The Institute has attempted to obtain the best original copy avarlable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couveriure endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Car tes géographiques en couleurCuloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear wition the text. Whenever possible, these have been omitted from .ilming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées
$\square \begin{aligned} & \text { Showthrough/ } \\ & \text { Transparence }\end{aligned}$Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de dèpart de la livraisonMasthead/
Générique (périodiques) de la livraisonAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE CANADIAN JOURNAL.

NEW SERIES.

No. XLVIII.-NOVEMBER, 1863.

A Glance at the political and commercial IMPORTANCE OF CENTRAL BRITISH AMERICA.

by il. Y. HIND, M.A., F.r.G.s.

Communicuted to the Canadian Institute, November, 1863.

The extraordinary commercial activity to which steam and the electric telegraph have contributed of late years, lead us to overlook the enterprise and daring which distinguished the early French colonists of Canada nearly two centuries ago. The history of their successful attempts to open commercial intercourse with Indian wations to the north and north-west, far beyond the present limits of Canada, their journeys of discovery and military expeditions to the shores of Hudson's Bay, appear to have faded from the recollections of their descendants, at a time when the question of extending our civilization into the far interior of the continent is exciting general attention both in England and Canada.

If the proposal were now gravely made to send an armed force of ove hundred and fifty soldiers, or one hundred and fifty emigraits, across the uninhabited wilderness between Lake Superior and James Bay, or between Quebec and Hudson's Bay, to establish permanent settlements, a large majority of the public would treat the idea as

Vol. VIII.

simpiy absurd, and the projectors as probably insanc.* Yet these expeditions were actually undertaken when the population of the whole of Canala was less than one-fifth part of the present population of Montreal, and, consequently, less than one half the population of Toronto.

That the early French colonists were pre-eminently distinguished by their desire for the extension of their territory, the following extracts from the Paris documents \dagger will establish beyond doubt, and at the same time convey some idea of their activity and enterprise in the infancy of Canadian history, and also of the projects they formed, and the conceptions they entertained of the extent of the country they intended to colonize as new France, north of the great Lakes, two hundred years ago.

As early as $16: 16$, we read that Sieur Bourdon, with three Frenchmen, was sent overland from Quebec, to take possession of Hudson's Bay for France. The French had already established a trade with the Indians of Hudson's Bay, and in a few years induced them to come to Quevec to barter their furs.

In I661, the Rer. Claude Dablon set out overland for Hudson's Bay viat the Saugenay, but he succeeded in reaching only the head waters of the Nebouka, 300 miles from Lake St. John.

[^0]+ Documents relating to the Colonial History of the State of New Yorkz
"In 1663 the Indians of the Bay du Nord (Hudson's Bay) returned to Quebee in further quest of Frenchmen, and M. Davaugour sent thither Sicur de la Couture with five men, who proceeded overland to the said Bay, possession whereof he took in the King's name, noted the latitude, planted a cross, and deposited at the foot of a large tree his Majesty's arms engraved on copper, and laid between two sheets of lead, the whole being covered with some bark of trees."

In 1671 Pere Albanel was despatched overland to Hudson's Bay by the Intendant Taton, (ria the Sangenay River); and in the same year (1671) Sicur de St. Lusson was sent by Mr. Talon to Sault St. Marie, where he made a treaty with "seventeen Indian nations." The Intendant in his report states that the place Sieur de St. Lusson reached is not supposed to be 300 leagues from the extremities of the countries bordering on the Vermilion or South Sea. He continues: "The countries bordering on the Western ocean appear to be no farther from those discovered hy the French, according to the calculation of the distance made from the reports of the Indians; and by the maps there does not appear to be more than 1500 leagues of navigation remaining to Tartary, China and Japan." Even at so early a period in the history of Canada did the French look forward to establishing communication, overland, with the "South Seas," to command the trade of Western Asia; and in another half century the French government were so imprassed with the idea of an overland route to the Pacific that they sent instructions to Quebec to have the exploration effected.

Du Chesneau writes in 1681: "They (the English) are still at Hudson's Bay, on the north, and do great damage to our fur trade."

In 1683 M de la Berre writes to M. de Seignelay: "The English of Hudson's Bay have this year attracted many of our northern Indians, who for this reason have not come to trade to Montreal. When they learned by expresses, sent them by Du L'hut on his arrival at Missilimakinak,* that he was coming, they sent him word to come quickly and they would unite with him to prevent all the others going thitl:er auy more. If I stop that Pass (Lake Superior to James Bay), as I hope, and as it is necessary to do, as the English of that Bay excite against us the savages, whom Sieur du l'hut atone can quieten, I shall enter into arrangements with those of

[^1]New iork, ior the surrender to me of any guilty fugitives, but we are desirous to obtain an order to that effect from the Duke of York."

And in the same year (1683) M. de la Barre writes to M. de Seignelay as follows: "A small vessel has just arrived from Hudson's Gulf, 200 leagues further north than the Bay. * * * It is proper that you let me know, carly, whether the King desire to retain that post, so that it may be done, or the withdrawal of the French, for which purpose I shall dispose matters in order to ald teem overland bejund Lake Superior, through Sieur Du L'hut, and to send to them by sea to bring back the merchandise and peltries."

In Governor Dongan's Report on the State of the Province, in 1687, we find a notice of the Hudson's Bay in the New York Colonial manuscripts:* "Last spring he (the Governor of Canada) sent ove De la Croa with fifty soldiers and one hundred young men of Canada to the north-west Passage, where, I am certainly informed from Canada, they have taken three forts.' \dagger In Mr. Nelson's memorial about the state of the Northern Colonies of America, dated 1696, he says "there are actually, this instant, now at Versailles six Sagamoes or chiefs sent from Cauada, Hudson's Bay, and Nova Scotia, to solicit such help and assistance against us," \&c., \&cc.
M. de la Verandèrie was sent on an orerland expedition by the desire of Count Maurepas, in the year 1738, to discover the Pacific Ocean. He set out with his party from Montreal, passed through Lake Superior, and proceeding neariy due west, ascended the Assinniboine river, and directed his course towards the Rocky Mountains. Without reaching the Rocky Mountains, M. de la Verandèrie was obliged to abandon the prosecution of his expedition. Three hundred miles west of Lake Winnipeg on the Assinniboine river, the French erected Fort la Reine. Three others were built further west, the most remote of which stood on the bank of the River Paskoyac. \ddagger

Mackenzie speaks of Canadian missionaries who penetrated " 2800 miles from the civilized parts of the Continent long before the cescion of the country to the English in 1763!

The names of several lakes and prominent hill ranges date from the occupation of the country west of Lake Winnipeg by the French

[^2]prior to the Conquest. Such as Dauphin Lake, Dauphin Mountains ; Fort Bourbon, on the Saskatchewan, near the west end of Cedar Lake. The most remote of the French settlements on the Sask tchewan appears to have been, "at Nipawce, in lat. $53 \frac{1}{2}$ long. 103."*

When we consider these great enterprises in connection with the population of Canada at the time, we cannot fail to bo astonished at the energy of the French colonists, and the desire they exhioited to extend their empire even to the frozen North, and to secure the overland trade with IIudson's Bay and the far unknown west-even to " South Seas."

During the period when they were undertaken, the population of Canada from 1666 to $1738+$ was as follow :-

1666	$\ldots \ldots . \cdots\left\{\begin{array}{l} \text { 3418-total population. } \\ \text { 1344-men bearing arms. } \end{array}\right.$
1667	$\ldots \ldots . . .\left\{\begin{array}{l} \text { 4312-totul population. } \\ \text { 1566-men capable of bearing arms. } \end{array}\right.$
1668	$\ldots\left\{\begin{array}{l} 5870-\text { total population. } \\ 2000-\text { men capable of bearing arms. } \end{array}\right.$
1679 9400-total population. (17,100--Freuch inhabitants, men, women,
1685	$\ldots\left\{\begin{array}{c} \text { and children. } \\ 3000 \text {-men capable of bearing arms. } \end{array}\right.$
1738	$\ldots \ldots .\left\{\begin{array}{c} 45,000-\text { population: the year M. de la } \\ \text { Verandèire was sent overland to } \\ \text { discover the Pacific Ocean. } \end{array}\right.$

At the period of which we write Upper Canada and a large portion of Lower Canada was a wilderness, and yet the French sought to extend their territorial jurisdiction to the shores of Hudson's Bay; and some years later, had visions of grasping the Indian and China trade from the shores of the Pacific, which they hoped to reach overland from Canada.

At the present time Canada numbers some $2,700,000$ souls, and we bave the official statement from the highest authority, that the

[^3]best lands in the country have already been sold.* With this unexpected and startling ammouncement before us, we are justified in assuming that the present surveyed lands of the Province on the north side of the St. Lawrence, determine with considerable accu. sy the boundaries of the portion likely ever to be settled with an agricultural population, and, until manufactures spring up, they are a rude measure of the future increase in our population through immigration.

Lumbering operations are constantly retreating farther North, and must soon find their limits; but they merely sweep the wilderness of its best forest growth, and do not lead to permanent agricultural settlements if the soil be not favourable. Emigrants prefer to go farther West in search of good land, and if this is not to be found in Canada they must betake themselves to the United States, or to Central British America. We cannot look to mining enterprise as at all likely to lead to centres of population in the back country north of the St. Lawrence, for very many years to come. Iron and copper ores exist in almost unlimited quantities within a ferr miles of the shores of the Great Lakes or great rivers, and, indeed, in Lower Canada, within easy reach of the Grand Trunk Railway, and they are much nearer to coal, and to markets, than the mineral mealth of the back country.

That part of the valley of the St. Lawrence winich lies within the limits of Canada, occupies about 330,000 square miles, and of this portion 280,000 square miles lie wholly on the north side of the St. Lawrence. By far the greater portion of this vast region is intersected with lakes, and "the profusion in which the lakes exist, with, in some instances, only a short interval of land between them, though they may belung to different river-systems, affords with the aid of birch-bark canoes, a ready means of passing from one navigable stream to another, in whatever part an explorer may be; and then, if he is well acquainted with the country, he can reach almost any position he may wish to attain without any very great deviation from a direct route." \dagger

The length of the Province of Canada from Quebec to the Fort William, on Lake Superior, is about 1100 miles, and the greatest

[^4]depth likely to become well settled north of Lake Outario and the River St. Lawrence is 120 miles. On the banks of the Ottawa and some of its tributaries, and of the St. Maurice, this distance may ultimately be increased by a fer miles, but on the shores of Lakes Huron and Superior it is far from probable that any but thin and sparso agricultural settlements are possible, even in the rear of the Lakes. Excluding the peninsula portion of Western Canada, the average depth of the country available for agricultural settlements does not exceed 75 miles between Quebec and Fort William. Excluding the North Shores of Lakes Huron and Superior, we have the probable limits of Canada as an agricultural country, defined by a frontier 800 miles long by 100 miles deep, on an average, on the north side of the St. Lawrence. All the best land in Canada is sold ; in what direction then can British settlements extend by immigration? assuming that the natural increase of the present population is sufficient to occupy the profitable wild lands already owned by private individuals. The fact is, that Canada is really nothing more than a narrow fertile stripe, 1000 miles loug and 75 miles broad on an average,-backed by an undulating mountainous region, susceptible only of agricultural settlements in valleys neither numerous nor broad, considering the immense area occupied by this region.

It is clear then, that in order to preserve our nationality in the face of the astonishing strides towards wealth and political importance which have been made by the United States, we must strengthen our position by extending British civilization where there is room for it to grow and expand.

The North, as an agricultural region, is practicaliy closed against us by the conditions of soil and climate, although it contains abun dance of inert wealth, which may yet become productive and valuable.

The East is already preoccupied : the West alone remains to us. We are separated from Central British America by six degrees of longitude, which must be traversed before we can reach a region possessing a soil of remarkable fertility, and occupying a greater extent of surface than the whole available portion of Canada; abounding also in iron ores of the richest description, salt, and lignite coal, and almost entirely unoccupied by man. This barrier has frequently been upheld as an insuperable objection to a practicable
commercial communication betweex Cabuua ana Central British America, in the absence of correct knowledge of the physical fertures of the country. The utmost length of the barrier which requires the construction of a rond, scarcely exceeds 200 miles. From its western extremity there is an unobstructed navigation, witl but one break, to the edge of the fertile prairies of Central Britisl? America via Rainy River and the Lake of the Woods; and its eastern extremity is connected uninterruptedly with the sea by the Great Lakes and the St. Lawrence. The highest point over which the road from Lake Superior to the northern indent of Rainy Lake must pass, is not 900 feet above Lake Superior ; and for the first 30 miles it would traverse a country susceptible of tillage for several miles on either side. Then follows a sudden rise, marked by the great Drift bank of Dog Lake, which forms the Eastern limit of a Driftcovered country stretching in a north-east and south-west direction, and baving a breadth of about ninety miles where the road would cross it. This accumulation of Dritt covers the height of land to a depth certainly exceeding 150 feet, as shown by the hills at the summit level at Prairic Portage, 885 feet above Lake Superior, and the highest point on the line of road. There are no serious physical impediments to overcome between Lake Superior and the northern indent of Rainy Lake, either for a waggon road or a railway; and this short link of 200 miles completed, the distance between Fort William on Lake Superior and the commencement of the arable prairies of the valley of Red River would be reduced to 200 miles of road or railroad, and 180 miles of steam navigation. Here, then, we see no formidable impediments, which an impression derived from the custom of traversing the country in canoes through the rocky channels of rapid rivers or hill-embosomed lakes, had created in the minds of the few who have traversed that region;-impressions which, too eagerly accepted by the public, notwithstanding the imperfect knowledge of the physical conformation of the country. which a rapid journey without special geographical objects in view is fitted to obtain, have retarded the settlement of the fertile prairiea. of Red River.

The communication between Central British America, British Columbia, and the Pacific Ocean, is the next point to be considered. The recent successful journey across the Rocky Mountains of tho Canadian emigrant party of 1862, by an old and long unused trail,
called the "Old Columbia Trail," with numerous horses and oxen, dissipates all fears for the passage of the Rocky Mountains. Where 70 horses, 130 oxen, and 150 men, women, and children can journey without difficulty, the road still being in a state of nature, it is reasonable to suppose that a smal expenditure would convert it into an excellent waggon road.
'The Miette Pass and the Thompson's River trail, join Cariboo with the Plains of the Saskatchewan,* and Cariboo is now only seven days' journey from New Westminster-thauks to the energy which has pushed the government roads so rapidly through that "impassable"

[^5]wilderness, as to bring the crests of the Rocky Mountains within a week's travel of the Pacific seaboard.

It is not, perhaps, unreasonable to anticipate that difficulties of a political character will arise between the Northern and Southern States with reference to the American telegraph and Pacific railmay, as now constructed and contemplated, on and near the 32 nd parallel. The route offering most advantages next to that running near the $32 n d$ parallel (the one selected), is the Northern Route, or that lying between the 47 th and the 49 th parallels. But since the survey of it was made, the passes in the Rocky Mountains have become better known, and there can now be little doubt that the Leatier or Miette Pass is between 2,000 and 3,000 feet lower than the pass on the 47th parallel.

It is, howerer, the remarkable character of the country through which a railway or postal road from the Lake of the Woods to the Miette Pass would traverse, which gives this line of route an extraordinary prominence. The present President of the Southern States, when Mr. Secretary Daris, summed up the comparisons of the different routes in the United States, as regards the character of the country they traverse. The following is an abbreviation of the summary :

Milss.

> Route near the 47 th and 49 th parallels, from St. Paul to Vancouver. . 1,864
> Number of miles through arable land............................... 374
> Number of miles through land generally uncultivable, arable soil being found in small areas
> 1,490

The greatest number of miles of route through arable land on any one of the lines surveyed, is 670 miles, in a distance of 2,290 miles. The least number of miles of route through generally uncultivable suil, is 1,210 , on a line of 1,618 miles in length, near the 32 nd parallel.

From the Lake of the Woods, or from Pembina, a line in British territory instead of passing through a desert incapable of supporting human life, would traverse a fertile belt of country, averaging one hundred miles in breadth,* fully able to sustain five times as many

[^6]people as Canada now possesses, and leading directly towards the lowest and by far the most facile pass in the Rocky Mountains.*

A part from the adrantages which Central British America affords as a railroad route orer any portion of the United States, the direction and magninude of its narigable lakes and rivers are of the utmost importance. These border on, or directly traverse, the Fertile Belt, and thus afford a splendid means of access by steamer from Red River to within 200 miles of the Rocky Mountains. \dagger

Abstract

muncatom, whether m the form of a stage road or ultumately of a rabluay, by the growth of a local populatan. But the tavomabie compatisom does not rest here. The momam region, which offere such a difiedh barner to commancaton between the Pacifie and the valley of the and 63 d panaliels, as far supenor in pomt of physteal conformanonto any other lines of route which hate bera explored in Bntish America or the Umted States. The tireath of country forming a continuous mountain region is far greater in the Unsted States that in Britah Amenca. The C"ated States is crossed by three great systems of mounanins, extmbug gencrally from north to south. The first system, beginning with the Sierra Madre, and temmating in the Black Hills of Nebrasha territory, is partally gorged by the Roo Grande, completels cut through by the North Plate and the Sweet Water Rivers, and tumed by the Missourt. It does not extend into British America. The total breadth of monmainous conntry, in the proper acceptanon of the term, within the limits of the United States, varies from 500 to 900 miles. In Brainh Columbia, the greatest length is not more than 350 miles from the Leather Portage to the Pacific; and the acmal dstance. in an air late, from the leather Portage to the extremity of Belhouia lnlet, the possible termmus of a route, does not exceed 400 miles.

tThe successive links in foad and steam havigation across the Continent through British smerica may be as follow:-

1. Road from Fort William to the nothern indent of Rainy Lake, cia the Matawan River
2. Steam from the northern indent of Rainy Lake to the Falls upposite Fort Frames 40
3. Steam from Fort Frances to the north-west coraer o: Shoal Lake (Lake of the Wioch)

370
4. Road from Shoal Lake to Fort Garry
90b. Stean from Fort Garry to the Grand Lamids of the Saskatehewan
6. Steam from Grand Rapids to Edmonton200
7. Edmonton to the Frazer, wai Miette or Leather Pass, by Road 290

Total distance from Lake Superior to Frazer River-Road, 5S0; Steam, 1150...... 1730 If an incliued plane or a short canal were constructed at the Grand Falls of the Saskat-

It now remains to glance at the intrinsic worth of the Southern part of Central British America in its agricultural aspects and its mineral wealth as far as snown.

The area of cultivable land of the first quality is estimated to be not less than 80,000 square miles, extending from the lake of the Woods to near the head waters of the a thabasca, and in a narrow stripe on the east flank of the Rocky Mountains as far south as the fiftieth parallel of latitude. The length of this Fertile Belt is about 800 miles, the mean breadth 100 miles, and it is susceptible of cultivation or depasturage throughout. It is capable of sustaining an agricultural population equal to that of the Kingdom of Prussia. The basin of Lake Wimipeg alone, is capable of sustaining an equally numerous population. It contains several million more acres of arable land than the Province of Cauada.*

[^7]On the routo from Fort William, Lake Superion, to the Lake of the Woods, illclading the valley of Raing River.

Acres.

The Fertile Belt, stretching trom the Lake of the Woods to the flanks of the Eocky Muuntains, and as far north as the 5sth parallel, on the Athabsesk. west of McLeod's River, ($\$ 0,000$ sq. miles)
$51,200,000$
Isolated areas in the Prairic Plateall, scuth of the Assimiboine $2,000,000$
Isolated areas in: the great Plain Plateau, the extension northwards of the great American Desert, and in the valleys of the rivers flowing through it.
$1,000,000$
Total area of Land available for agricultura! purposes... 54, 400,00
Approximate area suitzble for grazing purposes..................................... 30,000,000
Total approximate area fitted for the abode of civilized man............................... . $85,400,000$
Approximate area of the Basin of Lako Winnipeg, within British Territory...... .. 199,650,000
Ares fitted for the sbode of civilized man.. .. 8t,400,00e
Desert arca unsuitable for the permanent abode of man.................................... . 115,350,000
Comparing this extent of surface with Canada, we arrive at the following results:-
Acres.
Area of the Prorince of Canada (340,000 square miles)............ 217,600,000
Area occupied by the Sedimentary Rocks (50,600 squars miles).............................. $51,200,000$
Ares occupied by the Crystalline Rockis.. . 113, 10n.000
If we suppose that one-sixth of the area occupied by the Crystalline Rocks is capable of cultivation, as resards soil and climate, (an estimate probably in
excess) the total amount of land in Canada available for the purpose of settle-
ment, will be approximately
$78,900,000$
Showing an excess of land fitted for the permanent abode of man, in favor of the
Basin of Lake Wimiprg over the Province of Canada, of
5,500,00e
In Üper Canada, with a population of $1,998,091$, there aro $33,554,90$ acres held by proprietors, of which only ti,051,619 acres are under cultivation, cropped or in pasture. If the

Winter wheat has recently been tried at Red River Settlement with complete success, and all regetables which will grow in Canada East succeed well at Ked River. The mineral wealth of this vast central region is but partial!y known. Already the existence of extensive beds of Lignite coal on the Upper Saskatchewan and ita tributaries have been determined.*

With the lignite coal are also found rast deposits of clay iron-stone. These extend much further east than the lignite layers, which have been removed by denudation, and form a very peculiar and important feature in the rocks west and south of the Assimiboine after it makes its north-westerly bend. \dagger

[^8]- A large part of the region draine by the North and South branches of the Saskatchewall in underlaid by a varinty of Coal or Lixnite. On the North Saskatehewan coal occurs below Edmonton in workable seams.

A sectior. of the riven bank in that neighbourhood shows in a vertical space of sixty feet three seams of lignite, the first one foot thick, the seemd two f.et, and the third six feet thick. Dr. Hector, whomade the section, states that the six foot seam iv pure and compact.(a) Fiftecn miles below the Brazeau Rıver, a large tributary to the North Seskatchewan from the west, the liguite bearing strata again come into view, and frem this point they were traced to the foot of the Rocky Mountains. On the Red Deer River the lignite formation was observed at various points. It forms beds of kreat thickness; one group of seama measured twenty feet, " of which twelve teet consisted of pure compact coal," (Ir. Hector.) These conl beds were triced for ten miles on Red Ieer River. A great Lignite formation of cretaceous are containing valuable heds of coal has a very extencive development on the upper waters of the North and Eouth Savatciswan, the Missouri, and far to the north in the valley of the Mackenzic. Col. Iefroy observed thin Tignite on Yeace Niver. and Dr. Hector recognized at on: Smohing River, a tributary of Peace River, also on the Athabaska, MeLeod River and Pembina River, all to the north of the Saskatehewan, "thuy proving the range of this formation over a slope rising from 500 to 2,3 met abowe the sea, and yet preserving on the whole the same characters, and showing no evidence of recent local disturbance beyond the gentle uphift which has efferted this inclination." (b)

4 The vast deposits of iron ore belonking to the cretaccous neries of the Basin of Lake Winniper acquire especial importance in consequence of their being associated with equally widely distributed deposits of limnite, and are found rot very remote from apparently inexhanstible stores of bitumen and petroleum (on Clear Water River,) which as a fuel adapted to raising elerated temperatures in a regenerating furnace bas no equal.
(a) Proceedings of the Grolorical Society, 1861, paye 481.
(2) Ibid, jafe 480.

Salt is widely distributed, and the rocks yielding this materia! have been traced from the boundary line beyond the Saskatchewan towards Lake Athabaska.*

Gold is known to exist throughout the Drift on both the branches of the Saskatchewan and its tributaries. Gold has also been found on the Assimiboine, and on some of the tributaries leading into the Qu'appelle or C'aling River, hence, reasoning from known facts respecting the source and direction of the Drifi which covers the country within 150 miles of the Rocky Mountains, there is the best ground for the belief that the source of the Assinniboinc gold lies on the east side of the Basin of Lake Winnipeg, and will be found in altered Silurian rocks (already recognized) reposing on the Laurentian strata which form the east shore of Lake Winnipeg, and stretch thence towards Lake Athabaska.

The extensive bituminous deposits which oceur on Clear Wate: River belonging to the Athabaskat valley, deserve mention, as valuable deposits in store for future use.

In contemplating the future of Central British America one important feature appears to be neglected, if not entirely overlooked. While Lake Winnipeg is 2500 miles from the sea board of the Gulf of St. Lawrence, and lies exactly in the centre of the American Continent under the 5lst parallel, its northern extremity is only 380 miles from the tide waters of Hudson's Bay.

The mouth of the Saskatchewan is as near to the open sea as Fort

[^9]Garry is to the western extremity of Lake Superior. The passage from Norway House, at the northern extremity of lake Wimipeg, to Iludson's Bay is made in nine days with loaded boats. It is not unreasonable to suppose that by the introduction of tramways over the portages, the journey may be made in four days, thus bringing Lake Winnipeg within four days of the Sea, yet the nature of the communication now followed is such that it would not admit of vessels much larger than freighter's boats being employed. The navigation of Hudsou's Bay for sailing vessels is sate for a period not exceeding six weeks-for steamers it may be double that time. Hitherto the mode of communication adopted by the fur traders between Norway House and Hudson's Bay has been sufficient for the exigencies of the fur trade ; it is not at all improbable that more easy means of communication with the sea board existsthan those which are now pursued. Under any circumstance it is a fact of the highest importance that Lake Wimmeg is actually within a week's journey of the ocean, over a natural road by which troops have already entered and departed from Central British America. It is more than probable that whenever the necessity arises, the communication between Lake Winnipeg and Hudson's Bay, and thence to the Atlantic, by the aid of steaners, will be made easy and speedy for at least three months in the year.

The outlet by which the waters of the Saskatchewan and Lake Wiunipeg reach the sea, is Nelson River. The chief reason which induces the Hudson's Bay Company to send their cargoes of furs to York Factory by Hayes River, is stated to be the difficulties and dangers of the tracking ground on the banks of Nelson River, arising from impending masses of ice on the precipitous banks. The head of tide-water in Nelson River may yet become the seat of the Archangel of Central British America, and the great and ancient Russian northern port-at one time the sole outlet of that vast empire-find its parallel in Hudson's Bay.

It has been shown that the natural resources of Central British America are amply sufficient to sustain a large population. The existence of gold over wide areas in the Drift which covers the country, will ensure a rapidly increasing immigrai. ,upulation, which, from the nature of their occupation, will necessarily be consumers of agricultural and manufactured products, so that there will be, for some years to come, a home market for whatever the soil can pro-
duce, which will soon extend to home manufactures of the coarser description.

Meanwhile communication with British Columbia under the projecta contemplated by the new Hudson's Day Company will rapidly progress, and also with Canada viá Lake Superior, and the United States via Red River and St. Paul.

Apprehensions may arise that the present easy access which the navigation of Red River offers to immigrants from the States will, in view of various circumatances gradually developing themselves, introduce a population to the fertile valley of the Saskatchewan, hostile to British Institutions and British connection.

The grounds for these apprehensions are as follow :
First: The limit which the American Desert establishes to the westward progress of settlement in the States. This limit is about one degree of longitude west of Fort Garry* and beyond it, south of the boundary line, large agricultural settlements cannot extend in Minnesota or Nebraska, or further south than these states; nor north, even in Central British America, until the limits of the "Fertile Belt" are reached.

Second: The necessity for a new line of Pacific Railway other than that near the 32 nd parallel, adopted by the United States Government, which lies within the country claimed by the Southern States.

Third : The incomparable superiority of the country in Central British America for a railroud or postal route to the Pacific to any part of the United States north of the 32nd parallel. This superiority consists in the line of route passing through rich arable land to the foot of the Rocky Mountains, in contradistiuction to an uninhabitable desert through which a railruad or common road would bave to pass in any part of the United States; and also to the low sltitude of the Pass in the Rocky Mountains.

Fourth: The existence of gold widely distributed, and in quautities, according to the latest iutelligence, amply sufficient to prove remunerative to the industrious miner, wot only on the east flank of the Rocky Mountains but also in the Drift, near the western shores of

[^10]Lake Winnipeg, with the probability of its matrix being found both in the Rocky Mountains aud also near the western flanks of the Laurentian Range.

As opposed to these apprehensions we have, -
First: The comprehensive scheme of settlement proposed by the new Hudson's Bay Company, which will tend to people the valley of Red River and the Saskatchewan with settlers possessing British sympathies, and the strongest attachment to British rule.

Second: The fact that the best lands in Canada are now sold, and immigrants will prefer to go farther west in search of cheap available prairie land of the best description in Central British America, to settling on the comparatively poor timbered lands which yet remain in Canada at the disposal of the government.

Third : The manifest eagerness with which the people of Canada look forward to the opening of an easy and rapid communication between Lake Superior and Red River, and the unanimous determination which exists amongst all classes to uphold British rule on British soil.

Fourth: The material assistance ($\$ 50,000$ per annum) which the Canadian Government, and the Govermment of British Columbia ($\$ 50,000$ per annum), propose to render the Hudson's Bay Company in providing a rapid and easy means of communication across the continent through British territory, and in the construction of a telegraph, already commenced, to connect the Pacific with the Atlantic Ocean, also through British America. The electric telegraph annihilates distance, and will, when completed, unite all parts of this vast dominion and, in effect, bring it within reach of the central or goveruing power.

Fifth : The prospect of not only regaining, on a vastly enlarged scale, extending to China and Japan, the lucrative transit trade which in the time of "The Nor'-West Compauy" enricheci so many of our merchants, but ako that prospective trade which must necessarily spring up with a country abounding in all things suitable for the maintenance of a large population, and whose course towards the ocean lies naturally through the St. Lawrence, and in its most direct line seaward, exclusively through British America.

Sixth: The conscionsness that the physical difficulties which oppose the direction of that trade in the desired chamel. are of such a character as the means now at the disposal of those who have
already taken the matter in hand can sucerssfally and rasily overcome.

And hastiy: The erowine comvidion amoner the prophe of British Americen, and of many in Earland, that the mantenamer of British rule ower that pertion of the . Imerican continent is in a ereat measure dependent upon unted adion on the pat of the ditionent Cobonial Govermments, which mast ulthatch, and perhaps soon, lead to a closer mion betwern them, in the lorm of at lederation and ViceRovalty, moler the protection of, and in intimate alliance with, tho British Crown.

A necessary proliminary step in the establishment of a Pederation of the British Imerican Proviners, would probably he the legislative union of Sowa Seotia, New Brunswiek, Prince Bdward dshand, and Newfoundland. These Provinces have an agrererate population of S22, 000 souls, ${ }^{*}$ and an area of $\mathrm{A} 1,353$ square miles. The value of

\footnotetext{
 present time it $<$ probably 10,000 . Of New Brunswick, the popubation, in 1840, was

 last tem years within a fraction of 3 mer cont. nad at the commencement of liat, its popaIntion may, at the same rate of inewave, be estimated at sise 000. The pombation of Prince
 © 5,010 somls.

Now Brunswick	27,600		$235,0000$
Nova Sootia and the Islaud of Cape breton	1s,600		352,000
Newfoundland.	36,0017		1.40,001)
Prince Vidward lsland	2,133		95.000
Total area	24,33:3		S20.000
	\rightarrow		-
lipurr ciamada	1.10 .1900		. 300.000
Lower Canada	200,000		1,200,000
Fstimated ame of the Province available for gericultural 	-	\ldots	
Basiu of Lake Wimiper and Valley of the River Athabaska... [Excluser of Imian momalation ($40,(000)$]	400,0010	15.1000
Estimated area available for asricultural settement 95,000	-	-
Frith Colun-bia and Vamoonros Isjand ... [Exclusive of Indian population (00, (000)]	210.000	50,000
Asumed ares suitable tor atricultural murposes 30,006	-	\ldots	--
Total area 1	,434,353		3,407,800
Extimated area available for 3rricultural purposes .. 207,000	-	-

Or about nine times the area of Great Britain and Ireland. But throwing out what may be called the inferior and desert portion of this immense territory, we find the area of the arricultural potion to be approximately 2 bit, 000 square miles, or as larke as France, Holhand, and Demmark :mit tozether. whth an aggregate population approarhing four milliona.
their fisheries alome is $815,000,000$ per annum ; and they have immense arailable supplins of timber, iron, and eoal, together with more than one thensand miles of suat cont, provided with wecllent harbours. Tha thal pmphation of British Ameriat at the present moment apperaches four millims, and the quantity of land arailatle
 more than twier the :reat of the Luithed Kinghom of (ireat Britain and Ireland; and cqual bu Framer (including Corsicat, Bolgimm, Holland, and Portural comburd.

This portion of the Britioh empire contains within itself all those elements of material wealth which assist in croating populons and powerfal nations; and besides these aboutares, it possesses unsurpassed farilities for beoming the gran emmeresal highay between the Pacilic and the latantic. With such resources and possiblo future, it is neither vain nor premature to consider the expediency of consolidating the interests of the different and virtually independent Governments into which it is now divided, and of securing the speedy occupation and future allergiance of the key-stome of the arch, Centmas Britisin Amemea, upon which their prospective political and commercial position, as a great Federation, will be mainly dependent.

TESSERE CONSULARES.*

```
HY THE RkV. JOHN M
PRFBIDKNT OP UNINHMGITY COLILEOE, TORONTO, AND OP THB CANADIAN INGTITOTE.
```

The relics of antiquity, which are known by the designation tesserce consulares, are small oblong picces of ivory or bone, with four faces, \dagger bearing an inscription, a part of which is cut on each of the

[^11]faces, so that it is doubtful with which we should begin. These four parts of the inscription are generally $-a$ name in the nominative, always of a man; a name in the genitive, generally of a man; the letters SP. with the day of the month, and the names of the consuls whereby the year is indicated. On some tesserce the month is stated, but not the day ; and on some both names are in the nominative. There are also other peculiarities, which may be nuticed in the following varieties:

(1)

DIOCLES
LONGIDI
SP•K•SEP
CN•OCT•C•CVR
(3)

PELOPS
PETILI
SP•ME•QVI
CN•LE•L•PHIL•COS
(5)

FLORONIVS
ROMANVS
SP•K•DEC
$L \cdot C A N \cdot Q \cdot F A B R \cdot C O S$
(7)

REPENTINVS
CANINI
SP•N•IAN
SER•COR•L•VIS
(2)

AESCINVS AXSI
$\mathrm{SP} \cdot \mathrm{A} \cdot \mathrm{D} \cdot \mathrm{VII} \cdot \mathrm{K} \cdot \mathrm{A}$ $Q \cdot H O R \cdot Q \cdot M E T$
(4)

MYRTILVS
attian
SP•III $\cdot \mathrm{N} \cdot$ IVN
L•SVLL•L•SVLP
(6)

C•NVMITORIVS
NORBANVS
SP•III•K•FEB
$A \cdot L I C \cdot Q \cdot C R E T \cdot C O S$
(8)

CELER
CLODI
SP•ID•IVL
$L \cdot A S P R \cdot A \cdot P L A V T$
(9)

PAMPHILVS
SERVILI•M•S
SPE•K•FEB
C•CAES $\cdot \mathrm{M} \cdot$ LEP
At first sight it is plain that the names in such inscriptions as (1), (2), (3), (4), (7), (8), and (9), are those of a slave and his master or mistress : in (9) the S , standing for SERVUS, is expressed. It is also plain that the namss in (5) aud (6) are those of
freemen. In (1), (2), (4), (5), (6), (7), (8), and (9), the day of the month is stated, but in (3) only the month. In (1), (5), (7), (8), and (9), the leading divisions of the Roman month-scil. Calends, Nones, and Ides-are mentioned ; but in (2), (4), and (6) intermediate days. In (2) A.D. (ante diem) are given; but in (4) and (6) they are omitted. In (3), (5), and (6), but in none of the others, COS follows the names of the consuls. On further enquiry relative to these peculiarities, we find that of the sixty-two tesserce, which are admitted by the best authorities to be genuine,* ouly five bear the names of freemen. Three give the month alone, and they differ from the others in this particular, that they were not found in or near Rome, but in other localities.

The letters A.D. are found on the most ancient: the oldest of those on which they are omitted is of the date A.D. (Anno Domini) 5 . Of the fifty-eight, which state the day of the month, twentyfour give the Calends, twelve the Ides, four the Nones, and eighteen intermediate days. COS does not appear on any, which were found at or near Rome, of a date before 52 B.C., but is common on those that were found there of dates after 8 B.C. The earliest date which is inscribed on any of the tesserce is $=85$ B.C., and the latest $=74$ A. .

From these preliminary observations it is evident that no part of these inscriptions presents any difficulty, \dagger so far as the reading of

[^12]them is concerned, except the letters SP, or, as it is given in n. (9), SPE.

Pelops (3) Pelops	
Petilii	of Petilius
(servus)	(the slave)
Sp-mense Quintili	- the month of July
Cneio Lentalo Lncio Philippo consulibus is	in the consulship of Cneius (Cornelius) Len.
	tulus and Lucius (Marcius) Philippus

Myrtilus
(4)

Attice
(servus)
Sp-tertio Nonas Junias, Incio Sulla Lucio Sulpicio

Ploronius
 Romanus

Sp—Kalendis Decembribus
Incio Caninio Quinto Fabricio consulibus in the consulship of Lucins Caninius and

These consuls were suffecti : the ordinarii were Augustus and M. Plautius Sylvanus.

Caius Numitorius
Norbantus
Sp-tertio Kalondas Februarias
Aulo Licinio Quinto Cretico consulibus

Repentinus
Caniuii
(sorvus)
Sp-Nonis Januariis
Servio Cornelio Lucio Visellio
(8)

Celer
Clodii
(servus)
Sp-Sdibus Juliis
Iucio Asprenate Aulo Plautio

Quintus Fabricius i.e. A. U. C. 752, or B.C. 2.
(6)
(5)

Floronius
Romanus
the 1st of December,
(5
Myrtilus
of Attia
(the slave)
(the slave)

$$
\begin{aligned}
& \text { in the consulship of Jucius (Cornelius) Sulla } \\
& \text { (Felix) and Lucius (Servius) Sulpicius } \\
& \text { (Galba) i.e. A. U. O. } 786 \text {, or A.D. 33. }
\end{aligned}
$$

The expansion of these letters, which has been generally adopted by Epigraphists from the 16th century, is SPECTATVS, with reference to gladiators, whence the objects are also called tessera gladiatoric. This view is supported by the consideration that the great majority of the persons mentioned are slaves, but fer are freemen, and there are no names of women in the nominative.

The sense, in which this expansion was generally* understood, was that the gladiator, to whom the tessera was given, was "tried," "approved," and allowed to retire on the specified day of the month in the year indicated by the specified consuls. In support of this interpretation the well-known verses were cited:
> "Spectatum satis, et donatum jam rude queris, Mrecenas, iterum antiquo me includere ludo."

Morcelli, de Stilo, i. p. 412, suggested, instead of spectatus, spectavit, \dagger on the authority of au inseription given by Tomasini and Fabretti, in which that word appeared on a tessera, in extenso, scil. PILOMVSVS•PERELI•SPECTAVIT. The sense in which he understood the word, was-"was a spectator," "took his seat amongst the citizens and looked on." He believed that these tesserce were given to gladiators, who had received not only the rudis, but liberty, and that they entitled those who had received them to sit amongst the citizens. The inscriptions would thus be regarded as stating the date of the first occasion on which such gladiators availed themselves of the privilege conferred by the presentation of the tesserce. Another expansion, spectuculum, has been proposed by Gori, Inscrip. i. 74, but I am unable to conjec-

[^13]ture in what sense* he understood it. Morcalli, who notices this expansion, dismisses the reading with the expressive phrase-quod miror. His own expansion, however,-spectuvit,-cannot be received, even though a second \dagger inscription, in addition to that given in p. 431, may be cited in its favour, for there can be but little doubt that both these inscriptions are forgeries. Besides, we may now assume that the first two syllables of the word are SPECTAT, on the authority of the following inscription, on an unquestionably genuine tessera, published for the first time by Mommsen, \ddagger p. 201:

MENSE•FEBR•M•TYL•C•ANT•COS•ANCHIAL•SIRTI $\cdot L \cdot S \cdot$ SPECTAT•NVM.
From this it appears that of the two expansions spectatus is the more probable; but even it is not satisfactory, and Mommsen with good reason calls it in question. He objects that the words of Horace hy no means prove that spectatus was the proper or ordinary term for expressing the fact that a gladiator had fought.|l Pugnavit, he believes, would be much more clear and suitable than spectatus est. He olso notices the inconsistency of the days named on the tessera with che days, which we know were fixed for the ludi gladiatorii at Rome, viz. a.d. xiii. xii. xi. x. k. Apr. To these objections I would add, that there is no notice, so far as I am aware, in any ancient author, of tessere gladiatoria.§ The designation is

[^14]a modern invention, accepted and used by those archæologists who read SP as spectatus, with reference to gladiators. As the explanation, which has been commonly received, is open to objections and cannot be satisfactorily sustained, I venture to offer a suggestion, which seems to me to give a more probable solution of the difficulty. Previously to stating my own view, I must briefly notice the conjecture, which I have seen somewhere, that these objects were iesserce frumentaric. On this it seems sufficient to remark, that the forms and inscriptions of those tessevee were not,similar, and that such tickets mere not given to slaves, as appears from Persius, Sat. v. 74: Libertate opus est: non hac qua quisque Velina Publius emeruit, scabiosum tesserula far Possidet.

Nor does a reference to any usage amongst the Greeks throw any light on the subject. They had, certainly, in use small pieces of irory, known as tessera theatrales, but they are entirely different from those objects called tesserce gladiatoria or consulares. They generally have on one side the name of a deity or man, with a number in both Greek and Latin, and on the other a head or other design, and were most probably* used as tickets of admission to the theatre, the row being designated by the number, and the block (cuneus) being known by the name of the deity or man. Thus :

VII
 APLIC

乙
in which the seventh row of the cuneus, called Mars, is indicated. Wheu I first examined the inscriptions on the tesserce consulares, I had seen only those containing the names of slaves, and was inclined to conjecture that they might have been given to persons of that class as testimonials of approved character. Thus Terence, Adelphi,『. 6, 5, is mihi profecto est servos spectatus satis. On re-examination of the subject two or three years ago, I fonnd the names of freemen also; and observing the frequent mention of the Calends, Nones, and Ides, I was led to think that the tessera were in some way connected with money. Hence I conjectured that the word was SPECTATOR, in the sense "examiner of money;" and now, perceiving that this conjecture derives support from SPECNAT.

[^15]NVAI• (i.e., as I read it, spectator numorum or nuemtarius)* in the recently published drles inscription, I submit this reading as more probable than any of which 1 am aware.

Of the use of specto and its derivatives in this sense, the following passages affurd sufficient evidence : Exe omni pecunia certis nominibus deductiones fieri solebant, primum pro spectatione, \$c. Cicero, Verr. v. 78; Cape hoc, sis. Quin dus? Niumi sexcenti heic crunt Probi, mumeruti; fac sit muluer libera, Itque huc continuo adduce. Jam faxo heic erit. Non, hercle, quoi nune hoc dem spectandum, scio. Plautus, Persa, iii. 3; Quum me ipsum noris, quam elegans formarum spectator siem. Terence, Eumuch, ini. 6, on which Douatus remarks: "Spectator, probator, ut pecunia'spectatores dicuntur;" Adcine: heic sunt quinque argenti lectre nemerate mina. Plautus, $P_{\text {seudol, }} \mathrm{iv} .7,50$;上ectum'st: concenict numerus quantum debui. Terence, Phormio, i. 2, 3, ou which Donatus remarks: "Spectation: lectum est;" Veri speciem calles, ue qua subarato mendosum timiat auro? Persius, v. 105, on which Kœuig remarks: Sumptum hoc ab illo hominum genere, quorum erat probare numos, quique spectatores rel docimaste rocabantur. In later times, the provers of gold were called spectatores, as we know from Symmachus, Epist. iv. $56:-$ Nullo jam provincialis auri incremento trutinam Spectator inclinat. In none of our Euglish works on Archtoology is there any explanation of either of these terms-spectutio or spectator-but the necessity for employing persons skilled in distinguishing base from good coin, and the origin of this spectutio, are well pointed out in an article by Dr. Schmitz, on Moneta, in Smith's "Dietionary of Greek and Roman Antiquities":
"As long as the Republic herself tesed pure silver and gold, bad money docs not seem to have been coined by amy one; but when, in 90 b.c. the tribune Livius Drusus suggesied the expediency of mixing the silver which was to bo coincd with one-eighth of culper, a temptation to forgery was given to the people, and it appars henceforth to have occurred frepmently. As early as the year Si n.c. forgery of money was carried on to suci an extent, that no one was sure whether the money he possessed was genuine or false, and the pretor M. Marius Gratidiams saw the necessity of interfering. (Cic. de off. iii. 20.) He is said to have discovered a means of testing money and of distinguishing the good from the bad denarii. (Plin. II. N. xxxiii. 46.) In what this means consisted is not clear; but some metiod of examining silfer coins must havo been known to the Romans long before this time. (Liv, xxxii, 2.)"

[^16]Dr. Schmitz's interpretation of the passage in Pliny's Natural History seems to me very doubtful. The words are-" Miscuit denario triumrior Anfonius fierrom. Mliscentur areu fulser moneta. Aliie e poudere subtrultunt, qu" al sit justume laxwir e libris signari. Igitur ars facta denarios probare, tam jucunda lege pledi, ut Alario Gratidiano ricatime totas statuas dicaterit. Ars facta demarios probare do not appear to me to signify-" a mems of testing money and of distinguishing the good from the bad denarii was discovered," for that camnct have been done lege, "by a law;" bat rather "the testing of denarii was made an ar", became a recognised occupation," i.e. the law of Gratidianus prorided for the appointment or recognition of a certain class, whose business it was to distinguish good and base denarii. It seems probable that this law also had enactments relative to ascertaining the competency of those persons, who were to practise this art, and as to distinguishing them when approved. Thus the origiu of spectatores may, perbaps, be traced to this law; and it is not unworthy of remark, that the oldest tessera of the whole series is of the date, 85 B.C.

It seems not improbable then that these tesserce were carried, or, it may be, hung round the neck, by those who acted as spectatores, as badges indicative of their occupation, and that the inscription showed that they were authorized to act as such, haring been approved ou the stated days, or in the stated months. Thus the frequency of the occurrence of the Calends, Nones, and Ides seems to be satisfactorily accounted for; for these were, as is well known, the settling* days, the principal times for money trausactions. But a question presents itself-which may also be asked if we accept the old reading spectutus with reference to gladiatars-why the days are stated on those tesser x, which were found at or sear the city, whilst the three examples of the month alone are on those found in other places, riz., larma, Modena, and Arles? Mommsen is of opinion that perbape we should take in these instances the month as used for the Calends of the month-"fortasse intelligender sment ijsee kalender in tesseris his nescio yromodo preceipure." Another explamation of this distinction may be given by supposing that these b:adges or certificates were issued in Rome on any day of the month, en which they were applied for, especially the Calends, Nones, and Ides, being those on

[^17]which the services of the spectatores would be most required ; whilst in the country parts they were issued only once in the mouth, the day for such issue not being fixed, but left to the discretion of the issuing officers.

Still another view may be taken, that these tessere indicated the time, not from which the persons holding them might act as spectatores, but for or during which they were empowered to discharge that duty -in the city for a specified day-in the country for* a specified month.

In addition to the inscriptions of this class which have been already noticed, there is an unique, which Mommsen believed that he he bad found on one of the ollae ex Vinea S. Casarii. The inscription stands thus:

FELIX•PETIC•SP K FEB M•CAES•GALIVS

This so closely resembles those found on tessere, that that distinguished Epigraphist, although well aware that those olla bore funereal records, attempted to discover the names of the consuls in the second line, and proposed M:SAESO•GAB•COS. i•e. Marco Casonino et Gabinio consulibus, seil. the Piso and Gabinius of A. U. C. 696. He now, however, p. 212, justly abandons this reading. It is difficult to decide for what $S P$ stands there : the most probable expansions are Servus Publicus, and S[E]P for Sepultus, the latter of which is preferable.

There is also a singular object, apparently of this class, in the Museum at Paris, as noticed by Chabouillet, Catalogue des camées et pierres gravées de la Bib. Imp., n. 3171. It bears the following inscription:

> D•IVNIVS HERMETVS SPECT K•MAT M LEPID Q CAT

There is reason to suspect that this is a forgery, for the tessera is not of ivory or bone but of metal.

[^18]
\triangle POPULAR EXPOSITION OF THE MINERALS AND GEOLOGX OF CANADA.

BY E. J. CHAPMAN, Yh. D.

PROPESSOR OP MINERALOGY AND GEOLOGY IN UNICBISITY COLLEGE, TORONTO.
(Continued from page 219.)
The Upper Silurian Series:-This subdivision in Canada-as separated from the Middle Silurian series-contains but two groups of strata : the Onondaga formation at the base of the series, and the succeeding Lower Helderberg division; but the latter, as regards the greater part of the Province, is but feebly represented.

The Onondaga Formation :-This division, more commonly known as the "Onondaga Salt, or Gypsiferous, Group," derives its name from the village of Onondaga, near Syracuse, in the State of New York. The abundant brine-wells of that locality belong to the group. In Canada, the Onondaga deposits average in thickness between two and three hundred feet, and consist essentially of thin-bedded dolomites, usually of a yellowish colour, with greenish shales (chiefly argillaceous dolomites), and some associated masses of gypsum. The latter substance, so largely employed as a mineral manure, and in the preparation of Plaster of Paris (see Part II.), does not occur in regular beds, but in large lenticular masses, as exhibited in the annexed figure. The dolomitic layers above the gypsum, are generrally arched, and more or less fissured; whilst those on which the gypsum rests, retain their normal condition. The disturbance, consequently, by which the upper beds have been affected, was evidently protuced by some

Fig. 22i) after cause comnected with the presence of the wipsum. The peculiarity was originally explained by assuming the grissum to have been derived from the surrounding rocks by the gradual action, upon these, of springs containing a certain amomet of free sulphuric acid: springs of this kind occurring, at present, at several localities in Western Canada and New York. But it is now regarded iny l'rofessor Sterry

Hunt as more probably due to the contraction of the gypsum masses having been less than that of the overlying and contemporaneously deposited shale matcrials, in consequence of which, the latter would gradually settle down and fold themselves around the gypsum. Another riew assumes the sulphate of lime to have been :riginally deposited in the form of anhydrite, a closely related mineral but without water of erystallization. The after absorption of water would then cause an inerease in bulk, and so produce the bulging and fracturing of the overlying beds.

Fossils are scarcely known in this formation. A few obscure and rare traces of organic fornis are all, indeed, that have been recognized in Canadian localities. The Onondaga deposits are in great part of chemical origin, and were evidently accumulated in strongly saline waters, principally by evaporation : facts which go far to explain the absence of organic remains. The only forms of probable occurrence would be certain cyproids or bivalve entomostracans, as species of these, at the present day, inhabit brine solutions in which an active evaporation is going on. Casts of prismatic crystalline masses, however, like that exhibited in figure 214, and others of a flat and square pyramidal or hopper-shaped form, the latter evidently derived from ordinary salt, are of not meommon occurrence. This would follow naturally from the conditions under which the beds were deposited.

The Onondaga formation (No. 13 in the sketch-map, fig. 249) crosses the Niagara River above and below Grand Island, or a short distance above the Falls, and follows the general outcrop of the Niagara and Guelph formations up to the vicinity of the Saugeen River on Lake IIuron. It thus passes through portions of the Counties of Welland, Maldimand, Brant, Oxford, (north-cast corner), Waterloo, Perth, and Bruce, but throughout much of this area it is covered by Drift accumulations. On the American side of Lake Huron, the pieturesque island of Mackinaw is chiefly made up of Onondaga rocks, and these occur also in places on the adjoining coast of Michigan. Canadian exposures are exhibited chiefly near the village of Waterloo, in Bertie township, on the Niagara River; along the Grand River between Cayuga and Paris, and higher up the stream near the Don Wills; at places near Ayton and Newstadt, in the township of Normanby, on the Upper Saugeen; around Walkerton, on the Saugeen River, in Brant township; and at various points down the river, more especially at the elbow in the south-west corner of Elderslie iownship,
and on the banks of the stream a little below Paisley. At the mouth of the Saugeen, and on the adjacent coast south of this, the formation is concealed by Drift sands and clay.

The gypsum or "plaster" deposits constitute the most valuable economic material of the Onondaga beds; but some of the dolomitic shales of the formation, as those at Walkerton, furnish also valuable materials for the manufacture of hydraulic cement. The gypsum is principally mined or quarried at Cayuga, Indiana, and York, in the township of Seneen; also at Mount Healy and elsewhere in the adjoining township of Oncida, on the opposite side of the Grand River ; in Brantford towoship; and largely around Pa: ; The amual amount obtained at present from these localities, is between fourteen and fifteen thousand tons.* •

The Lower IIelderberg Group.-The group of rocks thus named, is developed somewhat extensively in the vicinity of the Helderberg Mountains and in the castern part of New York generally, as well as in the more eastern part of Canada south of the St. Lawrence; but it thins out towards the west, and presents merely two or three outlying patches in the neighbourhood of Montreal, and a comparatively narrow strip of slight thickness in Western Canada, between the eastern end of Lake Erie and the township of Cayuga. It may probably extend beyond this latter point along the western limit of the Onondaga zone, up to, Lake Huron, but no exposures of its strata have been seen west of that township. This strip, in no place exceeding fifty feet in thickness, consists of the lowest division of the group as subdivided by the New York geologists, or of the equivalents of their "Water-lime Group or Tentaculite Limestone." With us, in Western Canada, it might be called the "Bertie or Cayuga dolomite," as its only known exposures are in those townships; or a still better term would be the Eurypterus formation, so named from its principal and characteristic fossil : the Eurypterus remipes, a low form of the crustacean class, figured in woodcut 227 . In the above townships its strata consist of thin-bedded greyish dolomites, interstratified towards the base with a few brownish shales, and with a brecciated bed composed chiefly of dolomite fragments.

At St. Helen's Island and Round Island, opposite Montreal, on Isle Bizard, and at one or two neighbouring localities, some outlying

[^19]or small isolated patches of conglomeritic rock, referred to the Lower Helderberg division, have been recognised of late years. Their existence was first pointed out by Dr. Dawson. They are made up of fragments of various rocks, gneiss, Trenton limestone, Utica shale, syenite, \&c., cemented together by a paste of greyish dolomite. These conglomerates are regarded as patches of strata once continuous with the Lower Helderberg series of eastern New York, their removal in intervening areas having been effected by denudation. The limestones and shales which at Cape Gaspé, and elsewhere in that region, rest unconformably on the dark shales of the

Fig. 227.
Eurypterus remipes (reduced). Calciferous or Quebec formation, are likewise referred by Sir William Logan to the Lower Helderberg group. These beds are, at present, known provisionally as the " Upper Gaspé Limestones"-the lower limestones of the Gaspe series, already alluded to as occurring on the Chatte, Rimouski, and other rivers of that district, being referred to the Middle Silurian period. See the remarks on this point, under the Niagara formation, abore.

Devonian Strata.-The rock formations of Devonian age, nccurring in Canada, are restricted to the following subdivisions (here named in ascending order) : -(1), The Oriskany Formation; (2), The Corniferous Formation ; (3), The Hamilton Formation; and (4), The Portage and Chemung Group. Of these, however, Nos. 1 and 4 are but very slightly developed. It is in the Devonian strata, it will be remembered, (at least as regards this continent) that we find the first traces of rertebrated life and of land vegetation.

The Oriskany Formation.-In Canada the so-called Oriskany beds consist essentially of white or brownish sandstones of both fine and coarse grain, averaging about seven or eight feet in thickness. These rest on a layer of chert or hornstone. The latter contains much iron pyrites; and the bottom beds of the sandstone present here and there a brecciated structure, being chiefly made up of frag-
ments of this chert. Fossils are very abundant, but the greater number appear to be identical with those of the overlying Corniferous formation. This fact, combined with the cherty character of the beds, renders the separation of the two groups little more that a mere arbitrary distinction. Amongst other forms, the following may be enumerated as especially abuudeat :-Farusites Gothlandica (fig. 215), Zaphrentis prolifica (fig. 230), st"ophomena rhomboidalis (fig. 232), Atrypa reticularis (fig. 240), Stricklandiu elongata (fig. ©36), Pentamerus aratus (fig. 235), and Calymene Blumenbuchiii (fig. 209).

This formation, which is somewhat extensively developed in the State of New York, enters Western Canada in Bertic township (about opposite to Buffalo) and appears to extend as a thin band along the southern edge of the Eurypterus or Onondaga deposits, at least as far as the County of Norfolk; but the only known exposures occur at places in the townships of Bertie, Dum, North Cayuga, Oneida, and Windham. From the exposure in North Cayuga, a little north of the Talbot road, good millstones have been obtained.*

The Oriskany formation is probably represented in Eastern Canada, according to Sir William Logan, by some of the sandstones of Little Gaspé and that district. A small seam of coal, under two inches in thickness, occurs in these beds, together with numerous carbonised plants. The latter have been deseribed and figared by Dr. Daveson in the Canadian Naturalist, vols. V. and VI.

The Corniferous Formution.-This group of strata includes the "Onondaga limestone" and the "Corniferous limestone" of the New York geologists. Its name is derived from the occurrence of nodular masses and layers of chert or hornstone in many of its beds. It is made up essentially of limestones, generally free from magnesia, but often highly bituminous, combined with layers of chert, and with a few beds of calcareous sandstone and an occasional band of bituminous shale. The total thickness of the formation, with us, is apparently under 200 feet, but this is somewhat doubtful. The limestones are exceedingly fossiliferons; and in places (more especially towards the base of the formaticn) they abound in fragments of crinoids and other organic remains in a silicified condition. The fossils, indeed, are mostly, though not entirely, in this condition throughout the group.

[^20]Vol. VIII.
2 g

They have formed the nuclei, to which, during the consolidation of the strata, much of the cherty matter has been attracted. In some of the silicified corals and brachiopods, petroleum is also found.

A few of the more important organi- remains are shown in the annesed tigures:-

Fir. 2.2 s .
Micinclinea convex.l (${ }^{(1)}$ Orbigisy).

Fig. 2 ?
Suringopora Machure; (Bilhmss).

Fig. 230.
Juphrentis prolifica (billings).

Fis. $\because 31$.
Cystiphyllum sinecacnso (Bhllags).

Fig. Mo.
Strophomena ihomboillalis (Wablemberg).

Fif. 2nis. $S_{\text {piriforgryarius }}$ (Hall).

Fig. 284.
Athyris Clara
(Billings).

Fig. 235.
Pontamerus aratus
(Conrad).

Fir．：36，
Stricklandiat clongata （B1／hmes）．

Fix． $2: 7$. Pharcups bufo （（i）r！日）．

In addition to these forms，Spirifer mucronatus（fig．2：38），Spiri－ gera concentrien（fig．239），and Alrypa reficularis（fig．240），may also be mentioncd as being of common oceurenece．

The Corniferons formation（No． 16 in the sketch－map，fiss 2．19） occupies two extonsive areas in Western Camada，although covered and obscured in most places by Drift accumulations．These areas comprise portions of the countics of Wedtand，Italdimand，Norfolk， Brant，Oxford，Perth，Huron，and Bruce，on the oue hand，and parts of Kent，lissex，and Lambton on the other．A comparatively broad tract，occupied by the Hamilton formation，infewenes between these two areas．The latter fomation，as shewn some years ago by Sir William Logan，rests in a depression on the smmmit of a flat but im－ portant anticlinal which traverses this vestern peninsula in a general east and west direction．Exposures of Comiferons strata occur mure particularly on or near to the shore of Lake Erie in the townships of Bertic，Humberstonc（Rama＇s Farm，near Port Coiborne），Dum．， Ramham，Walpole，Woodhouse，太心．；also in North and South Cayuga；near Woodstock village；largely at St．Mary＇s；in Car－ rick township，on a branch of the Maitland，and also in the adjoining township of Brant；at P＇oint Douglas on Lake Muron，and elsewhere along the coast，in the townships of Bruce and Kincardine；further south，near Port Albert，and on the Maitland，near Goderich；and also at the extreme west of the peninsula，as near Amberstburg，on the River Detroit．

Many of these exposures，and more especially that of the last－ named locality in Malden township on the Detroit，furnish excellent
building materials; but the Corniferous formation is chiefly of importance, in an economic point of view, as the supposed source of the great oil supply of this western region. As the oil-weils in successful operation, however, occur entirely within the central area, across which, as stated above, the Inmilton formation extends, their discussion will be entered into in comexion with the latter series of strata.

In Eastern Canada, the Corniferous formation is undoubtedly represented by a portion of the Gaspé deposits, and probably also by some of the altered strata of the Eastern Townships. The beautiful yellowveined marbles of Dudswell are thought to be of this age. In Gaspé likewise, as near Douglastown and elsewhere in that district, petroleum springs occur in Dcvonian strata referrible either to this series, or to the somewhat lower horizon of the Oriskany Formation.

The Hamilton Formation.-The name of this formation must not be confounded with that of Hamilton in Canada: a city situated on strata (the Medina) of a much lower geological horizon. As a misconception of this kind often occurs, it is almost to be regretted that our Provincial Geologist did not in this instance depart from the usual and strictly legitimate plan, and propose for the group in question a Canadian or palæontological name. It might be called appropriately the Lambton or Goniatite formation, the latter type first appearing in the beds of this series. The term "LIamilton," as at present applied tc the group, is from the village of that name in Madison County, New York. The American geologists usually subdivide the formation into three groups, distiaguished chiefly by lithological characters. The lowest group consists of dark bituminous schists known as the Marcellus shales; the second group, or Hamilton group proper, is made up of argillaceous and other shales or flags, with an interstratified bed of encrinal limestone, and in some places an overlying limestone bed called the Tully limestone; finally, the third or uppermost group is composed of dark shales closely resembling those of the first division, and known as Genesee shales. Some observers separate these latter, however, from the Hamilton formation, and place them in the succeeding Poriage group : a view adopted by the Canadian Survey. The Marcellus shales thin out greatly towards the west ; and on entering Canada, the formation appears to consist only of the second group; but its junction with the underlying Corniferous strata has not yet been observed. It crosses the counties of Norfolk, Elgin, Kent, Middlesex, Lambton, and the south part of Huron; but is much obscured throughout by overlying Drift deposits.

The best and almost the only known exposures occur in the township of Bosanquet in the north-west corner of the county of Lambton. As there scen, its strata are composed of soft grey calcareous shales, with one or two beds of encrinal limestone. Sir William Logan estimates the total thickness of the formation, with us, at about 300 feet. The shales contain numerous fossils, the most abundant, perhaps, being the four species figured below.*

Fig. 233.
Spirifor mucronatus (Conrad).

Fig. 240.
Atrypa reticularis (Limmeus).

Fis. 239. Spirigera concentrica (Von Buch).

"'ix. 241.
Orthis Vanuxemi (Billings).

In addition to these, several corals and some other brachiopods are of common occurrence; and examples of the trilobite, Phacops bufo, fig. 237, are often met with.

Petroleun Springs and Wells.-As stated on a preceding page, the celebrated "oil-wells" of Western Canada are principally situated within the area occupied by the Hamilton shales, although the oil itself, more properly known as petroleum or fluid bitumen, is thought to urise from the underlying Cornifcrous formation. The existence

[^21]of natural springs of petrolcum in the valley of the Thames, appears to have been known to the Indians long before the clearing of that district. Under the name of "Seneca oil," the petroleum from these sources was employed as a popular remedy for rhenmatism, \&c., by the early settlers, who are saill to have learnt the use of it from the Indians of the locality. In the Geological Report of the Canadian Survey, fir is50, Mr. Murray pointed out the occurrence of several of these so-called "oil springs" in the townships of Mosa and Emiskillen; and in the Report of the succeeding year, attention was called to a deposit in that district of bitumen or mineral tar, arising from the thickening or drying up of petrolemm overflows. One of these concreted petroleum deposits occurs in the southern part of Emiskillen, forming two detached portions of about an acre each, and varying in thickness from about a comple of inches to two feet. An.ther teposit of a similar character, three or four inches in thickuess, has been since discovered in the northern part of the township, eight or ten feet bencath the surface of the ground. It necurs in Drift clay above a stratum of gravel. Subsequently to the amonncement of the natural springs of this locality, others have been found in the townships of Zone and Orford; arel some also near Tilsonburg, in the township of Dercham. These ; er lie beyond the limits of t e IIamilton formation, or over the Corniferous limestone; and petroleum has been obtained ly wells from that r eck.

In 1857, the idea occurred to Mr. Willians, of Hamilton, C.W., then cugared in the distillation of the solul bitumen of Emiskillen, to bore throush the Drift clays of that district into the underlying rock beds, in the hope of striking subterranean reservoirs of the petroleum, such as had been shown to occur in Ohio and Pemsyl-ramia-and his attempt was rewarded by an almost mexpected success. At the present time about one hundred wells or bore-holes have been put down in Enniskillen alone. Many of these were at first "flowing-wells," the petroleum rising above the surface of the ground; but after flowity for some time, the action in the greater number suddruly ceased. Some, however, still contimue to flow. Altogether, an immense quantity of petroleum has been oltained from these sources.

The wel!s in Emiskill n are of two kinds, known respectively as surface and rock wells. The former pass through the soin and Drift clay to a depth of about 50 or 60 feet into a stratum of gravel imme-
diately above the rock; whilst the latter are continued into the rock itself, to an average depth of from 50 to 150 feet. The discharge from the wells is accompanied, in many cases, by salt water, and by emissions of inflammable gas. In some of the wells which have ceised to yieh petroleum, salt water has taken the place of the rock oil.

The fissures or reservoirs in which the petroleum occurs, are apparently of restricted size, and very irrembar in their course. Whilst in some instances, neirhbourine wells affect each other, and thes evidently drav their supply from the same immediate source, in other instances, borings put down clese to wells in active operation, and carried even to a greater depth, have fated to strike the oil fissure.

The origin of the petroleum is involved in great obscurity. Two views have been surgested in explanation of its occurrence. One of these comnects the presence of the rock oil with the great coal deposits of Michigan, or those of Ohio and lenyerlvania. The coalbearing strata of the eve districts occupy a much higher geolorical position than the petrolcum-containing beds of Westem Canada. The Jennsylvania coal strata are reologically over 10,000 fect above these latter; and a thicknes of s60 feet intervenes between the top of the Hamilton formation and the coal deposte of Mich: ram. A long interval of time most theretore hase daped betwen the deposition of the two series of strata. But the frimbem may bave been generated in the Michigan best at some subsequent epoeh, and have been carried along a system of fissures into our Hevobian rocks: the two formations, owine to the dip of the strata, ocupuing very nearly the same toporraphical devations. Seweral tacts are opposed. however, to this view. In the first place, no evidence of the oecurrence of liquid jetr lrum amongst the Michiman coal sems has hinherto been obtained, neither are any reservirs of peteolemn known in coal rocks of other localitios; scondly, small quantitice of petroleum and of solid bitumen, (a closely allied substance) orenr in various strata far below, and toporraphically far removed frona coal deposits; and thirdy, the direct distance between the rim of the Michigan coal field and the oil district of Emniskillen is at least so miles, so that the existence of contimous fisures of commomication between the two is not very probable.

The second view regards the rock oil as originating within the strata in which it occurs, by some peculiar decomposition of fucoids
or animal remains. Fucoids or sea-weeds, it must be remembered, are the only regetable matters hitherto discovered amongst the fossilized bodies of our Silurian and Lower Deronian rocks. But if we adopt this view, we must adopt, also, certain other and apparenily unwarrantable conclusions. The organic remains of these strata are not more numerous than those of 0 ther strata in which not the slightest traces even of petroleum have been found; neither do $t^{\circ} g$ present any chararters peculiar to themselves and suggestive of oil-forming capabilities. Hence we have to infer the existence in the Devonian seas in which these deposits were laid down, of a vast abundance of soft-bocied animals, or sea-weeds, of a nature altogether unknown: a most gratuitous supposition. The enormous quantity of petroleum yielded by these sources, and by others in the American States and elsewhere, renders the formation of this substance from sea weeds or perishable animal remains in the highest degree improbable.

But are we absolutely driven to the adoption of either of the above views, in order to explain the occurrence of petroleum in our Devonian strata? The question mainly turns upon this: Are we forced to assume with certain chemico-geologists-who refuse all explanations of natural phenomena incapable of being rendered evident by labora tory experiments-that all forms of carbon, and all compounds into which carbon enters (with the sole exception of carbonic acid, and that only in part) are necessarily of organic derivation? With all respect for laboratory investigations, some of which have shed much light on obscure geological problems, it cannot be doubted that this view assumes too much. There are many faits, universally recognized as such, which chemistry is quite unable to explain. The allotropic conditions of certain simple bodies, for instance, carbon amongst the number; the existence of chlorine, oxygen, \&c., in the solid state in the greater number of their compounds; the peculiar condition of water in hydrated substances, and so forth. We have the positive fact likewise that carbon exists, as such, in meteoric stones; that it separates often in crystalline scales from molten iron; and that it is present in stecl, a fusion-product, also, as sometimes prepared. Why, then, are we debarred from assuming its existence amongst the primary or original components of the earth-mass? During rolcanic outbreaks in many parts of the work, petroleum has frequently made its appearauce, through fissures on the sea-bed, or around the volcanic vent, as one of the products of the eruption. This was memorably the case
in the cruption of Vesuvius in 1861.* The great petroleum springs of Central Asia, which have been flowing for ages also, with those of Zante (mentioned by IIerodotus) and others of different localities, lie essentially in areas of volcanic action; and the so-called mud-volcanoes often pour out large quantities of bituminous matter, mixed with other products. It might be argued that in these cases the petroleum is derived from deeply-seated coal beds, but of this we have no proof. And when we consider the fact that small quantities of bitumen and petroleum occur in rocks geologically far older than those of the coal series, we have an equal, right to assume that these matters may be generated, without the aid of organic bodies, by unknown chemical action within the crust of the earth, and may be poured out through fissures from time to time, both amongst deposits under process of accumulation, and amongst others already consolidated \dagger In this manner, I imagine, our petroleum springs of Western Canada have originated. And I would go beyond this, and refer to the same action a leading part in the formation of all bituminous shales, and of coal seams generally. In the latter case, the liquid bitumen or petroleum may be conceived to have flowed into broad marshes, or over low-lying districts, in which an abundant vegetation was under growth. The regetable matters thus saturated and mixed up with the thickening petroleum, would add their substance to the formation of the coal and would be chiefly instrumental perhaps in imparting to this its peculiar character. Un this view, the formation of bituminous shales by the saturation of the finer kinds of sedimentary matter by petroleum overflows, becomes readily explained; and also the close agreement in character which exists between the shales of the coal measures and those of many Silurian strata. The old view does not explain these points in a satisfactory manner. The petroleum theory likewise obviates the necessity of assuming the growth of an enormous and unparalleled vegetation during 1 - Carboniferous period; and it explains why the vegetation of after periods so rarely yielded coal-the outflows of petroleum having chiefly taken place during the Carboniferous epoch, and only locally at other times.

The Portage and Chemung Group.-The rocks of this group, so largely developed in the peninsula of Michigan and other districts of

[^22]the American States, occur with us in the form only of a few isolateo and inconsiderable patches. These consist of black and highly bituminous shales-the probable equivalents of the "Genesee slates," referred by some observere, as already explained, to the Hamilton formation. The principal lowality of these shales is Cape Ipperwash, or Kettle Point, in the township of Bosanquet on Lake Mhron; but they necur also nearly twenty miles intand from this peint, on a creek near Kingston Mills in the ssuth part of the township of Warwick; and also, still further inland, in the tomeship of Brooke. The shales weather dull-grey, and these of Cape Ipperwash are oreasionally coated with a yellow erust of watate of iron (sec Part II. under "ILumboldtine"). They eontain large spinerical concretions (with radiated internal structure) of carbonate of lime; and also mueh iron pyrites. In the shales of Kettle Point, likewise, long flattened stems of vegetable forms (mostly referred to the Calamites moriatus of Dawson) are of common occurrence; and impressions of tish scales are met with in those of Warwick. The thickness of the exposure at Kettle Point is mader fifteen feet; and it is still less than this at the other localities.

Carboniferoms Strata.-The Bunaventure Formation.-The only locality at which Carbonferous strata oceur in Camada is the southeastern extremity of Gaspé. Exposures of great thickness range along the Bay of Chaleurs and the coast of Pereé, and enter Gaspe Bay. These Carboniferous strata occur consequentiy, for the greater part, in the district of Bonaventure; and as they make up the entire portion of the island of that name, of Peree, Sir Willian Logran has bestowed upon them the name of the Bomarenture biomution. They consist essentially of conglomerates, associated with red and brown sandstones and some reddish shales. The conglomerates are made up of pebbles of limestone, sandstone, syenite, agate, quartz, and other rock-matters, held together by an areaceous or partly calcareous cement. Many impressions and casts of vegetable remains occur throughout this formation, but its beds are apparently destifute of coal. They belong to the base of the coal series, proper; and evidently form a portion of the northern rim of the New Brunswick coal ficld.

The Bonaventure Formation rests unconformably on the Gaspe sandstones and limestones, and dips generally towards the south-east. According to Sir William Logan, it presents a total thickness of about 300 feet.

SKETCIIMA1' OF THE GFOIOOICDI FORMITIONS OF WESTERN

Fig. 249.

References to Map on preceding page.

Deronian Series:
Erie Group. $\left\{\begin{aligned} \text { No. } & \text { 18. } \\ \text { 17. } & \text { Portage and Chemung Group, (Kettle Point Form.) } \\ \text { 16. } & \text { Corniferous Formation. } \\ \text { 15. } & \text { Oriskany Formation. }\end{aligned}\right.$
Upper Silurian Series:
Grand River $\underset{\text { Group }}{ } \begin{cases}\text { 14. } & \text { Eurypterus Formation, or Lower Helderberg Groap. } \\ \text { 13. } & \text { Onondaga or Gypsiferous Formation. }\end{cases}$

Middle Silurian Series:

Niagara or Anti-
costz Group. $\left\{\begin{aligned} \text { 12. } & \text { Guelph Formation. } \\ \text { 11. } & \text { Niagara Formation. } \\ \text { 10. } & \text { Clinton Formation. } \\ \text { 9. } & \text { Medina Formation. }\end{aligned}\right.$

Lower Silurian Saries:

Ontario Group. $\begin{cases}\text { 8. } & \text { Hudson River Formation. } \\ \text { 7. } & \text { Utica Formation. } \\ \text { 6. } & \text { Trenton (including Bird's Eye and Black River) Fa. }\end{cases}$

Quebec Group. \{
5. Cbazy Formation.
4. Calciferous Formation.

Potsdam G.(in part.) 3. Potsdam Formation.

Azoic Sariss:

azoic Group. $\left\{\begin{array}{l}\text { 2. Muronian Formation. } \\ \text { 1. Laurentian Formation. }\end{array}\right.$

THE POST-IERTIARY DEPOSITS OF CANADA.

Under this term, we include three series of deposits: the Drift or Glacial series, the Post-glacial series, and certain still more recent accumulations. These, though properly distinct, merge so gradually into each other, that no actual lines of demarcation can be drawn between thern.

The Drift, or Glacial Formation proper, consists of thick beds of clay, sand, and gravel, with boulders or transported stones of various kinds and sizes, spread generally over the surface of the country, and extending on this continent to about $40^{\circ} \mathrm{N}$. latitude. It does not appear to contain any fossils. Those cited as belonging to it, come properly from Post-glacial deposits. When these Drift materials are removed from the underlying rocks, the surface of the latter (where not in a partial state of disintegration) is generally found to be worn down, so as to present a smooth or even polished condition, and is traversed also by numerous thin lines or grooves, running in a general north and south direction-that is to say from some point between N. W. and N. E., towards the opposite direction in the south. The boulders vary in size from mere pebbles to masses of many tons' weight, and consist of all kinds of rock. In some places they belong to rock-masses of the immediate locality, but far more generally they have been transported by some powerful agency from other and distant sites. With the exception of certain mountainous localities, in which the boulder-courses radiate around central points, these travelled stones have been derived (as regards the northern hemisphere) invariably from rorthward-lying regions. In Canada, the greater number of boulders consist of gneiss or other varieties of rock belonging to the great Laurention area described in a preceding part of this Essay; but where limestone or other strata occur in the immediate neighbourhood to the north, these gneissoid boulders are often mixed with pebbles and transported masses derixed from the latter beds. Like the surface of the underlying rock, many boulders are smoothed down upon one side, and cxhibit, upon this, dulicate parallel furrows. Polished and striated rock-surfaces occur, in Canada, on the north shores of Lakes Superior and IIuron; on the Blue Mountains, Collingwood township, at an elevation of about 1,500 feet above the sea; in the vicinity of Niagara Falls; the neighbourhoods of Belleville, Kingston, Marmora, Brockville, Ottawa, Montreal, Quebec; and
at other localities.* These drift-beds vary in thickness from a mere coating in some spots, to over 100 feet in others. In all places they rest upon demuded surfaces. As a general rule, the lower beds consist of caleareous clays, frequently, if not usually, free from boulders; whilst sand, gravels, and boulders, mixed here and there with seams of clay (mostly free from lime), make up the higher portions of the mass. The conditions under which these various matters appear to have becu accumulated, will be referred to presently.

The Post-glacial deposits consist, like those of the true Drift epoch, of beds of clay, sand, and gravel, with here and there a few boulders; and they appear to have been deriven in most instances from re-distributed Dritt materials. Hence they are often designated by the term of Modified Dr?ft. In Canada, cast of the gneissoid belt of the upper St. Lawrence, sud throughout the New England States of the Northern linion, these Post-glacial deposits contain marine and estuary shells, referrible for the greater part, if not wholly, to specees of mollusca now existing in the Gulf of the St. Lawrence, or along the coast from Labrador to Cape Cod. Shells of this kind, mixed with a few other marine types (Bulumi, \&e., see Pant IV), occur at varions heights above the sealevel, extending, as regards Canada, up to about 500 feet. Some of the principal localities of their occurrence, comprise: Kemptrille in Oxford Township, Grenville Co. (about 250 ft .) ; Winchester Township, Dundas Co. (abont 300 ft . : Kemyyon and Lochiel Townships, Glengary Co. ($27(0-300$ ft.) ; Fitzroy Township on the Upper Ottawa, Carleton Co. (360 ft.) ; Green's Creck on the Ottawa, (about 120 ft .) ; Montreal Mountain (various heights up to nearly 500 feet), and environs of Montreal gronerally; Upton, Easten 'Townships (about 270 ft .) ; Beauport near Quebee (about l20 ft.); Mouth of the River Gouffre (130-360 ft.); Shore of tie River Matame in Gaspé (about 50 ft .) ; Banks of the River Métis (130-245 ft.) ; and terraces of the River Ste. Anne and Rivière du Loup. At Green's Creek on the Ottawa, the shell beds contain, also, examples of the capelin (Mallotus villosus) and the lump-sucker (Cyclostomus lum$p u s$) ; and the remains of the northern seal (Phoca Granlandica), with detached vertebre of a whale, have been discovered in the Montreal deposits.

Professor Dawson divides the Eastern Post-glacial beds into two

[^23]series: a somparatively deep-sea deposit, the "Leda clay;" and a shallow-sea or shore-lime deposit, the "Saxicava Samb." Some of the more characteristic fossils of the Leda clay, comprise : Leda Portlandica, and Rhynconella psittarea; and those of the upper group: Saxicava rugosa, Mya truncatu, Tellinu granhandica, and Buccinum undatum.*

Fig 242.
Ledu Porilandica.

Fıg. ©4.
Rhyucunalla prittace

Fim. 24s.
Saricava rugusa.

Fer 25.5.
Mya trun"eta

Fig. 246.
Tellina greenlandzcr.

Fig. 247.
Buecinum undatum.

- The reader is referred for thgures of the other fussils of these Post-glacial deposits, to raluable papers, by Dr. Dawson, in the Canadian Naturalist, vols. LI. and IV. Also to an earlier paper on the same subjeet, by Mr. Billings, in the first volune of that journal.

In Western Canada, or rather in that portion of the Province west of the grieissoid belt that crosses the St. Lawrence at the Thousand Isles, the Post-glacial deposits consist principally of beds of sand, often exhibiting an oblique stratification (see fig. 54 in Part III.) No marine remains of any kind have been detected in these beds. The shells of fresh-water mollusca, on the other hand, occur in them at many localities. These belong to species which still inhabit our lakes and streams, and comprise, more especially, the following genera : Unio, Cyclas, Amnicola, Valvata, Melania, Planorbis, Limnea, and Physa. Several species of IIelix accompany these at some localities. Examples of fresh-water deposits oi this kind, formed by causes no longer in action where such deposits now occur, have been recognized in the vicinities of Collingwood and Owen Sound; Angus station on the Northern Railway ; Barrie, Orillia, Paris, Brantford, Toronto, Belleville, and other places, at various elevations from 30 or 40 to over 500 feet above Lake Ontario-the present surface of the latter being 232 feet above the sea. Fresh-water shells occur also in Postglacial deposits around Niagara Falls, where, as pointed out by Siz Charles Lyell, many years ago, they evidently indicate the former bed of the Niagara River It is only, however, within the last two or three years, that the occurrence of these shells throughout the lake area generally, has been definitely ascertained, and the true character of the beds in which they occur correctly shewn.* As the shells in question occur all over this region, and at various heights above the existing levels of the lakes-and as they could not have been drifted into their present positions by freshets, or left there, viewed collectively, by the drying up of ponds, lowering of streams, or other causes-they appear to indicate incontestibly the former union of our great lake-waters, and the consequent extension of these into a vast, inland, fresh-water sea. The barrier that kept up these waters on the east -perhaps a glacier or ice-stream, see below-was undoubtedly situated

[^24]along the gneissoid belt of the Epper St. Lawrence: the line, it will be remembered, which separates the eastem or marine deposits of this period from those of lacustrine origin. In this commexion, it is interesting to observe that in the townshin of Pakenham (as discovered by Andrew Dickson, Eiq., and also in that of Augusta, both immediately adjacent to this greissoid belt, a few fresh-water types have been found in conjunction with shells of Tellina Gremlandica, (fis. 246), a marine or brackish-water species. The destruction of this barrierwhether of ice or rock-accompanied probably, and perhaps occasioned, by a gradual and periodically-interrupted repression of the eastern comatry, eventually lowered the waters to their present levels, and caused the formation, by denuding action, of the various ridges and terraees which oceur so prominently throughout the lake districts. Those north of Toronto, described as rityes by Sir Chatles Lyell, and thought by him to be of marine origin, are really a succession of terraces rising one above another up to a height of about 760 feet above the present surface of Lake Ontario, and then successively deseending towards Lake Simese and Georgian Bay-heir abrupt or esearped faces being always in the direction of the nearest lake.

The mollusea of this region during the Pust-glacial period, appear to have been throughout :dentical with chose of our present lakes and rivers; and most of the mammalia were of the same genera and species as those which now inhabit Canada. Of this latter class, the more common remams comprise the jaws and other parts of the common leaver (Custor fiber); the homs and bones of the Wapiti (Elaphus Camulfosis*) ; and the twet! aml skull of the black bear (Ursus Americunas). Two at last, however, of the mammals that roamed over the shares of the great lake recrion than' the period in question, are extinct. These are the Vemoth: an extinct species of Diephant,

Fix. 248.
a-Molar tonth of Elephas momigenius. (E\%plus frimigrmius); and the Matoton (M. Okioticus?). Their remains, hitherto fomal with us, mostly of detached molar teeth (fig. eds); but examples, , o r less entire, of the skull and tusks have also been discovered. The sediments in which these occur,

[^25]appear to be of the same age and character as those which at Amiens, Abbeville, Creil, Suffolk, Bedford, and elsewhere, contain flint implements of rude manufacture, mixed with the remains of the mammoth and other types, both living and extinct. The arrow-heads and other stone implements so constantly found in our Cauadian superficial deposits, are of a much less primitive character, however, and belong in all probability to a comparatively recent date.

Conditions under which the Drift amd Post-ylacial deposits were accumulated.-It is now universally admitted that the various deposits of the Drift, and immediately succeeding period, were accumulated under conditions more or less resembling those which at present prevail in Aretic latitudes. This conclusion is based chiefly on the following facts:-(1). The resemblance of the polished, rounded, and strinted surface of the rocks beneath the Drift, to the surface-rocks of Alpine regions in which glaciers prevail, or to those which in higher latitudes have been subjected to glacial action generally. (2.) The greater development and extension of glaciers in these regions, during the interval between the close of the Cainozoic period and the commencement of the existing epoch, properly so-called. (3.) The evident sigus of the occurrence of ancient glaciers in lower and more southern districts during the same period. (4.) The apparent impossibility of any other agency than that of ice to have effected the transportatica of the numerous boulders scattered thr ughout Drift-covered regions: many of these boulders, including some of large size, having been carried across lakes, seas, ravines, and other obstacles, to far distant localities. And (5), the general arctic or northern chargcter of the mollusea, \&c., found in the modified drift or Post-glacial deposits of various countries.

The fossils which occur in Cainozoic strata, prove clearly the prevalence of a warm, if not of a tropical climate, throughout the period during which these strata were deposited. Towards the close of the Cainozoic Age, however, the relative levels of land and water, throughout all the more northern and extreme southern portions of the globe, appear to have undergone great though gradual changes, during which, a period of increasing cold came slowly on, covering all the more clevated districts with enormous glaciers, filling the sea with floating icebergs, and compelling a general southerly migration of such lifeforms as were able, by this or other means, to resist its destructive influence. The greater part of Canada must certainly have been
submerged beneath the sea, during a portion at least of this period. The polishing and striation of the rocks may have been oceasioned in part by glaciers, and in part by stranded icebergs ; but the transportation of the boulders from the northern districts, southwards, must have been chiefly effected by the agency of the latter: just as at the present day, large masses of granitic and other rocks are dropped over the bed of the Atlantic by the melting of the icebergs on which they travel from the north. It should be mentioned that, as a general rule, these icebergs are unthing more than fragments detached from the extremities of arctic glaciers, where the latter reach the level of the sea. The stones brought down by these enormous ice-rivers, or broken off their rocky shores, collect in large heaps at their lower extremities, and many are thus floated off by the detached bergs, and conveyed over broad occanic spaces to distant and more southern spots. That the comntry cast of the gneissoid belt of the Upper St. Lawrence was beneath the sea to a depth of at least 500 feet at one period of this glacial epoch, is shown by the numerous deposits containing marine and estuary fossils, which occur, as explained above, throughout that area and the adjoining New England States. The same thing is proved also for both portions of the province, by the thick masses of drift clay, \&c., which could only have been accumulated under water. As regards Western Canada-and this may probably apply to eastern districts likewise-a gradual submersion of the Palæozoic or more southern portion must first have taken place, since the lower clays are highly calcareous, and are evidently derived from the Silurian and Devonian strata immediately bencath or closely adjacent to their areas of deposition. The depression still continuing, the higher lands and gneissoid strata of the north would be brought within the influence of the waves, and thus the sands, gravels, and boulders of the Upper Drift deposits, would be gradually accumulated. A re-sorting of these materials must have oceurred to some extent during the subsequent elevation of the country, producing, in part, the varivus post-glacial deposits; although in the western region, most of these latter must have been formed by the great lake-waters whic extended over this area, as described on a preceding page, after the final elevation of the land. The cold of the Drift period, with its accompanying phenomena, came on gradually, and as gradually diminished in intensity.; or, in other words, these glacial ma,nfestations shrunk back slowly, after a certain lapse of time, to within the
higher latitudes and Atpine elevations in which they still prevail. No strong or abrupt lines of demarcation can thus be drawn between the close of the Cainozoic Age and the dawn of the existing state of things. The one period merged slowly into the other ; and certain life-forms, indeed, appear to have existed throughout all the changes which occasioned and accompanied the general deposition of the Drift.

Recent Deposits:-These comprise various formations, of limited thickness and extent, produced by cunses now, or recently, in action at the lecalities in which these deposits occur. The principal consist of: Shell marl, calcarous tufa, bor iron ore, ochres, and peat. shell marl is a sof calcareous deposit made up largely of the minute shells of certain species of phamorhis, cyelas, and other fresh-water mollusks. It occurs at the bottom of almost all our lakes, ponds, and swamps; and sometimes forms near the margin of these, a bed of several feet in thickness. This lies usually at a short depth bencath the surface of the prombl. It shows the former extension of the pond or swamp near which it is met with. Several specimens, examined by the writer, contained nothing but carbonate of lime mixed with a litile samd ; but some are said to contain phosphate of lime. The substance on exposure to the atmosphere becomes about as hard as ordinary chalk.

Calcareous tufa is a deposit of carhonate of lime on moss, twigs stones, de., and is of very common oceurrence in many of our smaller streams. Good specimens of a solid strecture, capable ot receiving a fine polish, are produced by some of the springs which issue from crevices in the Niagara escarpment, as at places near I Iamilon, liockwood, Falls of Noisy River, and other localities aloner the line of country through which the esearpment runs. A large deposit oceurs also on the Beaver River, in the townships of Euphrasia and Artemisa. See under the " Niagara Formation," abore.

Bog Irom Ore (eec Part II.) is a hydrated sesquioxide of iron, a variety of Brown Iron Gre or Limonite. It amses from the decomposition of iron pyrites and other ferruginous substances in rocks and soils, and the after solution of the oxide of iron, thus formed, by water containing free carbonic acid or organic acids. The iron compounds dissolved by this agency, and carried into swamps and other low-lying places, are there deposited, and are subsequently converted into hydrated sesquioxide. Patches of this kiad are also oceasionally found on hill tops and sides, by deposition from springs containing ferruginous matter. This bog ore occurs in small quantities in numerous lo-
calitics throurhout the Province; but largely in Nortolk County, C. W., and alone the north side of the St. Lawrence, especially in the Three Rivers bintrict, and in the commies of Vaudreuil and Bellechasse, Canada Eat The irom octures, generally associated with the bor ore, have a similar orisin (see dectiptinns of these, in Part II.) The red oche is anhedrous, hut the brown and yellow varieties contain a certain amome of water, twally abont 20 per cent.

Eronomir Mutarule of the lust-Trrtiary Deposits:-These comprise, Giohd, Bay Irom Gro, Ochres, Brich ('lay, Shell Marl, Moulding Sc.ud, and l'cut.

Gold :-Native gold in fine grams, inthding here and there a small murget, occurs in the Pot-Tertiary sands of the metamorphic region south of the St. Lawrence : or throurhout the area lying between the River Richelien and the Gafpe peninsula; and more espenally along the valleys of the St. Francis, Chandiere, Riviere des Plantes, Etchemin, and Riviere des Loups. (See under "Native Gold," in Parr II, B. 1.)

Bog Iron Ore :- The principal localines of this substance are given above. The ore, at present, is only melted at the Radnor Fumaces, Datiscan, C.E The neighbouring farnaces of St. Mancer, after contimuing in operation for over a ecutury, went out of blast a few years ago.

Ochres:-These are capable of extensive use as pmint materials. A yellow varicty, becoming brown aud red on igution, occurs abundantly in the comme of Midnlesex, and also at Sydenham and in the township of Nottawasaga, in Canada West. Red, brown, yellow, purphe, and greenish-black ochres occur likewise in workable quantitios near the mouth of the Ste Anme River, and in the seigniuries of the Cap de la Madelaine and Pointe du Lac, in Canada East. Also in the Eastern Townships. The black ochres contain a comsiderable quantity of peroxide of mangane -

Brick Clay:-Clars suitable for bricks and tiles, ocenr vere wenerally throughout the Province. White or yellow bricks are largely manufactured in the ueighbourhoods of London, Hanover, Toronto, Cobourg, Peterborourh, de. Red bricks at Walkerton, Sydenham, Toronto, Montreal, St. Wan (Lobiniere), and many other places. Manufactories of drain tik : are in extensive operation at Teatwell village, on the Ottawa, and in the vicinity of Quebre.

Shell Marl:--This substance, described above, is much employed as a manure, and occasionally also as a whiting or wash-material. It occurs, more or less, all over the Province, but has been worked more especially. in the townships of Bentinck, Carrick, Brantford, King, W. Gwillimbury, Scarborough, Thurlow, Sheffeld, Olden, Nepean, and W. Mawkesbury, in Camada West ; and near Montreal, \&c., in Canada East.

Sand for AIoulding :-Good sand for this purpose, has been obtained from the neighbourhood of Dundas, and also at Sydenham (Owen Sound.)

Peat:-Larte deposits of this usefuì substance are known to occur in many parts of the Province, but hitherto, on account of the abundance of wood, they have been generally neglected. Some of the more important localities comprise : Longueuil, opposite Montreal, and many places along the south shoro of the St. Lawrence, between that point and the Riviere du Loup (Sir W. Logan). Also La Valtrie, and the seigniory of Cap de la Matelaine, on the north shore. The explorations of the Geological Survey have made known, likewise, a large peat area on the south side of the Island of Anticosti. In Western Canada, peat occurs chicfly in the townships of Plantaganet, Clarence, Cumberland, Gloster, Goulbourne, and Westmeeath, in the Ottawa region. Also in the townships of IIumberstone and Wainflect, on Lake Erie.

[^26]
THE STRUTHIONIDAE: THE EXTENT AND DIVISIONS OF THE FAMHY WITH ITS sisTEMATIC POSITION AND RELATIONS

$$
\begin{aligned}
& \text { FV J?IV. WJIJ.IAM HINCKS, F.I..S., ETC., }
\end{aligned}
$$

Haring on a former oceasion laid before the Institute a scheme for an improved arrangement of Bids founded on principles which I believe to be applicable to the whole anmal kingdom, and having afterwards, on occasoa of the exhibition of an interesting specimen, at-
tempted to illustrate the application of my principles to one family throughout it.s details, I now propose in a few occasional papers to examine the true position and relations of some other families, especially where there exist achnowledged difficulties or where my judgment, after giving all the consideration I could to the subject, differs from that of the writers upon whom l usually most rely, and whose opinions seem to me deserving of the highest respect. This evening I have to offer a note on the family Struthionidae-the Ostrich tribewhich some have referred to the Rasores (poultry and game birds), others to the Gramatores (stilted or wading birds), whitst many have considered them as entitled to form an Order of themselves, which has been called Struthones by some, by others Cursores (or ruming birds). I would endeavour to arrive at a rational and satisfactory settlement of this controversy, marking how the system I adopt removes the chief difficulty; and I would also examine the extent of the family Struthiomidae and the sub-families of which it is made up, suggesting some affinities not hitherto noted which seem to me not a little interesting, and which harmonize beautifully with the system of a set of different developments of a common type, each of which is analogous with one of the co-ordinate types forming the larger groups, of which the whole family is one of the members.

The beak, the general habits and the nidification of the Ostrich and its allies remind us so strongly of the hasorial birds, that we see at once that the reference of them to the Grallatores depends entirely on the length of their legs, the great strength of which is, however, somewhat unlike the Waders ;enerally. I am disposed to conclude that those who have arranged the Struthionidae among the Rasores have been guided by real and important analogies; that those who have placed them among the Grallatores have attached undue importance to a single character which really only indicates the position of this in reference to the other families of Rasores; and those who have elevated this group to the rank of one of their great orders of Birds have chicfly manifested their hesitation between the other two views, by taking a sort of intermediate position. A slight view of the limits and genume members of the hasorial order may, perhaps, set the subject in a clearer light.

It is well known that by many high authorities the pigeons (Columbidac) are counted amongst lasorial birds, and, without doubt, they have very striking Rasorial characters in the figure of the beak, the
cere, and the kind of food, as well as the fencral mode of feeding; but on the other ham the powers of llight, the feet with the hind toe on the same level as the others, and above all the monogamous character, and the helpless cendition of the few young ones, so strongly mark them as belonging to the Insessorial order that the just conclusion is that hay represent the specially Rasorial tembency among the hard-billed or Conirostral Insessores. There remain anong the Rasores the families o: Tetratnidue, the Gronse ; Crucidue the Curasows ; Plasiamidue the pheasmans: and Poultry ; Siruthionidur according to the opinion I have maintained, and Ategapodilue a singular and lithe-known Australian family, without nerntioning the Sheathbills, which I regard as, probably, (at least if they are at all Rasorial bicds) a special form of Tetraonidae, or the Tinamous a very interesting Som: . American group which seem to me to be a semi-arboreal form of Struthionidac, and which I therefore reject from an:ong the leading families of the order. It is probable that Tetraonidae stand first among the Rasorial birds, as the most complete development of the type; Cracidae, with their arboreal habits, may be placed next; Phasianidae maturally follow, as the peculiarly typical or specially Rasorial group; Struthiomidue I consider as occupying the position analogous with that of the order Grallatores in the larger circle; and I have no hesitation in regarding Megapoditue :s the low : family in the order. In the accompanying tabular view I give the sub-families in the three best known and most numerous groups, leaving the others for the present, as either being such small families, or our knowledge of them so imperfect, that nothing satisfactory could be accomplished in respect to them.

The family Struthionidae is distinguished by a more or less complete mixture of the loug legs and neck of the Grallatores, with the usual Rasorial characters, the birds being generally above the medium size and deficient in power of dight, which in some cases is cutirely wanting. We could not precisely define Struthionidae by any one or two characters, (those generally given, as the extremely short wings and rounded sternum, being peculiar to the typical sub-family Struthoninae), but birds coming near the boundary, between Rasores and Grallatores, in which notwithstanding usual marks of the later division, the characteristics of the former seem, on the whole, to predominate, may he safely referred to this family. Dr. Geo. Gray, making the single family a distinct order
of birds under the name Staurfiones, assigns to it three sub-families Struthioninae, Apteryginae and Otidinae, the bustards. The latter indeed are not destitute of power of flight, but they possess it in a moderate degree with a generally hasorial structure, and considerable length of neck and legs. Their greater length and power of wing than any others in the tribe with the depressed and feeble beak ot the most typical species will mark their position as the Fissirostral type of the family. If we inquire what other families of birds may be suspected of near affinity with these, that we may mark the limits of the fami?, satisfactorily, a slight acquantance with deseriptive Ornithology will suggest two as proper subjects for examination,-first, the Tinamous; secondly, the Trumpeters. The Timamous consist of a group of three or four genera, with but few species inhebiting the wools and plains of South America, considered as decidedly Rasorial, yet so distinct as to have been treated as a separate family, though in numbers so few that they would more naturally form a sub-family. They are remarkable for short rounded wings, very moderate powers of flight and great strength in rumning. Some have the hallun, or hind toe, entirely wnating, others remarkably small; some of them are known to roost in the low branches of trees, near the roots of which they lay their eggs. Irom their characters and habits Dr. G. Gray places them as the lust family of Rasores immediately adjoinmg Struthiones. Considering the latter also as a Rasorial family, and expecting its sub-families to display varying analogies, I rank the Tinaminae as the lighter and more arboreal form of Sructuronidae, the peculiar port of whicn they strikingly manifest, their sternum, thourh not rounded or deprived of its ridge, as in Struthioninae, is very peculiar, and quite inconsistent with powers of fight. Their comparatively small size might seem an objection to their inroduction into this family, but only indicates their representation of tie arboreal or most active type, the speial character of the class Birds, whose prevailing tendency is to small size; and I camot but think their relation quite as obvious as that of Otidinae, which, nevertheless, I am so far from questioning, that I believe it to be established on the soundest principles. Latham, like Buffon, placed the Trumpeters (Psophinae) among the Rasores. More recent naturalists have combined them with Grallatores, and according to Dr. G. Gray, they form (as being nearest to the Rasorial strncture) the first sub-family of Ardeidue, the Iterons. Their veaks and plamage resemble Rasores, as uell as their food and habits. They are casily dumes-
ticated, and their flesh is excellent food. Their power of flight is very small, but they run swiftly. The editor (we believe Mr. Blythe) of that part of Orr \& Co.'s edition of Cuvier's Animal Kingdom, thus comments on the station at the head of the Cranes which his author had assigned to the Agami (l^{\prime} sophia) :-"'The location of this very singular species among the Cranes is by no means satisfactory; but we do not know that it can be placed to greater advantage elsewhere. Its port resembles that of the Struthious birds; and the configuration of the sternum is unique, not even approaching any other group. Upon the whole, we conceive that it is as nearly allied to the Tinamous which inhabit the same region, as to any other known gemas, and would prefer to detach it in a more marked manner from the Crancs." This is important independent testimony, and we need only add that the peculiar figure of the sternum, is, like that of the Tinamou, inconsistent with power of flight. The position of Apteryx, a most extraordinary New Zealand bird, as the type of a sub-family of Struthionidae, seems to be conceded, and its long narrow beak, with the nostrils at its extremity, is so especially Tenuirostral that there can be little doubt about its fittest place, though its entirely suppressed wings and hair like feathers might seem to mark it as last in the circle, because lowest in derelop-ment-a conclusion, however, to which the consideration of the Emeu and Cassowary, which belong to the first sub-family, is opposed. We have now, therefore, every one of the tendencies of development duly represented in this family, and together forming a complete natural group of very distinct aspect connecting the Rasores with the Grallatores, and representing the latter amongst the former, to which as an order this natural group seems to me manifestly to belong.

NOTE TO DIAGRAM OPPOSITE.

[^27]
CRICIDE：
（Gallill，
a？111100．12！d
关
（wn
Phasianinar

cricimes．

EDITORIAL.

Prehstoric Man: Researcles into the Origin of Civilization in the Old and the New World. By Daniel Wilson, LL.D., Professor of IIistory and English Literature in University College, Toronto; Author of the "Archæology and Prehistoric Annals of Scotland," etc. In two volumes. Cambridre and London: Macmillan and Co.

Britanno-Roman Inscriptions, with Critical Notes. By the Rev. John McCaul, LL.D., President of University College, Toronto, \&c. Toronto : Henry Rowsell. London: Longmans.

Explorations in Labrador. By Henry Y. Hind, M.A., Professer of Chemistry in Trinity College, Torento. Two volumes. 8vo. London : Longmans.

Air-Breathers of the Coal Period: A Descriptive Account of the Remains of Land Animals found in the Coal Formation of Nova Scotia, with Remarks on their bearing on Theories of the Formation of Coal, and of the Origin of Species. By J. W. Dawson, LL.D., F.R.S., F.G.S, etc., Principal of McGill University. Montreal: Dawson Bros.

Abstracts of Magnetical Observations made at the Magnetical Observatory, Toronto, Canada West, during the Ycars 1856 to 1862, inclusive, and during parts of the Years 1853, 1854, and 1855. Toronto : Printed by Lovell and Gibson.

Prehistoric Annals of Scotland. By Damicl Wils :a, LL.D., Professor of IIstory and English Literature in University College, Toronto ; Author of "Prehistoric Man," etc. Sccond edition, revised, and nearly re-written. With numerous illustrations. 2 vols. 8vo. London and Cambridge : Macmillan and Co.

The evidence of literary and scientific activity afforded by the above list of works cannot fail to be gratifying to Canadians, and, in particalar, to the members of the Canadian Institute, to which Society
the authors without exception belong, and at whose meetings not a few of the investigrations now embodied in these works were originally communicated. The peculiar connection in which these authors mostly stand with this Journal, either in being on its editorial staff or being members of Council in the Society, renders it inexpedient to give any detailed criticism or gencral review of their productions; that task must be ilelegated to other pens less liable to be influenced by partial feelings than those of the writers of this fournal. Nor have such in abundance been wanting among the influential critics of the Old World ; and to them, whether for praise or blame, our readers must perforce be referred. We may, however, with propriety notice one small fact, namely, that the volume of Observations made at our Provincial Observitory since the date of its transfer, has been published before the completion of the issue of the Observations, made previously to that date, which has been for ten years preparing under the care of the Imperial authorities.

Neither should we omit to notice in further evidence of Canadian enterprise, the publication of a Iiterary Monthly Journal* under the editorship (it is understood) of a member of the Conncil of the Institute, to which we offer our best wishes for a prosperous carcer.

[^28]
CANADIAN INSTITCTE

procemdings at tie qeNERAL meEtings.
ansdal genera: memping.-2nth Derember, 18 bje.
Hon G. W. Almas, M.L U, in the Chair.
I. The report of the Council for the sear 1861-6? was read and adopted, on motion of S. 13 Harman lisq, stcomled by Doctor Ggden.
II. A ballot haring been taken for ofleers of the Institute, for the ensuing year, the folluwing gentemen were dechared duly elected.

President . . Rev J McCaml, Lh. D., President University Gollege.

III. The following Paper weas read:

By Prof II. Y. Hind, M.A. "On Vegetable Parchment, its uses and prepara. tion."
IV. Prof. Chapman repeated the notice giren at the last meeting in reference to alteration of By-Laws
V. Messrs. Harman, Kingsford and the Secretary were appointed a committee to endeavour to find some more convenient accommodation for the Institute than the rooms at present occupied.
tmind ordinary meting.-10ih Jamany, 186%.
The Rev. J. McCael, LL.D., President, in the Chair.
The following donations for the Labray were amounced, and the thanks of the Institute were voted to the donors.
From Prof. J. Mall, Albany, New York:
Fifteenth Annual Report of the University of the State of New York on the Cabinet of Natural History, \&c., 1862.
Contributions to Palæontology.

From Hon. 3. M Brodhead, Washington:
Patent Office Reports, 1861, Agriculture. Vol. I.
Preliminary Report, Census, United States, 1860. Vol. I.
Regents' Anmual Report Smithsonian Institution, 1861. Vol. I.
From Association for Promotion of Social Science, per Hon. G. W. Allau, M.I.O.
The Transactions of the Association for 1860 and 1861. 2 vols.
From Hon. Sir J. B. Robinson, Bart.
Prof. I. Agassi\% Contributions to the Natural Fistory of the United States. Vol. IV.

> IJ. The following Gentlemu as elected a Member:
> W. Montimbr Clark, asq, Toronto.
III. The notice for the alteration of By-Laws given by Prof. Chapman on 13th and 20th December, 1863, was submitted to the meeting and carried.
IV. The President, the Rev. J. McCaul, LL.D, read the Annual Address.

On motion of Mr. Harman, seconded by Mr. Kingsford, the cordial thanks of the Institute were given to the President for his able and interesting addreas.
V. The following Papers were then read:

By the Rev. C. J. S. Bethune, M.A.
"On the nocturnal Lepidoptera found in Canada.
By Prof. J. B. Cherriman, M.A.
"Note on Guldin's Properties of the centre of gravity.
pourth ordinary mbeting.-17th Junuary, 1863 .
The Rev. J. McCaul, LL.D., President, in the Chair.
I. The following Gentlemen were elected Members :
L. Mcfaden, Esq., Toronto.

Johy Wise Martin, Esq., LL.D., T.C.D., Toronto.
James Hcbdard, Esq., Toronto.
Charles A. Morse, Esq., Toronto.
B. F. Fitci, Esq., M.A., Toronto.
11. Moved by Mr. Kingsford, seconded by Doctor Campbell. That the Instatote sympathizing with the loss of Professor Chapman at the fire at the Rossia House of his books, and recognizing the literary assistance which for past yeara be has extended to the Institute, request Prof. Chapman to receive bound vola. of the Journal published to this date, as some slight acknowledgment of the services he has rendered.-Carried.

III. The following Papers were then read:

By Prof. D. Wilson, LL.D.
"On the characteristics of the flint implements of the drift as compared with those of a later stone period."
By John Martin, Esq., LL.D.
"On some General Properties of Curves."
tifth ordinary mestine.-2.4th Jumuary, 1863.
The Rev. J. McCacl, Lle.D., President, in the Chair.
I. The following Papers uere read:

By Mr . A. E. Williamson
"A proposed classification of the Genus Helix."
By Professor J. B. Cherriman, M.A.
"On 'Poinsot's memoir on Rotation."
" Remarks on Comets."

SIXTH ORDINARY heETING.-31st Jomuary, lind.

1. The following donation for the Library was announced, und the thanks of the Inslitute voted lこ cine donor.

From W. Kingsford Esq. "Inpressions of the West and South during a six मeeks holiday."
II. The foliowing resolution recommended by the Council was submitted to the meeting :

The Council and members of the Canadian Institute desire to record their profound sentiments of regret at the lamented death of Sir Jobn Beverly Robinson, Bart.: and to give expression io their grateful recollections of the services rendered by him to this institute, while he filled the office of President, and of the substantial evidences of his interest in its pregess zurnished by his valuable gifts to the Library, and to the building fund. The association with this Institute of the name of one so justly esiecmed among those who have been foremost in advancing the highest interests of the Province, will cver be felt to add a lustre to its early annals, and confer an additional honor on these who may bereafter fill the chair which he occupied as its president; and the members desire now to record their deep sympathy with the relatives of the deceased on whom the lcss of one characterized by virtues so calealated to endear him to all Who kne whim-must be felt as so irreparable a bereavement.
This this resolution be entered on the minutes, that a cony of it be communicated to Lady Robinson; and that the Institute do now adjourn without procceding to any other business.
seventh ordinary mbeting.-7th February, 1863.
The President, the Rev. J. McCavl, LL.D., in the Chair.

I. The following Papers uere read:

By Prof. G. T. Kingston, M.A.
"The Meteorological Report of 1861 ."
By James Hubbard, Esq.
"On the Fungi."
By B. R. Morris, M.D.
"On the natural checks to the destruction of our crops by insecte."
bightil ommary meerivg.-1 1 th Febiuary, 18003.
Doctor Dasiel Winso: in the Chair.
I. Mr IIarman on behalf of the Committee apointed at the Anmal Meeting to endearour to find some more comenient accommodation for the Institute than those now occupiad, reported that the committer had examined the nev buiding in coarse of eretion for the bank of Toronte, and found that rooms there at present in an untinished state could be secured on reasonable terms, for the use of the In-titute, and recommented that steps be taken to secure them. The report was adopied and the committe diecharged

> 11. The following l'apers uere then roul:

By Prof. G. T. Kingstun, MA.
"On the disurbane of Magnetical Declination at "oronto. during the years 1855-1i2 inclusive."
Doctor Wilsun made a commmacation relative to a new hiad of Gannon which was desrrited to him on his recent visit to Washington.

Nintil ommary meting.-2lst Februtary, 1863.
The President, the Rev. J. McCala, LLLD., in the Chair.

1. The followins Papers were read:

By Doctor T. Ogden.
"()n Chtoroform am? its eflects"
A naper by T. J. Cottle, Fiq..
"Ou a new specees of Astacus." was laid on the table.
tenth ordinary meeting.-28th February, leg3.
The President, the Rev. J. MeCabl, LL.D., in the Chair.

1. The following donations were announcel, and the thanks of the Irsitute voted to the denors.

For the Library, from the Socicties:

1. Proceedings of the Literary and Philosophical Society of Liverpool, 5lst Session, 1861-62.
2. Transactions of the Royal Irish Academy, Vol. XNIV. Part II. Science.

For the Museum from Sandford Fleming, Esq., C.E.
i. Large Salmon Tront from Lake Huron.

II. Tise following Paper was read:

By.S. Fleming, Esq., C.E.
"On the present condition of the oil springs of Enniskilien."

The Rev. Prof. Hincks Paper-
"Notes on the position and relations of certain families of Birds," was laid on the table.
Mr. Saunders' Paper-
"Catalogue of plants found near London, C. W.," was also laid on the table.

$$
\text { ELEVENTI ORDINARY MEETING.-7th Mar: }, 1863 .
$$

In the absence of the President and Vice Prcsidents, Professor J. B. Carrrisist, M.A., was called to the Chair.

I. The followng Gentlemen were elected Menbers.

Joum L. Lizans, M.R.C.S., Edinburgh, Torunto.
Whliam Clahke, M.D., Toronto.
James J. O'Dea, M.D., Toronto.
Robert Euery, MD., Toronto.
James Rowell, M.D., Toronto.
Willak Winslow Ogden, K.B., Toronto.
11. The Secretary on belalf of the Council gave notice that a special general meeting of the members of the Institute wrild take place on Saturday the 14th day of March inst., for the purpose of taking into consideration the following resolutions which were recommended for adoption by the Council, viz:

1. That the Canadian Institute sanction the formation of a section, limited to members of the Institute, for the cultivation of Nedical Science.
2. That the medical section shali have the management of its own affairs, the elertion of its officers, \&c, and shall report the same to the council, but that its action shall be subject to such regulations and bye laws of the Institute as now exist or may hereafter be enacted.
3. That the Institute shall furnish the Medical Section with the necessary minute books and stationery.
4. That the medical section shall have the privilege of meeting in the rooms of the Institute at any time that mar be approved of by the Council.

> III. The following Papers uere rean:

By Doctor Daniel Wilson.
"Notes of a recent risit to the Mortomian Collection of the Academy of Natural Sciences of Philadelphia."
By Professor G. T. Kingston, M.A.
"Note on the temperature coefficients of magnets."
twelfth ordinary meeting.-14th March, 1863.
Sessios-1562-63.
The President the Rer. J. MeCacl, LL.D., in the Chair.
1 The following Gentlomen were elected Members:
michael Lailoor, M.D., Torento.
Wm. Thos. Aiken, M.D., Toronto.
Doctor Joserin Howsos, Toronto.
II. The follouing donation for the Library was amounced.

Britanno-Roman Inscriptions, by Doctor McCaul, presented by the author.

III. The followng Paper uas read:

By Professor Hind, M.A.
"On the Masquapees."
IV. The President having read the resolutions respecting thr proposed medical section, proceeded to put the resolutions clause br clause.
The first clause , as put and carried.
The second clause having been read and Doctor Campbell having given notice of his intention to introduce an amendment, the President declared the discussion adjourned to another evening.
The President gare notice that a special general meeting of the Institute would be held on Saturday the 21 st inst., at 8 o'clock for the purpose of considering the propriety of erecting a building for the porposes of the Institute.

> thetempa ondisary meeting.-21st March, 1863.
> Session-1862-63.
> Rev. J. McCacl, LL.D., President in the Chair.
> I. The following (ichlleman was elected a Member:
> Michabl. Barbett, M.A., N.D.
II. The President mentioned to the meeting that the Council had purchased a site for a Buiiding at the corner of Richmond and Clare streets 88 feet in front by 103 feet in depti) and that a plan for a building had been prenared and was now submitted. The President also explained the views of the council upon the subject.

Mr. Spreull mored, seconded by Mr. English, that the action of the Council in purchasing the building site be approved and confirmed, which was carried.
Mr. Kingeford moved, seconded by I'rof. Chapman, that the council be and are hereby empowered to enter into contracts for the building according to such plans as they may deem ex.edient. Carried.

The President announced that the plans and estimates for the erection of the building would remain on the table for one week from this date for the inspec-
tion of members that suggestions may be made to the council in reference to them.
III. The discussion in reference to the establishment of a medical section in connection with the institute was resumed.

The second resolution was brought forward.
Mr. Kingsford moved in amendment, seconded by Prof. Chapman,--That the words " that the medical section shall have the management of its o' n affairs, the election of officers, $\{c$., and shall report the same to the council, but that its action," be omitted Lost.

The second resolution was put and lost.
The third and fourth resolutions were put and carried.
Adjourned on motion of Mr. Frecland, seconded by Professor Cherriman.
formtebnth ordinainy meeting - 2 Sth March, 1863.
Ref. J. McCact, LL.D., President in the Chair.
I. The following donation for the Library was announced. FROM SABTEL SPRELIL ESQ, TOROSTO.
On ribs and transverse processes with special relation to the theory of vertebrate skeleton.

On the Relations of the vomer, ethnoid and intermaxillary bones.

> II. The Amiturs for the your were appointed.
> Gronge Wilson Eso, by the President Samel Sprecta, Ese., by the Meeting.
> III. The follouius Papers were read:

By Γ. Freeland Fsq
"On the measurement of microseopic objects"
iby the President.
"On the derivation of ancient Roman dates"
By Docter Bovell.
"On growth and repair"
The President announced that the session would be continued for two more meetings.

Ref J. McCacl, LLL.D, Pree 'lent, in the Chair.
I. The follouing Gentleman was elected as Junior Member.

Samuel Ridout Esq. Toronto.

II. The following donation uras presented by S. Fleming on behalf of T. Devine, E:Sq., ('rown Land Department, U. C.

Thirteen electrotype easts of Fossils-the thanks of the Institute were unanimously roted to the donor on motion of Dr. Scadding seconded by P . Freeland Escl.

> III. The following P'aper was read:

By Prof. Chapman Ph. Dr.
"On a specimen of Carbonaceous matter from Lake Superior, with remarks on the origin of the Petroleum, as applied more particularly to the oil district of Western Canada, and some new views on the general formation of Coal."
binteenth ordinaby meeting.-18th .April, 1863.
Rev. J. McCaul, Ll.D., President, in the Chair.
I. The followang Papers were read:

By Rev. II. Scadding, D.D.
"On Phonetic Anomalies observed in some modern forms of ancient proper names."
By Rev. Prof. G. P. Young:
"Formula for the cosines and sines of multiple arcs."
By W. Saunders, Esq, London C. W.
"On Canadian Arctiada."
seventaenth orminary meeting.-25th April, 1863.
t. C. Keffer, Esq., C.E., Vice-President, in the Chair.
I. The following Gentleman was electeil a Member of the Institute.

Henry J. Clarhe, Esq., of Toronto.
II. The following Paper was reat:

By Sandford Fleming Esq., C.E.:
"Notes on projected Canadian canals to connect the upper Lakes with the St. Lawrence.
Mored by Dr. Thorburn and seconded by Dr. Hall. That the Secretary be requested to transmit a copy of Mr. Fleming's paper of this evening to T. O . Street Esq, M.l.P., for the County of Welland, and to John Simpson Esq, M.P.P., for Town and Township of Niagara.

BEMARES ON TORONTO METEOROLOGICAL REGISTER FOR AUGUST, 1863.

479

REMARKS ON TORONTO METEOROLOGICAL REGISTER FOR SEPTEMBER, 1863.
September, 1863, was comparatively cold,
480

$$
\begin{aligned}
& 3002 \\
& \text { ToL } \\
& 0.107 \\
& 0.117
\end{aligned}
$$

$$
27^{\circ} 1 \text { from a.m. to p.m. of } 27 \text { th. }
$$

-ロוomsoth,
emperature......... $41^{\circ} 80$. 4 Difference $=28^{\circ} 63$.
 Possible to see Aurora on 21 nighits; impossible on 9 nigits. 19 h, 22 nd and 23 rd . Rining on 8 days, depth 1.235 inches ; duration of fall 19.0 hours

Host cloudy liour obsorved, 8 am : mean $=0.55$; least cloudy hour observed
$10 \mathrm{p} . \mathrm{m}$. ; mean, $=0.32$.

Kesultant direction N. $16^{\circ} \mathrm{W}$.; Resultant velocity 0.92 miles per hour.
lost windy day .i................ 2.5 miles, from 1.30 to 2.30 p.m. on 18th.
Ceast windy days ...1st \& 27 tith......Mean velocity, 2.38 miles per hour. $\begin{aligned} & \text { Difference }= \\ & 10.87 \text { miles. }\end{aligned}$
rieast windy hour ...6 a.m. to 7 a.m.............Irean velocity 4.71 ditto. $\} \begin{aligned} & \text { Difference } \\ & 4.69 \text { miles. }\end{aligned}$
$\stackrel{\rightharpoonup}{\square}$
Ground fors at 6 a.m., and shect lightning in $\overline{\mathrm{V}}$ at 10 par frost at 6 a.m. 10 . 11 th
Sinect lightniug in $N \mathrm{E}$ from $8 \mathrm{p} . \mathrm{m}$.- 16 th. Dense ground fog at 6 a .m. -17 th
Sharp hoar frost $6 \mathrm{a}, \mathrm{m} . \rightarrow 2$ nid. Slight hoar frost $6 \mathrm{a} . \mathrm{m}$. ; Slight fog from $6 \mathrm{p} . \mathrm{m}$.
midnight.

INDEX

PAGE
America, British Central 409
Anomalies, I'sonetic 329
Anchor Ice in Rivers 320
Antiquity of Man. 378
Arago, on the Physical Constitution of the Sun, (Translation.) 208
Arctiadæ, Cauadiun, Synopsis of 849
Astacus 216
Auroral Arch 319
Beaver 85
Beetz, W., On the Color of Water 42
Bathune, Rev. C. J. S.
Descriptions of some Species of Nocturnal Lepidoptera found in Canada. 1
Bond, C. P. Account of the Great Comet of 1858, (Reviewed). 67
Bovell, Dr. Jas.
Note on the preservation of some Infusoria, with a view to the display of their cilis 341
Canadian Ingtitutk:
Annual Report of Council. 169
President's Address 97
Proceedings at Ordiuary meetings of. 268, 469
Charman, Prof. E. J.
A Popular Exposition of the Minerals and Geology of Canada 17, 111, 185, 437Cherriman, Prof. J. B.Note on Guldin's Iroperties33
Note on Poiusot's Memoir on Rotation 283
Clementi, Rev. Vincent.
Letter on the Beaver. 85
Auroral Arch of April 9th 319
Comet, Donati's 57
Cotrle: T. J.
On the two species of Astacus found in Upper Canada 218
Crania, Ancient, Artificial Occipital Flattening of 76
Curves, General Properties of. 278
" Linear Asymptutes to 290
" of Second Order, Reduction of 291
D. W. Revitiv. paga
Nelson's Atlas of the World, de 54
Dana, J. D., Manual of Geology. (Revicu.) 49
Davis, Dr, J. Barnard, Letters from 76
Douati's Comet. 57
E.J C. (Revicus.)
A Manual of Geology, \&ic., by James D. Dana 49
The Geological Evidences of the Antiquity of Man, \&c., by Sir Charles Lyell 378
Enniskillen, Oil Wells of 246
Entomological Socicty of Canada. 313
Fleming, Saniford.
Notes on the Present Condition of the Oil Wells of Enniskillen 246
Forcherite 89
Formula for the Cosines and Sines of multiple arcs 286
Fossil Reptiles from the Coal Measures of Nova Scotia. 267
G. T. K.
Auroral Arch of April 9 th 319
Gorilla 315
Ground Ice in Rivers 320
Guldin's Properties 33
H. C .
On the Origin of Hail 35
Note on the Species Monohanmus 320
Hail, Origin of 35
Harvard College, Amnals of Astronomical Observatory of, Vol. III (Reviewed.) 57
Helis, Genus, Classification of 343
Hinces, Rev. Prof. W.
On the Struthionidx 462
Mind, Prof. H. ¿.
A ghance at the Political and Commercial Importance of British Central America. 409
Infusoria, Prescrvation of 341
J. B. C.
Matbematical Notes, 290
Notices Scientifiques p.r M. Arago (Translation.) 298
Account of the Great Comet of 1858, by C. P. Bond (Revicso.) 57
Kendald, Rev. E. K.
Remarks on the Negative Index of a Function 27
Kingston, Prof G. T. PAGB
On the Magnetic Disturbances at Toronto 157
Remarks on the Temperature Coffficients of Magnets 280
Mean Meteorological Results at Toronto, 1862. 238
Lake-basins, Origin of 86
Lepidoptera, Nocturnal, Fomd in Cauada 1
M. M. K. (Translution.)
Introductory Lecture of a course on Remote Antiquity, by A. Morlot 249
Macgregor, C. J.
Abstract of Meteorological Observations at Stratford. 294
Magnetic Disturbances at Toronto. 157
Magnets, Temperature Cocfficients of. 280
Martin, Dr. J. W.
Remarks on some General Properties of Curves 278
Mathematical Notea. 290
McCaul, Rev. Dr. J.
President's Address 97
Tessera Consulares 428
Metcoric Stone of Chassigny 89
Meteorological Observations at Stratford 294
Results at Toro!ıto, Mean for 1862 238
" Monthly Tables at St. Martin, August, 1862. 94 95
" " " Toronto, October, 90
" " " "November, " 92
" " " " December, 181
" " " " January, 1863. 183
" " " " February, 269
" ." " Ma:ch, 271
" .. " 325
" " " " May, " 327
" " " 405
June, "
" "، " 407
6 6. 6 477
" " 479
Minerals and Geology of Canadu. 437
Mohr, F., On the Origin of Hail 35
Monohammus 320
Morlot, A Lecture oa Remote Antiquity. (Translated.) 249
Negative Index of a Function 273
Nelson's Atlas aud Maps. (Reviewed.). 54
Oil Wells of Enniskillen 246
Origin of Species 390
PAGE
Photography, Dry Collodion Process in 323
Plants Collected near London, List of. 219
Poinsot's Memoir on Rotation. 288
President's Address 97
Remote Antiquity, Lecture on. (Translated.). 249
Saline Springs of Oanada 168
Salt Wells of Michigan 267
Saunders, W.
List of Plants collected chiefly in the immediate Neighbourhood of Lon- don, C. W. 219
Synopsis of Canadian Arctiadx 349
Soaddina, Ref. Dr.
Phonetic Anomalies observed in some Modern Forms of Ancient Proper Names 829
Skull-Forms, Ancient British 127
Smallwood, Dr. Cearles. Meteorological Tables. 94, 95
Staurolite 89
Struthionidæ 462
Square-root of a Number, Approximation to 295
Temperature Coefficients of Magnets 280
Trompson, Prof. Jas. On Ground Ice or Anchor Ice in Rivers 820
Tourmaline 89
W. H.
The Gorilla 315
On the Origin of Species, de. by Thos. H. Huxley, (Review.) 390
Water, Colour of. 42
Williamgon, A. E.
A Proposed Classification of the Genus Helix 343
Wilson, Dr. Daniel.
Letters from 76
Illustrations of the Significance of Certain Ancient British Skull Forms 127
Youna, Rev. Prof. G. P.
Formule for the Cosines and Sines of Multiple Arcs. 286
END OF VOL. VIII.

[^0]: * Persons who pretended to be familiar with the difficulties of the overland route from Canada to British Columbia, were only too ready to predict the disastrous failure of the Canadian emigrant party of 1862 to reach British Columbia in one season, "supposing they escaped the Indians and starvation."

 Probably there is no stretch of country in the world exceeding one thousand six hondred miles in continuons leneth, and wholly in a state of nature, which it would be possible for one hundred and fifty people, including a woman and three children, to traverse during a single season, overcoming such apparently formidatile obstacles as the Rocky Mountains have been supposed to present. The simple fact that these emigrants were enabled to take a large number of oxen and horses through the mountains, by an undescribed Yass, supplies a most satisfactory answer to those who have unformly represented the dangers and diffculties of a route across the continent within British Territory, as insuperable without extraordinary ontiay. Here we have an instance of a larye party of enigrants, nearly all unaccustomed to ithe work, effectually combating those difficulties, and proving that they were either grossly exasgerated or in a sreat mart imasinary. Another important fact which thi, journey has developed, is the ease with which the Fraser river is capable of being navigated by canoes or rafts, as far down the stream as the forks of the Quesnelle, the point from which a road will most probably strike off in a nearly direct line to the pacific, touching the ocean at one of those deep indentations which form so curious a feature of the British Columbian Coast. There can be no doubt that great privations were endured by many of the party, but at least until they reached the Fraser, there are, happily, no sad memorials left on the route they took, like those which distinguish every nile of the inhospitable deser: which separates the valley of the Mississippi from the Pacific States and Territories of the United States.

[^1]: * Michillimakinat, Green Bay, and Lake Iuron.

[^2]: - Documents relating to the Colonial History of the State of New Yoik.
 t Governor Dongan refers to Chevalier de la Troye-an account of whose Expedition to Hudson's Bay, in 1686, is contained in Charlevoix's History.
 \& Poot note to New York Colonial Manuscripts; Paris Doc.

[^3]: "The name "Nipawee" is perhaps the same as Nepuwersin or "The Standing Place," the present name of the mission upposite Port a la Corne. Before the corquest the French had gettlements at Dauphin lake, the Hasquia (near Carrot river or Root river) and at Nipawi, "where they had ayricultural instruments and wheel carriages, marks of both being found about the settlements." - Mackenisic's loyages.
 \dagger Paris Documents.

[^4]: - It is the fact that the best lands of the Crown in both sections of the Province have already been sold. The quantity of really good land now open for sale, is, notwithstanding recent surveys, much less than formerly, and is rapidly diminishing.-Report of the Com. missioner of Croun Lands for 1862.
 t. Report on the Geology of Canada.-By Sir W. E. Logan, F.R.S.

[^5]: - The Canatian Enigram party of 1862 , took through the momains 130 oxen and abous 70 horsers. When in the mountans, they killed a few oxen ior provisions; others were sold to the Indrans at Tete Jaune Cache, on the Fraser; and ohers were rafted down the Fiases River to the Forks of the Quesnelle. At the 'rete Jaune Cache, a portion of the pirty separated from the rest, and, with fourtcen horses, wem across the country by an old well worn trall to Thompson's River, and thus succeded in taking their horses from Fort Garcy though the Rocky Mountains-h hrough a supposed impassable part, f Briush Columbia, to the wmermg station on The mpson's River und Kambop's Lake, for the packanimals of the Briush Columbia sold-seekers.

 The Leather, or Mette Pass, lies in latude 54°, and has lang been known to the employees of the Hudson's Bay 1 ompany, and as called by them the "Old Columbia Trail," or "Jasper Pass." It wih be observed that it forms an immediate and direct connection with the great ertery of British Columbia, namely, the Fraser River. The other passes to the south connees with the Columbia River, which flows for many hundred miles through Washington territory. It will not fall to be nuticed, too, that the existence of this route via the Leather Pass, has only very recently appeared on pullished maps. It is shown on Arrowsmith's Map of British CoIumbia, publinhed in 1860 ; but the succers with which its long-estabhshed connection with the Fraser was concealed by the tate Hudson's Bay Company, is a singular instance of the unity of purpose which has pevaded all the actions of that powetful conporation during the tong fenure of absolute comol over a portion of Britsh America, containing more land oustably for the ebode of man than the !rovince of Canada itself, and which has already cost in ths deience from aggression many millions of money and many thousands of lives. It seems remarkable that the Leather Pass and its easy connection with the Fraser River, escaped the attention of the exploring party sent by the British Government, under Captain Palliser, in 1857, 1858, and 1859. If the existence of this unosstructed communication betweer: the Athabaska Valley and British Cclumbia tad heen made known to the world as one of the results of that expedition, probably long ere this the Brtish Government would have taken measures to establish a separate government in Central British America, and open a communication across the contment through British territory. Dr. Mector actually passed the "Old Columbia Trail," but nellher his guides nor the people at St. Ann's or Edmonton appear to have informed him of its existence. Fortunately the Leather Pass has now been traversed by men, a woman, children, and numerous oxell and borses:--the Fraser River has been safely descended for four hundred miles from is source, in canoes and on rafts, by a very numerous party, and 11 has been ascended in a boat from '9abibo to the Tete Jaune Cache; and from this last-named place there is a well-known trail tor horses to the Thompson River, and thence in New Westminster, which has also been traversed by Canadian emigiants with horses; and more recenlly, according to Victoria papers, by Lord Milton, with thitect، horses. The fifficulties of the Rocky Mountains have in great part melted away, and the "impossibilities" of the overland route have vanished, just as the "uninhabitable desests and swamps" of the Saskatchewan have given phace to boundless fertile prairies, which will probably become-even in our generation-the seat of an enterprising and prosperous people.

[^6]: * The arid region of the Missouri valley commences west of the 100th degrec of longitude; but the 100 th degree of longitude divides the linted States into two nearly equal parts on the 40 h parallel of tatitude. The eastern half is the presem fertile and peopled part of the country. The western half is a comparatuve desert all the way to the Pacific. It is in comparison with thes immense descrt that the fertile belt at the edge of the woods, stretching in the Saskatchewan Valley fom the Iake of the Woods to the Rocky Mountams, stands out in such surprising contrast. Sixiy thousind square miles of arable land in Central British America, mark out the true pathway across the continent, which alone is capable of sustaining an efficient means of come-

[^7]: chewan, there would be an uminterrupted navigation for shallow steamers-such as ply on the Upper Missouri-from Georgetown on Red River, alrealy in communication by stage with St. Paul, and Edmonton, within 200 miles of the Rorky Momntains. The dimensions of the Grand Falls or Rapide of the Saskatchewan are-9 miles long, and a total dencent of $48 \frac{1}{2}$ feet.
 *The asricuitural capabilities of the Basin of Lake Wimbipeg may be summed up so follows:-

[^8]: whole quantity of land fit fur cultivation were uccupied in the same proportion, the population of Canada would exceed eishtern millions. At the same ratio of inhabitants to cultivable and grazing land, the Basin of lake Wimiper would sustain a population exceeding $19,000,000$, or leaving out of consideration the land suitable to grazing purposes, its cayabilities would be adapted to support $12,000,000$ people. If Europrean countries such as Prance and Great Britain wire taken as the standard of comparison, or even many of the States of the American Uaion, the number would be vastly greater.
 The arid region of the great American desert, which places an uncultivable and uninhabitable wilderness between the present north-westerly settlements in Nebraska and the Rocky Hountains extends into British America only in the form of the aper of the cone shmped figure it has on the may, with its base in the high lands of Texag and Mexico.

[^9]: * This important naterial is distributed throughout a large part of the valley of Red River, the basin of Lakes Manitobah and Winnepegoosis, and thence north. westerly towards the Arctic Sea; the Brine Springs occur at the junction of the Silurian and Devonian rocks of the Wimipeg Basin, and have already yielded salt of cxecllent quelity in several localities. Many yenrs nyo (1823) salt was manufactured at Penbina, and more recently at the salt works, Manitolah Lake, by Red River matives, and at Swan River by the Mudson's Bay Company. Springs rich in brine are known to exist in upwards of twenty different places alone a stretch of country extending from the boundary line to the Saskatchewan. In the valley of La Riviere Sale, ahout twenty-six miles from Fort Garry, salt springs are numerous. and the ground in their vicinity is frequently covered with a thick incrustation.
 \dagger Although the Athabaska district, as a whole, may be remote from the line of settlements which will be first established across the continent, yet it is a vast territory in reserve, and one which as time rolls on will become poopled with a pastoral race, and event ually exercise an important influmee upon the more fertile and arable districts of the North Saskatchewan. As a great grazing country it will early attract attention; and its vast stores of bitumen will be a source of great utility where portable fuel and means of creating artilicist light must command a remunerative price, when the increase of population calls into existence those necessaries which belong to civilized communities. The Athabaska district should by no means be shut but of view in contemplating the future of the Basin of Lake Winnipeg. Its proximity to the aurifcrous valleys of the west and east flanks of the Rocty Mountains will soon secure for it a conspicuous position in tho future of the NORTIF-WEsT.

[^10]: *The longitude of Fort Garry is 95°, $52^{\circ} 27^{\prime \prime}$, latitude $49^{\circ} 52^{\prime} 6^{\circ}$. Pembins Mountain which marks the limit of the good land in the State of Minuesota, west of Red River, is on an average about thirty miles distant from the giver. Beyond the 101st degree of longitude in the United States, agricultural settlements on a large scale are not possible on account of aridity.

[^11]: * Mommsen, Corpus Inscriptionum Latinarum, vol. i. p. 195. Berlin, $14 \% 3$. Cardinali, Diplomi Imperiali, p. 121. Velletri, 1838
 Morcelli, Dello tessere degli spettacoli Rom., ed. Labus, Milan, 1827.
 \dagger There is one which has six faces. See Marini, Atti, f. 822. If bears the inscription-
 PINITVS
 ALLEI
 $\mathrm{SP} \cdot \mathrm{K} \cdot \mathrm{PEB}$
 TI•CL•CAES•TI
 C-CAEC

[^12]: * No fewer than twenty-eight, of which four or flve are in the British Museum, are regarded as "suspected or false" by Mommsen, either on his own authority or in conjunction with that of Borghesi, Lifenzen, Mefuer, Cardinali, or Olivieri. Borghesi remarks that Ligorius did not forte any tessera, and that counterfeits were not known before the commencement of the 18th century. Mommsen accepts this statement as gencrally but not universally true.
 t As some of my readers may require aid, I subjoin the readings and trauslations of the examples, which I have given in p. 428 :-

 Diocles Longidii (scrvas)
 Sp-Kalendis Septembribus Cneio Octavio Caio Curione

 Fscinus
 Axsii
 (servus)
 Sp-ante diem septimum Ralendas Apriles Quinto Hortensio Quinto Metcllo
 (1)

 Diocles of Longidius (the slave)

 - the 1st of September, in the consulship of Cneius Octavius and Cains (Scribonius) Curio i.e. A.U.C. 678 or B.C. 76.
 (2)

 Escinus of Axsius (the slave)

 - the 28th of March, in the consulship of Quintus Horteusius and Quintus (Cixcilius) Metellus i.e. A. U.C. 685, or B.C. 69.

[^13]: * Thus Reinesius, Syntag. p. 372, remarks: "Fulvius Ursinus putabat significari videri, quo anno seu consulatu. mense ac die gladiator spectatus, diu multumque in arte versatus, rude sit ac tessera convonea donatus, quibus solutum se palastro atque arene legibus athletam ostenderet." Amati, Giornale Arcad. 1826, explains spectatus thus: "Le picciole taglic quadrilatere di a aorto or di osso erano visibili documenti di morto per essi gladiatori ad altri recata, e almeno di sanguinosa vittoria ottenuta con atterrar l'avversario." Tomasini, de tesseris, makes the astonishiug statement: "Erat autem rudis tessera quadam eburnea, cui nomen gladiatoris atate emeriti inscribebatur quamqui accipiebat, is abonni pugnandi necessitate eximebatur." It is scarcely necessary to remark relative to this view, that there is no authority for the notion that the rudis was a tessera.
 +Ursatus, de Notis Romanorum, remarks: SP. Spectatus. Pignorius, q'ui, de Servis, scribit, Thanc notam que doctos viros hucusque torsit, nihil aliud" Significare, quan, spectavit, ut detur intelligere, conductos fuisse aliquos, veluti ab editore, gladiatores insignes, rude olim donatos, spectandi gratia, non pugnandi." Pitiscus, Lexicon, in tessera, Facciolati, Lexicon, in Specto, and Orelli, n. 2561, adont the view of Morcelli. Henzen, n. 6162, seems to prefer spectatus. Zell, Delectus, p. 60, reads spectandus.

[^14]: * Muratori, Noe. Thes. p. ncxy. n. 2, exmains SP. as meaning that the persm named informed the people that he had given or intended siving a spectaculum.
 + See Mommsen, c. p. 200 .
 \ddagger The acconnt of this is so interesting that I give the words: "Sero reperi in libro ms. Lanthemi Romicu Arclatensis seripto a. 1574, sorvatoque hodie Iugduni Bat. inter Voss (ierm. Gall. Q, 1. Legitur itt f. 88 sic: Ores ic commence iey al fere mention des Epitaphes d'Arles - et en premier lieu ie veux reciter l'escrit memorable, qui se list clairement en une piece d'ivoire ou plustot de corne de cerf, que i'ay, qui a esté ncuvellement trouvee icy a la poincte au bord du Rosne, la quelle est si menue et estroicte, qu'elle n' est pas plus longue, ne plus large, que la moytie du petit doigt de ma main, ctant percee a l'un des bouts : ou est faite mention de Ciceron, et de Caius Antonius."

 II The sense, in which the word was understond by the greater number of those who received it, conveyed more than this, as I have stated in p. 431. Dommsen's objection, however, as to the application of spectatus to gladiators is valid in whatever sense the term was taken. Indeed I do not recollect any passare in a Latin author, besides that cited from Horace, in which spectatus is used with a reference, direct or indirect, to gladiators.
 § This designation is used by Maffei, Fabretti, Orsato, Marini, \&c. And yet the phrase is, as I have remarked, unsanctioned by ancient authority. There is no passage, with which I am acquainted, that mentions any such object as a tcssera given as a rerard, anless the words tabulam illico misit in Suetonius, Claudius, c. 21, be taken in this sense, as Morcelli interprets them. His explanation, however, is, in my judgment, very unsatisfactory. He seems to have forgotten the statement in Dio Cassius, lx. 13, relative to the

 seripts significavit.

[^15]: - Sce Moncolli, ed. Labus, De alle tessere, sc.; Rochette, Mem. de L'Inst. do France, xiv. 965 ; Henzen, Annal. Inst.arch. Rom. xx. 273; and Curtius, Corp. Inscrip. Grac. iv. 273.

[^16]: * The numularii did more than tell whether coin was good or base. They secm to have been like our money brokers. Their occupation and position were below those of argentarit. In the Theodosian Code, xvi. 4, 5, servi and numularii are classed onetier.

[^17]: - Nemo lialonio molesfas est neque kalendis Decombribus neque Nonis neque ldibus. Cicero, Ferr. ii. 1, 5̄: Omnem redeght Idibus peanniam, Qucrit Kalendis poncre. Horaco, Epodes, ii. 69, on which see Orelli.

[^18]: "There is no objection to the Latinity of mense in this sense, vix. "during."

[^19]: *The gypsum, as quarricd, sells at about $\$ 2$ tho ton. When ground for manure, the cost per ton is about $\$ 3.50$; and when calcined for plaster, about fifteen or sixteen dollars.

[^20]: - These are manufactured by Mr. DeCew, Provincial Land Survegor, of DeCewsville, weat Cayma, in Haldimand Cornty : from whom, aho, interesting suites of fossils, belouging to . the formations of that district, may be procured.

[^21]: - These species occur also abmantly in the Corniferous formation; and Atrypa reticularis is found as low down as the Clinton group.

[^22]: - Sce Canadian Jozirnal, vol. vii , p. 126.
 t If the term " unknown chemical action" be here objected to, we may refer, acaonges other cases, to that of the diamond: a substance certainly formed by chemical action, but of a kind altogether unknown to us.

[^23]: * As regards localities in Western Canada, see papers by the author, in Canadian Jourmal: vol. V. p. 41; and vol. VI. p. 221.

[^24]: - The tirst yublication on this subject was hy Robert Bell, of the Geological Survey of Canada, in the Canadian Naturalist for February, 1s6i. This was followed by a more crtended article by the author of this work (who had previously communicated some of his obs.rvations to Mr. Bell), read before the Canadian Institute in March, 1S61, and published in the Canadian Journal, vol. vi., w.e2t, anc in the Philosophical Magazine for July of that year. In this paper, the former umon of our lake waters, and the lacustrine oripin of the terraces north of Toronto, sf , was first maintained. A susceeding paper by the author (Canadinn Journal, November, 1561, vol. vi., p. 497), deseribed a remarkable locslity-first made known to hin by one of his students, Mr.EA. E. Williamson, of Toronto-in which unios and other fresh-water types oceur in great abundance, near the Nottawasaga River, between Lake Simcoe and Georgian Bay.

[^25]: * The Wapiti, althonch at one time common thronghout Camada, is now only to be found in the extreme northeru and north-westera remions. and will probably become extinct at no distant day.

 Vol. VIII.

[^26]: - The conclusion of this Essas, embracing a general summary of Canadian Geology, will appear in the neat number of the Jouran

[^27]: - We have memioned a reasonable doubt whether the Sheath-bills are trull Rasorial: should this doubt be confirmed, we suggest Pteroclinae the sand grouse, remarkable for their long pointed wings and power of flight, but wheh, in the above selime, are ineorporated whit Perdicince, as occupying the station. Some doubt ahoo atemds Odontophorinae which can scarcely be well separated from Tetraoninae. Perhaps the true combuation for this position is formed from the smallest birds of the tribe, popularly called Quails, and incluctug the Genma Ortyx, Cryponyx, and Coturnix. We need a more intinate acquaintance with some of these birds, before the family can be satisfactorily arranged.

[^28]: *The IBrilish American ; A Montilly Mayazine devoted to Literature, Science, and Art. Toronto: Lollo and Adam.

