CIHM
 Microfiche Series
 (Monographs)

> ICMH
> Collection de microfiches (monographies)

Canadian institute for Historicai Microreproductions / Institut canadion de microreproductions historiques

Tha Institute has attempted to obtain the best orlginal copy available for filming. Features of this copy which may be bibliographleally unigee, which may alter any of the lanages in the reproduction, or which may significantly change the usual method of filming, are checkad bolow.

Coloured covers/
Couverture de couleur
Covirs damerod/
Couverture endommaghe

Covers restored end/or laminated/
Couverture restaurie at/ou pelliculte
Cower tith missing/
La titre de couverture manque

Coloured mapal
Cartes ghographiques an couleur
Coloured ink (i.a. other then blue or black)/
Encre de coulaur (i.a. eutre que blave cu noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en coulaur

Bound with other material/
Ralit avec d'outres documents
Tight binding may cause shedows or distortion along interior margin/
La reliura serrie peut causer de l'ombra ou de ia distorsion la long do la marge intériaure

Blank laaves addod during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se paut qua carteines pages blanches ajouties lors d'une restauration apparaissent dans la texte. mais, lorsque cela était possib/a. ces pages n'ont pas íté filmies.

L'Inatitut a mierofilime le meillour axemploire qu'll liui a dite posslble de se procurer. Les ditallis de cet exomplaire qui somt peut-itre uniques du point de vee bibliographique, qui peuvent modifior una imapo reproduite, ou qui peument exiger una modification dens la méthode normale de filmaye somt indiquis cl-dossous.

Coloured pagos/
Pages de couleurPayes damezod/
Peges endommegiosPages restored and/or laminated/
Pages restauries et/ou pellicullies

Pages discoloured, stained or foxed/
Pages difeolories, tacheties ou piquies
Pages doteched/
Pages ditachies

Showthrough/
TransparenceQuality of print verles/
Qualite indgale de l'impressionContinuous pegination/
Pagination continuaInciudes indax (es)/
Comprend un (dos) index
Titia on header takan from:/
La titra da l'an-tete provient:
Titia page of issua/
Page de titra de la livraison

Caption of issua/
Titre de départ de la livraison
\square Masthead/
Génériqua (púriodiques) de la livralson

Additional comments:/ Pagination is as follows: p. 33J-347.
Commentaires supplémentaires:

This itam is filmed at tha reduction ratio checked below/ Ce documant est filmé au taux de riduction indiquid ci-dassous.

The copy filimed here hes been reproduced thanks to the generosity of:

Archives of Ontarlo
Torento

Tha images appeering here are the best queity poasibie considaring the condition and legiblity of the originoi copy end In keeping with the filming contrect epecifications.

Originai coples in printed papar covers ars filmed beglnning with the fronz cover and ending on tha hest pega with a printed or illuatrated impression, of tha back cover whan sppropriata. All othar origlnai coples are filmed beginning on the flrst paga with a printed or iliustretsd impression, and ending on tha lase paga with a printed or Illustrated impression.

The lest recorded frame on aach microfiche shall contain the symbol \rightarrow (maaning "CONTINUED"), of the symbol ∇ (maaning "END"). whichever applios.

Maps, piates, charts, etc., may be filmed at diffarant reduction ratios. Those toc larga to ba entirely Included In one exposure are filimed beginning In the uppar late hand corner, loft to right snd sop to bottom, as many frames se requirad. The following dlagrams illustrata the method:

L'examplaire filimd fut reproduit grice it it géndrosité da:

Arehlues publlaues de IoOntario Torento

Les imegas suivantes ont tré raproduitas svac lo plus grand soln, compta tanu de la condition at de le nattert da iaxamplatra fllmblat an conformited avec lse conditions du contrat ca fillmege.

Lee exemplairee orlginaux dont la couverture on pepier cet lmprimde sont flimbs an commencant per lo promior plat at on tarminant soit par ia darnldre paga qui comporta une emprainta dimpression ou d'lliustration, sole par is second plot, selon le eas. Tous les autres exempiaires originaux sont flimse an commencant par ia promitre pega qui comporto una ampreinta d'impreasion ou dililustration of en terminant par lo dernidre paga qui comporte una talia empreinte.

Un des eymboles suivanta apparsitra sur la dernilire limaga de chaque mileroflche, seion ie cas: In symbola \rightarrow slgnific "A SUIVRE". ia symbola ∇ slenific "FIN".

Lee cartes. planches, tabiaauk, otc., peuvent dera fiimbe do des taux de réductlon diffórents. Lorsqua le documant est trop grand pour âtre reproduit on un seul cilcht. il ase filmó al partir de l'angla supdriour gauche, de gauche droita. ot da haut an bas. on pronant io nombre d'images nfesasaire. Les diagrammes suivants illustrent la mothode.

Co-operation in Research

: 8
GEORGE ELLERY HALE
Honorary Chairman of the National Research Council of the United States

From the Transactions of the Royal Canadian Institute, Toronto

THE UNIVEPSITY OF TORONTO PRES

COOPERATION IN RESEARCH

By Gromge Ellexy. Hare

Eomorary Chairman of the National Rescurch Cosncil of the Unitad States

No one can survey the part played by science in the war without reflecting on the ultimate infurence of the war on science. Able inventigators have been killed or incapacitated, and with them a host of men who might have taken high places in research. Sources of revenue have been cut off, and the heavy financial burdens permanently imponed 4yon individuals, institutions, and governments must tend to seduce fund available for the advancement of ccience. On the other hand,

- .fidness of acience is appreciated as it never has been before, and wly enlightened governmentu have already recognized that harge niations for rescarch will bring manifold benefits to the state. aders of induatry have aloo been quick to appreciate the increased aunurns th:, recearch renders ponible, and inductrial laboratorice are multiplying at an unprecedented rate. The dearth of available investigators, and the higher salary scale of the industrial world, have seriously affected educational institutions, members of whore ecientific staffis, inadequately paid and tempted by offers of powerful instrumental equipment, have been drawn into the induustries. On the othes hand, industrial leaders have repeatedly emphasized the fundamental importence of acientific recearches made solely for the advancement of knowledge, ciod the neceavity of basing all great induatrial advances on the results of such investigations. Thus they may be expected to contribute even more liberally than before to the development of laboratories orgenized for work of this nature. Educational institutions are aleo likely to recognixe that science ohould play a larger part in their curriculum, and that men skilled in research should be developed in greatly increased numbers. The enhanced appreciation of science by the public, the demand for investigators in the induistries, and the attitude of industrial leaders of wide vision toward fundamental science, should facilitate attempts to secure the added endowments and equipment required.

On the whole, the outlook in America seems most encouragin. But the great advance in science that thus appean to be within reach cannot be attained without organized effort and much hard work. On the one hand, the present interest of the public in science must be developed and utilized to the full, and on the other, the apirit of co-
operation that played $\infty 0$ large a part during the war munat be appliod to the lating advantage of ecience and remearch. Fortunstely enough, thin spirit has not been confined within national boundaries. The harmony and unity of effort displayed by the nations of the Entrante in the provecution of the war have aloo drawn them more closely together in science and research, with coneequences that are bound to prove fruitful in coming years.

The Honourable Elihu Root, who combines the wide vision of a great stateeman with a keen appreciation of the importance and methode of scientific research, has recently exprewed himself as follows:-

Science has bewa arriaging, clamifying, methodizing, dmplifylag everything except itcelf.- It has made ponible the tremendous modera developmeat of the power of ogzenisation which has $\mathbf{2 0}$ muitiplied the effective power of humina eflort tes to make the difierences from the part ceem to be of lind rather than of degree. It hes oganimed itself very imperfectly. Scientific men are oaly recently scelizing thet the principles which apply to succemon on hrge scale in truneportation and manufacture and sumaral ateff work apply to them; that the difference betwen a mob and an armey dow not depend upon occupation or porpose but upon human nature; that the effective power of a great number of ccientific men may be incruand by orgenimation just mo the elfiective power of a great number of labourers may be incressed by mal"tary diacipline.

The emphasis laid by Mr. Root on the imy. wnce of organization in science must not be misinterpreted. For mat:" years he has been President of the Board of Trustees of the Carnegie Institution of Washington, and an active member of its Executive Committee. Thus kept in close touch with scientific research, he is well aware of the vital importance of individial injtiative and the necessity of encouraging the independent efforts of the original thinker. Thus he goes on to siay:-

This attitude follows naturally frora the demend of true scientific work for individual concentration and imolation. The sequence, however, is not secemary or laudsble. Your inolated and concentrated scientist munt know what has gone be!ore, or he will whate hin life in doing what has already boen done, or in repeating past fallurea. He must know something about what his coincemporaries are trying to do, or he vill wate his life in duplicating effort. The hintory of ecience in so vust and coostemporary effiort is so sective that if he undertabes to acquire this knowledge by himpelf alone his life is largely wasted in doing that; his initiative and creative power are gone before he in ready to wee them. Oecesionally a mina appears who has the inatinct to reject the negligible. A very great mind goes directly to the decisive fact, the determining symptom, and can afrord not to burden itevelf with a great mess of unimportant facta; but there are few such minds even among thowe capable of real scientific work. All othur minds need to be guided a way from the uncless and towards the uneful. That can be done ooly by the application of acientific method to acience itself through the purely ecientific process of organizing effort.

It is plain that if we are to have effective organization in science, it must be adapted to the needs of the individual worker, stimulating him to larger conceptions, emphasizing the value of original effort, and
encouraging independeace of action, while at the mame time cecurimes the advantages of wide co-operation and divilion of labour, reducing anmocessary duplication* of work and providing the menneof facilitatiang reesearch and promoting dincovery and progrem.

A casual view of the problem of efiecting ruch arganization of science might lead to the concluaion that the aima just enumarited are mutually incompatible. It can be shown by actual exmples, however, that this is not the case, and that an important advance, in harmoay with Mr. Root's concerption, is entirely posuible.

It goes without saying that no scheme of organization, effected by lemer men, can wer duplicate the epoch-maling diecoveries of the Faradays, the Darwins, the Pasteurs, and the Rayleighs, who have worked largely unaided, and who will continue to open up the chijf pathways of acience. Even for such men, however, organization can sccompli h much, not by weeking to plan their researches or control their methods, but by securing co-operation, if and when it is needed, and by rendering unnecemary some of the routine work they are now forced to perforin.

Let us now turn to some examples of orgenired research, beginning with a familiar case drawn from the field of antronomy, wiere the wide expanse of the heavene and the natural limitations of singe obververs, and even of the horgest observatories, led long ago to co-operative effort.

In the words of the late Sir David Giis, then Actronomer Royal at the Cape of Good Hope, the great comet Jf 1882 showed "an matonishing brilliancy as it rowe: Sind the mountans on the east of Table Bay, and seemed in no way diminished in brightnews when the sun rose a few minutes afterwards. It wry only necessary to shade the eye from direct sunlight with a hand at arm's length, to eee the comet, with its brilliant white nucleus and dense white, sharply bordered tail of quite half a degree in length". This extraordinary phenomenon, more brilliant than any comet since 1843, marked the beginning of celestial photography at the Cape of cood Hope. No special photographic teleccope was available, but Sir David enlisted the aid of a local photographer, whose camera, strapped to an equatorial telescope, immediately yielded pictures of exceptional value. But even more striking than the image of the comet itself was the dense background of stars simulcaneously registered upon these plates. Stelldr photographs had been taken before, but they had shown only a few of the brighter stars, and no such demonstration of the boundless possibilities of astronomical photography had even been encountered. Always alive to new opportunities

[^0]
34 Thangictions of tie Rotal Canaduan Institute [vor. x mis.

and keen in the appreciation of new methode, Sir David adopted cimilar means for the mapping of more than 460,000 otans, whow positions were determined through the co-operation of Profewor Kapteyn of Groaingen, who measured their imagis on the photographo.

Stimulated by this auceem, the Henry brothers econ adapted photographic methode for star charting at the Paris Observatory, and in 1887 an International Congreas, called at Sir David's auggestion, met in Parie to arrange for a general survey of the entire heavens by photography. Fifty tix delegates of seveateen different nationalities resolved to construct a photographic chart of the whole sky, compriaing stars down to the fourteenth magnitude, cotimated to be twenty millions in number. A standard form of photographic telencope was adupted for ure at eighteen obeervatories scattered over thee globe, with results which have apjeared in many volumes. These contain the measured position of the stars, and are supplemented by heliogravure enlargements from the plates, eatimated, when complete for the entire atlas of the sly, to form a pile thirty feet high and two tons in weight.

The great co-operative undertaking just described is one that involven dealing with a task that is too lange for a single institution, and therefore calls for a diviaion of labour among a number of participants. It ahould be remembered, however, that is vr? different mode of attaching such a problem may be employed In fact, although the difference between the two methods may seem on first examination to be alight, it nevertheles involves a fundamental question of principle, 50 important that it callo for special emphacis in any diecumion of co-operative research.

One of the great problems of astronomy is the determination of the structure of the sidereal universe. Its complete solution would involve countles obervations. Nevertheless, Professor Kajteyn, the eminent Dutch astronomer, resolved many years ago to make a serious effort to deal with the question. In order to do $s 0$, as he had no telescope or other observational means of his own, he enlisted the co-operation of astronomers scattered over the whole world.

In organizing his attack, he recognized that the inclusion of oaly the brighter stars, or even of all those contained in the International Chast of the Heavens, would not aearly suffice for his purpose. He must penetrate as far as possible into the depths of space, and therefore hundreds of millions of stars are of direct importance in his studies. Moreover, it is evident that if he were to confine his attention to some limited region of the sky, he could form no conclusions regarding the distribution of stars ir jer directions in space or such common motions
so might be shown, for example by inamquee streame of stars circling about the centre of the ryible v iverse.

As the measurement of the citions, the motions, the brightnem, and the distances of all the stars within the reach of the most powerful telescopa would be a truly Utopian tisk, Profemor Krpteyn wiely limited his efforts, and at the same time provided a mewas of obtaining the uniformly distributed observations emential to the diecumion of his great problem. His simple plan was to divide the entire sly into a ceries of 200 Selected Areas, thys providing sample regions, uniformly spaced and regularly distributed over the entire celeatial aphere. Coaclusions based upon-the observation of stors in these Arean are almost as reliable, co far as large general questions of structure and motion are concerned, as though data were a. Mable for all he stan of the visible sidereal univerne.

As alteady remarked, Profewor Kapteyn de pends e ely upon the volunteer efforts of co-operating astronomeny in various parts of the world. One of these astronnmers assumes such a tajk as the determination of the brightness of the $112 \mathrm{vi}-\mathrm{of}$ a cer xis range of magnitude, in the Selecter Areas. Another dc with their positions and motions, another with their velocities measured with the spectroscope, etc. Each obwerver is able to take a large number of Selected Areas, covering 50 much of the sky that he may separately discues the bearing of his reaulto on some important problem, such as the distribution of the stars of each magnitude with reference to the plane of the Galaxy, the motione in space of stars of different spectral types, the velocity and direction of the suri's motion in apace, the dependence of a star's velocity upon its mass. Moreover, each obeerver is free to use his utmost ingenuity in devising and applying new methods and instruments, in increasing the accuracy of his measures, and in adopting imoroved means of reducing and discusaing his observations. He also enjoys the advantage of observing stars for which many data, necessary for his own purposes, have been obtained by other members of the co-operating group. Outside the Selected Areas, such data are usually lacking, because $s 0$ small a proportion of the total number of stars has been accurately obartved.

In physics, as well as in astronomy, there are innumerable opportunities for co-operative research. A good illustration is afforded by the determination of the exact wave-lengths of lines in the spectra of various elements, for use as standards in measaring the relative positions of lines in the spectra of celestial and terrestrial light-sources. This work was initiated in 1904 by the Internatiomen Union for Co-operation in Solar Rescarch, and is now being continion by the International

Astronomical Union. The spectrum of iron contains thousands of lines, many of which are well adapted for use as atandards. The work of determining their positions was undertaken by the members of an international committee, in accordance with certain specifications formulated by the Solar Union. But thoee who took part in the investigation were not bound by any rigid rule. On the contrary, they were encouraged to make every possible innovation in the manner of attack, in order that obscure sources of error might be discovered and the highesf possible accuracy in the final results attained. The outcome demonstrates most conclusively that organized effort and freedom of initiative are by no means incompatible. Important instrumental improvements of many kinds were effected, sources of error previously unsuspected were brought to light, and means of eliminating them were devised. A by-product of the investigation, of great fundamental interest, was the discovery that the peculiar displacements of certain lines in the spectrum of the electric arc, which are greatest near the negative pole, are due to the influence of the electric field. These displacements, previously unsuspected, are sufficient to render such lines wholly unsuitable for use as standards unlese rigorous precautions are observed. The international committee, in the light of the new information thus rendered available, will now have no difficulty in completing its task of determining the positions of standard lines with an accuracy formerly unattainable.

The variation of latitude is another subject in which international co-operation has yielded important results. It was found some years ago by astronomical observations that the earth's axis does not maintain a fixed direction in space, but moves in such a way as to cause the earth's pole to describe a small but complicated.curve around a mean position. The change in the direction of the axis is so slight, however, that the most accurate obwervations, made simultaneously at different points on the earth, are required to reveal it. These were undertaken at several stations widely distributed in longitude, in Italy, Japan, and the United. States. A new photographic method has recently been devised which will probably render unnecessary the use of more than two stations in future work.

An extensive co-operative investigation, planned by the Division of Geology and Geography of the National Research Council, involves the joint effort of geologists and chemists in the study of sediments and sedimentary deposits. This is of great importance in connection with many aspects of geological history, and also because of its bearing on economic problems, such as the origin and identification of deposits or
sccumulations of coel, oil, eav, phosphates, sodium nitrate, clay, iron, magrannere, ete:

The esential requirements of the rescarch are sufficient information on (1) modern sediments and deposits and (2) changes in sediments after deposition and the causes of such changes.

In the study of cedimente now in procem of formation it is importint to learn the mechanical state and shapes of particles of different cizea, their mineralogical and chemical composition, the arrangement of the material composing the deponit, the cource of tine material, the transporting agencies, and the cause of precipitation. Modern deponitu must be studied in the scores of forms in which they are laid down; in deserts and srid regions and in humid climates, in the beds of great lakes, in the track of glaciers, and in marine beds off the coast, in deltas and bays, or on aubmarine plateaus, in lagoons, and on reefs in subtropical and tropical waters.

In much of this work chemical investigations are ewential, eopecially on the composition of the waters flowing into the ocean, yielding data on the chemical degradation of the continent and the amount of coluble material discharged into the sea.

In undertaling this extensive inveatigation, which would taclude the studies just cited and others on ancient deposits, the following procedure is proposed: (1) To make a more complete survey than has yet been made of the investigations that are at present under way in the United States and in Canada. (2) To prepare, in the light of present geological knowledge, a program for the investigations needed to supply an adequate basis for interpreting sediments. As lonowledge advancen, the program will have to be modified. (3) To canvass the field for existing agencies that are suitable in prosecuting such investigations. (4) To secure the co-operation of those institutions or individuals prepared properly to prosecute researches of the kind needed. (5) To provide additional agencies for the study of problems of sedimentation and thereby malce possible investigations for which there are either no provisions or only inadequate provisions at present.

It is easy to see how an investigator, choosing to deal with some aspect of this large general problem would be asoisted by information regarding related work planned or in progress, and how readily, as a member of the group, he could render his own resefrches more widely useful and significant.

Another interesting piece of co-operative research, which involves the joint activities of geographers, phyaicists, zoologists, and practical fishermen, is centered largely at the Marine Biological Laboratory at

346 Tennactions of teiz Rozal Canadan Ingtitutie [vor. xif.

Le Jolle, Californis. Sydermatic measurempents of the temperature of the Pacific near the conat ahow occacional upwelling of cold water. Simultaneous biological studies reveal a change in the distribution of microncoopic organimem with the temperature of the water. This has an immediate practical bearing, bectuse the distribution of the organismm is a dominant factor in the distribution of certain food fabke. The source of the temperature changer, and their infuenioe on sneteorological phenomena, are other interesting phases of this work.

In the field of engineering, the pomibilities of co-operative research are unlimited. The fatigue phenomena of metals have been chosen by the Engineering Division of the National Research Courcil, acting in conjunction with the Engineering Foundation, as the subject of one of many co-operative investigations. Metals and alloys which are subjected to long-repeated streases frequently break down, especially in aircraft, where the weight of the parts must be reduced to a minimum. The elastic limit and, to a lemer degree, the ultimate strength of steel can be rained by working it cold, provided that a period of rest ensues after cold-working. The tests indicate, however, that increased static strength due to cold working does not necemarily indicate increased resistance to fatigue under repeated strem. In the case of cold-stretched steel, for low stresees the fatigue strength is actually lees than for the same steel before stretching.

These phenomena, and others that illustrate the complexity of this problem, afford abundant opportunity for further recearch. The membership of the committee includes representatives of educational institutions, the Bureau of Standards, and several large industrial establishments. The work was divided among the members, two dealing with its metallographic features, two with machines for testing, two with mechanics of the materials involved, and one with a survey of the subject from the standpoint of the steel manufacturer. The results already obtained promise much for the future success of this undertaking, which will now be continued at the University of Illinois, with the co-operation of the members of the committee.

Scores of other illustrations of effective co-operation in research might be given, especially in astronomy, where each of the 82 committeen of the International Astronomical Union is constituted for the purpose of organizing co-operative investigations. In spite of the length of this list of committees, it canuot be said that astronomy offers any unique powibilities of joint action. The division of the sky among widely separated observe.s is only a single means of co-operation, which may be paralleled in geology, palaeontology, geography, botany, zoology,
meteorology, geodesy, teriestrial magnetimen and other branches of geophysics, and in many other departments of science. Most of the larger problems of physice and chemistry, though open to study in any laboratory, could be attacked to advantage by co-operating groupa. In fact, it may be doubted whether research in any field of science or its applications would not benefit greatly by come form of co-operative attack.

As for the fear of central control, and of interference with persomal liberty and individual initiative, which has been entertained by some men of science, it certainly is not warranted by the facts. Co-operative rewearch should always be purely voluntary, and the development of improved methods of obvervation and novel modes of procedure, not foreseen in preparing the original scheme, should invariably be encouraged. They may occasionally upeet some adopted plan of action, but if the co-operating investigators are following the wrong path, or neglecting easily available means of improving their results, the cooner this is discovered the better for all concerned.

Canada and the United States, enjoying similar natural advantages, and lying in such clone proximity as to permit the greateat freedom of intercourse, are most favourably situated to profit by co-operation in research. In both countries national movements for the promotion of research are in progress and important advances are being made. The example set by the Canadian Government in establishing the Honorary Advisory Council for Scientific and Industrial Research and that of the Royal Canadian Institute in organizing this series of addremes on research and its application, have stimulated and encouraged us in the United States. The friendly bonds that have joined the swo countries in the past have been greatly strengthened by the war, and I am aure that our men of science will welcome every opportunity to co-operate with yours in common efforts to advance science and research.

[^0]: -Some duplication is frequently deairable.

