CIHM

Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.Coloured covers /
Couverture de couleur
Covers damaged /
Couvertu. e endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée

Cover title missing / Le titre de couverture manque
Coloured naps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within t, e text. Whenever possible, these have been omitied from filming / II se peut que certaines pages blanches ajoutées lors d'une restauratioit apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le məilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées

Pages detached / Pages détachées

Showthrough / TransparenceQuality of print varies /
Qualité inégale de l'impressionIncludes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

Additional comments/ Pagination is as follows: p. [293]-344, [5].
Commentaires supplémentaires:

This item is filmed et the reduction retio checked below /
Ce document est fiimé eu taux de réduction indiqué ci-dessous.

The capy filmed here hes been reproduced thenks to the generosity of:

Queen's University
Dept. of Ceological Sciences
Library
The imeges eppearing here ere the best quelly possible considering the condition and le gibility of the originel copy and in keeping with the iliming contrect specificetions.

Originel copies in printed peper covers are filmed beginning with the front cover and ending on the last pege with e printed or illustrated impression, of the beck cover when epproprlote. All other orlginal copies ere filmed beginning on the flrst pege with e printed or lliustreted impression, end ending on the lest pege with e printed or illustreted impression.

The lest recorded freme on eech microflche shall contsin the symbol \rightarrow Imeoning "CON. TINUED"I, or the symbol 7 (meening "END"). whichever applies.

Meps, pletes, cherts, otc., mey be filmed st different reduction retios. Those too lerge to be entirely included in one exposure ore filmed beginning in the upper left hend corner, loft to right and top to bottom, es meny fremes ss required. The following diegrams illustrete the mothod:

L'oxempisire filme fut reproduit grace al le générosité de:

Queen's University
Dept. of Ceological Sciences
Library
Les imeges suiventes ont été reproduites evec le plus grend soin, compte tenu de le condition et de le nerteté de l'exempleire filmé, ot en conformité ovec les conditions du contret de flimege.

Les exemplelres origineux dont le couverture en pepier est Imprimúo sont flimús en commencent per le premler plet et en terminent soit per la dernidre pege qui comporie une empreinte d'Impression ou d'illustration, soit per le secand plot, selon to ces. Tous les out ss exempleires orlgineux sont filmds on commençant per le premlitre pege qui comporte une empreinte d'impression ou d'illustrotion et en terminent per le dernidre pege qui comporte une telle empreinte.

Un des symboles sulvents eppereitra sur la dernidre imege de cheque microfiche. selon te ces: lo symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les certes, plenches, tobleoux, etc., peuvent ètre filmés à des reux de réduction différents. Lorsque le document est trop grend pour être reproduit on un seul cliché, il est filmé à partir de l'engle supérieur gauche, de gauche à droite. ot de heut on bes, on prenent le nombre d'Imeges nécesseire. Les diegrammes suivants illusirent le méthode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

 ANSI and ISO TEST CHART No 2

ORDOVICIAN STROMATOPOROIDS OF AMERICA

BY

WILLIAM ARTHUR PARKS, Ph.D.

ASSOCLATE PROFESSOR OF GEOLOGY
UNIVERSITY OF TORONTO

IREI.ITORY NOF:

 vician roch o of Americt are neither mmerons mor well defmed.
 184\%. We find at serice of finme ath if whelt prexent great ditio colty in the interpetation of heir minnte stracture cowine to the imperiect and diveree manner of their preservation. They all. however, conform the the sume gencral type of structare, thomgh differing greatly in their manner of growth. Fietneent the giant

 acter: nevertletess they way :lll 1 in incluted with the family Lateretiblac as defined by Nicholdern. The present patper deals
 cinnatian formations: the genera Cryptozoon ald. Archacozoon, of possible Stronatoporoid affitities, are non disellsued. The se forms :s well :a ceetain species froth the chaze refersed to Stromatucerium by Mr. H. AI. Seely, are deferred to a later paper.

In view of the very had state of preservation of nearly all the specimens on which the conclusions herein stated ate iounded. it is hoped that palaentologists will regerd whin lenicucy any errors that may oceur.

For the greater part of the material on which the present article is bised the ather is inclebted to the following gentlemen and the institutions which they represent:

Dr R. Rathoun and Dr. Ray S. hossler, taited States Natiotal Museum.
Dr. Stuart Weller. University of Chicago.
Mr. Lawrence M. Lambe. Geological Survey of Canitala. Dr. August J. Foerste. Dayton. Ohio. Professor Charles Schucbert. Yale Cniversity. Dr. F. O. Hovey, American Muscum of Natural History. Dr. J. M. Clarke. State Geologist, New York.

University of toronto
March 5th. 1910

W. A. Parks

ORDOVICIIN STROMITOPOROIDS

 cions dealing with Tremton .u Cincinmatian Stromatoporuids, is well as some references to Cryptoznon ant its allies:

184\%-11:all (Palaentology of New l'ork. Vol. I) describes Stromotocerinem rugusum.

185ラ-Billings (Rep. Progg, Cienl. Sur, Cin., 1855-1856) deacribes Bewtriced nodulosa and Rodricot umblata.

18fiz- Millings (Geol. Sur, Can., P'alteozoic l'ossila, Vol. 1) describes Stromatopora compacto.
 and figures Stramolopora rugosa, 1865-Billings (Ceol, Sur, C 7. I'alaenzoic Fossils, Vol. 1) describes Stenofora huromensis. 186玉-Ilyatt (Aŋı. Joni. Sci., Vol. XXXIN) descriles Beatrice't Modulosa, Bih'ngs, and Beatricea mulnlata, Billings. 18-K-Nicholson and Marie (Jour. Linn. Soc. Zoul., V: I. (IV) describe Stromatocerimm canadensc.

1878-U. P. James (The Palneontologist, No. 1, July). describes Stromatopora itipillata.

18-8-Mickleborungh and lietherly (Jour. Cin. Soc.. Vol. I), list Stromatopora fupilhata. James, Stromatopora lyoni, James, and Stromatopura cimcimationsis, Janes.

18;9-U. I'. Tames (Thr Palaentologist, © o. 3. Jan.), de. :ribes. Stromatopora lichonoides and Stromatopora scabra.

882—S. A. Miller (Jour. Cir. Soc. Niat. Hist.. Vol. V) describes Stromotocirimm richmondinsr as a sponge.

1883 - Foord (Gfol, Sirr. Can., Conts. Nicro-Pal. Sil. of Canada) discmsses Labcchio ohiocmsis.
$188.1-H 2 l l$ (36 th Rep. N.Y.S.M.) descrilees Cryptozonn prolificrum.

IR8.f-Hyatt (Proc. Am. Ass. Ad. Sci.) conclitc!es int Beatricca is a Formminifer.
$188.4-\mathrm{C} . \mathrm{I}$. Jame: (Jonr. Ci:1, Soc., Vol, VII) describes Stromatopora ludlocicnsis. Strammoponat fombaris amel Stromatrporit subcylindrica.

$$
\lceil 20,7\rceil
$$

1x.

 thitee spectich

 sulicylimitrins.

 I.abicthin comuldinsis.
tXer, I'. O. I'Irich cimerihutions to Imerican I'al., No.

 Cryptazon mimn'ratiswi:

18: Craptizanen hartalis.
 descrile the (ryptozna of the Citefiferens in the Champtain valley (Cruptozoon stedi)

 subacyindrica, Stramatopara lichenobides, Stromatopora scobera. Stromatupora papillata, Stromatopora ludhatensia, Strom-topura hinifii; describes a new species, istromatopora indianensis; refers to Stromatoccrinm canadersi. Biatricid nodmoso anm Bentric undulata.
1.Ro7-Dawson (Char. Rece. Science. Vol, VII) riximp:

189) -Roemer-Freds (I.ethaen Palaenzoica, Vol, I) sug. gests the identity of Stromaticirium rugosum and Stromaticcrinm canadense.

1807-Whitease (Can. Rec. Science, Vol. VII) states thats Chuthrodictyon zariolarc occurs at Cape Smyth and at the jumpers in Antirnati: lists Inbechin camadensis, labechia huroncusir, $\lceil 2087$
 rugistum.
 the intentiy of Shenopora huroncosis, Billinge, with Labichia ohmornsts, Nicholtens.
 describes and figutes Stromatmornan rabostm, also deseriles
 cirinm monilifornm :und Cryptuzn禺 porkiusi.

190 - Dassler (COited States National Mascum, Bull

 Jimes.

 nedulusa and Iathorimen montifora.

1000-Fonerste (Bulletin wi the Denisnn C'niversity, Noven• ber recorils the securence in kentucky oi Reatricial undmba, describes Beatricia maluhta-cylithlrica. Biatriced modhlifora and Bintrices mednlifira-imirmedio.

order-STROMATOIOROIDEA, Nicholson and Murtic Section A. (Ilydractinoid Group)

Family-I.ABECIHDAE, Nicholson
Genus-Stromatoceriu it, Hall
Hall's original description is too meagre to be of any value in differentiating the gents at the present time, althongh, in a general way, it well defines the organism as known to him.

Nicholson made no close examination of the type specimens of Stromatocerinm rugostm, but was inclined to consider it as identical with the form which he first described as Stromatocerium canadense and afterward's removed to the genus Labechia. Other authors have described species of Stromatocerinm, but usually on the ground of superficial characters only. The determination of the minute structure is a matter of the greatest diffictity, and the following amended description is offered only after the examination of a great number of sections and the comparison of forms from different horizons. The conditions of preserwation are so variable and restlt in such diverse appearances in section, that descriptions based on single individuals fail entirely as a means of generic differentiation. By far the best preserved specimens are those to be described as Stromatocirimm michigamersi which I shomld prefer to S. rugosum as the genotype.

The coenosteum consists of a superimposed series of laminae, which may be comparatively straight and continums or may be bent into folds with the convexities tupards so as to be rednced to a mass of superimposed vesicles. I'assing vertically through this tissue are numerous bent and angulated plates of variable horizontal extent. Sometimes these plates have a tembency to arrange themselves in a radiating mamer around certain points, thus simalating the appearance of the astrorhizae of other $S_{i 1}-r^{\prime}$ pornids. In some cases these vertical elements appear to .". been hollow. in others there is no evidence of a cavity. Considering the state of preservation of most forms it is lecter to leave this point irtecided. The essential difference between

Labechia and Stromatocirium lies in the faet that the pillars of the former gemus are replaced by the vertical plates of the latter.

The range of the genas is from the lower Trenten to the Upper Richmom, or, if we accept the forms deseribed ly Mr. H. XI. Seely from the Chazy of Isle La donte*, the range is contsiderably increased.

Stromatocerium michigantine, sp. noe:-Plate N.il, Figs. 1 and 2

As this organism is known from a few fragments onls, very little can be said ats to its general form or habit of growti. The present examples appear is intergrowths with Labechig
 'The character of the surface is unknown. Dr. Rominger was aware of the specific difference of these specimens, for his label bears the following inscription, "Stromatocrium rugosum and arother not determmed fossil alternately incristing one another."

The coenosteum consists, as in Labcchia, of a superinpersed 11 .uss of vesieles with their convexities upwards. The substance of the resicular walls is extremely thin and they are so spaced that in average of fonr occurs in the space of one mime measures vertically. l'assing vertically through the mass of vesicles is a series of plates the thickness of which rioes not exceed imm. These plates vary sreatly in borizontal extemt and are mot straight but bent and angulated in a curious mamer. They never. however, enclose a space: if they did, the structure womld approath that of a tubular Bryozoan or compomed Ilyderozoint. It cannot be stated with certainty whether thene plates are bollow or solict. They always present a clear trimsparent interior defined by borderime lines where the venicles are filled with calcite, but destitnte of any margin where the matrix is cliy.

Vertical sections (llate KXI, fig 1) cut three or four of the vertical plates in the spice of one 1 . Where the section crosues the plate at right angles it appears as a clear or slightly clomed line bordered by darker bands. Where it follow: the

line of a plate the elouded interior only is seen. It is obrious that many intermediate sections must appear. The clear central portion of the plates is finer in structure than the coarse calcite filling the vesicles whieh is nut reproduced in the drawing. The vesicular walls appear as fine clark lines, which have nevel been observed to be double, although where the interstices are filled with chay they present a much lighter section than the matrix.

Tangential sections (Ilate N.NI, fig. 2) exhibit the cut plates only, the resicles being too thin to appear to any extent. Some indication of them may be observed but they are so inconspieuth, that they have been omitted in the drawing. The size and shape of the clements as represented are exactly correct, lnt the method of representing the matrix is conventional only. It shoukd be observel that there is mo indication of the plates radiating from centres, nor has any such disposition of these elements been seen in the sections examined.

It is impusisible tomistake this organism for any other, for, althongh a vertical section might not be convincing, the characteristic tangential section appromeles in no way to any described form. The resemblance of this section to a series of polygons, communicating with each other by the absence of certain of the common sides, is very striking. Adopting this view, the whole organism might be considered as a serice of polygonal tubes, crossed by arched tabilae. and communicating with each other throughout the whole length of eertain of the walls. Is it possible that the genus Labichia arose from this type by the fradual contraction of the vertical plates into round pillars? It so, we have in this species an interesting connection between the Labechidac and the tubular Ilydrozonas anad Corals,

Stromatoccrimm michigranchis, rather than S. rugosum, is taken as the type of the genus becanse the preservation is much more perfect and becatuse there is absolntely no doubt as to the shape ard character of the vertical elements.

Locality:- The only specimens known are part of U.S.N.MI., No, 56843 . from the Lower Trenton Drift of Amn Arbor, Michigan.

1"igs. 3. 4. 5, 6, and 7

xii. lises. 2, 2:3, 2l), (x+47.

Strominuror ; xtloosa, Rallings, Geul. Sur. Canada, Report of Progress to

 xiv: 1.223 .1878

p. $1+3.41 .1 \times x, 1(x) 4$.

Stromatocfricis recosum, duct. (Atiny references withont description.)
While I have been umable to obtain a view of Hall's types of this species, the kindness of I'rofessor J. M. Clarke of Allany has afforded me the privilege of examining a number of sections made from "topotypes." There can lee no dotbt that the species is distinct from Nicholson's Labechion conadensis, with which it has been mich confused.

Stromatoceriun ragosum is described by Hall in the following manner: "Coral, hemispherical: growth in concentric laminae or strata; laminae momerons, wrinkled: some faint indication of vertical tubes or cells. This coral usually appears as a rugh shapeless everescence upon the weathered surface of the limestone: but a little examination shows it to be composed of concentric layers, which are evidently the skeleton of some coral. This coral, so far as known, is confined to the Black River limestone, and to the dark layers alternating with the Birdscye limestonc. It occurs in the dark marble quarricd on the east side of Ile la Motte; but this mass lies much above the Maclurea magna, if not higher than the Birdseye limestone. It occurs at Chazy village. Watertown and other places."

Ferdinand Roemer in Lethaca Palacozoica retains the genus Stromatocrinm with the following description:
" Die concentrischen Lagen sind nicht zusammenhangend. sondern uregelmissig angenrinet: die senkrechten Pfeiler orler Stützen fehlen. Dagegen ist die ganze Masse won unrcgelmässig angeorilneten senkrechten Rähren durchzogen, welche keine W:inde haben und viel kleincr als bei Canopora sind. Die Ge:tungshenennumg war von J. Hall gebraucht worden: Nichol$\lceil .3037$
son and Murie legranden dieselbe aber nen, indem sic eine Irt zum Typus derselleen machen welche anscheinend mit lhall's Stromutoccrium rugesum nalic verwandt oder vielleicht identisch sei. Diese Art ist Str. canadinsc ans dem Unter-Silur (Trenton limestone) im Staate Ontario."

It was this aftarent absence of vertical elements and their replacement by wall-less tubes that indtuced Nicholson and Murie to retain the genus Stromatoccrimm in the description of S. canadouse referred to by Roemer. Afterwards, howeper. Nicholson decided that the vertical passages represented the position of original pillars which had been altercd to clear crystalline calcite; in consequence of this he removed his species to the genus Labcchia.

Stromatocerium rugosum grows into rough hemispherical or rounded oblong forms reaching a diameter of eight inches and possibly more. The point of att, shment was probably much smaller than the diameter of the adult coenosteum, but an epitheca has not been observed, although it doubtless existed. The surface, though undulating, is not uniformly provided with distinct mamelons, but much variation is seen in the character of the exfoliated exterior. The general appearance of the weathered vertical section is shown in Plate XXI. fig. 7, which was prepared from a specimen from Pauputte's Rapids, Ontario. This specimen does not, however. exhibit the minute structure of an ideal example of the species. In typieal specimens the whole coenosteum is composed of gently undulating concentric laminae, about seven of which appear in the space of one minı. These laminae, in typical examples, are comparatively straight, but they may become somewhat arched and even degenerate into vesicular tissue in certain cascs. Xevertheless, a characteristic of the species is the comparatively straight and continuous laminae. In many of the specimens the space between the horizontal elements is filed with structureless matter, but in several examples from Pauquette's Rapids the under side of the laminae is coated with a thick layer of grannlar tissue which shows a tendency to arrange itself at right angles to the lamina. In many cases it ahmost fills the interspace but it is invariably closely connected with the lamina above. At first I was inclined to regard this matter as foreign to the organism, but its constant
relation to the overlsing lamina and its occurrence in Labechia (?) canadonsis and in Beatricea has convinced me that it retly forms pait of the original conosteum. Fxtremely difficult of intequetation are the vertical elements, and it is only by means of comparison with other forms, particularly with Stromatoccrim: michiganensc, that the following opinion is offered.

These structures are in ewery cane reprenentel by apmont interspaces traversing the coenostemm radially. I an convinced that they were not originally mere pores lut that they were true vertical clements, the cross section of which presents the narrow and anpulated appearance characteristic of the genus.
lertical sections (Plate XXII, figs 3 and 4) show that the horizontal elements possess an extremely thin npper layer, which is the only part preserved in many specimens. The fine line representing the severed ellges of the laminae is fairly contimunts and comparatively straight in typical examples. The rertical elements appear as clear interspaces, but traces of a wall may be olserved in parts of an extended section. Owing to the muiversally poor state of preservation, the vertical section does not reveal the character of the u, prepareci from a specimen from Lake Champlain: it slows the thin and straight ${ }^{1}$ aminae hut no grat.alar matter or hordering lines to the vertical elements. Figure 4 is from a somewhat finer example from Kirkfield, Ontario. and exhibits an outline of the "pillars" as well as, in places, a fine white line in the centre of the laminae.

Polished tangential surfaces always show, though frequently in a very obscure manner, clear verniculate lines racliating from certain centres about four mun. apart.

Tangential sections (Piate XXI, figs. 5 and 6) show such diverse appearances. according to the state of preservation, that an interpretation of the structure is very difficult. One is imrpressed by the resemhlance of the radiating openings to the astrorhizae of higher Stromatoporoids: this is particularly noticeable in those forms with the gramular tissue heneath the laminae proper. We might, therefore, internret these openings as true astrorhizae traversing the granular tissue, but for til) facts. First, they appear equally well in the sections where no granular tissue is preserved, and second, the verrical section slows no
trace of their cut canals except the eirtical intorspuces. We are force! to conclude that the ubsentrely radiatime canals of cross section and the vertiral spaces in vertical section are the sane dene::ts. The upright structures in At: omather rimm rusosum are therefore of the nture of angulated plates which always apmear as clear calcite, but whether this calcite is the original tissues or whether it has replaced something clse, or whether it represents an origital hollow centre. I ann mot prepared to state.

An interesting specimen front the Lexington limestone of Kentucky, which probably belongs to this species: (U.S.N...I. N. 54293) presents the skeleton of the fossil in a silicified condition with the matrix removed by weathering. The vertical elements are distinctly not romod. Athough in pla they may approach this shape, the characteristic appearance is that of curved upright plates presenting a horieshoe-shaped cross section. A similar section is seen in part of Plate XXI. fir. 5. In this figure the dark portion is the matrix and the light part is the section of the vertical elements; the thin horizontal laminae are not apparent. In Plate XNI. fig 6, the dark part is the section of the gramilar layer and the clear portion the severed vertical clements together with interlaminar ractities. In both figures the resemblance to a tangential section of Stromatopora is remarkah?

Wthough the horders of the "pillars" are very indistinctly defned by dark bands, the existence of any trace of demarcation is ennugh to prove that the vertical spaces were originally of solidel character. at least externally. The dark bands may be the substance of the exterior of the structures or they may br mily stamed matrix. After death. the arganic matter of the vesules would maturally gather on the surromeling hard tissue and. on the subsequent infiltration of matrix, would impart a darker hite to the part of the infiltcred substance in immediate contact with the hard tissue. Whatever may have heen the original character of the upright strutures I am coi "inced that they were not more pores.

The most characteristic feature of the present species is the straight character of the laminae and their comparatively even spacing. Even this feature is, however, not constant, for the straight laminae are seen to degenerate into vesicular tissue. It [306]
is very interesting, in view of extain ohmorsitions to be made later ofi the stricture of Stromabocioriam comationst, to note that the degemeration of the limmine into exsicnlar tisstue is accompanied liy a bitiluse of the vertionl elements.

The present specice is sulject so variation, but well preserved examples are rembly blemifed by the generally lineal

 weritre of four vertionl elementis in a mm. instead of three ats in the spe buens from the type locatity, It must be mbitted, bowever, that a vast mmmer of specimens tave bes'n ascribed to this sexeres the cortatin ifentification ai watel is leyond the limit of possibility.

Locolity-PBlack River and Birilseye limestone, Lake Champlain; Black Riser, Pauquette's Rapids, Ontario: Trenton, Kirkfietl, Ontario: 'Trenton, Jones' Ilill, Lebanon, Ky, (im. Mns. Nis. Ilist., No, 8°).

Dondtfal examples ocenr in many other localities.

Stromatocerium canadense, Nich. and Muric-Plate XXI, Figs. 8 and 9 : Plate XXII. Figs, I, 2 and 3

Stkomatucerie:s cinimonsf, Nicholson and hinctict Jour Linn. Soc, Zool, vol. xis, p. 223, pl. dii, ligs. 9 and 10, 1878 .
Labechi.i canadensis, Vicholsom, Mon. Tris. Strum, pl. ii, tigs. 3-5, 1886,
Labecilia canidensis, N'i hulson, Ann. and Mbik. Nat. tlish, ser. 5, vol, xviii, p. 14, pl. ii, fig. 5. 1886.

Labechia canadenses, Nicholsu, Mon. Brit. Sitom., p. 16,3, pl. xx, fig. 9. 1891
 Labechia canatensis, I'hotedi's, Cim. Rec. Sci., wol. vii, p. i31, I\&97.

Nicholson's revised description is given in the Annals and Magazine of Natural History is as follows:
"Coenosteum sometimes minsive, sometimes composed of thick laminae with a basal epitheca. Surface imperfectly known but apparnnty possessing irregular tubetcles and conical mame lons. Radial pillars large and irregnlarly developed. The vespcular tissue between the pillars is also very irreguiarly develofed, the vesicles being sometines of molerate dimensions, but being at other places of large size and irregular form. The vesicles have their comexities turned mowards, and the radial pillars terminate upwards in pointed extrenities. . Il the examples of this species

Which I have examined are in a highly mineralized condition, and are not in a state to allow of the satisfactory working out of the minute structural details. I'lat the specimens are rightly. referable to the genus Labichia is, however, clear, and there can also be 10 doubt as to the distinctness of the species. Many of the specimens which I have collected, both from America and from Russia, liase the skeleton replaced by calcite; but I have here figured a vertical section of a Russian example in which the skeleton is preserved in the normal nanner. The speeies is nost clearly allied to Joabechia cunfirto, Londs., but is sufficiently distinguished from it by the much more irregular arrangement of the vertical pillars, and the correspmedingly irregular develop. ment, as regards both size and shape, of the interstitial vesicles."

The variation possible in this species is most remarkable. The general form of the coenostemun is so variable that any attempt to ascribe fixcel characters to it is inavailing. Massive hemispherieai examples are seen; that expansions of some inches in thickness occur: encrusting forms are common and other habits and shapes have leen olserved. The surface likewise is devoill of any well marked eharacteristics. Some forms are almost smooth, others have small, well marked mamelens, while still others present prominent conical elevations, the exfoliation of which causes a ragged and somewhat vesicular appearance. With iegard to the size and distribution of pillars and vesicles. the former elements have been observed to oceur as close as one mim. apart or to he entirely absent; how far this variation is to be acconnted for hy mineralization it is impossible to say. The size of the vesicles is of absolutely to assistance in the iflentification of the species. forms have been observed with four vesicles to the mm . in vertical extent, and others in which a single vesicle is four mm. high. This variation is not expressed merely by different specimens, but occurs to alnost the extent stated above within a single coenosteum. It is quite possihle that several varieties or even species are here included under Stromatocerimm canadense, but in view of the transitions observed and the uniformly poor state of preservation it is thought hetter to include tiem all under one specific name.

The minute structure of Stromatoccrium canadense is very much more complicated than Xieholson's description indicates.
 stare of preservation. Nothing in tole observen hont the vesienlar walls an'I the oceavimal pillars. lietter sections (Ilate N.NI, tig. 9: I'late NXII, fig. 1) however reveal a more minute structure which is exceedingly interesting. Each vesicular wall consisted originally of three different kinds of hard tissue. On the inner or concilve sitce there was present a layer of spongy or grambar matter of fairly iniform thickness. In specimens, the interstices ot which are filled with crystalline calcite, this layer is clearly demareated as a granular band with a tembency for the granules to arrange themsalves vertically to the lamina. Where the interstitial covity is filled with clay, this band is never to be observed, it must therefore have been composed of spongy matter, possessing anffucient density tur retain its identity when contrasted with clea, erystalline calcite, but sulficiently porons to hecome permeated with enough clay to make its demarcation aqainst that more opaque material impossible. The middle layer of the resictular wall appears as a dark, slarply defined line. which is the only part seen in specimens of ordinary preservation. The outer layer, in all sections in which it bas been observed, consists of a band " clear white calcite which is extended upwaris into little conical points. Sometimes these points reach the lamina above and then the structure mucls resembles that of the genni; Chithrodetyon.

Whougb Nicholson failed to detect the ainve deserihed minu' - tructure in Stromatoccrium canadinsc, he reengnizerl the two inver layers in the cells of Reatricia* the structure of which appents to be identical. as far as these two layers are concerned. The close relationship of Beatricia and Stromatocirinm canddeuse nust therefore be regarded as established beyond doubt. Very interesting also is the tenticulatel muter layer, as it at once suggesse the genus Rosenclla. In fact, those specimens of Stromatoccrium canaacuse in which the pillars largely fail would fall more natorally morler Rosenclla than under cither Laborhia or Stronatocerium.

As a somewhat similar structure is to be observed in certain examples of Stromatocirimm rugosmut the significance of this

[^0]
Parks: Orbuntitin Stromatomomons

minnte anatomy is very great and warrant the closeat attentin 1 . In the first place it must be remembered thatt practically all the specimens examined differ from one another in varims details. such as the size of the vesicles, the freplemey of the pilliars, ant the charecter of the haninace. With regared to the bist ieature some example show simply a dark central line with a haze border: others pasiess the threr chements already teseribet, while still a third tyge (Ilate $\mathcal{N} \mathcal{N} 11$, fig. 8) Bhows a clear central line with a dark margin on heth sides. 1 atm of the opinion than bhis upper dark line is not organic latt lue to the depmsition oin dirt eio the original substance of the clear line. The bower :lath line is comparatively straght and continuous but the upper one is acent to curve upwards into points and simosities, the whte abotance filling the intervening space. The upward prolemgations some. times reach the overlying lamina, in which casce the whte material of the apper lamina bends downward and becomes comtimons with the sibstance of the puint. By the repetition of this process, vertical chements arise wh ch are mondontedy componeat in their interior of the same nater al which furms the clear part of the laminae. It is also to be cioserved that in thone parti of the conenstemm where the tissue is very vesimbar, these comber: ing elements are albsent or appear ats demicnations onfy on the smface of the lamime. Tangential soctions (I'late N.Nil, fig -) of this type are very hard to interpret. but it : 1 pears that there papilluse eleratims :mal the: resilting vertical comections. are not necessarily romad but of . sinnous and irregular ontline. Nichusson dues not state that the pillars are ronnd nor thees he figure a transwerse section tr show the shape of these elentents. I hase been mable to prepare any section revealing the ring. like cross section to be expected. and therefore conclate that the so called pillars in this species are analogons to those of the other Stromatoceria; consefuently Labecha canadensis must revert to the name originally given it hy Nicholson, Stromatucerinm comadense. A further reason for this generic position is the ocurrence of the gramular layer in the vesicular walts, which is not seen ist any Labechia.

Certain examples also, by the failure of the vesicular arrangement and by the tendency of the laminae in connect with each other by vertical elements, show a transition to Stromato-

 sections. Hanty of them in atate of presersalion entrecty war.

 fulocerimm, and pussibly of rhatopera.
 mights serve for the establalment of several varicties : the trams.

 connection the following motes on sexemence from wations incalities may be of interest:

Birdseye limentone, Filonsester 'Inwontip, ('arletont Co. Ont.-Mos: arecimens from this lacality have the surfisce rasised inta prominemt clevations with a consequent whatal inthection of the constituent clements, Vertical elements fall almast antirely. Parts of the comostemm prenont the ordinary cystome claracter
 the only omes which reveal all the pronts of minnte allatomy fres
 2.)

Black River limestome. Pamenettés Rapiels. Riclean River. Ont.-.These forms show large amd variabe vesicles amel diatinet thongh irregular pillars. The minnte stracture is mot well revealed. (Ilate SX'l, fig. 8.)

Tyrone formation, Hartsville. Tenn-Highly silicified fomes with varialje vesicles. liblas not ipparem.
L.ower Trenton, Fiscimalai River, Dichigan,-The vesicles are browd and flat and the vertical elementes eoproly distinguishahle, (E.S.N.A.. No. , 3(m)31 in pari.)
I.cxington, Upper Molnawian, Kentucks-These forms really :"ento contitute a distinct variety. The vesicles are comparatively small and flat and the upright clements incombicuons or absent. The general structure is not much enazeer than in Stromatocirimm rususmm !ut there are nu ©ontinmons laminae.

The upper surface in prowineol with distinct mamehno renembling thase of Stromathocimm huromonis. II fact, the variety seenis
 Strumbtucerimm hurnmos, zow, altstrales. I'rivisionally it might

 1Ftankfort. Ky:

 111).
 (-81): Ilate N.․II, Fig. 5

Trtrimum Herovense, Foord (in parte), Cimir. to Can. Cambrio-Sit. Micio-

ligs I and 2. iskem. p. 32. foothote and pl 1. ligs 1 and 2. 1NRS.
 : $8 \mathrm{~B}=1$.

 and lat. of hec Cin, Series of Indiana, p yot. pll i, figs. 2-2b. 1907.
As pomelel ont he: Mr. Lanbe, there can be un doult that Billings wa, the rirst th attempt a leseription of this peculiar fossil. Allf ugh the specimen which served as ! type e...isista of two different suectes, the present exanple forms the grover portior of the mass and is evilently the portim Billings h_{c}." in view, as maty be secn from the following descriptim:
"Cor lites forming large roundel masses, so:netimes mue foot in diameter and nine inches in height. covered with small conical elevations from iwo to four lines in diameter, the most prominent about two lines in leight. and distant from one another from one to six lines (measuring from the centre of each). The「312]
tules are anall, Itere being almat four or fise in the wedte whe for line. latrger on the smanits of the elebittoms, where, atos, they

 whectire lamellat concentric structure is exlubhed, simitar to that

With rex:ard to the revult of fioned's examination of the type "pecimen, I cammot de letter thill ghote Mr. I.ambe's ubserviltons:
" In rale of has papers in the Comtrilutionts tu Canardian
 that h:ontry made at misenscopical examination of Stenopora

 unterstands it. litit imiorimitely includes int it the distinct iorms, mader the name Titrominn haronensi: The specinens represented on Illate \'ll, figg. 1. of Fowrife piper. consint of a labechia, the minute structure of which is well preserved,
 origio, i figure $1 u$ is at small purtime conly of a litrge mass of the labichio measuring nearly 5,3 incles :across. These pectmens fighted by Finerd were thene thed lyy billing in dexeribing
mopora hurounsis atul are still in the musembin of the Sursey. re structure is clearly shown on fullished surfaces in both 'ecimens, prowing beyond dombthat the inssils beleng to the mus Leflechia, incrusting in the first inst:mese and massise in 1 second.
 upon specimens obtained by him at Waynesville, Ohio, and the Cape Smyth specimens of Stcuoporiz hurourusis, 13ill., collected by Dr. Koiert Bell in 1859 . Dr. Nichohom states thist in the Cape Sonyth specimens the structure is much better preserved thare in those from Ohiu. He also mentions that Mr. Fioorl has drawn his attention to the fact that 'sume of the applearances which he describes as characteriane Tistadium huronense, Bill.. sp., are realiy due to the fact that the specimens of this coral Which he examined were covered with a crust of Labcihtis ohioen.sis.' ${ }^{\text {.. }}$

Having carefully examined the type specimens refersed to [313]
by Lambe as well ats that of Theorlit's gromulosts, James, I am of the op uinion that Mr. Lambe's conclusions as to the ilentity in Stenopora huronensis, Bill., Tetradium huronense, Fexorel, and Labechia ohionemsis. Nieh., are correct. Touthis list of symomyms
 Labechia montifira, L'lifels, athouglt I have ont sect: the type of the list specties.
 eredit or the first mimme deseription of the species. The esserntials of this description are as follows:
"Comoste?m sometimes lamitrat attil pealumenate (?) niten encrusting foreign boties. ('pper surface sume simes smooth, but
 out with minute roumberl or peninte? mbercles. (flate XN Cl .

 sometimes exhibit distinct traces of axial camals. The interspaces between the pillars are octupied by delicate vesicular sissute formed of minute vesicles, the comsexities of which are directed towards the surface."

The fact that Clrich lays stress on the angulated character of the pillats itt Lablechiog mantifiro, thegether with the groneral similarity of the deseription to that of l.abechia ohturnsis leases little doubt of the itlentity of the two species. But it mutit mot
 while "icholson's is ntore often masitise.
 regard to the character of the vertiaal pillare. In vertical section (Plate XXIt, figs. 6,7 and x) a slight difference may be observed it the size ime itrimednemt of the vesieles. butt the greatest diversity is seen in the clegree of perfection exhibited by the pillars. llaving examined a great mumber of sperimens I ami convined that this difference is entirely due tu varying methonts of preservation. Fig. 7 is prepared frim a cpecimen from Capu Smyth; fig. 8 represents an example from Wilmuteton, Ohin: fies. 6 is from the type of Hionlites grumulosus, James.

It is in tangential section howere (llate K. X II, figs, 0 and ro) that one sees the pecultiarities of the pillars to greater advan-
tage, Dithomgh a ereat munber of examples hate been examined. in mo case was the cross seetion withe piltar romml: in poorly preserved specimens it presents an angolited ontline, but in all good specimens the cross section is su chatgeted and su drawn out into spars. that the sertical element is mench better
 from the contre of the manchons, the pillar (onme into contact

 Alterolitas ermabosns, lankes. 'l'he preservation of this spect. men is mot grond and the pilars are sumewhat disinteraterl, hat.
 more clearly than they for in the melt letter suecemen show in figure: 1 .

It is apmarent that this characteristic lype withar is
 which I prefer to regard as the type of the getms. Were it not for the diseosery of this hatter species man might be tempted to retain tike present form under lahomia, but in viow of the exist-
 ried to even greater perfection we are forced ter remone this muth disputed species to the gremes Strammathiriam.

 the weathered vertical section.
 their surface appearance is concernal, are practically indistingutishable fonm Stromaforiaritm harom'ns: Thes difference is revealed only' bey tangential section, 'Tlie distinct round pillars
of the two former species camot be mistaken for the angulated columms of the latter.

Locolity-liillings' type was obtained from the Hudson River formation (Richmond). Cape Smyth. Ontario, by Dr. Robert Bell in 1859. Nicholson's types were from the sime locality and from the "Cincinnati group. Waynesville. Ohio." Ulrictis type was oltained at Madison, Tndiana, and, what is prohably a massive form of the same, at Clarkesrille. Ohio. Mr. Cumings mentions the species as occurring in the upper part ni the Richmond formation (Saluta) in the vicinity of Osgonde, Indiana. The specimens here figured from Wilmington. Ohin, are probably from the same horizon as Nicholson's types. Dr. Foerste gives the formation as "Waynesville bed. Inwer part of Richmend formation." Common in the Rick: nond formation at Streetsrille, Ont. Cincinnatian, Warren Co.. Ohio (U.S.N.MI., No. \&no77.) Upper Richmmad, $1 / 2$ miles 1 I . of Lehanon. Ny. (Ľ.S.N.MI., No. $39+88$.) Cincimatian. 6 miles N.W. of Nashville. Tenn. (Am. Mus, No. in66.) This specimen is labelled Stromatopora pustulosia. Safford. It presents the surface characteristics of the present species but is practically structureless.

Stromatoceriem hleroninsf foar, australe, zat. noz:Plate KiNIT. Fig. II

A large number of examples from the Richmond formation have been examincel, the identification of which is very foultitul. This is particularly true of the specimens from Temesesec and Kentucky, in whict the mimete stracture is destroyed beyond the possibility of exact determination. There is, however. in vertical section, a similarity between all these southern forms which may indicate that they belong to a distinct variety. Tangential sections are never goond enough to exhibit the characteristic pillars and consequently they are included in the present specie; only on accomt of general resemblances. The vertical section shows a somewhat coarscer structure, with more widely spaced pillars (Plate XXII, fig. 1t), which appear to be hollow and which fail entirely in many parts of a section, leaving the vesicular tissue only. The surface is covered by mamelons which are lower, hroader and more widely spaced than in the typical
examples. The form of the cenemoneann is varibible, ranging from sub-hemispherical to broat explinate in gencral hatbit of growth. I propose for this furm the name Stromatuceriam hurontense var. anstrale lin its conrse strncture and in the variability of its pillirs the iorn approweles Stromatocerum canadense but it differs in that the cross rectioni slows distinet centres from which radiate hollow lines. This feature is never shown by Stromatocerimn conatense but is chanacteristic in Stromatocirium humbinsi. The variety is represconted by the following specimens irom the Linted States Nittional Mhsenm: No. 49523. Lepper Kichanned near Lebanon. Ky.: . No. 49522, labelled Cystostruma-Steilistroma, top of Cincinnati Group, 18 miles east of Louisulle, Ky. : No. 49525 , labelled Cryptospongia tuberosa, Liticlı, ('j) : Richmoml, castern part of Jefferson Co., Ky.; No. 4550%,..tidlle Cincimatian, Nabhville, 'Tem.

> Genus-Labechia, Edatards and Haime.
L.ubechin macrostyla, sp. noz:-Plate XXII, Fig. 12:
Plate XXIII, Figs 1, 2, and if

Stromatoreriem regosum. Rominger, mss. (U.S.Nim. Labels).
The coenosteum in this species seens to have consisted of sub-hemispherical masses which attaned consillerable size. The point of attachment was much smaller than the diameter of the specimen and appears to have been covered by a wrinkled epitheca. In nearly all the specimens the surface is marked by distinct mamelons, which are but slightly clevated and situated from each other about 8 min. The concentric elements fail almost entirely, being defined only at irregul:ar intervals and there in a very incomplete manner: nevertheless, in a gross way, the concentric structure is always clearly seen on vertical surfaces. Likewise there is an indistinct division of the coer emm into latilaminae of about 10 mm . maximum thickness.

The whole coenostemm is composed of a mass of delicate vesicles with their convexities, for the monst part, directed ontwards. These vesicle: :are rather that, their horizonal extent being about three times their height ; at certinn levels they are more c.ulded together than at others and are consequently flatter and smaller at these points. An average of eight vesicles
occupies the space of 1 mm . measured vertically: Traversing this vesicular tissuse are large persistent pillars which are so spaced that their centres are abont $1 / 2 \mathrm{~mm}$. apart. The pillars appear to have been traversed by an axial canal.

Vertical sectiot:s (Plate XVill, fig. I2) show the cut edges of the exceedingly delicate stibstance of which the vesicles are composeci, the crowding of these structures at certain levels, and their somewhat laminar arrangement at interwals. In the lower part of the figure the pillars appear to be smaller and less compact than in the upper portion: whether this difference is natural or the result of miueralization I am :mable to say with certainty.

Tangential sections (Plate XXIII, fig. I) show the cross section of the pillars as round duts with little evidence of a hollow centre. An occasional connecting line may also be -hserved. The type specimen is of such limited extent that the "rrangement of the pillars camot be seen. Between the mamelons, they are distinctly romul indepenkint structures, but there is some evidence that they tended to coalesce in radiating lines from the centres of the mamelons. In some specimens which are not certainly members of this species, this arrangement is distinctly shown. The polished tangential surface (Plate XXIII. fig. it) exhibits more variation in the size of the pilars and shows more evidence of these strictures having heen hollow.

The type specimen is beautifully preserved and the structure as above described is exhibited to perfection.

In establishing the present species I have not been unmind ful of Nicholson's conchusions as to the character of the pillars in his species Labechia ciadsensis and prestmably in Stromatocerium rugossm. Accepting his view, it might be considered that the type of Labcchia macrostyla is only an exceptionally well preserved example of Stromatocrium rugosum, Dr. Rominger evidently held this opinion, for the specimens are so labelled. The vagaries of fossilization have wronght such changes in all examples of Stromatocerium rugosum; that I am prepared to admit the possibility of the identity of the two specics. There is, however, an tumistakahle difference between the typicil examples, which is shown more particularly in the peculiar cross section of Stromatocerium rugosum and the straight character of its laminae. I am further inclined to regard the species as distinct [318]
on account of the discovery of Stromatocernm michiganense in which the vertical elements are undoubtelly of the claracter described, and in which the cross section approaches much closer to that of Stromatoccrium rugusum than it dees to a similar section of labechia macrostyla.

Essential points of difference leetween Labechia macrostyla and Labichia subcylindrica, James, we difficitt to fund: were they fron the same horizon I should be inclined to consider them identicai. Such differences of structure as may be of valne in identification will be referme to meler lankes species.

A mumher of speciment from the Drift of Ann Arbor (U.S.N.M.. No. 3 (igzig) are doubrfully referted to this species. They present two varieties, a sintoth and a montionlose form. The polished surface slows indications of rombl pillars and the laminae have largely degenerated into vesicles. A photograph of the onlished surface of the form with mamelons is shown in Plo.. $\mathbb{X X I I L}$, figure 2. The clark parts of the figure represent the origmal stmstance of the fibre, which is seen to arrange itself in an olscurely radial mamer aromid the axres of the mamelons. With still less certainty the species may be made to include badly preserved material tron the Fucamha River, Mich, (U.S.N.M. No. $\left.3^{f r}\right) 31$), and from Nasinville. Temn. (C.S.N.M., No, $\left.3(x) 3_{2}\right)$.

Locality.-The onl': sricimens which can, with certainty. be ascribed to this -pecies are from the "Lower Trenton Drift." Amin Arbor, Nicki, These specimens constitute part of No. 36020 . U.S.N.M They were collected by Dr. C. Rominger and hy him identified as Stromatocerium rusisum.

L.mbechin subcylindrici, James-Plate NXIIf,

 Figs. 3. 4. 6, and 7Stromatopmra sutreylindric., James. Jour. Cin. Soc. Nia. Hist., vol. vii, p. 20 ,

 Stromatopora sulicylindrtca. J. F. Jamess, Jour. Cin. Soc. Nat. Hist., wol. xv, p. 90.1802.

The coenosteum of this species, in the type specimen, forms an incrustation abont 3 num. thick nol the sheil of an Orthoceras.
[319]

James gives in delail the share ard size of t^{\prime}.. viganism, but these features can be of no value as they depend on the character of the substratum. In like mamer, the mere thickness of the incrustation can le of little diaguntic importance, ats refeated growths might build up a more anssise coenostewn after the manner of other species. The whole surface is eovered with papillae which are about I mim. apart, and is raised into distinct mamelons which average 5 mm . from centre to centre. On the slopes of the mamelon- the papillae are seen to coalesce into radiating ridges (Ilate N.XIII, figs. 3 and 6).

On the surface of the Crthociras lies a flat, basal, structureless sheet from which pillars pass outwards through the whole thickness of the coenosteun. These pillars are imbetded in a mass of delicate vesicular tissue, formed of curved sheets with thear correxities directed outwards.

The pillars terminate on the surface as papillae, they were probably traversed by an axial canal, hut the evidence on this point is not convincing.

Vertical sections (Plate XXIII, fig, 4) show the cut walls of the vesicles as flat, or bus slightly curved lines connecting the pillars. These latter structures are rather too closely spaced in the drawing, which is due to the fact that it was prepared from a sonnewhat thick section. In thimer sections only three pillars occur in the space of, mm .

Tangential sectin (1). Plate XX111, fig. 7) exhinht the cut ends of the pillars as round or slightly angulated dots, which are comected be necasional curved lines representing the severed comecting elensolta. J. J: James regarded the present species as ielentical with Lahechia montifcra of Clrich, which in its turn bas to yield precedence to Nicholson's Labechia ohiocnsis, and finally this last name is prolably a synonym for Tctradium huroncusc of Billings. While admitting the identity of the species of Nicholson, Llrich and Billings. I believe that Labechia subcolimirica is a separate species for the following reasons. First, the pillars are large and are composed of somewhat porous tissue which is not piercell by a conspicuous axial canal; more particularly, they are round or but slightly angulated, whereas in the ofher species mentioned ahove the pillars are characterized beyond all else by their angularity and their habit of coalescence.

Second. the horizontal elements are smmewhat stouter and are less archerl than in the other species.
labichia snowimdrica very closely resembles Labedia macrostria. It may, however. be distinguished by the following characersistics. First, the incrusting habit. Seconcl, its somewhat finer structure, particularly with regard to the pillates. Thirtl. the thicker laminae. Fourth, the nearness of the mamelons to each other and their sharper definition.

Locality--Cincinnatian, near Morrow, Warren Co., Ohio (iiatker Mnsemm, (niversity of Chicago, No. In99).

Ginis-Chatazodes, Parks

The above genus is tlescribed on page 3.3 of "Niagara Stromatc poroids" and was estaldisherl for the reception of certain forms from Lake lhuron and from Kentucky. Through 3 regrettable oversightit lad faited tonotice a footnote on page tro of Nicholsim's . Nonograpl: in which he proposes the name "Lophic stroma" for a European form presenting precisely the same structure as my genus: Chalazodes, as previously defmed. must, therefore. be abandoned and the following corrections be mate :

Chalzodes gramulatnm becomes Lophiostroma grannlatnm.
chalazodes magnum becomes Lophiostroma magnam.
Chalazodes spindicandinm becomes Lophiostroma spindi. (andun.

Chaiazodes romingeri becomes Lophiostroma romingeri.

> Gemus-Dernatostromin. gen. woz.

The forms included in this genus present a papillose surface exactly resembling that of Lophostroma (Chalazodes) hut they differ from that genus in the thimer connostemen and the armost complete obliteration of the pillars as distinct elements.

The coenostemn consists of a thin continemus sheet of calcareons matter, ustally investing a foreign borly. It is covered with minute, close-set papillac giving to the whole surface a hailtike aspect as it Lophiostroma (Chalazodes) and in many species of Labechia. The internal structure of the coenosteum is not well revealed by any of the numerous sections made: it does not.
however, show the structure either of Labechia or of Lophio. stroma, for it presents neither distimet pillars comnected by vesicular tissue nor spongy pillars arossed by the successive horizontal sheets. The bisal expansion of Labichia is very like an example of the present genus, consisting, as it does, of a continnous horizontal expansion with mumerons papillae on the surface. These pipuillae of the young labochia rise into pillars with the further growtly of the organism, bit in Dirmatostroma there is no distinct development of pillars at all, the growth being arrested with the completion of the basal expansion. In some forms, however. there is a repetition of these sheet-like growths with irregular cavernous interspaces between.

Many of the forms here included have previously been ascribed to labechia, hat the complete absence of vesicular tissue and distinct pillars renders necessary meir removal to the new gemus.

The type of the genus is Dirmatostrona (Labechia)
Tatum, James. papillatum, James.

Dermatostroma papilla m, jumes sp.-Plate XXIII, Figs. 4,9 and 10
Stromatomora papillata, James, The Paheontologist. No. i. p. 1.1878. Stromatoroka papillata, Mickleborough and Hitherby, Jour. Cin. Soc, Nat.
 Labecinta papillata, ifucfures.

The amended description as givell by J. F. James is as follows.
"Ccenosteum a thin crust on corals, shells, etc. Outer surface with small, closely set, prominent papillae or tuhercles: givine a granular appearance: papillae with or withont circular openings at the apices: 6 to 8 papillae in one line, the interspaces non-poriferuus,"

Sections add little to chr knowledre of the anatomy of this form. as they all show a contimuous calcareons mass below the level of the papillae. There is, however, a faint line of temarcation around each pillar indicating that these structures were separate elements from the substratum up. The pillars seem to have come in contact with each other to form the basal expansion,
but a sery faint indication of a fine reticular connecting substance can be made ont in some cases. Where the coenostemm is very than, the papilhe seem to be arranged in rows. Ilate X.XIII, fig. 10 , presents a tangential saction: the ripler portion shows the severed papillace alswe the level of the basal exparsion, While the lower portion reveals the tissue of the underlying Brachioperi. The surface appearance of the type specimen of the Matural size is represented in Ilate N...III. fig. 8, while Ilate X.XIII, fig. 9, shows the same surface magnifier 8.7 times.

Locality:-The holotype is labelled "Cincimatian, Cincinnati, Ohtio." (1'aI. Col., Walker Mnseum, Cuis: of Chicago,
 Ohio. The specimen from which sections were matle is from the Wiaynessille bed, Clarkswille, Onio, collected hy Dr. Geo, M. Austin and presentel to the C'niversity of Tormo by Dr. August J. Foerste. (lal. Mus., L'uis, of Toronto. Nis, Ki_{5} IIR.)

Dermatostroma paphinticm wherscim, zar. nowPlate $\mathcal{N X I I I}$, Vig. 12

 a surface appearance different from any other form in that the papillae are extremely varinble in size. The finer parts are very like Dermatostroma fapillatum, lomt much larger papillie than are shown by the type of the species necur in places. There are no well defined monticules or rugosities and the coenostem is incrusting on a apecies of Orthociras. It seems advisable to establish a variety for the reception of this form.
I.ocality-Cincimnatian (Lorraine). Cincimtati, Ohio. (U.S.N.M... Von $56 \mathrm{KN}_{4+4}$)

Dermatostromia scabrtim, sp. noti-Plate NXIV. Figs. I, 2 and 3
S.anmatomor. scarra. Jimes. ithe Palacontologist, No. 3, p. IR, Jan., 18 go. Stromatohora scafika, J. F. Jumes, Jonr. Cin. Soc, Nat. List., vol. xv, p. 9I, Laperitia scarra. Harter 1892.
Labechia scamba, ifucteres. in the Vicinity of Cincinnati, p. 3, 1896.
The description given by Jam, follows:-
"Coenostemm a thin crust on foreign borlies (shells or [323]
corals) one line or less thick, made up, apparently, of very thin laminae: surface markel with prominent, comeal or elongated monticnles, one-halt line to a line high, and from one to two lines apart : entire surface coveresl with chasely set papillate, generally with antidl circtalar openings at the apex: varying in size irom one to two inches square." (Plate N.NW, figs. 1 and 3 .)

The general surface of this species des unt differ essentially from that of Dirmatostrama fupilhatum. The papillae are less evenly placed atul less regular in size and I have not observer any indication of a tendency to conlence into rows except in a radiating manner from the centres of the monticnles. These structures are very differently spaced in different specinems and apleatr to be induced, in some cases at least, by elevatims or other predisposing influence on the part of the underlying material. Many pecimens referred to the species are doubtless hermatostroma pupillatum incrusting monticulase liryozes: and I was inctined at first to regard the monticule in all exampios in dhe to this cituse. Cases, fowever. ecoler with distinct montirules on a perfectly smonth substratum. leertical aections themery and a specimen show that the mons. ticule is gute independent of the molerlying substance. Nevertheless. I believe that the exact prosition of the elevated points is determined. in many cases, by feterminating conditions of the minlerlying minterial. For instance, the monticules shown in Plate CNIV, figs tand are aren to follow the ribs of a shell of Byssonsciba althongh there are no prominent elevations along those rils to letemine the distance apart of the monticules. In consequence of these facts it becomes very difficult always:o discriminate hetween H_{i} rmatustrona pupillotum incrusting a monticulase stirfice and trite examples of Dirmatostroma scabrum.

The most fortumate vertical section which I have been able to prepare (Plate XXIV, fig. 2) shows no trace of the construction of the crust from "very thin laminae." There is, however. an indication of a contimons bisal expmasion which is separated front the upper crust by cavernons tisue. The substance is the same thronghout and often presents a continuous structureles; mass from the bottom to the tap of the crust.

The monticules seent to arise by the crowding together and elevatio: of a number of papillae wherely the inlentity of the [324]
latter is lome Vettical sectrons show that these elewathons are quite easermons within.

 in figure 3.

 fonko). The vertical section ligutel is from a suecimen fromt Blanchester, Ohio (Walker Mns., I'al. Col., L'nis. nf ("hicass") No. 1555). The figures of surfaces were prepared from a specimen from Wiarren Co., Ohio, (('s.ふ...... Nu. qooso).

$$
\begin{aligned}
& \text { ligrs. \& sand } 0
\end{aligned}
$$

The comostem in this species forms a crnst from (w) (1) three mun, thick amd is componed of vertical pillars, which laave becone conthent either in life ar loy the aposition of interstital calcite during the process of fossilization. Having a greater thickness than the species alrealy deserihed it lends itself better to mieroscopical examination, so that some of the eanclasions hre given may, by analogy, apply to the th: mer forms of D irma tostroma papillatam and D. scabrum.

The surface (Mate N.NID, figs + and 5) is covere! with rapillac, as in the other species, but they are somewhat larger and fartler apart. The papillose surface is however rentered inconspienoms by the development of mamerons "monticnles" whicl are situated from each other alout 1.5 or 2 mm . Further. these monticules sumetimes become conflnont, so that the surface is marked by star-shaped, linear and vermicnlate ridges which occupy abont as much space as the intervening papillose depressions.

Vertical sections show a solid continnons mass of calcite. which is, however, marked be indistinct lines passing vertically through the coenostom in the depressions and radiating untward; and upwards where the sectim. cuts a monticule. In the axis of

3

$$
[325]
$$

P'akrs: Ormovician Stroma moporoms

the montienle there is also a fains apmatance of sumerimposed arched lannimae.
'Tangential sections (I'late NXIV', fig. G), slow a series of irregular polygon with dark centres which present a radiating structure. The pelygom are demareated by fine lines which are not urganic hat which renult from the apposition of neighlaming cuhmms. The darker and better defined portions of the ligure are the to silicitication, the silica having replated the original calcite in spherieal comeretions throughent the comostenm.

The interperation of the appeatathe of both vertical and tangential sections is assinted bey a comparison with chalazodes (Lophiastrama) magnam and with sivingestroma nagarense*. In the canc of these species I have prosion to my satisfaction that the time perpendientar lines in vertical setion and the polygonal network in cross section are due to the apmosition of original pillars ly secomlary depusition of calcite. There seems to he no reason why the same explanation shonld not le applied to the precisely similar appearance of the sectime of the precent species.
locoulity:- The holotype was collected by Dr. G., M. Anstin in the top of the Whitewater bed. Muth Creek, near Wihnington. Ohio. and was presented to the University of I'oronto by Dr. Augus, I. Fiserste. (l'al. Mus. Lniv, of Toronto, No. Ris H.R.) Base of Riclanoml، Warren Co., Ohis. (U.S.N.M.. No. 56845.$)$

Dekmatostroma corrciatim, sp. noz:-Plate NXIV, Figs. 7, 10, 11 and 14 I.anfchia corkecata, Foerste, MSS.

The coenostentr consists of a flat expansion from 3 to 4 mm . in thickness. which aplears to grow on both sides of a median plane. so that the halsit of the organism nust have been froudescent.

This division of the coenostenm into two ontwardly facing halves is simwn in section simply by a line of separation or by a thin sheet of infilered calcite. The entire thickness of the frond is consequently 8 mm .

The surface is covered with large and prominent papilla?

[^1][.326]

 the surfece :

 marked hes a hatince diveling lime. The rilgen do not therefore
 they are due to the organism growner ontward from varims centres and turning upwarl where the different expansions came intu crintact

Vertial sectome (IJate NiNV, fig, 11) slow very much the some appearatice as Dirmatostroma ghytum and present likewise splterical comcretions of silica. The lines of contact of the origimal pillars are seem, atul, in some cases, a diarker vertical stripe marking the centres of these structures.

Tangential sections (Plate XXYIV, fig. 1o) show the same polygenal network preseltex by Dirmatostroma glyptum and also dark spots with obscure radiating structure in the centers of the polygons.

Loculity - Top of Whisewater beed, Dutch Creek near Wil mington, Ohin. Collected ly 1)r. G. M. Anstin ank presented to the Lniversity of Toronto by Dr. August J. Foerste. Hol-

Fig., 8 and ${ }^{\prime}$?
The holntype forms a thin expansion on the shell of an Orthoceras. The lasal lamina is less than a millianetre in thickness. lant the prominent monticnles rise to a total thicknes of 3 mm . The surface is coverel with papillate to the mumber of three in the space of 1 mm . 'Fhes are therefore equae about the same as in lirmatustroma papillathen and in D. scabrum. The monticules are sularge, and ncenper su considecrable a portion of the surface. that the intervenimg space aposars as chamets

$$
\lceil 327\rceil
$$

tostroma glyptum. but it may be distinguished by the larger size and greater ele wation of the monticnles and by the fact that these structures are themselves papillose. Whereas in Dirmatostroma ghyptum the elewitions are smoth.

No sections have been prepared, as I hase hesitated to cut up a small and mique specimen not lelonging to the loniversity of Torminto. I believe. however. that no more minute structure would be revealed thim has been afforded by the other species sectioned.
I.ncality.-Cincimatian, I ower Thirll, Waynesville, Ohio. (Holotype. lis.S.M., No. qoosz.)

> Dermatostroma canirnosem, sp, nez:--llate NXiV, Figs. 12 and 13.

The coenortemm hats at minnum thickness of abont 3 mim. and, althomgh it is essentially inernsting on ramose bryazal, it sems, in part. to lave treen capable of independent growth. The surface is studted with minute pilpillate which wear to the munber of three in the space of 1 man. This distribution of pipillate is aldente the same ats in Dermatostremat papillatum; in some cases they appeat to be mane remote an acemant of their muth smaller siece lant in whers they are indistinguis) athle from those uf Dirmatostroma papillatum. The whole surface is irregular and corrugated ats if the thins sieets hatd parted from
 maner of Jirmatostromu corrugatam. In aldition to these features the surface is weven, sursesting the appearatice of broken blinters. The specmens are much weatlered and on this accomt present in unifue ippearance in places. The papillate have disippeared and in their place little circular depression; appear which ime marked in the centre by a minnte remmant of the original pillar (Plate X.XIV, fig. 12).

The preserwation is sor bial that sections are extremely unsatisfactory (1 liate NX: fig. 13) There is enough evidence however to sluw that the crust is not a continuous struc. ture hat is composed of constituent limmae which are about 2 mm . in thickness. These lavers are not intependent but are fused with each other at intervals so as to leave lenticular inter-

$$
[, 328]
$$

spaces between them. The upper surface rif each westele ts papillose like the exterior. It is the dismont of of the vesicles that gives tu the surface the eharacteristic ledstery appearatuce.

 it in tlat cromis.

Gonhs-Bentratra, Billings.

Professor Nichulsun has so fully divencoed thic rematkible gemms that his descriptem which follews meats an mbargentent.
"Conenostemm in the form of cylinalrical of angulaterl tetns,

 centre of the comostemm, rimbing alonge its whole leogetlo, is a large axial tube crossed by strongly chared calcateont patr
 principally of lenticulat caleareons resicles, arrane ed 16 conn-
 Well preserved speriment exhbit rathal pillats, resembline thuse of the Strotrituporsids gencrally whels intersect the ve-vintan tishate of tioe steleton, and are disected omtwitris in at ratliating mamer from the axiat thole tuwards the surface. Son zondial tubes are certanly known to exict. The surface is ridered, of covered with cevated and 11smally elongated projectionts at
 extermal calcareous membrate such is wothle correspond with the "epitheca" of a Rugrose Coral.
${ }^{*}$ The fossils for which Mr. Pillings proposed the mame of Beatricit are of a must ammalons character, ami have been assigned to very different prsitions in the animal kingenn by different wbervers, Most wemerally they lawe been regarded it:
aberratut types of the Renene (orats, and hate lewen placed in the neighlumarlased of the getne Cystiphyilam, a vien which is borne out be the bowad features of their skeletal stracture. but which is rendered amtenable by at athly of the mieroseopic elataracters of the same. They have been refered by Profestor It inchell to the Stromatopmonid.s: but I lave mot succeeded in finding any pub. lished account of this view. or of the ground mpon which it was based. The mese recent mbinion upou the cubject of the affinitics of Beatricea is that of Poobessor Hyatt, who formerly referred the gemus. (n the Ciphatopoda, but who has been leel to alie eomchasion that it is properly to be placed among the Foraminifira ('Amer. Assoce for the Wds. of Sci..' 1884).
" Wy own stuties upon Beatricia have becn based in part upon specimens from the Cinemiati Group of Kentucky, and pirtiy upon a mumber of very interesting examples which my friend Mr. Whiteaves, the accomplished palacontologist to the frenlagieal Sursey of Canada, was good enough to send me. These latter were obtainel from the IHadson River formation of Antieosti and of Rablit Island, Laike Iluron. The two species originally described by Mr. Bitlings. viz. B. nodalosa and B. untirlata. were boilh represented in the material which I have cxaminet.
"One of the great diffinulties connected with the study of Beatriced arises iroul its apparently muiform? poor state of preservation. The :keletal tissue seems to lave been very delicitte and apparently very readily dissolved; hence the central portions of the cocnostentu atre very commonly more or iess largely replaced loy calcite, while larger er smaller tracts throughnut the skeletno are either similarly replaced. or are completely broken up. Borencer, even where the actual structure of the skeleton has feen retained. it wems to have underame some secumbary change which hats rendered its inter. retation exceeringly difficult. certain parts of all the sections which I have prepared ilways showing at choly and grambatr aspect by whe the mitute details are hopelesty wemert.
"The two conspienons iealures in the skeleton of Beatricea. as diaplayed by trimsuerse or homgitudinat sectome of the cylinWical encmostum (Plate NXV. figs 2 and 3), are the nxial tuhe and the peripheral vesicular tisates. The arviat
tube is a longitmotinal camal, generally 5 to 6 mm , in diameter. rmaning the entire length of the celindrical conestem It has no detinite walls, late is tormed by the surerposition of a serias of deeply connex vesictes of large size. the connexities of
 Whether the comsexities of the ece chrved tabulac point to the distal or to the proximat end of the coenosteum I am thable to say, but I incline to think that they point to the iomere.
"The remainder of the skeletom is formed by a thick sheath of vesicular tissne, fummed of lenticular calcarcous cells, arranged in successive concen ic zones round the axial canal and having a general long dimmer of from: 1 to 3 minn. their convexities being uniformly turned towards the exterior of the cylinder. The general character of the vesicles, superficially at any rate, is very similar to that of the cellular tin of Cystiphyllum; and if we tathe the axial canal as representing a central tabulate area, there would be considerable gronnd for regarding Beatricta as an ally of the Cystiphylloid Corals.
"The strmcture of the vesicles is, however, not so simple as might at first sight appear. In all thin sections, in whatever direction they may be tisken, the interior of the vesicles is nore or less extensively occupied by itl defined gramular calcareous matter, which, beyond doubs, belongs to the skeleton of the fossil. Sometimes the entire cavity of the vesicle is filled with this granular tissue. but more oiten th "he is noly lined with it, the lining being often confined th vex margin of the vesicle, the rest of the pace being fi. with calcite. That this gramular tissue is properly part oi ..ace cuenustemm, and mot at mere product of mineralization, is shown by (wn facts. In the first place. in certain specimens, towards the exterior of the cylinder, the watls of the vesicles disappear to a larger we smaller extent, and then the granular matter which lined then forms it series of concentric laminac, resembling the 'laminae' of an ordinary Stromatoporoid. In the second place, most specimens have this granular materiml in the interiur oi the vesicles so arranged as to leave a larger or smaller mumber of clear lines which rarliate from the convex outer margins of the vesicles towards their shorter inner sides (Plate XXV. fig. 5). This is one of the prints concerning which one is mutortmately left in
the dark owing to the imperfect preservation of the specimens ; for out of a large series of sections, taken tangentially, transversely. and longitudinally. I fail to find one in which this structure is so clearly shown as to allow of a definite interpretation of its nature, thongh all show it more or less, All that I can say is that it reninds one, to some extent, of the arrangement of the rutlimentary radial pilars on the surface of the vesicles of Roscnilla macrocystis*.
"The most characteristic structures of the Stromatopormids, however, are the 'radial pillars,' and I am now able to slow that apparently similar structures exist in Beatriced in a well tharked form. Here, again, we lave the disappointing fact that these structures, owing to the state of preservation of the specimens, are not uniformly to be recugnized. Fven in specimens in which they are well shown they are only to be found in portions of the coenostemu, hawing njpharently disappeared elsewhere : or if they are present the ordinary vesicular tissue is apt to be wanting. In certain specimens, however, the vesicles and the ratial pilars are preserved in the same section (Plate XXV, fig 4), it, which ease the pillars are scen as strong. apparently hollow roits, which are directed ontwards in a radiating manner from the avial cinal towards the circmemerence, and which are mited to one another by the vesicular tissue. In this ease, therefore. the stricture is essentially the same as is observed in the genns Lubcchia, F. and 11.
"In another very large specimen, for which I am indebtel to Mr. Whiteaves, the inner layers of vesicular tiscue, in the vicinity of the axial canal. show ho traces of the radial pillars: lat these latter strnctures are very well preserved in the peripheral zone of the evenosteum. Transverse or Inngitndinal sections of this region of the skeleton show a general structure quite smilar to what we might expect in any Stromatoporoinl. $S_{14 c h}$ sections show a series of strong radial pillare radiating from the central portion of the skeleton towards the cirenmference, and united by well marked enocentric 'laminae,' which minduate in comformity with the surface elevations. Both the

[^2]pillars and the laminae are composed of gramular matter, showing weil marked dark poitts. The ordinary vesicles are present here and there among the pillars, and run parallel to the laminae: but they are mostly wanting, itt which calse the concentic laminae seem to lee formed ont of the grambar lining which is seen in all the vesicles. Tamgential sections, taken close to the circumference, also show appearances very similar to that of cortesponding sectoms int ant ordinary Stromatoporoid, such as anty species of Clathrodictyon. We see, namely, a nuntber of claseste romited ar oxal. gramular masses which represent the ende of the transversely divifed radial pillars. Tilese are also highty gramular, and they are sometines matuestionably Itollow. thongly at other time they alpuar :u be sulis. The section further slaws curved tracts ait datk gramular matter, formed by the chose apposition of the cut ends of the pillars, and representing the pointe where the plane of the section correcponds with the plane of one of the malulating concentric laminte.
"Lastly, the suriace of thio rentarkable surecinen extribits
 than the nthers, and are artanged in iremalar hamituditual bines. which have secmingly a tembey to assume a apiral direction. The larger openings are, alnow eertait:ly the apertures of the
 he sure, howerer, that thene opening alre not the result of the removal of the ontermet layer of the skeletom. No traces of similiar openinge can be detected ,ith the sure of most spe i -
 alsence mily only be dise to their bat wate of preservation.
"It need conly be added that thengh the otter peecies of

 precisely the same. I have mot. howewer, sucteded in reangizine definite radial pillars in B. whdeldure thentsch 1 do met dimbt they womd lic found were an suticienty large series of seceiments examited by me:ns of this sections.

- l jome the whle the babance of evalence seens to me to
 type of the Stromatoporoids. I do unt recognize any Foraminiferal athities ins it : and there are sarionts points in its structure.

โ3,3,3]
as above described, which seem quite ineompathe with its beins a Cystiphylloded Corat. On the other hand, it presents many of the features of the stromatoporods. This is espectally the catse as regards its possession of 'radial pillars.' :and when these structhres are combined with vesicles, the appearances presented are hardly distuguishable from what is observable in scetions of Labechia. Noreover, one of its most abmormal features, namely, the possession of an axial tahulate tube, finds a parallel in the genera /diostroma, Stachyodes, and Amphipora. I was, indeed, at first disposed to place it in the family ldiostromidac, on the ground of this pectuliarity alone: but the general structure of its tissues is stel that, if it be regarded as one of the Stromatoporoids, it would scem to find its most natural place in the neighbourhone? of the genera labechid and Roserclla. The genus Beaticia, in fact. occupies with regard to Labechin the same place that the geme Idiostroma does to Stromatopora. It may, however, be a question, whether, in view of its numerous pecuharities, it wonld not lee expedient to regard Beatricea as the type of a special fanily."

Kegarding Beatricia, Mr. Thomas C. Weston* says: " ifter seeing many hundreds of these forms in situ, I quite agrec with Billiugs in giving it a vegetable origin, and think it will ultimately he described as a fucoid. I have never seen a periect specimen of Beatriceta. The base or root of this plantlike torm is frequently wet with, lut the upper end is always broken and does not show the temmation, so at present we do nol know whit lengeth the fossil attimed. The longest section seen ly me measimed twenty feet and was all hat six inches in diametcr. whike fragments of rithers measured a foot in diameter."

The sections of Rutworn that I have prepared comfirm all of Nich:olson's comelusions: I an umalle to distinguish the species by any peculiaritics of ultimate structure Specitio differentiation must therefore rest on superficial chatacters only, and these are so variable, even within an individual comostem, that the limitation of species stands on very insecure ground. I have

[^3]speciments which show in different patte the typical structure of both of Willings' :juccies athl whers in which the nodes of the one ane the umblations of the other ate distributed over the whole surface (Plate X.VV, tigs. 1 allul 7).

A very file specimen, in the possessinn of the IVamilton Scientific Issucintion, presents a suriace appearance different from anything deseribed by Nicholson, lnt reterred to hy Billings, in thatt the exterior is coveced with papillae instead of minute periorations (Plate NXV, Gig. 1). This is probably the normal condition of the surface as it is similar to that presented by the allies of the grenus. The perforations of Nielolson are probably due to weathering.

Beatricea l'ndul.ita, Billings.-Plate X.XV, Figs. 1, 6, and 7.
Beatricka uevdelata, Billings. Geol Sur. Can, Rep. Prog. 1856, p. 344, 1857. Beatrices undulata, Billings, Call. Nat. and Geol., ser, 2, vol. ii, p. 405, fig. 1 , 1865.

Beathicea lenmulata, IIyafi, Am Jour. Sci., vol. xxxix, p. 266, 186 g.
Beathecea unvelata. Nicholson, Mon. Brit, Strom, pp, 88 and $89,1886$.
Bealricea usdelata, J. F. Jame's, Jour. Cin. Soc. Nat. Jlist, vol. xy, p. 95 , 1822
Beatricea tendelata, /harper and Bessler, Cal Foss. Trental and Cin. Periods in the viein:ty of Cincinnati, p. 2, 1896.
Beatricea undulata, Whiteates. Can. Rec. Sci, vol, vii, p. 133, 1897.
Beatricea undelata Cumings, 3znd' Rep. Dept. Geol, and Niat. Res., Indiana, p. 701, pl. 1, tig. 1. 1908.
 Beatricta dinnulata, Kineft, feol. of Marion Co., Ky., p. 32. Beatricea leniclata, ductoris.
"The surface of this species is sulcated longitudinally by short, irregular, wave-like furrows from two lines to one inch across, according to the sire of the specimen. In other respects it appears very like Reatriciod notulosa. The largest specimen is ten feet five incles in length, about eight inches in diameter it the large end, and six inches an' "t half at the smaller extremity. Another slort frigment is fourteen inehes in dinmeter." (Billings.)

Dr. Foerste states that, in specimens from Kentucky and Indiana, the folds frequently assume a spiral direction, and that there eximples do mot exceed foom, in diameter. By the losi of the lougiturlinal ribs the form seems to fade into a smooth variety which be has named Beatricea undulata cylindrica. The specinen figured (Pl. NXV, fig. 6), is from Marion Connty,

Parks: Ormovician Stromatoporoids

Ky: (Am, Mus. Nat. Hist., No, 116,3.) The cross section shows the characteristic vesicies with radkal pillars towarts the periphery. Ilate XXV. fig. 1 was prepared from a specimen belonging to the Itamilton Sementific Association: it shows the antost perfect exterior that I have seen. In addition to the longitudimal folds, characteristic of the species, the surface is drawn up into seattered motes resembling those of Beatricit nodulosa. Minute papilfac, instead of the pits described by Nicholson, are uniformly developed over the whole surface. This specimen is 75 mm . Whick and presents in crose uetion al werice of foncentrie layers of very different aspeet. The immer tube has a radius of only 3 man. 'This is surroundel by il ring. 20 mm. thick, of ordinary vesicular tisulte with the arambiar dement well developed but with scarecly a trace of radial pillars. Surromat ing this ring is an onter zone. 15 minn thick, which is fairly well demareated by a sharp line of separation. This outer layer is strikingly different from the midelle anmulus, lemer composed of comtinuous laminac and well market radial pillars. Small patehes
 partieularly in the hollow: hetween the int gitudinal ridges. So different is this nuter zone and su sharp the line of demareation that one would certainly conchule that it bedomerel to another organism if it were not for the excasiontal presence of the patcles of nedinary timate.

Locality:- Hutson Rewer, Cape lames, Tible Head, and other localities in Antiensti; Snake Ithand, I.ake St. Iohn, P.O. Rablit and Cluls Islands, Latke Iluron: Stony Mountain, Manitoba: Marinn, Nedon, Madionn and Bullitt comatica, Ky.; Rich. mond and varinus tocalities in the Salutal fumation of Indiana: numernus toxalities in Ohin ant generally thronghout the Cincinnatian formations.

Beatricea undetiat.i cyinindric.s, Focrste.

Dr. Foerste's description is here reprodnced without comment:
"In typical specimens of Brotricfa umiulata the vertical [336]
rikges ant intereming gronves are it least safficiently distinct tor lee ate eted reatily Oecasimall specimens recur bestitute of beth ridge ad mutes．These may be embly extreme variants of Beat icon whthlata，imel here are figitred is Beatricea undudata． tyandrica．
＂Gornhegical fusition．lianr miles morts aí kichunnat，

 of fredericktuma，in Nelsen Comoty，ind in lis murtheisterin part

 7 ：1111 K

 tise 1.8 ， $1 \times \$$ ．

心出体

 tmecessary to add inything on lithogé original bescription， wheh forlme：
＂The surfice di this pecese is covered with oblones orat． or sub－trimsthlar projections from me to three lines in height． each terminating in it romuled bhat print which is nearer to one ［337］
end of the promanemate than the the other. Some ai the projec. tions are six or sesen lines in lenght at the base, and twice at wide, Gemerally they are smaller and often weth a nearly circular base : the distance between then is from one th three lines. They exhibit in sume epecimens a tembency to an arrangenent in rows following the length of the stem, In some cases these rows wind arount the stem in spirals. In addition th these charaeters the while antrace is frettel with minute prints, and these when partially whrn show a perforation in thei: centres.
"In a specimen three iaches in diameter, we diameter of the central tute is theecepuaters of an inch: the tranceesse sep" are thin, very conease, and at a distance from each other waf! my from one line to one inch."

Given an individual example of this spectes and one of B undulata, it wonld not ine difficult to write an aceonnt of the mier vic difference between the two apecies, but when one exantines a number of sections these differences are seen to disappear. My collection is not very extensive, but it seems to bear out Nicholsin's conclusions ass to the impossibility of separating the species by mieroseopic exammation.

Frofessor llyatt states tiret B, nodulosa is a mue e. smalle. species than the ether, bot rei ing a lengti of over four leet and a diameter of fram three t. e e inches at the larger and.

The minute structure of the species has been so fully deseribel in the funtation irmm Nicholsong decernptive of the genus that mothing necel be adted here. liggres $-2,3 .+$ and $:$ are reprohaced from his monograph. Figure 8 , exhibiting the general character of the surfiace, is a me-half size photegrapls froms apecimen No. 1162 of the Smerican Mnseum of Natural History. Figure 7 represents a remarkable specimen showing the characters of B. modulata above and those of B. nodulos. below. (Am, Mus, Niat, Ilist., No. 1164.)

Lacality. - Inticnsti (1hutonn River). Wreck Point, Salmon River, Battery Cliff, Macastey Bay, English Head, and Famache Bay, Anticosti: Hudson River. Stony Mountain, Manitoba: Saluda formation of Indiana, Cincinnatian of Ohio and probahly of Kentucky and Tenuessec.

 arrangentat. hut tembug twarl arrangement in wertical roms
 to suggest vertical rifges apparated hy mane ar les irregular firs rows. 'I'lee lateral distate letwe's these rows or rilyes varies from 5 th 7 millimetres. In wher quecimens, the :aramerement is

 stems wete sereral fert in lengly and grew in a rerncal position. tapermge slewly tow: rel the top.
" (roblogical position. The type speciment were ubtainel fire iect lefow the hase of the bevonath ibestone, at a suall falls a quarter of a mile somth of the Sutpour sering. three miles sontheast of Lelatmon. Kentucky, Ilere Cohumariz and Tetre dium octur withins three feet of the base of the Devonian limestone, and Bealricin modulifird, Beatricia unduhta. Weterospongia subramosi, and Columnariz oceur two feet lower. Thes horizon is regarded as the b:ise of the liberty bed. Specimens have been fomed at the same horizon at Barlstown. Kentucky."

Beatricea nodulifyra intermemh, Pimersti. Plate X:XV. Fig. 9.

Beatricea nonelatira intermpma. Fictste. Bull. of the Denison Liniversity, p. 3oo, pl. wi, tigs $4 . \mathrm{b}_{1}$ atid c , Nov. 1 ght
"Among the varions aberrant forms uf Reatricta found ist Kentucky is ouse in which the unden are comsiderably elongated. forming short ridues. Thle upper end of ume of these slont ri lges freguem!y terminates slighty to the right or left if the lower end of one of the short ridges lacated firther up the stem, thus rebulting in a vertical serial arangement similar to that of Beatrica modhtificu. It is probably une of the extreme variants of that species.
"Gicological pasithon. Near the hase of the sonthern extension of the liberty bed, in Marion chant!, Kentucky."

MIPENDIS

Certain forms liave leen referred to in the literature or an

 which very handinlly leveng there, and other fomm have leen removed from the association on the evidete of their mieronengic structure. Brich explimatury motes conternang theae forms will be formal ledow:

Stromatacirian fustulosam, Siafonal. Regardine this
 are of such porer preservation that sectims are unsatisiactury
 varicty unstralle:

 further comment. Isce Niagara Strmatopmends, p. 56.)

Stromatopora imduminsis, I. IF Pames. The "pecimen mon

 xi. 1. 92.)

Seromatopura lyoni. Jomes, and Stromatopora cincin-
 Wetherly in Vol. I of the Jurtal of the Cincinati Socciety of Natural Ilistory as oecurring wear Cincimati. I have been unable to find any other reference to hem, either in carlier of: later literature.

St imatopora lichenoiles, James. Described by U. P. James a the third momber of the Palaemologist. 1870. Dr. Bassler has prosed this form to be the lasal expansion of a specties of Arthropora (Proc. C.S.N.M., vol, xxx. p. 5 6. tomi.)

Stromatoporiz ludhationsis, James. Described in Vol. VII of the Journal of the Cincimati Society, IR8 \& Itlentical with

Coramopurella distimets, l'Ireh (Hassler, I'sue, U.S.S..St., vol, $x \times x, 11.5 \%, 140(3)$
 the Jumrail of the Cincomatt Sixiety, 888 , hemtionl with Cira
 p. 57,1006)

 were collerted from the Ifulvill liver formations , th the fompers,

Attinustrom, trollumins: W'eller, lial. New Jeraty, vol in,
 complsifs. lillings. Sut a Stronlatepmernil.

Stromateciritut richmondinsi, Miller. ('irt. Sixe. Nitt. Hint.,

 ard Indsom liver formations.

EXPLANitTION OF PIATES XXI TO XXV.
 (.tll figures. not othcracise spocificid ar, enturbed tin times.)
 Plate . XXI

Fig. 1.-Stromatocerium michiganense. Vertical section. Drift of Ann Arbor,
Fig. 2-
Mchisan, US.N.M.. no. sim, ${ }^{3}$

Fig. $3^{- \text {-Stromatocerium rmgosum. }}$
Fig. 4- "
Fis. $5-$ ".
Fig. 6- " .
Fig. 7-
Fig. 3^{--}Stromatocerium rugosum. Tangential section. As above.
Vertical ssectim, Lake Champlain, New York State Mhseum.
Vertical section. Kirkfickl, Ont.
Tankential section. J'ayynettr": Rapids. Ont. (Granular layer not preserved.)
Tangential section. Pauquette's Rapids, Ont. (Granular layer preserved.)
Weathered vertical surface of the natural sizc. l'anquette's Rapids, Ont.
Fig. 8-Stromatocerinm canadense. Vertical section. Pauquette's Rapids, Fig. 9 Ont
Vertical section. Gloucester, Carle${ }_{49502 .)}^{\text {ton., Ont. (U.S.N.M.., no. }}$

Plate XXII.
Fig. 1-Stromotocerium ranadense. Vertical section. Gloucester, Carleton Co., Ont. (From a specimen pre-
Fig. 2-
Fis. 3-sitromatocerium Tangential section. As above.
minimum. Vertical section. Frank. fort. Ky. (U.S.N.M1., no. 36930.)
1.is 4 --Stromatocerium huroncosc. L'pper murface, nitural size. Cape Snyth. Lake lifuron. (Geol. Sur, of Can-
Fig. 5ada.)

Fig. $6-$

Fig. 7-
Upper surface, magnificd 1.7 times. Wilmington, Ohio.
Vertical scetion. Clarksville, Ohio. From the type of Altreolitcs granu. losks. Janes. (Walker Mus., Univ. of Chicago, no. 2250.)
Vertical section. Cape Smyth, Ont. (British Museum specimen.)
$\begin{array}{lll}\text { Fig 8- " } \\ \text { Fig. 2- } & \text { Vertical Section. Wilmington, Ohio. }\end{array}$
Fig. п- ". ". Tankential section, Wilmington, Ohio.
Fig. 1t-Stromatocerium $\begin{gathered}\text { Tangential section, Clarksville, Ohio } \\ \text { (Type of Alicrolites granulosus.) }\end{gathered}$ (Type of trite Vertical section. Nashville, Tem.1. (U.S.N...1., no. 4950.)
Fig 12-Labechia macrostyla. Vertical section. Drift of Ann Arbor, Mlich (U.S.N.M., no. 36929)
[342]

Platr. XXIII.

Fig. I-Labechia macrostyla. Tamsential ecetion. 1)rift of Ann Arber, Mish. (U.S.N.M. no. $3^{3(x) 29)}$)

Fig. 2- " Tangential surface, Natural size. As ahove.
Fig. 3-Labcchia subcylindrica. Surface. Natural size. Near Morrow, Warrell Co., Ohio, Type. (Walker Museum, ('uis. of Chicago, tos. tros.)
Fig. 4- " \quad Vertical section. As above.
Fig. 5-Siromatocrimm huroneuse. Vertical surface. Natural size. Wilthington, Ohio.
Fig. 6-Labechia subcylindrica. Surface magnitied t.7 times. From tepe as abowe.
Fig. 7- " $"$ Tangential siection. As above.
Fig. 8-Dermatostroma Dillahum. Surface. Natural size. Cincinnati, Ohio. From type. (Walker Musctm, Liniv. of Chicago, mo, $\mathbf{1 6}$.)
Fig. 9- " $"$ Surface magnified 1.7 times. As above.
Fig. 10 " " T'angential sectiont. As above.
Fig. 11-Labechia macrostyla. Tangential section. From perlished anface.
 3(6)2.20)
Fig. 12-hermatostronat pupillatum dacrsum. Surface. Natural size. Cincinnati, Ohio. (C'S.N.M. no 5684.)

Plate XiNiV.
Hig. 1-Dermatostroma scabresm. Surface, Xiat. size. Warren Co., Ohin. (L'S.N.M., no. 40040.)
Fig. 2- " Virtical section Blanchester, Ohin. (Walker Whe, Liniv. of Chicagn, no. 1555.$)$

Fig. 3- " Surfice Magnificd ly 1.7. Warren Co. Ohio. (U.S.N.M., no. 40 mm .)
Fig. 4-Dermatostroma glyptum. Surfare Nilt. ,ize. Wihnington, Ohio. (Univ. Tor. Mits, no. 8t6 H.R.)
Fig. 5- " " \quad " Surface. Magnificel by 1.7. As alove.
Fig. 6- " Tangential section. As above.
Fig. --Dermatosiroma corrugatum. Surface, Nat. size. Wilmingtom, Ohio. (Univ. Tor. Mus.، no. $8_{17} 11$ R.)
Fig. 8-Dermatostroma canaliculalum. Surface. Nat. size. Waynesville,
Fig. 9- " $"$ Surface. Magnified by $1 . \%$ As
Fig. 10-Dermatostroma corrugatum. Tangential section. is above.
Fin 11 " " Vertical section. As above.
Fif. 12-Dermatostroma cazcrnosum. Surface. Nat. size. Mount Pleasant, Temn. (U.S.N.M1.. no 40508.)
:̈g $1.3-\quad$ - Vertical section. As above.
Fig 14 - Dermatositromi corrugalum. Surface. Magnificed by 1.\%. As above.

Plati XXV.
Fig. 1-Beatricea undulats. Surface. Nat. size. Anticosti. (Hamilton Scientific Association.)
Fig. 2-Beatriced nodulata. Transverse section \times 1.6. After Nicholson.
Fig. 3- " Vertical section x 1.5. After Nicholson.
Fig. 4- " Transverse section $\times 12$ After Nicholson.
Fig. 5- " " Transverse section x if. After Nicholson
Fig. 6-Beatricea undulatu. Surface x t. Marion Co., Ky, (Am. Mus. Nat. Hist., no. 1163.)
Fig. 7-Reatriced undniut vel noduhsu. Surface x Marion Co., Ky. (Am. Mus, Nat. Hist., no. 1164)
Fig. 8-Beatricea nodulosu. Surfare x 1. Marion Co., Ky. (Am. Mus. Nat. Hist, no 1162.)
Fig. 9-Beatricea nodulifers intermedid. Surface x o.8, Lebanon, Ky., After Forrste.
Fig. 10-Beatricia nodulifera. Surface x o.8. Lebanon, Ky. After Foerste.

[^0]: - Mon. Brit. Stromatrmoroids, p. 87.
 ?

[^1]: - Niasara Stromitupproide, p 30 (211) and p. 53 (225.)

[^2]: * In one section of Beatric.a nodulasa, Bill., I have noticed perpendicular cakarculs septa crossing the vesicles, but whether or not this has anything to do with the appearances described above 1 am unable 10 say.
 [332]

[^3]: 1849.

 *R. m.msicnics awnus; the Roiks. Warwick Bros. \& Rutter, Torontn,

