never know the dast days of consumption, if their parents. Would. insigt. on having the chests, back and limbs anointed with sweet. oil troy or three times a weik. The Hesrew physicisns seem to have considered oil as more efficacions than any other remedy. The sick were always anginted with oill, as the most woiderful means that was known cf checking disease.Christian Freeman.

CORN PLANTER.

The above is a representation of Bachelder's Corin Planter-an implement more used in the Western and Southern Statos, thian it is likely, to be in Canada. We present the cut and description, however, in the hope that some of our own mechanics may get up a cheap modification of it suitible to this country. Many farmers in the western part of the Province grow frequently 5 or 6 acres of corn, and in such cases a "planter" would be serviceable. This is pronounced one of the best machines yet invented for planting corn. The seed is put into the hopper above the beam, and as the horse moves-along, the share below opens the farrow; the corn is then dropped by arms moving horizontally. These arms have holes in them of a proper size to receive any, required number of grains, and as they pass in and out of the hopper, the holes are sure to be filled with the seed, which as surely drops into a tupe conducting it to the bottom of the drill made by the share, which is so formed that it passes under the surface at any required depth, and deposits the grain without turning over the earth. A triangular iron follows to remove all lumps and stones, and a roller to compress the earth over the seed. The dropping of the seed is always visible to the operator, and thus ensures his work being perfectly well done. The arms are made to drop the corn nearer or farther apart b- different sized cogwheels fastened on the crank, moving the arms quicker, or slower as required; five changes can be made. Those asually made drop from two feet to four feett apart, as wished. The machine requires a torse to draw it, and with a person to tend it and drive, will plant 12 to 14 acres per day, according to the width of the rows apart.

Every-īay Facts tiv Scieince,-If a tallow candle be placed in a gun and shot at a door, it will go through without sugtaining any injury; and if a musket kall be fired into water, it will not only rebound, but be flattened, sis if fired, against a hagrd substance, A mustet ball may be ired through a pane of glass, making the liole tite size of the ball, without cracking the glass; if the glass be sispended by a thread, it will not even vibrate. In the Arctic regions, when the thermiometer is helow zero, personis can converse more than a mile distant. Dir. Jomieson asserts that he heard every word of a sermon moric than a mile distant.

REV. T. SCHRIEBER ON FRNCING.

> IIVE FENCE.-COST PER ROD.

3 Posts, at 6d... 1 . 6
33 feet, B.M., of Lumber, at $\$ 14$ per 1000 feet................................ $2 .$.

68 sets of Quick, at 8d. © 100 .. 5
3 Posts set in ground at 6d. each...........t.............................. 1 . 6
Forming ditches, setting quick, \&ce..................................... 1 0
Keeping Fence clear of Weeds, 3d. year............................ 3
$7 \quad 4$
COST OF ENCLOSING A SQUARE TEN ACRE FIELD:

ENOLOSING AND FERGING OFF INTO TEN AORE FIELDS A TWO HUNDRED ACRE ZARM IN BREADTH 1,320 FEET.
Total.length, 21,120 feet, or 1,269 rods.at 7s. 4 4d. 8 . 8 rod:..... 517 (0 7
The Homewood, March 12th, 1856.
My Dear Sir,-Assuming that the native Thorn of Canada is best adapted for a live fence, and that its characteristics are nearly the same as the English Thorn; I take the liberty of sending as above the cost of jits growth and protection for ten years, at the end of which period it will become such a fence as will last for ages, and be impervious to cattle; sheep, and swines; the Thorn when planted should be cut down to the third eye, the fibres of the roots also shortened, and planted as in the annexed sketoh; in the third year after planting it shoula be cut down close to the ground: with proper attention in cultivation and in keeping it thoroughly free from weeds it may be reared up in the seven following years to be a fence as represented in the next sheet, four feet high,. wide at the base and tapering to the top. It may be obseryed, the Thom requires free circulation of air and will not thrive in the shade or under the shelter of trees. The cost of rough piotecting fences on each side is inferred from the expense incidental to fences put to keep cattle and sheep off a line of railway in this Provinee.

Yours faithfully,
I am, dear Sir,
Thomás Schrieber. Wm. McDougall, Esq., Yonge Street.

We regret that we are unable to present an engraving of the sketch which accompanied the above. It is the less neoessary from the fact that most of those who are likely to undertake the growing of live fences will have had a knowledge of the busipess, or will avail themselves of the practioal skill of some one who has.' The Rev. Mr. Schrieber's sketch will be sufficiently understoot by suck parties when we state, that:a coross section of the fence shows two ditches, one on each side; 13 feet wide at the surface line, and 9 inches deep. The bank between the ditches is 2 feet at the surface line, and the posts of the side fences are set.about 9 inches from the outside of.the ditch. The Rev. gentleman thinks two boands 6 inches wide will be sufficient:for each side fence.

Boxl \#our Molasses - When molassesis used in cooking, it is a verỳ great improvement to boil and skim it before you use it. It takes ouit the raw taste, and makes it almost ns good as sagar. Where molasses is mueh used for conking, it is well to prepare one or two gallons in this way: at a time.

THORN LOCUST FOR FENOES-GTELD MTCE—VEGETABLE CUTTER.

St. Catherines, April 22nd, 1856.

My Dear Sm,-In looking aver the proceedings of the Agricultural and Horticultural Central Clab in ybur April No., I was very:much pleased with the discussion on the subject of fercing. It is a subject, that engaged my attention some years ago, seeing that the timber in the old settled partd of the Province was fast wasting away, and that in a few jears something elle -must take the place of zig-zag fences now in-generul use. For seventeen years I held the office of Treasurer of the Niagara District Agricultural Scciety, and during that time the subject of fencing was frequenily brought forward; but no one could give advice as to which was the best course to adopt. In 1837, I made ap my mind to try the native Thorn, and had half-a-bushel of the haws gatherred; and directed my man to bury them in the ground. I believe: he didso; but:soon after thie Rebellion broke out, I directed him. one day to take a load of wood to Clothing Worksix owned in:St. Catherines, he got tipsy, and on his way hoome the horses ran away; breaking the weggon, which was left in the woods; the horses and part of the harness reached home, but my man never made his appearance aftèrwärds: " So much for my first attempt to raise a thorn hedge. For some yearis afteer thiss It had a good deal to attend to, selidom being at home. In 1849, hearing so much about the Thorn Iocust for a hedge, I thought I woald make a trial; and got ai number:of the sett for: that purpose, and began by drawing a line straight the lengithe of the fieldy I then cut sods to fit; and setithem edgeways along the line; the grass side outwards'; then I took earth that was under the sod, and put behind tillerel vithe the top of the sod, the base being abcat thiree feet, the ditch:about the same widthat the top. I:then put the sets six inches apart, horizoutally; on the top; of the sods apid: earth; the topsoutward; I then laid on some ground on thé rootsj, thien anotider tien of sodes, filling up behind with earth, and so oin, till raised abobut twion feet from the surffee on the rọad-side: 'I made a straight rail fence for the protection of the plants.

All the plants started-and grew well, the grass also grew, but was kept down by weeding twice. The next year the plants started-handsomely, and had a.fine healthy appearance in the Fall.
I now begat to think I 的ould stuceed in my endeavours to kave a helge that would keep octit tivo-legged añimàjs as well as fóri-legged. I can assure you I began to be proud of my work, knowing that if such a hedge conld bo raised without a heavy outlay, it-would be a great.advantage to the country. In the spring of the third year, the hedge looked very healthy. This year I would have trimmed,: bat could not find suitable shears. The winter following the micergirdled a number: of the joung.shoots, and every'sùccéding pear; I am soriyy to says, lassor more:have been destroyed. I got a kill-hook madey and Fept lopping down, the branches, and filling up the spaces where the mice hatd destroyed. Last Fall, the hedge looked so formidable, that I made up my mind it wanted no farther protection, and in the spring (1856) I would take away the fence I: had, made for that purpose. When an individual undertakes something that he thinks will not only benefit himself but his
fellow-man, and has for years expexienced much anxiety of mind for the attainment of his object, and when he thinks his efforts have, been crowned with success, what must be his feelings to find that all this anziety and labour have proved abortive? I am just in that-situation; fora number of years I have been watching with intense anxiety the progress of my hedge, and believed I had attained the object of raising n good fence; but great was my. surprise and mortification to find, when the snow had receded below the hedge, that not a single bash had been left unscathed-every one was girdled from one to two feet from the roots upward! In my opinion, this has settled the raising of hedges: for fences in Canada, unless material can be had, that mice will not cut or girdle, and I am,not anare of any plant of that description.
I was much pleased with some remarks-made by the Rev. Mr. Schrsiber, 'as، well as the very excellent observations of others; but as to killing mice with nux vomica to the extent that would be required to pratect hedges, if generally grown for fencing, I am somewhat incredulous. If the rev. gentleman hat stated how much per rod of fence would be required, and how it should be applied, and how mụch the cost, it would have been more satisfactory to me. The past (in this part of the country) has been tlie most remarkable-winter as regards the number of mioe'over the land, that the oldest inhabitants can remember ; indeed they never saw inything to be compared with them for numbers. I planted an orechard of apple trees aifeti years ago, 150 in numper, and about.one-thind are destroyed. If the Rev. gentileman's recommendation for their destruction shopld prove effectual (unless the cost would be greates than the profit) he, will deserve the thanks of the whole country for such importantinformation. Were it not for these destuctive animals mice, Leanis see no. difficulty; withepropen:care for a few years, in raising the Thoin Lecust. They will beoome a.good hedge in-sevén years.'

Your plan of planting posts, and back furrowieg to them till the ground is raised eighteen inches, is a good one; , but as the bank to the posts is, a regular ascent, yon would require a higher fence than would benecessary on the plan I adopted with my feñec. Cattle can go close to jour fence; therefore you will require a higher one to keep them out, than if they were three or four feet from it, and had to jump over the ditck. To keep ont pigs, your boards or rails require to be coloser; as those animals could go vlose to your fence; they could not get within three feet of mine without climbing. My ditch has an excellent effect on the field adjoining it. I can plough that field generally a week or ten days earlier than I did before I made it. This shows the great ad yantage over othermodes of fencing for draining the land, which, asi you justly argue, is: aci wery; greato objecti.: Independent of fencing; those ditches would pay well for the: making. Thie plajan Iiadopted; will cost:something more, but Fthink it has advantages. A man understanding the use of the-spade, will throw up several rods of such ditech as mine inia a day.

I have not written tliys for publication; buit having, for a number of years, taken a, lizely interest in the melfare of Canadian agriculture (and I am sure I shall ever retain that interest for the welfare and happiness of its people), and having alwaps advocated live fences from material best adapted to the country, and seeing the dis cussion that took place at the Club on that important subject, I could not refrain
from giving you a little of $m y$ experience, and if you think you can extract anything from it that will be of use to the public, you are at liberty to do so.
In your March No., enquiry is made respecting a good kind of Tegetalle Cutter; and for the information of those who wish to purchase a good and substantial auticle, I think the one I am about spcaking of, is all that could reasonably be required. I boüght it last winter; it was made at Rochester, N.Y.; price there $\$ 12$, charges $\$ 4$, making the cost $\$ 16$. I was not aware at the time of purchase, that they were made in Cariada; if I had been, I would have given the preference to those of Canadian manufacture, not only to encourage home manufactures, but on the score of economy, The.Cut, in your Febreary No., is an exact representation of my Cutter, and I consider it an excellent machine for the purpose. It cuts fast and fine enough for any kind of stock.

Having, I fear, already treepassed too much, I must come to a close. -I am, my dear Sir, yours very sincerely, JoHn Gibson:
William McDougall, Esq.
Remares - We have:no hesitation in pablishing Mr. Gibson's interestirg communication, even though it was not written for publication. We feel satisfied chat we could not deyote the space it occnpies to a more important sulject, or one that will be more generally interesting to our readers. An efficient, durable, inexpensive system of fencing, generally available, is the great desideratum of Canadian agriculture. The ravages of the field mouse during the last winter have almost destroyed the hopes of those who have attempted Thorn fences in Canada. We trust, however, that some remedy will be found against this pest, either by such means as Mr. Schrieber has suggested, or by the use of a hedge plan' not subject to its attacks. It is said that the Bnck-thorn is-never injured:by mice, and that it makes an excellent hedge. Let Mr. Gibson not despair; one trial and one failure have not "settled the question." The experiments, which, we presume, will be undertaken by the Board of Agriculture, will no doubt develope some facts, that will help to guide the inteligent farmer in his efforts to obtain a good fence.

Whether nux vomica is an efficient, and, at the same time, a safe antidote formice, may be doubted. It must not be forgotten that it is a deadlg poison, and if by any chance the small domestic animals, or children, should pick it up, death rould be the consequence. Great caution will be necessary in trying experiments. A well-known remedy is the Coit, and if administered in sufficient doses on an empty stomach, will do much in the way of curue.

Mr. Gibson's objections to the banked fence recommended by the writer in his remarks before the Club, are perhaps well-fonided; but the plan we intended to describe presents this difficullty to caitle-their hind feet will boin the ditoh whon near enough to attempt a leap, and conseguently thie depth of the ditch is so much added to the height of the fence. If the ditch is made so near the fence that a horse or cow could approach near enough to jump from the level ground, then Mr. G.'s remarks would apply. But.this should be guarded against. We are now making a fence on this plan, three boards high, with a bank from twelve to eighteen inches above the surface line, and a ditch extending upwards of four feet from the fence. Fo lar-abiaing animal would venture to leap it, and disorderly ones are not allowed to make the attempt. Bad fences make "breechy" cattle; if not trained: to evil ways, a fence considerably Yess than ten feet high will answer all noedful purposes.

FENCES-THE "NATIVE THORN."

Arley Lodge, 26th April, 1856.
Dear Sir,-In the last number of the "C"anadian Agriculturisl" you have treated your subscribers with a very interesting Report upon the subject of "Fences," as it relates to the Cost, Variety, and Kind, best adapted to suit the climate and different localities in Canada-ombracing economy, durability, and appearance. It seems the opinions and communications generally delivered at the meeting of the members of the Society in Toronto, are unfavorable to the continuance of the culture of the "English Hawthorn," as a fence calculated"to answer the requirements of the Province for the reasons then assigned.
Mr. Leslie's practical skill and knowledge of the natare and treatment of "Hedge Plants" entitles any opinion or suggestion coming from him to respect and attention, and particularly so when "Liye Fences" is the subject under consideration. Impressed with that opinion, I am once more tempted to commit myself to paper with the view of cautioning the farmer against the introduction of any plant whatever upon an extensive scale without first obtaining undoubted proofs of its general fitness for the purpose intended. That is, posmessing sufficient hardness to withstand the rigor of the wintersfree from the ravages of insects-of vigorous growth-power of resisting cattle-durability and cheapness. These are properties essential to secure a successful issue, and to reward the farmer for his labour. And so far as my own limited experience permits me to form an opinion, I esteem the "Native Thorn of the Country" incomparably the best. I have not yet met with any other plant that possesses so many of the above enumerated good properties and so free from the objectionable ones. Amongst other plants noticed by Mr. Leeslie, the "Buckthorn" is expressly mentioned as a hardy and vigorous plant, capable of resisting the severity of winter, and being free from the destructive attacks of insects. These are valuable qualities, and my own aitention had been previously drawn to this plant to ascertain its character, and to that end, when in England, in 1854, I made enquiry respecting its fitness for fences at reliable sources, with the intention of importing either the berries or seedlings of the plaint'in quantity for future use, had the result of my inquiries answered my expectations. All admitted the properties ascribed to the plant by Mr. Leslie, but, in addition, mentioned the very objectionablé one of throwing out suckers profusely, which, if not watched and eradicated annually, would in a few years greatly encroach upon the land. For that reason I abandoned my intention of trying the "Buckthorn" for fences. The same objection, I apprehend, also attaches to the "Honey Locust." Having thus drawn the attention of Mr. Leslie and other qualified gentlemen to the subject, theopportunity is afforded of confirming or refuting the statement I have made as experience might warrant. The only object I have had in view in noticing so important an interest as "What is to constitute the future field fences of Western Canada?" is to elicit truth, and to obtain the most reliable information as to the best adapted plant for that purpose, before mischief on an extended scale is committed. If, upon the introduction of a new prinoiple of fencing, We commeace the work by selecting a plant possessing the advantages and free from the objections pointed out, a good work will hơve been performed, much discouragement rêmoved, and painful disappointment, cost, and labour avoided by the farmer. No man who wishes well to the undertaking should take offence, when none is intended, at finding a favorite and long cherished theory of his own assailed and damaged, when temperately conducted and for a worthy purpose. And whether well qualified or not to convey additional information to that already acquired, he still merits applause who frankly and faithfully volunteers to the public the extent of his own experiences. On that principle Mr. Leslie merits the thanks of the pablic in directing attention to the eligibility of cedar, hemlock; spruce, and cther kinds of exergreens, for fence purposes. Any thing retaining its vexdant character throughout a dreary winter is valuable, independont of its usefulnesss as:a pleasing reminiscence of summer, and a graceful ornament at all seasons.

I greatly approve of Col. Mark's suggestion, that Agricultural Societies should offer a premium for the best specimens of weil trained Live Fences, for fiel purposes-not ornamental. The effort to grow them is desirving of every encourgoment, and as a prospective benefit to the Province, of the utmost consequence, ard well merits the futare. consideration of the Club.

The Rev. Mr. Schrieber's assertion, that to "grow a hedge is the simplest of all simple things," may apply with some truth to England, where the climate is favorable to the growth of the quickset, labor cheap, and the cost of the plant a mere trifle; but to look for the same result in Canada, in the absence of like advantages, would only lead to disappoinṫment. Instéad of its being a simple operation, it will be found a most arduous one, requiring much outiay, constant attention, and unyielding perseverance, to succeed in growing a good hedge: During a long aind inclement wintot, no ontaoor work uf hedge dressing can be porformed (ad in England, the season there particularly devoted to thit duty) succeeded by a dry and scorohitig siummer, trying the tender and recently planted quickset to the utmost. The time, too, in Catidida, when the hedgo mbst requires attention is the very season when the farper can least spare time and labor to devote to it. Preparing the land to receive grain and other string. orops calls forth all the energies of the farmer, and exacts the application of all the strength at his disposal to teep pace with the rapid advancement of the season, which, if neglected, entails a heaty penalty. Again, in England, the field or outdor work is accessible throughout the year, and every successive month has ita allotment of labour. But in Canada, all field work is suspended for several months, and field operations contracted within a short space of time. The cosit, also, deniés unlimited usé of mannal labori to extra work on the farm, unless applied to thíg production of inmediate profit. The employment of extra hands at the present oppressive rate of vageb, for ornamental purposes and remoto copvenience, would soon leave the farmep penyless who had nothing nore to depend upon than the profits of his farm. I have not introduced these remarks to deter the farmer from pursuing the culture of tive Fences, but to guard tim against the impression that it is a simple and consequently an inexpensive process. The farmer, to grow a good and servicable hedge, must mák up his mind to encounter both cost and labor before he ember in the woyt, or cain out ent to his satisitaction. He will know, howover that every kind of fence demands attention, and muet be well lookea after to keep it in a state to prevent trespass. That being admitted, Ifirmly believe that the Native Thorn, if well handled, and not platited to a greater extent annually than the farmer can conveniently manaje witiout encrozehing on other occupations, will be found in the end the best and cheapest fence he can construct. It nusit, howiver, be the work of time, ond not of force, remembering that the beautiful and enduring Hawthorn Hedges of England are not the production of generation, but of the patient progress of time.
Wm, WcDongal, Esq, Y Yonge Street.

I remain, iny deari Sir, yours truly,
Mill Bank Faim, Yonge Street.
 ensit tried method of imporing botatoes, 'so to téstore, them to the general soundriess; richibess and mediness of this valiable robt:-Ttie plan is this: Keep back some seed fotatoos for six seven weoks after the usum time of planting, say till the last week of Jund or the first week of July, and then planit and cultivate them the same as stock potatoes. The will grow until the frosit withers the vines, when they should be dug. As tiey have not had time to mature they will be quite smáll-not more than an inch or an inch end a half through; but thë́y sforid all be carefully gathered̃, and kept safe from frost though the winter, and planted at the taul time of planting in the spring-one of the smati potátoes being tufficiert ror seed in each hill. The resalt will be large sized,
 some of our farmeri this year:"

 ornäments in ladie ${ }^{3}$ hatr. Onie min manages to earn his living by selling insects and ottier specimén to the strangers who visitt the port. He keeps twelve slaves constantly employed in finding the bugs, Eérpents, end shells which dre most in demand. The nearest approach to his businoss that foe cin rememilier is, that of the trade of fire-fies in Havana; the insect being caught and carefully fed on the sagar cane, is used as an ornament forladies' dresses.-Being twice the size of the American frye-fy, it is very brilliant at night. The oreoles catch them on the plantritions and sell them to thecity belles ; some of them carry them in silver cages attached to their bracelets. They make a fine display by lamplighit. - Setected.

SHIPMENT OU STOCK FOR CANADA.

(AÓridgea from a Dumfrics paper by a Correspond́ent.)

$$
\text { Anan; 24th April, } 185 \dot{6}^{\circ}
$$

There was taken on board the brig James Redding, Captain John Reddick, this afternoon, at Annan, Waterfort Jetties, to sail to-morrow for Quebebe, the following valuable Stock: A siplèzdid dark gray stallion, thriee years old, bred by Wm . Byres, Wharton, Cumberland, parchased for $£ 150$. A'one-year-old brown colt, price $£ 50$, bred by Mr. Johi Jolinstone, White-Know, Nichol Forest, Cumberland. Five Leicester ewes and trio tups, purchased in Englanid, at an average of $£ 7$ each. One yearling short horn bull, bred 'by Mr Syjme, Rëdkirk, purchased from Mr. Isaac Fankes, Outertown, Warmanbie, for $£ 60$. The sheejp and bull are for W. and R. Armstrong, Markham, Canada West; and the horses béfong to Mr. Jöseph Thomson, there, who sails with the brig in charge of the animale, having come to this country expressly to purchase. The gray stallion is highily recommended, and took twio premiums at Carlisle District Agricultural Meetings. Also, four one-year-ola, pure-bred, short-horn heifers, fram Mi: Symie,'Re'dkirk; Gretna's highily-valued herd; and a bull, one year and two months old, from the saime lierd, valued at $£ 60$. Allso, a one-year-old ball, from near, Coldsitream, valuè at $\dot{\text { E. } 60 . ~ T h e s e ~ s h o r t-h o r u s ~ a r e ~ o f ~}$ the purest breed, and are shipped for Mr. George Millar, Marchiami ; except the fristmentioned shotithoth bull, whoh goes as a present to a friend of Mr. Sjemës, resident in the vicinity of Toronto. There are also two rams, Prom the stock of Mr. Wilkin, Tinwald Dowtis, for Mr. Millar, valièd at £15 each. Five Léicester rames and fourteen ewres vith lambs, purchased in Forkshire and the borders, at high prices, for Mr. James Dickson, Clarke Township, Cañada West. A fine short-horni bull and heifer; and a Galway heifer, bred at Ballitge, stewardy of Kirkcudbright, for Mr. George Roddick, Cobourg. A sịe-year-old brown colt, bred by Mr. Wilijom Dalziel, Castle Frill, by Lockerbie; shipped by Mr. Dalziel's brother, who goes oüt as an emigraint. We observed, also, two turnip-catters, from Stakepond Foundry; a plough ánd a suàing-machirié, shipped by Mr. Syme, Redkitk; also, é quántity of tarnip-seed, for Mr. George Roddick, Cobourg, de.

ETERLASTING LAYERS, \&

I met with an odd Number, a long time ago, wherein Mr. Buckiand zecommended keeping a kind of domestic fowls he terimed everlasting layers, which I expect are the same as I kept in England, known by tiee name of Algeirenes. I had them five or six years old, that never shewed any inclibation to sit, so that I kept two or three of the common kind to hatel obickens. I know their value but should like to know where they are to begit:in this country. Perhaps Mr. Buckland conld tell me.
I should also like to know, vhether it would answer to sow lucerne amongst barley in the same manner as clover, in order to obtain a crop the next season, as I should like to seed down my orchard with it.

A Subsoriber:
To the Editor of the "Candian Agriculturist," Toronto, C.W.
-Remargs.-I am not aware to what particular öbservations of mine a "Stibseriber" alludes. The term "Everlasting Layers " is applied to hens derived from different breeds, but more particularly from those of the Spanish and Hambüry or Dutch. Where the particular variety mentioned by "A Subscriber" can be procured in thìs country, I èan give no prëdise information. Something, probably, might be learnt by applyin's to some of the numerotis improvers of poultry, either in Canada or the United Stątes. Whére any cocrisiderabie number of fowls is kept, a few hens which are not inclined to sit,' and lay a larger nitmiber of eggs throubi'
most of the year, particulariy in winter, are much to $b \in$ sought after and encouraged. It should be remembered, however, that continual laying terds. very much to debilitate the condition of the bird: and for purposes of breeding, hens that are good sitters must be used for hatching the eggs. The black Spanish, or some of its subvarieties, are among the most prolific layers, and their flesh is particularly fine and delicious. By warmth and judicious feeding a hen may be made to lay as many eggs in two years as she would ander ordinary treatment in three; and everybody knows that a fowl fattened at two years old is mach more tender and palatable than one that is older. This and other breeds distinguished as abundant layers, has the reputation of being particularly liable to lay soft or shell-less eggs. Too much exciting food will sometimes produce this effect among poultry in general. Close confinement, or the want of fresh grass, or the absence of calcarious matter, such as lime, rubbish or chalky materials, may occasion in the eggs of the Spanish more than other fowls à deficiency of shell formation.
"No one," remarks a modern author, "who has not observed the natural craving Which poultry closely immured and fed on dry diet testify for green food, such as parsley, cabbage, and betileaves, can imagine the avidity with which they will deviour such substances at times. Confined in towns, fowls often experience an intense longing for such a change from grain; and if the desire be not satisfied, the Spanish, more than fowls generally; from their greater sensibilities, may suffer in the internal agencies which are necessary for the shell-work of the egg."

With respect to seeding down an orchard with lacerne, it would be better not to have barley, oats, or indeed any spring crop whatever. Lucerne belongs to the lime family of plants, and will not thrive upon a wet clay or a poor sandy soil. Upon deep, calcarious, rocky soils it produces abuindantly. The shade of trees, however, would cause it to be feeble and less nutricious. - It is a plant, on a genial soil, and under suitable treatment, that is very productive, and may be mown two or three times in the course of the season.: It should be sown in rows, the intervals kept perfectly clean by the frequent use of the hoe, and a liberal top dressing of farmyard manure should be given at least every second year. Being a long-rooted plant, deep and perfectly clear culture is essential in preparing the ground for this crop.
G. B.

GROWING PEACH TREES.

Friend Moore, of Norwich, C.W., gives us the result of his experience in raising Peach Trees, generally considered a difficult operation in Canada: He says:-
"I have 275 peach trees on my farm, and not one dead one, while my neighbours are digging theirs up. I find they have generally brought their trees from a distance, the soilin which they were grown being different from that in which they now are. Mine were all raised from the pit, in thie same soil they are now growing in. Query-Does a change of soil hure the vitality of the tree ?

Thy friend, Gtibert Moore:"

PATERSON'S REAPER.

We intended in our last number to have called the attention of readers in the neighborhood of Richmond Hill, and adjoining townships, to the Implement establishment of Paterson \& Brothers, near the Richmond Hill Station of the Northern Railroad. They are an, enterptising firm, and so far as we can learn, their machinery has given much satisfaction to those who have used it. : They make an improved Reaper of the Seymour \& Morgan pattern; and from the testimonials given them by a number of farmers, whose names are a sufficient gaarantee for thie truth of their:statements, we hare no hesitation in recommending their Reaper to the poblic. It is generally admitted that, as a Reaper only; the Seymour \& Morgan pattern is not excelled by any other yet introduced into Canada.

REAPERS AND MOWERS.

So many machines, more or less "improved," are now before the public, that it is becoming rather difficult to determine their respective merits, and purchasers are at a loss to know which will best answer their purpose. As we remarked in a former namber, no one machine will be found the best under all circumstances; and it therefore becomes important to ascertain the distinctive traits and peculiarities of each. We obsorve that in the trials of Reapers to be made this year in several of the adjoining States, a scale of "points" has been decided upon, to enable judges to give a more intelligent and satisfactory decision than under the hap-hazard system. We would recommerd a similar plan for trials in Canada, and it shouldialso be adoptecl as far as practicable at Shows. The State Agricultural Society of Illincis propose a trial of Reapers and Mowers, to begin with the harvest in the southern part of the State, and go to various places north as the grain ripens. Three persons are to be placed at each place of trial, when decisions are to be made upon a scale of points annexed; and are to seal up their decisions, and to deliver them to the Superintendent appointed by the Society; and at the close of the season, the decisions are to be opened by the Execritive Board, during the State Fair. The machines on trial are all to be present at the Fair. Six entries are required by the 15th of May, to insure th etrial. Entry, $\$ 100$; premiums of Reaper, $\$ 50, \$ 25$; Mower, $\$ 50, \$ 25$; combined Reaper and Mower, $\$ 50, \$ 25$.

This will be a good opportunity to test machines; and should the Judges be discreet and disinterested men, we should hope for a decision that would prove valuable.

SCALE OF POINTS IN TRIAIS OF REARERS.

No. 1. $\quad 9$ Cost of machine.
2. 8 Simplicity of construction to do its work.
3. 10 Facility of management, including time and room required for turning.
4. 30 Durability and reliability.
5. 16 Adaptation to varied and uneven surfaces, and to catting at different heights.
6. 30 Freedom of the knife from clogging by fibrous or gummy matter.
7. 9 Motive power, or power required for a given: amount of work.
8. 45 Manual labor in raking.
9. 26: Rapidity, or amount of harvesting in a given time.
10. 45 The manner of leaving the grain for binding.
11. 72 Saving of grain in cutting, binding, ànd handling.

$$
300
$$

SGALE OF PONNTS IN MOWEPS.

No. 1, 9 Cost of machine.
2. 8 Simplicity of construction to do its work.
3. 10 Facility of management, including time and room required for turning.
4. 30 Durability and reliability.
5. 10 Adaptation to yaried surfaces.
6. 16 Adaptation to cutting close, \&c.
7. 70 Freedom of the knife from clogging.
8. 9 Motive power, \&o.
9. 20 Rapidity, or amount of cutting in a given time.
10. 30 Manner of leaving grass for curing.

212
SCALE OF COMOBNED REAPERS AND HOWERS.
300 Reaper scale.
212 Mower scale.
38 Ease of convertibility.

HOW TO DISSOLVE BONES.

Chinguacousy, May 2nd, 1856.
Str,-I notice in your January number the superior value of bunes dissolved in. sulphuric acid, compared with ground bones, as an appliration to the Turnip crop. Would you be so kind as to infarm your readers what quantity of sulphuric acid to a certain quantity of bones, and what kind of a place or vessel to dissolve in, and how nsed after dissolved ; and. you will much oblige, your humble servant,

JoHin Smexl.
18t. How the Bones shocid br prepared.-The bones to be used cannot be broken too small; the more extensive the surface presented to the action of the acid, the more rapid and perfect will be the solution. The bunes usually employed are in too large pieces; and a higher price should willingly be given fur them when reduced to a povider. In every farmyard, an old sugar hogshead should be kept, into which all the bones, woollen rags, old hats, and broken leather should le thrown and preserved for being reduced to manure in the víbrigl vat,

2nd. Quantity or. Vitriol to be psep. -The acid should be purchased of full strength, that is, of the specific gravity at which it is sent from the manufactury, viz., $\mathbf{1} .845$. It should be kept in a closed vessel, as when exposed it rapidly attracts moisture from the air, and becomes weaker. It must not be forgotten that it will burn both the skin and clothes, if allowed to come into contact with them. When the strong acid is mixed with water, a considerable amount of heat is produced:; twenty-five pounds of oil of vitrigl mixed with ten pounds of water, will raise the temperature to 266 degrees. The proportion of acid to be used in the preparation of vitriolizad bonos, is one hundred weight of acid for every two hundred weight of bones to be tissolred. A smaller amount of acid is frequently applied; but the above proporticis will give the most satisfactory results..

3rd. Quantity of Water and mode of appixing IT.-When unuiuted vitriol is poured upon bones, violent action is produced, bat continues for a very short time, as the gypsum, which is the first new compound formed, covers the surface of the pieces of bone with a crast, which prevents the acid from coming into contact with the unaltered portions, and in consequence its action is retarded, and a perfect solution is not procared. If we drop some concentrated vitriol upon a piece of limestone, there is a bubbling up or effervescence from the escape of carbonic acid gas.; but it continues only for an instanit. A crust of gypsum forms and protects the stone from the acid; but if we use vitriol diluted with prater, the action and escape of gas continue for a much longer time. The best plani, therefore, is to thoroughly moisten the bones we intend to dissolve, by pouring orer them a quantity of water and allowing them to soak in it for an hour or two before addrng the acid. The quantity of water rised should he three or four times that of the vitiol to be employed. This mode of applying the water obyiates the trondle of mixing together the vitriol and water in a separate vessel, as some recommend, and the heat generated, by adding the strong acid to the moistened bones, greatly facilitates the decomposition, and hastens the preparation of the compound.

4th. How the Mrxtuin of mee Abóve materitis should be made.-Six bushels of bones, ground as fine as possible, are to be placed in any convenient vessel; an old iron boiler, or a sugar fogsheai, even thongh not perfectly water-tight, may be made fit for use by plastering up the holes and seams with plaster of Paris, or by filling them with melted pitch or asphalte; and even a hole dug in the ground,
and lined with firm plastic clas, may be used when no proper vessel can be procured. An old sugar hugghead, however, fith about a third of its length cut off, and the seams sccured by a coating of pitch, asphalte, or phaster of Paris, makes a first-rate vitriol rat. In the first plice, 48 gallons of wator should be poured over the bones, and after alluwing them to temain together for an hour or two, that the pores of the bones may be penetrated by the liquid; 133 lbs. of strong vitriol should be added, as the exact quantity required should be ordered from thie manufacturcr, to avoid tho trouble of weighing and pouring from vessel to vessel, which would otherwise be necessary. When the acid has been added and the riolent efferrescence has ceased, the misture should de occasionally stirred up; for which purpose a tro-prunged fork may be conreniently used. As the fumes , which are given off are exceedingly unpleasant, the vessel should be placed under a shed, at some distance from the dwell-ing-house. In about three days the solution will be ready for mising with charred peat muld, sar-dust, or any convenient substance ; or it may be diluted with fifty or sisty times its bulk of water, and applied with the manture-cart. The quantitiea given above will be sufficient to prépare manure for a statute act, .ad if used with half the usual quantity of farm-yard manure, which is a plan highly to be recommended, in convenient sitùations- there will le a sumeicient supply for two acres.

The farmer will remember, that there vitriolized bores are the only nanure applied, the addition of some alkiline substance will be found a judicious practice.

WOOD ASHES.

The virtue of ashes as a dressing for all crops, is, we think, not properly appreciated by a great many, who live by tilling the soil. It is everywhere and on all crops, except perhaps clover, worth as much as plaster, and, on zome, far exceeds it as a solvent and. stimulant of regetation. Its action. is palpable to the mucs carelessabserver in its effects, and the manner in which it acts, is of ensy explanation, thich is more than can be said of plaster.
In the first-place, potásh is one:of the most deliquescent salts, or has azility to attrict moisture. A lump of pctash, when dry, is as soiid and hard as a well burwed brick, but when exposed to a damp, or night aiz, it neer ry donbles its weight and becomes a liquid, so great is its attraction fop watery vapor. This is one of its features, but its great and important function is the supply of silicate of pota3h-silex or sand dissolved in potashto form the glazing of straw, hay; cornstalks, and varions other vegetable structures, without which no 'cereal crop can be perffected.
Some soils, particularly clays, contain a sufficient portion of this materia], until they become worn and effete: Ashes are most beneficial on saidy, loamy and gravelly soils, that do not contain mingral potasi, or its elements. When compared with plaster, the only objection to the profitable use of ashes is its easy solubility-heary rains dissolve and carry off the potash begond the reach of the plant'; while plaster being insoluble, ite action is: not destroy ed by water.
In this region, wood ashes are sbout eight cents per bushel; while the price of plaster at the mill ie about twelve gente, and the draking it.seseral miles to be added to its cost; which if our position is:correct as to the ralue of the two manures, it behoves the farmer to make: and sase all the.ashes he csan; especially for the corri crop, for whichit is winanimonsly admitted to be worth more than plaster. . The onstom is now.generally pretailing, to mix them together, producing: yery striking effect. It has heen suggested that broad cast powing of ashes is equally efficacions with application to the hills, and we are digposed, from some experiments ezthibited, to give credencee to that course, if double the quantity is. 50 applied.
With leached ashes, the effect is not as quick, nor as apparent on crops as unleached; bat their action is longer felt when treble the quantity is used. They contain silex in a firm and impalpable atate, and some potash and lime, ready for solution. Silex ur firit Joing artificially nearly insoluble, except by the.flooric auid, a isnbstance very spátingly produced by nature, and thein in a neutral combined state.- Rochester New Yorkier.
Soda Fricd Caikb;-One cup of milk, two of sugar, three egge, two teaspoons of cream tartar, one of soda.

H.ARROW S.

A well constructed harrow is a most important and effective implement in fitting the soil for the reception of seed, by breaking up clods, disengaging roots, and pulverising the eurth. Great improvements have been made within a comparatively recent period in the construction of the harrow, by which a more perfect pulverisation of the ground and a great saving of time and strength are each secured; and he must have lived aind observed to little purpose, who is content to use the old clumsy and coarse harrow of former days, when any of the several improved forms are so readily obtained.

Harrow tee角 should be made of Swede's iron, steel pointed, tapered at the upper end to fit a corresponding mortise made through the timber ; and the teeth made fast by a nat and screew, to prevent their becoming loose, working up, or falling out.

We give above a cut of an Improved Hinge Harrow. It is usually made to take:a breadth of five feet. It is composed of two pieces of frame-work, connected to each other by iron hinges coming together like cowmon barn-door hinges, and which, extending across the pieces widthwise, aro bolted to each bar, thus greatly strengthening the harrow. The ends of the bars are secured from splitting by iron rivets. The harrow may be folded double, or separated into two parts, for the convenience of transportation or other purpose. Either half may be lifted for any purpose while the implement is in motion; and the easy and iadependent play of the parts up and down upon the hinges, enables the instrument to adapt itself to the surface of the ground in all places, so that whether going through hoilows, or over knolls and ridges, it is always at work, and every tootin has an operation upon the sqil. There are thirty teeth in the harrow, and yet they stand equidistant and wide apart each way, so that while from their nomber and arrangement the ground is worked fine, they are not liable to clog, This harrow is made heary for rough land and the pulverising of sod furrows, or light for grain and gress seed. It is a very light pretty harrow for onc horse, when made of bars 27 inches square, with teeth of half inch steel; and thus made, and carrying a breadth of ñve feet; one horse will harrow as much ground in a day with it, as is usanlly accomplished by two horses: It is made to draw either end forward.; nnd when the teeth become dull by working ir one divection forward, the team may be hitched to the other end, 'and they are sharp again.

In a former number, we gave a cut of an Expanding Reversible Harrow, which we Hed this Spring, and found useful smong stumpsiand on rough ground. It cost about $\$ 7$ to construct it.

AGRICULTURAL REP.ORTS:

Oaledonia Flats, 21 st April, 1856.
Dear Sir, -A's my garden has been selected by the experts of the Township of Caledonia, as the one entitled to your premium, and as you require information not furnished you, and as you request it, I will endeavour to furnish you with some information respecting it.

The garden in question is situated about the centre of Caledonia. Flats, on the banks of the Caledonia Creek, which meanders through this fertile tract, which was first located and improved by the late John Ohesser, sen., Esq., who was one of the pioneens in this section of country. It can be only considered a good kitchen garden, with some choice apples and some small fruit, such as three kinds of currants and some gooseberry bushes, \&c.

From the depth and fertility of the soil, vegotables are prodiced in great profusion; but as I am not a professed gardener, I cannot give you such a description as you may wish, but if I am spared a few years I will introduce fruit and flowers that will fully come up to your requirements. Thanking you for your liberal premium,

I am, dear Sir, yours respectfully;
(Signed) Wm. Bradiey.
Charles P. Treadwell, Esq.,
Ex-President of Agricultural Association of Upper Canada.

Caledonia, 17th April, 1856.
Dear Sir,-On reading the report of the experts of the Township of Caledonia, Agricultaral Society, I am fully convinced that justice was not done, in furnishing you the required information in regard to the farming operations of persons competing for your premiums, and as my name was returneü as being entitled to the premium for the best farm in this Townohip, and as you particularly requested that I would furnisis you with a statemeat of my mode of farming, I will endearour to do it in as brief a manner as possible, and I regret that it had Hot bsen done at an earlier date.

Your object in advancing the interests of agriculture is generally acknowledged throughout the country, aud I hope that the suggestions which you made may yet be appended to the Agricultural Law of the Province. The farm offered for competition is the one on which I reside, being camposed of the east half of Iot No. 12, in the first concession of Caledonia, two miles from the Caledonia Springs, with a fine creek running through it, near my house and barn-yard. The farm has been reclaimed by my own hand from the forest, except some small patohes cut out to make potash. I came to this country a poor lad in 1825, alone and withoutfunds; from Fermanagh in Ireland; therefore it cannut be expected that the perfect system of British agriculture can possibly be carried on, when the owner of the farm is obliged to lodge in the first and second year in a cabin, covered with the bark of trees taken from the surrounding forest. The soil is mostly a sandy loam, with a sub-stratum of limestone, of the best quality for building, and also for makinglime of a superior quality. The wood land is reserved on an adjoining farm, on which there are excellent farm buildings. I regret to state that I have made several aitempts to plant an orchard, but have not succeeded. I have, however, young trees growing, from which I hope better success. I always plough and prepare as much ground as possible in the autumn, owing to the ahort season allowed by the spring for farming operations. I grow Swedish turnips, carrots, beets, and mangelwurtzel, but not in large quantitios. I have, in former years, produced gne thousand bushels of Swedish turnips on an acre. I always sow pease, and plant corn and potatoes, and have large crops of each. I generally sow wheat after the root and corn crops, and seed down with timothy and clover. I generally mow it for three years, and then, as I have more land than I can manure properly, I pasture it for a certain number of years, to renovate it before breaking it up, when I sow pease, and if the land is in good hearit, sometimes wheat.
I use the Sootch irou plough, the Scotoh harrow, and the drill harrow, with both cart and waggons for gathering the harvest and putting out manure.

In reference to cattle, I would remark that seyeral years since the Agricultural Socinty of the United Counties of Piescoit and Russell'purchased a fine Ayrshire bull and'a

Leicestershirg buck, which the Society found it inconvenient to keep more than one year, and when they wore sold at auction, \boldsymbol{y} secured the buill, by which my stock and that of the neighbourhood has been much improved; and I recently procured a full-blood shorthorn bull; bred by Captaia Rhodes; which promises well, and will do much for this qicinity. My stock of horses is mostly of the Canadian breed, being fully convinced that for the work of this country there is no forse thats for the samel yalue and kcep, will perform so much service.

My sheep are the Canadian, crossed with Leicester; they are \#ell adapted to se clinuate, and give good wool and good mutton. My swine aro a cross between the riass breed and Berkshire, and angwer weil. Poultry is the common dunghill fowl, which lay well, and, when fat, are excellent for the table. I keep geese and ducks, and they have a inpereek to smim in. I have surface and subsoil drains, the latter filled with stenes, anc. covered with straw and brush, and then with sods (the grass downward), to prevent the earth from sinking and obstructing the water, and of sumicient depth not to be inferfered with by the frost and not to impede the plough,
I regret that there are no tile drain machines yet introduced 'n to this section of rountry. My fences are made of heayy codar logs, well capped and siaked, and when I have stone to draw from the fields, I have made half wall, and put on two rounds of cedars, with caps and stakes; these form a, prote tion against pigs, sheep, and unruly cattle. My buildings consist of a good stone house, with a verandah around it, an exicellent cellar under the whole of it, a part of wiich forms a fine dairy roum, with a door towards the creek, gowing out on a level with the ground, and well vontilated; an excellent wood house and a carriage house, a stone ash house and smoke; one fine bern, two stables, and one hundred and fifty feet of shed connecting the stables and barn, and completely enclosing the farm-yard.

I fully agrege with your remariks in reference to every member of the Agricultural Society, being furnished with acopy of the Toronto Agriculturist; and this should be rendered imperative by statute, and I fally endorse your yiews that every farmer should gicw his own timothy and cloyer seed.
My business has not been purely agricultural, for having generally a large amount of produce, and not always a remunerative market, I have turbed it into lumber, and I , have been rather fortunate in choosing favourable years for these operations, and if I have been successful, it has been in a great degree owing to the cie circumstances:

I have a son, who is just setting out in life as a farmer, on a farm that has been cleared of stūmps and stones, and wíchis wisll fénced, and T have récommended him to adopt the sysiem which you have condensed in your offer of premiums, and the maikno of a chart of his farm, and the keeping of a strict account of hir farming operation-are things I will urge him by no means to omit:

Should you think that these observations may be of any service to the public, you are at liberty to publish them. Thanking you for your liberal preminm of fre pounds,

I ám, dear pir, yours noost respécifuly,
Charles P. Treadivell, Esq., \&c., I'Origaal.
(Sibneà) Jayes Cross.

- T TRIAL OF PLOUGHS-REPORT OF COMMITTEE.

Toronto, 30th May 1856.
SIn-The undersigned hapiag been requested to act as a Committee to tent the efficiency and ease of draught of the several Ploughs entered at a trial which took place near York Mills, Yonge Street, on the 29th April, beg to send you the following remarke, as the ressult of their inspection:-
.Five Ploughs were entered, namely, one made by Modeland, of Bramptoń, Co. Peel.; one by Bingham, of Norwich, Co Oxford; one by Gray, of Haddington, Lanarkshire, ScotiJnd; one by Howard, of.Norfolk; England; and a Lap-furiow Plough, made by Ruggles \& Nourse, Worcester, Mizasschusetts.

As the Committee qopsidered that the merits of a Plough consist yot merely in the quality of the work done, but also in the small amount of force or traction necessary for Forking the implement, they applied, as a test of this, Smali's dynamometer, a yery simple and excelleat instrument. The result was as foilows:-

DRAUGRT.		
cwit.	1 lbs	
$\ldots . .3$	108	
$\ldots 3$	96	
$\ldots 4$	32	
$\ldots . .4$	00	
$\ldots . .4$	28	

	FURROW BLICE.	
	Depth, in.	Width, in.
\cdots	6	8
\cdots	6	9
\cdots	5	8
\cdots	5	8
\cdots	5	8
\cdots	5	10

From this table it will appear that Bingham's plough required less force than any of the others, while the furrow slice was larger. This implement reflects great oredit on the inventor and manufacturer. The mould-board is very well shaped, and is calculated to lay down the slice properly. It may, be-remarked, however, that this Plough did not give the furrow slice.so good a cut as some others. This, nc doubt, was in great measure owing to the set of the irons-a point so essential to the proper wooking of a plough. The result was, that the grass was very imperfectly buried, and a much smaller cmpunt of tilth was given for covering the seed. This defect can be remedied by any blacksmith who has been accustomed to put plough irons in order. The clevis of this plough whas regulated by a screw, very ingeniously applied. The workmanship. Was very good; and altogether, this implement seems to deserve the encomiums passed on it nere and in Europe.
Modeland's plough is very similar in shape and construction to Bingham's, and owing to the set of the irons, did the work better. It is strongly made, and is highly commended by those who have used it.
Gray's Scotoh Iron Plough made the best work. This plough holds, on this side of the Atlantic, the high position which it has attained in Great Britain; it is unquestionably the best implement in use as a sward-plough, that is, for thorough and handsome work, It is, howerer, heavy, cumbrous, and hardio draw. The same patterns of castings, when affixed properly to wood, as has been done by Mr. Cairns of Paris, C.W., and others, give a handy and excellent implement easily drawn, and in every respect better suited -or every-day work than the iron plough.

The next in order is Howard's. This plough made fair work, but, \&s will be seen from the table, requires considerable force. It is a very complicated, heavy, expensive implement, and unsuited to the country. It had, however, the merit of a skim-coalter ; but which, not bsing used at the trial, deprized the plough of one of its important elements. The skici-coulter is an approximativa to, the principle of the Michigan sub-soil. It cuts a. thin paring from the top of the furrow slice, and thas more effectually buries the grass than can be done by the ordirary coulter. The American plough, however, is stronger, cheaper, and does the work far more thoroughly.

The last plough regularly entered for trial, was the "Lap-furrow." In light soil and.in cross-ploughing, or stubble ground, in which there is not mach grass, this plough might bo used with advantage. It is capable of performing a large amount of work in a given time, but on stiff sod or hard clay it would make very inferior work.

The undersigned regret that a fair trial couid not be given to the dquble plough of Messrs. Ruggles \& Nourse. Although thisimplement is much inferior to those madeon the same principle in the State of New York, yet in the hands of a good ploughman, it was eapable of meking better work than any plough on the ground. Jnfortunetely the ploughmen present were, unacquainted with the implement: it was also out of oider, and there was too little time for a fair tial of it. As an exterminator of couch grass; and a deap and thorough tiller, it stands anrivalled, and seems destined to supersede many ploughs now in use. The undersigned tronid suggest to the intelligent and thoroughly practical farmers of York, tho propriety of making a special occasion for the trial of this important implen.ent. This is all that is needed to render it generally appreciated.
In conclusion, it may be remarked that trial matciés, such as that got up at your suggestion, will bear an inportant part in promoting good husbandry. They bring out many points which do not and cannot be made to appear at the ordinaxy ploughing match, Dy testing comparatively different implements. They deserve encouragement and attentive consideration from farmers, becaase, when yroperly managed, they must produce lasting wenefits:-We have the honour to be, Sir, your obsdient servants,

> David Giristic.
> E. Wi Thoxpson: Join Wade:

W. McDougall, Esq., Editor Canafian Agriculturist.

IIt ie propor to state that Col. Thompson and Mr. Wade did not actuully sign the above, but expressed their concarrenee in separate communications, which do not essentialiy differ from the more formal statement of Messrs. Ohristie and Aikins.-ED.]

Errata.-In a communication on fencing, which appeared in the May number, over the signature "C. P. T.," two or three errors escaped notice, which the author has requested us to correct. On page 141, 8th line from bottom, for "inruads of frogs," read "inroads of hogs." In 1th line from bottom for "moss fence," read "live fence." The reader will easily detect typographical errors that do not make a different word, but the above injure the sense.

Odr Correspondents.-We are pleased to find that our agricultural friends are waking up to the importance of an interchange of views in the shape of correspondence in the Agriculturist. We have several communications on hand which we are obliged to defer for want of space. We endeavor to give insertion first, to those which, from their contents, are most applicable to the operations of the month in which they appear. Those of a general character and which ara equally interesting at any period, must give place. We shall at all times be happy to receive the views and opinions of our readers, on practical points especially, and resign a large share of our editorial space to their communications.

New Iuplements.-At the Show of the Yonge St. Ag. Soc., held at Richmond Hill, on the 22d ult., we noticed some excellent horses, and several promising colts and fillies. The implements exhibited were also of a superior description, indicating the rapid progress Canada is making in the construction of labor saving machinery for agricultural purposes. The Reaping Machine of the Messrs. Patterson \& Brothers, of Richmond IIIl, was awarded the first prize. It was finished and adjusted in a most superior manner. Mr. Goodfellow's Reaper was also well got up; and the frame work of a Reaper was exhibited by Mr. George Darling, which has some new features. A new Morse Rake, manufactured by Mr. Eckhart, of Unionville, Markham, was considered by some the most perfect implement of the lind, they had ever seen. Ilis Cultivators were also very much approved. This Society appears to be in a flourishing condition.
L. G. Morris' Great Sale of Devonis, Shont Iorns, \&c. - We beg to direct the attention of our readers, especially thuse interested in the brecding of improved stock, to the advertisement of Col. L. G. Arorris, on another
page. We hare seen his herd of short horns, and knowing that he has importei some of the very best blood to be Lad in England, and at prices that no one with ordinary means could afford to pay, we can safely aver, that no better opportunity has ever been afforded on this side of the Atlantic, to secure cattle from the best herds of England, without the risk of importation, and probably at reasonable prices. Col. Morris informs us that he intends to sell about fifteen short horn bulls and bull calves, and his entire herd of Devons, probably the best in America, without reserve. He intends to confine his attention hereafter to the short horns, and therefore will clear his farm of all other stock, including his South Down Sheep, and Berkshire and Essex Pigs. We thank Col. M. for his kind invitation to visit Mount Fordham. If our own farming operations permitted, we should be happy to accept the offer of a "reserved bed" at his hospitable mansion during the sale, but we fear we shall be detained at home by duties which cannot well be entrusted to others. The sale takes place on the 24 th and 25 th June.

Prize List.-We will present with our next number the Prize List for the coming Provincial Exhibition at Kingston.

Declined.-We respectfully decline to insert the lines "On the Death of My Sister," on the ground that they are hardly suited to our pages.
Col. Morris' Sale.-We have received an Cllustrated Catalogne of the Shurt IIorn and Devon Stock to be sold on the 24th and 25th June, at Mount Fordham, N. Y., by Col. S. G. Morris. Any of our readers who may wish to consult this Catalogue can hare the opportunity by calling at the Ayriculturist office.

Regrsternva Cattle.-A subscriber wants to know how he may obtain Certificates of Register for Cattle. He should apply to the Board of Agriculture in this city, stating full particulars of pedigree, both on the part of Sire and Dam. A connection must be shown with the British or American Stud or IIerd Books.

Pedignees of Canadian Stock.-We hare handed Mr. Walton's communication to Mr. Buckiand. The Boaril of Agricilture have both the American and English Merd Books in their library, and we have no dould the information desired by Mr. W. will be sent him.

[^0]:
 \dagger Experiments of:Dr. Grilbert and:Mr. Einves.

