The Institute has attempted to obtain the best original copy available for rilming. Features of this copy which may be bibliographically unique, which may a!ter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Ccuverture restaurée et/ou pelliculéeCover title missing/
Le sitre de couverture manqueColcured maps/
Caıtes géographiques en couleurColoured ink (i.e. cther than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut caurer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé lo meilleur exemplaire qu'il lui à été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplėmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

PROCEEDINGS

.OF

THE CANADIAN INSTITUTE, TORONTO,

Being a Continuation of the "Canadian Journal" of Science, literature and History.

CONTENTS:

page

PRINCIPLES OF THE SOLUTION OF EQUATIONS OF THE HIGHER DEGREES. By
Prof. Gro. P. Young ... 9
resolution of solvable equations of the fifth degree. By Prof. geo. P. Yousio127
NINTH ORDINARY MEETING 143
Nervous System of Catfish. By Prof. R. Ramsay Wright 144
TENTH ORDINARY MEETING 144
the History of Musical Instruments. By W. Waugh Ladder, Esq. 144
ELEVENTH ORDINARY MEETING 145
Flora Hamiltonensis. By J. M. Buchan, Ese., M. A. 145
TWELFTH ORDINARY MEETING 156
the Real Correspondents of Imaginary Points. By Prof. Geo. P. Young 157
THIRTEENTH ORDINARY MEETING 157

1. The Kimtan Languages; the Aztec and its Relations. By the Rev. Prof. JohnCampbell, M.A.2. The Gaelic Topoohapiy of Wales and the Isle of Man. By Rev. Dr. McNibu. 181
(For continuation of Contents, see second page of cover/.

R 57
TORONTO:

CONTENTS-(Contirued).

Pages.
FOURTEENTH ORDINARY MEETING 194
the Skrlehon of the Catfleh. By Prof. J. Playpair McMurrich 134
FIFTEENTH ORDINARY MEETING 194
a Few Canadian Clisiates. By J. Gordon Mouat, Esq 195
SIXTEENTH ORDINARY MEETING 216
Sose Factors in the Kalaria Problen. By P. H. Bryce, Esq., M. D. 216
SEVENTEENTH ORDINARY MEETING 218
Old Englibi Spellina and Pronuxclation. By Wiliam Houston, Esq.. M. A 219
EIGHTEENTH ORDINARY MEFTING 220
Photography and the Chemical Aotion of Light. By T. P. Hall, Ebq., B. A. 220
NINETEENTH ORDINARY MEEMING 221
The Radionbter. By. W. J. Loudon, Esq., B. A. 221
TWENTIETH ORDINARY MEETING 221
The Uppre Niagara River. By Henhy Brock, Esq 222
TWENTI-FIRST ORDINARY MEETINA 228

1. The Myology of the Catfish. By Prof. J. Playfair. McMurach 229
2. The-Almbntary Stistem of the Catfish. By A. B. Macallum, Esq., M. A 229
3. The Vascular System and Glinds of the Catfish. By T. McEenzie, Ese., B.A.. 239
TWENTY-SECONL ORDINARY MEETING 22:1
Compulsory Education in Chime. By.E. A. Meredtri, Esq., Ll. D. 230
TWENTY-THIRD ORDINARY MEETING 232
an Entonological Thip to the Rockies. By Capt. Gabidle Gbddes, a. D. C. 232
TWENTY-FOURTH ORDINARY MEETING 42
time art of Etching. By Henry S. Howland, Esq.,gJun 242
THIRTY-FIFTE ANNUAL MEETING 245
annual Report 245

PRINCIPLES

of the

SOLUTION OF EQUATIONS OF 'IHE HIGHER DEGREES,

WITH APPIICATIONS.
bi george paxton young, Toronto, Canada.

CONTENTS.

1. Conception of a simple state to which every algebraical expression can be reduced. $\$ 6$.
2. The unequal particular cognate forms of the generic expression under which a given simplified expression falls are the roots of a rational irreducible equation; and each of the unequal particular cognate forms occurs the same number of times in the series of the cognate forms. $\quad \$ 9,17$.
3. Determination of the form which a rational function of the mimitive $n^{\text {th }}$ root of unity ω_{1} and of other primitive roots of unity must have, in order that the substitution of any one of certain primitive $n^{\text {th }}$ roots of unity, $\omega_{1}, \omega_{2}, \omega_{3}$, etc., for ω_{1} in the given function may leave the value of the function unaltered. Relation that must subsist among the roots ω_{1}, ω_{2}, etc., that satisfy such a condition. $\S 20$.
4. If a simplified expression which is the root of a rational irreducible equation of the $N^{\text {th }}$ degree involve a surd of the highest rank ($\$ 3$) not a root of unity, whose index is $\frac{l}{m}$, the denominator of the index being a prime number, N is a multiple of m. But if the simplified root involve no surds that are not roots of unity, and if one of the surds involved in it be the primitive $n^{\text {th }}$ root of unity, N is a multiple of a measure of $n-1$. $S 2 S$.
5. Two classes of solvable equations. $\$ 30$.
6. The simplified root r_{1} of a rational irreducible equation $r^{\prime}(x)=0$ of the $m^{\text {th }}$ degree, m prime, which can be solved in algebraicul functions, is of the form
$r_{1}=\frac{1}{m}\left(y+\Delta_{1}{ }^{\frac{1}{m}}+{c_{1}}_{1} \Delta_{1} \stackrel{2}{\ddot{r}_{1}}+b_{1} \Delta_{1}^{\frac{3}{m}}+\ldots+c_{1} \Delta_{1} \stackrel{\frac{m-2}{m}}{ }+{l_{1} \Delta_{1}}_{\frac{m-1}{m}}^{)}\right) ;$
where g is rational, and a_{1}, b_{1}, etc., involve only surds subordinate to $\Delta_{1}{ }^{\frac{1}{m}} . \quad \$ 38,47$.
7. The equation $F(x)=0$ Las an auxiliary equation of the $(m-1)^{\text {th }}$ degree. $\varsigma 35,52$.
S. If the roots of the auxiliary be $\Delta_{1}, \delta_{2}, \delta_{8}, \ldots, \delta_{m-1}$, the $m-1$ expressions in each of the groups

$$
\begin{aligned}
& \Delta_{1}^{\frac{1}{m}} \frac{1}{\delta_{m-1}^{m}}, \quad \frac{1}{\delta_{2}^{m}} \frac{1}{\delta_{m-2}^{m}}, \ldots, \delta_{m-1}^{\frac{1}{m}} \Delta_{1}^{\frac{1}{m}}, \\
& \Delta_{1}^{\frac{2}{m}} \frac{1}{\delta_{m-2}^{m}}, \quad \delta_{2}^{\frac{2}{m}} \frac{1}{\delta_{m-4}^{m}}, \ldots \ldots, \delta_{m-1}^{\frac{2}{m}} \frac{1}{\delta_{2}^{m}}, \\
& \Delta_{1}^{\frac{3}{m}} \frac{1}{\delta_{m-3}^{m}}, \quad \frac{3}{i_{2}^{m}} \frac{1}{\delta_{m-6}^{m}}, \ldots, \quad \delta_{m-1}^{\frac{3}{m}} \frac{1}{\delta_{3}^{m}},
\end{aligned}
$$

and so on, are the roots of a rational equation of the $(m-1)^{\text {th }}$ degree. The $\frac{m-1}{2}$ terms

$$
\Delta_{1}^{\frac{1}{m}} \frac{1}{\delta_{m-1}^{m}}, \quad \frac{1}{\delta_{2}^{m}} \frac{1}{\delta_{m-2}^{m}}, \ldots, \delta_{\frac{m-1}{2}}^{\frac{1}{n}} \frac{1}{\delta_{m+1}^{2}}
$$

are the roots of a rational equation of the $\left(\frac{m-1}{2}\right)^{\text {th }}$ degree. $539,44,55$.
9. Wider generalization. $\S 45,57$.
10. When the equation $P(x)=0$ is of the first class, the auxiliary equation of the $(m-1)^{\text {th }}$ degree is irreducible. $\$ 35$. Also the roots of the auxiliary are rational functions of the primitive $m^{\text {th }}$ root of unity. §36. And, in the particular case when the equation $F(x)=0$ is the reducing Gaussian equation of the $m^{\text {th }}$ degree to the equation $x^{n}-1=0$, each of the $\frac{m-1}{2}$ expressions,

$$
\Delta_{1}^{\frac{1}{m}} \frac{1}{\delta_{m-1}^{m}}, \delta_{2}^{\frac{1}{m}} \frac{1}{\delta_{m-2}^{m}}, d \mathrm{c}
$$

has the rational value n. $\$ 11$. Numerical verification. $\$ 42$.

11. Solution of the Gaussian. $\$ 43$.

12. Analysis of solvable irreducible equations of the fifth degrec. The auxiliary biquadratic either is irreducible, or has an irreducible sub-auxiliary of the second degree, or has all its roots rational. The three cases considered separately. Deduction of Abel's expression for the roots of a solvable quintic. §os-74.

PRINCIPIES.

§1. It will be understood that the surds appearing in the present paper have prime numbers for the denominators of their indices, unless where the contrary is expressly stated. Thus, $2^{\frac{1}{15}}$ may be regarded as $h^{\frac{1}{5}}$, a surd with the index $\frac{1}{5}, h$ being $2^{\frac{1}{3}}$. It will be understood also that no surd appears in the denominator of a fraction. For instance, instead of $\frac{2}{1+\sqrt{-3}}$ we should write $\frac{1-\sqrt{-3}}{2}$.
When a surd is spoken of as occurring in an algebraical expression, it may be present in more than one of its powers, and need not be present in the first.
§2. In such an expression as $\sqrt{ } 2+(1+\sqrt{ })^{\frac{3}{3}}, \sqrt{2}$ is subordinate to the principal surd $(1+\sqrt{ })^{3}$, the latter being the only principal surd in the expression.
§3. A surd that has no other surd subordinate to it may be suid to be of the first rank; and the surd $h^{\frac{1}{c}}$, where h involves a surd of the ($a-1)^{\text {th }}$ rank, but none of a higher rank, may be said to be of the $a^{\text {th }}$ rank. In estimating the rank of a surd, the denominators of the indices of the surds concerned are always supposed to be prime numbers. Thus, 3^{t} is a surd of the second rank.
§4. An algebraical expression in which $\frac{1}{4^{m}}$ is a principal (see $\S 2$) surd may be arranged according to the powers of $\int_{1}^{\frac{1}{d^{m}}}$ lower than the $m^{\text {thl }}$, thus, $\frac{1}{m}\left(g_{1}+k_{1} \Delta_{1}^{\frac{1}{m}}+a_{1} \Delta_{1}^{\frac{2}{m}}+b_{1} \Delta_{1}^{\frac{3}{m}}+\ldots .+e_{1} d_{1}^{\frac{m-2}{m}}+h_{1} \frac{4}{1}_{\frac{m-1}{m}}^{\Delta^{m}}\right)(1)$ where g_{1}, j_{1}, a_{1}, etc.; are clear of $J_{1}^{\frac{1}{1 m}}$.
§5. If an algebrical expression r_{1}, arranged as in (1), be zero, while the coefficients g_{1}, k_{1}, etc., are not all zoro, an equation

$$
\begin{equation*}
\omega J_{1}^{\frac{1}{m}}=l_{1} \tag{2}
\end{equation*}
$$

must subsist ; where ω is an $m^{\text {th }}$ root of unity; and l_{1} is an expression. involving only such surds exclusive of ${\Delta_{1}^{\frac{1}{m}}}^{\text {as occur in } r_{1}}$. For, let the first of the coefficients h_{1}, e_{1}, etc., proceeding in the order of the descending powers of $4^{\frac{1}{m}}$, that is not zero, be n_{1}, the coefficient of $\int_{1}^{\frac{8}{n t}}$. Then we inay put

$$
m r_{1}=n_{1}\left\{f\left(d_{1}^{\frac{1}{m}}\right)\right\}=n_{1} d_{1}^{\frac{s}{m}}+\text { etc. }=0
$$

Because $\Delta_{1}^{\frac{1}{m}}$ is a root of each of the equations $f(x)=0$ and $x^{m}-\Delta_{1}=0, f(x)$ and $x^{m}-\Delta_{1}$ have a common measure. Let their H. C. M., involving only such surds as occur in $f(x)$ and $x^{m}-\Delta_{1}$, be $\varphi(x)$. Then, because $\psi^{\prime}(x)$ is a measure of $x^{m}-\Delta_{1}$, the roots of the equation

$$
\varphi(x)=x^{c}+p_{1} x^{c-1}+p_{2} x^{c-2}+\text { etc. }=0
$$

are $J_{1}^{\frac{1}{m}}, \omega_{1} \Delta_{1}^{\frac{1}{m}}, \omega_{2} J_{1}^{\frac{1}{m}}, \ldots, \omega_{c-1} \frac{1}{1}_{\frac{1}{m}}^{J^{m}}$ where ω_{1}, ω_{2}, etc., are digtinct primitive $m^{\text {th }}$ roots of unity. Therefore,

$$
\Delta_{1}^{\frac{c}{m}}\left(\omega_{1} \omega_{2} \ldots\right)(-1)^{c}=p_{c}
$$

Now c is a whole number less than m but not zero; and, by $\S 1, m$ is. prime. Therefore there are whole numbers n and h such that

$$
J_{1}^{\frac{c n}{m_{2}}}\left(\omega_{1} \omega_{2} . .\right)^{n}(-1)^{c n}={S_{1}}_{\frac{1}{m}}^{S_{1}^{n}}\left(\omega_{1} \omega_{2} . .\right)^{n}(-1)^{c n}=p_{c}^{n}
$$

Therefore, if $\left(\omega_{1} \omega_{2} \ldots\right)^{n}=\omega$, and $l_{1} \Delta_{1}^{h}(-1)^{c n}=y_{c}{ }^{2}, \omega \Delta_{1}^{\frac{1}{m}}=l_{1}$.
§6. Let $r_{\mathbf{i}}$ be an algebraical expression in which n n root of unity having a rational value occurs in the surd form $1^{\frac{1}{m 2}}$. Also let there be in, r_{1} no surd $\Delta^{\frac{1}{m}}$ not a root of unity, such that

$$
\begin{equation*}
J_{1}^{\frac{1}{n+}}=c_{1} \tag{3}
\end{equation*}
$$

where e_{1} is an expression involving no surds of so high a rank as $J_{1}^{\frac{1}{m}}$ except such as either are roots of unity, or occur in r_{1} being at the same time distinct from ${d_{1} \frac{1}{m}}^{m}$. The expression r_{1} may then be said to have been simplified or to be in a simple state.
§7. Some illustratiuns of the definition in $\S 6$ may be given. The root $8^{\frac{t}{j}}$ cannot occur in a simplified expression r_{1}; for its value is $2 \omega, \omega$ being a third ront of unity; but the equation $8^{\frac{J}{2}}=2 \omega$ is of the inadmissible type (3). Again, the root $\sqrt{ } 5$ cannot occur in a simplified expression; for, ω_{1} being a primitive fifth root of unity, $\sqrt{5}=2\left(\omega_{1}+\omega_{1}^{4}\right)+1$; an equation of the type (3). Once more, a root of the cubic equation $x^{3}-3 x-4=0$, in the form $(2+\sqrt{ } 3)^{\frac{1}{3}}+(2-\sqrt{ } 3)^{\frac{1}{3}}$, is not in a simple state, because $(2-\sqrt{ } 3)^{\mathfrak{t}}=(2-\sqrt{ } 3)(2+\sqrt{ } 3)^{\mathfrak{z}}$.
§8. Let $\quad p_{1} \Delta_{1} \bar{m}+p_{2} J_{1} \bar{m}+\ldots+p_{m}=0$;
where ${J_{1}}_{\frac{1}{m}}$ is a surd occurring in a simplified expression r_{1}; and p, p_{2}, etc., involve no surds of so high a rank as $\Lambda_{1}^{\frac{1}{m}}$,except such as either are roots of unity; or occur in r_{1} being at the same time distinct from $\Delta_{1}^{\frac{1}{m}}$. The coefficients p_{1}, p_{2}, etc., must be zero separately. For, by $\S 5$, if they were not, we should have $\omega \Delta_{1}^{\frac{1}{m}}=l_{1}, \omega$ being an $m^{\text {th }}$ root of unity, and l_{1} involving only surds in (4) distinct from

§9. The expression r_{1} being in a simple state, we may use R as a generic symbol to include the various particular expressions, say r_{1}, r_{2}, r_{3}, etc., obtained by assigning all their possible values to the surds involved in r_{1}, with the restriction that, where the base of a surd is unity, the rational value of the surd is not to be taken into account. These particular expressions, not necessarily all unequal, may be called the particular cognate forms of R. For instance, if $r_{1}=1^{3}, R$ has two particular cognate forms, the rational value of the
third root of unity not being counted. If $r_{1}=(1+\sqrt{ })^{\frac{1}{t}}, R$ has six particular cognate forms all unequal. Should $r_{1}=(2+\sqrt{ } 3)^{\frac{1}{3}}$ $+(2-\sqrt{3})(2+v 3)^{3}, R$ has six particular cognate forms, but only three unequal, each of the unequal forms occurring twice.
§10. Proposition I. An algebraical expression r_{1} can always be brought to a simple state.

For r_{1} may be cleared of all surds such as $1^{\frac{1}{13}}$ having a rational value. Suppose that r. cinen involves a stiad $\Delta_{2}^{\frac{1}{m}}$, not a root of unity, by means of which an equation such as (3) can be formed. Substitute for $d_{1}^{\frac{1}{m}}$ in r_{1} its valne e_{1} as thus given. The result will be to eliminate $J_{1}^{\frac{1}{m}}$ from r_{1} without introducing into the expression any nex surd as high in rank as $\Delta_{1}^{\frac{1}{m}}$, and at the same time not a root of unity. By continuing to make all the eliminations of this kind that are possible, we at last reach a point where no equation of the type (3) can any longer be formed. Then because, by the course that has been pursued, no roots of the form $1^{\frac{1}{m}}$ having a rational value have been left in r_{1}, r_{1} is in a simple state.
§11. It is known that, if N be any whole number, the equation whose roots are the primitive $N^{\text {th }}$ roots of unity is rational and irreducible.
§12. Let N be the continued product of the distinct prime numbers n, a, b, etc. Let ω_{1} be a primitive $n^{\text {th }}$ root of unity, θ_{1} a primitive $a^{\text {th }}$ root of unity, and so on. Let ω represent any one indifferently of the primitive $n^{\text {th }}$ roots of unity, 0 any one indifferently of the primitive $a^{\text {th }}$ roots of unity, and so on. Let $f\left(\omega_{1}, \theta_{1}\right.$, etc., $)$ be a rational function of ω_{1}, θ_{1}, etc. Then a corollary from $\$ 11$ is, that if $f\left(\omega_{1}, \theta_{1}\right.$, etc. $)=0, f\left(\omega, \theta_{, ~ e t c . ~}\right)=0$. For t_{1} being a primitive $N^{\text {th }}$ root of unity, and t representing any one indifferently of the primitive $N^{\text {th }}$ roots of unity, we may put

$$
\begin{aligned}
f\left(\omega_{1}, v_{1}, \text { etc. }\right) & =a_{1} t_{1}^{N-1}+a_{2} t_{1}^{N-2}+\text { etc. }=0, \\
\text { and } f(\omega, 0, \text { etc. }) & =a_{1} t^{N-1}+a_{2} t^{N-2}+\text { etc. } ;
\end{aligned}
$$

where the coefficients a_{1}, a_{2}, etc., are rational. Should these coefficients be all zero, $f(\omega, 0$, etc. $)=0$. Should they not be all zero, let a_{r} be the first that is not zero. Then we may put

$$
f\left(\omega_{1}, 0_{1}, \text { etc. }\right)=a_{r}\left\{\varphi\left(t_{1}\right)\right\}=a_{r} t_{1}^{R-r}+\text { etc. }=0
$$

Therefore, t_{1} is a root of the rational equation $\varphi(x)=0$, being at the same time a root of the rational (see §ll) equation $\psi(x)=0$, whose roots are the primitive $N^{\text {th }}$ roots of unity. Hence $\psi(x)$ and $\uparrow(x)$ have a common measure. But by $\$ 11, \psi(x)$ is irreducible. I'herefore it is a mensure of $\varphi(x)$; and the roots of the equation $\psi(x)=0$ are roots of the equation $\varphi(x)=0$. Therefore,

$$
f(\omega, 0, \text { etc. })=a_{r}\{\varphi(t)\}=0
$$

§13. Another corollary is, that if

$$
f\left(\omega_{1}, \theta_{1}, \text { etc. }\right)=h_{1} \omega_{1}^{n-1}+h_{2} \omega_{1}^{n-2}+\ldots+h_{n}=0
$$

where h_{1}, h_{2}, etc., are clear of ω_{1}, the coefficients h_{1}, h_{2}, etc., are all equal to one another. For, by $\S 12$, becanse $f\left(\omega_{1}, 0_{1}\right.$, etc. $)=0$, $f\left(\omega, 0_{1}\right.$, etc. $)=0$. Therefore $\omega\left\{f\left(\omega, 0_{1}\right.\right.$, etc. $\left.)\right\}=0$. In $\omega\left\{f\left(\omega, \theta_{1}\right.\right.$, etc. $\left.)\right\}$ give ω successively its $n-1$ different values. Then, in addition,

$$
n h_{1}=h_{1}+h_{2}+\ldots+h_{n} . \quad \text { Similarly, } n i l_{2}=h_{1}+h_{2}+\ldots+h_{n} \cdot \cdot l_{1}=h_{n}
$$

In like manner all the terms h_{1}, h_{2}, cte., are equal to one another.
§14. Proposition LI. If the simplified expression r_{1}, one of the particular cognate forms of R, be a root of the rational equation $F^{\prime}(x)=0$, all the particular cognate forms of R are roots of that equation.

For, let r_{2} be a particular cognate form of 72 . By $\S 12$, the law to be established holds when there are no surds in r_{1} that are not roots of unity. It will be kept in view that, according to $\varsigma 1$, when roots of unity are spoken of, such roots are meant as $1^{\frac{1}{m}}, m$ being a prime number. Assume the lan to have been found good for all expressions that do not involve more than $n-1$ distinct surds that are not roots of unity ; then, making the hypothesis that r_{l} involves not more than n distinct surds that are not roots of unity, the law can be shown still to hold ; in which case it must hold universally. For, let $\Delta_{1}^{\frac{1}{m}}$. not a root of unity, be a surd of the highest rank (see $\$ 3$) in r_{1}. Then $F\left(r_{1}\right)$ may be taken to be the expression (1), and $F\left(r_{2}\right)$ to he the expression formed from (1) by selecting particular values of the surds involved under the restriction specified in §9. In passing from r_{1} to r^{\prime}, let $\Delta_{1}^{\frac{1}{m}}, a_{1}$, etc., become respectively $\frac{1}{d_{2}^{m}}, a_{2}$, etc. Then

$$
\begin{aligned}
& \quad m\left\{F\left(r_{1}\right)\right\}=h_{1} \Delta_{1}^{\frac{m-1}{m}}+e_{1} \Delta_{1}^{\frac{m-2}{m}}+\text { etc. }=0 . \\
& \text { and } m\left\{F\left(r_{1}\right)\right\}=h_{2} \Delta_{2}^{\frac{m-1}{m}}+\iota_{2} \Delta_{2}^{\frac{m-2}{m}}+\text { єtc. }
\end{aligned}
$$

By $\S \delta$, because r_{1} is in a simple state, and $F\left(r_{1}\right)=0$, the coeficients μ_{1}, e_{1}, etc., are zero separately. But h_{1} is clear of the rurd $\Delta_{1}^{\frac{1}{m}}$. It therefore does not involve more than $n-1$ distinct $s=x d s$ that are not roots of unity. Therefore, on the assumption on which we are proceeding, because $h_{1}=0, h_{2}=0$. In like manner, $e_{2}=0$, and so on. Therefore $F\left(r_{2}\right)=0$.
$\S 15$. Cor: Let the simplified expression r_{1} be the root of an equation $r^{r}(x)=0$ whose coefficients involve certain surds $z_{1}^{\frac{1}{n}}, u_{1}^{\frac{1}{3}}$, etc., that have the same determinate values in r_{1} as in $F(x)$. Then, if r_{2} be a particular cognate form of R in which the $\frac{1}{n} \frac{1}{5}$ surds $z_{1}{ }^{n}, u_{1}{ }^{5}$, etc., retain the determinate values belonging to them in r_{1}, r_{2} is a root of the equation $F(x)=0$. For $F\left(r_{1}\right)=0$. Therefore, by the Proposition, $F(R)=0$. Let R, restricted by the condition that the surds $z_{1}^{\frac{1}{n}}, u_{1}^{\frac{1}{8}}$, etc., retain the determinate values belonging to them in r, be R^{\prime}. Then $F^{\prime}\left(R^{\prime}\right)=0$. A particular case of this is $F^{\prime}\left(r_{2}\right)=0$. The corollary established simply means that the surds $z_{1}^{\frac{1}{n}}, u_{1}{ }^{\frac{1}{s}}$, etc., may be taken to be rational for the purpose in hand.
§16. The simplified expression r_{1} being one of the particular cognate forms of R, let $\quad r_{1}, r_{a}$, etc. be the entire series of the particular cognate forms of R, not necessarily unequal to one another. Then, if the equation whose roots are the terms in ($\overline{5}$) be $X=0, X$ is rational. In like manner, if those particular cognate forms of R, not necessarily unequal, that we obtained when certain surds $z_{1}^{\frac{1}{n}}, u_{1} \frac{1}{3}$, etc., retain the determinate values belonging to them in r_{1}, be

$$
\begin{equation*}
r_{1}, r_{r}, \text { etc. } \tag{6}
\end{equation*}
$$

and if the equation whose roots are the terms in (6) be $X^{\prime}=0, X^{\prime}$ involves only surds found in the series ${z_{1}}^{\frac{1}{n}}, \frac{1}{5}$, etc. This is sulbstantially proved by Legendre in his Theoric des Nombres, $\$ 487$, third edition.
§17. Proposition III. The unequal particular cognate forms of R, the generic expression under which the simplified expression r_{1} falls, are the roots of a rational irreducible equation; and each of the unequal particular cognate forms occurs the same number of times in the series of the cognate forms.

As in $\$ 16$, let the entire series of the particular cognate forms of K be the terms in (5), the equation that has these terms for its roots being $X=0$. By §16, X is rational. Should X not be irreducible, it has a rational irreducible factor: say $F(x)$, such that r_{1} is a root of the equation $l^{\prime}(x)=0$. By Prop. II., because r_{1} is in a simple state, all the terms in (5) are roots of the equation $F(x)=0$, while at the same time, because $F(x)$ is a factor of X, all the roots of the equation are terms in (5). And the equation $F^{\prime}(x)=0$, being irreducible, has no equal roots. Therefore its roots are the unequal terms in (5). Should $F^{\prime}(x)$ not be identical with X, put

$$
X=\{F(x)\}\{\varphi(x)\}
$$

Because X and $F^{\prime}(x)$ are rational, $\varphi(x)$ is rational. Then, since $\circ(x)$ is a measure of X, and the equation $F(x)=0$ has for its its roots the unequal roots of the equation $\bar{X}=0$, the equations $F(x)=0$ and $o(x)=0$ have a root in common. Consequently, since $F^{\prime}(x)$ is irreducible, it is a measure of $\varphi(x)$. Therefore $\left\{F^{\prime}(x)\right\}^{2}$ is a measure of X. Going on in this way we ultimately get $X=\{F(x)\}^{N}$; which means that each of the particular cognate forms of $l l$ has its value repeated N times in the series of the particular cognate forms.
§1S. Cor. 1. The series (6) consisting of those particular cognate forms of R in which certain surds ${z_{1}}_{\frac{1}{n}}^{v}, u_{1}^{\frac{1}{s}}$, etc., retain the determinate values belonging to them in r_{1}, each of the unequal terms in (6) occurs the same number of times in (6); and the unequal terms in (6) are the roots of an irreducible equation whose coefficients involve only surds found in the series $z_{1}^{\frac{1}{n}}, 2_{1} \frac{1}{2}$, etc. Should X^{\prime} not be irreducible, by which in such a case is meant incapable of being broken into lower factors involving only surds occurring in X^{\prime}, let it have the irreducible factor $X^{\prime \prime}$. That is to say, $X^{\prime \prime}$ involves only surds occurring in X^{\prime}, and has itself no lower factor involving only surds that occur in $X^{\prime \prime}$. We may take r_{1} to be a root, of the equation $X^{\prime \prime}=0$. Then, by Cor. Prop. II., all the terms in (6) are roots of that equation, all the roots of the equation being at the same time terms in (6). And the equation $X^{\prime \prime}=0$ being irreducible, has no equal roots. Therefore its roots are the unequal terms in (6). Put
$X^{\prime}=\left(X^{\prime \prime}\right)\left(X^{\prime \prime \prime}\right)$. Then, by the line of reasoning followed in the Proposition, $X^{\prime \prime \prime}$ has a measure identical with $X^{\prime \prime}$. And so on. Ultimately $X^{\prime}=\left(X^{\prime \prime}\right)^{N}$.
§19. Cor. 2. If r_{2}, one of the particular cognate forms of R, be zero, all the particular cognate forms of R are zero. For, by the proposition, the particular cognate forms of R are the roots of a rational irreducible equation $\vec{F}(x)=0$. And r_{2}, one of the roots of that equation, is zero, but, the only rational irreducible equation that has zero for a root is $x=0$. Therefore $F(x)=x=0$. In fact, in the case supposed, the simplified expression r_{1} is zero, and R has no particular cognate forms distinct from r_{1}.
$\S 20$. Proposition [V. Let N be the continued product of the distinct prime numbers n, a, etc. Let ω_{1} be a primitive $n^{\text {ih }}$ root of unity, θ_{1} a primitive $a^{\text {th }}$ root of unity, and so on. Then if the equation

$$
F(x)=x^{d}+b_{1} x^{d-1}+b_{2} x^{d-2}+\text { etc. }=0
$$

he one in which the coefficients b_{1}, b_{2}, etc., are rational functions of ω_{1}, a_{1}, ete., and if all the primitive $n^{\text {th }}$ roots of unity, which, when substituted for ω_{1} in $F^{\prime}(x)$, leave $F(x)$ unaltered, be

$$
\begin{equation*}
\omega_{1}, \omega_{2}, \ldots \ldots, \omega_{s}, \tag{7}
\end{equation*}
$$

the series (7) either consists of a single term or it is made up of a cycle of primitive $n^{\text {th }}$ roots of unity,

$$
\begin{equation*}
\omega_{1}, \omega_{1}^{\lambda}, \omega_{1}^{\lambda^{2}}, \ldots, \omega_{1}^{\lambda s-1} \tag{18}
\end{equation*}
$$

that is to say, no term in (S) after the first is equal to the first, but $\omega_{1}^{\lambda_{1}^{3}}=\omega_{1}$. Also, if (let it be kept in view that n is prime) the cycle that contains all the primitive n^{th} roots of unity be

$$
\begin{equation*}
\omega_{1}, \omega_{1}^{\beta}, \omega_{1}^{\beta^{2}}, \ldots ., \omega_{1}^{\beta^{12}-2} \tag{9}
\end{equation*}
$$

and if C_{1} be the sum of the terms in the eycle ($(\mathcal{)}$, the form of $F(x)$ is

$$
\begin{align*}
F(x)= & x^{d}-\left(p_{1} C_{1}+p_{2} C_{2}+\ldots+p_{n} C_{m}\right) x^{d-1}+ \tag{10}\\
& \left(q_{1} C_{1}+q_{2} C_{2}+\text { etc. }\right) x^{d-2}+\text { etc. }
\end{align*}
$$

where each of the expressions in the series C_{1}, C_{2}, C_{3}, etc., is what the immediately preceding term becoures by changing w_{1} into ${ }_{\omega_{1}}^{\beta}, C_{m}$ through this change becoming C_{1}; and p_{1}, p_{2}, q_{1}, etc., are clear of ω_{1}.

For, assuming that there is a term ω_{2} in (7) additional to ω_{1}, we may take ω_{2} to be the first term in (9) after ω_{1} that occurs in (7); and it may be considered to be $\omega_{1}^{\beta^{\text {m }}}$, which may be otherwise written ω_{1}^{λ}. Then, if $F(x)$ be written $\varphi\left(\omega_{1}\right)$, we have by hypothesis
$\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{\lambda^{2}}^{\lambda}\right) . \quad$ Therefore, by $\underset{\lambda^{2}}{\S 12}$, changing ω_{1} into $\omega_{1}^{\lambda}, \varphi\left(\omega_{1}^{\lambda}\right)=$ $\varphi\left(\omega_{1}^{\lambda^{2}}\right)$. Therefore $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\lambda^{2}}\right)$. And thus ultimately $\varphi\left(\omega_{1}\right)=$ $\varphi\left(\omega_{1}^{\lambda^{z}}\right)$, or $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\beta^{m z}}\right)$, \approx being any whole number positive or negative. But $\omega_{1}^{\lambda^{z}}$ inchudes all the terms in (8). Therefore each of these terms is a term in (7). Suppose if possible that there is a term β^{h}
in (7), say $\omega_{1}^{\beta^{\prime}}$, which does not occur in (8). Then, just as we deduced $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\beta^{m z}}\right)$ from the equation $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\beta^{m}}\right)$, we can, because still fartber $\varphi\left(\omega_{1}\right)=\rho\left(\omega_{1}^{\beta^{h}}\right)$, deduce $\varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\beta^{m z}+h u}\right)$. Because $\omega_{1}{\beta^{h}}^{h}$ lies outside the cycle (δ), $/ 2$ is not a multiple of m. And β^{m}
it is not less than m, because $\omega_{1}^{\beta^{m}}$ is the first term in (9) after ${ }^{\prime} \omega_{1}$, which, when substituted for ω_{1} in $\varphi\left(\omega_{1}\right)$, leaves $\varphi\left(\omega_{1}\right)$ unaltered. Therefore $h=q n+v$, where q and v are whole numbers, and v is less than m but not zero. Put
$z=-(h+q)$, and $u=m+1 \cdot \cdot m z+h u=v \cdot \cdot \varphi\left(\omega_{1}\right)=\varphi\left(\omega_{1}^{\beta^{v}}\right) ;$
which, because v is less than m but not zero, and $\omega_{1}^{\beta^{m}}$ is the first terin in (9) after ω_{1} which, when substituted for ω_{1} in $\varphi\left(\omega_{1}\right)$, leaves $\varphi\left(\omega_{1}\right)$ unaltered, is impossible. Hence, no term in (7) lies outside the cycle (S), while it has also been shown that all the terms in (S) are terms in (7). Therefore the terms in (\bar{f}) are identical with those constituting the cycle (S). We have now to determine the form of $F^{\prime}(x)$. The expressions, C_{1}, C_{2}, etc., taken together, are the sum of the terms in (9). Therefore $C_{1}+C_{2}+\ldots .+C_{n}=-1$.

Because (9) contains all the primitive $n^{\text {th }}$ roots of unity, we may put
$F^{\prime}(x)=c^{d}-\left\{p+\left(p+p_{1}\right) \omega_{1}+\left(p+p_{2}\right) \omega_{1}^{\beta}+\right.$ etc. $\} x^{d-1}+$ etc. $;(12)$
where p, p_{1}, etc., are clear of ω_{1}. But $F(x)$ remains unaltered when ω_{1} is changed into $\omega_{1}^{\beta^{m}}$. Therefore

$$
\begin{equation*}
F(x)=x^{\alpha}-\left\{p+\left(p+p_{1}\right) \omega_{1}^{\beta_{1}}+\text { etc. }\right\} x^{d-1}+\text { etc. } \tag{13}
\end{equation*}
$$

Therefore, equating the coefficients of x^{d-1} in (12) and (13),

$$
\left(p-p_{1}\right)+\cdots+\left(p_{m+1}-p_{1}\right) \omega_{1}^{\beta^{m}}+\text { etc. }=0
$$

Here, by $\$ 13$, the coefficients of the different powers of ω_{I} have all the same value. And one of them, $p-p_{1}$, is zero. Therefore
$p_{m+1}=p_{1}$. That is to sar, the coefficient of $\omega_{1}^{\beta_{1}}$ or ${ }_{\omega_{1}}^{\lambda}$ is the same as that of ω_{1}. In like manner the coefficients of all the terms in (8) are the same. Therefore one group of the terms that together make up) the coefficient of x^{d-1} in (12) is properly represented by $-\left(p+p_{1}\right) C_{1}$. In the same way another group is properly represented by $-\left(p+p_{2}\right) C_{2}$, and so on. Hence
$F(x)=x^{d}-\left\{p+\left(p+p_{1}\right) C_{1}+\left(p+p_{2}\right) C_{2}+\right.$ etc. $\} x^{d-1}+$ etc. And by (11) this is equivalent to (10). The form of $F(x)$ has been deduced on the assumption that the series (7) contains more than one term ; but, should the series (7) consist of a single term, the result obtained would still hold good, only in that case each of the expressions C_{1}, C_{2}, etc., would be a primitive $n^{\text {th }}$ root of unity:
§21. A simplified expression will not cease to be in a simple state, if we suppose that any surd that can be eliminated from it, without the introduction of any new surd, has been eliminated.
§22. Proposition V. In the simplified expression r_{1}, one of the particular cognate forms of R, modified according to $\S 21$, let the surd $\Delta_{1}^{\frac{1}{m}}$ of the highest rank be not a root (see $\S 1$) of unity. Then, if the particular cognate forms of R obtained by changing $\Delta_{1}^{\frac{1}{m}}$ in $\eta \cdot 1$ successively into the different $m^{\text {th }}$ roots of the determinate base Δ_{1}, be

$$
\begin{equation*}
r_{1}, r_{2}, \ldots, r_{m} \tag{14}
\end{equation*}
$$

these terms are all unequal.
For the terms in (14) are all the particular cognate forms of R obtained when we allow all the surds in r_{1} except $\Delta_{1}^{\frac{1}{m}}$ to retain the determinate values belonging to them in r_{1}. Therefore, by Cor.], Prop. III., each of the unequal terms in (14) has its value repeated the same number of times in that series. Let u be the number of the unequal terms in (14), and let each occur c times. Then $u c=m$. Suppose if possible that $u=1$. This means that all the terms in (14) are equal. Therefore, r_{1} being the expression (1),

$$
m r_{1}=r_{1}+r_{2}+\ldots+\text { etc. }=g_{1}
$$

Therefore the surd $\Delta_{1}^{\frac{1}{m}}$ can be eliminated from r_{1} without the introduction of any new surd ; which, by $\S 21$, is impossible. Therefore u is not unity. But, by $\S 1, m$ is a prime number. And $m=u c$. Therefore $c=1$ and $u=m$. This means that all the terms in (14) are unequal.
§23. Cor. 1. Let r_{a+1} be any one of the partisular cognate forms of R; and let $\Delta_{a+1}^{\frac{1}{m}}, h_{a+1}$, etc., be respectively what $J_{1}^{\frac{1}{m}}, h_{1}$, etc., becouse in passing from r_{1} to r_{a+1}. Also let, the m particular cognate forms of R, nbtained by changing $J_{a+1}^{\frac{1}{m}}$ in r_{a+1} successively into the different $m^{\text {th }}$ roots of J_{a+1}, be

$$
\begin{equation*}
r_{a+1}, r_{a+1}, \ldots, r_{a+m} \tag{15}
\end{equation*}
$$

 r_{1}, and r_{2} is what r_{1} becomes when $J_{1}^{\frac{1}{n}}$ is changed into it surd whose value is $\left.\omega_{1}\right\lrcorner_{1}^{\frac{1}{\sqrt{n}}}$, (ω_{1} being a primitive $m^{\text {th }}$ root of unity, the view may he taken that $r:$ involves no surds additional to those found in r_{1}, except the primitive m^{41} root of unity ω_{1}. Therefore $r_{1}-r_{2}$ involves no surds distinct from primitive $m^{\text {th }}$ roots of mity that are not found in the simplified expression r_{1}. Therefore $r_{1}-r_{2}$ is in a sinule state.
Let r_{a+2} be what r_{a+1} becomes by changing $\int_{a+1}^{\frac{1}{m}}$ into $\omega_{1} d_{a+1}^{\frac{1}{m}}$. Then $r_{a+1}-r_{a+2}$ is a particular cognate form of the generic expression under which the simplified expression $r_{1}-r_{2}$ falls. Therefore $r_{a+1}-r_{a+2}$ camot be zero; for, if it were, $r_{1}-r_{2}$ would, by Cor: 2, Prop. IIi., be zero; which, by the proposition, is impossible. Hence, the first two terms in (15) are mequal. In like mamer all the terms in (15) are nuequal.
§24. Cor. 2. Let $X_{1}=0$ be the equation whose roots are the terms in (14). When X_{1} is modified accordiug to $\$ 21$, it is, by $\S 16$, clear of the surd $J_{1}^{\frac{1}{m}}$. Should it involve :ay surds that are not roots of unity, take $z_{1}^{-\frac{1}{c}}$ a surd of the highest rank not a root of mity in X_{1}; and, when $z_{1}{ }^{\frac{1}{c}}$ is changed successively into the different $c^{\text {th }}$ roots of the determinate base a, let

$$
\begin{equation*}
x_{1}, x_{i}^{\prime}, x_{1}^{\prime \prime}, \ldots, x_{1}^{(c-1)} \tag{16}
\end{equation*}
$$

be respectively what X_{1} becomes. Any term in (16), as X_{1}, being selected, the m roots of the equation $X_{1}=0$ are mequal particular
cognate forms of R. For, $z_{2}^{\frac{l}{c}}$ being a $c^{\text {th }}$ root of z_{1} distinct from $z_{1}^{\frac{1}{c}}$, let r_{a+1}. be what r_{1} becomes when $z_{1}^{\frac{1}{c}}$ becomes $z_{2}^{\frac{1}{c}}$; the expressions $\Delta_{1}^{\frac{1}{m}}, h_{1}$, etc., at the same time becoming $J_{a+1}^{\frac{1}{m}}, h_{a+1}$, etc. Then we may put

$$
\begin{equation*}
\bar{X}_{1}=x^{m}+\left(b z_{1}^{\frac{c-1}{c}}+d z_{1}^{\frac{c-2}{c}}+\text { etc. }\right) x^{m-1}+\text { etc. } \tag{17}
\end{equation*}
$$

where b, d, etc., are clear of ${z_{1}}^{\frac{1}{c}}$. Therefore, because r_{1} is a root of the equation $X_{1}=0$,

$$
\begin{aligned}
& \left\{\frac{1}{m}\left(h_{1} d_{1}^{\frac{m-1}{m}}+\text { etc. }\right)\right\}^{m} \\
& +\left(b z_{1}^{\frac{c-1}{c}}+d z_{1}^{\frac{c-2}{c}}+\text { etc. }\right)\left\{\frac{1}{m}\left(h_{1} d_{1}^{\frac{m-1}{m}}+\text { etc. }\right)\right\}^{m-1}+\text { etc. }=0
\end{aligned}
$$

All the surds in this equation occur in the simplitied expression r_{1}. Therefore, by Prop. 1I.,

$$
\begin{aligned}
& \left\{\frac{1}{m}\left(h^{a+1} \Delta_{a+1}^{\frac{m-1}{m}}+\text { etc. }\right)\right\}^{m} \\
& +\left(b z_{2}^{\frac{c-1}{c}}+d z_{2}^{\frac{c-2}{c}}+\text { etc }\right)\left\{\frac{1}{n 2}\left(h_{a+1} \Delta_{a+1}^{\frac{m-1}{m}}+\text { etc. }\right)\right\}^{m-1}+\text { etc. }=0
\end{aligned}
$$

Therefore $\frac{1}{m}\left(h_{a+1} \frac{\frac{m-1}{m}}{a+1}+\right.$ etc. $)$ or r_{a+1} is a root of the equation

$$
\begin{equation*}
X_{1}^{\prime}=x^{m}+\left(b{x_{2}}_{\frac{c-1}{c}}+\text { etc. }\right) x^{m-1}+\text { etc. }=0 \tag{18}
\end{equation*}
$$

Therefore also, by Cor. Prop. II., all the terms in (15) are roots of that equation. And, by Cor. 1, the terms in (15) are all unequal. Therefore the equation $X_{1}=0$ has m unequal particular cognate forms of R for its roots.
§25. Cor. 3. No two of the expressions in (16), as x_{1} and X_{1}, are identical with one another. For, in order that X_{1} and X_{1} might be identical, the coefficients of the several powers of x in X_{1} would need to be equal to those of the corresponding powers of x in X_{1}; but, if
one of the coefficients of X_{1} be selected in which $\approx_{1}^{\frac{1}{c}}$ is present, this coefficient can be shown to be mequal to the corresponding coefficient in X_{1} in the same way in which the terms in (15) were proved to be all unequal.
§26. Cor. 4. Any two of the terms in (16), as X_{1} and X_{1}, being selected, the equations $X_{1}=0$ and $X_{1}=0$ have no root in common. For, suppose, if possible, that these equations have a root in common. Taking the forms of X_{1} and X_{1} in (17) and (18), since r_{1} is a root of the equation $X_{1}^{\prime}=0$,

$$
\begin{equation*}
r_{1}^{m}+\left(b z_{2}^{\frac{c-1}{c}}+\text { etc. }\right) r_{1}^{m-1}+\text { etc. }=0 \tag{19}
\end{equation*}
$$

All the surds in this equation except $\frac{1}{z_{2}}{ }^{\frac{1}{c}}$ occur in r_{1}. It is impossible that $z_{2}{ }^{\frac{1}{c}}$ can occur in r_{1}; for, $z_{1}{ }^{\frac{1}{c}}$ occurs in r_{1}; and $z_{2}{ }^{\frac{1}{c}}=0_{1} z_{1}{ }^{\frac{1}{c}}$, θ_{1} being a primitive $c^{\text {th }}$ root of unity; but this equation, if both $z_{1}^{\frac{1}{c}}$ $\frac{1}{c}$ and $\approx_{i_{2}}{ }^{c}$ occurred in r_{1}, would be of the inadmissible type (3). Since $z_{2}{ }^{\frac{1}{c}}$ does not occur in r_{1}, it is a principal (see $\S 2$) surd in (19). We may, therefore, keeping in view that r_{1} is the expression (1) in which $d_{1}^{\frac{1}{m}}$ is a principal surd, arrange (19) thus,

$$
\begin{align*}
& \varphi\left(\Delta_{1}^{\frac{1}{m}}\right)=\Delta_{1}^{\frac{m-1}{m}}\left(p_{1} z_{2}^{\frac{c-1}{c}}+p_{2} z_{2}^{\frac{c-2}{c}}+\text { etc. }\right) \\
& +\Delta_{1}^{\frac{m-2}{m}}\left(q_{1} z_{2}^{c}+q_{2} z_{2}^{c}+\text { ecc. }\right)+\text { etc. }=0 \tag{20}
\end{align*}
$$

where p_{1}, q_{1}, etc., are clear of $z_{2}^{\frac{1}{c}}$. Then, ω_{1} being a primitive $n^{\text {th }}$ root of unity such that, by changing $\Delta_{1}^{\frac{1}{m}}$ into the $m^{\text {th }}$ root of A_{1} whose value is $\omega_{1} d_{1}^{\frac{1}{m}}, r_{1}$ becomes r_{2},

$$
\begin{align*}
& \varphi\left(\omega_{1} J_{1}^{\frac{1}{m}}\right)=\omega_{1}^{m-1} d_{1}^{\frac{m-1}{m}}\left(p_{1} z_{2}^{\frac{c-1}{c}}+\text { etc. }\right) \\
& +\omega_{1}^{m-2} \mathcal{J}_{1}^{\frac{m-1}{m}}\left(q 1 z_{2}^{\frac{c-1}{c}}+\text { etc. }\right)+\text { etc. } \tag{21}
\end{align*}
$$

The coofficients of the several powers of $\Delta_{1}^{\frac{1}{m}}$ in $\varphi\left(\Lambda_{1}^{\frac{1}{m}}\right)$ cannot be all zero ; for, if they were, we should have, from (21), $\varphi\left(\omega_{1} \Delta_{1}^{\frac{1}{m}}\right)=0$. This means that r_{2} is a root of the equation $X_{1}=0$. But in like manner all the terms in (14) would be roots of that equation, and X_{1} would be identical with X; which, by Cor. 3 , is impossible. Since the coefficients of the different powers of $\Delta_{1}^{\frac{1}{n n}}$ in $\varphi\left(\Delta_{1}^{\frac{1}{n}}\right.$ are not all zero, the equation (20) gives us, by $\S 5, \omega 4_{1}^{\frac{1}{m}}=l_{1}$, ω being an $m^{\text {th }}$ root of unity, and l_{1} involving only surds in $\varphi\left(\Delta_{1}^{\frac{1}{m}}\right)$ exclusive of $\Delta_{1}^{\frac{1}{m}}$. In l_{1} we may conceive $z_{2}{ }^{\frac{1}{c}}$ changed into $0_{1} z_{1}{ }^{\frac{1}{c}}$. Then l_{r} involves only surds distinct from $\Delta_{1}^{\frac{1}{m}}$, all of them except the primitive $c^{\text {th }}$ root of unity 0_{1} being surds that occur in r_{1}. This makes the equation $\omega \Delta_{1}^{\frac{1}{m}}=l_{1}$ of the inadmissible type (3). Heuce the equations $X_{1}=0$ and $X_{1}^{\prime} \doteq 0$ have no root in common.
§27. Cor. 5. Let X_{2} be the continued product of the terms in (16). Then X_{2}, modified according to $\S 21$, is clear of $z_{1}{ }^{\frac{1}{c}}$, in the same way in which X_{1} is clear of $\frac{1}{\Delta_{1}^{m}}$. Also since, by Cor. 2, each of the equations $X_{1}=0, X_{1}=0$, etc., has m unequal particular cognate forms of R for its roots; and since, by Cor. 4 , no two of these equations have a root in common, the mo roots of the equation $X_{2}=0$ are unequal particular cognate forms of R.
§28. Proposimion VI. Let the simplified expression r_{1}, modified according $t s \S 21$, be a root of the rational irreducible equation of the $N^{\text {th }}$ degree, $F(x)=0$. Then if $U_{1}^{\frac{1}{m}}$, not a root of unity, be a surd of the highest rank in r_{1}, N^{r} is a multiple of m. But if r_{1} involve only surds that are roots of unity, one of them being the primitive $n^{\text {th }}$ root of unity, N is a multiple of a measure of $n-1$.

First. let $\int_{1}^{\frac{1}{m}}$, not a root of unity, be a surd of the highest rank in r_{1}. Taking the expression (1) to be r_{1}, let Y_{1} be formed as in $\S 24$, and let it be modified according to $\S 21$. It is clear of the surd $\Delta_{1}^{\frac{1}{m}}$.

Sbould it involve a surd that is not a ront of unity, let X_{2} be formed as in $\S 27$. Setting out from r_{1} we arrived by one step at X_{1}, an expression clear of $S_{1}^{\frac{1}{m}}$, and such that the roots of the equation $X_{1}=0$ are unequal particular cognate forms of R. A second step brought us to X_{2}, an expression clear of the additional surd $z_{1}{ }^{\frac{1}{c}}$, and such that the $m c$ roots of the equation $X_{2}=0$ are unequal particular cognate forms of R. Thus we can go on till, in the series X_{1}, X_{2}, etc., we reach a term X_{e} into which no surds enter that are not roots of unity, the mc ...l roots of the equation $X_{e}=0$ being unequal particular coguate forms of R. Should X_{e} modified according to $\$ 21$, not be rational, its form, by Prop. IV., putting d for $m c \ldots l$, is
$X_{e}=x_{d}-\left(p_{1} C_{1}+\ldots .+p_{m} C_{m}\right) x^{d-1}+\left(q_{1} C_{1}+\ldots .+q_{m} C_{m}\right) x^{d-2}+$ etc. $;$
where, one of the roots occurring in X_{e} being the primitive $n^{\text {th }}$ root of unity ω_{1}, the coefficients p_{1}, q_{1}, etc.; are clear of ω_{1}; and C_{1} is the sum of the cycle of primitive $n^{\text {th }}$ roots of mity ((8) containing s or $\frac{n-1}{m}$ terms; and, the cycle (9) containing all the primitive $n^{\text {th }}$ roots of unity, the change of ω_{1} into ω_{1}^{β} causes C_{1} to become C_{2}, and C_{2} to become C_{3}, and so on, C_{m} beconing C_{1}. As was explained at the close of $\S 20$, the cycle (8) may be reduced to a siugle term, which is then identical with C_{2}. It will also not be forgotten that the roots of unity such as the $n^{\text {th }}$ here spoken of are, according to $\$ 1$, subject to the condition that the numbers such as n are prime. When C_{1} in X_{e} is changed successively into C_{1}, C_{2}, etc., let X_{e} become

$$
\begin{equation*}
X_{e}, X_{c}^{\prime}, X_{e}^{\prime \prime}, \ldots, X_{c}^{(m-1)} \tag{22}
\end{equation*}
$$

If X_{c+1} be the continued product of the terms in (22), the dm roots of the equation $X_{e+1}=0$ can be shown to be unequal particular cignate forms of R. For, no two terms in (22) as X_{e} and X_{e} are identical; because, if they were, X_{e} would remain unaltered by the change of ω_{1} into ω_{1}^{β}; which, by Prop. IV., because ω_{1}^{β} is not a term in the cycle (8), is impossible. It follows that no two of the equations $I_{c}=0, X_{c}=0$, etc., have a root in common. For, if the equations $x_{e}=0$, and $X_{e}^{\prime}=0$ had a root in common, since X_{e} and X_{e}^{\prime} are atot identical, X_{c} would have a lower measure involving only surds found in X_{r}, because the surds in X_{e} are the same with those in X_{e}. Let $\Leftrightarrow(x)$ be this lower measure of X_{e}, and let r_{1} be a root of the equattion $0(x)=0$. Then, by Cor. Prop. II., all the d roots of the equation $X_{6}=0$ are roots of the equation $\varphi(x)=0$; which is impossible. In the same way it can be proved that no equation in the series $X_{c}=0, X_{c}^{\prime}=0$, etc., has equal roots. Since no one of these equations has equal roots, and no two of them have a root in common, the $d m$ roots of the equation $X_{e+1}=0$ are unequal \mid articular cognate forms of R. Also X_{e+1}. modified according to $\$ 21$, is clear of the primitive $n^{\text {th }}$ roots of mity. Should $X_{c}+1$ not Le rational, we can deal with it as we did with X_{e}. Going on in this way, we ultimately reach a rational expression X_{z} such that the (im $\ldots g$ roots of the equation $X_{z}=0$ are unequal particular ugnate forms of R. This equation must be identical with the equation $P(x)=0$ of which r_{1} is a root. For, by Prop. III., the equation $I^{\prime}(x)=0$ has for its roots the unequal particular cognate forms of R. Therefore, becanse the roots of the equation $X_{z}=0$ are all unequal and are at the same time particular cognate forms of R, X_{z} must be either a lower measure of $F(x)$ or identical with $F(x)$. But $F(x)$, being irreducible, has no lower measure. Therefore X_{z} is identical with $F^{\prime}(x)$. Therefore, the equation $F(x)=0$ being the $N^{\text {th }}$ degree, $V=m c \ldots l m \ldots g$. Hence N is a multiple of m. This is the result arrived at when r_{1} involves a surd of the nighest rauk $\Delta_{1}^{\frac{1}{m}}$ not a root of unity. Should r_{1} involve no surds except roots (see $\$ 1$) of unity, we should then have set out from X_{e} regarded as identical with $x-r_{1}$. The result would have been $N=m \ldots g$. Therefore N is a multiple of m; and, because m is here the number of cycles of s terms each, that make up the series of the primitive $n^{\text {th }}$ roots of unity, $m s=n-1$. Therefore N is a multiple of a measure of $n-1$.
§29. Cor. Let N be a prime number. Then, if r_{1} involve a surd of the highest rank $\Delta_{1}^{\frac{1}{m}}$ not a root (see $\S 1$) of unity, $N=m$; for,
the series of integers m, c, etc., of which N is the continued product, is reduced to its first term. If r_{1} involve only surds that are roots on unity, $n-1$ is a multiple of N; for $N=m \ldots g$; therefore, because N is prime, it is equal to m; but $m s=n-1$; therefore $n-1=8 N$.

The Solvable Trreducible Equation of the $m^{\text {th }}$ Degree, m Prime.

$\S 30$. The principles that have been established may be illustrated by an examination of the solvable irreducible rational equation of the $m^{\text {th }}$ degree $F(x)=0, m$ being prime. Two cases may be distinguished, though it will be found that the roots can in the two cases be brought under a common form ; the one case being that in which the simplified root r_{1} is, and the other that in which it is not, a rational function of roots of unity, that is, according to §l, of roots of unity having the denominators of their indices prime numbers. The equation $F\left(x^{2}\right)=0$ may be said to be in the former case of the first ciass, and in the latter of the second class.

The Equation $F(x)=0$ of the First Class.

§31. In this case, by Cor. Prop. VI., r_{1} being modified according to §21, if one of the roots involved in r_{1} be the primitive $n^{\text {th }}$ root of unity $\omega_{1}, n-1$ is a multiple of m. Also the expression written X_{6} in Prop. VI. is reduced to $x-r_{1}$, so that

$$
r_{1}=p_{1} C_{1}+p_{2} C_{2}+1 \ldots+p_{m} C_{m}
$$

The m roots of the equation $I(x)=0$ being r_{1}, r_{2}, etc, we must have

For, by Prop. II., because r_{1} is a root of the equation $F(x)=0$, all the expressions on the right of the equations (23) are roots of that equation. And no two of these expressions are equal to one another. For, take the first two. If these were equal, we should have $\left(p_{m}-p_{1}\right) C_{1}+\left(p_{1}-p_{2}\right) C_{2}+$ etc. $=0$. Therefore, by $\S 13$, each of the terms $p_{m}-p_{1}, p_{1}-p_{2}$, etc., is zero. This makes p_{1}, p_{2}, etc., all equal to one another. Therefore $r_{1}=-p_{1}$; so that the primitive $n^{\text {th }}$ root of unity is eliminated from r_{1}; which, by $\$ 21$, is impossible. Hence the values of the m roots of the equation $F(x)=0$ are those given in (23).
$\S 32$. Let r_{1} be one of the particular cognate forms of the generic expression R under which the simplified expression r_{1} falls. Then, because, by Prop. II., all the particular cognate forms of R are roots of the equation $\vec{F}(x)=0, r_{1}$ is equal to one of the m terms r_{1}, r_{2}, etc., say to r_{z}. I will now show that the changes of the surds involved that cause r_{1} to become r_{1}, whose value is r_{ε}, cause r_{2} to receive the value r_{z+1}, and r_{3} to receive the value $r_{z+\ddot{ }}$, and so on. This may appear obvious on the face of the equations (23) ; but, to prevent misunderstanding, the steps of the deduction are given. Any changes made in r_{1} must transiorm C_{1} into C_{s}, one of the m terms C_{1}, C_{2}, etr. In passing from r_{1} to r_{1}, while C_{1} becomes C_{s}, let r_{2} become r_{2}, and j_{i} become p_{1}, and p_{2} become p_{2}, and so on. The change that causes C_{1} to become C_{s} transforms C_{2} into C_{s+1}, and C_{3} into C_{s+2}, and so on. Therefore, it being understood that $\gamma_{m}+1, C_{m+1}$, etc., are the same as p_{1}, C_{1}, etc., respectively,

$$
\begin{aligned}
r_{1}^{\prime} & ={ }^{\prime} p_{1} C_{s}+{ }^{\prime} p_{2} C_{s}+1+\text { etc., } \\
\text { and } r_{2} & =p_{m} C_{s}+p_{1} C_{s}+1+\text { etc. } ;
\end{aligned}
$$

which may be otherwise written

$$
\left.\begin{array}{rl}
\prime & \prime \tag{24}\\
r_{1} & =p_{m+2-s} C_{1}+p_{m+3-s}^{\prime} C_{2}+\text { etc. }, \\
\prime \\
r_{2} & =p_{m+1-\delta}^{\prime} C_{1}+p_{m+2-s}^{\prime} C_{2}+\text { etc. }
\end{array}\right\}
$$

Therefore, form (24) and (23),

$$
C_{1}\left(p_{m+2-z}-p_{m+2-z}\right)+C_{2}\left(p_{m+3-z}-p_{m}+3-s\right)+\text { etc. }=0
$$

$$
\text { Therefore, by } \S 13, p_{m+2-s}=p_{m+2-z}, p_{m+3-\delta}=p_{m+3-z} \text {, etc. }
$$

Hence the second of the equations (24) becomes

$$
r_{2}=p_{m+1-z} C_{1}+p_{m+2-z} C_{2}+\text { etc. }=r_{z+1}
$$

Thus r_{2} is transformed into $r_{z}+1$. In like manner r_{3} receives the value $r_{z} \div 2$, and so on.
$\S 33$. By Cor. Prop. VI., the primitive $n^{\text {th }}$ root of unity being one of those involved in $r_{1}, n-1$ is a multiple of n. In like manner, if the primitive $a^{\text {th }}$ root of unity be involved in $r_{1}, a-1$ is a mnltiple of m, and so on. Therefore, if t_{1} be the primitive $m^{\text {th }}$ root of unity, t_{1} is distinct from all the roots involved in r_{1}.
§34. From this it follows that, if the circle of roots r_{1}, r_{2}, \ldots, r_{m}, be arranged, beginning with r_{c}, in the order r_{c}, r_{c+1}, r_{c+n}, etc., and again, beginning with r_{s}, in the order $r_{s}, r_{s+1}, r_{s}+2$, etc., and if, t_{1}^{a} being one of the primitive $m^{\text {th }}$ roots of unity,
$r_{c}+r_{c+1} t_{t}+r_{c+2} t_{1}^{2}+$ etc. $=r_{s}+r_{s+1} t_{1}^{a}+r_{s+2} t_{1}^{2 a}+$ etc. (25)
$r_{c}=r_{s}$. It is understood that in the series r_{c}, r_{c+1}, etc., when r_{m} is reached, the next in order is r_{1}, so that r_{m+1} is the same as r_{1}, and so on. In like manner r_{s+1} is the same as r_{1}, and so on. Since r_{1}, r_{2}, etc., do not involve the primitive $m^{\text {tin }}$ root of unity t_{1}, we can, by $\S 12$, substitute for t_{1} in (25) successively the different primitive $m^{\text {th }}$ roots of unity. Let this be done. Then, by addition, $m r_{c}-\left(r_{1}+r_{2}+\right.$ etc. $)=m r_{s}-\left(r_{1}+r_{2}+\right.$ etc. $)$. Therefore $r_{c}=r_{s}$.
§35. Proposition VII. Putting

$$
\left.\begin{array}{rl}
\Delta_{1}^{\frac{1}{m}} & =r_{1}+t_{1} r_{2}+t_{1}^{2} r_{3}+\ldots+t_{1}^{m-1} r_{m}, \tag{26}\\
\Delta_{2}^{\frac{1}{m}} & =r_{1}+t_{1}^{2} r_{2}+t_{1}^{4} r_{3}+\ldots \cdots+t_{1}^{2(m-1)} r_{m}, \\
\cdots t_{1} r_{m},
\end{array}\right\}
$$

the terms, $\quad \Delta_{1}, \Delta_{2}, \Delta_{3}, \ldots, \Delta_{m-1}$,
are the roots of a rational irreducible equation of the $(m-1)^{\text {th }}$ degree $\varphi(x)=0$, which may be said to be auxiliary to the equation $F(x)=0$.

For, let Δ be the generic expression of which Δ_{1} is a particular cognate form ; and let A^{\prime} denote any one indifferently of the $m-1$ particular cognate forms of Δ in (27). Because, by $\S 33$, the primitive $m^{\text {th }}$ root of unity does not enter into r_{1}, r_{2}, etc., no changes made in r_{1}, r_{2}, etc., affect t_{1}. Also, by §32, if r_{1} becomes r_{z}, r_{2} becomes r_{z+1}, r_{3} becomes r_{z+2}, and so on. Therefore the expression

$$
\left(r_{z}+t r_{z+1}+t^{2} r_{z+2}+\text { etc. }\right)^{m}
$$

contains all the particular cognate forms of Δ; where z may be any number in the series $1,2, \ldots, m-1$; and t denotes any one indifferently of the primitive $m^{\text {th }}$ roots of unity. But this is equal to

$$
\left\{t^{1-z}\left(r_{1}+t_{2}+t^{2} r_{3}+\text { etc. }\right)_{i^{m}} \text { or } \Delta^{\prime}\right.
$$

The conclusion established means that all the differences of value that can present themselves in the particular cognate forms of Δ must arise
from the different values of t that are taken in d^{\prime}, while the expressions r_{1}, r_{2}, etc., remain unaltered. And thas not more than $n-1$ values. Frence there are not more than $m-1$ unequal particular cogmate forms of d. But the $m-1$ forms obtained by taking the different values of t in Δ^{\prime} are all unequal. For, selecting t_{1} and t_{1}^{a}, two distinct values of t, suppose if possible that

$$
\begin{aligned}
& \left(r_{1}+t_{1} r_{2}+\text { etc. }\right)^{m 2}=\left(r_{1}+t_{1}^{a} r_{2}+\text { ctc. }\right)^{m} \\
& \quad \therefore t_{1}^{s}\left(r_{1}+t_{1} r_{2}+\text { etc. }\right)=r_{1}+t_{1}^{a} r_{2}+\text { etc. }
\end{aligned}
$$

s being a whole number: This may be written

$$
\begin{equation*}
r_{m+1-s}+r_{m+2-s} t_{1}+\text { etc. }=r_{1}+t_{1}^{a} r_{2}+\text { etc. } \tag{28}
\end{equation*}
$$

Therefore, by $\S 34, r_{m+1}-s=r_{1}$. This means, since all the m terms r_{1}, r_{2}, etc., are unequal, that $s=0$. Hence ($2 S$) becomes

$$
r_{1}+r_{2} t_{1}+\text { etc. }=r_{1}+r_{2} t_{1}^{a}+\text { etc. }
$$

Therefore

$$
\begin{aligned}
r_{2}+r_{3} t_{1}^{a}+\text { etc. } & =r_{2} t_{1}^{1}-a+r_{3} t_{1}^{2-a}+\text { etc. } \\
& =r_{a+1}+r_{a+2} t_{1}+\text { etc. }
\end{aligned}
$$

Therefore, by $\S 35, r_{2}=r_{a+1}$. Therefore, because all the m terms r_{1}, r_{2}, etc., are mequal, $a=1$; which, because t_{1} and t_{1}^{a} were supposed to be distinct primitive $m^{\text {th }}$ roots of unity, is impossible. Therefore no two of the terms in (27) are equal to one amother: And it has been proved that there is no particular cognate form of Δ which is not equal to a term in (27). Therefore the terms in (27) are the unequal particular cognate forms of 4 Therefore, by Prop. III., they are the roots of a rational irreducible equation.
§36. Proposition VIII. The roots of the equation $\varphi(x)=0$ auxiliary (see $\S 35$) to $F(x)=0$ are rational functions of the primitive $m^{\text {th }}$ root of unity.

For, let the value of J_{1}, obtained from (26): and modified accordin:t to $\S 21$, be

$$
J_{1}=k_{1}+k_{2} t_{1}+k_{3} t_{1}^{2}+\ldots .+k_{m} t_{1}^{m-1}
$$

where k_{1}, k_{2}, ctc., are clear of t_{1}. Suppose if possible that k_{1}, k_{2}, etc., are not rational. We may take the primitive $n^{\text {th }}$ root of unity ω_{1} to be present in these coefficients. But ω_{1} occurs in r_{1}, r_{2} : etc., and therefore also in A_{1}, only in the expressions C_{1}, C_{2}, etc. Therefore $J_{1}=d_{1} C_{1}+\ldots .+d_{m} C_{m}$; where d_{1}, etc., are clear of ω_{1}. The coefficients d_{1}, d_{2}, etc., cannot all be equal; for this would make $d_{1}=-d_{1}$; which, by $\S 21$, is impossible. Hence m unequal
values of the generic expression \rfloor are obtained by changing C_{1} successively into C_{1}, C_{2}, etc., namely,

$$
\begin{aligned}
& d_{1} C_{1}+d_{2} C_{2}+\ldots \ldots+d_{m} C_{m} \\
& d_{n} C_{1}+d_{1} C_{2}+\ldots \ldots+d_{m-1} C_{m} \\
& \ldots \omega_{1}, \ldots \ldots \ldots \ldots \\
& d_{2} C_{1}+d_{3} C_{2}+\ldots \ldots+d_{1} C_{m}
\end{aligned}
$$

To show that these expressions are all unequal, take the first two. If these were equal, we should have

$$
\left(d_{m}-d_{1}\right) C_{1}+\left(d_{1}-d_{2}\right) C_{2}+\text { etc. }=0
$$

Therefore, by $\S 13, d_{m}-d_{1}=0, d_{1}-d_{2}=0$, and so on ; which, because d_{1}, d_{2}, etc., are not all equal to one another, is impossible. Since then \lrcorner has at least m mequal particular cognate forms, J_{1} is, by Prop. III., the root of a mational irreducible equation of a descee not lower than the $\mathrm{m}^{\text {th }}$; which, by Prop. Vil., is impossible. Therefore k_{1}, k_{2}, ete., are rational. Hence each of the expressions in (27) is a rational function of t_{1}.
§37. Cor. Any expression of the type $k_{1}+k_{2} t_{1}+k_{3} t_{1}^{2}+$ etc. which is such that all the unequal particular cognate forms of the generic expression under which it falls are obtained by sulstituting for t_{1} successively the different primitive $m^{t_{1}}$ roots of mity, while k_{1}, k_{2}, etc., remain umaltered, is a rational function of t_{1}. For, in the Proposition, A_{1} or $k_{1}+k_{2} t_{1}+$ etc. was shown to be a rational function of t_{1}, the conclusion being lased on the circunstance that J_{1} satisfies the condition specitied.
§3S. Proposition IX. If g be the sum of the roots of the equation $F(x)=0$,

$$
\begin{gather*}
r_{2}=\frac{1}{m}\left(g+d_{1}^{\frac{1}{m \prime}}+a_{1} J_{1}^{\frac{2}{m}}+b_{1} J_{1}^{\frac{3}{m}}+\ldots .\right. \\
\left.+c_{1} J_{1}^{\frac{m-2}{m}}+h_{1} d_{1}^{\frac{m-1}{m}}\right) \tag{29}
\end{gather*}
$$

For, \sim being one of the whoie numbers, $1,2, \ldots, m-1$, put

$$
\begin{equation*}
p_{z}=\left(r_{1}+t_{1}^{2} r_{2}+t_{1}^{n_{2}} r_{3}+\text { etc. }\right)\left(r_{1}+t_{1} r_{2}+t_{1}^{2} r_{3}+\text { etc. }\right)^{-z} \tag{30}
\end{equation*}
$$

Multiply the first of its factors by t_{1}^{-2} and the second by t_{1}^{z}. Then
$p_{z}=\left(r_{2}+t_{1}^{z} r_{3}+t_{1}^{2 z} r_{4}+\right.$ ctc. $)\left(r_{2}+t_{1} r_{3}+t_{1}^{2} r_{4}+\text { etc. }\right)^{-z}$. (31)
Hence p_{z} does not alter its value when we change r_{1} into r_{2}, r_{2} into r_{3}, and so on. In like mamer it does not alter its value when we
change r_{1} into r_{1}, r_{2} into r_{a+1}, and so on. Therefore, by $\S 33, p_{z}$ is not changed by any alterations that may be made in r_{1}, r_{2}, etc., while t_{1}-remains maltered. Consequently, if p_{z} be a particular cognate form of P, all the unequal particular cognate forms of P are obtaiued by substituting for t_{1} successively in p_{z} the different primitive $m^{\text {th }}$ roots of unity, while r_{1}, r_{2}, etc., remain unaltered. Therefore, by Cor., Prop. VIII., p_{z} is a rational function of t_{1}. When $\approx=2$, let $p_{z}=a_{1} ;$ when $z=3$, let $p_{z}=b_{1}$, and so on. Then, from
(26) and (30), $d_{2}^{\frac{1}{m}}=a_{1} d_{1}^{\frac{2}{m}}, d_{3}^{\frac{1}{2 n}}=b_{1} d_{1}^{\frac{3}{m}}$ and so on. But, from (27), siace g is the sum of the roots of the equation $F(x)=0$,

$$
r_{1}=\frac{1}{m}\left(g+J_{1}^{\frac{1}{m}}+J_{2}^{\frac{1}{m}}+\ldots+J_{m-1}^{\frac{1}{m}}\right) .
$$

By putting $\mu_{1}{J_{1}^{\frac{2}{m}}}^{\frac{2}{2}} \frac{1}{d_{2}^{m}}, b_{1} J_{1}^{\frac{3}{m}}$ for $J_{3}^{\frac{1}{m}}$ and so on, this becomes
(29). Because a_{1}, b_{1}, etc., are rational functions of t_{1}, while d_{1}, the root of a rational irreducible equation of the $(m-1)^{\text {th }}$ degree, is also a rational function of t_{1}, the coefficients a_{1}, b_{1}, etc., involve no surd that is not subordinate to $4_{1}^{\frac{1}{m}}$.
§39. Proposition X. If the prime number m be odd, the expressions

$$
\begin{equation*}
S_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{m}}, \Delta_{2}^{\frac{1}{m}} \Delta_{m-2}^{\frac{1}{m 2}}, \ldots, \Delta_{\frac{m-1}{2}}^{\frac{1}{m}} \Delta_{\frac{m+2}{m}}^{\frac{1}{m}} \tag{32}
\end{equation*}
$$

are the rons of a rational equation of the $\left(\frac{m-1}{2}\right)^{\text {th }}$ degree.
By $\S 32$, when r_{1}, is charged into r_{ε}, r_{2} becomes r_{z+1}, r_{3} becomes r_{s+2}, and so on. Hence the terms $r_{1} r_{2}, r_{2} r_{3}, \ldots r_{n} r_{1}$, form a cycle, the sum of the terms in which may be denoted by the symbol Σ_{2}^{1}. In like manner the sum of the terms in the cycle $r_{1} r_{3}, r_{2} r_{4}$, $\ldots, r_{m} r_{2}$, may be written Σ_{3}^{1}. And so on. In harmony with this notation, the sum of the m terms r_{1}^{2}, r_{2}^{2}, etc., may be written Σ_{1}^{1}. Now r_{1} can only be changed into one of the terms r_{1}, r_{2}, etc.; and we have seen that, when it becomes r_{z}, r_{2} becomes $r_{z}+1$, and so on. Sucl: changes leave the cycle $r_{1} r_{2}, r_{2} r_{3}$, etc., as a whole unaltered.

Therefore, by Prop. III., Σ_{2}^{1} is the root of a simple equation, or has a rational value. In like manner each of the expressions

$$
\begin{equation*}
\Sigma_{1}^{1}, \Sigma_{2}^{1}, \Sigma_{3}^{1}, \ldots, \Sigma_{m}^{2} \tag{33}
\end{equation*}
$$

has a rational value. From (26), by actual multiplication,

$$
d_{1}^{\frac{1}{m}} \frac{1}{U_{m-1}^{m}}=\Sigma_{i}^{2}+\left(\Sigma_{2}^{1}\right) t_{1}+\left(-_{3}^{1}\right) t_{1}^{3}+\text { etc. }
$$

But $\Sigma_{2}^{1}, \Sigma_{3}^{1}$, etc., are respectively identical with $\Sigma_{m}^{1}, \Sigma_{m-1}^{1}$, etc. Therefore

$$
J_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{m}}=\Sigma_{1}^{1}+\left(\Sigma_{2}^{1}\right)\left(t_{1}+t_{1}^{-1}\right)+\left(\Sigma_{3}^{1}\right)\left(t_{1}^{2}+t_{1}^{-2}\right) \cdot \dagger \text { uc.(34) }
$$

Hence, since the terms in (33) are all rational, and since the terms in (32) are respectively what $\Delta_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{m}}$ becomes by changing t_{1} successively into the ${ }^{m} \frac{1}{2}$ terms t_{1}, t_{1}^{2}, etc., the terms in (32) are the roots of a rational equation of the $\left(\frac{m-1}{2}\right)^{\text {th }}$ degree.
$\$ 40$. For the solution of the equation $x^{n}-1=0, n$ being a prime number such that m is a prime measure of $n-1$, it is necessary to obtain the solution of the equation of the $m^{\text {th }}$ degree which has for one of its roots the sum of the $\frac{n-1}{m}$ terms in a cycle of primitive . $n^{\text {th }}$ roots of unity. This latter equation will be referred to as the reducing Gaussian equation of the $m^{\text {th }}$ degree to the equation

$$
x^{n}-1=0 .
$$

$\S+1$. Proposifiox XI. When the equation $F(x)=0$ is the reducing Gaussian (see $\S 40$) of the $m^{\text {th }}$ degree to the equation $x^{n}-1=0$, each of the $\frac{m-1}{2}$ expressions in (32) is equal to n.

Let the sum of the primitive $n^{\text {th }}$ roots of unity forming the cycle (8), which sum has in preceding sections been indicated by the symbol C_{1}, be the root r_{1} of the equation $F(x)=0$. This implies, since s is the number of the terms in (δ), that $m s=n-1$. Let us reason first on the assumption that the cycle (8) is made up of pairs of reciprocal roots ω_{1} and ω_{1}^{-1}, and so on. Then, because the cycle consists of $\frac{s}{2}$ pairs of reciprocal roots, C_{1}^{2} or r_{1}^{2} is the sum of
s^{2} terms, each an $n^{\text {th }}$ root of unity. Among these unity occurs s times. Let ω_{1} occur h_{1} times; and let ω_{1}^{λ} the second term in (8), occur h^{\prime} times. Since ω_{1}^{λ} may be made the first term in the cycle (8), it must, under the new arrangement, present itself in the value of r_{1}^{2}, precisely where ω_{1} previously appeared. That is to say, $h^{\prime}=h_{1}$. In like mamer each of the terms in (8) occurs exactly h_{1} times in the expression for r_{1}^{2}. The cycle (9) being that whick contains all the primitive $n^{\text {th }}$ roots of unity, let us, adhering to the notation of previous sections, suppose that, when ω_{1} is changed iuto $\omega_{1}^{\beta}, C_{1}$ or r_{1} becomes C_{2} or r_{2}, C_{2} or r_{2} becomes C_{3} or r_{3}, and so on. On the same grounds on which every term in (8) occurs the same number of times in the value of r_{1}^{2}, each term in the cycle of terms whose sum is C_{2} occurs the same number of times; and so on. Therefore

$$
\begin{aligned}
& r_{1}^{2}=s+h_{1} C_{1}+h_{2} C_{2}+\ldots+h_{m} C_{m} \\
& r_{2}^{2}=s+h_{m} C_{1}+h_{1} C_{2}+\ldots \cdots+h_{m-1} C_{m} \\
& \cdots \\
& r_{m}^{2}=s+h_{2} C_{1}+h_{3} C_{2}+\ldots \ldots+h_{1} C_{m}
\end{aligned}
$$

 But $s^{2}-s$ is the number of the terms in the value of r_{1}^{2} which are primitive $n^{\text {th }}$ roots of unity. And this must be equal to

$$
s\left(h_{1}+\ldots+h_{1 n}\right)
$$

Therefore
$h_{1}+h_{2}+\ldots+h_{m}=s-1 \cdot \cdot \sum_{1}^{1}=m s+1-s=n-s$.
Again, because r_{1} is made up of pairs of reciprocal roots, and because therefore unity does not occur among the s^{2} terms of which $r_{1} r_{2}$ is the sum,

$$
\begin{aligned}
& r_{1} r_{2}=k_{1} C_{1}+k_{2} C_{2}+\ldots \ldots+k_{m} C_{m} \\
& r_{2} r_{3}=k_{m} C_{1}+k_{1} C_{2}+\ldots+k_{m-1} C_{m} \\
& \cdots \cdots \cdots \cdots+\cdots \cdots \cdots \cdots \cdots \cdots+k_{1} C_{m} \\
& r_{m} r_{1}=k_{2} C_{1}+k_{3} C_{2}+\ldots \ldots+k_{1}
\end{aligned}
$$

where k_{1}, k_{2}, etc., are whole numbers whose sum is s. Therefore $\Sigma_{2}^{1}=-s$. In like mamer cach of the terms in (33) except the first is equal to $-s$. Therefore (34) becomes

$$
A_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{m}}=(n-s)-s\left(t_{1}+t_{1}^{2}+\text { etc. }\right)=n
$$

Let us reasun now on the assumption that the cycle (8) is not made up of pairs of reciprocal roots. It contains in that case no reciprocal roots. By the same reasoning as ahove we get $\Sigma_{1}^{1}=-s$. As regards the terms in (33) after the first, one of the terms C_{1}, C_{2}, etc., say C_{z}, must be such that the $n^{\text {th }}$ roots of unity of which it is the sum are reciprocals of those of which C_{1} is the sum. In passing from C_{1} to C_{z}, we change r_{1} into r_{z}. In fact, C_{1} being r_{1}, C_{z} is r_{z}. This being kept in view, we get, by the same reasoning as above, $\Sigma_{z}^{1}=n-s$. But, if any of the expressions C_{1}^{\prime}, C_{2}, etc., except C_{z} be selected, say C_{a}, none of the roots in (8) are reciprocals of any of those of which C_{a}^{\prime} is the sum. Therefore $\Sigma_{a}^{1}=-s$. Therefore, from (34)

$$
\begin{aligned}
& \Delta_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{n}}=-s+(n-s) t_{1}^{z-1} \\
& -s\left\{\left(t_{1}+t_{1}^{2}+\cdots+t_{1}^{m-1}\right)-t_{1}^{z-1}\right\}=n
\end{aligned}
$$

In like manner every one of the expressions in (34) can be shown to have the value n.
§42. Two numerical illustrations of the law established in the preceding section may be given. The reducing Gaussian equation of the third degree to the equation $x^{19}-1=0$ is $x^{4}-x^{2}-6 x-7=0$; which gives

$$
\begin{gathered}
r_{1}=\frac{1}{3}\left(-1+\Delta_{1}^{\frac{3}{3}}+\Delta_{2}^{\frac{3}{3}}\right) \\
2 \Delta_{1}=19(7+3 \sqrt{ } 3) \\
2 \Delta_{2}=19(7-3 \sqrt{ } 3) \\
\Delta_{1}^{\frac{3}{3}} \Delta_{2}^{3}=19
\end{gathered}
$$

The next example is taken from Lagrange's Theory of Algebraical Equations, Note XIV., $\S 30$. The Gaussian of the fifth degree to the equation $x^{11}-1=0$ is $x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1=0$; which gives

$$
\begin{aligned}
r_{1}= & \frac{1}{5}\left(-1+\Delta_{1}^{\frac{1}{5}}+\Delta_{2}^{\frac{1}{5}}+\Delta_{3}^{\frac{5}{5}}+\Delta_{4}^{\frac{1}{5}}\right) ; \\
4 \Delta_{1}= & 11(-89-25 \sqrt{ } 5+5 p-45 q), \\
4 \Delta_{2}= & 11(-89+25 \sqrt{ } 5-45 p-5 q), \\
4 \Delta_{4}= & 11(-89-25 \sqrt{ } 5-5 p+45 q), \\
4 \Delta_{3}= & 11(-89+25 \sqrt{ } 5+45 p+5 q), \\
& p=\sqrt{ }(-5-2 \sqrt{ } 5), \\
& q-\sqrt{ }(-5+2 \sqrt{ } 5), \\
& p q=-\sqrt{ } 5 . \cdot \Delta_{1} A_{4}=11^{5} .
\end{aligned}
$$

§43. Proposition XII. To solve the Gaussian.
The path we have been following leads directly, assuming the primitive $m^{\text {th }}$ root of unity t_{1} to be known, to the solution of the reducing Gaussian equation of the $m^{\text {th }}$ degree to the equation $x^{n}-1=0$. For, as in $\S 41$, the roots of the Gaussian are C_{1}^{\prime}, C_{2}, etc. Therefore g, the sum of the roots, is -1 . Therefore

$$
\begin{equation*}
r_{1}=\frac{1}{m}\left(-1+\Delta_{1}^{\frac{1}{m}}+\Delta_{2}^{\frac{1}{m}}+\ldots+\Delta_{m-1}^{\frac{1}{m}}\right) . \tag{35}
\end{equation*}
$$

By Prop. VIII., Δ_{1}, Δ_{2}, etc., are rational functions of t_{1}. Therefore

$$
\left.\begin{array}{c}
\Delta_{1}=k_{1}+k_{2} t_{1}+k_{3} t_{1}^{2}+\ldots \ldots+k_{n} t_{1}^{m-1} \tag{36}\\
\Delta_{2}=k_{1}+k_{2} t_{1}^{2}+k_{3} t_{1}^{4}+\cdots \cdots+k_{m} t_{1}^{2(m-1)} \\
\cdots k_{m} t_{1} ;
\end{array}\right\}
$$

where k_{1}, k_{2}, etc., are rational. From the first of equations (26), putting C_{1} for r_{1}, C_{2} for r_{2}, and so on,

$$
\Delta_{1}=\left(C_{1}+t_{1} C_{2}+\text { etc. }\right)^{n}
$$

By actual involution this gives us k_{1}, k_{2}, etc., as determinate functions of C_{1}, C_{2}, etc., and therefore as known rational quantities. For instance take k_{1}. Being a determinate function of C_{1}, C_{2}, etc.: we have

$$
k_{1}=q_{1}+q_{2} C_{1}+q_{3} C_{2}+\ldots+q_{m} \hat{C}_{m-1}
$$

where q_{1}, q_{2}, ctc., are known rational quantities. But, by $\S 13$, the rational coefficients $q_{1}-k_{1}, q_{2}$, etc., are all equal to one another. Therefore $k_{1}=q_{1}-q_{2}$. In like manner k_{2}, k_{3}, etc., are known. Therefore, from (36), Δ_{1}, Δ_{2}, etc., are known. Therefore, from (35), r_{1} is known.
§44. Proposition XIII. The law established in Prop. X falls under the following more general law. The $m-1$ expressions in each of the groups

$$
\left.\left.\begin{array}{cccc}
\left(\Delta_{1}^{\frac{1}{m}} \Delta_{m-1}^{\frac{1}{m}},\right. & \left.\Delta_{2}^{\frac{1}{m}} \Delta_{m-2}^{\frac{1}{m}}, \ldots, \Delta_{m-1}^{\frac{1}{m}} \Delta_{1}^{\frac{1}{m n}},\right) \tag{37}\\
\left(\frac{2}{m}\right. & \frac{1}{m} & \Delta_{m-2}^{\frac{2}{m}}, & \Delta_{2}^{\frac{1}{m}} \\
\Delta_{m-4}^{m}
\end{array}, \ldots, \Delta_{m-1}^{\frac{2}{m}} \Delta_{2}^{\frac{1}{m}},\right)\right\}
$$

and so on, are the roots of a rational equation of the $(m-1)^{\text {th }}$ degree.

The $m-1$ terms in the first of the groups (37) are the $\frac{m-1}{2}$ terms in (32) each taken twice. Therefore, by Prop. X., the law enunciated in the present Proposition is established so far as this groupe is concerned. The general proof is as follows. By (30) in $\S 38$, taken in comection with $(26), p_{m-z} J_{1}^{\frac{m-z}{m}}=\Lambda_{m-z}^{\frac{1}{m}}$. Therefore $\Delta_{1}^{\frac{z}{m}} d_{n-z}^{\frac{1}{m}}=p_{n-z} \Delta_{1}$. But, by $\S 3 S, p_{m-z}$ is a rational function of t_{1}; and, by Prop. VIII., A_{1} is a rational function of t_{1}. Therefore $\Delta_{1}^{\frac{z}{m}} \Delta_{n-z}^{\frac{1}{m}}$ is a rational function of t_{1}. Also from the mauner in which p_{m-z} is formed, when t_{1} in $p_{m-2} \Delta_{1}$ is changed sucessively into $t_{1} t_{1}^{2}, \ldots, t_{1}^{m-1}$, the expression $\Delta_{1}^{\frac{z}{m 2}} \Delta_{n-3}^{\frac{1}{m}}$ is changed successively into the $m-1$ terms of that one of the groups. (37) whose first term is $\Delta_{1}^{\frac{z}{m}} \Delta_{m-z}^{\frac{1}{m}}$. Therefore the terms in that group are the roots of a rational equation.
§45. Cor. The law established in the Proposition may be brought under a yet wider generalization. The expression

$$
\begin{equation*}
\Delta_{1}^{\frac{a}{m}} \Delta_{2}^{\frac{b}{m}} \Delta_{3}^{\frac{c}{m}} \ldots \Delta_{m-1}^{\frac{s}{m n}} \tag{38}
\end{equation*}
$$

is the root of a rational equation of the $(m-1)^{\text {th }}$ degree, if

$$
a+2 b+3 c+\ldots+(m-1) s=W m
$$

W being a whole number. For, by (30) in connection with (26). $\Delta_{2}^{\frac{1}{m_{2}}}=p_{2} \Delta_{1}^{\frac{2}{m}}, \Delta_{3}^{\frac{1}{m_{2}}}=p_{3} \Delta_{3}^{\frac{1}{m}}$, and so on. Therefore (38) has the value

$$
\left(p_{2}^{b} p_{3}^{c} \ldots\right) \Delta_{1}^{\frac{a+2 b+3 c+\ldots+(m-1) s}{m}} \text {, or }\left(p_{2}^{b} p_{3}^{c} \ldots\right) \Delta_{1}^{\text {WV }}
$$

This is a rational function of t_{1}, and therefore the root of a rational equation of the $(m-1)^{\text {th }}$ degree.

The Equation $F(x)=0$ of the Second Class.

§46. We now suppose that the simplified root r_{1} of the rational irreducible equation $F(x)=0$ of the $m^{\text {th }}$ degree, m prime, involves, when modified according to $\$ 21$, a principal surd not a root of unity. It must not be forgotten that, when we thus speak of roots of unity, we mean, according to §l, roots which have prime numbers for the denominators of their indices. In this case conclusions can be established similar to those reached in the case that has been considered. The root r_{1} is still of the form (29). The equation $F(x)=0$ has still an auxiliary of the ($m-1)^{\text {th }}$ degree, whose roots are the $m^{\text {th }}$ powers of the expressions

$$
\begin{equation*}
\Delta_{1}^{\frac{1}{n}}, a_{1} \Delta_{1}^{\frac{2}{m^{m}}}, b_{1} \Delta_{1}^{\frac{3}{m}}, \ldots, e_{1} \Delta_{1}^{\frac{m-2}{m}}, h_{1} \Delta_{1}^{\frac{m-1}{m}} \tag{39}
\end{equation*}
$$

though the auxiliary here is not necessarily irreducible. Also, sub. stituting the expressions in (39) for $\Delta_{1}^{\frac{1}{m}} \Delta_{2}^{\frac{1}{m n}}$, etc., in (37), the law of Proposition XIII. still holds, together with corollary in $\S 45$.
§47. By Cor. Prop. VI., the denominator of the index of a surd of the highest rank in r_{1} is m. Let $\Delta_{1}^{\frac{1}{m}}$ be such a surd. By $\S 21$, the coefficients of the different powers of $\Delta_{1}^{\frac{1}{m}}$ in r_{1} cannot be all zero. We may take the coefficient of the first power to be distinct from zero and to be $\frac{1}{m}$ for, if it were $\frac{k_{1}}{m}$, we might substitute $s^{\frac{1}{m}}$ for $k_{1} \Delta_{1}^{\frac{1}{m}}$, and so eliminate $\Delta_{i}^{\frac{1}{m}}$ from r_{1}, introducing in its room the new surd $s^{\frac{1}{m}}$ with $\frac{1}{m}$ for the coefficient of its first power. We may then put $r_{1}=\frac{1}{m}\left(g+\Delta_{1}^{\frac{1}{m}}+a_{1} \Delta_{1}^{\frac{3}{m}}+\ldots+e_{1} \Delta_{1}^{\frac{m-2}{m}}+h_{1} \Delta_{1}^{\frac{m-1}{m}}\right) ;$ where g, a_{1}, etc., are clear of ${\Delta_{1}}_{\frac{1}{m}}$. When ${\Delta_{1}}_{\frac{1}{m}}$ is changed successively into $\Delta_{1}^{\frac{1}{m}}, t_{1}^{-1} \Delta_{1}^{\frac{1}{m}}, t_{1}^{-2} \frac{1}{\Delta_{1}^{m}}$, etc., let

$$
\begin{equation*}
r_{1}, r_{2}, \ldots . r_{m} \tag{41}
\end{equation*}
$$

be respectively what r_{1} becomes, t_{1} being a primitive $m^{\text {th }}$ root of unity. By Prop. VI., the terms in (41) are the roots of the equation $F(x)=0$. Taking r_{n} : any one of the particular cognate forms of π^{2}, let $\Delta_{n}^{\frac{1}{m}}$, a_{n}, etc., be respectively what $d_{1}^{\frac{1}{m}}, a_{1}$, etc., become in passing from r_{1} to r_{n}; and when $\Delta_{n}^{\frac{1}{m}}$ is changed successively into the different $m^{\text {th }}$ roots of the determinate base Δ_{n}, let r_{n} become

$$
\begin{equation*}
r_{n}, r_{n}^{\prime}, r_{n}^{\prime \prime}, \ldots, r_{n}^{(m-1)} \tag{42}
\end{equation*}
$$

By Prop. II., the terms in (42) are ronts of the equation $F^{\prime}(x)=0$; and, by $\S 23$, they are all unequal. Therefore thoy are identical, in some order, with the terms in (41). Also, the sum of the terms in (41) is g. Therefore g is rational.

S48. Proposition XIV. In r_{1}, as expressed in (40), $\Delta_{1}^{\frac{1}{m_{2}}}$ is the ouly principal (see $\$ 2$) surd.

Suppose, if possible, that there is in r_{1} a principal surd $z_{1}^{\frac{1}{c}}$ distinct from $\Delta_{1}^{\frac{1}{m}}$. And first, let $z_{1}^{\frac{1}{c}}$ be not a root of unity. (It will be kept in riew that when, in such a case, we speak of roots of unity, the denominators of their indices are understood, according $\S 1$, to be prime numbers.) When $z_{1}^{\frac{1}{c}}$ is changed into $z_{2}^{\frac{1}{c}}$, one of the other $c^{\text {th }}$ roots of z_{1}, let $r_{1}: a_{1}$, etc., become respectively r_{1}, a_{1}, etc. Then

$$
\begin{equation*}
\stackrel{\prime}{m r_{1}},=g+\Delta_{1}^{\frac{1}{m}}+\dot{a}_{1} \Delta_{1}^{\frac{2}{m}}+\text { etc } \tag{43}
\end{equation*}
$$

By Prop. LI., r_{1} is equal to a term in (41), say to r_{n}. And, by $\S 48$, putting t_{n-1} for t_{1}^{1-n},

$$
\begin{equation*}
m r_{n}=g+t_{n-1} d_{1}^{\frac{1}{m}}+t_{n-1}^{2} a_{1} \Delta_{1}^{\frac{2}{m}}+\text { etc. } \tag{44}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\Delta_{1}^{\frac{1}{m}}\left(1-t_{n-1}\right)+\Delta_{1}^{\frac{2}{m}}\left(a_{1}^{\prime}-a_{1} t_{n-1}^{2}\right)+\text { etc. }=0 \tag{45}
\end{equation*}
$$

This equation involves no surds except those found in the simplified expression r_{1}, together with the primitive $m^{\text {th }}$ root of unity. Therefore the expression on the left of (45) is in a simple state. Therefore, by $\S 8$, the coefficients of the different powers of $J_{1}^{\frac{1}{m}}$ are separately zero. Therefore $t_{n-1}=1, a_{1}=a_{1}, b_{1}=b_{1}$, and so on. But, as was shown in Prop. V., $z_{1}{ }^{\frac{1}{c}}$ being a principal surd not a root of unity in the simplified expression a_{1}, a_{1} cannot be equal to a_{1} unless $z_{1}{ }^{\frac{1}{c}}$ can be eliminated from a_{1} without the introduction of any new surd. In like manner b_{1} cannot be equal to b_{1}, unless $\tilde{z}_{1}^{\frac{-1}{c}}$ can be eliminated from b_{1}. And so on. Therefore, because $a_{1}=a_{1}$, and $b_{1}=b_{1}$, and $\frac{1}{c}$
and so on, $z_{1}{ }^{c}$ admits of being eliminated from r_{1} without the introduction of any new surd, which, by $\S 21$, is impossible. Next, let $\frac{1}{c}$ $z_{1}{ }^{c}$ be a root (see $\S 1$) of unity, which may be otherwise written θ_{1}. Let the different primitive $c^{\text {th }}$ roots of unity be θ_{2}, θ_{2}, etc. ; and, when θ_{1} is changed successively into θ_{1}, θ_{2}, etc., let r_{1} become successively r_{1}, r_{1}, etc. Suppose if possible that the $c-1$ terms r_{1}, r_{1}, etc., are all equal. Since $z_{1}^{\frac{1}{c}}$ is a principal surd in r_{1}, we may put $r_{1}=h 0_{1}^{c-1}+k 0_{1}^{c-2}+\ldots+l$; where h, k, etc., are clear of 0_{1}. Therefore $(c-1) r_{1}=c l-(h+k+$ etc. $)$ Thus $-\frac{1}{6}$ $z_{1}{ }^{c}$ may be eliminated from r_{1} without the introduction of any new surd; which by $\S 21$ is impossible. Since then the terms r_{1}, r_{1}, etc., are not all equal, lei r_{1} and r_{1} be unequal. Then r_{1} is equal to a term in (41) distinct from r_{1}, say to r_{n}. Expressing $m r_{1}$ and $m r_{n}$ as in (43) and (44), we deduce (45) ; which, as above, is impossible.
§49. Proposition XV. Taking $r_{1}, r_{n}, J_{n 2}^{\frac{1}{m}}$, ctc., as in $\S 47$, an equation

$$
\begin{equation*}
t J_{n}^{\frac{1}{m}}=p J_{1}^{\frac{c}{m}} \tag{46}
\end{equation*}
$$

can be formed; where t is an $m^{\text {th }}$ root of unity, and c is a whole number less than m but not zero, and p involves only surds subordinate (see $\S 3$) to $d_{1}^{\frac{1}{m}}$ or $d_{n}^{\frac{1}{n}}$

By $\S 47$, one of the terms in (42) is equal to r_{1}. For our argument it is immaterial which be selected. Let $r_{n}=r_{1}$. Therefore

$$
\begin{align*}
& \left(h_{n} J_{n}^{\frac{m-1}{m}}+e_{n} J_{n}^{\frac{m-y}{m}}+\ldots .+J_{n}^{\frac{1}{m}}\right) \\
& -\left(h_{1} J_{1}^{\frac{m-1}{m}}+e_{1} J_{1}^{m-\underline{m}}+\ldots .+J_{1}^{\frac{1}{m}}\right)=0 \tag{47}
\end{align*}
$$

The coeflicients of the different powers of $A_{n}^{\frac{1}{m}}$ here are not all zero, for the coefficient of the first power is unity. Therefore by 55 , an equation $t \Delta_{n}^{\frac{1}{m}}=l_{1}$ subsists, t being an $m^{\text {th }}$ root of unity, and l_{1} involving only surds exclusive of ${J_{n}}_{\frac{1}{m}}^{\text {that occur in (47). By Prop. }}$ XIV., $J_{1}^{\frac{1}{m}}$ is a surd of a higher rank
except $J_{n}^{\frac{1}{m}}$. Therefore we may put

$$
l_{1}=d+d_{1} \Delta_{1}^{\frac{1}{m}}+d_{2} d_{1}^{\frac{2}{m}}+\ldots+d_{m-1} j_{1}^{\frac{n-1}{m}}
$$

where d, d_{1}, etc., involve only surds lower in rank than j_{1}^{m}. The ,

$$
\begin{aligned}
& J_{n}=l_{1}^{m}=\left(d+d_{1} j_{1}^{\frac{1}{m}}+\text { etc. }\right)^{m} \\
& =d^{\prime}+d_{1} j_{1}^{-\frac{1}{m}}+d_{2} j_{1}^{\frac{2}{m}}+\text { etc. }
\end{aligned}
$$

- where d^{\prime}, d_{1}, etc., involve only surds lower in rank than $J_{1}^{\frac{1}{m}}$. By ' \S, since $\Delta_{1}^{\frac{1}{m}}$ is a surd in the simplified expressions r_{1}, the coefficients $d-ل_{11}, d_{1}$, etc., in the equation 8

$$
\begin{equation*}
\left(\dot{d}-\Delta_{n}\right)+\dot{d}_{i} \Delta_{1}^{\frac{1}{m}}+\dot{d}_{2} \Delta_{1}^{\frac{1}{m}}+\text { etc. }=0 \tag{48}
\end{equation*}
$$

are separately zero. Therefore $\left(d+d_{1}{\Delta_{1}}_{\frac{1}{m}}+\text { etc. }\right)^{m}=d^{\prime}$. And, t_{1} being a primitive $m^{\text {th }}$ root of unity,

$$
\left(d+d_{1} t_{1} \Delta_{1}^{\frac{1}{m}}+\text { etc. }\right)^{m}=d^{\prime}+d^{\prime} t_{1} \Delta_{1}^{\frac{1}{m}}+\text { etc. }=d^{\prime}
$$

Therefore,

$$
\left(d+d_{1} t_{1}{d_{1}^{2}}_{\frac{1}{m}}+\text { etc. }\right)=t_{1}^{a}\left(d+d_{1}{d_{1}^{m}}_{\frac{1}{m}}+d_{2} \frac{2}{d_{1}^{m}}+\text { etc. }\right)
$$

t_{1}^{a} being one of the $m^{\text {th }}$ roots of unity. In the same way in which the coefficients of the different powers of $\Delta_{1}^{\frac{1}{m}}$ in (48) are separately zero, each of the expressions $d\left(1-t_{1}^{a}\right), d_{1}\left(t_{1}-t_{1}^{a}\right)$, etc., must be zero. But not more than one of the $m-1$ factors, $t_{1}-t_{1}^{a}$, $t_{1}^{2}-t_{1}^{a}$, etc., can be zero. Therefore not more than one of the $m-1$ terms d_{1}, d_{2}, etc., is distinct from zero. Suppose if possible that all these terms are zero. Then $t \Delta_{n}^{\frac{1}{m}}=d$. Therefore the different powers of ${\Delta_{n}}^{\frac{1}{m}}$ can be expressed in terms of the surds involved in d and of the $m^{\text {th }}$ root of unity. Substitute for $\Delta_{n}^{\frac{1}{m}}, \Delta_{n}^{\frac{2}{m}}$ etc., in (47), their values thus obtained. Then (47) becomes

$$
\begin{equation*}
Q-\left(h_{1} \Delta_{1}^{\frac{m-1}{m}}+\ldots+\Delta_{1}^{\frac{1}{m}}\right)=0 ; \tag{49}
\end{equation*}
$$

where Q involves no surds, distinct from the primitive $m^{\text {th }}$ root of unity, that are not lower in rank than $\Delta_{1}^{\frac{1}{m}}$; which, because
 impcssible. Hence there must be one, while at the same there can be only one of the $m-1$ terms, d_{1}, d_{2}, etc., distinct from zero. Let
d_{c} be the term that is not zero. Then $t_{1}^{c}-t_{1}^{a}=0$. Therefore $1-t_{1}^{a}$ is not zero. Therefore $d=0$. Therefore, putting p for d_{c}, $t \Delta_{n}^{\frac{1}{m}}=p \Delta_{1}^{\frac{c}{m}}$.
§50. Cor: By the proposition, values of the \because ifferent powers of $\Delta_{n}^{\frac{1}{m}}$ can be obtained as follows :

$$
\begin{equation*}
t \Delta_{n}^{\frac{1}{m}}=p \Delta_{1}^{\frac{c}{m}}, t^{2} \Delta_{n}^{\frac{2}{m}}=q \Delta_{1}^{\frac{z}{m}}, t^{3} \Delta_{n}^{\frac{3}{m}}=k \Delta_{1}^{\frac{z}{m}}, \text { etc.; } \tag{50}
\end{equation*}
$$

where p, q, etc., involve only surds that occur in Δ_{1} or Δ_{n}; and c, s, z, etc., are whole numbers in the scries $1,2, \ldots, m-1$. No two of the numbers c, s, etc., can be the same; for they are the products, with multiples of the prime number m left out, of the terms in the series $1,2, \ldots, m-1$, by the whole number c which is less than m. Therefore the series c, s, z, etc., is the series $1,2, \ldots, m-1$, in a certain order.
§51. Proposition XVI. If r_{n} be one of the particular coguate forms of R, the expressions

$$
\begin{equation*}
t \Delta_{n}^{\frac{1}{m}}, t^{2} a_{n} \Delta_{n}^{\frac{2}{m}}, \ldots, t^{m-2} e_{n} \Delta_{n}^{\frac{m-2}{m}}, t^{m-1} h_{n} \Delta_{n}^{\frac{m-1}{m}}, \tag{51}
\end{equation*}
$$

are severally equal, in some order, to those in (39), t being one of the $m^{\text {th }}$ roots of unity.

By $\S 47$, one of the terms in (42) is equal to r_{1}. For our argument it is immaterial which be chosen. Let $r_{n}=r_{1}$. By Cor. Prop. XV., the equations (50) subsist. Substitute in (47) the values of the different powers of $\Delta_{n}^{\frac{1}{m}}$ so obtained. Then

$$
\begin{align*}
& \left(t-1 p \Delta_{1}^{\frac{c}{m}}+t^{2} q a_{n} \Delta_{1}^{\frac{8}{m}}+\text { etc. }\right) \\
& -\left(\Delta_{1}^{\frac{1}{m}}+a_{1} \Delta_{1}^{\frac{2}{m}}+{ }^{\prime} \text { etc. }\right)=0 \tag{52}
\end{align*}
$$

By Cor. Prop. XV., the series $\Delta_{1}^{\frac{c}{m}}, \Delta_{1}^{\frac{s}{m}}$, etc., is identical, in some order, with the series $\Delta_{i}^{\frac{1}{m}}, \Delta_{1}^{\frac{2}{m}}$, etc. Also, by $\S 8$, since $\Delta_{1}^{\frac{1}{m}}$ is a
surd occurring in the simplified expression r_{1}, and since besides $j_{1}^{\prime \prime}$ there are in (52) no surds, distinct from the primitive $m^{\text {th }}$ root of unity, that are not lower in rank than $\Delta_{1}^{\frac{1}{m}}$, if the equation (52) were arranged according to the powers of $\Delta_{1}^{\frac{1}{m}}$ lower than the $m^{\text {th }}$, the coefficients of the differont powers of $d^{\frac{1}{m}}$ would be separately zero. Hence $d_{1}^{\frac{1}{m}}$ is equal to that one of the expressions,

$$
\begin{equation*}
t^{-1} p J_{1}^{\frac{c}{m}}, t^{-2} q a_{n} J_{1}^{\frac{s}{m}}, \text { etc. } \tag{53}
\end{equation*}
$$

in which $\Delta_{1}^{\frac{1}{m}}$ is a factor. In like mamer $a_{1} \Delta_{1}^{\frac{2}{m}}$ is equal to that one of the expressions (53) in which $\frac{\frac{2}{2 n}}{4^{2}}$ is a factor. And so on. There fore the terms $\Delta_{1}^{\frac{1}{m}}, a_{1} d_{1}^{\frac{2}{m}}$, etc., forming the series (39), are severally equal, in some order, to the terms in (53), which are those forming the series (51.)
§52. Proposition XVII. The equation $F(x)=0$ has a rational auxiliary (Compare Prop. VII.) equation $\varphi(x)=0$, whose roots are the $m^{\text {ch }}$ powers of the terms in (39).

Let the unequal particular cognate forms of the generic expression \triangle under which the simplified expression J_{1} falls be

$$
\begin{equation*}
A_{1}, \Delta_{2}, \ldots, J_{c} \tag{54}
\end{equation*}
$$

By Prop. XVI., there is a value t of the $m^{\text {th }}$ root of unity for which the expressions

$$
\begin{equation*}
t d_{2}^{\frac{1}{m}}, t^{2} a_{2}{d_{2}^{m}}_{\frac{2}{m}}, \ldots, t^{m-2} e_{2}{\Delta_{2}}_{m}^{m}, t^{m-1} 1 h_{2}{J_{2}}_{\frac{m-1}{m}} \tag{55}
\end{equation*}
$$

are severally equal, in some order, to those in (39). Therefore d_{2} is equal to one of the terms

$$
\begin{equation*}
J_{1}, a_{1}^{m} J_{1}^{2}, \ldots, e_{1}^{m} J_{1}^{m-2}, l_{1}^{m} J_{1}^{m-1} \tag{56}
\end{equation*}
$$

In like manner each of the terms in (54) is equal to a term in (56). And, because the terms in (5.4) are mequal, they are severally equal to different terms in (56). By Prop. III., the terms in (54) are the roots of a rational irreducible equation, say $\psi_{1}^{\prime}(x)=0$. Rejecting from the series (56) the roots of the equation $\varphi^{\prime \prime}(x)=0$, certain of the remaining terms must in the same way be the roots of a rational irreducible equation $\zeta_{2}(x)=0$. And so on. Ultimately, if $\varphi(x)$ be the continued product of the expressions $4_{1}^{\prime \prime}(x)$, $4_{2}^{\prime 2}(x)$, etc., the terms in (56) are the roots of the rational equation $\rho(x)=0$.
$\$ 53$. The equations $\varsigma^{\prime}(x)=0$, $4^{\prime \prime 2}(x)=0$, etc., formed by means of the expressions $\epsilon_{1}^{\prime}(x)$, $\epsilon^{\prime \prime 2}(x)$, etc., may be said to be sub-auxiliary to the equation $F^{\prime}(x)=0$. it will be observed that the subauxiliaries are all irreducible.
§54. Proposition XVIII. In passing from r_{1} to r_{n}, while d_{1}

- are equal to one another. Therefore, if $\Delta_{N}=\Delta_{n}$, in which case, by assigning suitabl
equal to $s_{n}^{\frac{1}{m}}$,

$$
j_{n}^{\frac{1}{2 n}}(\because-T)+d_{n}^{\frac{2}{2 n}}\left(u_{n} \tau^{2}-u_{N} \eta^{\prime 2}\right)+\text { ctc. }=0
$$

Suppose if possible that the cocflicients of the different powers of $J_{1}^{\frac{1}{m}}$ in (57) are not all zero. Then, by $\S 5, t{J_{n}^{\frac{1}{m}}}^{\frac{1}{2}} l_{1} ; t$ being an $m^{\text {th }}$ root of unity; and l_{1} involving only surds of lower ranks than $S_{1}^{\frac{1}{m}}$. Hence, by Prop. XV. and Cor. Prop. XV, $d_{1}^{\frac{1}{m b}}$ is a rational function of surds of lower ranks than $S_{1}^{\frac{1}{m}}$ and of the
primitive $m^{\text {ih }}$ root of unity; which, by the definition in $\$ 6$, is impossible. Since then the coefficients of the different powers of $\Delta_{n}^{\frac{1}{m}}$ in (57) are separately zero, $==T, a_{n} z^{2}=a_{N} T^{2}$, therefore $a_{n}=a_{n}$.
§5. Proposition XIX. Let the terms in (39) be written respectively

$$
\begin{equation*}
\Delta_{1}^{\frac{1}{m}}, \delta_{2}^{\frac{1}{m}}, i_{3}^{\frac{1}{m}}, \ldots, \delta_{m-1}^{\frac{1}{m}} \tag{58}
\end{equation*}
$$

The symbols $\Delta_{1}, \delta_{2}, \delta_{3}$, etc., are employed instead of J_{1}, J_{2}, J_{3}, etc., because this latter notation might suggest, what is not necessarily true, that the terms in (56) are all of them particular cognate forms of the generic expression under which J_{1} falls. Then (compare Prop. XIII.) the m, 1 expressions in each of the groups

$$
\begin{align*}
& \left(\Delta_{1}^{\frac{1}{m}} i_{m-1}^{\frac{1}{m}}, \frac{1}{i_{2}^{m}} \frac{1}{i_{m-2}^{m}}, i_{3}^{\frac{1}{m}} \frac{1}{i_{m-3}^{m}}, \ldots, i_{m-1}^{\frac{1}{m 2}} \frac{1}{\Delta_{1}^{m}},\right) \\
& \left(\Delta_{1}^{\frac{2}{m i}} \delta_{m-2}^{\frac{1}{m}}, \delta_{2}^{\frac{2}{m}} \frac{1}{\delta_{m-4}^{m}}, \delta_{3}^{\frac{2}{m}} \frac{1}{\delta_{m-e}^{m}}, \ldots, \delta_{m-1}^{\frac{2}{m}} \delta_{2}^{\frac{1}{m}},\right) \tag{59}\\
& \left(\Delta_{1}^{\frac{3}{m}} i_{m-3}, i_{2}^{\frac{3}{m}} \frac{1}{\delta_{m-6}^{m}}, i_{3}^{\frac{3}{m}} \frac{1}{i_{m-9}^{m}}, \ldots, \delta_{m-1}^{\frac{3}{m}} i_{3}^{\frac{1}{m}},\right) \text {; }
\end{align*}
$$

and so on, are the roots of a rational equation of the $(m-1)^{\text {th }}$ degree. Also (compare Prop. X.) the first $\frac{m-1}{2}$ terms in the first of the groups (59) are the roots of a rational equation of the $\left(\frac{m-1}{2}\right)^{\text {th }}$ degree.

In the enunciation of the proposition the remark is made that the series (54) is not necessarily identical with the series

$$
A_{1}, i_{2}, i_{3}, \ldots, i_{m-1}
$$

The former consists of the unequal particular cognate forms of Δ; the latter consists of the roots of the auxiliary equation $0(x)=0$. These two series are identical only when the auxiliary is irreducible. To prove the first part of the proposition, take the terms forming the second of the groups (59). Because $i_{m-2}^{\frac{1}{m}}$ represents $e_{1} 4_{1}^{\frac{n-2}{m}}$,

$$
e_{1} \Delta_{1}=d_{1}^{\frac{2}{m}} \frac{1}{\delta_{m-}^{m}} .
$$

Let E be the generic symbol under which the simplified expression e_{1} falls. By Prop. XVIIII., when d_{1} is changed successively into the c terms in (54), e_{1} receives successively the determinate values $e_{1}, e_{2}, \ldots, e_{c}$; and therefore $e_{1} d_{1}$ receives successively the determinate values

$$
\begin{equation*}
e_{1} J_{1}, e_{2} d_{2}, \ldots, e_{c} J_{c} . \tag{60}
\end{equation*}
$$

There is therefore no particular cognate form of $E \Delta$ that is not equal to a term in (60). By Prop. XVI. there is a value of the $m^{\text {th }}$ root of unity t for which the terms in (55) are severally equal, in some order, to those in (39). Let the term in (39) to which $t \frac{1}{J_{2}^{m i}}$ is equal be $q_{1} d_{1}^{\frac{n}{n}}$ Then, applying the principle of Cor. Prop. XV., as in Prop. XVI., it follows that the term in (39) to which $t^{m-2} e_{2} J_{2}^{\frac{m-2}{m 2}}$ in (55) is equal is $k_{1} J_{1}^{\frac{M-2 n}{m}}$, $A I$ being a multiple of m, and $M f-2 n$ being loss than m. Therefore $e_{2} d_{2}$ is equal to $q_{1}^{2} k_{1} \Delta_{1}^{\frac{B}{m}}$, which is the product of two of the terms in (39) occuring respectively at equal distances from opposite extremities of the series. In other words, $\epsilon_{2} \Delta_{2}$ is equal to an expression $\frac{\frac{2}{m}}{\delta_{m}^{m}} \frac{1}{\delta_{m-2 n}}$ in the second of the groups (59). In like manner every term in (60) is equal to an expression in the second of the groups (59). Let the unequal terms in (60) be

$$
\begin{equation*}
e_{1} J_{1}, \text { etc. } \tag{61}
\end{equation*}
$$

Then, by Prop. III., the terms in (61) are the roots of a rational irreducible equation, say $f_{1}(x)=0$. Rejecting these, which are distinct terms in the second of the groups (59), it can in like manner be shown that certain other terms in that group are the roots of a rational irreducible equation, say $f_{2}\left(x_{i}\right)=0$. And so on. Ultimately, if $f(x)$ be the continued product of the expressions $f_{1}(x)$, $f_{2}(x)$, etc., the terms forming the second of the groups (59) are the roots of a rational equation of the $(m-1)^{\text {th }}$ degree. The proof applies substantially to each of the other groups. To prove the second part, it is only necessary to observe that, in the first of the groups (59), the last term is identizal with the first, the last but one with the second, and so on.
§56. Cor. 1. The reasoning in the proposition proceeds on the assumption that the prime number m is vdd. Should m be even, the series J_{1}, δ_{1}, etc., is reduced to its first term. The law may be considered even then to hold in the following form. The product $\Delta_{1}^{\frac{1}{m}} \Delta_{1}^{\frac{1}{m}}$ is the root of a rational equation of the $(m-1)^{\text {th }}$ degree, or is rational. For this product is Δ_{1}, which, by Prop. XVII., is the root of an equation of the $(m-1)^{\text {th }}$ degree.
§56. Cor: 2. I merely notice, without farther proof, that the generalization in $\$ 45$ in the case when the equation $F^{\prime}(x)=0$ is of the first (see §30) class holds in the present case likewise.

Analysis of Solvable Equations of the Fiftif Degree.

$\S 58$. Let the solvable irreducible equation of the $m^{\text {th }}$ degree, which we have been considering, be of the fifth degree. Then, by Pro: IX. and S47, whether the equation belongs to the first or to the second of the two classes that have been distinguished, assuming the sum of the roots g to be zero,

$$
\begin{equation*}
\left.r_{1}=\frac{1}{5}\left(d_{1}^{\frac{1}{5}}+a_{1} d_{1}^{\frac{2}{5}}+e_{1} d_{1}^{\frac{3}{3}}+h_{1}\right\lrcorner_{1}^{\frac{1}{5}}\right) \tag{62}
\end{equation*}
$$

though, when the equation is of the first class, the root, as thus presented, is not in a simple state.
§59. Proposition XX. If the auxiliary biquadratic has a rational root J_{1} not zero, all the roots of the auxiliary biquadratic are rational.

Because d_{1} is rational, the auxiliary biquadratic $0(x)=0$ is not irreducible. Therefore, by Prop. VII., the equation $F(x)=0$ is of the second (see $\$ 30$) class. Therefore, by Prop. XIV., $A_{1}^{\frac{1}{5}}$ is the only principal surd in r_{1}. Consequently, because J_{1} is rational, a_{1}, e_{1} and h_{1} are rational. Therefore $\Delta_{1}, a_{1}^{5} \Delta_{1}^{2}, e_{1}^{5} \Delta_{1}^{3}, h_{1}^{5} d_{1}^{4}$, which are the roots of the auxiliary biquadratic, are rational.
§60. Pnoposition XXI. If the auxiliary biquadratic has a quidratic sub-auxiliary $s_{1}(x)=0$ with the roots d_{1} and Δ_{2}, then $J_{2}=J_{1}^{5} J_{1}^{4}$, and $J_{1}=J_{2}^{5} J_{2}^{4} ;$ and $h_{1} \Delta_{1}$ is rational.

As in $552, t$ being a certain fifth root of unity, each term in (55) is equal to a term in (39). The first term in (55) camot be equal to the first in (39), for this would make $d_{2}=\Delta_{1}$. Suppose if possible that the first in (55) is equal to the second in (39). Then, by
:
d equations (50), applied as in Prop. XVI.,

$$
\begin{align*}
& t J_{2}^{\frac{1}{5}}=\iota_{1} J_{1}^{\frac{2}{5}}, \quad t^{2} \iota_{2} d_{2}^{\stackrel{2}{5}}=\mu_{1} d_{1}^{4}, \\
& \left.\begin{array}{c}
t^{3} e_{2} d_{2}^{3}=J_{1}^{\frac{1}{5}}, \quad t^{4} l_{2} J_{2}^{\frac{4}{5}}=e_{1} J_{1}^{3}, \\
\text { therefore } J_{2}^{3}=c_{1}^{5} J_{1}^{2}, \quad a_{2}^{5} J_{2}^{2}=l_{1}^{5} J_{1}^{4}, \\
e_{2}^{5} J_{2}^{3}=J_{1}, \quad l_{2}^{5} J_{2}^{4}=e_{1}^{5} J_{1}^{3} .
\end{array}\right\} \tag{63}
\end{align*}
$$

Now $c_{1}^{5} j_{1}^{2}$, being equal to j_{2}, is a root of the equation $c^{\prime} 1(x)=0$. And $a_{1}^{5} J_{1}^{2}$, involving only surds that oecur in r_{1}, is in a simple state. Therefore, by Prop. MII., $a_{2}^{5} ل_{2}^{2}$ is a root of the equation $s_{1}^{\prime \prime}(x)=0$. Therefore $l_{1}^{5} J_{1}^{4}$, and therefore also $h_{2}^{5} ل_{1}^{4}$ or $e_{1}^{5} J_{1}^{3}$, are roots of that equation. Hence all the terms

$$
\begin{equation*}
J_{1}, a_{1}^{5} J_{1}^{2}, a_{1}^{5} J_{1}^{3}, l_{1}^{5} J_{1}^{4}, \tag{64}
\end{equation*}
$$

are roots of the equation $c^{\prime \prime}(x)=0$. But a_{1}, e_{1}, h_{1}, are all distinct from zero; for, by (63), if one of them was zero, all would be zero, and therefore $f_{1}^{\frac{1}{3}}$ wonld be zero; which by $\S 6$, is impossible. From this it follows that no two terms in (64) are equal to one another; for taking e_{1}^{5}, j_{1}^{2} and $e_{1}^{\overline{5}} J_{1}^{3}$, if these were equal, we should have $e_{1} t J_{1}^{\prime 2}=a_{1}, t^{\prime}$ being a fiftl root of mity; which; which by $\$ \$$, is impossible. This gives the equation $c^{\prime \prime}(x)=0$ four unequal roots; which, beeause it is of the secoud degrec, is impossible. Therefore the first term in (55) is not equal to the second in (39). In the same way it can be shown that it is not equal to the third. Therefore it must be equal to the fourth. In like manner the first in (39) is equal to the fourth in (05). Because then $t d_{2}^{\frac{1}{8}}=J_{1} J_{1}^{\frac{3}{5}}$, and $J_{1}^{\frac{1}{5}}=t^{\sharp} h_{2} d_{2}^{\frac{4}{5}}, h_{2} J_{2}=h_{1} A_{1}$. Hut, just as it was proved in $\oint 56$ that, the roots of the sub-auxiliary $c^{\prime \prime}(x)=0$ being the c terms Δ_{1}, A_{2}, ctc., there is no particular cognate form of $\left.E\right\rfloor$ that is not a term in the series $e_{1} J_{1}, e_{2} \Lambda_{2}, \ldots, e_{c} J_{c}$, it follows that, if π_{1} be a particular cognate form of $I I$, there is no particular cognate form of $I I\rfloor$ that is not equal to one of the terms $h_{1} J_{1}$ and $h_{2} \lambda_{2}$. Hence, since $\left.h_{1} j_{1}=h_{2}\right\lrcorner_{2}, H J$ has no particular cognate form different in value from $\bar{h}_{1} \bar{J}_{1}$. Therefore, by Prop. III., $h_{1} J_{1}$ is zational.
§61. Proposition XXII. The auxiliary biquadratic $\varphi(x)=0$ either has all its roots rational, or has a sub-auxiliary (see $\S 53$) of the second degree, or is irreducible.

It will be kept in view that the sub-auxiliaries are, by the manner of their formation, irreducible. First, let the series (54), containing the roots of the sub-auxiliary $\psi_{1}(x)=0$ consist of a single term d_{1}. Then, by Prop. III., d_{1} is rational. Therefore, by Prop. XX., all the roots of the auxliary are rational. Next, let the series (54) consist of the two terms Δ_{1} and J_{2}. By this very hypothesis, the auxiliary biquadratic has a quadratic sub-auxiliary. Lastly, let the series (54) contain more than two terms. Then it has the three terms d_{1}, d_{2}, J_{3}. We have shown that these must be severally equal to terms in (64). Neither d_{2} nor J_{3} is equal to J_{1}. They cannot both be equal to $h_{1}^{5} A_{1}^{4}$. Therefore one of them is equal to one of the terms $a_{1}^{5} \Delta_{1}^{2}, e_{1}^{5} d_{1}^{3}$. But in $\$ 60$ it appeared that, if Δ_{2} be equal either to $c_{1}^{5} \Delta_{1}^{2}$ or to $e_{1}^{5} \Delta_{1}^{3}$, all the terms in (64) are roots of the irreducible equation of which Δ_{1} is a root. The same thing holds regarding \mathcal{J}_{3}. Therofore, when the series (54) contains more than two terms, the irreducible equation which has d_{1} for one of its roots has the four unequal terms in (64) for roots; that is to say, the auxiliary biquadratic is irreducible.
$\S 62$. Let $5 u_{1}=\Delta_{1}^{\frac{1}{5}}, 5 u_{2}=a_{1} \Delta_{1}^{\frac{2}{5}}, 5 u_{3}=e_{1} \Delta_{1}^{\frac{3}{5}}, 5 u_{i}=h_{1} d_{j^{\frac{4}{5}}}$: and, n being any whole number, let S_{n} denote the sum of the $n^{\text {th }}$ powers of the roots of the equation $F(x)=0$. Then
$S_{1}=0 ; S_{2}=10\left(u_{1} u_{4}+u_{2} u_{3}\right) ; S_{3}=15\left\{\because\left(u_{1} u_{2}^{2}\right)\right\} ;$
$S_{4}=20\left\{\Sigma\left(u_{1}^{3} u_{2}\right)\right\}+30\left(u_{1}^{2} u_{4}^{2}+u_{2}^{2} u_{3}^{2}\right)+120 u_{1} u_{2} u_{3} u_{4}$;
$S_{5}=5\left\{\Sigma\left(u_{1}^{5}\right)\right\}+100\left\{\Sigma\left(u_{1}^{3} u_{3} u_{4}\right)\right\}+1501\left\{\Sigma\left(u_{1} u_{3}^{2} u_{4}^{2}\right) ;\right.$
where such an expression as $\leq\left(u_{1} \varepsilon_{2}^{2}\right)$ means the sum of all such terms as $u_{1} u_{2}^{2}$; it being understood that, as any one term in the circle $u_{1}, u_{2}, u_{4}, u_{3}$, passes into the next, that next passes int. its next, u_{3} passing into u_{1}.

The Roots of the Auxiliary Biquadratic all Rational.
$\$ 63$. Any rational values that may be assigned to d_{1}, a_{1}, e_{1}, an h_{1} in r_{1}, taken as in (62), make r_{1} the root of a rational equation $\because:$ the fifth degree, for they render the values of S_{1}, S_{2}, etc., in $\$ 6=$ rational, In fact, $\left.S_{1}=0,25 S_{2}=10\right\lrcorner_{1}\left(h_{1}+a_{1} e_{1}\right)$, and so on

The Auxiliary Biquadratic with a Quadratic Sub-Auxiliary.
§64. Proposition XXIII. In order that r_{1}, taken as in (62), may be the root of an irreducible equation $F(x)=0$ of the fifth clegree, whose auxiliary biquadratic has a quadratic sub-auxiliary, it must be of the form

$$
\begin{equation*}
r_{1}=\frac{1}{5}\left\{\left(\Delta_{1}^{\frac{1}{5}}+\Delta_{2}^{\frac{1}{5}}\right)+\left(a_{1} \Delta_{1}^{\frac{\ddot{5}}{5}}+a_{2} \Delta_{2}^{\frac{2}{5}}\right)\right\} \tag{65}
\end{equation*}
$$

where Λ_{1} and d_{2} are the roots of the irreducible equation $\epsilon^{\prime \prime}(x)=x^{2}-2 p x+q^{5}=0 ;$ and $a_{1}=b+d \sqrt{ }\left(p^{2}-q^{5}\right)$, $a_{2}=b-d \sqrt{ }\left(p^{2}-q^{5}\right) ; p, b$ and d being rational ; and the roots $\Delta_{1}^{\frac{1}{5}}$ and $A_{2}^{\frac{1}{5}}$ being so related that $A_{1}^{\frac{1}{5}} \Delta_{2}^{\frac{1}{5}}=q$.

By Prop. VII., when a quintic equation is of the first (see $\S 30$) class, the auxiliary biquadratic is irreducible. Hence, in the case we are considering, the quintic is of the second class. The quadratic sub-auxiliary may be assumed to be $c^{\prime \prime}(x)=x^{2}-2 p x+k=0$, p and k being rational. By Prop. XXI., the roots of the equation $\psi_{1}^{\prime}(x)=0$ are Δ_{1} and $h_{1}^{5} \Delta_{1}^{4}$. Therefore $\hbar=\left(h_{1} A_{1}\right)^{5}$; or, puting q for $h_{1} \Delta_{1}, l=q^{5}$. By the same proposition, $h_{1} j_{1}$ is rational. Therefore q is rational. Hence $\psi^{\prime \prime}(x)$ has the form specified in the enunciation of the proposition. Next, by Proposition XVI., there is a fifth root of unity t such that $t d_{2}^{\frac{1}{5}}=h_{1} d_{1}^{\frac{4}{5}}$. If we take t to be unity, which we may do by a suitable interpretation of the symbol $\Delta_{2}^{\frac{1}{5}}, d_{2}^{\frac{1}{5}}=J_{1} \Delta_{1}^{\frac{4}{5}}$. This implies that $e_{1} \Delta_{1}^{\frac{3}{5}}=a_{2} d_{2}^{\frac{2}{5}}, a_{2}$ being what a_{1} becomes in passing from Δ_{1} to Δ_{2}. Substituting these values of $e_{1} d_{1}^{3}$ and $h_{1} \Delta_{1}^{5}$ in (62), we obtain the form of r_{1} in (65), while at the same time $\Delta_{1}^{\frac{1}{5}} \Delta_{2}^{\frac{1}{5}}=h_{1} \Delta_{1}=q$. The forms of a_{1} and a_{2} have to be more accurately determined. By Prop. XIV., $\Delta_{1}^{\frac{1}{5}}$ is the only principal surd that r_{1}, as presented in (62), contains. Therefore a_{1} involves no surd that does not occur in Λ_{1}; that is to say, $\sqrt{ }\left(p^{2}-q^{5}\right)$ is the only surd in a_{1}. Hence we may put $a_{1}=b+d \sqrt{ }\left(p^{2}-q^{5}\right) ; b$ and d being rational. But a_{2} is what a_{1} becomes in passing from Δ_{1} to Δ_{2}. And Δ_{2} differs from Δ_{1} only in the sign of the root $\sqrt{ }\left(p^{2}-q^{5}\right)$. Tl erefore

$$
a_{2}=b-d \sqrt{ }\left(p^{2}-q^{5}\right)
$$

$\S 65$. Any rational values that may be assigned to b, d, p and q in r_{1}, taken as in (65), make r_{1} the root of a rational equation of the
fifth degree; for they render the values of S_{1}, S_{2}, etc., in $\$ 62$, rational. In fact, $S_{1}=0,25 S_{2}=10\left\{q+q^{2} l^{2}-q^{2} d^{2}\left(p^{2}-q^{5}\right)\right\}$, and so on.

Tife Auxiliary Biqadratic Irreducible.

§66. When the auxiliary biquadratic is irreducible, the unequal particular cognate forms of are, by Prop. III., four in number, $J_{1}, J_{2}, J_{3}, J_{4}$. As explained in $\$ 55$, because the equation $0(x)=0$ is irreducible, these terms are severaly identical with $\Delta_{1}, \dot{\partial}_{2}, \delta_{3}, \delta_{4}$. Hence, putting $m=5$, the first two terms in the first of the groups (59) may be written in the uotation of (37),

$$
\begin{equation*}
\Delta_{1}^{\frac{1}{S}} d_{4}^{\frac{1}{5}}, \Delta_{2}^{\frac{1}{5}} \Delta_{3}^{\frac{1}{3}} ; \tag{66}
\end{equation*}
$$

and the second and third groups may be written
$\$ 67$. Proposition XXIV. The roots of the auxiliary biquadratic equation $\varphi(x)=0$ are of the forms

$$
\left.\begin{array}{l}
\Delta_{1}=m+n \sqrt{ } \approx+\sqrt{ } s, \Delta_{2}=m-n \sqrt{ } \approx+\sqrt{ } s_{1}, \tag{68}\\
\Delta_{4}=m+n \sqrt{ } \approx-\sqrt{ }, \Delta_{3}=m-n \sqrt{ } \approx-\sqrt{ } s_{1} ;
\end{array}\right\}
$$

where $s=p+q \sqrt{ } \approx$, and $s_{1}=p-q \sqrt{ } \approx ; m, n, z, p$ and q being rational; and the surd $\sqrt{ } s$ being irreducible.

By Propositions XIII. and XIX., the terms in (66) are the roots of a quadratic. Therefore $J_{1} J_{4}$ and $J_{2} \Delta_{3}$ are the roots of a quadratic. Suppose if possible that $J_{1} J_{3}$ is the root of a quadratic. By
Propositions IX. and XIX., $d_{3}^{\frac{1}{6}}=e_{1} A_{1}^{\frac{3}{5}}$. Therefore $e_{1}^{5} d_{1}^{4}$ is the root of a quadratic. From this it follows (Prop. III.) that there are not more than two unequal terms in the series,

$$
\begin{equation*}
e_{1}^{5} \Delta_{1}^{4}, e_{2}^{5} \Delta_{2}^{4}, e_{3}^{5} \Delta_{3}^{4}, e_{4}^{5} \Delta_{4}^{4} \tag{69}
\end{equation*}
$$

But suppose if possible that $e_{1}^{5} \Delta_{1}^{4}=e_{2}^{0} \Delta_{2}^{4}$. Then, t being one of the fifth roots of unity, $t e_{1} \Delta_{1}^{\frac{5}{5}}=e_{2} d_{2}^{4}$ But, by Propositions IX. and XIX., $\Delta_{2}^{\frac{1}{5}}=h_{1} \Delta_{1}^{\frac{4}{5}}$. Therefore, $t e_{1} \Delta_{1}^{\frac{1}{5}}=e_{2} l_{1}^{4} \Delta_{1}^{3} \Delta_{1}^{\frac{1}{3}}$. There-
fore, by $\$ S, e_{1}=0$. Therefore one of the roots of the anxiliary biquadratic is zero; which because the amxiliary biguadratic is assmmed to be irreducible, is impossible. Therefore $e_{1}^{5} J_{1}^{4}$ and $e_{2}^{5} J_{2}^{4}$ are unequal. In the same way all the terms in (69) can be shown to be unequal; which, because it has been proved that there are not more than two unequal terms in ($69{ }_{j}$, is impossible. Therefore $J_{1} J_{3}$ is not the root of a quadratic equation. Therefore the product of two of the roots, Δ_{1} and J_{t}, of the auxiliary biquadratic is the root of a quadratic equation, while the product of a different pair, J_{1} and Δ_{3}, is not the root of a quadratic. But the only forms which the roots of an irreducible biquadratic can assume consistently with these conditions are those given in (6S).
§68. Proposition XXV. The surd $\sqrt{ } s_{1}$ can have its value expressed in terms of $\sqrt{ } s$ and $\sqrt{ } \approx$.

By Propositions XIII. and XIX, the terms of the first of the groups (67) are the roots of a biqualratic equation. Therefore their fifth powers

$$
\begin{equation*}
J_{1}^{2} J_{3}, j_{2}^{2} J_{1}, d_{3}^{2} J_{4}, d_{4}^{2} d_{2}, \tag{70}
\end{equation*}
$$

are the roots of a biquadratic. From the values of $\left.\left.\lrcorner_{1},\right\rfloor_{2},\right\lrcorner_{3}$ and Δ_{4} in (68), the values of the terms in (70) may be expressed as follows:

$$
\begin{align*}
& \left.\begin{array}{rl}
\Delta_{1}^{2} d_{3} & =F^{2}+F_{1} \sqrt{ } z+\left(F_{2}+F_{3} \sqrt{ } z\right) \sqrt{ } s \\
& +\left(F_{4}+F_{5} \sqrt{ }\right) \sqrt{ } s_{1}+\left(F_{i}^{\prime}+F_{7} \sqrt{ } z\right) \sqrt{ } \sqrt{ } s_{1}, \\
\Lambda_{2}^{2} J_{1} & =F^{\prime}-F_{1} \sqrt{ } z+\left(F_{2}-F_{3} \sqrt{ }\right) \sqrt{ } s_{1} \\
& -\left(F_{4}-F_{5} \sqrt{ } z\right) \sqrt{ } s-\left(F_{i}-F_{7} \sqrt{ } \approx\right) \sqrt{ } s \sqrt{ } s_{i},
\end{array}\right\} \\
& d_{4}^{2} d_{2}=F-F_{1} \sqrt{ } \approx-\left(H_{2}-P_{3} \sqrt{ } \approx\right) \sqrt{ } s_{1} \tag{71}\\
& +\left(F_{4}-F_{j} \sqrt{ } \approx\right) \sqrt{ } s-\left(F_{0}-I_{7} \sqrt{ } \approx\right) \sqrt{ } \sqrt{ } s_{1}, \\
& \left.\Delta_{3}^{2}\right\lrcorner_{4}=i^{r}+r_{1} \sqrt{ } \approx-\left(F_{2}+r_{3} \sqrt{ } z\right) \sqrt{ } \\
& \left.-\left(F_{i}+F_{j} \sqrt{ } z\right) \sqrt{ } s_{1}+\left(F_{i}+F_{7} \sqrt{ } z\right) \sqrt{ } s \sqrt{ } s_{1},\right)
\end{align*}
$$

where F, F_{1}, etc., are rational. Let $\left.\left.\because(\lrcorner_{1}^{2}\right\lrcorner_{3}\right)$ be the sum of the four expressions in (70). Then, because these expressions are the roots of a biquadratic, $\because\left(J_{1}^{2} J_{3}\right)$ or $4 F+4 F_{7} \sqrt{ } s \sqrt{ } s_{1}$, must be rational. Suppose if possible that $\sqrt{ } s_{1}$ cannot have its value expressed in terms of $\sqrt{ } s$ and $\sqrt{ } \approx$. Then, because $\sqrt{ } s \sqrt{ } s_{1}$ is not rational, $\vec{F}_{7}=0$. By (68), this implies that $n=0$. Let

$$
\begin{aligned}
\left(d_{1}^{2} J_{3}\right)^{2} & =L+L_{1} \sqrt{ } \approx+\left(L_{2}+L_{3} \sqrt{ } \approx\right) \sqrt{ } s \\
& +\left(L_{1}+L_{i} \sqrt{ } \approx\right) \sqrt{ } s_{1}+\left(L_{i j}+L_{i} \sqrt{ } \approx\right) \sqrt{ } s \sqrt{ } s_{1}
\end{aligned}
$$

where L, L_{1}, etc., are rational. Then, as above, $L_{7}=0$. Keeping in view that $n=0$, this meins that $m^{2} q=0$. But q is not zero, for this would make $\sqrt{ } s=\sqrt{ } s_{1}$; which, because we are reasoning on the hypothesis that $\sqrt{ } s_{1}$ camot have its value expressed in terms of $\sqrt{ } s$ and $\sqrt{ } z$, is impossible. Therefore m is zero. And it was shown that n is zero. Therefore $J_{1}=\sqrt{ } s$, and $d_{3}=-\sqrt{ }$. Therefore $\Delta_{1} \Delta_{3}=-\sqrt{ }\left(p^{2}-q^{2} z\right)$; which, because it has been proved that $\Delta_{1} \Delta_{3}$ is not the root of a quadratic equation, is impossible. Hence $\sqrt{ } s_{1}$ cannot but be a rational function of $\sqrt{ } s$ and $\sqrt{ } z$.
§69. Proposition XXVI. The form of s is

$$
\begin{equation*}
h\left(1+e^{2}\right)+h \sqrt{ }\left(1+e^{2}\right) \tag{72}
\end{equation*}
$$

h and e being rational, and $1+e^{9}$ being the value of z.
By Prop. XXV., $\sqrt{ } s_{1}=v+c \sqrt{ } s, v$ and c being rational functions of $\sqrt{ } z$. Therefore $s_{1}=v^{2}+c^{2} s+2 v c \sqrt{ } s$. By Prop. XXIV., $\sqrt{ } s$ is irreducible. Therefore $v c=0$. But c is not zero, for this would make $\sqrt{ } s_{1}=v$, and thus $\sqrt{ } s_{1}$ would be the root of a quadratic equation. Therefore $v=\left(i\right.$, and $\sqrt{ } s_{1}=c \sqrt{ }=$ $\left(c_{1}+c_{2} \sqrt{ } z\right) \sqrt{ } s, c_{1}$ and c_{2} being rational. Therefore

$$
\begin{aligned}
\sqrt{ }\left(s s_{1}\right) & =\sqrt{ }\left(p^{2}-q^{2} z\right)=\left(c_{1}+c_{2} \sqrt{ } z\right)(p+q \sqrt{ } z) \\
& =\left(c_{1} p+c_{2} q z\right)+\sqrt{ } z\left(c_{1} q+c_{2} p\right)=P^{\prime}+Q \sqrt{ } z .
\end{aligned}
$$

Here, since $p^{2}-q^{2} z$ is rational, eitber $P=0$ or $Q=0$. As the latter of these alternatives would make $\sqrt{ }\left(p^{2}-q^{2} z\right)$ rational, and therefore would make $\sqrt{ }(p+q \sqrt{ })$ or $\sqrt{ } s$ reducible, it is inadmissible. Therefore $c_{1} p+c_{2} q z=0$, and

$$
\sqrt{ }\left(p^{2}-q^{2} z\right)=\left(c_{1} q+c_{2} p\right) \sqrt{ } z
$$

Now $q z$ is not not zero, for this would make $\sqrt{ }\left(s s_{1}\right)= \pm p$; which, because $\sqrt{ } s$ is irreducible, is impossible. Therefore $c_{2}=0$. But, by hypotliesis, $c_{1}=0$; therefore $\sqrt{ } s_{1}$, which is equal to $\left(c_{1}+c_{2} \sqrt{ } z\right) \sqrt{ }$, is zero; which is impossible. Hence c_{1} cannot he zero. We may therefore put $c e=1$, and $h\left(1+e^{2}\right)=p$. Then $s=p+q \sqrt{ } z=h\left(1+e^{2}\right)+h \sqrt{ }\left(1+e^{2}\right)$. Having obtained this form, we may consider z to be identical with $1+e^{2}$, q with h, and p with $h\left(1+e^{2}\right)$.
$\$ 70$. The reasoning in the preceding section holds good whether the equation $F(x)=0$ be of the first (see $\S 30$) or of the second class. If we had had to deal simply with equations of the first class, the proof given would have been unnecessary, so far as the form of z is concerned ; because, in that case, by Prop. VIII., Δ_{1} is a rational function of the primitive fifth root of unity.
§71. Proposition XXVII. Under the conditions that have been established, the root r_{1} takes the form given without deduction in Crelle (Vol. V., p. 336) from the papers of A bel.

For, by Cor. Prop. XIII. (compare also Cor: 2, Prop. XIX.,) the expressions

$$
\begin{align*}
& \Delta_{1}^{\frac{1}{5}} \Delta_{3}^{\frac{2}{5}} \quad J_{4}^{\frac{3}{4}} d_{2}^{\frac{3}{5}}, \Delta_{2}^{\frac{1}{5}} \Delta_{1}^{\frac{2}{5}} \Delta_{3}^{\frac{3}{5}} d_{4}^{\frac{3}{5}}, \tag{73}
\end{align*}
$$

are the roots of a biquadratic equation. In the corollaries referred to, it is merely stated that each of the expressions in (73) is the root of a biquadratic; but the principles of the propositions to which the corollaries are attached show that the four expressions must be the roots of the same biquadratic. Let the terms in (73) be denoted respectively by

$$
5 A_{1}^{-1}, \quad 5 A_{2}^{-1}, \quad 5 A_{3}^{-1}, \quad 5 A_{4}^{-1}
$$

Then $\Delta_{1}^{\frac{1}{3}} \Delta_{3}^{\frac{2}{5}} \Delta_{4}^{\frac{4}{5}} \Delta_{2}^{3}=d_{4}^{\frac{1}{5}}\left(\Delta_{1}^{\frac{1}{5}} \Delta_{3}^{\frac{2}{5}} \Delta_{4}^{\frac{3}{5}} \Delta_{2}^{\frac{3}{5}}\right)$ is an identity. Therefore

$$
\begin{aligned}
& \frac{1}{5} \Delta_{4}^{\frac{1}{6}}=A_{1}\left(\Delta_{1}^{\frac{1}{5}} \Delta_{3}^{\frac{2}{3}} \Delta_{4}^{\frac{4}{5}} d_{2}^{\frac{3}{5}}\right) . \text { Similarly, } \\
& { }_{5}^{1} \Delta_{3}^{\frac{1}{3}}=A_{3}\left(\Delta_{3}^{\frac{1}{5}} d_{4}^{\frac{2}{5}} \Delta_{2}^{4} \Delta_{1}^{\frac{4}{5}}\right) \\
& +\Delta_{2}^{\frac{1}{5}}=A_{2}\left(d_{2}^{\frac{1}{5}} J_{1}^{\frac{2}{5}} d_{3}^{\frac{4}{5}} \Delta_{4}^{\frac{3}{3}}\right) \text {, and } \\
& { }_{5}^{\frac{1}{5}} d_{1}^{\frac{1}{5}}=A_{1}\left(d_{4}^{\frac{1}{3}} d_{2}^{\frac{2}{5}} d_{1}^{\frac{4}{3}} d_{3}^{\frac{3}{3}}\right) .
\end{aligned}
$$

Substituting these values in (62), we get

$$
\begin{align*}
r_{1} & =A_{1}\left(\Delta_{1}^{\frac{1}{5}} \Delta_{3}^{\frac{2}{5}} \Delta_{4}^{\frac{4}{3}} \Delta_{2}^{\frac{3}{5}}\right)+A_{2}\left(J_{2}^{\frac{1}{3}} \Delta_{1}^{\frac{2}{5}} \Delta_{3}^{\frac{4}{5}} \Delta_{4}^{\frac{3}{5}}\right) \\
& +A_{3}\left(\Delta_{3}^{\frac{1}{5}} \Delta_{4}^{\frac{2}{5}} \Delta_{2}^{4} \Delta_{1}^{\frac{3}{5}}\right)+A_{4}\left(d_{4}^{\frac{1}{5}} A_{2}^{\frac{2}{5}} \Delta_{1}^{\frac{4}{3}} A_{3}^{\frac{3}{5}}\right) \tag{74}
\end{align*}
$$

This, with immaterial differences in the subscripts, is Abel's expression; only we need to determine A_{1}, A_{2}, A_{3} and A_{4} more exactly. These terms are the reciprocals of the terms in (73) severally divided by 5 . Therefore they are the roots of a biquadratic. Also, no surds can appear in A_{1} except those that are present in $\Delta_{1}, \Delta_{2}, \Delta_{3}$ and Δ_{4}. That is to say, A_{1} is a rational function of $\sqrt{ } s, \sqrt{ } s_{1}$ and $\sqrt{ } z$. But it was shown that $\sqrt{ } s_{1} \sqrt{ }$ s=he $\sqrt{ } a$. Therefore A_{1} is a rational function of $\sqrt{ } s$ and $\sqrt{ } z$. We may therefore put

$$
A_{1}=K^{\prime}+K^{\prime \prime} d_{1}+K^{\prime \prime} J_{4}+K^{\prime \prime \prime} A_{1} A_{4}
$$

$K, K^{\prime}, K^{\prime \prime}$ and $K^{\prime \prime \prime}$ boing rational. But the terms A_{1}, A_{2}, A_{4}, A_{3} circulaic with $J_{1}, J_{2}, J_{4}, J_{3}$. Therefore

$$
\begin{aligned}
& \left.\left.\left.\left.A_{2}=K+K^{\prime}\right\lrcorner_{2}+K^{\prime \prime}\right\lrcorner_{3}+K^{\prime \prime \prime \prime}\right\lrcorner_{2}\right\lrcorner_{3}, \\
& \left.\left.\left.\left.A_{4}=K^{\prime}+K^{\prime}\right\lrcorner_{4}+K^{\prime \prime \prime}\right\lrcorner_{1}+K^{\prime \prime \prime}\right\lrcorner_{1}\right\lrcorner_{4}, \\
& \left.\left.\left.\left.A_{3}=K^{\prime}+K^{\prime}\right\lrcorner_{3}+K^{\prime \prime \prime}\right\lrcorner_{2}+K^{\prime \prime \prime}\right\lrcorner_{2}\right\lrcorner_{3},
\end{aligned}
$$

These are Abel's values.
§72. Keeping in view the values of Λ_{1}, Λ_{2}, etc., in (07), and also that $\approx=1+e^{2}$, and $s=h \approx+h \sqrt{ } \approx$ any rational values that may be assigned to $m, n, e, h, h_{,} h^{\prime \prime}, h^{\prime \prime}$ and $h^{\prime \prime \prime}$ make r_{1}, as presented in (74), the root of an equation of the tifth degree. For, any rational values of m, n, etc., make the values of S_{1}, S_{2}, etc., in $\$ 6 \%$, mitional.
§73. It may be noted that, not only is the expression for r_{1} in (71) the root of a quintic equation whose amxiliary biquadratic is irreducible, but on the mulerstanding that the surds $\sqrt{ } s$ and $\sqrt{ } \approx$ in J_{1} may be reducible, the expression for r_{1} in (7i) contains the roots both of all equations of the fifth degree whose anxiliary biquadratics have their roots rational, and of all that have quadratic subanxiliaries. It is unecessary to offer proof of this.

S74. The equation $x^{5}-10 x^{3}+5 x^{2}+10 x+1=0$ is an example of a solvable quintic with its auxiliary biquadratic irreducible. One of its roots is

$$
\omega^{\frac{1}{5}}+\omega \omega^{\frac{9}{5}}+\omega^{3} \omega^{3}+\omega^{4} \omega^{\frac{4}{5}}
$$

(1) being a primitive fifth root of mity. It is obvious that this root Satisfies all the conditions that have been pointed out in the preceding analysis as necessary. A root of an equation of the seventh desrere of the same character is

$$
\omega^{\frac{1}{7}}+\omega^{4} \omega^{\frac{3}{7}}+\omega^{4} \omega^{\frac{3}{7}}+\omega^{2} \omega^{\frac{1}{7}}+\omega^{2} \omega^{\frac{5}{7}}+\omega^{6} \omega^{\frac{6}{7}}
$$

(1) being a primitive seventh root of unity. The general form under which these instances fall can readily be found. Take the cycle that contains all the primitive $\left(m^{2}\right)^{\text {th }}$ roots of unity,

$$
\theta,\left\|^{\beta},\right\|^{\beta^{2}}, \text { etc. }
$$

m being prime. The number of terms in the cycle is $(m-1)^{2}$. Let θ_{1} be the $(m+1)^{\text {th }}$ term in the cycle (75), 0 , the $(2 m+1)^{\text {th }}$ term, and so on. Then the root of an equation of the $m^{\text {th }}$ degree, including the instances abore given, is

$$
r_{1}=\left(\theta+\theta^{-1}\right)+\left(\theta_{1}+\theta_{1}^{-1}\right)+\ldots+\left(\theta_{\underline{m}-3}+\theta_{\underline{m}-3}^{-1}\right)
$$

RESOLUTION

or

SOLVABLE EQUA'TIONS OF THE FIFTH DEGREE,

> BY GEORGE PAXTON YOUNG,

Toronto, Canada.

CONTENTS.

1. Sketch of the method employed. General statement of the criterion of solvability of an equation of the fifth degree. $\$ 2-5$.
2. Case in which $u_{1} u_{4}=u_{2} u_{3}$. The roots determinable in terins of the coeficients p_{1}, p_{2}, etc., even while particular numerical values have not heen assigned to the coefficients. Three verifying instances; one, in which the auxiliary biquadratic is irreducible ; a second, in which there is a quadratic sub-auxiliary; a third, in which the roots of the auxiliary biquadratic are all rational. $\$ 6-10$.
3. Deduction, in the case in which $u_{1} u_{4}=\tau_{2} u_{3}$, of the equation $p^{\prime}=0$; where p^{\prime} is a rational function of the coefficients μ_{1}, μ_{2}, etc. Verifying instances. §11-13.
4. The trinomial quintic $x^{5}+p_{4} x+p_{5}=0$. Form which the criterion of solvability here takes. Example. §14-16.
5. When any relation is assumed between the six unknown quantities, the roots of the quintic can be found in terms of p_{1}, p_{2}, etc. $\$ 17$.
6. The general case. $\$ 18$.
§1. By means of the laws established in the paper entitled "Principles of the Solution of Equations of the Higher Degrees," which is concluded in the present issue of the Journal of Mathematics, a criterion of the solvability of equations of the fifth clegree may be found, and the roots of solvable quintics obtained in terms of given numerical coefficients. In certain classes of cases, the roots can be determined in terms of coefficients to which particular numerical values have not been assigned, but which are only assumed to be so related as to make the equations solvable.

Sketch of the Method Employed.

$\S 2$. Let $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$, be the roots of the solvable irreducible equation of the fiftle degree wanting the second term,

$$
\begin{equation*}
F(x)=x^{5}+p_{2} x^{3}+p_{3} x^{2}+p_{4} x+p_{5}=0 . \tag{1}
\end{equation*}
$$

It was proved in the "Principles" that

$$
r_{1}=\frac{1}{5}\left(\Delta_{1}^{\frac{1}{3}}+\Delta_{2}^{\frac{1}{6}}+\Delta_{3}^{\frac{1}{5}}+J_{4}^{\frac{1}{5}}\right)
$$

where $J_{1}, J_{2}, J_{3}, \Delta_{4}$ are the roots of a biquadratic equation auxiliary to the equation $F(x)=0$. It was also shown that the root can be expressed in the form

$$
\begin{equation*}
r_{1}=\frac{1}{5}\left(\Delta_{1}^{\frac{1}{5}}+a_{1} \Delta_{1}^{\frac{2}{5}}+e_{1} \Delta_{1}^{\frac{3}{3}}+h_{1} \Delta_{1}^{\frac{4}{5}}\right) \tag{ㄹ}
\end{equation*}
$$

where a_{1}, e_{1}, h_{1}, involve only surds occurring in J_{1}; and no surds oucur in J_{1} except $\sqrt{ }(h z+h \sqrt{ } z)$ and its subordinate $\sqrt{ } z ; z$ being, equal to $1+c^{2}$, and l and e being rational. As in the "Principles,"
we may put $5 u_{1},=\Delta_{1}^{\frac{1}{5}}, 5 u_{2}=\Delta_{2}^{\frac{1}{5}}, 5 u_{3}=j_{3}^{\frac{1}{5}}, 5 u_{4}=\Delta_{4}^{\frac{1}{5}}$. Then

$$
\begin{equation*}
r_{1}=u_{1}+u_{2}+u_{3}+u_{4} \tag{3}
\end{equation*}
$$

Let S_{1} be the sum of the roots of the equation $F(x)=0, S_{2}$ the sum of their squares, and so on. Also let

$$
\begin{align*}
& \underline{v}\left(u_{1}^{2} u_{3}\right)=u_{1}^{2} u_{3}+u_{2}^{2} u_{1}+u_{3}^{2} u_{4}+u_{4}^{2} u_{2}, \\
& \ddot{\prime}\left(u_{1}^{3} u_{2}\right)=u_{1}^{3} u_{2}+u_{2}^{3} u_{4}+u_{3}^{3} u_{1}+u_{4}^{3} u_{3} \text {, } \\
& \underline{\because}\left(u_{1} u_{3}^{2} u_{4}^{\hat{\tilde{x}}}\right)=u_{1} u_{3}^{2} u_{4}^{2}+u_{2} u_{1}^{2} u_{3}^{2}+u_{3} u_{4}^{2} u_{2}^{2}+u_{4} u_{2}^{2} u_{1}^{2} \text {; } \\
& \text { Then } \\
& \ddot{(}\left(u_{1}^{5}\right)=u_{1}^{5}+u_{2}^{5}+u_{3}^{5}+u_{4}^{5} ; \tag{4}\\
& S_{2}=10\left(u_{1} u_{4}+u_{2} u_{3}\right), S_{3}=15\left\{\Sigma\left(u_{1}^{2} u_{3}\right){ }_{i}^{\prime}\right. \text {, } \\
& S_{4}=20\left\{\underline{\{ }\left(u_{1}^{3} u_{2}\right)\right\}+1_{10}^{3}\left(S_{2}^{2}\right)+60 u_{1} u_{2} u_{3} u_{4} \text {, } \\
& \left.S_{5}=5\left\{\Sigma\left(u_{1}^{5}\right)\right\}+\frac{9}{3}\left(S_{2} S_{3}\right)+50\left\{\underline{\prime}\left(u_{1} u_{3}^{\frac{2}{2}} u_{4}^{2}\right)\right\} .\right\}
\end{align*}
$$

§3. It was proved in the "Principles" that $u_{1} u_{4}$ and $u_{2} u_{3}$ are the roots of a quadratic equation. But

$$
25 u_{1} u_{4}=h_{1} \Delta_{1}, \text { and } 25 u_{2} u_{3}=a_{1} e_{1} A_{1}
$$

Therefore, because a_{1}, e_{1}, h_{1}, involve no surds that are not subordinate to $J_{1}^{\frac{1}{3}}, \sqrt{ } \approx$ is the only surd that can appear in $u_{1} u_{4}$ and $u_{2} u_{3}$. Consequently we may put

$$
\begin{equation*}
u_{1} u_{4}=g+a \sqrt{ } z, \text { and } u_{u} u u_{3}=g-a \sqrt{ } z \tag{5}
\end{equation*}
$$

where g, a, are rational. It scarcely needs to be pointed out that these forms are valid whether the surd $\sqrt{ } z$ is irreducible or not. Now $S_{2}=10\left(u_{1} u_{4}+u_{2} u_{3}\right)=-2 p_{2}$. Therefore

$$
\begin{equation*}
g=-\frac{1}{\mathrm{I} \sigma}\left(p_{2}\right) \tag{6}
\end{equation*}
$$

Again, it was shown in the "Principles" that the four expressions $u_{1}^{2} u_{3}, u_{2}^{2} u_{1}, u_{3}^{2} u_{4}, u_{4}^{2} u_{2}$: are the roots of a biquadratic equation. And, by the same reasoning as that employed in the case of $u_{1} u_{t}$ and $u_{2} u_{3}$, the only surds that can appear in these expressions are $\sqrt{ }(h z+h \sqrt{ } z), \sqrt{ }(h z-h \sqrt{ } z)$, and $\sqrt{ } z$. Iet $h z+h \sqrt{ } z=s$, and $h z-h \sqrt{ } z=s_{1}$. Then

$$
\sqrt{ } s_{1}=\left(\frac{\sqrt{z-1}}{e}\right) \sqrt{ } s, \text { and } \sqrt{ } s \sqrt{ } s_{1}=h e \sqrt{ } z .
$$

Hence the expressions $u_{1}^{2} u_{3}, u_{2}^{2} u_{1}, u_{3}^{2} u_{4}, u_{4}^{2} u_{2}$, may have their values exhibited in terms of $\sqrt{ } z$ and either of the surds $\sqrt{ } s, \sqrt{ } s_{1}$. Put

$$
\left.\begin{array}{rl}
u_{1}^{2} u_{3} & =k+c \sqrt{ } z+(0+\varphi \sqrt{ } z) \sqrt{ } s \tag{8}\\
u_{4}^{2} u_{2} & =k+c \sqrt{ } z-(0+\varphi \sqrt{ } z) \sqrt{ }, \\
u_{2}^{2} u_{1} & =k-c \sqrt{ } z+(0-\varphi \sqrt{ } z) \sqrt{ } s_{1} \\
u_{3}^{2} u_{4} & =k-c \sqrt{ } z-(0-\varphi \sqrt{ } z) \sqrt{ } s_{1}
\end{array}\right\}
$$

where $k, c, 0$,, , are rational. These coefficients must bear a relation to g, a, in ($\overline{0})$. In fact, because

$$
\left(u_{1}^{2} u_{3}\right)\left(u_{4}^{2} u_{2}\right)=\left(u_{1} u_{4}\right)^{2}\left(u_{2} u_{3}\right)
$$

$) \cdot\left(g^{2}-a^{2} \approx\right)(g+a \sqrt{ } z)=(\hbar+c \sqrt{ } z)^{2}-(0+\varphi \sqrt{ } z)^{2}(h z+h \sqrt{ } z)$. Equating the rational parts to one another, and also the irrational parts,

$$
\left.\begin{array}{c}
h z\left(0^{2}+\varphi^{2} z+20 \varphi\right)=\hbar^{2}+c^{2} z-g\left(g^{2}-a^{2} z\right. \tag{9}\\
h\left(0^{2}+\varphi^{2} z+20 \varphi z\right)=2 \hbar c-a\left(g^{2}-a^{2} z\right)
\end{array}\right\}
$$

Because $\left.s_{2}=15\left\{\Sigma u_{1}^{2} u_{3}\right)\right\}=-3 p_{3}$,

$$
\begin{equation*}
\dot{x}=-\mathbb{I}^{1} \delta\left(p_{3}\right) . \tag{10}
\end{equation*}
$$

It will be convenient to retain the symbols g and k, whose values are given in (6) and (10). Again, because $u_{1}^{3} u_{2}=\frac{\left(u_{1}^{2} u_{3}\right)\left(u_{2}^{2} u_{1}\right)}{u_{2} u_{3}}$ we have, from (5) and (8),

$$
\begin{aligned}
u_{1}^{3} u_{2}= & \frac{g+a \sqrt{ } z}{g^{2}-a^{2} z}\left\{k+c \sqrt{ } z+(0+\varphi \sqrt{ } z) \sqrt{ } s_{i}\right\} \\
& \left\{k-c \sqrt{ } z+(\theta-\varphi \sqrt{ } \approx) \sqrt{ } s_{1}\right\} \\
= & A+A^{\prime} \sqrt{ } z+\left(A^{\prime \prime}+A^{\prime \prime \prime} \sqrt{ } z\right) \sqrt{ } s,
\end{aligned}
$$

where $A, A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}$, are rational. The value of A is

$$
\begin{equation*}
A=\frac{1}{g_{2}-a^{2} z}\left\{g\left(k^{2}-c^{2} z\right)+\operatorname{alez}\left(0^{2}-\varphi^{2} z\right)\right\} . \tag{11}
\end{equation*}
$$

Again, $u_{1}^{5}=\frac{\left(u_{1}^{2} u_{3}\right)^{2}\left(u_{2}^{2} u_{1}\right)}{\left(u_{2} u_{3}\right)^{2}}$. That is, from (() and (5) and (7).

$$
\begin{aligned}
& u_{\overline{1}}^{\overline{1}}= \frac{(g+a \sqrt{ })^{2}}{\left(g^{2}-a^{2} z\right)^{2}}\left\{2(k+c \sqrt{ } z)^{2}-\left(g^{2}-a^{2} z\right)(g+a \sqrt{ } z)\right. \\
&+2(z+c \sqrt{ } z)(\theta+\varphi \sqrt{ } z) \sqrt{ } s\} \\
&\left\{z-c \sqrt{ } z+(\theta-\varphi \sqrt{ } z) \sqrt{ } s_{1}\right\} \\
&=B+B^{\prime} \sqrt{ } z+\left(B^{\prime \prime}+B^{\prime \prime \prime} \sqrt{ } z\right) \sqrt{ } s ;
\end{aligned}
$$

where $B, B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}$, are rational. Now, by (4),

$$
S_{4}=20\left\{\Sigma\left(u_{1}^{3} u_{2}\right)\right\}+\frac{3}{10}\left(S_{2}^{2}\right)+60 u_{1} u_{2} u_{3} u_{4} .
$$

And $S_{4}=2 p_{2}^{2}-4 p_{4}$. Also $\Sigma\left(u_{1}^{3} u_{2}\right)=4 A$; and̀, by (6), $10 g=-p_{2} ;$ and, by (5), $u_{1} u_{2} u_{3} u_{4}=g_{2}-a_{2} \approx$. Therefore

$$
\begin{equation*}
p_{4}=-20 A+5 g^{2}+15 a^{2} z \tag{1,2}
\end{equation*}
$$

$$
\begin{aligned}
\text { Again, } S_{5}= & 5\left\{\Sigma\left(u_{1}^{5}\right)\right\}+\frac{2}{3}\left(S_{2} S_{3}\right)+50\left\{\Sigma\left(u_{1} u_{3}^{2} u_{4}^{2}\right)\right\} . \\
& \text { And } \Sigma\left(u_{1}^{5}\right)=4 B, S_{2} S_{3}=6 p_{2} p_{3}=1200 g k, \text { and } \\
\Sigma\left(u_{1} u_{3}^{3} u_{4}^{2}\right)= & u_{1} u_{4}\left(u_{2}^{2} u_{1}+u_{3}^{2} u_{4}\right)+u_{2} u_{3}\left(u_{1}^{2} u_{3}+u_{4}^{2} u_{2}\right) .
\end{aligned}
$$

Therefore $S_{5}=20 B+1000 \mathrm{gk}-200 \mathrm{acz}$.

$$
\text { But } S_{5}-5 p_{2} p_{3}+5 p_{5}=S_{5}-1000 \mathrm{~g} / \mathrm{c}+5 p_{5}=0
$$

Therefore

$$
\begin{equation*}
p_{5}=-4 B+40 c c z \tag{13}
\end{equation*}
$$

The values of p_{4} and p_{5} in (12) and (13) make the quintic

$$
\begin{align*}
F(x) & =x^{5}+p_{2} x^{3}+p_{3} x^{2}+\left(5 g^{2}+15 \iota^{2} z-20 A\right) x \\
& +(40 a c z-4 B)=0 . \tag{14}
\end{align*}
$$

§4. Assuming the coefficients p_{2}, p_{3}, etc., in (1), to be known, the coefficients in the equation $F(x)=0$ as exhibited in (14) irvolve six unknown quantities, namely, a, c, θ, ρ, e, h. The list does not
include z, g, k; because $z=1+e^{2}$; and g and k are known by (6) and (10). To find the six unknown quantities we have six equations, which are here gathered together.

$$
\begin{align*}
& p_{4}=-20 A+5 y^{2}+15 a^{2} z \\
& p_{5}=-4 B+40 a c z \\
& B^{\prime \prime}=1 \tag{15}\\
& B^{\prime \prime \prime}=0 \\
& h z\left(\theta^{2}+\varphi^{2} z+2 \theta \varphi\right)=k^{2}+c^{2} z-g\left(g^{2}-a^{2} z\right) \\
& h\left(\theta^{2}+\varphi^{2} z+2 \theta \varphi z\right)=2 k c-a\left(g^{2}-a^{2} z\right)
\end{align*}
$$

The first two of these equations are the equations (12) and (13). As to the third and fourth, it was proved in the "Principles" that the form of u_{1}^{5} is $m+n \sqrt{ } z+\sqrt{ }(h z+h \sqrt{ } z), m$ and n being rational. This is saying in other words that $B^{\prime \prime}=1$ and $B^{\prime \prime}=0$. The last two of the equations (15) are the equations (9).
§j. The criterion of solvability of the equation $F(x)=0$ may now be stated in a general way to be that the coefficients p_{2}, p_{3}, etc., must he so related that rational quantities, $a, c, \theta, \varphi, e, h$, exist satisfying the equations (15). We also see what requires to be done in order to find the roots of the equation $F(x)=0$ in terms of the given coefficients. By (3), r_{1} is known when $u_{1}, u_{2}, u_{3}, u_{14}$ are known. But, $B^{\prime \prime}$ and $B^{\prime \prime \prime}$ being respectively unity and zero,

$$
\begin{array}{ll}
u_{1}^{5}=B+B^{\prime} \sqrt{ } z+\sqrt{ } s, & u_{2}^{5}=B-B^{\prime} \sqrt{ } z+\sqrt{ } s_{1} \\
u_{4}^{5}=B+B^{\prime} \sqrt{ } z-\sqrt{ } s, & u_{3}^{5}=B-B^{\prime} \sqrt{ } z-\sqrt{ } s_{1} .
\end{array}
$$

Therefore, to find r_{1} we need to find B, B^{\prime}, z and h; which is equivalent to saying that we need to find the six unknown quantities $a, c, \theta, \varphi, e, h$. Before pointing out how this may be done in the most general case, I will refer to some special forms of soluble quintics.

OASE IN WHICH $u_{1} u_{4}=u_{2} u_{3}$.

\$6. A notable class of solvable quintics is that in which $u_{1} u_{4}=u_{2} u_{5}$. It includes, as was proved in the "Principles," all the Gaussian equations of the fifth degree for the reduction of $x^{12}-1=0, n$ prime. It includes also other equations, of which examples will presenity be given. Now, when $u_{1} u_{4}=u_{2} \varkappa_{3}$, the root of the quintic can be found in terms of the coefficients p_{2}, p_{3}, etc., even while these coefficients retain their general symbolic forms; in other words, the root can bo found in terms of p_{2}, p_{3}, etc., without definite numerical values being assigned to p_{2}, p_{3}, etc. This I proceed to show.
§7. By (5), because $u_{1} u_{4}=u_{2} u_{3}, a=0$. Thus, one of the six unknown quantities is determined, while we have still the six equations (15) to work with. It might be sufficient to say, that, from six equations five unknown rational quantities can be found. I will recur to this idea; but in the meantime the following line of reasoning may be pursued. From (11), $A=\frac{k^{2}-c^{2} z}{g}$. Therefore equation (12) becomes

$$
\begin{equation*}
g p_{4}=-20\left(k^{2}-c^{2} z\right)+5 g^{3} \tag{16}
\end{equation*}
$$

Also, because $a=0$, equations (7) being kept in view, $u_{1}^{5}=\frac{1}{g^{2}}$

$$
\left.i^{2}\left(k^{2}-c^{2} z\right)(k+c \sqrt{ } z)-g^{3}(k-c \sqrt{ } z)+2(k+c \sqrt{ } z)\left(\theta^{2}-\varphi^{2} z\right) h e \sqrt{ } z\right\}
$$

$$
\left.+B^{\prime \prime}+B^{\prime \prime \prime} \sqrt{ } z\right) \sqrt{ } s
$$

$\therefore B g^{2}=k\left\{2\left(k^{2}-c^{2} z\right)-g^{3}\right\}+2 c h e z\left(\theta^{2}-\varphi^{2} z\right)$
and $B^{\prime} y^{2}=c\left\{2\left(k^{2}-c^{2} z\right)+g^{3}\right\}+2 k h e\left(\theta^{2}-\varphi^{2} z\right)$;

$$
\begin{align*}
\cdot & u_{1}^{5}=\frac{1}{g^{2}}\left[k\left\{2\left(k^{2}-c^{2} z\right)-g^{3}\right\}+2 c h e z\left(\theta^{2}-\varphi^{2} z\right)\right] \\
+ & \frac{\sqrt{ } z}{g_{2}}\left[c\left\{2\left(k^{2}-c^{2} z\right)+g^{3}\right\}+2 k h e\left(\theta^{2}-\varphi^{2} z\right)\right]+\sqrt{ } s
\end{align*}
$$

Substitute in the second of equations (15) the value of B that has been obtained. Then

$$
\begin{equation*}
g^{2} p_{5}=-4 \pi\left\{2\left(k^{2}-c^{2} z\right)-g^{3}\right\}-8 \operatorname{ch} \epsilon z\left(\theta^{2}-\varphi^{2} z\right) \tag{18}
\end{equation*}
$$

The values of $B^{\prime \prime}$ and $B^{\prime \prime \prime}$ are

$$
\left.\begin{array}{l}
B^{\prime \prime} e g^{2}=\theta\left\{M+2 e\left(k^{2}-c^{2} z\right)\right\}-\varphi z N=e g^{2} \tag{19}\\
B^{\prime \prime \prime} e g^{2}=\theta N-\varphi\left\{M-2 e\left(k^{2} c^{2} z\right)\right\}=0
\end{array}\right\}
$$

$$
\text { where } M=-2\left(k^{2}+c^{2} z\right)+g^{3}+4 k c z
$$

which may be written $M=5 k c \approx-P$,

$$
\begin{equation*}
\text { and } N=2\left(k^{2}+c^{2} z\right)-g^{3}-4 k c \tag{20}
\end{equation*}
$$

which may be written $N=P-4 k c$.
The two equations (19) give us
$\left.\theta\left\{M L^{2}-\approx N^{2}-4 e^{2}\left(k^{2}-c^{2} z\right)^{2}\right\}=e g^{2}\left\{M-2 e\left(k^{2}-c^{2} z\right)\right\},\right\}$
$\varphi\left\{M^{2}-z N 2-4 e^{2}\left(k^{2}-c^{2} z\right)^{2}\right\}=e y^{2} N$.
Therefore

$$
\begin{equation*}
\frac{\theta}{\varphi}=\frac{M-2 e\left(k^{2}-c^{2} z\right)}{N} \tag{21}
\end{equation*}
$$

Equating the value or $\frac{\theta^{2}+\varphi^{2} z+2 \theta \varphi}{\theta^{2}+\varphi^{2} z+2 \theta \varphi z}$ obtained from (21) with that derived from the last two of equations (15),

$$
\begin{align*}
& \frac{k^{2}+c^{2} z-g^{3}}{2 k c z}= \\
& \frac{\left\{M-2 e\left(k^{2}-c^{2} z\right)\right\}^{2}+N^{2} z+2 N\left\{M-2 e\left(k^{2}-c^{2} z\right)\right\}}{\left\{M-2 e\left(k^{2}-c^{2} z\right)\right\}^{2}+N^{2} z+2 N z\left\{M-2 e\left(k^{2}-c^{2} z\right)\right\}} \tag{22}
\end{align*}
$$

The coefficients p_{2}, p_{3}, etc., in the equation $F^{\prime}(x)=0$, being given, g and k are known by (6) and (10). Therefore, by (16), $c^{2} z$ is known. Then (22) will be found to be a quadratic equation determinative of c. For, keeping in view the value of P in (20), (22) may be written

$$
\begin{aligned}
& \frac{k^{2}+c^{2} z-g^{3}}{2 k c^{2} z}= \\
& \frac{\left\{4\left(k^{2}+c^{2} z\right)^{2}+P^{2}\right\}-8 k P c-16 k\left(k^{2}-c^{2} z\right)(c e)}{\left\{4\left(k^{2}-c^{2} z\right)^{2}-16 k^{2} c^{2} z-P^{2}\right\} c+8 k c^{2} z P-4\left(k^{2}-c^{2} z\right) P(c e)}
\end{aligned}
$$

Because $g, k, c^{2} z$ and P are known, this equation is of the form

$$
H(c e)=K c+L
$$

where H, K, L, are known. Therefore, since $c^{2} e^{2}=c^{2} z-c^{2}$,

$$
c^{2}\left(H^{2}+K^{2}\right)+2 K L c+\left(L^{2}-H^{2} c^{2} z\right)=0
$$

from which c is known. Therefore, since $c^{2} z$ is known, z is known. Therefore e is known. Therefore, by (21), θ and φ are known. Therefore, by (18) or either of the equations (9), h is known. Therefore, by (17), u_{1}^{5} is known. In like manner, u_{2}^{5}, u_{9}^{5} : u_{4}^{5}, are known. Hence finally, by (3), r_{1} is known.
§8. Example First. I will now give some numerical verifications of the theory. The Gaussian equation of the fifth degree for the reduction of $x^{11}-1=0$, when deprived of its second term, is

$$
x^{5}-\frac{22}{5} x^{3}-\frac{11}{25} x^{2}+\frac{11 \times 42}{125} x+\frac{11 \times 89}{3125}=0
$$

When a root of this equation is expressed as in (1), the value of r_{1}, as given by Lagrange, is

$$
u_{1}^{5}=\frac{11}{4(5)^{5}}\{-89-25 \sqrt{ } 5+5(19-9 \sqrt{ } 5)(-5-2 \sqrt{ } 5)\}
$$

which, reduced to the form that we have adopted, is
$u_{1}^{5}=\frac{11}{4(5)^{5}}\left\{-89+25 \times \frac{89}{41} \sqrt{ }\left(\frac{5 \times 41^{2}}{89^{2}}\right)\right\}+\sqrt{ }(h z+h \sqrt{ } z) ;$
where $h=-\frac{11^{2} \times 89^{2}}{8 \times 41 \times(5)^{3}}, \sqrt{ } z=-\frac{41}{89} \sqrt{ } 5$, and $e=-\frac{22}{89}$.
We have to show that this is the result to which the equations of the preceding section lead. The simplest way will be to find g, k and $c^{2} z$ by means of (6), (10) and (16), and then to take the values of e and $\sqrt{ } \approx$ given above, and to substitute them in equation (22). If the theory is sound, the equation ought in this way to be satisfied. When this equation has been satisfied, it will be unnecessary to pursue the verification farther. Because

$$
p_{2}=-\frac{22}{5}, \text { and } p_{3}=-\frac{11}{25}, g=\frac{11}{25} \text { and } k=\frac{11}{20 \times 25}
$$

From (18), taken in connection with (21), che must be negative.
Therefore

$$
\begin{gathered}
c=-\frac{11 \times 89}{4 \times 25 \times 41}, k c=-\frac{89}{80 \times 41}\left(\frac{11}{25}\right)^{2} \\
k c z=-\frac{41}{16 \times 89}\left(\frac{11}{25}\right)^{2}, k^{2}-c^{2} z=-\frac{31}{100}\left(\frac{11}{25}\right)^{2} \\
M=-\frac{2716}{89 \times 100}\left(\frac{11}{25}\right)^{2}, N=\frac{1224}{41 \times 100}\left(\frac{11}{25}\right)^{2} \\
M-2 e\left(k^{2}-c^{2} z\right)=-\frac{4080}{89 \times 100}\left(\frac{11}{25}\right)^{2}
\end{gathered}
$$

These values reduce the equation (22) to the identity

$$
\frac{89}{41}=\frac{89}{41}\left\{\frac{41\left(4080^{2}+5 \times 1224^{2}\right)-89(2448 \times 4080)}{89\left(4080^{2}+5 \times 1224^{2}\right)-205(2448 \times 4080)}\right\}
$$

§9. Example Second. The example that has been given is one in which the auxiliary biquadratic is irreducible, I will now take an example,

$$
\begin{equation*}
x^{5}+10 x^{3}-80 x^{2}+145 x-480=0 \tag{23}
\end{equation*}
$$

in which the auxiliary biquadratic has a sub-auxiliary quadratic. When the root of the equation (23) is put in the form (1),

$$
\begin{aligned}
& u_{1}=(1+\sqrt{ } 2)^{\frac{1}{5}}, u^{4}=(1-\sqrt{ } 2)^{\frac{1}{5}} \\
& u_{2}=(1+\sqrt{ } 2)(1+\sqrt{ } 2)^{\frac{2}{5}} \\
& u_{3}=(1-\sqrt{ } 2)(1-\sqrt{ } 2)^{\frac{2}{5}}
\end{aligned}
$$

the product of the roots $(1+\sqrt{ } 2)^{\frac{1}{8}}$, $(1-\sqrt{ } 2)^{\frac{1}{5}}$, being -1 . Putting β for 28560, and λ for 28562,

$$
\begin{aligned}
& g=-1, k=4, c \sqrt{ } z=-3, z=\frac{\dot{\lambda}^{2}}{\beta^{2}}, c=\frac{3 \beta}{\lambda}, \\
& k^{2}+c^{2} z=25, k c=\frac{12 \beta}{\lambda}, k c z=\frac{12 \lambda}{\beta}, \\
& P=2\left(k^{2}+c^{2} z\right)-g^{3}=51, \\
& M=\frac{48 \lambda-51 \beta}{\beta}, N=\frac{51 \lambda-48 \beta}{\lambda}, \\
& M-2 e\left(k^{2}-c^{2} z\right)=\frac{48 \lambda-51 \beta+14 \times 338}{\beta} .
\end{aligned}
$$

These values cause (22) to become

$$
\frac{13}{12}=\frac{\lambda\left\{Q^{2}+(51 \lambda-48 \beta)^{2}\right\}+2 \beta(51 \lambda-48 \beta) Q}{\beta\left\{Q^{2}+(51 \lambda-48 \beta)^{2}\right\}+2 \lambda(51 \lambda-48 \beta) Q}
$$

where $Q=48 i-51 \beta+14 \times 338$. This may be written

$$
\frac{13}{12}=\frac{H \lambda+2 K_{\beta}}{H_{\beta}+2 K \grave{\lambda}} .
$$

In order that this equation may subsist, it is necessary that

$$
\begin{gathered}
H(13 \beta-12 \lambda)=2 K(12 \beta-13 \lambda) ; \\
\text { or } \frac{H}{2}\left(\frac{\beta-24}{2}\right)=-\frac{K(\beta+26)}{2} .
\end{gathered}
$$

But $H=(-80852)^{2}+(85782)^{2}=6537045904+7358551524$ $=13895597428 ;-K=(80852)(85782)=6935646264 ; \frac{\beta-24}{2}$
$=14268 ; \frac{\beta+26}{2}=14293 ;$ and $6947798714 \times 14268=6935646264$
$\times 14293=99131192051352$.
§10. Example Third. I will finally take an example,

$$
\begin{equation*}
x^{5}+20 x^{3}+20 x^{2}+30 x+10=0 \tag{24}
\end{equation*}
$$

in which the roots of the auxiliary biquadratic are all rational. By (6) and (10) and (16), $g=-2, k=-1, c^{2} z=0$. Therefore the denominator of the expression on the left of (22) is zero, while the numerator is not zero. Therefore the denominator of the expression on the right of (22) is zero. Or, $-g^{6}+4 k^{2} g^{s}-S e h^{4}+4 e g^{8} k^{2}=0$. Therefore $e=-\frac{12}{5}$. Therefore $z=\left(\frac{13}{5}\right)^{2}$, and $c=0$. Hence $M=-10, N=10$; and, if

$$
\begin{gathered}
D=M^{2}-z N^{2}-4 e^{2}\left(k^{2}-c^{2} z\right)^{2} \\
D=-104 e^{2} . \quad \text { Therefore, by }(21), \theta=-\frac{1}{1.2}
\end{gathered}
$$

$\varphi=\frac{25}{12 \times 13}, \theta^{2}-\varphi^{2} z=-\frac{1}{6} . \quad$ Therefore by $(9), \lambda=\frac{225}{26}$.
Therefore using the symbols, B, B^{\prime}, as in $\S 3$,

$$
\begin{aligned}
& B=-\frac{5}{2}, B^{\prime}=-\frac{45}{26}, s=\hbar(z+\sqrt{ } z)=81 \\
& s_{1}=\hbar(z-\sqrt{ } z)=36
\end{aligned}
$$

Therefore $\quad u_{1}^{5}=-7+9=2, u_{4}^{5}=-7-9=-16$,

$$
u_{2}^{5}=2-6=-4, u_{3}^{5}=2+6=8
$$

Hence, by (3),

$$
r_{1}=2^{\frac{1}{5}}-2^{\frac{2}{5}}+2^{\frac{3}{5}}-2^{\frac{4}{5}}
$$

which is the solution of the equation (24).
§11. It was pointed out in $\S 7$ that, in the case we are considering, there are six equations and five unknown quantities. All the unknown quantities may be eliminated, and an equation $p^{\prime}=0$ obtained; where p^{\prime} is a rational function of the coefficients p_{2}, p_{3}, etc. This elimination has been performed, under the direction of the author of the paper, by Mr. Warren Reid of Toronto, with the following result. Putting P, as in $\S 7$, for $2\left(k^{2}+c^{2} z\right)-g^{3}$, let

$$
\begin{aligned}
& A=-2 k c^{2} z g^{3}\left\{8\left(k^{2}+c^{2} z\right)-3 g^{3}\right\} \\
& B= g^{3}\left\{16 k^{2} c^{2} z+4\left(k^{2}+c^{2} z\right)^{2}-5 g^{3}\left(k^{2}+c^{2} z\right)+g^{6}\right\} \\
& D=-4\left(k^{2}-c^{2} z\right)\left\{-g^{6}+3 g^{3}\left(k^{2}+c^{2} z\right)-2\left(k^{2}-c^{2} z\right)^{2}\right\} \\
& A_{1}=-8 k c^{2} z\left[32 k c^{2} z\left(k^{2}-c^{2} z\right)-P\left\{p_{5} g^{2}+8 k\left(k^{2}-c^{2} z\right)-4 k g^{3}\right\}\right] \\
& B_{1}= \\
&\left\{p_{5} g^{2}+8 k\left(k^{2}-c^{2} z\right)-4 k g^{3}\right\}\left[-32 k^{2} c^{2} z+g^{3}\left\{4\left(k^{2}+c^{2} z\right)-g^{3}\right\}\right] \\
&+64 k c^{2} z P\left(k^{2}-c^{2} z\right) \\
& D_{1}=-16 k c^{2} z g^{3}\left\{4\left(k^{2}+c^{2} z\right)-g^{3}\right\} \\
&+4 P\left(k^{2}-c^{2} z\right)\left\{p_{5} g^{2}+8 k\left(k^{2}-c^{2} z\right)-4 k g^{3}\right\} .
\end{aligned}
$$

Then, since $10 g=-p_{2}$, and $20 k=-p_{3}$, and

$$
20 c^{2} z=p_{4} g-5 g^{3}+20 k^{2}
$$

the quantities $A, B, D, A_{1}, B_{1}, D_{1}$, are known rational functions of p_{2}, p_{3}, etc. And

$$
\begin{align*}
& \left(B^{2}+D^{2}\right)\left(A_{1}^{2}-D_{1}^{2} c^{2} z\right)-\left(B_{1}^{2}+D_{1}^{2}\right)\left(A^{2}-D^{2} c^{2} z\right) \\
+ & 4\left\{A B\left(B_{1}^{2}+D_{1}^{2}\right)-A_{1} B_{1}\left(B^{2}+D^{2}\right\}\right. \\
& \left\{A B\left(A_{1}^{2}-D_{1}^{2} c^{2} z\right)-A_{1} B_{1}\left(A^{2}-D^{2} c^{2} z\right)\right\}=0 \tag{25}
\end{align*}
$$

$\S 12$. To verify this result, the Gaussian equation in $\S 8$ may be used. Here

$$
\begin{aligned}
A & =-\frac{11^{6}}{2^{5} \times 5^{12}}\left(\frac{11^{3}+11^{2} \times 19}{5^{6}}\right)=-\frac{11^{8} \times 3}{2^{4} \times 5^{17}} \\
B & =\frac{11^{3}}{5^{6}}\left(\frac{11^{4}}{2^{4} \times 5^{9}}+\frac{3^{4} \times 7^{2} \times 11^{4}}{2^{4} \times 5^{12}}-\frac{9 \times 35 \times 11^{5}}{8 \times 5^{12}}+\frac{11^{6}}{5^{12}}\right) \\
& =-\frac{9 \times 11^{7}}{4 \times 5^{16}}
\end{aligned}
$$

$$
\begin{aligned}
D & =\frac{11^{2} \times 31}{5^{18}}\left(-11^{6}+\frac{7 \times 27 \times 11^{5}}{8}-\frac{31^{2} \times 11^{4}}{8}\right) \\
& =\frac{3 \times 31 \times 11^{6}}{4 \times 5^{18}} \\
A_{1} & =\frac{11^{8}}{2^{6} \times 5^{18}}(19+31)=\frac{11^{8}}{2^{5} \times 5^{16}} \\
B_{1} & =\frac{11^{7}}{2^{4} \times 5^{18}}\left(-5^{3}+44 \times 41-19 \times 31\right)=\frac{11^{7} \times 109}{8 \times 5^{17}} \\
D_{1} & =-\frac{11^{8}}{4 \times 5^{12}}\left(\frac{63 \times 11^{2}}{2 \times 5^{6}}-\frac{11^{3}}{5^{6}}\right)-\frac{11^{7} \times 19 \times 31}{8 \times 5^{18}} \\
\therefore & =-\frac{11^{7} \times 26}{5^{17}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
B^{2}+D^{2}= & \frac{9 \times 11^{12} \times 41}{8 \times 5^{30}}, B_{1}^{2}+D_{1}^{2}=\frac{11^{4} \times 11029}{2^{6} \times 5^{33}} \\
& A^{2}-D^{2} c^{2} z=-\frac{9 \times 11^{14} \times 89}{2^{6} \times 5^{35}} \\
& A_{1}^{2}-D_{1}^{2} c^{2} z=-\frac{11^{16} \times 40139}{2^{10} \times 5^{37}}
\end{aligned}
$$

By the substitution of these values, equation (25) becomes

$$
\begin{aligned}
& \frac{11^{56} \times 3^{4}}{2^{26} \times 5^{136}}\left\{6265333^{2}-2886277 \times 13600357\right\}= \\
& \quad \frac{11^{56} \times 3^{4}}{2^{26} \times 5^{136}}\{39254397600889-39254397600889\}=0
\end{aligned}
$$

§13. As an additional verification, the equation

$$
x^{5}+10 x^{3}-80 x^{2}+145 x-480=0
$$

may be taken. Here, by $\S 9$,

$$
g=-1, k=4, k^{2}-c^{2} z=7, k^{2}+c^{2} z=25
$$

Therefore

$$
\begin{aligned}
& A=2^{3} \times 3^{2} \times 7 \times 29, B=-2 \times 5 \times 17 \times 29 \\
& D=2^{3} \times 3 \times 7 \times 29 \\
& A_{1}=-2^{9} \times 3^{4} \times 141, B_{1}=2^{4} \times 3 \times 17 \times 2393 \\
& D_{1}=-2^{7} \times 3^{2} \times 13 \times 19 \\
& B^{2}+D^{2}=2^{2} \times 29^{2} \times 14281 \\
& B_{1}^{2}+D_{1}^{2}=2^{8} \times 3^{2} \times 5 \times 338016989 \\
& A^{2}-D^{2} c^{2} z=0 \\
& A_{1}^{2}-D_{1}^{2} c^{2} z=2^{14} \times 3^{6} \times 5 \times 7 \times 17^{2} \times 277
\end{aligned}
$$

By the substitution of these values, equation (25) becomes

The Trinomial Quintic $x^{5}+p_{4} x+p_{5}=0$.
§14. In this case, by (6) and (10), $g=0$, and $k=0$. Therefore, by (11), $A=-\frac{h e\left(\theta^{2}-\varphi^{2} z\right)}{a}$. Therefore, by (12),

$$
\begin{equation*}
p_{4}=\frac{20 h e\left(\theta^{2}-\varphi^{2} z\right)}{a}+15 a^{2} z \tag{26}
\end{equation*}
$$

Also, by $\S 3, B=\frac{1}{a^{2} z}\left\{-a^{3} z^{2} c+2 h e c z\left(\theta-\varphi^{2}\right)\right\}$. Therefore, by (13), W

$$
\begin{equation*}
p_{5}=-\frac{8 h e c}{a^{2}}\left(\theta^{2}-\varphi^{2} z\right)+44 a c z \tag{27}
\end{equation*}
$$

Hence the quintic becomes

$$
\begin{gather*}
F(x)=x^{5}+\left\{\frac{20 h e\left(\theta^{2}-\varphi^{2} z\right)}{a}+15 a^{2} z\right\} x \\
\quad+\left\{-\frac{8 h e c}{a^{2}}\left(\theta^{2}-\varphi^{2} z\right)+44 a c z\right\}=0 \tag{28}
\end{gather*}
$$

The criterion of solvability of a trinomial quintic of the kind under consideration is therefore that the coefficients p_{4} and p_{5} be related in the manner indicated in the form (28); while at the same time the last four of the equations (15), modified by putting $g=k=0$, subsist between the rational quantities $a, c, e, h, 0, \varphi$. From these data, the three following equations may be deduced, v being put for $\frac{\dot{\dot{c}}^{2}}{\dot{a}^{3}}$:

$$
\left.\begin{array}{l}
8 e v^{3}-4 z v^{2}+z(3-4 e) v-z^{2}=0 \\
\frac{2 p_{4}}{a^{2}}+\frac{5 p_{5}}{a c}=250 z \tag{29}\\
4 v\left(z e+4 z v-8 v^{2}\right)=\left(-3 z+\frac{p_{4}}{5 a^{2}}\right)\left\{z+4 v(e-1)+8 v^{2}\right\}
\end{array}\right\}
$$

The first of these equations is obtained from a comparison of the two equations (9), the second is obtained by putting p_{t} and p_{5} respectively equal to the values they have in (28) ; and the third is obtained by putting p_{s} equal to the coefficient of the first power of x in (28).

- §15. If any rational values of e and v can be found satisfying the first of equations (29), let such values be taken. Then, from the second and third of (29), a^{2} and ac can be found. Therefore a and c quintic are obtained.
§16. For example, the three equations (29) are satisfied by the values.

$$
\begin{align*}
& e=\frac{1}{2}, z=v=\frac{5}{4}, c_{0}=\frac{25}{2} \\
& a=5, . \cdot \theta=0, \varphi=-\frac{4}{75}, h: \frac{45 \times 25^{3}}{16}
\end{align*}
$$

) When these values are substituted in (28), the quintic becomes
i)

$$
x^{5}+\frac{625 x}{4}+3750-0
$$

Then the values of $u_{1}^{5}, u_{2}^{5}, u_{3}^{5}, u_{4}^{5}$, obtained from :he expression for u_{1}^{5}, in $\S 3$, are

$$
\begin{aligned}
& u_{1}^{5}=\frac{625}{4}\left\{-1-\sqrt{ }\left(\frac{5}{4}\right)+\frac{3}{\sqrt{ } 5} \sqrt{ }\left(\frac{5}{4}+\sqrt{\frac{5}{4}}\right)\right\} \\
& u_{4}^{5}=\frac{625}{4}\left\{-1-\sqrt{\left.\left(\frac{5}{4}\right)-\frac{3}{\sqrt{ } 5} \sqrt{ }\left(\frac{5}{4}+\sqrt{\frac{5}{4}}\right)\right\}}\right. \\
& u_{2}^{5}=\frac{625}{4}\left\{-1+\sqrt{ }\left(\frac{5}{4}\right)-\frac{3}{\sqrt{ } 5} \sqrt{ }\left(\frac{5}{4}-\sqrt{\frac{5}{4}}\right)\right\} \\
& u_{3}^{5}=\frac{625}{4}\left\{-1+\sqrt{\left.\left(\frac{5}{4}\right)+\frac{3}{\sqrt{ } 5} \sqrt{ }\left(\frac{5}{4}-\sqrt{\frac{5}{4}}\right)\right\}} .\right.
\end{aligned}
$$

Hence, $r_{1}=u_{1}+u_{2}+u_{3}+u_{4}=-1.52887-2.25035+$ $2.48413-3.65639=-4.95148$.

When any Relation is Assumed between the Six Unknown Quantities.

§17. In the case in which $u_{1} u_{4}$ was taken equal to $u_{2} u_{3}$ a relation was in fact assumed betwixt the six unknown quantites $a, c, e, h, \theta, \varphi$; for, as we saw, to put $u_{1} u_{4}=u_{2} u_{3}$ is tantamount to putting $a=0$. Hence, as was noticed in $\S 7$, we had only five unknown quantities to be found from six equations. Now, when any relation whatever is assumed betwixt the six unknown quantities, the root of the quintic can be found in terms of the given coefticients p_{2}, p_{3}, etc., without any definite numerical values being assigned to the coefficients, because six rational quantities can always be found from seven equations.

The General Case.

§18. We have hitherto been dealing with solvable quintics, assumed to be subject to some condition additional to what is involved in their solvability. We have now to consider how the general case is to be dealt with. That is to say, we here make no supposition regarding the equation of the fifth degree $F(x)=0$ except that it wants the second term and is solvable algebraically. In this case it is impossible to find the roots in terms of the coefficients p_{2}, p_{3}, etc., while these coefficients retain their geneial symbolic forms. But the equations in $\S 3$ enable us to find the roots when the coefficients receive any definite numerical values that render the equation solvable. For, we have the six equations (15) to determine the six unknown quantities ' $a, c, e, h, \theta, \varphi$; and we can eliminate five of the unknown quantities,
and obtain an equation involving only one unknown quantity. The unknown quantity appearing in this equation has a rational value; but there are known methods of finding the rational roots of any algebraical equation with definite numerical coefficients. Therefore the unknown quantity can be found. In this way all the six unknown quantities $a, c, e, h, 0, \varphi$, can be found. Hence the roots of the quintic can be found.
§19. Note.-From my friend, Mr. J. C. Glashan, of Ottawa, who read in manuscript the paper on the "Principles of the Solution of Equations of the Higher Degrees," but did not see the present paper .on the "Resolution of Solvable Equations of the fifth Degree," I learn that, setting out from propositions demonstrated in the "Principles," he has arrived at important conclusions in the theory of Quintics, which will be made public without delay; but he has not communi cated to me either his method or the results he has obtained.

PROCDRDINGS

OF

THE CANADIAN INSTITUTE,

SESSION 1884.

NINTH ORDINARY MEETING.

The Ninth Ordinary Meeting of the Session 1:83-4 was held on Saturday, January the 12 th, the President in the chair.

The minutes of last mecting were read and confirmed.
Mr. James Bain, jun. and Mr. John Notman, were appointed to represent the Institute on the Board of the Industrial Exhibition Association.

The Rev. William Clark of Trinity College was elected a member.

The following list of donations and exchanges were presented:

1. Transactions of the Royal (icological Society of Cornwall, Vol. X, Part $\overline{5}$.
2. Science, Vol. II, Nos. 46, 47 and 4 S .
3. The Ornithologist and Oölogist, for Jam., ISSt.
4. Proceedings of the Royal (ieographical Society for December, $1 S 53$.
5. Transactions of the Royal Scottish Society of Arts, Vol. NI, Part 1.
6. Science Record, Vol. II, Nĩ. ㄴ, Dec. 15th, 1583.
7. Historical Collections of the Esisex Instatute, Vol. NX, Nos. 1 to 9, Jan. to Sept., 1SS3.
S. Journal of the Royal Microsenpical Socicty, Vol. III, Part 6, Dec., 1583.
8. Journal of the Franklin Institute, for Jan., 1SS4.
9. Journal of the Transactions of the Victoria Institute, Vol._XVII, No. 67.
10. The Canadian Practitioner, Jan., 1SS4.
11. Micrometry, Reprinted from the Procedings of the American Society of Microscopists, Chicago Mecting, 1 SS3.
12. An Examination of some Controverted Points of the Physiology of Voice, by J. Wesley Mills, ML. A., M. D. Read before the American Association for the Advancenent of Science at Montreal, Aug., 1SS?.
13. Peocedings of the Philocophical Society of tilasgow, Vol. XIV.
14. The Canadian Entomologist for Nov., 1S53.
15. Bulletin de la societé (rèologique de France, Vol. NII, No. 1.
16. Mémoires des Travaux de la Societé des Ingénieurs (ivils for Oct. 1883.
17. Transations of the Manchester treologica! suciety, Vul. LVII, Part 11.

Prof. R. Ramsay Wright, then presented the substance of a paper on the "Nervous System of the Cat-fish." Special attention was directed to the 'clavate' cells; of the epidermis, to the branching of the fifth nerve, and to the relation existing between the air-bladder and the auditory organ. The paper is the first of a series on the cat-fish "uiurecs cotus) and will appear in a subsequent fasciculus of the Proceedings.

TENTH ORDINARY MEETINGG.

The Tenth Ordinary Meeting of the Session 1883 -'S4, was held on Saturday, the Igth of January, the lresident in the chair.

The minutes of last meeting were read and confirmed.
The following gentlemen were elected members of the In-stitute:-R. E. Kingsford, M.A.; Mr. D. O'Brooke, and Mr. J. Alfred Wilson.

The following list of donations and exchanges was read by the Hon. Secretary:

1. Science, Vol. III., No. 49, for January 11, 1584.
2. Journal of Speculative Philosophy, Vol. XVII., No. 4, Octuber, $15 S 3$.
3. Proceedings of the Royal Geographical Society, Vol. VI., Nio. 1, Jan., 1SSt.
4. 'rribher's American, European, aud Uriental Literary Record, Vol. IN'., Nos. 9 to lo, September to October, $1 \$ 83$.
Mr. W. Waugh Lauder then read a paper entitled, "The History of Musical Instruments." The instruments specially noticed were the Piano, Violin and Organ. In the discussion which followed, Mr. Notman, Mr. Wm. Anderson, Mr. Geo. E. Shaw, Mr. Paul Frind and Mr. Geo. Murray, took part.

eleventh ordinary meeting．

The Eleventh Ordinary Meeting of the Session I883－＇84， was held on Saturday，January the 26th，IS84，the Second Vice－President，Mr．Geo．Murray，in the chair．

The Minutes of last meeting were read and confirmed．
Mr．Stephen Nairn and Dr．John McConncll were elected members of the Institute．

The following list of donations and exchanges was read by the Hon．Secretary ：
1．Science，Vol．III．，No．50，Jamary 1Sth，ISSt．
2．The Nontaly Weather Review for December．
3．Map of Winniper and environs，by Alan Maedougall，Esi．，C．E．，F．R．S．E． Presented by the author．
4．Proceedings of the B ston Society of Natural History，Vol．NXII．，Part 2， Nov．，1S5：2，to Feb．， 1583.
The President，Mr．J．M．Buchan，then read a paper entitled
＂Flora Hamiltonensis，＂a list of plants collected in the vicinity of Hamilton．

FLORA HAMILTONENSIS．

In preparing this list I have adopted the classification and nomen－ clature employed by Professor Gray，in the fifth edition of his Mannal．Plants，the：names of which are markel with an asterisk， are anmitted on the authority of the late Judge Leric．All plants included oceur within seventeen miles of Hamiiton：－
banuncllacee．
Clematis verticillaris，DC．Chedoke．
＂Virginiana，L．
Anemone cylindrica，Gras：
＂، Virginiana，L．
＂＂Pemnsylvamica，L．
＂، nemoros：a， I ．
nemorosa，L．，var．quin－ quefolia．Uaklands．
Hepatical triloba，Chaix．
acutaloba，DC：
－Thalictram anemonoides，Mx．
＂．dioicum，L．
＂Cornuti，L．
Ranunculus aquatilis，L．，var．tricho－ phyllus，Chaix． multiiidus，P＇ursh．
＂＂abortivus， L ．
＂sceleratus，L．

MANUNCL1．ADEA：－Continued．
Ranuneulus recurvatus，Poir．
＂Pemasyivanicus，L．Also
＂fascicularis，Muhl．Also
at Walkerton．
＂، repens， L ．
＂＂bulbosiss，L ． acris， L ．
Caltha palustris， L ．
Coptis trifolia，©alish．
Aquilegia Canadensis，L．
Delphinium Consolida，L．
Actaea spicata，L．var．rubra，Mx．
＂alba，Bigel．
magiomaceem．
Liriodendron tulipifera，L．
MEN！ミリ4：1：』лCE．E．
Menispermum（canadense，\dot{L} ．
berberipacese

* Berberis vulgaris, L.

Caulophyllum thalictroides, Mx.
Podophyllum peltatum, L.
nymphataces.
Nymphrea tuberosa, Paine.
Nuphar advena, Ait.
sarkacentacee.
Sarracenia purpurea, L. papaveracea.
Papaver argemone, L.
Chehdonium majus, L.
Sanguinaria Canadensis, L. fumariaceet.

* Adlumia cirrhosa, Raf. Rare.

Dicentra cucuilaria, DC.
" Cauadensis, DC.

* Fumaria officinalis, L. Burlington Beach.
grucifere.
Nasturtium officinale, R. Br.
" silvestre, R. Br., Dundas.
"، palustre, DC.
pidum.
Dentaria diphylla, Mx.
" heterophylla, Nutt.
" laciniata, Muhl.
Cardamine rhomboidea, DC.
* Cardamine rhomboidea, D)C. var. purpurea, 'Зorr.
* Cardamine patensis, L. Millgrove.
" hirsuta, L.
Arabis hirsuta, Scop.
" laevigata, DC.
" Canadensis, L.
Erysimum cheiranthoides, L.
Sisymbrium officinale, Scop.
caneseens, Nutt. Burlington Beach.
Brassica sinapistrum, Boissier.
" nigra, Gray.
Camelina sativa, Crant\%. Also at laris.
Capsella Bursa-pastoris, Moench.
Lepidium Virginicum, L.
" ruderale, L .
" campestre, L.
Cakile Americana, Nutt.
capparidacef.
Polanisia graveolens, Raf.
violacere.
Viola blanda, Willd.
"cucullata, Ait.
" "" " var. cordata.
*" sagittata, Ait. The Cemetery.
violacese-Continued.
Viola canina L. var. silvestris, Regel.
" rostrata, Pursh.
" Canadensis, L.
" pubescens, Ait.
cistacee.
Helianthemum Canadense, Mx.
Lechaea minor, Lam.
droseracee.
* Drosera rotundifolia, L. Ancaster. hypericaced.
* Hypericum Kalmianum, L.
ellipticum, Hook. Free. man's Lot.
"، perforatum, L.
"، corymbosum, Minhl.
" mutilum, L.
Elodes Virginica, Nutt.
caryophyllacee.
Saponaria officinalis, L.
* Silene intlata, smith.
: antirrhina, L.
" noctiflora, L.
Lychnis dithago. Lam.
Arenaria serpyllifolia, L. Also at St. Thomas.
"، strictia, Mx.
* " lateriflora, L. Burlington Beach.
Stellaria media. Smith.
" longittora, Muhl.
" longipes, Goldie.
Cerastium vulgatum, L .
" viscosum, L.
* " oblongifolium, Torr. [Query.]

Woons behind Captain
Nichols's farm.
" arvense, $\mathrm{l}_{\text {. }}$ portulac.aceme.
Portulaca oleracea, L .
" grandiflora, Hook.
Claytonia Virginica, L.
M.aNACESE.

Malva rotundifolia, L.
" moschata, L.
Abutilon A vicemne, Gaertn. Dundas.
Mouth of Stony (reek.
thilice.e.
'İilia Americana, L.
linacede.
Linum Virginianum, L.
geraniacere.
Geranium maculatum, L.
" pusillum, L.
" Robertianum L.

GERANIACEA-Continued.
Erodium Cicutarium, L'Her.
Impatiens pallida, Nutt.
" fulva, Niutt.
Oxalis stricta, L.
RUTACERE.
Xanthium Americanum, Mill. ANACARDIACEF.
Rhus typhina, I.
" toxicodendron, L.
" "، " var. radicans. Mountain, above Reservoir. VITACEN
Titis Labrusca, L. Mountain, East of Reservoir.
" cordifolia, Lam.
" cordifolia, Lam., var. riparia, Gray. This well-marked varicty is very common, but I have never scenit in either flower or fruit.
Ampelopsis quinquefolia, Mx.

RIMAMNACES.

t. . ${ }^{\text {Rhammus alnifolia, L'Her. Mill- }}$ grove.
Ceanothus Americanus, L. celastracere.
Celastrus scandens, I .
Enonymus Americanus L., var. oboरitus, Torr. and Gray.

SIPINDACERE.
Staphylea trifolia, L.
Acer spicatum, Lam.
" saccharimum, Wang.
" dasycarpum, Ehrhart.
" rubrum, L.
POLYGADACEAS.

* Polygala Nuttallii, Torr. and Gray. [Query.] Prince's Island. "، verticillata, L . " Senega, L. " paucifolia, Willd.
heguminose.
s. . Trifolium arvense, L. " pratense, L. " repens, L .
Melilotus ofincinalis, Willd. " alba, Lamm.
Medicago lupulina, L.
Robinia Pseudacacia, L.
Astragalus Canadensis, L. Cooperi, Gray.
Desmodium nudiflorum, DC.
acuminatum, DC.

WGCMMNSF-Continucd.

Dcsaioni.um cospiciatum, Torr. \& Gr. muiculatum, DC.
(:analense DC.

* Lespedezar repens, Torr, and (iray. The Dell, Ancaster.
* ". violacea, Pers. The Dell, Ancaster.
" hirta, Ell.
" capitata, Mx.
*Vicia hirsuta, Koch.
Lathyrus maritimus, Bigelow.
* " pratensis, l. Ancaster.
" ochroleucus, Hook.
" palustris, L .
" palustris, L., var. myrtifulus, Ciray. Also at Toronto.
Apios tuberosa, Moench
Phaseolus diversifolius, l'ers.
Amphicarpea monoica, Nutt.
* Baptisia tinctoria, R. Br.

ROSACEEE
Prunus Americana, Marshall.
" Pemusylvamica, L.
" Virginiana, L.
" serotina, Eh hart.

* Spirea salicifolia, 1.. Millgrove.

Gillema trifoliata, Moench.
Agrimonia Eupatoria, L.
Gemm album, Gimelin.
" strictum, Ait.
" rivale, L.
Waldstemial fragarioides, Tratt.
Potentilla Norsegica, 1.
" ${ }^{6}$ paradoxa, Nutt.
" Canadensis, L.
"A argentea, L. Also at Paris.
" anserina, L .
" palustris, scop.
Fragaria Virginiana, Ehrhart.
vesca, L.

* 3alibarda repens, L.

Rubus odoratus, L .
" trifiorus, Richardson.
" strigosus. Mx.
" occidentalis, I.
" villosus, Ait.
" Canadensis, L.
Rosa Carolina. L.
" lucida, Ehrhart.
" blanda, Ait.
" rubiginosa, L.

* " micrantha, Smith.

Cratagus oxyacantha, L. Spontaneons on bluff overlooking Dundas Marsh.
coccinea, L.

ROSACEA-Continued.
Crategus tomentusa, L.
if lomentera, L., viar. pyrifolia, Gray.
" Crus-lialli, L.
Pyrus coronaria, I.

* "، arbutifolia, I., var. melanocarpa. Millgrove Marsh.
66 aucupa:ia, Gertn. Apparently indigenous near Dundas Marsh.
Amelanchier ('an: densis, Torr. and (iray, var. Botryapium, Giray.
" ('atablensis. Torr. and (iray. var. rotundifolia, (xray.
C'anadensis, Torr. and (:ray, var. oblongifolia, firay.
" ('analensis, 'Torr. and Gray, var. with notched prtals $9-4$ feet high Howering a few days later than the preceding variety.

SA:IFRAGACE.E.

Ribes cynosbatio, 1.

* "، hirtellum, Mx.
" rotundifolium, Mx.
" lacustre, Poir.
" fioridum, I.
* " rubrum, l. Millgrove.

Saxifraga Virginiensis, Mx.
*Parnassia Caroliniana, Mx. Ancaster.
Mitella diphella. I.
" muda, I .
Tiarella cordifolia, I .

* Chrysosplenimu Ancricamum, Schwein. Ancoster.

CRASSTLACEEF.
Penthorum serloides, 1 .
Sedum ternatum, Mx, The Mountain.
" Telephium, L.
HAMAMELACE.E.
Hamamelis Virginica, L.
HAD.ORAGEA.
Myriophyllum spicatum, L.

* " virticullatum, L.
heterophyllam, Mx.
Waterdown Creck.
ONAGRACEAE.
Circæa Lutetiana, L.
" Alpina, L.
Epilobium angustifolium, I.
onagraces--Continued.
Epilobium coloratum, Muhl.
UEnothera biemis, I., var. grandiflora.
" biennis, J., var. muricata. pumila, L. Jand's Inlet.

LYTHRACERE.
Nesaca verticillati, H. B. K.
cocurbitacea.

* Sicyos angulatus, I.

Echinocystis lobata, Torr. and Gray.
In a thicket near Waterdown
Creek, and apparently indigenous.

CDBFILIAFERA:

* Hydrocotyle Americina, I. Ancas. ter.
Sanicula Canadensis, I.
" Marilmindica, L.
Heracleum lanatum, Mx.
Pastinaca sativa, I.
Archangelica atropurpurea, Hoffin.
Conioselinum Cinatense, 'Torr. and Gray.
*'Thaspium aurcum, Nutt. Prince’s Island.
Zizia integerrima, DC .
Cicuta maculata, I.
" bullifier:a, I.
Sinm lintare, λx
Cryptotirnia Canialensis, DC.
Osmorrhiza lougistylis, JC.
" brevistylis, DC.
Carum carui, 1.

> A MAA.IACESE.

Aralia racemosa, 1.
" nudicaulis, L.
" quinquefolia, Cray.
" trifolia, (iray.

CORNACEAS

Cornus Canadensis, L.
" Horida, L.
" circinata, L'Her.

* stolonifera, Mx.
" paniculata, L'Her.
" alternifolia, I..

CAPRIEOLIACEM.

* Linnea borealis, (ironov. Lake Medial.
Symphoricarpus raccmosus, Mx.
* Symphoricarpus vulgaris, Mx.
* Lonicera flava, sims.
" parviflora, Lam.
" hirsuta, Eaton.
" ciliata, Muhl.
Ionicera Tartarica, I. Afountain side, west of Queen Strect.

CAPRIFOLIACEA-Continued.
Diervilla tritida, Moench.
Triosteum pertoliatum, I.
Sambucus ('amalensis, L.
" Imbens, Mx.

* Viburnum nuedum, L., var. cassinoides. Millgrove.
"، pubescens, Pursh.
" acerifolium, L.
" Upulus, L. Also at Fullarton.
RUBIACEA.
Galium Aparine, L.
" aspiellum, Mx.
" trifidum, L.
" trifforum, MX.
" boreale, L.
" verum, 1 .
Cephalanthus occidentalis, L.
Mitchella repens, 1 .
DIPSACEE.
Dipsacus silvestris, Mill.
COMPOSITE.
Liatris cylindracen, Mx. cutting in Bulington Ralway Also at the Humber.
Eupatorium purpureum, L.
". perfoliatum, L.
"، ageratoides, L.
Aster corymbonus, Ait.
" macrophyllus, L.
" levis, L., var. lavigatus, Willd.
" levis, L., var. cyaneus, Hotim.
" azureus, Lindley.
* undulatus, L.
" cordifolius, I.
" sagittifolins, Willd.
" multiflorus, tit.
" Tradescanti, L.
" miser, 1.
" simplex, Willd.
" tenuifolius 1 . Also at Port
Rowan.
carneus, Nees.
puniceus, 1.
" Novre Anglie.
" graminifolius, Pursh.
" ptarmicoides, Torr. and Gray.
Erigeron Canadense. L.
Erigeron bellidifolium, L.
" Philadelphicum, I.
" annumm, Pers.
" strigosum, Iuhi.
Diplopappus umbellatus, Torr. and
Gray:
Solidago squarrosa, Muhl.
"، bicolor L.

COMPOSITA-Continued.
Solidago bicolor l. var. concolor.
" latifolia, L.
" caesia, l.

* " stricta, Ait.
" speciosa, Nutt.
: Virga-aureab. L., var humilis.
"* rigida, I.
"، patula, Muhl.
"، arguta, Ait., var. juncea.
" "، " " scabrella.
" Muhlenbergii, Torr. and (iray.
" altissima, I.
" ulmifolia, Muhl.
" vemoralis, Ait.
"، C'anadensis, I.
"" " " var. scabra.
" serotina, Ait.
"" gigantra, Ait.
" lancerlata, I.
Inula Helenium:, I.
Polymmia ('anadensis, I.
Ambrosia artemisiafolia, L .
Santhium strumarium, J., var. echinatum.
Nanthium spinosum, L.
Rudbeckia lacimiat:a, L. " hirta, I.
Helianthus strumosus, L . ". aivaricatus, I.
divaricatas, $1 .$, var. with leaves vhorled in threes. Prince's Island.
" decapetalus, L.
Bidens frondos:t, L.
" commata, Muhl.
." $\because \quad$ var. petiolata.
- cermaz, I.
" chrysanthemoides, Mx.
" Beckii, Torr.
* Helenium autumnale, I.

Naruta cotul:, IC.
Achillea millefolium. L.
Teucanthemum vulgare, Lam.
'lanacetum vulgare, L .
Artemiaja (amadensis, Mx.
Ginaphalinm decurrens, Ives. Also at Fulliarton.

* inaphalum molycephalum, Mx. ". uligipo:um, L.
Antennaria margaritacea, K. Broypu. plantacinifolia, Hook.
Erechthites hieracifolia, Raf.
senecio vulgaris, L.
* Senecio palustris, Hook. Roadside, Burlington.
conirositw-Continued.
Cirsium lanceolatum, Scop.
" discolor, Spreng.
" arvense, Scop.
Onopordon Acanthinm, $I_{\text {. }}$.
Lappa officinalis, Allioni.
* Lampsana communis, L.

Leontodon autummale, L.
Hieracium Canadensis, Mx.
" scabrum, Mx.

* "، venosum, L Ancaster.
" paniculatum, L.
Nabalus albus, Hook.
" " var.serpentarius. " altissimus, Hook.
* Nabalus Fraseri, DC., var. integrifolius. Prince's Island.
Taraxacum Dens-leonis, Desf.
Lactuca sativa, L. Apparently spontancous below Mountain Yiew Hotcl.
" Canadensis, L.
Mulgedium leucophreum, DC.
Sonchus oleraceus, L
" asper, Vill.
" arvensis, L .
I.OBELIACEAK.
*Lobelia cardinalis, L. Near Waterdown.
" syphilitica, I.
" intlata, L .
" spicata, Lam.
CAMPASUIACEE.
Campanula rotundifolia, L.
" aparinoides, Pursh.
" Americama, 1.
Specularia perfoliata, DC.

ERICACRAS.

Gaylussacia resinosa, Torr. and Gray.
Vaccinium vacillans, solander.

* Chiogenes hispidula, 'Torr. and Gray. Millgrove.
Gaultheria procumbens, L.
* Cassandra calyculata, Don. Millgrove.
Ledum latifolium. Ait. Lake Medad. Pyrola rotundifolia. L., var. asarifolia. "، "" " uliginosa.
" elliptica, Nutt.
" secumda, L.
* Moneses uniflora, L. Lake Medad.

Chimaphila umbellata, Nutt.

* Pterospora Andromedea, Nutt. Wood on Cline's Farm.
Monotropa uniflora, L.

AQUIFoLIACEE.

Ilex verticillata, Gray.
Nemopathes Canadensis, DC. Millgrove Marsh.

> Plantaginacee.

Plantago major, L.
" Kamtschatica, Cham. Also at 'Toronto and London.
" lanceolata, L. primulacem.
Trientalis Americama, Pursh.
Lysimachia thyrsitlora, L.

* " strictia, Ait. East Flamboro'.
" quadrifolia, Ait. ciliata, L.
* Anagallis arvensis, L .

Samolus Valerandi, L., var. Americanus, Gray.
bexthbllaceze.
Utricularia vulgaris. L. intermedia. Hayne.
orobanchacear.
Epiphegus Virginiana, Bart.

* Conopholis Americana, Wallroth. Wood behind Cline's Mill.
Aphyllon uniftorum, Torr and Gray. schophelariateen
Verbascum 'Thapsus, L. " Blattaria, L.
Linaria vulgatis, Mill.
Scrophularia nodosa, L.
Chelone glabra, L.
Pentstemon pubescens, Solauder.
Mimulus ringens, L.
* Gratiola Virginiana Ls Hall's Corners.
Ilysanthes gratiodoides, Benth.
Veronical Anagallis, L.
" Americana, Schweinitz.
* "، scutellata, L. Millgrove.
" officinalis, L.
" serpyllifolia, L.
" perecgrina, I .
" arvensis, L Also at Fullarton.
* " triphyllos.
* Gerardia purpurea, L. Waterdown Creek.
* "، tenuifolia, Vahl. Prince's Island.
" flava, L.
Gerardia quercifolia, Pursh.
" pedienlaria, L.
Castilleia coccinea, Spreng.
Pedicularis Canadensis, L.
Melampyrun Americanum, Mx.

verbenacem

Verbena hastata, L. " urticifolia, L.
Phryma Leptostachya, L.

mabiate.

Teucrium Canadense, L.
Mentha viridis, L.
" piperita, L.
" Canadensis, L.
Lycopus Virginicus, 1.
Europeus, L. var. sinuatus.

* Pycnanthemum incanum, Mx. Oaklands.
Calamintha Clinoporlium, Benth. Red Creek.
Satureia hortensis, L. Burlington Heights.
Hedeoma pulegioides, Pers.
Collinsonia Canadensis, L.
Monarda didyma, L. West of Capt. Nichols's Farm. " fistulosa, L.
Lophanthus nepetoides, Benth. Waterdown Creek
Nepeta cataria, L.
Brunella vulgaris, L.
Scutellaria galericulata, L. " lateriflora, 1.
*Marrubium vulgare, L.
Galeopsis tetrahit, L.
Stachys palustris, L., var. aspera.
Leonmrus cardiaca. L.
*Laminm amplexicaule, I. Wylde's (irounds.
" album, L.
burraghaceda.
Echium vulgare, L.
* Symphytum officinale, L. Cumminsville.
Onosmodium Carolinianum, DC. Burlington Beach.
Lithospermum arvense, L.
longiflorum, Spreng. Burlington Heights.
Myosotis palustris, Withering. var. laxa.
Echinospermum Lappula, Lehm.
Cynoglossum officinale, L.
Morisoni, DC.

HYDROPHYLLACES:

Hydrophyllum Virginicum, L.
Canadensis, L. Chedoke.
" appendiculatum, Mx. Red Creek.

POLEMONIACEA.
Phlox divaricata, L.
CONYOLYULACEAE.
Convolvulus arvensis, I .
Calystegia sepium, R. Br.
sepium, R. Br., var. repens Railway Track, East.

* "، spithameea, Pursh. Dundas.
Cuscuta (ìronovii, Willd.
Solasile e, ex
Solanum dulcamara, L.
" nigrum, L .
Physalis viscosa, 1 .
Lycium vulgare, Ihnal. Near Van-
Wagner's Farm. Saltfleet.
Hyoscyamus niger, L.
Datura Stramoninm, L.
" tatula, L. Burlington Beach.
Nicotiana rustica, L. West Flamboro and Shore of Bay, near (:
W. R. station.

GENTANACEE
*Halenia detlexa, Grisebach. Ancaster.
Gentiana crinita, Froel.

* " alba, Muhl. Rare.
" Anlrewsii, Griseb. Dundas Marsh.
* " acuta, Mx. [Qucry].
* Menyanthes trifoliata, L. Lake Medad.

AP!CYN.SCEE.
Apocynum androsamifolim, L .
camnabinum, L.
asclephamaces.
Asclepias Cormuti, Decaisne. " phytolaccoiles, Pursh.
" incarnata, L.
" tuberosa, L.
OLEACEAS
Fraxinus Americana, L. " sambucifolia, Lam. aristolochlacee.
Asarum Canadense, L.
PHYTOLACCACEA.
Phytolacea decandra, L. Stony Creek. Also at Yort Rowan.

CHENOPODIACEF.
Chenopodium allum, L .
glaucum, I .
" hybridum, L.
" Botrys, L.
"، ambrosioides, L.

CHENOPODIACEEA－Contented．
Blitum capitatum， 1 ．
＂Bonus Hemrict：s，Reichenbach．
Atriplex patula，I．var．littoralis．
AMARAST．ICEIF．
Amarantus hypochondriacus， L ．
＂paniculatus，L．Also at Guelph．
＂retroflexus， 1 ．
＂albus，L．
POWGONAC：E．
Polygonum Pennsylvanicum，I．
＂incarnatum，Ell．
＂Persicaria，L，
＂Hydropiper， 1.
＂acre，H．B．K．
＂hydropiperoides，Mx．
＂amphibium，L ，var．aquat－ icum．
amphibium，L．，var．ter－ restre．
＂Virginianum，L．Red Creek．
＂aviculare，I．
＂＂،＂var．erectum．
＂arifolium， 1 ．
＂sagrittatum，L．
＂Convolvulus，L．
＂dumetorum，L．
Fagopyrum esculentum，Moench．
Rumex orbiculatus，Giay．
＂verticillatus， 1.
＂crispus， 1 ．
＂obtusifolius，L．East of City．
＂acctosella，L．
CERATOPHYLLACES
Ceratophyllum demersum，L．

いいにRCE．K．

Sassafras uticinale，．Dees．
＊Lindera Benzoin，Meisner．The Vell Ancaster．

THYMELEACE，
Dirca palustris，J．Cirlisle． ELABANACEAS
．Shepherdia Canaulensis，Nutt．
SANTALACEA．
Comandra umbellata，Nutt．
EUPHORBIACEAE．
Euphorbia polygonifolia，L．
＂maculata， 1.
＂hypericifolia，L．Water－ down．

EUPHORBIACEA－Continued．

＊Euphorbia platyphylla，L．The beach near Stony Creek．
＊＂obtusata，Pursh．［Query］．
＂، Helioscopia，L．
＂cyparissias，L．
＂Peplus，L．
Acalypha Virginica， L ．

URTICACEAS．

Ulmus fulva， If ．
＂Americana，L．
Urtica gracilis，tit．
Laportea Canalensis，Gaudichand．
Pilea pumila．
Boehmeria cylindrica，Willd．
Cimmabis sativa，I．
Humulus J．upulus，1．Red Creek．
PlaTANACEE．
Platanus occidentalis，I．
JUGL．NND．ACEAE．
Juglans cinerea，L．
nigra， 1.
Carya alba，Nutt．
＂porcina，Nutt．
＂amara，Nutt．
CCPULIFERE．
Quercus alba，L．
＂．macrocarpa，Mx．E．Flam． borough and Burlington Beach．
＂Primus，L．，var．acuminata， Мx．
＂coccine：l，Wang．，var．tinc－ toria，liray．
＂．rubra， L ．
Castanea vesca，I．，var．Americana， Mx．
Fagus ferruginea，Ait．
Corylus rostratia，dit．
Ustrya Virginica，Willd．
Carpinus Americana，Mx．

13FIULACEE

Betula lenta，L．
＂lutea，Mx．
＂papyracea，Ait．
Alnus incana，Willd．

SALICACEFE．

＊Salix tristis，Ait．Rocks near An． caster．
＂humilis，Marshall．
＂discolor，Muhl．
＂cordata．Muhl．，var．myricoides， （iray．
＂livida，Wahl．，var．occidentalis， Gray．

SALICACEE-Continued.
Salix lucida, Muhl.
" nigra, Marsh.
" longifolia, Muhl. Burlington Beach.
Populus tremuloites, Mx.
" grandidentata, Mx.
" balsamifera, L.
CONIFERAE.
Pinus strobus, I.
Abies nigra, Puir. Millgrove.
" alba, Mx. Lake Medad.
" Canalensis, Mx.
" balsamea, Marshall.
Larix Americama, Mx.
Thuja occidentalis, I.
Juniperus Virgiania, I.
"، communis, L.
Taxus baccati, L., var. Canadensis, Gray.

ARACEAS
Arisæma triphyllum, Torr.
Calla palustris, 1 .
Symplocarpus fœtidus, Salish.
Acorus Calamus, 1 .
LEMNACEな.
Lemna minor, L.
" polyrrhiza, L.
" trisulca, I .
Wolffia Columbiana, Karsten.
"، Brasiliensis. Weddell.
TYPHACEF.
Typha latifolia, 1.
Sparganium eurysarpum, Engelm. simplex. Hudson, var. augustifolimm, Gray.
NABADCEE.
Potamogeton natans, I.
"، amplifolius, Tuckerm.
" lucens, L., var. minor.
"، perfoliatus, L.
" compressus, $L_{\text {. }}$.
" paucitlorus, Pursh.
" pectinatus, L.
ALISMACEIE.
Alisma plantagn, L., var. Americarum, (iray.
Sagittaria variabilis, Engelm.
HYDROOHARIDACEE.
Auacharis Canadensis, Planchon.
Vallisneria spiralis, L.
ORCHIDACEAE.
Orchis spectabilis, L.

ORCHIDACEN-Comtinued.

* Habenaria tritentata, Lindl. Millgrove.
* " virescens, Spreng. Prince's Island.
viridis, li. Br., var. bracteata, Reichenbach. Mountain at head of Queen street.
* " hyperhorea, R. Br. Sul. phur spring.
" Hookeri, Norr.
* " orbiculata, Torr.
* " leucophata, (iray. Millgrove.
psychodes, (iray. Millgrove.
* $،$ fimbriatia, R. Br. Land's Fa!m.
Goodyera pubesceas, R. Br.
* Spiranthes cernua. Richardson. The Dell, Ancaster.
* Pogoniar ophinglossoides, Nutt. Millgrove.
* Calypso borealis, Salisb. Lake Medad.
* Corallorhiza imatata. I. Br. Prince's Island.
" olontorhiza, Nutt.
" multillora, Nutt.
Cypripedium parviflorum, Salish. pubescens, Willd.
spectabile, Swartz.
* Lake lledad.
* " acaule, Ait. Millgrove.

AMARYILIU ICE. F.

* Hypoxys erect' L. Princers Island.

IIIDACEA:.
Iris versicolor, $L_{\text {L }}$.
Sisyrinchium Bermudiaaa, L., var. anceps, firay.

DIORCOREACEE.
Dioscorea villosa. L. Near Dundas Marsh.

SMILACEE.
Smilax hispida, Muhl. " herbacea, L.

LIdiACEE.
Trillium grandiflorum, Salisb. " erectum, L.
" erectum, L., var. album, Pursh.

LILIACEE-Continucd.

Medeola Virginica, L.
Uvularia grandiflora, Smith.
Prosartes lanuginosa, Don.
Streptopus roseus, Mx.
Clintonia borealis, Kaf.
Smilacina racemosa, Desf.
" stellata, I)esf.
" trifolia, Desf.
" bifolia. Ker.
Polygonatum biflorum, Ell.
L:lium Philadelphicum, L.

* Lilium Canadense, L. Ancaster. " superbum, L.
Erythronium Americanum, Smith.
Allium tricoccum, sit.
Asparagus officinalis, L. Burlington Beach.

JUNCACEAE.

Luzula pilusa, Willd.
"" eampestris, $\mathrm{D} \cdot \mathrm{J}$.
Juncus effusus, I.
" bufonius, L.
" tenuis, Willd.
" Alpinus, Villars, var. insignis, Fries.
" acuminatus, Mx.
" nodosus, L.
" nodosus, L., var. megacepha. lus, Torr.

PONTEDERIACEIE.

Poutederia cordata L.
Schollera graminea, Willd.

cyperacera.

Cyperus diandrus, 'Torr.
" strigosus, L.
" filiculmis, Vahl.
Eleocharis oltusa, Schultes.
" palustris, R . Br.
" acicularis, R. Br.

* Scirpus pungens, Vahb.
" validus, Vahl.
" fluviatilis, Gray.
" atrovirens, Muhl.
" Eriophorum, Mx., var. cyperims.
Eriophorum Virginicum, L. Millgrove.
* " polystachyon, L. The Dell, Ancaster.
Carex polytrichoides, Muhl.
" bromoides, Schk.
" teretiuscula, (inod.
" vulpinoides, Mx.

CYPERACELE-Conẗnued.
Carex stipata, Muhl.
" sparganioides, Muhl.
"، cephalophora, Muhl.
" rosea, Schk.
" tenellia, Schk.
" trisperma, Dew.
" stellulata, L., var. scirpoides.
" scoparia, Schk.
" lagopodioides, Schk.
" cristata, Schw.
" straminea, Schk., var. tenera, Dew.
stricta, Lam.
crinita, L.am.
aurea, Nutt.
gracillima. Schw.
platyphylla, Carey.
digitalis, Willd.
retrocurva, Dew.
laxifora, Lam. " " var. blanda. " " " plantaginea, Booth.
" "" var. latifolia.
pedunculata, Muhl.
Nova Anglix, Schw.
Emmonsii, Dew.
Pennsylranica, Lam.
varia, Muhl.
scabrata, Schw.
riparia. Curtis. comosa, Booth.
hystricina, Willd. tentaculata, Muhl. intumescens, liudge. lupulina, Muhl. Schweinitzii, Dew. Tuckermani, Boott. retrorsa, Schw.

GRAMNEAE.
Leersia Virginica, willd.
" oryzoides, Swartz.
Zizania aquatica, L.
Alopecurus aristulatus, Mx.
Phleum pratense, L.
Vilfa aspera, Beauv. Burlington Beach.
Vilfa vagineflora, Torr.
Sporobolus cryptandrus, Gray.
Agrostis scabra, Willd.
"، peremans, Tuckerm.
" vulgaris, With.
" alba, L.
Muhlenbergia Mexicana, Trin.
diffusa, Schreber.

GRAMINEA-Continued.
Muhlenbergia glomerata, Trin.
" silvatica, Torr. \& Gray.
Cinna arundinacea, L.
Brachyelytrum aristatum, Beaur.
Calamagrostis Canadensis, Beauy. confinis, Nutt.
Oryzopsis asperifolia, Mx. melanocarpa, Muhl.

* Eleusine Indica, Giertu.

Dactylis glomerata, L.
Eatonia Pennsylvanica, Gray.
Glyceria Canadensis, Trin.

* "6 elongata, 'I'rin. Binbrook.
" nervata, Trin.
" pallida, Trin.
" aquatica, Smith.
" fluitans, R. Br.
Poa annua, L.
" compressa, L.
" caesia, Smith.
" serotina, Ehrhart.
" pratensis, L.
" debilis, Torr.
Eragrostis poazoides, Beauv.
* Festuca tenella, Willd.
" ovina, L.
" elatior, L., var. pratensis, Gray.
nutans, Willd.
Bromus secalinus, L.
" Kalmi, Gray.
" ciliatus, I.
Phragmites communis, Trin.
Lolium perenne, L.
Triticum repens, L.
" " " var. nemorale.
" caninum, L.
Elymus Virginicus, L.
"، Canadensis, L. folius.
" striatus, Willd.
Gymnostichum Hystrix, Schreber.
Danthonia spicata, Beauv.
Avena striata, Mx. Lake Medad.
* Aira flexuosa, L.

Holcus lanatus, L.

* Anthoxanthum odoratum, L.

Phalaris arundinacea, I.
" canariensis, L.
Panicum glabrum, Gaudin.
" sanguinale, L.
" capillare, L.
" latifolium, I.
" xanthophysum, Gray.
" dichotomum, L .

GRAMINEA-Continued.
Panicum depauperatum, Muhl.
" Crus-Galli, I.
" " "var. hispidum, Gray.
Setaria glauca, Beauv.
" verticillata, Beauv.
" viridis, Beauv.
"، Italica, Kunth.
Cenchrus tribuloides, L. G. W. Ry., about a mile east of Dundas.
Andropogon furcatus, Muhl. scoparius, Mx.
Sorghum nutans, Gray.

EQUISETACEA.

Equisetum arvense, I. pratense, Ehrhart. silvaticum, L. limosum, L. palustre, L. Oaklands. hiemale, L. variegatum, Schleicher. scirpoides, Mx.

FILICES

Polypodium vulgare, L.
Adiantum pedatum, L.
Pteris aquilina, I.
Pellæa atropurpurea, Link. Hountain below Chedoke.
Woodwardia Virginica, Smith.

* Asplenium 'Trichomanes, L. Lake Medad.
" thelypteroides, Mx.
" Filix-fœmina, Bernh.
C'amptosorus rhizophyllus, Liuk.
Phegopteris hexagonoptera, lec.
" Dryopteris, Féc. Sulphur Spring.
Aspidium Thelypteris, Swartz
" Ňoveboracense, Willd.
" spinulosum, S゙vartz, var. dilatatum.

46
spinulosum, Swartz, var. Boottii.
spinulosum, Swartz, var. intermedium.
spinulosum, Swartz, var. dumentorum. Ravine below Chedoke. cristatum, Swartz, var. Clintonianum. Goldianum, Hook. marginale, Swartz. acrostichoides, Swartz.
rllaCES-Continzed
Cystopteris bulbifera, Bernh.
" fragilis, Bernh.
Struthiopteris (xermanica, Willd. Onoclea sensibilis, I. .
Dicksonia punctilobula, Kumze.
Osmunda regalis, L. Millgrove.
" Claytoniana, L.
" cimamomea, L.

FILICES-Continued.
Botrychium Virginicum, Swartz.
Iunarioilles, Swartz.
IMCOPODIACERE.
Lycopodium clavatum, I .
HYDROPTERIDES.
Azolla Caroliniana. Willd. Dundas
Marsh and Burlington Beach.

NO'TES.
Viola stricta, Ait. In Professor Macoun's Catalogue of Canadian Plants, this is stated on the authority of the late Judge Logie to be common near Hamilton. I have never found it, and I am sure that it is not common.

Luthyruts venosus, Muhl., occurs at St. Thomas.
Cichorium intybus, L., has naturalized itselt at Port Rowan and Toronto.
Mimulus Jrmesii, Torr., is abuadant along the stream flowing into Grenadier Pond near the Humber.
Phlow subuluta, L. I can confirm, from personal observation, the fact which Mr. Wilkins was, I believe, the fist to discover, that this sjecies is indigenous in the County of Norfolk.
humec sanguiner's, L., occurs at Iondon and Barric.
Ulimes racemosa, Thomas, oceurs at st. Thomas.
Juniperus Siabina, L., var. procrumbens, Pursh., which I formerly reported as wecurring, proves to be J. Firginiana, L.

In the discussion which followed, Mr. Geo. E. Shaw, Mr. T. Mackenzic, Mr. Henry Montgomery, Mr. James Bain, jun., and the reader of the paper too art.

Mr. Fred. Fhillips read a paper on "The Antiquity of the Negro Race," the object of which was to show that the negro race made its appearance before t_{i} :" whitc races.

A discussion ensued, in which the President, Mr. John Notman, and Mr. Montgomery took part.

TWELFTH ORDINARY MEETING.

The Twelfth Ordinary Mecting of the Session isS3-'S4 was hold on Saturday, February 2nd, iS84, Dr. Gco. Kennedy, Inird Vice-President, in the chair.

The minutes of last meeting were read and confirmed.
The following list of donations and exchanges received since last mecting was read :-

1. The Financial Reform Almanack for 1SSt ; presented by the Cubden 'lub.
2. Nuseum of Comparative Zoology at Harvard College, Vol. Xi., Nos. 5, 6, 7.
3. Proceedings of the American Acatiemy oi Arts amd Siences, Vol. XI., pp. $45-210$.
4. Journal of the Framklin Institute for Febraary, ISS.4.
5. Science Record, Jamary $15,1554$.

6 . Science, for January 25 , 1SSA.
7. Proceedings of the Academy of Natural Sciences of Philadelphia, Part 2, June to Uctober, ISS:\%.
8. Nye Alcyonider (iorgonider, og Pematulider, tilheremde Lorges Fauna; from the Royal Musemn of Bergen. (.)orwegian Fanal.)

Prof. G. P. Young then read a paper entitled, "The Real Correspondents of Imaginary Points."

After the reading of the paper, remarks were inade upon the subject by Prof. Galbraith and Mr. Alfred batieer.

THIRTEENTH ORDINARY MEETING.

The Thirteenth :nary Mecting of the Session 1883-'S4 was h 1 on Saturday; February 9th, 1884, the President in the Chair.

The minutes of last meeting were read and contirmed.
The following list of donations and exchanges received since last mecting was read :-

1. Tramsactions of the New Kork Academy of Sciences, Vol. 11., Nos. 3 to S.
('oatents and Titic lage, Vol. I.
2. Amals of the New Lork Academy of Scienees, Nos. 12 and 13 , Vol. II.
3. The Cauadian Practitioner, for February, 1SSt.
4. Science, Vol. H1., Nio. 5ㄹ, for February, 1834.
5. Memoires et Compte Rendu des Travaux de la Fociete des Ingenieurs Civils, November, ISS:3.
6. Bulletin of the Muscum of Comparative Zoology at Harvatid College, Vol. Nl., Nio.s.

It was moved and seconded "That the Council be a Committee, with power to add to their number, to arrange for the reception : ad entertainment of such members of the british Association as may visit Toronto during the month of Sep-tember."-Carried.

Mr. W. H. VanderSmissen then read a paper by the Rev Prof. Campbell of Montreal, on

THE KHITAN LANGUAGES ; THE AZTEC AND ITS RELATIONS.

My translation of the Fittite Inscriptions found at Hamath and Jerabis, in Syria, is the only one yet published with an explanation of the process by which it was accomplished. The Rev. Dunbar I Heath has sent me copies of his papers in which the Hamath inscriptions are translated as Chaldee orders for musical services, but no process is hinted at by the learned author. In the discussion which followed the reading of one of these papers, a well-known Semitic scholar remarked, "that so long as no principle: was laid down and explained as to the system by which the characters had been transliterated, it would be impossible to express an opinion on the value of the proposed reading." Whatever may be the merits of my translation, it does not make default in this respect. The process is simple and evident. The phonetic values of the Aztec hieroslyphic system are transferred to corresponding hieroglyphic characters in the Hittite inscriptions. Common Hittite symbols are the arm, the ley, the shoe, the house, the cagle, the fish. These are also foumd as Mexican hieroglyphics. There is nothing to tell us what their phonetic values are in Hittite, because hardly any other remains of the Hittite lamguage have survived. But in Aztec we know that these values are the tirst syllables of the words they represent. Thus an arm being called neitl, gives the phonetic ralne ne for the hieroglyphic representing an arm. A leg being called meztli, furnishes me. A shoe gives ca from cactli; a house, also, ca from calli; an eagle, qua from quuuhli; and a fish, mi from michin. But the question has been raised, "What possible comection can there be between the Hittiles or Khita of ancient Syria and the Aztecs of Mexico!" As well might we ask what comnection can there be between Indian Brahmins and Englishmen; between Europoan Osmanli and Siberian Yakuts. Geographicul separation in such case, is simply the result of a movement that has been going on from early ages. Men are not plants nor mere animals to be restricted to floral and faumal centres. The student of history, who has followed the Hunnic and Mongolian hordes in their devastating course across two
continents, will not be surprised to find that well-known Iroquois scholar, the Abbe Cuoq, suggesting the relationship of the Iroquois with the wandering and barbarous Alans and Huns. Still less surprise should be experienced when the more cultured Aztecs of Mexico are connected with an ancient Old World civilization. Aztec history does not begin till the 1 lth century of our era, and even that of the Toltecs, who preceded the Aztecs, and were of the same or of an allied race, goes no farther back than the Sth. The period of their comnection with Old World history as a displaced Asiatic people is thus too early to be accounted for by the invasions of the Mongols, but coincides with the eastern movements of the Khitan, who, after centuries of warfare on the borders of Siberia, disappeared from the historian's view in $11 \because 3$. It is certainly a coincidence that the Aztecs shouk claim to be of the noble race of the Citin, and that citli, the hare, or, in the pharal, citin, should be the totem or heraldic derice of their nation.

Since I wrote the article on the khitan Languages, in which I traced the Chinese Khitan backwards to central Siberia about the sources of the Yenisei, where, according to Malte Brun, the 'Iartars called their mounds Li Katei, or the tombs of the Chathayans, I have received from Mr. VI. Youferoff, of the Imperial Socicty of Ceosraphy at St. Petersburg, copies of the chief inscriptions from that region. These triumphantly condirmed my supposition that the Kiatei and the Khita or Hittites were the same people, by presenting characters occupging a somewhat intermeliate position in form between the Hittite hieroglyphics and the more cursive seript of our Mound Buikders. The rude representations of animals and other natural objects accompanying some of the inscriptions are precisely of the type furnished by the Davenport Stone. One inscription, which I deciphered and the translation of which is now before (i.. Imperial Society of (xeography, relates the victory of Sekata. at khitan monarch, the Sheketang of the Chinese hostorians, over two revolted princes or chiefs dwelling at Utal or Utasia in Siberia. As in the case of the Syrian Hittite inscriptions, I have translated the Siberian one by means of the Jipmese, using the Basque, the Aztec, and other languages of the Khitan family, for confirmation. Whatever forcign intluences may have done to modify the physical features, the character, language, religion, and arts of the Japanese, and, in ilesser measure, of the Coreans, there can be no doubt that these are
at basis Hittite or Khitan. Already at the commencement of my Hittite studies I had noted the agreement of many characters in the Corean alphabet with those of Hamath and Jerabis on the one hand, and, on the other, with those on our mound tablets. The Rev. John Edwards of Atoka with great kindness procured for me, from a member of the Japanese Imperial Household at Tokio, a work on the ancient writing of the Japanese. One of the forms of writing exhibited in this work and occupying mach space is very similar to the Corean, and is undeniably of the same origin. I have not yet had time to investigate the volumes thoronghly, but as they appear to contain samples of ancient alphabets with guesses at their signification rather than complete inscriptions, little progress may be anticipated by means of them. Nevertheless the existence in Japan of a syllabary of so Fittite a type as the Corean in ancient times is confirmatory of the Khitan origin of the Japanese. As for the relations of American civilizations, such as those of the Mexicams, Muyscas, and Peruvians, with that of Jipan, I need only refer to the writings of so accurate and judicious an observer as Humbold?

Returning to the Hittites of Sigria, who figure so largely in the victorious ammals of the Egyptia? Pharaohs and Assyrian kings, and whose empire came to an end towards the close of the Sth century B.C., we find that, although apart from my own conclusions no definite opinion has been reached regarding their language beyond the mere fact that it was Turanian, gresses have been made by scholars whose hypotheses even are worthy of consideration. Professor Siayce believes the Hittite language to have been akin to that furnished by the ancient Vammic inscriptions of Armenia. The Vamnic language, according to Iemormant, belongs to the Alarodian family, of which the best known living example is the Georgian of the Cancasus. Now it is the Caucasus that I have made the starting point of Hittite migration, which terminated at Biscary in the west, and in the east, reaching the utmost bounds of Northern Asia, overflowed into America. Not only the Georgiat:s, I unhesitatingly assert, but must of the other Cancasian fimilies, the Circassians, Lesghians, and Mizjeji at least, should be classed as Alarodians, or better still as Khitan. So far I have found no evidence from ancient C'aucasian inscriptions, though such I believe have been discovered ; but an evidence as conclusive is furnished by the languages of the Cancasian families I have named as comp:ured with those which are presum.
ably of Hittite origin in the Old World and in the New. In the remainder of this paper, I propose chiefly to set forth the relations of the Aztec language, by means of which I transliterated the Hittite inscriptions, with the Cancasian tongues, which of all Khitan forms of specch are in closest geographical propinquity to the ancient habitat of the Hittite nation. Before doing so \bar{j} may set forth the principal members of the Khitan family at the present day.

THE KHITAN FAMILY.

1. Oidi Worti) Division.

Basque.

Cancasian = Cieorgian, Lesghian, Circassian, Mizjeji.
Siberian = Yeniseian, Yukahirian, Koriak, Tchnktchi, Kantchadale.
Japanese $=$ Japanese, LooChoo, Aino, Corean.

2. Amercan Division.

Dacotah.
Huron-Iroquois including Cherokee.
Choctaw-Muskogee including Natchez.
Pawnee including Ricaree and C'adldo.
Paduca $=$ Shoshonese, Comanche, U'te, \&c.
Yuma =-Yuma, Cuchan, Maricopa.
Pueblos =Zuni, Tequa, \&c.
Sonora $=$ Opata, Cora, Tarahmmara, \&c.
Aztec including Niquiriau.
Lenca $=$ Cuanju uiro, Opatoro, Intibuca.
Chibsha or XIuysca.
Peruviam = (Juchua, Aymara, Cayubaba, Sapibocono, Atacumeno, \&c.
Chileno $=$ Armeanian, Patagonian, Fuegian, \&c.
The Nihhath, or lingtage of the Aztecs, as distinguished from other tribes of diverse speech inhabiting Mexico, has long been a subject of no little difficulty to philologists. It is not that its grammatical construction is peculiar, but because its vocabulary exhibits combinations of letters or sounds that have come to be regarded as its ahnost pecular property. The must important of these is the sound represented by $t l$, whether it be initial, medial or final. The Aztecs of Nicaragraa drop the $t l$ altogether or reduce it to t; hence some writers have supposed theirs to be the true form of the language, and the literary tongue of Mexico a corruption. Upon this an argument has been founded for the southern origin of the Nahua race. But, as $\mathrm{Dr}_{\text {r }}$. Buschmann and others lhave shewn, a mere casual survey of the languages of more northern peoples, the Sonora and Pueblo tribes, and the great Paduca family, reveals the fact that they con-
tain a considerable proportion of Aztec words, and that in them, as in the Nahuatl of Nicaragua, the Aztec $t l$ disappears or is converted into t, d, k, s, r or l. Here therefore it is claimed by others is an argument for the northern derivation of the Mexicans.

If we carry forward the work of comparison, having regard to certain laws of phonetic change, we shall find, as I profess to have done, that the vocabulary, and to a large extent the grammar, of the Aztecs are those of all the greater families in point of culture and warlike character of the Northern and Southern Continents. Nor do the Aztec and its related American languages form \dot{a} family by themselves. They have their counterparts, as I have indicated, in many regions of the Old World. If my classification of these languages be just, there should, among a thousand other subjects of interest, be found some explanation of the great peculiarity of Aztec speech to which I have referred.

The Aztec combination $t l$ appears, although to no very great extent, in the Koriak, Tchuktchi, and Karntchatdale dialects. It has no place in Corean, Japanese, or Aino, and only isolated instances of its use are found in the Yukahirian and Yeniseian languages. Of the four Caucasian tongues which pertain to the Khitan family, two, the Georgian, and Mirjeji, are almost as destitute of such a sound as the Corean and Japanese ; while the Circassian and Lesshian vocabularies, by their frequent employment of $t l$, reproduce in great measure the characteristic feature of the Nahuatl. It is altogether wanting in the Basque, and is a combination foreign to the genius of that language. Yet there is no simpler task in comparative philology than to show the radical mity of the l3asque and Lesshian forms of speech. Such a comparison, as well as one of the Lesghian dialects among themselves and with the other Camcasian languages, will enable us to decide whether the $t l$ of the Lesghian and Circassian forms part of an original phonctic system, or is an expedient, natually adopted by speakers whose relaced vocal organs made some other sound difficult or impossible, to stave off the process of phonetic decay by substituting for such sound the nearest equivalent of which they were capable.

In order first of all to exhibit the common origin of the basque and the Lesghian, I submit the following comparison of forms, the relations of which are apparent to the most casual observer. The Lesghian vocabulary is that of Klaproth, contained in his Asia Poly-
glotta; the Basque is derived from the dictionaries of Van Eys and Lecluse. It will be observed that the Lesghian almost invariahly differs from the Basque :-

1. In substituting m for initial b.
2. In dispensing with initial rowels; or, when they cannot be dispensed with, in prefixing to them b or p, t or d.
3. In generally rendering the Baspue aspirate, together with ch and g, by the correspondingly harder forms g, l and q.
4. In occasionally adding final l or r.
(The last named letters l and r are interchangeable in the Khitan as they are in all other families of speech.)

COMPARISON OF BASQUE AND LESGHIAN.

Rule 1. English. beard head nail back to-morrow
Rule 2, a. skin hand river thunder hair cold no
left hand milk star day clothes child stone
Rule: 3. sreat house hail smoke tooth leaf finger Son great

Basceve.
bizar
bura behatz bizkhar bihar achala ahurra whare ehurzuria, curciria ileak
olzo
e\%
ezquerra, ezker
eznea
izarra
cguna
oreina
aldar aurra arri harri
handi
eche
harri sue hortz
orri
erhi
wia
seme zabala

Lascmas.
mussur, muzul mier, maar maats machol, michal michar (Georgian) quli kuer chyare, uor gurgur ras zoto 211 kuzal, kisil sink suri kini burni paitar durria tsheru. grul kundi akko groro kili kertschi kere kilish kural chimir chvallal

The following, though generally agreeing, present same exceptions 10 to the above rules.

Evotish.	Basque.	Lbsobian.
heaven	ceru	8er
bird	chori	zur
red	gori, gorri	hiri
blue. green	urdin	crdjin
denth	heriotze	haratz
old	agrure, zar, zahar	herau, etshru
throat	cinzur	seker
white	churia, zuria	tchalasa
woud	zura	$z \mathrm{ll}$
leg	aztal	uttur
tree	zuhatsa	guet, hueta
fire	su	zo
hish	gan	olianne
tongrue	mia	mas

A comparison of the Basque with the other Caucasian languages, Georgian, Circassian, and Mizjeji, would display similar relaiions with some modification of the laws of phonetic change.

If now we ask what the Basque does with the Lesghian $t l$, we shall find that it represents that sound chiefly by the letters r and l. This equivalency of $t l$, and sometimes of $n t l$, to r and l also appears in comparing the Lesghian dialects among themselves or with other Caucasian languages.

Comparison of lesghian forms in $l l$ With other call. CASIAN AND BASQUE FORMS.

Esglish.	Lesomian.	Otifer Forms.
hair	tlozi	ras. Lesghian.
bone	tlusa	rekka "
wood	thludi	redu-kazu "
tomorrow	shishatla	shile "
night.	retlo	rahle
sheep	betl	bura "
maize	zoroto-roodl	izozal-lora "
goat.	antle	arle
six	antlko	urcekul
nail	matl	mare, Mízjeji
low	tlukar	lochun "
eight	bitlno	bar, barl "
sun	mitli	malch
*	" beri, Lesghian.	marra, Circassian.
flesh	ytl	gll: "
forchead	tlokva	illech "
easy	intlaugu	illesu ""
،	"	errecha, Basque.
loins	tlono	errainac ";
water	htli	ur "
butter	yetl	gruri "
hair	tlozi	ileac "
earth	ratl	lurra, laur "

The following represent the exceptions to the rule both in form and in numerical proportion :-

	Lesomas:	Other Forms.
yellow day	tlel:a thal	dula. $L_{\text {tsoghian }}$ thyal tehzal ".
horn	thar	adar, biasque.
knee	tlon	belaun "

From the preceding examples it appears that the Les ghian sounds represented by $t l, t h l, n t l$, are the equivalents of r and l generally, and sometimes of d or t. The latter exception probably finds its explanation in Basque, for in the dialects of that language an occasional permutation of r and l into t and d takes place. Thus ideki to take away, becomes ireki, and iuluzki the sun, becomes iruzlii, while elur snow, sometimes assumes the form edur, and belar grass, that of bedur: 'The last exception cited, that in which the Lesghian thon is compared with the Basque belenern. is really no exception, for elaun is the true representation of tlon, the initial b being prosthetic to the root, as is frequently the case in Basque. Among many examples that might be given, I may simply cite belar the ear, as compared with the Mizjeji lerk.
'Juming now to the Aztec, on the supposition that it is related to the Basque and Caucasian lamgarges, we natumally expect to find on comparison a coincidence of roots and even of words following upon the recognition of $t l$ and $n t l$ as the equivalents of r and l in these forms of speech. The fact that the Aztec alphabet, is deficient in the letter r favours such an expectation. But our comparison must be made with due caution. Any one who has examined a Mexican dictionary, such as that of Molina, must have been struck with the remarkable preponderance of words commencing with the letter t over those beginning with :my other letter of the alphabet. These words comprise considerably more than one third of the whole lexicon. A certain explanation of this is found in the fact that the two particles te and tla possess, the former an indefinite personal, and the latter a substantive, signification, and thas enter largely into the structure of compound words. W!atever its grammatical value in Aztec, however, it appeurs, on comparing the Aztec vocabulary with its related forms of speech, that initial t or $t e$, which leaving $t l$ out of account still occupies one fifth of the lexicon, is frequently prosthetic to the root.

The following are some of the chief laws of phonetic charge derived
from a comparison of the Aztec anl Lesghian languages. These may be foumd operating to almost as great an extent in the Lesghian dialects among themselves :-

1. The Aztec combinations $t l$, ntl, are either rendered in Lesghian by the same sounds, or by ror l. In some cases in which phonetic dray has set in, the Aatee $t!$ is either omitted or represented by a dental. The Lesghian occasionally renders the Aztec l and $l l$ by $t l$.
2. The interchange of p and m, which appeared in comparing the Basque and the Lesghian, for the datec is deficient in the sound of b, characterizes a comparison of the Aztec with the Caucasian languages.
3. A similar interchange of n and l, or the ordinary equivalents of l, such as markol the Iroquois in comparison with the Basque, occasionally characterizes the relations of the Aztec and Caucasian tongues.
4. The Lesghian, as ahready indicated, persists in the rejection of initial vowels, and the same is generally true of reduplications and medial aspirates.
5. As in many Aztec words initial t forms no part of the root, but is a prosthetic particle, it finds no place in such cases in the corresponding Lesghian term.
6. The Lesghian occasionally strengthens a word by the insertion of medial r before a guttural, for which of course there can be no provision in Aztec.
I have not thought it desirable to burden this paper with laws relating to other changes, as the relation of the compared words will be sufficiently apparent ; but, for the purpose of illustration, I have added corresponding terms from other Khitan languages exemplifying the rules set forth.

COMPARISON OF AZTEC AND LESGHIAN FOPMS.

English.	Aztec.	Puonetic Cuange.	Lesghian.	Illustrations.
low	thatzintli	latzili, latziri	tlukur	liuchtliu, Koriak
day	thacatli	lacili, latari	tlyal, djekul	allochal, teluchtat, Koriak
knee	thanquaitl	lancal, lancair	tion	zangar, Busque econcor, Quichua
deer	mazatl	mazal, mazar	mitli	mool, Yuma
earth	tanli	ralli, larri	ratl	lurra, Baspue
night	thalli		retlo, rahle	neillhe, Chnctuw
yesterday	yalhua	alhua	hutl	hooriz, Dacotah
ice	cetl	cel, cer	zer, zar	kori, Japanese
wind	ehecatl	ehecal, ehecar	churi	sysalkei, horiak
sheep	icheatl	icheal, ichesa	kir	achuri, Basque ccaora, Aymara

The Georgian does not exhibit the Aztec $t l$, but, as it is regarded by Professor Sayce as the living language most likely to represent the speech of the ancient Hittites, a brief comparison of its forms with those of the Aztec may not be out of place. Like the Lesghian it is impatient of initial vowels, and it generally agrees with that language in the laws of phonetic change, adding, however, this peculiarity, the occasional insertion of v before l. The v seems generally to represent u, or some similar vowel sound, and is probably such a corruption of the original as appears in the Samivel of Pickwick compared with the orthodox Samuel.

COMPARISON OF AZTEC AND GEORGIAN FORMS.

English.	Aztec.	Phonetic Change.	Grorgias:	Illustrations.
fowl	tototl	totol, totor	dedalt	totolin, Sonora
red	claichiitie	chichiltic	tziteli	tsatsal, Kumtchatdale
blood	ezilj	czili, ezri	sischli	odoi, Basyue chri, Dacotait
house	calli	calli	sachli	cari, caliki, Sonora
mountain	quautla	kaula, kaura	gora	kkollu, Aymara
horn	quaquanit!	kakaul, kakaur	akra	quajira, ""
sheep	iche:tl	icheal, ichear	tschehuri	ceaora,
wind	cheentl	ehreal, ehecar	kari	heleali, Sonora
heart	yullotl	yulloh, sullor	gulu	gullugu, Kumtchatdale
girl	ocuel	ncael	okurza, kali	okulosoha, Chortay
dog	yzcuintli	izkili, izkiri	dzagli, djugori	stehari, Shoshoncse
nose	yacall	hacal, hacar	zehviri	surra, Basque cher. Puchlos
hnir	tzontli	tzoli, tzori	tzvere (beari)	thheron, Kamtchatdale
moon	metztli	metzh, metzri	metuare	muarr, Shoshonese
silver	teo-quitiat!	kilal, kilar	kwartshili	cilarra, Basque
shoulder	te-juztli	puasli, puzri	mehari	buhun. Iesghim
tomorrow	muztii	mazli, inuzri	michar	mayyokal, Yuma
leg	metztli	metzli, metzri	muchili	ametthe, ""
to kill	miclia	miclia	mokluli	wakerio, onkerio, Iroquoi
mother	nantli	nali, nari	nana	nouria, Iroyuois
snow	cepmyanti	cepryauil. cepayauir	turli	repaliki, Smora
suake	columat	coval, covar	gueli	tueweroe, Shoshonese
boy	tepii-tzin	tepil	shwili	tiperic, Sonora
lightning.	tlapetlani	lapelani	clvai	illappa, Quichua
leaf	iatliopallo	iala-pallo, iala-parro	pur-zeli	wilhyap, luma
small	tzocoton	tzucoton	katon	cikadang, Dacotah
man	oquichtli	okichli, okichri	ankodj	oonquich, lroquois
			oiakotsh, koriak	aycootch, joma
			guru, Aino	ccari, Quichua

The Circassian language abounds in labials, and thus finds its best American representatives among the Dacotah dialects. Nevertheless it presents many words which come under the same general laws in relation to the Aztec thàt have characterized the Lesghian anà Georgian.

COMPARISON OF AZTEU AND CHRCASSIAN FURMS.

English. hand	Azrkc. mapini	Phonetic Changa. тарирі	Circassian. meppe	Illustibations. nape, Darntuh mashpra, Shoshonese
. ${ }^{\text {black }}$	caputztic	caputztic	kvatsha	shupitcat, Dacotuh
				Yupikina, Shoshoncse
heary	etic	etic	ondugh	tekay, tekash, Dacotain
sister	tercu	teicu	tsheeyakis	itaku, itakisa, ${ }_{\text {a }}$,
"	tepi, teciuapo	tepi	tabcha, tsherbl	cuhuba, Muysca
shoulder	tepuzali	tepuzii	diamastat	tapsut, Aino
smoke	poctli	pocll, procri	bacha	ibusu, Japunese
[1ip	tenxi-palli	tenxi-palli	uku-fari	kuchi-hiru, Japaness
? meat	nacatl	nacal, nacar	mikel	mku, Japanese
easy	velchiu-aliztli	velchiu	plese, illesu	raku. errechn, Busque arrancya. 「ukehiri
fchild	acatl	acal, acar	kiala	jacuel, l'uma
broy, soll	tepil-tzin	tepil	tshualye, chvalay	akwal-nesuta, Natches
mman	tlacatl	lacal	tle	kelgola, famechatdale
bluod	czeli	ezii, ezri	tleh, kleh	odel, basiuc huila symuera
dog	chichi	chach	chhah	kahi, Corran
$7{ }^{1}$	quixino	kishmo	ekesim:	hetschen, l.esghiant
summer	xup:n	shupun	\%apme (spring)	tofah, Choctave

As things which are equal to the same thing are equal to one another, it follows that, by the application of the same law of phonetic change, the vocabulary of the Aztec must coincide with that of the Basque, in spite of the fact that these two tongues have maintained a separate existence for some 2500 or 3000 years. No. thing can more convincingly prove the indestructibility of human speech, not only in mere thought-forms but in the ipsissima verbu, than a comparison of the two vocabularies.

COMPARISON OF AZTEC AND BASQUE FORMS.

Esiglisir.	Aztec.	Intermedate: Fommi.	13.5こ\%
sheep	icheatl	kir, I.csghian: cenora, Aymara	achmi
nose	yacatl	zehviri, Georgian ; cher, solornah, lucblos	sinr, simlur
rain	quiavitl	guaml, l.csghien; furi, Japancse	
star	citlalli	zirari, Aino: surl, lesshian	izar
water	atl	htli, Lesghian; ul, ur, Yeniscian	ur
worm	ocuiloa	kihigir, Aino; kuru, Quinhua	-hicharia
bad	aquallotica	whatich, lumue a achali, forink	chatr, charto
mountain	quautla	gora, Gcorgian; kar, Yenisien	zerra
stone	tetl	tol, Corean; kell, Yukiuhiri	harri
ice	cetl	zer, Lesghian : chilen, Mizjoji	karroin
fish	atlan	ennen. Koriak; ollogia. Juluhhiri	arrain
wood	zalli	zul, Leoghian: kuln, Quichun	zura
bind	totutl	adjari, zur, J.esghian; garioha, Iromois	chori
dos	yzcuintli	aghwal, schari, Shoshonesc: thari, Mijcji	zacur
throat	tuzquitl	seker, Lesghian: iakwal. .iraucan	eztar
old	veue	vochor \because. hathooli, Choctuw	agure
evening	tentlac	sarrach. Mijjeji; sourek, Iroquois	arrax, arrats
axe	tlateconi	sdasanu, Koriak: atacarte, luma	aizkor
bread	tlaxcalli	lagul, rul:ahiri; tikaru, shoshoncse	hazkurri
bow	thavitolli	ralis, Korial: ; gahlutrahule, Cherokee	uztadorra
thunder	thaquaqualaca	yekilkegre, urgirgerkin, hortak	churzuri
river	atugatl	uor, chyire, lesghian: hahuiri, Aymara	minarre
earth	thalli	deldhel, Koriak: ratl, lesghian	lur
child	acat	jacnel, Yuma; jali, Yeniseinn	
cloties	tlatqut	retelkum, paltar, Lesohinn	aldagarri, aldart
knec	tlanquartl	cconcor, Quichua : hizanosarn, Jnganese	zaugar

Evgitish.	Aztrc.	Intermedinte Forms.	Basque.
casy	velchiu-aliztli	illesu, Circas: arrantya, Yukahiri	errecha
shonhter	cuitlatantli	te!pilgin, tsrhilpit, Kioriak	sorbalda
silver	teorquitlatl	colaque, A ymara : kvartschili, Georgian	cilarra
speak	tlaton	raton, Irnquois; arusi, Aymara	erran, crraiten
${ }^{4}$	notza	ni, Quichua; hamasu, Jupunese	mintza
five	machill	millgin, Koriale : marqui, Sonora	bortz
ten	matlactli	mari, Araucan; peeraga, Dacotah	amar
seven	chicome	shahemo, shaterpl, Dacotah	zazpi
beard	tenchalli	hannorkquell, Shoshonese; musur, Lesghian	bizar
tu-merrow	muztli	mayyokal, Juma ; michar. (icorgian	bihar
back	copriatli	knpteher, Koriuk; machol, lesghion hapar, leniseten; sobiat, Japunese	bizkiar guibel
walk	malquica	julanujaha, Ycniscion; puriy, Quichua	ibilcea
blood	eztli	theh, kieh, Circtssian: huila, Aymara	odol
breast	telchiqu	tar, Miajcji; teyga. Yeniscion . .	thilia
skis	cuatl	tsholoh, Lesghient tshal, Yukatiri	azal, achal
nail	yztetl	oncheelah, Iroqueis ; onzshil, Yuthatiri	atzazal
frog	cuevall	kayru. Quichue ; kageru, Jupunese	igucla
conle	vallah	cla, Choctavo or, Corean.	el. hel
great	yzarchiphl	olvoloo, shoshonese: chrallinl, J.esghian	zabal
tree	quatuit	kotar, " guet, hueta, Lesghian	zuhaitz
to-dily	axcan	Wakum, Armeran; tach:un. Mizjrji	egrun
culd	yatic:		ozt
*	cecuiztli	hutseelo, xetchur, loune	etsbero
child	tetel-puch	hailpit, Jumar bik! -jial, Ycniscion	mut-i]
small	tepiton	dalab, thivisa, Lesohith	tipia
hoy, son	tepil-tzin	tijurir, Sonora: timir, chimir, Lesglaian	seme
lii;	tensipalli	kuthibiru, Japmenese: uku-fai, Circassian	ez-pana
man	oquichtli	chnjashin, Koriali , masing, Adeki	gi\%on
mouse	vecatol	achacollo, achata, Atpmara; isugoh, Circtss.	Sain
mouth	camatl	simi, Quichute ; khaipui, Altactume	anba
nambe	tocatl	zar, I.csghian; chinnil, Jroquois	izell, icen
sister	teciutipo	tsheebk. shupeh. Circtiss. ; cuhulna, Muysca	aizura
black	yapalli	millh, ل゙"ma ; shawagare, Shoshonese	beltz
wind	checatl	aeate, Sonora: aluekin, "	aicea
all	ixquich	hoahtasse, Dacotah; veralik, Circassian	guci
enemy	teyaouh	toka, " taltyk, Corem	etsinya
give	maca	muy-scua, Muysece: beckish, Jesghian	eman, emal:
sick	cocoxqui	crotas. Afotcama ; joatsh, lukahiri	grilicho, saitz
I	ne	nah, $r^{2} u c d l o$; na, Aymura; na, Iesghian	ni
thou	te	ton, " ta, " sle, Dacotah	711
he	ye	ihih, " nea, " ceah, "	haw

Thanks to the survival of Lesghian furms in $t l$, the disguise of the Aztec has been penetrated, and we are thus enabled to assert, first of all, that the apparently widely divergent Peruvian dialects, the Quichua, Aymara, Atacameno, fce., are really its near relations. There is therefore every reason to believe that the Peruvians were the 'Toltecs, who preceded the Aztecs as rulers of Mexico, and who, under their king, Topiltzin Acxitl, withdrew to the south in 1062, and there founded the kingdom of the Sum. The Peruvian annals place the accession of their first historical monarch, Sinchi Rocca, in the same year. Passing over the intermediate kingdom of Bogota, the home of the Chibchas or Muyscas, which was distinctively Periovian in character, and another Toltec remnant, the Lencas of Honduras, we come to the north of the Aztec country, where the Sonora, Pueblos, and Paduca tribes dwell, who have already been associated with the Aztecs by several writers. To these I would add the comparatively small but philologically important Yuma and Pujuni fami-
lies. In all of these tribes we maly recognize the barbarous Chichimecs through whom the Aztecs passed on their way to empire. But of the same race are the central stocks, the Dacotah and Pawnee; and to no other belong the castern families of the Huron-Cherokees, and the Choctaw-Muskogees. The Algonquins of the north, like the Maya-Quiches of Central America, are of a totally distinct branch of the Great Turamian division. The samples of Mound Builder language furnished by the Davenport, the Grave Creek, and the Brush Creek Stones ald their evidence to that of the written characters in favour of a connection of the Mound Builders with the Aztecs and related tribes. The Dacotah Mandans, the Choctaws, the Natchez, and the Aztecs, have been severally set forth as the Mound BuildersThe true Mound Builders may have been done of these, but a distinct tribe of Allighewi or Alleghenies, for whom we must look elsewhere, still, however, to find them a portion of the same great family. Ancient traces of tlis tribe appear in the Hittite country of the Nairi in Mesopotamia, where Elisansu was situated ; in the Alazonus river of Albania in the Caucasus; in the nation of the Halizoni of Pontus mentioned by Homer; in the Scythic Alazonians of Herodotus; and in Alzania, a mountain region of the Basques. It is not at all improbable that the ancient name survives in those of the Alasar and Allakaweah, sub-tribes of the Dacotals, but this only tends to prove that a people of the same race as the Dacotahs, and not necessarily the Dacotalhs themselves, were the Mound Builders.

There is abundant reason for believing the tradition of most of the American tribes I have mentioned to the effect that their ancestors passed over the sea or great river and traversed a region of intense cold before arriving at their destination in more hospitable climates. Kamtchatkal must have been their point of departure from the Old World, whether they reached that point from the Siberian Desert or journeyed thitherward from Corea and Japan by the Kurile Ishands. There they set foot on the Aleutian chain which carrien them safely over to the coast of Alaski. In Kamtchatiale there are many Aztec traces, and some which exhibit an exaggeration of the peculia.ity of Aztec speech with which this paijer is mainly occupied. Such is the rendering of the Aztec verb tlacotla, to love, by the elongated but distinctly recognizable form tallochtelasin. And, with the Kamtchatdale, the fiztec connection, which has been illustrated by comparative vocabularies, embraces all the hitherto unclassified languages of Nor-
thern Asia and Europe. The same forms that prevail over a great part of the American continent, somewhat disguised vet easily recognizable, are found in Japan and in Siberia, in the Caucasus and in Biscay.

Some time ago I alluded to a passage in the Paschal Chronicle in which the Dardanians of the Troad are referred to as Hittites, and since then Professor Sayce has seen reason for connecting the whole Trojan farmily with that ancient and illustrious people. Striabo tells us that at Hamaxitus in the Troad the Teucri, near relations of the Dardani, consecrated a temple to Apollo Smintheus as a memorial of the destruction of their bow-strings and other leathern articles by an army of rats or mice. The same story is told by Herodotus of the Assyrian army, opposed by the Egyptian Sethos, whose name, being the equivalent of Sheth, is truly Hittite. This same story lives in America among the Utes of the Piduca or Shoshonese family, as related by Professor Powell, and among the Muskogees, as told by Dr. Brinton. Hamaxitu. the Trojan town where the legend was localized, was in all probahility a transported Hittite Hamath, for in the form Hamaxia it occurs in the peculiarly Hittite country Cilicia, where Cetii dwelt in ancient times, and where Hittite kings held limited sway in the days of Rome's supremacy. The Scythic Hamaxueci very probably bore no closer relation to the chariot or Hamaxa tham the Muskogees do to musk. These words Hamaxitus, Hamaxia, and Hamaxoeci designated a tribe, sub-tribe or caste, which originally hat its chief representatives in the Syrian Hamath. They were scribes, the most likely people to preserve and hand down traditions of the past, the Amoxoaquis of the Mexicans, and the Amantas of the Peruvians. Through them this legend, and many others which recall old world stories, have found a resting-place on the American continent. Many writers on comparative mythology have been led to connect American tribes with Aryans and Semites by failing to recognize what Accadian studies have fully established, that the Turanians were the instructors in mythology and in many other things of these more highly favoured divisions of the human race.

The decipherment of the Hittite and Siberian inscriptions by the Aztec is but the first step in the solution of problems relating to ancient Old World populations, which are supposed either to have been exterminated or to have lost their independent existence. And the superior"purity of the Aztec language as preserved by a literary
people, spite of its dialectic peculiarities, will enable the philolegist to shed light on many points of etymology and construction in the languages of Europe and Asia to which it is related. Take, for instance, the world totolh-tetl, an egg. Its meaning is clear, for totolh is tototl a fowl, and tetl denotes a stone. By a simple postposition of the nominative, therefore, the Aztec word for egg means the stone of the bird. In Yukahirian the word used is nontcn-dual. Now nonda means a bird in Yukahivian, a form doubtless of the Lesghian onotsh, and the Japanese ondori, a fowl ; but daul, which is just the Aztec tetl, does not now designate a stone in that language. The form has undergone change and is now kell, but there can be no doubt that daul or tol was once the Yukahirian name for stone, as it now is the Mizjeji, Corean and Choctatw form. The Basque word, which I have not found any explanation of among the Basque etymologists, is arrolchice or arroltz. Here the order of the Aatec and the Yukahirian is inverted, for arri denotes a stone, and ollo or oilo, a fowl. The final $c h i$ or $z i$ before the article a, is the mark of the genitive which is now aco or eco. Hence, literally tamslated, arrolchic is "stone fowl of the." The Irounois has entirely lust the etymology of his word onhonchia, in which the Basque r and l have been replaced by n; and the same is the case with the Peruvian, who, by following his usual practice, like the Lesghian, of removing the initial vowel, and simply changing the l to n, makes the word runto. The Circassian kutare is probably of the same composition, for liut should represent lutiey, fowl, and arr, though not now a Circassian worl, was so at the time when Circassians and Basiues were one people, and derived their respective tribal and local names, Chapsuch and Guipuzcoa, from the Hittite land of Khupuscai. It is interesting to note, as exhibiting the vicissitudes of language, that the Corem, who calls a stune tol or tor, retains arr, the primitive term, to denote an egg, just as the Aztecs frequently employed tetl to express the same without any prefix.

There is a Basque word, the derivation of which puzzles the lexicographers, although some have ventured to derive the only Basque term denoting a boy from the Latin. It is mutil, or with the article mutillu. In Lesghian, motshi is a boy, in Japanese, musuko, in Sonoro, te-maclic; but, as a rule, the m of these langruages is replaced in others of the Khitan family by an ordinary labial. A similar diticulty in Basque attends the connected word illobce, which may
mean a nephew or niece, or a grandchild. I am disposed to see in these terms the same word as the Aztec tetelpuch, which appears to mean " the offspring of somebody," or " of a person," for tetech, which in composition becomes tetel, denotes personality. The Aztec puch, offspring, would thus be the same as the Basque ba, and mut. That the mut of mutil corresponds with the mus of the Japanese musuko, appears from the comparison of another Basque word of similar form, mutchitu, mouldy. This answers to the Japanese equivalent museta, as mutil does to musuko. 'Ihe Aztec word for mouldy is poxcuuhqui, and, although there can be no connection between mustiness and offspring, answers in form to puch, as mutchitu to mutil and museta to musuko. The ba of illoba is but an abbreviated form of puch, such as appears in the Aino po, the Yeniscian puwo, and the Circassian ippa. The Basque word for child is nerabea, nor/habe, which connects with nor, norbait, somelody, just as the Loolhoo worrabi, also meaning child, shows its relation to wuru, the Japanese aru, likewise denoting "somebody." li appears therefore that "somebody's wean" is a thoroughly Khitan conception. In Georgian, boshi which may be taken as the root word, means " child," and in Cesghian vashsho. But the Aino vas-asso and boy-otchi seem to be compound terms, like the Choctaw poos-koos and the Dacotah walh-cheesh and bali-katte. Similar forms are the Iroquois wocco-nanne, and the inverted Muyscan guasgua-fucha. The abbreviation of boshi or puch to bu, be or bi, as in the Basque and LooChoo, finds its parallel in the Yeniseian dul-bo, a doubly apocopated tetel-puch. The Yuma luil-pit seems almost to reproduce the Basque form, which inverted would read il-mut. One of the Sonora dialects, as we have seen, gives te-muchi for boy; one of the Iroquois, ihihu-wog; the Choctaw, chop-pootche; and the Shoshonese, ah-pets. In the Old World, the Corean furnishes tang-polit; the Kamtchatdale, kumsunapatch, a long form as in tine Dacotah menarlibetse; and the Yeniscian, pigye-dulb and bikhjal. But the Yeniseian and Kamtchatdale also designate a son by the simple word for ottispring, bit, and petisch in the respective languages. In the Georgian, Circassian, and Peruvian Aymara, this simple form seems to be reserved for the girls, for daughter in these languages is $b o z o, p c h u$, and ppucha. The Aztee prefixes to the word offspring puch, one of its terms denoting woman, female, the whole being teich-puch. This is the tshide-petch of the Kamtchatdale, and, with inversion of parts, the bai-taga of the Yukahini. Other corres-
ponding Khitan forms for girl, daughter, are the Cireassian pus-pa, the Yeniseian bikh-jaljec. the Koriak gna-fikiu and goe-belliak, the Kumbthatdale uchtshi.petch, the Corean bao-zic, and the Japanese musu-me: and, in Americal, the Palluca or Shoshonese wya-pichi, the Dacotah weet-achnous.:, and the [roquois kaunul-wuthih and echrojehawak. The Basque word for girl, ula-bu, ala bichi, is in harmony with illoba, neraber, and the invericed mut-illa, and corresponds with the Yeniseian bikh-jalja. Besides these more conspicuous forms there are many others which exhibit a common formation. Among the Yuma words denoting boy, and the equivalents of lucil-pit in other diatects, occur her-mui and yle-moi, in which the Basque mut and Japanese musu are abbreviated into mai and moi. Of the same structure are the Peruvian Quichua huar-na and the Circassian ar-ps. Two other words for boy, the Japanese bo-san, and the Araucanian bo-tum, belong to the same category ; and there are many other forms, such as the Adahi talle-hache, in which the labial of boshi or puch has been converted into an aspirate, to which I need refer no farther. The Aztec tetol-puch and teich-puch are the types of the many terms mentioned, which exhibit the singular agrement, with phonetic variations, of the Khitan languiges in the formation of these compounds.

A very common element in compound Aztec words is palli, which, besides denoting colour as in ya-palli, black, and yuil-palli, green, appers to have the me:ming of "contents, belonging to," just as the Tapanese iro means colour, and iru, to hold or contain. So in Basque, bal is a root denoting colour in the abstract, and bar, a corresponding root signifying contents. In Aztec tenci-palli means lip, but its derivation is only apparent in Japanese, in which language the word for lip is kulli-biru. Now kuchi is the mouth, and birel is the original of iru, to hold, contain or enter. The Aztec tenxii does not appear in the dictionaries as a word for month, camuel being the term employed; but the related Shoshonese family furnishes atongin, tungin, and the Adali, tenanat. The Circassian lip is uku-fari, plainly the same word as the Japanese and Aztec, although $u k u$ is not the present Circassian term for mouth. The Corean form is ipsi-oor, in which ipsi represents the Corean ipkoo, the mouth, and oor, the Japancse iru or biru. So also the Natchez adds er to heche the mouth, and calls the lip ehec-er. The Araucanian, from a primitive word ia, like the Dacotah ea, the Yuma yu, the Circassian $j e, j a$, the Corean $i i$ and the Basque aho, all meaning mouth, forms, with
the equivalent of palli, oiru and fari, iappelk, lip. The Cirenssian alone retains the sound of itsha, utsha for mouth, which appears in the inverted Lesghian mur-tschi, and Mizijeji bar-rlash, their equivalenti for $u k u-$ fari. In Iroquois the lip is osk-wenta. By the conversion of r and l into n, which characterizes the Iroquois in comparison with most of the other Khitan languiges, wenta represents an original bar, pel, bertct or palta. The double meaning of this toot which has appeared in the Aztec palli, the Japanese iro and iru, and the Basque bel and bar, holds good in the case of the Iroquis, for colour is wensera, in which wen is the radical, and iowente means "accompanying or belonging to." The form wen is by no means so common in Troquois as to make this a chance coincidence. The first part of the word osk-wenta is an abbrevation of a common form denoting the month. In the Basque we are warranted in rejecting Van Eys's derivation of ezpena, the lip, from the root es, to shut, inasmuch as the same root in eztarri, the throat, would be manifestly out of place. In $e z$ therefore we detect the ancient form for mouth which the Circassian gives as itsha, and the Natchez as heche. And in pana, when it is remembered that the change of l to n is not uncommon in the Gasque dialects, there is no difficulty in seeing an archaic pala, even if the Iroquois wen did not justify the connection. The Aztec tenxipalli has derived its enxi, for the t is prosthetic, from such a strengthened form of the $e z$, eche, mouth, as is found in the Yukahiri anga, angya, and in the Lenca ingh. The following table will set more clearly before the eye these relations of the Khition languages in the Old World and in the New :-

FORMS OF THE AZTEC pulli.

	Coluer.	Conteits, pertainisg to	LIP.
Aztec	palli	palli	tenxi-palli
Japancse	iro biro	iru, biru	kuchi-biru
Iruquois	zeensera,	iowente	osk-wenta
Basque	bel	bar	ez-pana

A somewhat similar instance is afforded in the Aztec word for leaf, iatla-pallo or quauhatle-palli, of which the first part is the word denoting a tree. The same is the case with eatche in the corresponding Yuma term eatcha-berbetsen. But the tiel of the inverted Kamtchatdale bil-tlel, the djitsha of the Yukahiri pal-cljitsha, and the zeli of the Georgian pur-zeli, no longer mean tree in these tongues. The Kamtchatdale now uses utha and uuda, diminished forms of the

Lesghian lueta and the Basque zuaitz. The Yukahiri has conformed to the Lesghian $d z a l$ in tshal; and the Georgian, with its che, tha, and tcheka, more nearly approaches the Yuma and other American forms. Still tlel, djitsha and zeli are thoroughly Khitan in character, answering to the Circassian zla, the Basque zuhatsa, and the Lesghian $d \approx u l$ and Yukahiri tshat. Such examples suffice to show how dificult it must be to gain a thorough acquaintance with the structure of our American languages, without having reference to the stock from which they are derived, as well as the paramount value of these languages in all matters affecting the construction of the Basque and Caucasian, the Siberian and Japanese tongues.

Whether the Aztec $t l$ was an original element in Hittite speech, or a corruption arising after the dispersion in 717 B.C., we shall not know definitely until the inscriptions of Syria and Asia Minor, of India, Siberia, and Japan, yiell a vocabulary of sufficient extent to onable us to judge. It is very probable that it existed as a substitute for r in certain Khitan tribes from a very early period, since, in the land of the Nairi, the Assyrian inscriptions mention a town Citlalli, in which we recognize the Aztec word for star, the equivalents for which in Araucamian, Atacameno, Shoshonese, Aino, Lesghian and Basque are schalela, halar, shul, zirari, suri, and izarra. The land of the Nairi or Nahri, the Naluarinu of the Egyptian records, hais been gencrally regarded as a form of the Semitic Naharain, the rivers, whence the designation Mesopotamia. But the word is purely Turanian, and designates primarily a people, not a country. The Egyytian form is the most perfect, as it preserves the nedial aspirate and retains the Hittite plural in 2 . It is just the . .ztee national designation Naluatl, Nauatl, or Navatl, which, by the application of tine law of phonetic change, becomes Nahuar, Nauar or Navar. The Aztec word means "that which is well-sounding, or a fluent speaker," but most of the words derived from the same root have either the meaning of law or measure or of interpretation. The fluent speaker probably was looked upon as one who spoke with regard to the laws of language and in measured tones, and the interpreter as one who converted the idiom of barbarians into the well-regulated language of the Aztecs. The Japanese preserve the word in two forms, nori, meaning law or measure, and naori, translation. In Basque it is represented by neurri, measure, and this in all probability is the same word as Navarre, a Basque province. As Khupuscai and the
land of the Nahri are united in the Assyrian inscriptions, so, in Basque geography, aro Guipuzcon and Navarre. The Scythic Neuri of Herodotus were probably members of the same family. The Niquirans, who are Aztecs, settled in Nicaragua, preserve the ancient name but have hardened the aspirate into a guttural.

More than thirty years ago that veteran ethnologist, Dr. Latham, wrote the following: "The Kamskalale, the Koriak, the AinoJapanese, and the Korean, are the Asiatic languages most like those of America. (Afterwards he includes the Yukihiri and elsewhere comnects that language with the Yeniseian.) Unhesitatingly as I make this assertion - an assertion for which I have numerous tabulated vocabularies as proof-I am by no means prepared to say that one-tenth part of the .eccessiary work has been done for the parts in question ; indeed it is my impression that it is easier to comnect America with the Kurile Islands and Japan, (re., than it is to make Japan and the Kurile Islands, dce., Asiatic." Nothing can be truer than the above statement made by one whose name should carry the greatest weight with all his scientific utterances to the minds of scholurs. It is therefore simply incomprehensible how a writer on philological subjects of such high standing as Mr. Horatio Hale could be led to say, "Philologists are well aware that there is nothing in the languages of the American Indians to favour the conjecture (for it i_{i} nothing else) which derives the race from Eastern Asia." I venture on the contrary to assert tliat there is no philologist worthy of the name who, having carefuily studied the languages of the New World and the Old with which this paper deals, has come to any other conclusion than that reached by Dr. Latham and myself. And if Mr. Hale will simply follow up the relations of the Basque, which he wisely comects with our American aboriginal languages, he will soon find himself among those very peoples of Eastern A.sia whom he so summarily dismisses. Dr. Latham's Peniusular Mongolidae, including the Yeniseians, and the Americans, are neither Mongolic, Tungusic, (with the exception of the Tinneh, Finno-Samoyedic, Dravidian, or Monosyllabic. They have relations in India among the aboriginal northern peoples, and the Kadun or red Kariens of Birmah belong to the same race. But, with these exceptions, the Khitan do not comnect with the Asiatic populations. Not till we reach the confines of Europe and Asia in the Caucasus, where another unclassified group of languages makes its appearance, do we find the relatives
of the colonizers of America, and through them effect, what Mr. Hale would do per sultum across the Atlantic, a union with the Basyues.

From these general considerations I turn to the special work set forth in this paper, that namely which exhibits the relation of the Aztecs to the Khitan family in gener:al, and in particular with those branches of it which are found in the neighborhood of the ancient Hittite civilization. The meagreness of my vocabularies of the Cathcasian languages compelled me to illustrite their connection by the closely related Basque in the case of the Hittite inscriptions which I recently translated. Some examples of the relation of the Hittite language spoken in Syria and Mesupotamia in the 8th and preceding centuries B.C., may fitly close the argument in favour of the Hittite or Khitan origin of these and their related languages.

COMPARISON OF HITTITE FORMS EROM THE MONUMENTS.

Exalisur	Hittite.	Basque.	Japanism.	Aztec.
dependence	kakala	katalo	kakari	cacalic, cetilia
incite	kasakaka	kitzikatu, kilikatu	keshikake	cocolquitia
oppose	kakeka	jauki	giyaku	ixquaqua
desirous	manene	min	mune	mayanani
beseech	neka	nastu	negau	notza
modiest	simaka	zimiko	tsume	temociui
country	kane	gune	kuni	canit
cut	kara	zilhetze	kiru	xelua
he	ra	hura, bau	are	ye
small	sasa	chiki	sasai	xocor
put	taris	ezarri	ateru	thalia
tight	tiketi	zehatu, etsaigo	tekitai	teyantia
between	neke	nas, nahas	naka	netech
hastily	sakasakasa	ta':ataka	sekaseka	iciuhcayotica
destroy	kasa	chikitu	kachi	cacayaca
lay waste	susane	zuzi	susami	xixinia
accord	kane	on-gune	kanai	cen
come	al	el, hel	iru. kuru	vallauh
house	taku	tegı	taku	techan
I	ne		mi	
within	tata	ta, hetan	tate	titech
at	ka	gau	oku	co
in	ne	an, n	ni	
vex	nebala		naburi	navallachia
hear	kika		kiki	caqui
ruler	basia	-	bushi	pachoa
friend	tinela	-	tomobito	tenamic

From these examples it appears that the best living representative of ancient Hittite speech is the Japanese, which, with the Aztec down to the time of Spanish conquest, has never ceased to be a literary language. Standing midway between the long-forgotten Hittite
civilization of Syria and the now extinct mative civilization of Mexico, Japan affords the most satisfactory starting point for the investigation of problems of world-wide interest that find their centre in the Khit:un name. In its name Yamato it shows a closer comnection with Hamath than with the land of the Nahri in Mesopotamia. As the home, therefore, of the scribes, whom the Peruvians called Amautas and the Aztecs Amoxoaquis, literature naturally flourished in its islands ; and the believer in Holy Writ will see in Japmese culture and prosperity the result of the hessing of Him who is governor among the nations upon the Kenite "seribes that came of Hamath, the father of Beth-Rehob," Hittites indeed, but on bler than their fellows.*

Mr. Buchan was of opinion that it was impossible to pronounce an opinion upon the paper without examining the lists of words carefully, but the conclusion that the American Indians reached this continent from north-eastern Asia seemed exceedingly reasonable. He must, however, differ from Prof. Campbell in regard to the rlationship of the Hinos and Japanese. Recent accounts had confirmed him in the view that they were radically different in language as well as in physique. He might mention that it had been clearly established that the Hinos were, as according to a pet theory of his they ought to be, a white race, seeing that they inhabited a moist and cloudy region. The contradicting accounts of previous travellers as to thcir colour were due to the Hino abhorrence of water, at least when applied externally.

Mr. Notman, Mr. Shaw, Mr. Dunlop and Mr. Murray also took part in the discussion.

[^0]Mr. VanderSmissen also read a paper by the ker: Dr. MacNish, of Cornwall, entitled :-

THE GAELIC TOPOGRAPHY OF WALES AND THE LALE OF MAN.

In a paper which I had the pleasure of sending to the Camadian Institute during last year, I endeavoured to prove, by the examination of topographical names in England and Scotland and Ireland, that Celts who spoke Gaelic must have preceded the Cymry in the occupation of the British Isles. On the strength of evidence which appeared to me satisfactory, I came to the conclusion that "the tirst powerful stream of immigration into Great Britain and Ireiand was Gaelic ; that the Scottish Gaels are the representatives of those Celts who were the first to enter Britain and to travel morthwards from the South of England to Scotland ; and that the remote ancestors of the Scottish Gaels and the Celts who were the first to people Ireland, were one and the same people and spoke the same language."

I propose in this paper to examine the 'Topography of the Isle of Man and of Wales, in the hope that corroborative evidence can thus be obtained in favour of the theory, that Celts who spoke Gaelic preceded the Cymry in the occupation of Great Britain; and that the arrival of the Cymry must have been much later than that of the Gaels whose language is still discernible, after the glide of many centuries, in the names of headlands and mometims, and lochs, and bays, and rivers. It is reasonable to conjecture that the earliest occupants of Britain wended their way westward, and that a Celtic population settled in the Isle of Man long before the Romans invaded britain; and that from Man many Crlts must have passed into Ireland and at different times into Scotland. The Topography of the Isle of Man; the names which still survive and which a succession of foreign masters was powerless to obliterate ; the language which the Manksmen speak down to our own day; and the literature which they have, though it is not very extensive,-combine to prove that the Isle of Man and its inhabitionts are normally Gaelic, and that Mamx is closely allicel to Irish and especially to Scottish Gaelic. Dr. Joyce in his interesting work, Iriwh Nemes of Pleces, (Vol. I, p. 16i3), hats this reference to Manaman Beg Mac y Leirr, who, the Mimksmen aver, was the founder, fither and legislator of their commry. "One of the
most celebrated characters among the people, i.e., the Tuath de Danaam, was Manannan Mac Leir, of whom we are told in Cormac's Glossary and other ancient authorities, that he was a famous merchant who resided in and gave same to Inis Manann, or the Isle of Man. . ." The conjecture has been advanced, that the term Mannin is compounded of meadhon, middle, and $i \mu$, an island; and that accordingly, it is a purely Gaelic word, signifying "the middle island." A glance at the map, will show, that the Isle of Man is situated in a very convenient position so far as England. Ireland and scotland are con ${ }^{-}$ cemed ; and that in the days of inregular and unprincipled warfare. it could not fail to be involved in the continual struggles that wore going on in those kingloms. Three armed legs form the present armorial bearing of the Tsle of Mam. The motto. Quocunque jeceris stabit, inasmuch as no tramsposition of the words can alter the true meaning, may be rerarded as an ingenious allusion to the three alternatives which Man in the days of its independence possessed. of leaning for surport oa one or more of its more powerfnl neighbours. That the Manksmen could and can speat their own Gaelic after being subject to their Welsh neighbours for 400 years, and to the Danes for 153 years, and to the Norwegians for 200 years, and after owning the sway of England and Scotland for 139 years before the Isle of Nan became the property of the Stanleys with whom it remained for 330 years, when it passed into the jossession of the Lords and Dukes of A tholl, who surrendered every claim to it in $1 S 29$, -goes very far to show how streng the lite of a language can be, and how its ritality can cointinue and be vigorous even when unfriendly forces of a powerful kind are, it may be, intent on destroying it.

Taylor in his Words and Places, (pp. 260, 2ijl), maintains that Mun signifies at district. He goes on to state that "the map of the Iste of Man contains about four bundred names, of which about 20 per cent. a:e English, 21 per cent. Norwegian, and 59 per cent. Celtic. These Celtic names are all of the most characteristic Erse type. It wonld appear that not a single colonist from Wales ever reached the island, which, from the mountains of Carnarron, is seen like a faint bluc cloud upon the water. There are 96 names beginning with Balla, and the names of more than a dozen of the highest mountains have the prefix slien, answering to the Irish slzebh o. sliabh. The Isle of Man has the Curraghs, the Loughs, and the Allus of Iteland faithfully reproduced." Tarylor was doubtless at pains to
make an accurate examination of the topographical names of Man. It is in the highest degree surprising that, after all the changes which passed over the Isle of Man, and in spite of the numerous languages which were spoken by those who successively exercised authority over its inhabitants, 59 per cent. of the topographical names should still be Gaelic, commemorating thus the early and powerful presence of the Gaels in the Island long before, it may be, Cæsar invaded Britain, or the Cymm forced their way as later C'elts into the Albion of Aristotle. In his introduction to his Irish Grammar, Dr. O'Donovan thus writes: "The Manx is much further removed from the Irish than the Gaelic of Scotland. Its words are principally obscured by being written as they are pronounced without preserving the radical letters as in Irish." The translation of the Holy Scriptures into Manx forms the most important part of Manx Literature. The translators went avowedly on the principle of spelling words phonetically, of disregarding etymological considerations, aud of making as near an approximation as might be possible to the mamner in which the language was spoken, in order that every Mianksman could easily read and understand the Scriptures in his native tongue. It naturally happens that no small ingenuity is at times necessary to discover the exact value of certain sounds and words in the Manx language as it is written. The judicious remarks of Dr: Joyce, (Vol. I, pp. 1, 2, 3,) apply with peculiar strikingness to the topographical names of Man : "The interpretation of a name involves two processes, the discovery of the ancient orthography, and the determination of the meaning of this original form. . . . A vast number of our local names are perfectly intelligible as they stand in their present Anglicized orthography, to any person who has studied the phonetic laws by which they have been reduced from ancient to modern forms . . . In numerous other cases, where the original forms are so far disguised by their English dress as to be in any degree doubtful, they may be disccvered by causing the names to be pronounced in Irish by the natives of the respective localities. When pronounced in this manner they become in general perfectly intelligible to an Irish scholar . . . The meaning of a name otharwise doubtful will often be explained by a knowledge of the locality."

Words beginning with Baile are very common in Scotland, and especially in Ireland. Baile signifies a farm, a village, or town. Indeed, a casual comparison of the names in Mran, and Scotland, and

Ireland, that begin with Baile, will show that there is a great similarity if not an identity between them. It will be sufficient to adduce a few examples of the presence of Baile in the Topography of Man :-

Bailegawne, buile'yhobhainn: the smith's town.
Builenahown, baile na loccimhne: the town of the river.
Balladoole, baile'n talaich: the town of the knoll.
Ballaquane, buile'chuain: the town of the ocean.
Ballaquinney, baile'chuinne: the town of the corner.
Balnabarna, baile and bearna, a gap or fissure.
Ballamahow, baile and magh, a field; Irish, Mayo.
Baldwin, baile and cooduinn, a brow or face.
Ballamona, baile and monudh, a moor.
Ballawhane, buile and ucaine, green.
Ballaharry, Bcllaghuraidh, baile and garadh, a den.
B:llown, baile and amhainn, a river.
Ballaylass, baile and glas, grey.
Billa Kilmorrey, baile, cill, a church or graveyard, and Muire. Mary.
Ballysallach, baile and salech, filthy.
Batlaugh, bealach, Balloch: an opening or defile.
Ballanonamoar, buile and monadh mor, the large moor.
Ballure, buile and ar, new.
Ballacowle, buile and cail, a comer.
Ballacooiey, buile and coille, a wood.
Ballaliece, buile and leac, a flat stone.
B.llacreggam, baile and creay, arock.

Ballamagher, braile and muchutir; a field.
Ballnakilley, beile and cill, a church-yard.
Ballaskyr, laile and sgoir, a rock.
Bailabooie, buile and buidlee, yellow.
Words identical with those which have now been cited, are of frequent occurrence in the Topography of Seotland and Ireland. I have given the Gaelic derivation or equivalent of the names which have been taken from the Topography of the Isle of Mam. Their Gaelic origin is mmistakable ; aud hence the inference may be reasonably drawn, that the sime people gave names in the Isle of Mran, in Scotland, ind in Ireliund, to the places in which Baile is found as one of
the constituent elements, and that the language which was then spoken in Man and Scotland and Ireland was one and the same.

The names of hills and glens in the Isle of Man are likewise Garlic. e.g. :-

Slieu mayll, sliabh, hill : and maol, bare.
Cronk na h-eiric, cnoc, hill : eirig, a ransom.
Cronk na Kielan, cnoc, hill: and ceoldn, faint music.
Slieuwhallin, sliabh and aluinn, lovely.
Cronk Keeillowan, cnoc, cill, and Eoghann Hugh: Ewan.
Knockaloe, cnoc and loch, a lake.
Cronk ny marroo, cnoc: na marbl, dead.
Slieudhoo, sliabl and duble, black.
Cronkbourne, cnoc and burn, water.
Cronkurleigh, cnoc and iolaire, an eagle.
Glentrammon, gleann, Manx glione, a valley, and draman, a ridge or boortree.
Glen Darragh, gleann and darach, oak.
Glen Moy, gleann and magh, a plain.
Glion Mooar, gleenn and mor, large.
Gliongawne, gleann and gobhainn.
Glenfaba, gleunn, fuigh, pasture, and bu, cattle.
Glencutchery, gleann and cruitearach, the occupation of a harper.
Glendoo, glenn and dubh, black.
So apparent is the Gaelic origin of the names of hills and valleys in Man, that any one who has a knowledge of Gaelic can with great facility determine the me:ming of the names in question.

Poolvash is compounded of poll, a pond or pool: and bus, death, the pool of death.
Port ny-Hinshey, port, a harbour ; and innis, an island ; port na h-innse, the harbour of the islind. Such was the original name of the harbour of Peel.
Maugherakew, machair, a plain; and ceo, mist.
Bowmaken, bogha, a bow ; and ceann, head.
Rushen, rulha, a promontory; and sean, old.
Rue, rudlua : a point.
Rievalle, righ: a king, and baile.
Ayre, uiridh: a shealing.
Shellach point, seileach, willow.

There are many words begimning with came, a head, whose Gaelic -origin is quite evident, e.g. :-

Kentraugh, ceann, a head; and traighe, shore.
Kiondroghad, cecunn and drochai l, bridge.
Kenmoy, ceann and maylh, a plain.
Kinskae, ceann and syiath, a wing.
Kionsleall, ceann and slicble.
Kenna, ceann and ath, a ford.
Such words as these indicate at once that they are of Gaelic origin, and that the Celts who imposed such names on the prominent phy: sical features of the Isle of Man spoke tho language which has been perpetuated over many centuries in the Fighlands of Scotland.

Lhergydoo, leary, a slope, and duble, black.
Slegaby, slige, a shell ; and buillhe, yellow.
Keillvael, cill and maol, bare.
Douglas, duble and glas, grey.
Sulby, suil, an eye; and buidhe, yellow.
Lazayre, lios, a fort; and ciridh, a shealing.
Lhen moar, lean, a plain ; and mor, large.
'Garff, garbll: rough.
Braddan: a salmon
-Cas na h-owne: the fout of the water.
Strathallan, srath, a valley; and aluizn, splendid.
-Cloughbane, clach, a stone; and ban, white.
Loughan a yeeah, lochan a little lake; and geadh, a goose.
Cregnesh, creat, a rock; and innis, an island.
Caoilban, caol, narrow ; and ban, white.
It would be very easy to adduce examples in abundance from the 'Topography of Scotland and Ireland in which such roots are present, as baile, amhuinn, monadh, cill, magh, muol, creag, sgeir, cnoc, loch, gleann, port, innis, leary, ceann, rudha, clach; roots which are of constant occurrence in the Topography of the Isle of Man. It is reasonable to conclude, that the power of the Gacls in the Isle of Man was paramount at some time in the far-off past, seaing that the successive waves of conquest which passed over the Island have failed to obliterate the traces of the Gael, and to destroy the proofs that names of rivers and hills and valleys furnish, regarding the people whose time of predominant occupation was so long as to enable them to leave
indelible footprints of themselves and of their language in the names which the Topography perpetuates for the information of posterity.

Thomas Stephens, the well-known author of the Literature of the Kymry, avers, " that the Welsh or Kymry are the last remnant of the Kimmerioi of Homer and of the Kymry, the Cimbri of Germany." It is possible to cite the authority of two learned Welshmen in favour of the theory that the Gaels precedeal the Kymry in the occupation of Britain. Edward Llwyd, the famons author of the Archecologica Britcanica, who expended five years in travelling anong the portions of Great Britain and Ireland where the Celtic languages were spoken, and who is justly regarded as the Father of Welsh Philology, thus writes in his Welsh preface to his book: "Nor was it only North Britain that these Gwydhelians (Gaels) inhabited in the most ancient times, but also England and Wales . . . Our ancestors did from time to time drive them northward . . . From Kintyre, in Scotland, where there are but fom leagnes of sea, and from the County of Galloway and the Isle of Man, they passed over into Treland, as they have returned backwards and forwards erer since . . . There are none of the Irish themselves, so far as I know, . . . who maintain that they had possession of England and Wales. And yet, whoever takes notice of a great many of the names of the rivers and mountains thronghout the kingdom. will find no reason to doubt that the lrish must have been the inhabitants when those names were impressed upon them, i.e., upon the rivers and mountains." In his Celtic Britain, (1. 4,) Professor Rhys, of Oxford, who is himself a Welshman, and a Celtic scholar of large attainments, asserts that the Goidels (or Gaels', were undoubtedly the first ('elts to come to Britain, as their geographical position to the west and north of the others would indicate. In comnection with the Ogam Inscriptions, which are found in Wales, he remarks in his Celtic Britain, (p. 213,) that the Goidels belongel to the first Celtic inrasion of Britain, and that some of them passed over into Ireland and made Ireland also Celtic. Some time later there arived another Celtic people with another Celtic language. "These later invaders," he writes, "called themselves Brittons, and seized on the best portions of Britain, driving the Goidelic Celts before them to the west and north of the Island; and it is the language of these retreating Goidels of Britain that we have in the old Inscriptions and not of Guidelis invaders from Ireland. Their (ioidelic speech, which was driven ont by the ever-
oncroaching dialects of the Brythons, was practically the same language as that of the Celts of Irelind, of NTan, and of Scotland." As Lhuyd and Professor Rhys give such an unambiguous opinion respecting the earlier presence of the Gaels in Britain, it may fairly be expected that the Topography of Wales will iend strength to the conclusions of those Welsh scholars.
The word Aber is of frequent occurrence in the Topography of Wales. It is in all likelihood a compound of ath, a ford, and bior, water-waterford.

In my previous paper on the Gaelic Topography of Britain, I adverted to the theory which was first advanced by Chalmers and which has as its advocates Dr. MacLauchlan, and Mr. Taylor, the author of Words and Places,-that, as Dr. McLauchlan contends, " the Generic Aber is in Scottish Topography found uniformly associated with specific terms purely Kymric," and that, as Mr. Tiaylor contends," the Cymry held the Lowlands of Scotland as far as the Perthshire hills. The names in the valleys of the Clyde and the Forth are Cymric and not Gaelic." I remarked that Robertson and Skene have successfully refuted the theory in question. It is certainly a singular fact that if the Topography of Strathclyde is Cymric and not Gaelic, there are no Abers in the comnties of Selkirk, Peebles, Ayr, Renfrew, Lanark, Stirling, Dumbarton and Galloway. Robertson, after examining the theory of which mention has been made, is fully justitied apparently in employing this language in his Gaelic Topography of Scotland, (p. 512): "All the great features of nature within Scotland attest to the truth of the Caledonians being the first race; the mountains and the valleys all speak to us in their language -the G'aelic and not in Welsh. The author has proved beyond all controversy that there is not a mountain to be found in Scotland which bears a Welsh name, not a lake or river." Aber is of commor. occurrence in the names of places that lie along the sea-coast of Wales, e.g.:-

Abergeley: the confluence of the white river, ígeal).
Aborconwy, aber and conabhuinn: confluence of rivers.
Aberhonnddu, aber and abhuinn, river ; and dubh, black.
Abermaw, aber and baw: W filthy.
Abermynwy, aber, and a root resembling monadh, moor.
Abertawy, aber and tabl: water or ocean.

Aberteifi, ciber and tief, akin to T'aff; I'aw, T'ow, a root which occurs in Tay, Tagus, Thames.
Aberavon, aber and abluinn, river.
The question now arises as to the best and most plausible manner of accounting for the presence of Aber in the Topography of Wales and of the Highlands of Scotland ; and for its almost entire absence from the Lowlands of Scotland where a Cymric kingdom once existed, as well as from Cornwall, which has many points of resemblance in language and race and tradition with Wales. In the face of the certainty that a largu part of Scotland where no Abers are found intervenes between Cumberland, which in its very name perpetuates the fact that it was at one time inhabited by Cymm, -and between the Highlands where Abers and Invers are of constant occurrence, it will be vain to seek for any satisfactory explanation of the presence of so many Abers in Scotland in the predominance which the Cymry at one time possessed in the South of that country. Is not the conjecture more reasonable that, as Wiales and the Highlands of Scotland resemble each other very closely in their mountainous character, in the ruggedness of their soil, and in the number and strength and rapidity of their streams; and as no other portion of Britain has such an uneven and rugged surface as Wales and the Highlands of scotland, a similar term should be employed to designate the frequent confluences of streams, -a term which is not found elsewhere, and which, so fiu as Wales and Scotland are concerned, finds an easy explanation when the concession is made, that it was used by one and the same people in the far-off ages to describe these ineetings of streams and rivers, which are common to both countries. The diti-- culty vanishes when it is granted that Aber, which is a Gaelic word, was employed by the observant Gaels of a remote age to represent these confluences which they found in Wales, and which they found in the Highlands of Scotland after they had passed over the comparatively level Lowlands. It is noteworthy that Latham is disposed to regard Aber as the Abor in the word Aborigines, "the locality to which it applied being either the confluence of the rivers Anio and Tiber, or the mouth of the Tiber."

Ccer or Cader, which is the Gaelic Cathair, a city or fortified place, enters into many of the Topographical names of Wales, e.g. : Cader Idris, Cardigan, Cærnarvon, Cærmarthen, Cardiff, \&c. Joyce, in his Irish Nrames of Places, (Vol. I., p. 284-5), states that " in modern
nomencliture, the word (Cathair) asually takes one of the two forms, Caler and Cahir, and that there are more than 300 townlands and towns whose names begin with one or the other of these two words,all in Munster and Connaught . . . Caher itself is the name of more than thirty townlands, in several of which the original structures are still standing." Cathair is ummistakably present in such names as these in the Topography of Scotland: Carden, Carriden, Carlin, Carmyle, Carluke, Carlaverock. Carnervon is the name of a place in Aberdeenshire-Cathair-an-ear-abhuinn: the city of the Eastriver." The contention of the adrocates of the theory, that the Topography of Scotlaud is largely Cymric, and that Caer which occurs in such names as have been already cited, is an illustration of the correctness of the theory,-is altogether untenable. The very fact that Cathair enters so largely into the Topography of Ireland and Scotland, clearly indicates that the word is not strictly Cymric, but that it dates from a remote age when Celts, whose language was Gaelic, imposed the names which have come down to our time on similar physical peculiarities in Wales and Scotland and Irelaud.
'The word Llan which means area, yard, church, is frequently found in the Topography of Wales, e.g.: Llandaff, Llandeilo, Llanelly, Lampeter, dc. Joyce thus writes, (Vol. I., p. 321): "Lann, in old Irish land, means a house or church . . . Lann is found in our earliest MSS., among others in those of Zeuss : it occurs also in an ancient charter . . . in the sense of house." The word lann occurs also in Gaelic, and has the same meaning that it has in Welsh and Trish. I am disposed to helicve that between lann and the Gaelic word lean, a meadow, a green plain, there is a strong resemblance, if not an identity. Jopce admits that, in its ecclesiastical application, lann was borrowed from the Welsh, but contends that "when it means simply house, it is no doubt purely Irish and not a loan word." It is clear, therefore, that lunn is a Gaelic word, and that it does not belong exclusively to the Cymry and to the Topography of Wales.

Loch is the term which Scottish and Irish Gaels employ to designate a lake or an inland sea, or arms of the sea. The Anglicised form of Loch in Ireland is Lough. Llyn is the word which occurs in the Topography of Wales to designate a lake, e.g.: In Cardiganshire there are Llyn Ceifi, Llyn Gynon, Llyn Eiddwen. In the County of Carnarvon there are, among others, Llyn Cwlyd, (caoilead, narrowness), Llyn Eigian, (aigein. deep), Llyn Llydan, (leathan, broad). Llyn
is doubtless the purely Gaelic word, linne, which signifies a pool, lake, gulf. Linn enters into such words as Lincoln, Linn, Loch Linne, Roslin, Dublin. Though a difference obtains between the use which is made of linne in the Topography of Wales and the sense which it bears in the Topography of Ireland and Scotiand, the word is unquestionably Gaelic, and as much entitled to that parentage as lock, or cnoc, or amhuinn.

The root moin or moine, a mountain, moss, a mossy-place, enters into mynydd, the Welsh word for mountain, and into the Gaelic word monadh. Moin or monadh enters largely into the Topography of Scotland and Treland, 8.9. , in the former country, Moncrieff, Monimail, Monivaird, \&c., and in the latter country, Monalour, Ardmhoin.
Carn, the Gaelic word for a heap of stones, raised over the tombs of heroes,-a word which is of common occurrence in Scotland and Ireland, e. g., Cairngorm, Cairndow, Carn, Carnglass, Carnlea, \&c., is present in Carned Llewelyn and in Carreed Dafydd, in the County of Carnarvon.

Maol, bare, a precipitous promontory, Mull, Moyle, which occurs in such names as the Mull of Kintyre, the Mull of Galloway, Malin Head, Rathmoyle, Lismoyle, Dunmojle,-is present in Moel Siabod, Moel Hebeg, in the County of Carnarvon, and in Mael Famman and Mael y-Gaer, in Flintshire. Drum, the well-known Gaelic word for a ridge or back, is in Carnarvonshire. Kinmel (ceann, a head, and meall,, a round hillock), is in Denbighshire. Dun appears to enter into the first syllable of Denbigh, Dinbych, Dunbeag, the little dun or fort.

Arran, which occurs in Arran Fowddy, is the name of an island in Scotland and of several islands on the western coast of Ireland. Craig y Llyn, the rock of the pool or lake, is in Glamorganshire.
So far, therefore, as the names of mountains and ridges and hillocks in Wales are concerned, it is evident that Gaelic words are commonly to be found.
The names of various places in Wales disclose their Gaelic origin very readily. I, the Gaelic word for island, as in Iona, forms the last syllable of Anglesey.
Mueltraeth, in the same country, seems to be compounded of Maol, smooth or bare ; traighe, a beach or shore.
Penmore is ceann, and mor, large.

In Brecknock: breac, spotted, and cnoc, mountain, seem to enter as constituent elements.

Brynmawr, (bryn, hill; Irish, bri; Gaelic, bruthach, and mawr mor, large), signifies a large hill.

Crickhowel seems to be compounded of creag and suil, an eye. Bangor (Beannchar, pointed hill or rocks), is also the name of a place in Down, Ireland. Carneg Cennin, in Cacrmarthen,' is doubtless Carraig Cheannfhionn, the white-headed rock. Pembroke, (Welsh, Penfio), is compounded of ceann and bru, a country.

The Topography of Wales discloses its Gaelic origin very distinctly in the names of its rivers, e. g., T'aff' T'ave, T'aw, Towey, Tow, Teific: here, are different forms of the same root, which appears also in Tagus, Tay, Thames, and which has the strongest similarity to Tabh, an Irish and (xaelic word, signifying water or ocean.

Severn : seimh, still, and burn, water.
Dee, da, cabl: double water.
Dovy, dobluibh; boisterous.
Cowin, cumhann: narrow.
Alyn, aluinn, splendid ; or al, a stone : abhuinn, river.
Dwyrid, Dur, water ; or duiread, stubbornness.
Ogmore, uisge, oice, water; and mor, large.
Verniew, fearna : alder tree.
Wye: Welsh, Guy, water; Buidhe, yellow.
Honddu, amkainn dubh: black or dark river.
Conway, Comh, con-umhainn-aimhne: coming together of the river.
Seoint, sinte : extended.
Gwili, goil, goileach : boiling, raging.
Cothi, cuthaich: frantic.
Llwchwr, luackaiv: : rushes.
Aled, aillead : beauty (?)
The citations which have been made from the Topography of Wales will suffice, I trust, to show conclusively, that the names of the Abers, and rivers, and forts, and hills, and lakes of Wales are of Gaelic origin ; and that the same Celtic people gave, in the unrecorded ages of the past, the names which the prominent physical features of Wales and Ireland and Scotland have preserved over the centuries, and by which, though at times in the midst of obscurity, those natural features are still wont to be described.

In the preface to his Grammatica Celtica, Zeuss (than whom there is no better authority), asserts "that it can by no means be established that there was a community or an identity of language between the British and the Trish, (inter Britannos et Hibernos), in the eighth or ninth century, or even at a much earlier date ; although it is abundantly manifest that both dialects or languages have begun from one fountain." That statement of Zeuss may be construed legitimately enough in such a manner as to increase the value of the argument which can be drawn from topographical names, in favour of the theory that the Gaels preceded the Cymry in their occupation of Wales as well as of the other portions of the British Isles. May not the argument be fairly advanced, that, as the substratum of the Topography of Wales is distinctly Gaelic, and as Zeuss, as the result of his exhaustive and masterly examination of the oldest forms of the Celtic langnages or dialects contends, that long before the eighth or ninth century there was no identity of language between what may be regarded as the Cymry and the Gael, - to the Celts who spoke Gaelic the honour belongs of laying the foundation of the Topography of Wales; for, although the topographical structure has many stones that are of Cymric growth, the stones that form the foundation and on which the entire structure rests, are of purely Gaelic origin, and have an indefeasible kinship with the foundations of similar structures in Scotland and Ireland.

The rapid survey which I have been able to mresent of the Topography of the Isle of Man and of Wales will, I trust, serve to corroborate the conclusions at which learned philologists such as Llwyd and Rhys arrived from different channels of reasoning and observation, and to strengthen the theory, if not to establish it on honest and satisfactory grounds, that the first powerful stream of Celtic immigration into Britain was Gaelic, and that the same Celts who gave names to Fintry and Bannockburn in Scotland, gave names also to Bantry and Kinsale in Ireland, to Aberavon and Carnarvon in Wales, and to Slieu Mayll and Poolvash in the Isle of Man.

A short discussion followed, in which Mr. Notman, Mr. Shaw, and Mr. Murray took part.

FOURTEENTH ORDINARY MEETING.

The Fourteenth Ordinary Meeting of the Session 1883-84, was held on Saturday, February 16th, 1884. In the absence of the President and Vice-Presidents, the chair was taken by Dr. Jos. Workman, who, later in the evening, retired on the entrance of the President.

The minutes of last meeting were read and confirmed.
Mr. Henry E. Morphy, B.A., was elected a member.
The following list of donations and exchanges received since last meeting was read :-

1. Journal of the Transactions of the Victoria Institute, to complete a set. Vols. 2, 6, 7, 8, 9, 10, bound, and lart 3, Vol. 15 ; Part 3, Vol. 16.
2. Science, Vol. 3, No. 53, Feb. Sth, $18 S 4$.
3. Transactions of the Manchester (ieological Society, Part 12, Vol. 17, Sess. 1S53-St.
4. Proceedings of the American Antiquarian Society, N. S., Vol. 3, Part 1.
5. Atti della Societi 'loscana di Scieuze Naturali, residente in Pisa, Processi Verbali, Vol. 4, title-pages to do., Vols. 1 and 3.
6. Catalogue of Canadian Plants, Part l. Polypetalæ, by John Macoun, I.R.S.C.
7. Report of Progress for 1SS()-S1-S2, of the Geological and Natural Hist. Survey of Canada. Maps to accompany the above Report.
S. Records of the Geological Survey of India, Vol. 16, Part 4, $1 S 83$.

Prof. J. Playfair McMurrich then read a paper on "The Skeleton of the Catfish," which will appear in the next fasciculus of the Proceedings of the Institute.

FIFTEENTH ORDINARY MEETING.

The fifteenth Ordinary Meeting of the Session IS83-84 was held on Saturday, February 23rd, 1884, the President in the chair.

The minutes of last meeting were read and confirmed.
The following list of donations and exchanges was read :

1. Science, Vol. 3, No. 54, February 15, 1884.
2. Bulletin of the Museum of Comparative Zoology at Harvard College, Vol. 11, Nī. 9.
3. Bulletin of the Buffalo Society of Natural Sciences, Vol. 4, No. 4.
4. The Pennsylvania Magazine of History and Biography, Vol. 7, No. 4, December, 1883.
5. Correspondenz-Blatt der deutschen Gesellschaft fiur Anthropologie, Ethnologic und Urgeschichte, 13Nos., January, 1883, to January, 1SS4.
6. The Monthly Weather Review for Jamuary, 1884.
7. Journal of the Royal Geological Socicty of Ireland, Vol. 2, Part I; Vol. 3, Part 1, 2, 3; Vol. 4, Part 2, 3; Vol. 6, Part 2.
8. The Canadian Entomologist, Vol. !j, No. 12.
9. Journal of the Anthropological Institute oi G. B. and Ireland, Vol. 13, No. 3.
10. Proceedings of the Royal Geographical Socicty, Vol. 6, No. 2, February, 1SS4.

Mr. J Gordon Mouat then read a paper entitled,

A FEW CANADIAN CLIMATES.

Of the water influences which affect the climate of Camada, that of the Pacific Ocean is by far the most extended and far-reaching. The atmospleric drift of the middle liatitudes bears it across the ranges of the Rocky Mountain system and diffuses its anelionating warmth over the vast plains of the Saskatchewam and Athabascal. The influence of the Athantic is limitell to the few handred miles over which the eastern surface winds from the sea are drawn inland towards the eyclonic areas advancing from the west. Whe St. Latwrence valley shows this influence in the winter temperature, which is higher than in the central parts of the continent on similar latitudes, and in a heavier precipitation. The unequal influence of the two oceans tends to throw the meridian of greatest summer heat and winter cold which, were these influences equal, would lie in the central part of the continent-towards the eastern coast. But here nature has provided a check in the existence of Hudson's Bay and the Great Lakes, which temper the heat of summer and mitigate the winter's cold. It is not, therefore, in the meridian of the Great Lakes that the greatest extremes are found, but westward in the valleys of the Mississippi and Red Rivers.

The influence of the Great Lakes is very marked. In the lako region of the Province of Ontario the moan of the three coldest months varies from nearly 30° Fahr. to a little less than 15°. At similar latitudes in the Mississippi valley, and at almost similar elevation above the sea, the mean temperature of these months varies from 24° to 4°. The winter isothermal of 20° skirts the north shore
of Lake Huron on the 46 th parallel, descending in the Western States nearly to latitude 41°. The winter mean of 25° has in Ontario an average latitude of 43°, while in the $\mathrm{N}^{\text {rississippi valley it }}$ reaches as fur south as North.Western Missouri in latitude 39°. When the occasional extremes of winter cold are considered, the influence of the Great Lakes is found to be even more marked than in regard to average temperature. The lowest temperature in the past twelve years in 'Toronto, (lat. $43^{\circ} 3 y^{\prime}$) was only $-18^{\circ} \cdot 4$, Fahr. : Hamilton, (lat. $43^{\circ} .16^{\prime}$) records $-20^{\circ} .5$, and Windsor, (lat. $42^{\circ} \cdot 19^{\prime}$) $-19^{\circ} .5$, While portions of the Niagata and Lake Huron districts show no temperatures lower than 12° below yero. Within shorter periods, not exceeding in any one instance eight years, the following temperatures were recoried at meteorological stations in the Mississippi and Missomi valleys:-

$$
\begin{aligned}
& \text { Cairo, lll., lat. } 37^{\circ} 0^{\prime} \text {................................. }-16^{\circ} \\
& \text { St. Louis, Mo., lat. } 35^{\circ} 37^{\prime} \ldots \ldots \\
& \text { West Leavenworth, Kansas, } 39^{\circ} \text { 20'............... - } 29.0 \\
& \text { Indianapolis, Ind., } 39^{\circ}+7 \text { '....................... . . - } \mathbf{2 5 . 0} \\
& \text { Lafayctte, - irk }-17.0
\end{aligned}
$$

To instance minimum temperatures in the past eight or nine years at stations further up the Mississippi valley is superfluous. Temperatures 40° below zero have been recorded at places in this valley no further north ihan the Ganadian stations cited. During the present winter temperatures as low as - 32° have heen recorded in the State of Missomi. The lowest in Moronto has barely exceeded - 133°. In the winter of $18-4-$), the collest on record in Untario, when in Toronto the minimam temperature was -16°, temperatmes as low as - $3 y^{\circ}$ were reporten in Sorthem Illinois.

In short, the lake region of Ontario has as mild a winter mean as the Ilississippi valley two hundred and lifty miles farther south, and eastwiard of the liocky Momatans it is only to the south and east of a ine drawn from Sake brie to North. Western Texas that the thermometer does not occasionally fall as low as the lowest ever reached in the milder parts of the Province of Ontario.

It is interesting to notice in connection with the influence of the Great Lakes in modifying the cold of winter that the shore of Lake MTichigan, opposite Chicaro, has a me:n winter temperature nearly four degrees higher than that of the cily mentioned, and that while the pear grows with difficulty at Chicage, the much more tender
peach grows luxuriantly far northward along the eastern side of Lake Michigan, and over several thousand square miles in the Province of Ontario. The area over which the peach can be grown in this Province is nearly ten thousind square milus. It is even found to succeed on farorable soils and situations at Owen Sound, on the Georgian Bay.

If the winter cold of the Province of Ontario is mitigrated by the Great Lakes, so also is the summer heat. The great central pa ias of the Mississippi and Missouri in summer become so heated that the mean temperature of July in Missouri and Kansas is little less than that of New Orleans in the same month. The influence of the solar rays on these great interior plains is so great that the trade winds of the Atlantic, drawn eastward into the Gulf of Mexico, are deflected northward and, affected by the prevailing eastward drift of the atmosphere, are finally carried, charged with moisture, north-eastward occasionally to the Ohio valley and the borders of the Great Lake region. Far northward, in summer, torrd influences prevail. Tempratures of 110° and upward are experienced in Dakota and Montama, and eren further north across the international boundary of 49° in the Canadian valleys of the tributaries of the Missomri. But the Great Lakes interpose a bufier agrinst the easterly drift of the interior heat. The isothermals which in winter trend southward after leaving the lake region, in summer trend north-westerly heyond Lake Michigan. The July isothermal of $7 t^{2}$, which is found in Ontario only in the very watmest localities of the Province. reaches a parallel two hundred miles further north in the great plains of the west. The mean temperature of 70° for the three midsummer months, which in Ontario is foum maly northward of the 4.3 rd pazallel, is reached very nearly as far north as the 49 th parallel in the North-Westem states and Territories. It is not until ()etober that latitude for latitude and altitude for altitude the mean temperatures of Ont:urio and the Mississippi valley are equalized. The decline in temperature thenceforward till winter has set in is more rapid in the Mississippi valley than in the region of the (freat Lakes which, wamed by the summer's heat, delay the advent of winter several weeks after that season is established in the central parts of the continent. The advent of spring in the lake region is also later than in the west, partly owing to the retarding effects of the lake water, which has been chilled by the winter's cold,
and partly to the greater distance from the now rapidly heating plains of the Lower Mississippi. The effect of this delay of spring is not disadvantageous, for the occurrence of the last frost damaging to vegetation is very nearly alike in point of time in the lake region and in the central parts of the continent, and in the former districts, vegetation being less advanced when that frost occurs, suffers less from its effects. The general effect of the greater liability of the Mississippi valley to intense frosts in winter, sudden changes and late frosts, is such that north of Tennessee no peach districts are found which compare, in immunity from injury through low temperatures. with the peach belts east of Lake Michigan and in the neighborhood of Lakes Erie, Ontario and Huron.

What is true of the annual and seasonal extremes of the lake region and the Western States, has its parallel in regard to the daily range of temperature. It is only once in many years that Toronto, which is fairly representative in this respect of the lake borders of Ontario, knows a range of forty degrees in any one day. The late Prof. Loomis, discussing the results of two years' records of over one humdred stations scattered over the continent north of the 35 th parallel and between the Rocky Mountains and the neighborhood of the Atlantic, states that only in the Province of Ontario had he foumd stations at which the mercury had not ranged occasionally furty degrees in a single daty. It the stations in the Mississippi valley and westward to the Rockies, greater changes than forty degrees were recorded several times in ead of the two years; at several stations twenty to sixty times. Even as far south as Northern Texas sudden changes of remarkible extent are accorded by the American Signal Service. In one instance a fall from 80° to 18° within a few hours is noted; and on the 7 th of September, 1SS1, on the northern loorders of Texas; a sudden lowering of temperature proved fatal to over 300 cattle. The facts given show that in equability of climate the Province of Ontario is one of the most favoured districts in the temperate latitudes of this continent.

While the whole of the lake region of the Province of Ontario as fur east as the Ottawa River experiences the modifying influence of the great lakes, the measure of that influence differs greatly according to elevation, and distance and direction from large bodies of lake water. In fact, the lake infuence, while rendering the whole region more temperate than any part of the Mississippi Valley to the west-
ward, increases the differences beyond those due to latitude, so that the part of the province south of the 46 th parallel presents a much greater variety of climate than any other non-mountaincus district of equal area on the continent. Eastward from the Georgian Bay the effect of the great lakes in moderating heat and cold rapidly decreases, and continental conditions rather than semi-insular gradually come to prevail. Lake Ontario not lying in the direction from which the areas of low and high barometer advance on this region, has but a very limited influence. There being no large body of water to the north, such winter anti-cyclones as take a course to the Atlantic to the northward of the great lakes pour their refrigerating northern blasts down over this region.

At Ottiawa the summers are hotter than at Toronto, Goderich and miny other places a hundred miles or more further to the south, and thongh the summers over the Ottawa district are shorter than in much of the south-western part of the Province, the mean temperature of July is quite as hot as in most localities in the latter and the maximum temperature very frequently is higher than 95° in the shade; it occasionally exceeds 100° and usually is several degrees hotter than at Toronto, the eastern shore of Lake Huron, and even localities as far south as Lake Erie. The winters of Ottawa on the other hand a verayte as low as 13° Fahr., and are much the same as at Moscow. The arerage minimum is about 30° below zero. Snow falls deep and the sleighing season is usually four months in length while in parts of sonth-western and southern Ontario, it is not as many weeks. Though the difference in latitude between Ottawa and Niagara is only about two degrees, the winters of the former place are at least as much colier than those of the latter as the winters of Niagara are colder than those of Memphis in Tennessee, eight degrees still farther south. Yet the sensible cold is not so great as this large excoss might suggest ; it is usually enjoyable, the atmosphere being dryer and there being more sunshine than in districts more within the influence of the lakes.

The district of Muskokit \& Piury Sound, bordering on the Georgian Bay. expericnces in greater measure the influrnce of the Georgian Bay aml Lakes Huron and Superior in tempering the heat in summer and the cold in winter of winds from the westem semi-circle This influence is necessarily much more marked in winter; though the elevation of much of the district makes the apparent amelioration
less preceptible than it otherwise would be. The summers of Muskoka are cooler than those of any other part of Ontario south of the 47 th parallel of latitude. But this tempering of the heat is due in large measure not so much to the influence of the Georgian Bay as to general elevation and the number of small lakes of great depth and enolness. Like the Ottawa Valloy, though not to the same degree, the district is open to cold northerly winds in winter blowing outward from such centres of high pressure as move eastward to the Atlantic in high latitudes. Elevation adds to the cold of these north winds, which however are infrequent in some winters. At Huntsville (about lat. $45^{\circ} 1.5^{\prime}$) in Bastern Muskoka, the temperature in Jamuary 1882 during the passage of almost the only severely cold anti-cyclone of the seaso n, fell under a north wind to a temperature 30° lower than was reuched at Toronto, and actually 47° lower than at Windsor, less thin three degrees further south and little more than 280 miles distant in a direct line. In severe winters, a large part of the Georgian Bay, encmmbered with islands, freezes over and the tempering effect of the lake water is thus greatly diminished.

The winters of the large island of Manitoulin. which approaches the 4 th parallel, are milder than those of Muskoka. Of the climate of the north shore of Like Huron beyond the 46 th parallel, the meteorological records are meagre. The district is protected against cold west winds in winter by Lake Superior, but is open to cold blasts from the north-west, north, and north-east. The winter isotherm of 20° skirts the coast ; inland the winters are colder. The summers are saill to be warmer than those of Muskoka, notwith. stamling the higher latitude. Small lakes are less numerons, amb are shallow and heat mapidly. Neighbourhood to the great breadth of land between Lake Furon and Jimes' Bay-an area which sometimes becomes intensely heated in summer has probably also some effect on the summers of the district. The heat of the southerly winds is of course greatly tempered by the great length of Lake Huron stretching against them.

At it distatace of from $1 ;$ to 20 miles north of the north shore of Lake Ontario extends from the Highlands of Grey in peninsular Ontario to the head of the Bay of Quinte, a ridre or watershed attaining at a few places an elevation of nearly one thousand feet above the sea, and donbeless having some effect on the climate of the basin of Lake Ontario. Eastward from the easterly termination of
this ridge the land slopes back from the lake far inland to the central heights of the watershed between the Georgian Bay and the Ottawa River. The lake has an elevation of only 234 feet (264 according to Americin surveys between the Atlantic and Oswego) above the sea. This comparatively low level conduces to raise the temperature of the borders of the lake. The comparatively moderate temperature of winter induced by lake influence and low level, the presence of high land to the north and west, and distance from lake water to the west, render the snowfill of the district lighter than in any other part of the lake region, with the exception of the district immediately north of Lake Erie. Sweeping over these high lands the north-west and westerly winds of winter which in passing over Lake Huron absorb considerable moisture, precipitate most of that moisture, and on regaining the low level of the Ontario basin resume almost their normal dryness. Owing to the comparative narrowness of the lake, and the fact that the winds which blow across it are not common or prevalent winds, the north shore, especially in its westerly portion derives a comparatively small proportion of its rain and snowfall from the lake, and the average annual precipitation is less than in any other part of the lake region with the exception of a limited district immediately north of Lake Erie. Towards the east end of the lake the same influences which make the climate of Ottawa extreme begin more and more to prevail ; and the duration of sleighing gradually increases, till at Kingston it is nearly three months in length.

The climate of 'Toronto fairly represents in kind the characteristics of the north shore. At a low level and protected by the lake against the warm southerly winds, and by Lake Huron and the Georgian Bay from the cold northerly and westerly winds of winter its seasonal and daily range is comparatively small. The summer is cooler than in almost any of the larger towns in Ontario ; and few have winters as mild. The mean temperature of Jimnary-about 33° for the eight years, $1874-$ - 81 , is nearly nine regrees higher than in Montreal, and is higher than in the uplands to the south-west, or than near Chicago, a degree and three-quarters farther south. The average minimum of J:muary is - 3°. 1 , the average minimum of the year - $11^{\circ} .0$; the absolutely lowest in the eight years cited, $-16^{\circ} .0$; and in the past twenty-five years - $18^{\circ} .4$. The latter temperature is not so low as has been recorded within the same period at Louisville, Kentucky, or St. Louis, Missouri. The average duration of sleighing appears
to be between three and four weeks; in some winters there has been no sleighing whatever. An examination which I have made of the records of Toronto observatory for the past thirty Christmas diys shows that only on four of these holidays, or little more than one in eight, has there been sufficient snow to permit the rumning of sledges, and on thirteen occasions the ground was bare. The interposition of the lake water against hot winds from southerly points of the compass greatly tends to prevent extremes of heat. The summer of Toronto is cooler than that of Montreal, the Ottiowa Valley, and parts of the interior to the north, north-east and west of the city, and as cool as the eastern shore of Lake Huron. The mean temperature of July for the eight year period cited is $69^{\circ} .01$-which is little more than three degrees warmer than Paris, France, over five degreos farther north; and is less than two degrees for the same period warmer than Winnipeg, where though the latitude is higher by $6 \frac{1}{4}$ degrees, full continental influences prevail. The freedom from warm extremes both winter and summer is more noticeable. The average maximum of January is only $46^{\circ} .25$. The absolute maximum (Dec. 31, 1875) of mid-winter in eight years was only 61°, while that of Galt, 56 miles westward and 590 fees higher, was 66°; that of Hamilton, 42 miles distant, but at the west end of the lake, 71°, and that of the Niagrara district, 40 miles distant, nearly 80° in the shade. The average maximum of the year is only $91^{\circ} .5$; that of Hamilton is $96^{\circ} .9$, while over the Lake Erie district and over most of the inland parts of the Province as far as the Upper Ottawa, the average maximum is in most localities as high as 95°. The absolute maximum in twenty years past is only 95°.4. At Ottawa and even in Muskoka it has exceeded 100°, witile at Hamilton it has reached $106^{\circ} .3$ in the shade. It is interesting to note in passing, that moderate as is the ammal maximum at Toronto as compared with other localities in the Province, it is a little higher than at Charleston, South Carolina.

At Toronto, as, more or less, along the shores of the Great Lakes, a lake breeze by day and a land breeze by night, blow during hot, calm weather. These breezes usually do not affect the climate for more than a few miles from the shore. Inland, notwithstanding the increased elevation, the temperature is higher in the day time during the summer months than it is at Toronto.

Hamilton, only forty-two miles distant from Toronto, and only twenty-three minutes further south, has a much warmer climate, and
illustrates in an interesting manner several of the peculiar differences due to situation. Like Toronto it is exposed to the northerly winds modified by the Georgian Bay a hundred miles to the northward, but it is in a measure protected from the north-easterly winds by the intervention of Lake Ontario. More important in its bearing on the climate is the fact that the southerly and south-westerly winds which in reaching Toronto, have part of their warmth abstracted by Lake Ontario, reach Hamilton after blowing over a considerable stretch of land. Hence the latter place attains much higher temperatures in all seasons of the year than are reached on the north shore : the mean temperature is also higher. In addition to these causes which tend to increase the daily and seasonal range, the situation of the city on a low plain with a steep escarpment on the south and a range of hills across the bay on the north, tends to the existence of great daily contrasts, for in certain conditions of weather, the heat appears to accumulate in the sheltered "ravine" while in other conditions the heavy cold night air of the upland pours over the "mountain" and displacing the warm air, settles beneath it.

A remarkable instance of the effects of situation in a ravine, cutting through an extended upland, is afforded by the records of Galt on the Grand River. In 1879 the writer had charge of the meteorological station in the valley of that town. On the edge of the plateau to the west, a little more than a mile distant from the ravine station and about 180 feet higher than the later, was a second station in charge of a careful observer, Mr. Alex. Barrie. The thermometers at both stations were protected by the fence and screens approved by the meteorological service and in use at Toronto Observatory, and great care had been exercised to make the conditions of exposure similar. Here while the average daily maximum temperature was about two degrees higher at the valley station than on the plateau, the relative temperatures were sometimes greatly reversed. On Oct. 10th 1879, the maximum at the plateau station was $90^{\circ} .3$, while at the valley station it was but $79^{\circ} .3$, eleven degress lower. On another date in the same year the difference was still greater, the thermometer at the $9 \mathrm{p} . \mathrm{m}$. reading on the plateau being 79°, when in the valley it was only 65°, or fourteen degrees lower. There being no station at Hamilton, other than in the valley, similar instances there of the inflow of cold air cannot be cited. But the effect of this occasional inflow is seen in the facts that while the mean temperature and
monthly maxima at Hamilton are higher than at Toronto, the monthly minima, from July to October, are very nearly the same at both places. The following tables show the average monthly maxima and minima at Hamilton and Toronto over a period of eight years (1874-81) :-

AVERAGE MONTHLY MAXIMA.

	Jan.	Feb.	Mar. 'Apr.	May.	Juse!	JULE.	Auc. !	SErt.	Ост.	Nov.	Drc.
Hamilton.	$49 \cdot 7$	50.9	58.2! 72.0	S9.0	91.0	93.9!	94.0	$90 \cdot 3$	81.6	$64 \cdot 3$	$54 \cdot 9$
Toronto ..	40.2	44.5	50.8, 66.0	83-S	S6:2	S9 6	S7-4	54.31	$71 \cdot 3$	57 ${ }^{\prime \prime}$	48.7

AVERAGE MONTHLY MINIMA.

The average yearly maximum at Hamilton is $96^{\circ} .9$, the average yearly minimum $-\boldsymbol{T}^{\circ} .4$; the lowest temperature recorded in the eight years ($1874-81$) from which these averages are obtained was $-20^{\circ} .5$; the highest $100^{\circ} 5$. The absolutely highest temperature on record was $106^{\circ} .3$ (July, 1868), a degree of heat which has not been reached at New Orleans, or at Naples or Calcutta, in a period of at least 18 years. The average annual maximum is quite as high as at New Orleans or cities to the eastward along the Gulf of Mexico.

The mean temperature of the different months at Toronto and Hamilton for the eight-year period mentioned is as follows:-

	Jan.	Feb.	Mar.	APR.	Max.	June.	Julv.	AUG.	St.1'T.	Oct.	Nov.	Dec.
Toronto ..	2.7	22.2	28.7	$40 \cdot 2$, $5 \cdot 4$	02.6	69.0	67.8	60.3	$47 \cdot 6$	$35 \cdot 1$	$26 \cdot 4$
Hamilton.	24.4	24.6	31.1	42.5	57.7	66.0	73.3	71.4	63.9	50.3	$37 \cdot 1$	28.4

The mean of the year at Toronto is $44^{\circ} 74$, and at Hamilton $47^{\circ} 47$ or $2^{\circ} 73$ higher. The daily range in 'Toronto is about 13° in January, and nearly 20° in July, while at Hamilton the figures for these months are respectively about 20° and 27°. The average daily maximum of July, at Hamilton, is above 84° in the shade, and not 79° in Toronto. In the warmest month ever recorded in Hamilton (July,

1868, the mean temperature was 80° with an average daily maximum of 93° in the shade. In Toronto the mean of the same month was $\bar{i} 5^{\circ} .8$, with a mean daily maximum of only $85^{\circ} .4$. These contrasts sufficiently illustrate the effect of the different situation of the two cities in regard to the water of Lake Ontario.

Along the south shore of Lake Ontario, eastward to Niagara, the general features of the climate of the helt of land referred to, resemble those of Hamilton, though the thermometer does not fall so low at night as in that city. The summer heats are intense, and temperatures above 70° have even been recorded in mid-winter. The season is, over much of the district, longer than at Hamilton, where the average period between the last fall of the temperature in spring to 32°, and the first descent in auturim to the freezing point, was for three years (1878-80), 186 days. The measure of protection afforded by Lake Ontario from the winds from northerly points of the compass increases, and the mean temperature of winter rises. Lake Erie also affords a measure of protection against the cold which in winters unnsually severe in the Western States sometimes accompanies southwesterly winds. At Niagara the mean of winter is several degrees higher than at Hamilton, and nearly as high as at New York, and the average minimum of the year is little, if at all, below zero. The heat and duration of summer and the comparative mildness of winter make the district peculiarly well adapted to fruit growing. The peach-orchard area of the district is very large, and vineyards averaging four to five tons of grapes to the acre are numerous. The sweet potato and the peanat flourish in a degree unsurpassed in any other district in the province. The mulberry grows luxuriantly. The psendo-papaw, and the tulip tree, Liriodendron talipfera, grow wild in the woods and attain large proportions. At Niagara the writer has found fig-trees heavily laden with fruit, growing in the open air with but little winter protection; and the soft-shelled almond, though of course but little cultivated, with slight winter protection, produces fruit equal to that of the common almond of commerce.

The north shore of Lake Erie, like the north shore of Lake Ontario, and for similar reasons, is marked by a tendency to the avoidance of great extremes of heat, though owing to latitude and the shallowness, and therefore greater warmth, of the water, the hot extremes of the summer months, and the mean temperature are higher than on the
north shore of Ontario. In exceptionally severe winters, ice forms to a greater extent on the bays and indentations of Lake Erie than along the Lake Ontario coast, and though the mean temperature on the north shore of Erie is higher than on the same shore of Ontario. the winter maximum in such seasons is no greater than at Toronto. The snow of winter is light, and usually lies but a short time, even in winters when around Buffalo the depth is great and the sleighing of long duration.

The eastern shore of Lake Huron has a climate differing in several important particulars from the Canadian shores of Lakes Erie and Ontario, and illustrating more than these lakes the peculiar effect of a large body of water interposed against the prevailing westerly winds. The winters are nearly two degrees warmer than at 'Toronto, and are as mild as those of Hamilton, as free from cold extremes as at Niagara, and from warm extremes as at Toronto, yet the moisture of the lake winds makes the sensible cold appear greater than in the interior or in the Niagara District. Spring is retarded by the lake influence, and the mean of that season at Goderich is no higher than at Toronto; but on the other hand the autumn is several degrees warmer : summer is as cool as at Toronto, and comparatively free from very high temperatures. Goderich, lat. $43^{\circ} 2 \overline{5}^{\prime}$; altitude, 728 feet, has a mean temperature for the year a little higher than Toronto. Zero temperatures, and temperatures above 90° are rare; and the contrast in this respect with the Michigan shore opposite, is very marked. The climate is one of the most equable of the whole lake region, and surpasses in this respect almost every other district in the middle latitudes of the continent. The peach grows far north, and even on the Georgian Bay. Towards the southern part of the district, peach-growing is an important industry. Owing to the moisture of the lake winds, this shore is not so well adapted to the vine as the ordinary or low levels of peninsular Ontario. The rainfall and snowfall are both heavy, for to the rainfall brought by cyclonic areas, there is added the moisture gathered by westerly winds from the lake. The north-westerly winds, normally intensely dry, gather a large amount of moisture from the lake, and in winter when the land is chilled, this moisture is precipitated in snow flurries to a considerable depth. The interior of peninsular Ontario varies greatly in elevation, rising slowly and gradually from Lake Erie; more rapidly from Lake Huron and still more abruptly from the Georgian Bay, up to the

Highlands of Grey, where an elevation of 1,700 feet above the sea is attained. Consequently, considerable differences in climate exist in this interior. On the Highlands of Grey, and on the Lake Huron slope the snowfill is often excessively heavy, and the snow lies several feet in depth, when in some districts of the Province the ground is bare. Sleighing usually lasts for three months or more on the highest levels. Of the amual precipitation of this part of the interior, there are but few records, and these cover but a very short period. There is reason, however, to think that the annual precipitation in some localities, as in Muskoka, exceeds 50 inches, that is, amounts to nearly twice the precipitation of the dryest localities of the Province. The explamation of this heavy precipitation has already been sufficiently indicated.

The winter temperature of the central watershed, owing to great elevation, is coll, averaging in some localities below 20°. The extremes of cold, too, are great, though on these, as on the winter mean, the surrounding lakes eiercise a moderating influence, and the temperature usually does not fall so low as at Ottawa or as in the Western States at even lower levels and much lower latitudes.

The difference in mean summer temperature between the lake shore and the highest land of the interior, is not great when the difference in altitude is considered. The mean of July, at the highest points, is about 65° and the maximum heat is about as high as on the Lake Huron shore. The degree of heat attained is due, in a large measure, to the extent of unbroken land to the south and southwest. At Owen Sound on the south shore of the Georgian Bay, so much does this large land area in the direction of the warm winds affect the climate, temperatures as high as 95° have been reported in the month of May. At elevations of 1,000 to 1,200 feet, the mein of summer is nearly as high as at Toronto, and the daily and yearly maxima are higher. The difference from the lake coasts and lower levels is chiefly in the existence of a greater daily and seasonal range on the high land and a shorter period of exemption from early and late frosts. On the long slope towards Lakes Erie and St. Clair, the mean temperature of all seasons gradually rises, and at some distance inland the mean temperature of summer exceeds that of the Erie coast by several degrees, and almost equals that of the very warmest localities of the Province. In extremes of warmth, both summer and winter, the temperatures are higher than in most localities near the
lakes. At Galt, lat. $43^{\circ} 20^{\prime}$, aititude $\$ 70$ feet, the mercury usually rises to 95°, and has exceeded 100°. London sometimes records a higher July mean than even Hamilton or Windsor. At Zurich, towards Lake Huron, 103° was reported in 1881. Perhaps as forcible an illustration of the tendency of the interior to develope extreme heat as cam be given, is in the fact that while in 1881, at Brantford, lat. $43^{\circ} 10^{\prime}$, altitude 720 feet, there were in May i diys, in July 21 days, in August 16 days, and in September 7 days- 51 in all-on which the mercury rose above 90° in the shade, and while the highest temperature was 99°, in Toronto there were but five days, in all, on which a temperature above 90° was reached, and the very highest was only $92^{c} .7$. Towards the south-western portion of this inland district, the absence of lake water to the south-west, between the foot of Lake Huron and the head of Lake Erie, fully admits the south-west wind, which is usually warm, and winter temperatures comparatively high are often recorded. An indication of the general climate of this lake Frie slope is that the peach is grown, on suitable soils, to an elevation of about 1,000 feet above the seal.

In much of the interior of peninsular Ontario, thunder storms are numerous and more severe than on the north shore of Lake Ontario. Tormadoes also occur more frequently, though they are not so violent nor so frequent as in equal areas in Ohio, Indiana and the Central Western States. The snowfall of the Lake Erie slope rapidly diminishes as the distance from Lake Huron increases. North-west winds which near Lake Furon and in the highlands of Grey, bring several inches of snow in a single day are nsually snowless over the southern halif of the peninsula. At Galt the average duration of sleighing is not more than six weeks; sonthward and south-westward the period decreases to a few days. The advent of spring is one or two weeks earlier over much of the southern part of the district, than at Toronto, and winter-wheat harvest is almost as much earlier. Harvest ustullly commences in the begiming of July and has been known to begin in the end of June, as far northeast as Galt, and about the 15 th of Jume a short distance north of Lake Erie.

The climate of Windsor on the Detroit River, lat. $42^{\circ} 13^{\prime}$, altitude $60 t$ feet. is faidy representative of the climate of the extreme south western part of Ontario. Immediately to the north is Lake St . Clair, and not far beyond that lake, Lake Huron, affording protection from tle cold north winds of anti-cyclones passing eastward north
of the great lakes. To the south at no great distance is Lake Erie affording only a slight protection against the warmth of the south wind in winter. But against the cold in winter of westerly and north-westerly winds there is no shelter except such as the distant Lakes Michigan and Superior supply, and against the warmeth generally, and in some winters the excessive cold, of the south-west wind there is little or no protection. Lake St. Clair is shallow, aml in severe winters freezes over, and loses its prote:tive influence. and both it and the very shallow westerly end of Lake Erie beeome in summer greatly heated, and not only lose the protective influence against extreme heat which lake-water generally exercises, but even at times, and especially in autum, increase the heat. The extreme south-west has therefore a climate, on the average of the var warmer than almost any other part of the Province, but more variable also than most of peninsular Ontario.

The winter mean is the same as that of Hamilton, but with monthly extremes of hat and cold greater than in that city. The average yearly minimum is about the same as at Toronto. Owing to the great differences in the temperature of different winters in the Western and South-Western States, and the consequently great differences in the temperature of south-westerly winds in different winters, the temperature of the Windsor winters differs very much. In eight years (1874 -SI) the coldest Sanuary was $14^{\circ} .7$ which is lower than any Jamary in the same period at Hamilton or Toronto, or eighty miles northward at Goderich. The warmest January on the other hand was $36^{\circ} .2$, or considerably higher than any at Toronto or Hamilton. December means varied from $15^{\circ} 7$ to $33^{\circ} 9$; March from $\because 6^{\circ} .6$ to $41^{\circ} .7$; April from $37^{\circ} .9$ to $54^{\circ} .2$. Though the midsummer months show little difference in their mean temperature in different years, October means ranged from $46^{\circ} .6$ to $55^{\circ} .9$; May from $57^{\circ} .2$ to $65^{\circ} .5$, and September from $59^{\circ} .0$ to $72^{\circ} .2$; the last higher than any Toronto July in the same period.

The mean of the summer months is almost the same at Windsor as at Hamilton. In autum, with the exception of the month of October, the two places are alike in meim temperature. It is the temperature of the spring and early summer that makes the mean of the year at Windsor ($48^{\circ} 49$) one degree warmer than the annual mean at Hamilton. April at Hamilton has a mean of $43^{\circ} .5$; at Windsor $45^{\circ} .25$; in May the figures are respectively $57^{\circ} .7$ and $60^{\circ} .8$; in

June Hamilton averages $66^{\circ} .0$ and Windsor $67^{\circ} .85$. The earlier springs of Windsor are due in part to latitude, in part to greater nearness to the rapidly advancing heat of the south-west, and in part to the fact that easterly winds which prevail in spring reach fiamilton from the deep, winter-chilled lake, and Windsor from the warmer land of Essea and Kent.

The following table shows the mean temperature of each month, the average monthly maxima and average monthly minima at Windsor, for the eight year period (1874-81.)

Jas. Fra.	Male. Aris.	May. Juse,	Junr. ${ }^{\text {Alug. }}$	Stirp.	ост.	Nov.	Dre.
$\text { sc:an } \ldots . .$	32.4	60. ${ }^{6} \quad 6.5$	$73.4,714$	$63 \cdot \mathrm{~S}$			254
Mem max. 500033.5	61.8	Ss 9 : 017	95.1 93.5 5.4	90.5		4	533
Mean min. $-3.0 \mid-0.6$	$15 \cdot 5$	30.0473	51.4	$36 \cdot 8$	25.0	104	0.0

The mean of the year is $48^{\circ} .49$; the mean maximun $96^{\circ} .25$, (very neally the same as at Fiamilton) and the mean minimum, $-10^{\circ} .75$ or $3^{\circ} .4$ lower than at Familton, and almost the same as at Toronto $2{ }^{2}$ degrees farther north. The absolutely lighest temperature in the eight years referred to was $100^{\circ} .6$ (Sep., 1851) : the absolutely lowest $-19{ }^{\prime} . \overline{5}$.

In the four coldest months the maxima were as follows:-Dec. $65^{\circ} .3$; Jan., $66^{\circ} .9$; Fcb. $63^{\circ} .4$; Miarch, $77^{\circ} .4$. The contrast with Toronto goes to show the effect of Lake Ontario in protecting against unseasonable temperatures. There the absolute maxima for those months were Dec., $61^{\circ} .1$; Jam., $57^{\circ} . \overline{5}$; Feb., $51^{\circ} .6$; March, $58^{\circ} 4$. Absence of lake-water to the west renders the precipitation small compared with the adjoining Huron district. The snowfall is light, and the general temperature of winter, and particularly the warm extremes, reduces the average period of sleighing to a few days. The fruits and flora generally are the same as in the Niagara district. The vincyards are very productive, averaging in good soils five tons of grapes, and nearly 700 gallons of wine (first drawing) to the acre-a yield probably unsurpassed either in California or in Europe.

The sonthernmost part of Ontario and of Canada, Pelee Island, a cownship of 17 square miles (lat. $41^{\circ} 40^{\prime}$ to $41^{\circ} 50^{\prime}$-further south than Rome), has a climate peculianly interesting. The island lies
almost midway between Sandusky, (Ohio, 20 miles distant, and Leamington, Ont., and with Kelly's, an Ohioan island, six miles to the sonthward, and the peninsulia of Point Pelee to the northward, marks the dividing line between the very shallow and islam-duted western extremity of Lake Erie, and the larger, deeper and unbroken area of the lake to the eastward. This peculiar position produces remarkable climatic effects. The water to the westward is generally not more than forty feet in depth, and under the hot summer sun becomes so heated that temperatures above 80° are sometimes registered at lake bottom in the hathours along the neighbouring coasts. This high temperature nut only ten. is to increase the average heat and length of summer, which here is almost as warm as at Cincimnati, but increases the warmth and length of autumn-which also is as warm and free from frosts as on the Ohio River-and reduces the difference between diay and night temperatures to almost tropical smallness. Another effect, a physician on the istand informs the writer, is that what corresponds with the nightly land breege of the lake coasts in hot, caln weather, here blows not from the land, but from the deeper and cooler lake water to the eastward, into the heated western end of the lake. The effects in winter of the surromuling shallow water, vary with the severity of the seasons. In the milder winters the usual effects of water surroundings are experienced in a small daily and seasonal range. In severe winters the shallow archipelago of the westera end of Lake Eric is encumbered with ice and sometimes freezes over, and Pelee partakes in greater measure of the continental character of the winter of the neighbouring mainlame.

An examination of the records of the meteorological station on the island for a period of three and it half years bears out the deductions which otherwise could be made fro:n the peculiar situation of Pelee.* The figures are interesting. The mean temperature, and mean monthly maxima and minima are as follows :

[^1]

The mean temperature of the year is $49{ }^{\circ} \cdot 25$: did the record extend over the eight years which have been used for the averages of Toronto, Hamilton and Windsor, it would probably appear a small fraction of a degree lower.

The coldest January averaged $16^{\circ} .5$, or $0^{\circ} .7$ higher than the same month at Windsor, while the warmest, ($34^{\circ} .8$) was $1^{\circ} .4$ colder. The absolutely lowest temperature (-12°) occurred when the west end of the lake was covered with ice and was $5^{\circ} .4$ lower than at Windsor. The occurrence of lower temperatures than at Windsor during the same severe season suggests that the effect of a neighboring area of ice in extremely cold weather, is more fivourable to the development of cold tham is the vicinity of an unbroken land area, an explamation which may find additional illustration along the eastern side of the Georgian Bay. In mild winters the low extremes are higher at Pelee than at Windsor. In January 1880 the minimum at that town was 19°, while at Pelee it was only 25°. In the other months of the same winter the difference in favour of Pelee was from $4^{\circ} .5$ to $10^{\circ} .5$. The absolutely highest temperatures in the winter months were: Dec. 57°, Jan. 55°, Feb. 63°, March 60°. The extraordinary smallness of the mean daily range in winter is shown by a comparison between the averages of the $7 \mathrm{a} . \mathrm{m}$. and the 2 p.m. readings. The average difference in Dec. is only $2^{\circ} .2$, in Jan. $3^{\circ} .3$, Feb. $6^{\circ} .4$, and March $5^{\circ} .4$. In December 1881 the average temperature was $34^{\circ} . \overline{7}$, but the 2 p.m. reading was only $36^{\circ} .1$, and the $7 \mathrm{a} . \mathrm{m} .34^{\circ} .5$, a total range of only 1°. 6 , between hours which represent, at this season

[^2]especially, very nearly the catremes of the day. The average daily range in January furnishes an interesting contrist with the range in the same month at Toronto and Hamilton.

April at Pelee is almost as cold as at Toronto, and is more than 3° colder than at Windsor, thirty miles further north. The effect of the cold lake water is shown in the fact that the highest maximum in this month was $S 2 .^{\circ} 9$, (April 1SSi) while in Pelee it was but 68^{3}. Yet the last frost of the season is several weeks later at Windsor than in Pelee, where it occurs about the midille of April. In May, Pelee almost regains the normal temperature of the districts on the neighboring mainland : temperatures above 90° are recorded and frosts are known only in exceptional years.

The summers are hot and steady. In only one June in four years was a lower reading than 50° recorded. In July and Aucgust only once in the same period was there a lower reading than 60°. The daily range in summer is much greater than in winter but still not half so great as at most stations on the mainland of Ontario. The range between 7 a.m. and $2 \mathrm{p} . \mathrm{m}$. for June is $S^{\circ} . t$, July $S^{\circ} .6$, Aug. $7^{\circ} .5$. The daily range above the mean temperature is in summer twice as high, as the range below the mean, the nights mantainin an almost even temperature of about $.0^{\circ} \mathrm{in} \mathrm{July}$ and August, while the day temperature rises in $J u l y$ to at least S°. This daily maximum is not so high as that of some parts of the Ottawa Valley, and is much below the daily maximum of Hamilton and Windsor, where howerer the night temperatures fall considerably lower than at Pelee.

Intensely tropical weather frequently prevails for days together, when, thongh the mercury does not rise any higher than on the mainland, it does not fall at night below $80{ }^{\circ}$. In the steaming atmosphere of this shallow lake such days must be very oppressive. The following are instances from the records:

	m.	-p.m.		$9 \mathrm{p} . \mathrm{mm}$.
July.	S6 ${ }^{\circ}$	96°		S3 ${ }^{\circ}$
Ang.	S3 ${ }^{\circ}$	95°		S.
Sept	S2 ${ }^{\circ}$	98°		S40

September, in regard to heat, is properly a summer month, its mean being higher than that of a Paris July, and little lower than that of a Toronto August. In 1851 the mean was $72^{\circ} .9$, with a minimum temperature of only $5 \mathrm{~S}^{\circ}$.

October averages $56^{\circ} .4$, nearly ten degrees warmer than at Toronto, and quite as warm as in the Ohio Valley. November prolongs the balmy, hazy weather which persists here for months, and it is not till about the 12 th of the month that the first hoar frost of the season usually occurs on the warmer soils of the island.

In winter sleighing is rare. The rainfill in the warmer months is comparatively light, owing to the high temperature above the shallow surrounding waters checking condensation.

The mean period in which the mercury does not fall to 36°-the a verage point at which hoar frost here occurs-is nearly seven months in length, or quite as long as at Memphis, Tennessee, and much longer than throughout most of Ohio and Indiana. It extends from April 14 th to Nov. 12 th. The great length of the season, combined with the long steady heat admits of the full maturing of cotton, which at one Pelee farm visited by the writer, has been grown for many years without any special care either to secure protection or early maturity. Climatic conditious are more favorable to the cultiration of the Catawba grape on Pelee and adjacent islands than in any other part of America. Including the mainland on both sides of the lake, this district is the most famous wine district on the continent, with the exception of a small area in California, where however the yield per acre is not greater than here. On the islands alone, millions of gallons of wine are produced, and the area in vineyards can be greatly watended. The grape crop is never injured by frosts, and conditions in regard to moisture are more favourable to avoidance of loss through mildew thim in the Ohio Valley, which formerly was the chief centre on this continent of the production of Catawba wine.

To find European parallels to the various climates of Ontario which have been described, would be no easy task Individual districts will find winter parallels in the Crimea, on the banks of the Danube, and at Berlin on the one hand, and on the other at St. Petersburg, Moscow, Astrachan and in Central Russia. The summers of parts of the Province are paralleled in those of Lisbon, Northern Spain and Italy, Southern France, the lower Danube and Constantinople, or in the ccol summers of Paris and Berlin. The Ottawa Valley aud the central and inland parts of the Province of Ontario have summers like those of Vienna. Toronto at any season of the year differs but little in temperature from Bucharest. The month of July at Hamilton and Windsor is almost as warm as at Orim, in Algiers, and but
little cooler than at Jerusalem, in Syria. In general, it may be said that a line from the Dambe through Bucharest to Moscow would furnish parallels to the climates along a line from Windsor northeasterly to Pembroke, on the Ottawa-though the summers of the latter place are warmer than those of Moscow.

By a British standard the summers of much of the Province may be considered long. May in south-western Ontario is warmer than July at Edinburgh. September is warmer than July at London, and warmer than September at Vienna. The vine, maize and sorghum fully mature in most parts of the Province south of the 46th parallel, and in not a few districts yield as abundantly as in any part of America or Europe. The limitations on the cultivation of the vegetals of similar latitudes in Europe is more in the intensity of the winter frosts than in the lack of a sufficiently long or warm summer.

NOTE.

The length and heat of Ontario summers contrasted with those of other places in Canada, and varmons places in Europe, may be seen by a glance over the following table. The means for Turonto, Hamilton, Windsor and Wimipers are derived from the ammal records of the Canadian Meterological Service for eight years ($1 \mathrm{~S} 74-\mathrm{SI}$); those for Montreal from same records for six years ($1575-\mathrm{SO}$) ; those for Pelee, from C. M. S. station reports for three and a half years. The averages for European Stations are quoted from Blodgett's "American Climatology," and are for periods, with few exceptions, longer than eight years.

	Mat.	Juxe	Juls.	Acc.	Sept.
Turonto. $^{5} \stackrel{\circ}{9}$	12.6	69.0	6i ${ }^{\text {c }}$ S	$80 \cdot 3$
Hamilt.m $57 \cdot 6$	66.0	73.4	$21 \cdot 3$	63.9
Windsor 60.8	6i-9	$73 \cdot 4$	714	©3. ${ }^{\text {S }}$
Pelce 592	07.1	$73 \cdot 5$	72.9	66.3
Montreal, Que. 55.0	65.0	$69 \cdot 8$	6S.1	50.0
Winniper, Mam. 52.9	61.5	$67 \cdot 3$	64. 1	$51 \cdot 9$

MONTHLY MEANS OF EUROPEAN SUMMERS.

Edinburgh	50.3	56.0	5S.7	$56 \cdot 3$	53.4
Abercteen	$52 \cdot 3$	$56 \cdot 7$	is-s	$55 \cdot 0$	54.6
York	54.5	59.2	$62 \cdot 0$	61.1	55.7
Londion	55.S	5S\%	61.7	58.9	$56 \cdot 6$
Dublin	54:	$60 \cdot 2$	61.5	$61 \cdot 4$	50.5
Paris	5S.1	62.7	$65 \cdot 6$	65.3	$60 \cdot 1$
Ruchelle	$59 \cdot 4$	67.5	69.0	66.5	$62 \cdot 4$
Vevay	58\%2	64.4	$6 \mathrm{~S} \cdot 4$	6.4.4	$59 \cdot 6$
Munich.	50	62.1	64.7	$64 \cdot 1$	58.1
Berlin	515	$63 \cdot 3$	$65 \cdot \mathrm{~S}$	64.4	$55 \cdot 4$
Konigsharis.	5:0	57.4	$02 \cdot 0$	61.7	53.6
Vimma	6:1	67.5	707	70.0	01.9
bucharest..	56	62.5	08.1	65.2	5S•3

The following members took part in the discussion which followed: The President, Dr. Barclay, Dr. Jos. Workman, Dr. O'Reilly, Mr. John Notman and Mr. David Boyle.

SIXTEENTH ORDINARY MEETING.

The Sixteenth Ordinary Meeting of the Session 1883-S4 was held on Saturday, March ist, r884, the Third VicePresident, Dr. Geo. Kennedy, in the chair.

The minutes of last meeting were read and confirmed.
The following list of donations and exchanges was read:

1. Science, Vol. 3, No. 55, for Feb. 22nd, $1 S 84$.
2. Memoirs of the Boston Society of Natural History, Vol. 3, No. 8, on the development of (Ecanthus Niveus and its Parasite, Teleas, by Howard Ayres.
3. Harvard University Bulletin, Vol. 3, Ño. 4, for January, 1884.
4. Historical Collections of the Essex Institute. Vol. 20, Nos. 10, 11, 12, for Oct., Nov. and Dec., 1883.
Dr. P. H. Bryce read a paper entitled, "Some Factors in the Malaria Problem."

The reader of the paper explained that he proposed reading extracts of a Report made upon malaria, prevalent in the lower district of the Grand River, under the direction of the Provincial Board of Health in September last.

After stating briefly the characters of the district regarding the nature of the soil and the underlying geological formations, in which he stated that coniferous strata are overlaid by Erie clays, and that the Sangeen clays overlie these, Dr. Bryce went on to explain how that, since the time of the building of the dams on the river for the purpose of supplying water by a feeder to the Welland Camal, malaria had been very prevalent up to the present. This he showed by the statements of old settler:s and medical men, regarding that in past years, and by the tabulated reports of disease made by medical correspondents of the Board during the last year. After explaining the results upon the low-lying fats along the river of the damming back of the waters, the writer stated that there were three distinct elements of the problem, namely, the conditions of the soil, the ground-water and the air. Assuming that the various causes which it
has been assumed cause malaria are all much less satisfactory than the germ theory, in which some bacterial organism, e. g., Bacillus Malaria, is supposed to be the immediate cause, Dr. Bryce went into a discussion of how the local physical conditions might favour the free development of these germs, as it is well known that vegetable organic matter in a decaying state forms a favourite niclus for the development of bacteria of every kind. This material is largely present in some of the overflowed lands along the river, but free development of organic life in such depends upon the amount of water present in the soil. This necessarily varies with the dryness of the season and with the height of the river-water. 'This last point introduced the subject of its probable effects upon the ground-water of the luw lands along the river. Through the denuded nature of the river-valley, the subsoil water of the neighboring higher lands naturally drain toward the valley along impervious beds of clay, and in some parts along the surface of the underlying rocks. This is seen in some parts in the presence of Howing wells. But, according t') Miquel's experiments, it is not enough for the prevalence of germs in the air that they be developed in the soil. It is necessary that the upper layers of soil dry out sufficiently to allow the winds to carry these freely into the air. Fiurther, their free development in the soil depends largely upon the amount of air in the soil, or oxygen. This it is clear must vary with the height of the ground-water, since as the water rises or falls the air must be less or more in the interstices of the soil. Hence, though ground-water conditions the amount of air in the soil, it is after all the oxygen of the air which determines the development of germs. But the next point in this comnection is the fact that, as the temperature of the soil varies greatly from that of the contignous atmosphere, especially during the warm summer weather, it follows that there is a regular circulation of ground air, new oxygen being constantly taken into the soil to supply the conditions of free zymotic development; and further, that this circulation probably serves to some extent as a vehicle for carrying the germs of the soil into the air: Upward currents of air during the day prevent an accumulation of atmospheric particles near the earth, and, on the other hand, the upper coller strata of air descending toward and after sundown, and especially in calm weather, cause accumulations near the earth of germs which have been carried up during the day. Hence, along with the increased humidity, is probably explained why night air is proportionately more mala-
rious than day air. The influence of winds in greatly increasing the number of particles and germs in the air was also discussed and in this way, the writer explained, it was probable that the germs of malaria were laterally disseminated, and how they would tend so to increase each succeeding year as they found new centres of development. Hence it was apparent that forests, both mechanically, by breaking the force of winds, by keeping the air moist, by preventing extreme differences between day and night temperature, and by preventing undue drying out of the soil, would act favourably in preventing the wide-spread prevalence of malaria.

Discussing the matter of the influence of cold in causing malaria, the witer gave a number of selected experiments concerning the rapid decrease of body temperature under different physical surroundings, as temperature, wind and moisture.

He finally showed how drainage and the planting of forest trees would serve to lessen the conditions of soil favomable for the development of Bucillus Malarice, the assumed immediate cause of the disease.

A discussion ensued in which Mr. W. Houston, Prof. J. P. McMurrich, Mr. Livingstone, Dr. Oldright, Mr. J. Notman, Dr. Bryce and the Chairman took part.

SEVENTEENTH ORDINARY MEEIING.

The Seventeenth Ordinary Meeting of the Session IS83-84 was held on Saturday, March Sth, the President in the chair.

The minutes of last meeting were read and confirmed,
The following list of donations and exchanges was read :

1. Science Record, Vol. 2, N̄o. 4. Feb. 15th, 1884.
2. Science, Vol. 3, No. 56, Feb. 29th, 1884.
3. The Canadian Practitioner for March, 1584.
4. Journal of the Franklin Institute, for March, 1884.
5. Journal of the Royal Microscopical Society, Series 2, Vol. 4, Part 1, for February, ISS'.
6. The Canalian Entomologist, Vol. 16, No. I, January, 1884.
7. Proceedings of the Royal Society of Lonilon, Vols. $21,32,33,34,35$, and Part 1, Vol. 36, containing Nos. 206 to 228 inclusive, from March 24th, ISSI, to Nov. 30, 1883.

A paper was then read by Mr. Wm. Houston on "Old English Spelling and Pronunciation."
In dealing with the subject, Mr. Houston dwelt for sometime on the changes which have taken place in the pronumciation of English words since Anglo-Saxon, in its various dialects, was the spoken language of the common people of England. The principal authority cited was Mr. A. J. Ellis, who has established by a wide induction from a variety of sources a considerable number of indisputable conclusions, though there are still many points left doubtful. As pronunciation changed, spelling should have changed also, and, as a matter of fact, it did so to some extent before the invention of printing, ind to a less extent since; but the growing tendency of modern times is to allow the printers, to whom uniform spelling is a matter of great convenience, to fix the forms of words, not only absolutely but arbitrarily. The reader of the paper cited numerous instances of old spelling from Milton back to Chancer to show (1) that spelling in Old English was more phonetic, and therefore better than now ; (2) that spelling varied with pronunciation in the use of words by the same writer; and (3) that so far from adherence to a uniform system of spelling being regarded as a chief criterion of scholarship, old writers allowed themselves a great degree of latitude in their modes of spelling words. Spenser is an extreme instance of this free and easy view of orthography, for it is not uncommon to tind him spelling the same word three or four different ways on the same page. In conclusion, Mr. Houston contended for greater freedom in orthography, not in the interest of diversity, but in the interest of simplicity of spelling.

The following gentleman took part in the discussion which followed: Dr. Workman, Dr. Bryce, Mr. J. Howard Hunter, Mr. D. Boyle, Mr. Murray, Mr. Shaw, Mr. Notman, Mr. Keys, Mr. Livingstone, Mr. Macdougall.

EIGHTEENTH ORDINARY MEETING.

The Eighteenth Ordinary Meeting of the Session 1883-84 was held on Saturday, March I 5th, the Third Vice-President Dr. George Kennedy in the chair.

The minutes of the last meeting were read and confirmed. The following gentlemen were elected members of the Institute:
T. U. L. Armstrong, M. A., LL.B., Henry William Eddis, Esq., and Frank Arnoldi, Esq., Barrister.

The following list of donations and exchanges was read :-

1. Science, Vol. 3, No. 57, March 7, 1884.
2. The Cimadian Record of Natural History and Geology, Vol. 1, No. 1, Montreal, 1884.
3. Transactions of the Ottava Field Naturalists' Club, No. 4.
4. Amnual Report of the Library Commissioners and Libarian of the Legislative Library of Nova sicotia, aud the Librarian of the Nova Scotia Historical Society for the year ISS3.
5. Transactions of the Royal Geological Society of Cornwall, Vol. 10, Part 6.
6. Ammaire de 1SS4, de la Socisté des Ingénieurs Civils, 37e. Année.
7. Appleton's Literary Bulletin, March, 1884.

Puremase.--3S Nos. of the Journal of the Franklin Institute of varions years, to complete a set.

Mr. T. P. Hall, B. A., Fellow of University College, read a paper on "Photography and the Chemical Action of Light," illustrated by diagrams and apparatus.

After reviewing the history of photography, Mr. Hall showed the scientific value of this art, in leading to a more complete knowledge of the nature of radiant energy. The action of different parts of the speetrum upon various substances was explained in connection with wave-lengths and atomic vibrations, and the direction of future :idvances in photography indicated. The relation between transparency to certain rays and chemical composition, fluorescence, phosphorescence, colour-blindness, and other interesting subjects in this comnection were discussed and illustrated. The following is an extract: "To make photographs which shall appear accurate to us we require a compound sensitive to the same rays and in the same relacive degree as our eyes are. . . . Since, besides being deaf to an unknown variety of sounds, we are blind to nine-tenths of the light of the spectrum, it becomes a question of interest whether the
lower animals are more or less blind than we. From his experiments on ants, Sir John Lubbock concludes that they are nearly or quite blind to red and yellow rays, and sensitive to green, blue, violet and ultra-violet rays. A photograph taken with silver chloride, which is very imperfect to us because the red and yellow rays are not represented, and violet and ultra-violet appear very bright, would therefore to the critical eye of an ant appear quite correct."

Dr. Bryce and Mr. VanderSmissen made remarks on the subject, after the reading of the paper.

NINETEENTH ORDINARY MEETING.

The Nineteenth Ordinary Meeting of the Session 1883-S4 was held on Saturday, March 22nd, the President in the chair.

The minutes of last meeting were read and confirmed.
The following list of donations and exchanges was read:

1. Selected Papers of the Rensselaer Society of Engineers, Vol. 1, No. 1, January, lis4.
2. Transactions of the Manchester Geological Society, Vol. 17, Part 13.
3. Weather Review for February, 1884.
4. List of Fellows 1884, Royal Microscopical Society.
5. Science, Vol. 3, No. 58, March l4th, 1884.
6. Proceedings of the Royal (Xeographical Society, Vol. 6, No. 3, March, 1884.

Mr. W. J. Loudon, B. A., read a paper on the " Radiometer;' illustrated by experiments.

The following members made observations on the subject: Mr. H. S. Howland, jun., Mr. Murray, Mr. Macdougall, Mr. McKenzie, Mr. Livingstone and Dr. Bryce.

TWENTIETH ORDINARY MEETING

The Twentieth Ordinary Meeting of the Session 1883-84 was held on Saturday, March 29th, the President in the Chair.

The minutes of last meeting were read and confirmed.

The following list of donations and exchanges received since last meeting, was read:

1. Science, Vol. 3, Ňo. 59, March 21, ISS 1.
2. Life and Work of Darwin, by George Acheson, M. A.
3. Triibner's American, Duropean and Oriental Literary Lecord, Vol. 4, Nos. $11,12$.
4. Transactions of the Oneida Historical Society at Utica, 1 SSl.
5. Science Record, Vol. 2, No. ז, March 15, ISSt.
6. Procecelings amd Transactions of the Royal Society of Canada for the years 1SS2 and ISS3. Vol. 1, Montreal, ISS:.

Mr. Henry Brock then read a paper on

THE UPPER NIAGARA RIVER.

The Border land has long been a theme for novelist and poet, and pen-pictures of the stirring scenes amongst the Grampians, the plateaus and peaks of the Tyrol, and along the vine-clad banks of the Rhine have been depicted with the ferrour of enthusiasm by the many lovers of what has tended towards forming the national character of their native land.

The border land of Canada has been the scene of many a heroic contest. And from Frontenac's struggles against the Mohawk and Iroquois, until the days of Earle's Hill and Limeridge, the Canadian, whether of French or English descent, has proved true to his native land. My intention this evening is to tonch upon but a small portion of this interesting subject. Learing ont the country bordering on Memphremagog and Champlain, the noble St. Lawrence, and the clear flowing Detroit and St. Clair, I must content myself if I can bring before you a few reminiscences interesting to the antiquarian or historian of the Niagara Frontier, and particulany that portion of it which is commonly known as the "Upper Niagara River." Commencing at a point where ti0 years ago a village hamlet stood with a few hundreds of a population, but where now 200,000 busy people are continuing the struggle for existence in the great city of Buffalo, and flowing in a north-westerly direction from Lake Erie, the Niagara River separates Canada from the United States. On the Camadian side of the river, just opposite Buffalo, are the remains of what was formerly Fort Erie. The fort is entirely dismantled, and is marked oaly by a few earthen ramparts fast settling down to the ordinary level. It was at this place that the Fenians of ' 66 crossed,
although from the swiftness of the current of the river just below this point, which sweeps on at the rate of 10 miles an hour, and the width of the river, a few ordinary guns in their former embrasures at Fort Erie would prevent any such undisciplined raiders from again attempting to effect a crossing in safety. At present surrounded by the fast growing city, and forming now one of Buffalo's Parks, is the American Fort Porter. This fort is one of the military posts of the United States, forming with Forts Niagara and Jetroit, links in that chain of forts, which in the United States extends from Mane to Oregon. It is garrisoned by a detachment of United States infantry, whose services were of great value to the city in the great mairoad riots of 187\%. Three miles from Black Rock the most northerly suburb of Buffalo is the Island called Grand Island, contilangr about 80 square miles of land, and forming a Township in Erie County State of New York. Flowing due north through the middle of the Island, is a small creek, called Burnt Ship Creek, emptying itself into the Basin separating Buckhorn Island from Grand. In this Basin the French, in 1759, anchored two small ressels containing the reinforcements which had been sent from Venago to raise the siege of Fort Niagara, if possible, which at that time was beleagured by the British under Sir William Johnsan. After landing the men on Isle lat. Marine, now called Nawy Island, they burnt and sunk these ships. Until a few years ago the charred timbers of these vessels were distinctly visible, but now, owing to the gradual filling up of this ? min, they have completely disappeared. Some years ago, while fishing in the clear water in company with some American friends, we noticed what we first thought was a sumken log; but American inquisitiveness when once aroused camot be pacitied, sate by complete and satisfactory investigation. A grappling hook was obtained and a long rope. By continued exertion we dragged the olyect on shore, and it was certainly a curiosity. It was evidently a wheel which was used as part of a primitive machine for dragging these small vessels over the portages. The wheel was about S feet in diameter, and was, although composed of probably over a hundred distinct parts, made entirely of wood, there not being a particle of iron in its composition. The wood was oak, and although it had been under water for nearly 120 years, was not in the least affected by any kind of rot or decay. Being too cumbrous to transport, it was left on the shore of the Island, and
eventually the Fhilistine propensities of the agricultural natives destroyed this emblem of a departed age. I was fortunate enough the next year to be able to lay hold of some small pieces of the frame work, which I now have in my possession.

Going down the American chamel past Tonawanda, with its miles of timber wharves, and directly east of Navy and Graud Islands, we come to Caynga Island and creek, a mile from whose mouth is the village of La Salle. The name of Rene Cavelier dit La Salle occupies a place in carly Canadian ammals second only, if second, to that of Champlain himself. At the mouth of this creek, six miles above the falls, was built the first European craft that ever navigated the waters of the upper lakes, the ill-fated Griffin, whose fate must, like that of many a noble vessel in modern days, be a matter of conjecture, since, after carrying La Salle on his way to the Mississippi, it was never afterwards seen or heard of. The water of this creek, like that of all the streams flowing into the Niagara, is of a dark brown colow, in striking contrast with the clear blue of the river itself. Three miles below Cayuga Creek is Schlosser's Island and landing, pronounced by the degencrate inhahitant of the river Slusher's. Here was one end of the portage round the Falls of which the other end was nine miles below at Lewiston. Here the camoes of the Indian and voyageur once again entered the stream on their voyage from Fort Frontenac to the fur depots at Machilimackinac. The current is very mild along this shore of the river, and until the lower end of rirand Island is reached, when it becomes very rapid, the voyageurs could propel themselves as easily and rapidly as along a placid inland lake. In 1750 the French constructed a stockade and fort at this point which they appropriately called Fort La Portage. It was burnt in 1759 by Chabert Joncaire who was in command of it when the British commenced the glorious campaign against the French, which grave us the "brightest jewel in the British crown." A short time after this the fort was rebuilt by Captain Joseph Schlosser, argerman, who had served in the British army throughout the c:umpaign. A few inequalities in the surface of the ground now mark_ the site of the guardian of the Portage, but some twenty or thirty years ago the outlines and ditches were still quite distinct. A monument of antiquity still stands some yards below the remains of the Fort in the shape of a stone chimney, which was the centre point of the French barracks and storehot.ses previous to 1759. Several
houses have been at different times attached to it and have been burnt or destroyed, but still the chimney remains, solitary, moss-grown and grey, and will remain no doubt until the advancement of civilization and the necessities of commerce will cause its replacement by something more modern. It was at the whirf at Schlosser that the ill-fated steamer Caroline was fastened that night, in ' 37 , when she was cut out by the loyalists from the Canadian shore. The C'anadian militia, under Col. Allan MroNab's command, at that time investing Navy Ishand, were in a complete state of ignorance concerning the river. The Fall:s were a source of great terror to the storming party, and a circuitous route was taken to reach Fort Schlosser that delayed them many hours. At present the hardy inhabitant of cither shore safely crosses the river in a small boat or canoe within half a mile of the rapids, and adventurous youths land with impunity even on Goat Islind, but in '37 the cutters out of the Caroline were estecmed greater heroes than even those who faced the bullets of the enemy; such is the power of mature compared with even the life-destroying gumpowder. The affair of the Caroline caused much international ill-feelings and was made the subject of much conjecturing and studying of international law. Evidently the same principles and arguments were quoted and cited, but by the opposite parties, when the Alabama claims came before the board of arbitiators at Geneva. Lying to the north-west of Grand Island, and west of Schlosser, is the small Island, formerly Isle la Marine, now Navy Island. The French, in 1759 , built some small vessels on this Island, hence its name was literally translated when it came into possession of the English. Although hardly over thee miles in circumference it was probably better known and more thought about, at one time of our national existence, than even Toronto itself. Here, in December, 1837, Wm. Lyon Mackenzie established his headquarters and issued his proclamations to the patriots, as the unfortunate rebels called themselves. In fact to this day, on the American side of the river, the trouble of '37 is referred to as the "patriot war." There was great uncertainty as to the number of the insurgents, who certainly had plenty of arms and ammunition. To this day may be seen in the upper rooms of the several farm houses on the Canadian shore the marks of the bullets, while every plowing turns up on Navy Island many a rusty cannon ball. There is still standing and
in good repair three miles from the Village of Chippawa, and directly opposite the heal of Nary rsland, the house in which Captain Usher wa, shot. Upon the door of this house is painted in white letters "No. S. 20 men." evidently its billetiner capacity. There are yet on the island two \log huts or cottages which were occupied by Mr. and Mrs. Mackenzie. Although degraded to agrienltural purposes they still seem destinerl to out-last several more modern structures built, near them. There could not have been much peace of mind for any of the Reformers there; Sir Allan M(Nath, while not exposing his men to too much personal danger, continued to ply the rebels with shot amd shell. Whike Mrs. Mackencie was attending to some culinaty operations one day a shell, plunging through the roof. fell into : barrel of beans which formed part of the stock of provisions, and burst, scattering a week's provender, but fortanately the immates all escaped. For the greater security of his followers Mackenzie cansed an open space to be cut out of the forest in the centre of we island. This is still known by the name of Mackenzie's Field, and is now used as a pasture for cattle. The proximity of the island to the Crinted States, its great capabilities for defence and its commanding the entrance to the Welland River (which river is one of the entrances to the Welland (amal), combine in making it an outpost of great militury value in time of war. On Navy Island may be seen many trees and flowers growing wild which camot be found in any other place nearer than the Southern States; amongst others are the mornolia, satssafias, and several varieties of wild grapes. The apricot and nectarine are also grown and attain great perfection. A mile and a half from the head of Navy Island, on the Camadian side at the month of the Welland River, is the Village of Chippawa. It was at one time, before the building of the Welland Cimal, a prosperous place. It was the head of navigation and a tramway ram from it to Quecuston. the port at the other end of the Portage. But the camal and railway came and Chippawa suffered the common lot and decreased in trade and population in proportion as the larger towns grew. It is one of the oldest settled portions of Camada, John Cummings a U. E. Loyalist having settled there in $17 \mathrm{~s}^{2}$. It was the scene of several battles in the war of 1812 between the British and Americans. Scveral buildings are yet standing which were built previously to 1812 , and in one of them may be seen a room at that time used as a prison; the rings and staples for securing the
prisoners are still there. At the month of the Welland River may be seen the outlines of a stockade and fort first constructed in 1812, and afterwards used in 1837. For the purposes of navigation and the security of the harbour, a canal about one hundred yards in length was cut from the southern shore of the Welland River through to the Niagara. The refuse earth was thrown to one side and has several times bren mistaken for the ramparts of the old Fort. On making a personal investigation with several of the " oldest inhabitants" last year, we diseovered distinct traces of the old Fort, only, howerer, a few yards from the mistaken ramparts. Chippawa. like Queonston, has fallen into decaly, amd has been completely outshadowed by the greater attractions at the Falls two miles away.

From Buffale to the heal of Nary Ishand the river is comparatively deep, areasing from twenty to thirty feet from shore to shore. Across the head of Navy Lsland the wilth is about two and a half miles. Op!osite Chippewa it commences to narrow, and so on till the Falls are reached ; the main, or "Canadian" current, as it is called, does not follow the middle of the river, but pursues a course of its own, rumning from the foot or (xrand lsland towards the American shore, past Schlosser's Island in a north-easterly direction, then, instead of following the straight course towards the heal of Goat Island, it makes a swoep round the head of Grass lsland towards the Gamadian shore, almost due west, and skirting the banks just below Chippawa, flows precipitously over the Horse Shoe Fall. In the centre of the river, stretching from about half a mile above the rapids to within half a mile of Navy Island, there is a reef about two miles long and three-quarters of a mile broad. In no place on this reef is the water more than three feet deep. and at times during low water the heads of the larger stones peep above the surface. The water rushes over this reef at a great rate, and the bottom being composed entirely of rock, and the current not allowing any sediment to settle, the reef. on some windy days, to a stranger, looks very much like the commencement of the Rapids. On the American side of the river opposite to Chippawa a canal has been cut for water power ; the opening of this canal forms a sunall harbour called Port Day. Several steam yachts are kept here, and as the chamel does not extend along the American shore, these vessels have to strike across towards the Canadian shore before ascending the river. As this is only a few hundred yards above the rapids the sensations of nervous passengers
are not to be envied. The country back from the Canadian shore was formerly settled by U. E. Loyalists. At the present time, however, the firms are every day going into the hands of persons of German and Americ:m descent, the original settlers flocking to the citie: These new inhabitants of the river front have no sentimental regard for historical remains, and ruthlessly plow up and tear down anything that is not in strict conformity with agricultu al economy. In a very few yeurs all that remains of Forts Erie, Schlosser and Porter will be swept away in "improvements." The relics of 1812 an d 1837 will be sought for in vain by the archeologist, but the memory of the deeds that were done, and the devotion of the people who accomplished them, will live forever.

The following members took part in the discussion which followed:-The President, Mr. Murray, Prof. Mc Murrich, Mr. Livingstone and Dr. Workman.

TWENTY.FIRST ORDINARY MEETING.

The Tiventy-first Ordinary Meeting of the Scssion 1883-84 was held on Saturday, April 5th, the Third Vice-President, Dr. George Kennedy, in the chair.

The minutcs of last mceting were read and confirmed.
Mr. Chas. Levey, Mcchanical Engineer, was elected a member of the Institute.

The following list of donations and exchanges received since last meeting was read:

1. Science, Vol. 3, No. 60, March 2 S , 1564.
2. Journal of the Franklin Institute for April, 1884.
3. Ammal Report of Proceedings of the Belfast Naturalists' Field Club for 1SS2-S3, Series 2, Vol. 2, Part 3.
4. Proceedings of the Academy of Natural Sciences of Philadelphia, Part 1, Jamary to May, ISS3, and Part 3, November and December, 1883.
5. Correspondenz-Blatt der Bentschen C'esellschaft für Anthropologie, EthnoIngie, :und Urgeschichte, 15 Jahrgang, Nos. 2 und 3 Februar und März, 15St.
6. The Canadian Practitioner for April, 1884.
7. Le Courrier de Europe, Scmaine Française, for 1884, presented by Mr. Geo. E. Shaw.

Dr. E. A. Meredith and Prof. Galbraith were appointed Auditors of the accounts of the Institute for the year ending March 3 1st, 1884.

Prof. McMurrich, presented by title, a paper "On the Myology of the Catfish."

Mr. T. McKenzie, B.A., then read an abstract of a paper by A. B. Macallum, M.A., on "The Alimentary System of the Catfish," after which Mr. McKenzic read a paper by himself, on the "Vascular System and Glands of the Catfish."

These papers will appear, together with others on the same general subject, in the concluding fasciculus of the present volume.

TWENTY-SECOND ORDINARY MEESING.

The Twenty-second Ordinary Meeting of the Session 1S83-84 was held on Saturday, April 12 th, the President in the chair.

The minutes of last meeting were read and confirmed.
The following list of donations and exchanges was read :

1. Transactions of the Manchester Geological Society, Vol. 17, part 14, Session 1853-8t.
2. Science, Vol. 3, No. 61, for April 4, 1854.
3. (c) Recorls of the (xeological Survey of Indin, Vol. 15, Part 4 ; 「ol. 16, parts 1-3. Vol. 17, part 1.
(b) Memoirs of the Geological Survey of India, Vol. 19, parts 2, 3 and 4.
(c) " of Palaeontologia Indica, Series X., Vol. 2, part 4.

4. Publications of the Jneida Historical Suecety at Utica, No. 5, January 13, 1880.
(a) Second Annual Address before the Society, by William Tracy, of New York.
(b) Historical Fallacies regarding Colonial New York.
5. Bulletin of the Philosophical Society of Washington, Vol. 6, 1584.
6. (a) Fifteenth Aumalal Report of the American Museum of Natural History (Central Park, New York), March, 1884.
(b) Bulletin of the American Museum of Natural History (Central Park, N. Y.), Vol. 1, No. 5, February 13, 1884.
7. Appleton's Literary Bulletin, No. 4, April, 1884.
8. California State Mining Bureau : Third Annual Report of the State Mineralogist, for the year ending June lst, 1883.
9. (a) Bulletin of the Essex Institute, Vol. 14, Jauuary to December, 1882, Nos. 1-12,
(b) Pocket Guide to Salem, Mass., 1883.
(c) Phmmer Hall : Its Libraries, its Collections, its Historical Associations.
(l) The North Shore, Massachusetts Bay, 6th Ed., 1883.
10. Anales del Museo Nacional de México, Tomo III., Entrega 5 a.

11 (a) Proceedings of the Literary and Philosophical Society of Liverpool during the j9th Session, 1869-70, No. 24.
(b) Proceedings of the same Society during the 62nd Session, 1S72-73, No. 27.

12 (a) 'Transactions of the Cambridge Philosophical Society, Vol. 11, parts 1 and 2 ; Vol. 13, part 3.
(b) Proceedings of the Cambridge Philosophical Society, Vol. 1, 1843-1S65, 16 Nos. complete ; Vol. 2, 1866 to 1876, parts 1-17, complete; Vol. 4, part 6, for 1883 .
13. Sitzungsberichte und Abhandlungen der Naturwissenschaftlichen Gesellschait, "Isis," in Dresden, IS83, Juli bis December.
14. L'Académie Royale de Copenhague, Bulletin pour 1883, No. 2, (MarsMai.)
15. (a) Annuaire de L'Académie Royale des Sciences, des Lettres, et des Beaux Arts de Belgique, for 1881, 1882 and 1883; 47th to 49 th year, Bruxelles, (3) Vols.)
 Tome 1; 50 me Amnee, $3^{m e}$ Séric, 188l, Tome 1, 2; 5lme Annee, $3^{\text {me }}$ Sirie, 1SS2, Tome 3me, et $4^{m e}$; 52 me Année, $3^{m e}$ Série, 1883 , Tome $5 m e$, (6 Vols.)

Dr. E. A. Meredith then read a paper entitled :-

"COMPULSORY EDUCATLON IN GRIME."

The reader of the piper contended that so far as regards the suppression of vice and crime, our Common or County jails were little better than the abominable dens which Howard visited and denounced more than a century ago. Philanthropists, social reformers and Prison Congresses had worked earnestly during the last thirty or forty years, and their labours had in other departments produced good results. In institutions for saving children, such as Homes, Refuges and Industrial Schools, extraordinary progress had been made and in convict prisons for adults an extraordinary revolution had been carried out with equal success, especially in those conducted under the so-called "Crofter" or "Irish" system. The Common Jails alone lagged behind the age, and the reason probably is that they were the only institutions managed by municipal bodies, the others
being either under the control of the State or of private individuals or societies. The jails have been improved materially, but not morally. The giant evil of Howard's time, the indiscriminate association of the prisoners is still permitted in the great majority of jails on the continent, whether in the United States or Camada. The jails had ceased to be in any sense either detervent or reformatory; they are, on the contrary, uttructive to criminals and to the last degree demoralizing to the inmates. They are nurseries of crime, hotbeds of vice, where criminals are manufactured at the cost of the country. The only remedy for this clisgraceful state of things is the introduction of the "Separate System," a system which had been approved by all authorities on the subject, and carried out with marvellons success in many jails in England and on the continent of Europe, and in some few in the United States. The great merit of the separate system is that it stops the corruption and contamination which indiscriminate association of prisoners necessarily produces. In other words it puts an end to the "Compulsory Education in Crime" now going on in all our jails; and more than this, it represses crime, both by its deterrent and reforming influences. Dr. Meredith recommended that the separate system be made obligatory in all jails so soon as these are fitted for it.

In answer to a question by the President, Dr. Meredith explained that "Solitary Confinement" was stricter than "Separate Confinement." which latter meant merely separation from injurious inHuences, and not from visits of those who may benefit the prisoners. These would be brought together only ander supervision.

Mr. B. B. Hughes spoke in high terms of the manner in which the Reformatory at Penetanguishene was conducted.

Mr. Douglas hoped that the Legislature would do something to remedy the evils mentioned in Dr. Meredith's paper.

Mr. Geo. Murray thought that young childrea should not be sent to the same prison as adults. He wonld endeavour to sift out the worse juvenile criminals, and he believed a large majority would remain with which we conld deal in the way of reformation.

TWENTY-THMRD (ORDINARY MEETING.

The Twenty-third Ordinary Meeting of the Session 188384 was held on Saturday, April 19th, the President in the chair.

The minutes of last meeting were read and confirmed.
The Rev. Hugh Johnston, M. A., B. D., was elected a member of the Institute.

The following list of donations and exchanges received since last mecting was read :

1. Memoirs of the Bostion Society of Natural History, Vol. 3, No. 9, March, 1SS4.
2. Science, Vol. 3, No.. 62, for April 11th, 1884.
3. The Manitoba Gazette, March 31st, and April 5th.
4. Journal of the Asiatic Socicty of Bengal, Vol. 52, Part2, Nos. 2, 3, 4, 1853. Proceedings of the Asiatic Socicty of Bengal, No. 9, November, 1883.
5. The Canadian Entomologist, Vol. 16, No. 2, February, $1 S 84$.
6. Proceedings of the Royal Geographical Society, N. S., Vol. 6, No. 4, April, 1884.
7. Atti della Societa Toscana díScienze Naturali, Processi Verbali, Vol. 4, pp. 29-52. Processí Verbali, Indice del, Vol. 1, pp. 133 to 138.
8. Meteorological Service, Dominion of Canada, Monthly Weather Review, March, lSSt.
9. Oneida Historical Society, 1879, Men of Early Lome, by D. E. Wager.

Capt. Gamble Geddes, A. D. C., then read a paper entitled,

AN ENTOMOLOGICAL TRIP IN THE ROCKIES.

Mr. President and Gentlemen,
It is with great pleasure that I take advantage of your kind invitation to read a brief paper upon a trip made by me to the Rocky Mountains last summer. As my object in undertaking this long journey was purely "Entomological," I had intended to prepare and read to you a paper upon the genera "Coliade" and "Argynnidæ," of our Diumal Lepidoptera, (two of my favourite families,) but at the request of some of my friends, I am going to give you a rough outline of the entire trip, trusting that I may be enabled to make it of more interest to you, by exhibiting a few of the specimens and relics picked up by the way.

With this short preface and with your kind indulgence, I will begin:

The different points of interest between here and Winnipeg have been so thoroughly discussed by tourists of late years that it is needless for me to refer to my trip until a start is made from Winnipeg on June リth, 1883.

The main object of this journey, was to make a collection of insects and especially of Rhopaloceres or the day butterflies, the tirst of the two great divisions into which the Lepidoptera have been divided. The different species of this division all fly by day : they have the antenne terminated by a knob or club and comprise the Papilionidæ, Pieridæ, Lycœnidæ, Erycinidæ, Litytheadæ, Satyridæ, Hesperide, and so on.

The Heteroæres, the greater portion of which fly by night, embrace the Sphingilæ, Bombycidæ, Noctuæ, Geometridæ, \&c., \&c. In this division the most noticeable feature of distinction is the antenno, which are of a feather-like appearance and taper to a point at the ends instead of the knob or club that the majority of the diurnals have.

I do not intend to enter into detail with regard to the species which I captured en route, but more to give a brief sketch of the trip and the beanty of the comntry through which I passed, as well as the barren parts.

After leaving Brandon on the 11 th June, the next point of interest was Moosomin where we lay over a day, to visit Fort Ellis and Binscarth. The former is an old fort under the charge of Mr. W. J. McLeam, a faithful otficer of the H. B. C. The party with whom I was travelling were going on to Binscarth, the "stock farm," and property of the Scottish Ontario Co.

As Mr. Mctean offered me the hospitality of the Fort, I decided to remain over and make such additions to my collections, as were to be taken in the neighbourhood of Fort Ellis.

I was well rewarded for my pains, as I succeeded in making some rare captures. Fort Ellis is situated 30 miles from the C. P. R. track and about 20 miles from Binscarth.

Here the Blackfeet and the Siouk Indians, (principally the former) were congregated in large numbers around the Fort. Their "tepees" or lodges were thick in every direction, and I had the opportunity of seeing how the Government agents distributed the pork, flour and blankets to those Indians who deserve them.

I was advised to go out with some of the squaws of the Blackfeet tribe, and get some wild turnips, though why they are so called, I never could and never will imagine. The root of the plant resembles the bulb of a small tulip, and when the outer skin is removed, the heart of the bulb tastes something like the kernel of an almond and guite as dry. The leaf of the plant reminded me of the lupin (peremniel), but it was too eurly in the season to take the flower, as a specimen.

The women of the Blackfeet and Sioux scem particularly partial to these roots. Armed with genuine "crow-bars" of irom, ahout four feet in length and from one and a-half inches to 2 inches in diameter, we sallied forth. It was a matter of amazement to me, to see the manner in which the squaws handled these iron bars. On the side of a steep hill they would let themselves down and holding on to a shrub, or the end of a rock with one hand they would with the other hand wield the bar (always pointed at the end) and soon the roots, which were generally about four inches to six inches down in the soil, would be dislodged. I tried to handle one of these bars myself and as I had to use two hands and the combined strength of my two arms to boot, I appeared to cause much merriment to my redskin friends, who looked upon me as a very poor specimen of the human race. I had a chance of purchasing a few samples of the bead-work of the Sioux women, a few articles of which I have brought with me, also one or two of their favourite pipes.

On the 15 th June we reached Medicine Hat and the end of the track of the C. P. R., which had just then crossed the Saskatchewan River on a temporary trellis-work bridge. Here we had an opportunity of witnessing the wonderful rapidity with which this road was constructed; the contractors at that time were building from three to five miles a day.

On June 25th we started for Calgarry. On the 27 th we reached the Bow River. The mosquitos were terrific. During the niglit our camp was set on fire by Indians, who hoped to make a stampede with our horses. Luckily, we discovered the grass on fire in two places, in time to put it out with wet blankets, and so saved our property.

The flora between Calgarry and Edmonton (my next halting-place) was simply lovely. The orange and cardinal lilies, or, as the Cree Indians call them, "Wappiconnaisa," the yellow ladies' slippers,
anemones, wild rhubarb blossom, 4 feet high, and the plumed head of that lovely flower. Geum 'hiflorum, made a charming contrast to the innumerable shades of sreen of the foliawe. As one lonked into the differenc "coolies" and "hollows" in the prairie in passing, it appeared to he like a rich carpet of most exqu'site workmanship and colouring, bat far, far more beautiful.

Upon the 7 th July we reached Pdmonton, and it became apparent that we were getting much farther to the north, as the days were so long and the nights so very short. I wats surprised to hear from the proprietor of the hotel at Edmonton that upon the Sunday previous to our amival he had put green peas from his own garden upon the talble for his guests at dinner. I was not so much surprised however to see what he showed me the same evening we arrived, and that was half a field of beautiful potatoes cut off hy the summer frosts and looking as back as ink a!ongside the other half, which had escaped. It was just as if some one had taken a vuler and drawn a line from one corner of the field to the other, and then painted one half black and the other sreen. I was very much disgusted with the cold and windy weather that we had at this point. It was impossible to collect butterflies and moths, and I was not at all sorry to start off again for the south.

On July lith we reached Calgarry on the return trip. Here I met some old friends, and on the 19th Juiy started off for Fort Maclcod. This was a very interesting part of the trip, as we stopped at several ranches, amongst them "Oxley Ranche," the property of Mr. Stavelcy Hill and other English gentlemen, and the ranche of Mr. Stinson at High River. I must not forget to mention that at all the ranches I stop , ed at on my long journey and at all the posts of the Hudson Bay Co., I received the greatest hospitality, likewise from the N. W. Mounted Police. Whilst amongst the ranches I learned that the cow-boy's whip was called a "Quoit;" the rope for catching horses in "corral" is called a " Mecarte," a "Lariet" being a grass rope for the same purpose. "Chaps" or "chaparellos," are the leather breeches or leggings used for riding, and so on.

On July 24th I spent a rare day of collecting at Pincher Creek, being then the guest of Lieut.-Col. Macleod ; also three or four days follorvirg I did good work, taking Argynnis Clio, Argynnis Artonis, as well as many rare Coliadæ.

Aug. 1-At the Gamett Ranche, a lovely Ranche in the foot-hills of the Rockies, where the peaks of the mountains tower above one over three sides of the ranche. Here I took many rare insects.

I met Dr. George Dawson, of the Geological Survey of Camada, and his party, at the Garnett Ranche. He had just returned from the Crow's Nest Yass, with specimens of natural history generally, but with notes upon the geological formations of the country in particular. I took here a new Polyomatus or Chrysophanus called Florus by Mr. W. H. Edwards, of Coalburgh, West Virginia).

Whilst a guest at the Garnett Ranche, I went out with one of the proprietors to get some trout. When I was catching butterfies, he was catching trout, averaging about $1 \frac{1}{2} \mathrm{lbs}$. each. He took 17 fine fish in a very short time. Upon the 4th August we reached our camping ground at the Crow's Nest Pass, and a lovely spot it was. Through the kindness of Col. MLacleod, I was enabled to take along with me a folding boat made of canvas, with which we explored the lakes near the summit of the momtains known as the "Bis Fish Lakes," and judging from the size of the fish taken, the name was very appropriate. I did some rare collecting through this new country, taking the + Hermodur, a species deseribed by Mr. Henry Edwards as a var. of Parnassius Smintheus, also Arg. Chariclea and Arg. Boisduvallii, Chrysophanus Mariposa and Thecla Edwardsii, one solitary specimen. We met large bands of the Stoncy Indians throughout this Pass, who were trapping, shooting, and fishing. The Indians supplied us with meat from the mountain sheep or big horn (Ovis Montana), which made a delicious steak when broiled, reminding one both of mutton and venison. The band of Indians who were camping close to us were trapping beaver, and hunting bear and sheep, principally.

Whilst at Big Fish Lake, I salw three fine trout caught (more than once) at one cast, by Mr. Arthur Garnett, one of the most experienced fishermen I have ever met. I may say that our living here was really luxurious, after feeding on fat pork and porridge for a long time, the variety in our fare was most welcome, I can assure you. Let me advise any of you, gentlemen, who ever go for a trip to the Mountains to be well provided with fishing tackle, and lots of it, besides a grood rifle, and shot gun as well. These articles are infinitesimally small in comparison with the "prog" you would have to pack your horses with, and with a bag of flour and some bacon
you can live well. It is not absolutely necessary to take canned meat and vegetables along with you, as many explorers do, for in this lovely country you are independent, so to speak, with the yuantity of fish and game that is always on hand in the neighbourhood.

After reaching the summit of the Mountains here, and returning to my headquarters in camp, we started back to the District of Old Man's River. Upon Augnst lith, I found myself at the Belly River District, from which place I started for the Koutamai Lakes. All through this beautiiul grazing country, I was jerfectly delighted with everything I saw.
The ranchers were all busy taking in hay for winter emergencies, although it is seldom required, for the snow is seldom too deep for the cattle to scratch it up to feed on the long grass underneath. The Chenook wind which blows through the mountains from the Pacific Ocean, melts the snow nearly as soon as it makes its appearance, and wheeled vehicles, principally heavy carts and buck boards supply the place of sleighs. From the Muirhead Ranche, I started out for the so-called Koutamai Lakes, where I was successful in capturing many fine butterflies, amongst them Argynnis Leto, $\stackrel{\ddagger}{\circ}$ and $\stackrel{\circ}{\uparrow}$.

The guide who took me up to the Lakes killed two grisly bears whilst I was in this part of the mountains, and I brought the skins back with me as a memento of the trip.

The name of the hills that one meets with on the prairie is " bute" and " cooley" or "lie" is applied to all hollow spots or valleys.

I must warn all who may be disposed to make a summer excursion through the mountains to the British Columbia side, to be well provided with a musquito-net ; I mean by this not only the small nets to wear over one's head and neck whilst riding or driving, but a strong net, capable of being fastened to the tent inside, and covering one's entire booly at night time.

It may not be out of place here to relate one or two anecdotes about the extraordinary numbers of musquitos that infest the entire district through which I passed-not forgetting to mention the blackflies, sand-flies, horse-flies or "bull-dogs" as the old settlexs call them, and the greatest torment of all the flying ants.

I remember one evening after we had pitched our tent for the night, and just about dusk, I set off with one of my fellow-travellers to inspect a curious rock, which was standing upright in the midst of
a vast plain, with no other sign of stones or gravel of any kind anywhere near it. Our fire in the camp had driven the musquitos away from the immediate neighbourhood, and for the time I quite forgot the existence of these pests. My friend was wearing a dark blue pea-jacket and walked hefore me. Fortunately he was provided with a net to cover his face, but I had foolishly left mine behind. As soon as we stirred up the long grass with our feet, the musquitos arose in myriads, and after fighting them off for a short time, I looked ahead at my companion, and I declare I could not tell what colour lis coat was, so thickly was his back corered with the insects, I confess that this was too much for me, and T. turned and fled to the camp as fast as my legs would carry me in a most ignominious fashion.

In case you have not seen a "smudge" or read of one, I will describe it. A "smudge" is a refuge for horses and cattle that are attacked by thies and mosquitos. A "syuare" of logs dove-tailed at the four corners, is constructed just high enough to allow a horse standing up to put his head over the topmost log. Inside this square and on the ground you set fire to leaves and grass, and pile on to this wet foliage of plants, and make a heary suffocating smoke. The horses will run madly towards this smoke from wherever they may be and hold their heads where the smoke is thickest. It is absolutely necessary to build a harricade of logs romed these fires, as the horses will burn themselves in the tire often mather than sufier the torment of the flies.

Whinst driving one day to the koutanai Lakes we hat to pass througha clond of hack flyine amis. My suide and I were both well covered up, but he harl on a hehtrolnured felt hat which seemed to have some peenliar attaction, for they attacked him vigrously; there was a small opening at the latek of his neck between his hat and the top of his coat-collar. and the ants faily smaw away that portion of his neck whith was exposed. Whe came across a very intelligent man who acts as guide to exploring barties in the Foutamai District. He lives in a most lonely simation, quite near the month of the Koutanai Pass. He is familialy known as Koutanai Brown, and I wonld recommend any one groing to that solitary neighborhood to patronize this guide. He is a dead shot with a rifle and an excellent fisherman. He makes his living by trading to some extent with the Indians and shooting sheep and bears, himself. We had plenty of bear's meat while with Koutanai Brown. But as it had been
dried in the sm, (and not smoked) it was decidedly "odoriferous," and I preferred watching the others enjoy it and partaking of salt pork insiead.

I wonld like to call your attention on the map for a moment to the stretch of country lying between the Red Deer River and Fort Edmonton. Here the shrubs begin to appear as trees, and the trees increase in size as one proceeds north. Very fine timber is to be had in and around Edmonton and all along the banks of the Saskatchewan. Amongst all the firmers we met between Calgarry and Edmonton (with one exception), the opinion expressed as to the quality of the land and the nature of the climate, was unanimous. All agreed in saying that although the winters were severe, yet they could grow such fine crops and so rapidly, that the brief summer was amply long to mature the grain and get it harvested.

In conclusion, I have with me a list of the diurnals taken by me during this tour, and for the benefit of those entomologists who are present, I have looked it over and will call their attention to several of the species which are rare and which I will be glad to point out to them in my cases. I regret that I could not bring my cabinets down here to show my collection to the members of the Institute, but I will only saly to those who are interested in this fascinating study, that it will afford me the greatest possible pleasure to look over my cabinets at Govermment House with them at any time that I may be honoured by a visit.

Thanking you gentlemen, for your kind attention, and trusting that I have not been encroaching too much upon your time, I beg to conclude.

LIST OF DIURNAL LEPIOOPTERA COLLECTED IN THE NORTHWEST TERRITORX AND THE ROCKY MOUNTANS.

1. Papilio Asterias, F . Edmontom.
2. " Troilus, L. Fort Mateded.
3. " Turnus, L. .-
4. " Glaucus, L. ..
5. " Eurymedon, Bal. Sieen but not taken.
6. Parnassius Smintheus, Doubl. Crow's Nest Pass.
7. Dark var. Hermodur, H. Edw. Summit Pass.
S. Pieris Oleracea, Boish. Kuntanai.
8. "Occidentalis, leak. l'incher (r reck.
9. " Protodice, Boisd. Belly River.
10. " Rapr, L. N. W. T.
11. Anthocaris Olycipia, Edw. (v. rare). Summit.
12. " Ausonides, Boisd. Calgarry.
13. Colias Christina, Edw. Red Deer River.
14. " Occidentalis, Scud. (rare). Edmonton.
15. " Edwardsii, Behr. (rare). Edmonton.
16. " Astrea, Edw. (+ new). Red Deer River.
17. " Alexandra, Edw. (rare) 5,000 ft. elevation Rocky Mountains.
18. "Eurytheme, Boisd. (rare). None taken IV. of Monse Jaw.
19. " Hagenii, Edw. Fort Macleod.
20. " " " (diminutive form). Fort Macleod.
21. " Scudderii, Reak. Koutanai.
22. Argynnis Lais, N. S., Edw. Fort Edmonton.
23. " Cybele, F. " "
24. " Baucis, Edw. (not proved new yet). Fort Edmonton.
25. " Coronis, Behr. Belly River.
26. " " (dark varieties). Crow's Nest.
27. " Chariclea, Schneid. Crow's Nest.
28. " Boisduvalii, "
29. " Atlantis, Edw. "
30. " Eurynome, Edw. Belly River.
$32 . \quad$ " V. Erinna. Red Deer River.
31. " V. Arge ("), Streck. Calgarry.
32. " Clio, Edw. (v. rare). Crow's Nest.
33. " Monticola, Behr. (v. rare). Summit.
34. " Edwardsii, Reak. (v. rare). Blackfoot Reserve.
35. "، Artonis, Edw. (v. rare). Koutanai.
36. " Myrina, Cram. Edmonton.

39 . " Aphrodite, F .
40. Melitea Nubigena, Behr. Crow's Nest.
41. " Palla (?), Boisd. "
42. " Chalcedon (?), Boisd. ((arnett Ranche.
43. " Leanira. "،
44. Limenitis Disippus, Godt. Crow's Nest.
45. " Lorquini, Boisd. "
46. " Arthemis, Drury. N. W. T.
47. Vanessa Milberti, Godt, N. W. T..

4S. " Antiopa, L. N. W. T.
49. Pyrameis Atalanta, L. N. W. T.
50. (xrapta Satyrus, Ldw. Crow's Nest.
51. " Prognc, Cram. For's Macleod.
52. Danais Archippus, F. Common.
53. Chionobas Chryxus, West (r. rare). Summit.
54. " Varuna, Edw. Calgarry.
55. " Uhleri (?), Reak.
56. Erebia Epipsodea. Butl. Fort Ellis.
57. Satyrus Charon, Edw. Garnett Ranche.

5S. " Silvestris, Edw. "
59. " Nephele, Kirby. Rocky Mountains.
60. " V. Boopis, Behr. "
61. " V. Ariama, Boiscl. "
62. " V. Olympus, Edw. "
63. Coenonympha Inornata, Elw. Calgarry and Elmontin.
© \ddagger. " Ochracea, Edw. "
65. Phyciodes Carlota, Reak. Brandon.
66. " Tharos, Drury. Edmontom.

67-6S. Several varieties from North of Eilmonton. Niot determined.
69. Thecla Titus, F. Old Man's liver.
71. " Edwardsii, siaund. (rare). Summit.
71. Chrysophanus Mariposa, Reak. (r. rare). Summit.
7. " Florus, Edw., Nor. Spec. (r. rare). Garnett's hanche.
73. " Helloides, Boistl. Oxley hanche.

74 . " Americana, DUUrban. "
75. " Sirius, Bdw. (r. rare). Fort Macleod.
76. Pyrgus Tessellata, Seud. Melicine Hat.
77. Amblyscirtes Vialis, Elw. (r. rare). Fort Ellis.
75. Thymelicus Garita, Reak. Fort Ellis.
79. Thamaos Brizo, Boisd. Fort Ellis.

So. Eudamus Pylades, Sud. "
Sl. Lyciena Amna, Edw. Belly liver.
S?. " Amyntula, Boisd. Calgarry.
S3. " Sepiolus, Boist. Crow's Nest.
S4. ." linstica. Fort Qu'Appelle.
Sj. " P'embina, Edw. Crow's Nosest.
S6. "Afra, Edw. Nov. Spec. Saskatchewan.
S7. " Linknown Spec. sent for identification. Gamett lanche.
SS. Pamphila Zabulon, Bal. Lece. Calgary.
S9. "" Mimataaqua, Scud. (v. rare). Fort Macleod.
90 . " Manitoba. Belly liver.
91. " Uncas, Edw. "
92. " Cernes, Bl. Lecc. Crow's Nest.
93. Argymis Leto ${ }_{+}^{\circ}$, Behr. Fort Macleod.
94. " Bellona F. Fort Ellis.
95. Ly"cena Fulla, Ew.

96 . " Mclissa Edw. Oxley Panche.
97. " N"eglecta, Edw. Fort Ellis.

95 . " Lygdamas, Doubld. Fort Ellis.
-99. " Icaroides, Bd. Red Deer River.
100. Pamphila Nevada, Elw. (:) Fort Macleod.
101. " Colorado, Scud. Medicine Hat.
1012. " Idaho, Edw. Moose Jaw.
103. Pyciodes Camillus, Edw. Edmonton.
104. " Marcia, Edw. Jdmonton.
105. "، Nycteis, Doubld. Edmonton.
106. Argymis Nevademis, Edw. Calgarry.

The President, Dr. Bryce, Mr. Chas. Levey and Mr. B. B. Hughes took part in the discussion which followed.

TWENTY-FOURTH ORDINARY MEETING.

The Twenty-fourth Ordinary Mecting of the Scssion 1883S_{4} was held on Saturday, April 26th, 1884, the President in. the chair.

The minutes of last meeting were read and confirmed.
The nomination of Office-bearers and Members of Council was madc.

A communication was read from Mr. W. Thompson, President elect of Section A of the British Association for the Advancement of Science, giving notice of special discussions. in the Section of Mathematical and Physical Science.

The following list of donations and exchanges was read :

1. Journal of the Trausactions of the Victoria Institute, Vol. 17, No. 6S.
2. List of Nembers, Council, \&c., of the Royal Society of Edinburgh, November, 1853.
3. Science, Vol. 3, No. 63, April 1S, 1884.
4. Ninth Annual Report of the Ontario Agricultural College and Experimental Farm for 1883.
5. Report of the Entomological Society of Ontario for 1883.
6. Science Record, Vol. 2, No. 6, April 15, 1SS4.
7. Report of Speeches at the Aumual Dinner of the Institution of Civil Engineers, March 26, 1884.
Mr. Henry S. Howland, jun., then read a paper entitled,

"THE AR'T OF ETCHING."

Mr. Howland opened his subject with the following words:
" Very often we, who are engaged in mereantile life, seem to losesight of the great value of having some interests, some tastes and some pursuits independent of, and in many ways directly opposite in their influence, to our regular business-something to engage our leisure moments, to keep us from becoming too much absorbed in the
mere material and hardening act of money-getting, and at the same time by directing our thoughts into a different course, to be a wholesome recreation to our minds and a means of ennobling our hearts.
"Our long and wearisume days of business are usually spent in work without much change, our whole attention directed to practical things the poetical instincts of our natures receiving no culture, and so lacking development, unless quickened into life and activity by some powerful influence.
" Now, while not at all asserting that we should not give to our business the care and attention which it may need, for indeed to make a true success of it, it must be uppermost i:n our thoughts, but just because of that very thing, because man, by the very constitution of his nature, needs variety and change, or he will develop into a mere machine, or, perchance, his health may fail, he must become interested in something else. And while giving to science and philosophy the tribute of respect and admiration which is their due, I insist that poetry, that painting, that architecture, that music, the fine arts in fact, will appeal to something in man's nature, which science, philosophy, the professions, or branches of mercantile industry, camnot reach. There is a part of man's nature which responds to beanty as to an electric thrill."

Mr. Howland then gave a brief history of the "Art of Etching" as first practiced by D rer about 1518 , with its bright and its dark days, to its decline and comparative obscurity at the commencement of the present century, with its revival about 1860 , and gradual growth in popularity to the present day.

The practical part was then carefully described, Mr. Howland ilhustrating the processes and modes of treatment, with plates and implements used. "Etching really means drawing upon a plate, generally of copper, which has previously been coated with a varnishlike substance called ground, with a point which removes the varnish wherever it touches, and then subjecting these exposed parts to the biting of an acid, so as to leave actual hollows in the metal."

Mr. Howland mentioned the names of Haden, Hamerton, Palmer, Whistler, Chattock, Law, Lelanne, Méryon, Jacquemart as being the leading etchers in Europe.

In America Stephen Parish, of Philadelphia, probably stands the highest, and we owe a great deal to such men as Henry Farrer, Thomas Moran, J. T. Bentley, F. S. Church, R. S. Gifford, Wm.

Sartain, J. C. Nicoll, Jas. D. Smillie, K. Yan Elten, Walter Shirlaw, J. F. Sabin, F. Diel man, J. F. Cole, E. H. Miller, P. Moran, M. N. Moran, Samuel Coleman, for the work they have given us.

Mr. Howland expressed himself especially indebted to Mr. Stephen Parish, who was very generous in lending him a plate on which hehad etched a picture called "An Old Acadian Imn-yard." Mr. R. J. Kimball, of New Yorlz, was very kind in sending a plate by Mr.. Henry Farrer, President of the "New York Etching Club."

Mr. J. F. Bentley, a Canadian, now living in New York, kindly sent a large artist's proof of his picture called the "South Porch of St. Ouen."

Thanks are due to Mr. Jardine, Secretary of the "Ontar"o Society of Artists," for his kindness in lending a large collection of etchings. Not only did he volunteer the pictures, but he spent the greater part of an afternoon in hanging them.

Mr. Howland ended his paper with a short description of the beanties of etching, illustrated by a large number of etchings from the time of the invention of the art to the present day, and hoped that, the appreciation and support of this attractive art would go on increasing.
"When the artist by his skill awakens in those who view his pictures feelings or emotions similar to the promptings he had in the conception of his work, he is much nearer true art than when, by careful and minute detail, he gives the conscious feeling of reality. Hence in this particular, etching really seems well adapted for expressing the highest art. Something is given to awaken thought, rather than a passing p easure only."

After the reading of the paper, the members present were invited to inspect the etchings which Mr. Howland had collected to illustrate his subject.

THIRTY.TINTH ANNUAL MEESING.

The Thirty-fifth Annual Mceting was held on Saturday, May 3rd, the Secend Vice-President, Mr. George Murray, in the chair.

The Minutes of last Annual Meeting were read and confirmed.

The following list of donations and exchanges received during the preceding week was read:

1. Science, Vol. 3, No. 64, April 25, 1584.
2. Verhandlungen der Berliner Gesellschaft fiir Anthropologie, Ethnologie und Urgeschichte, Sitzung vom 20 Jan., 10 Feb., 17 Feb., 17 Mairz, 21 April, 19 Mai, 16 Juni, 21 Juli, 20 October, Nov. 17 and 24, Dec. $1 \overline{5}_{y}$ 1883. 12 Numbers.
3. Report of the Canadian Observations of the Transit of Venus, 6 December, 1882.
4. (1) Bulletin of the Natural History Society of New Brunswick, No. 3, 1884.
(2) Amual Report of New Brunswick Natural History Society. Memorial Sketch of Prof. Ch. Fred. Hartt, by George U. Hay.
5. Bulletin of the Museum of Comparative Zoology at Harvard College, Cambridge.

6. Journal of the Franklin Institute for May, 1884.
7. Jourual of the Microscopical Socicty for April, 1884.
8. The Canadian Practitioner for May, 1 S34.
9. Proceedings of the Worcester Society of Antiquity for 1SS3, No. 20.

The following gentlemen were elected Honorary Members of the Canadian Institute:

Daniel Wilson, LL.D., Rev. John McCaul, D.D., Prof. Balfour Stewart, (Owen College, Manchester,) and the Abbe Provencher, Cap Rouge, Quebec.

The Hon. Secretary read the Annual Report of the Council as follows:

ANNUAL REPORT, SESSION 1883-84.
The Council of the Canadian Institute have the honour to lay before themembers their 'lhirty-fifth Annual Report.

The attendance at the weekly meetings has been satisfactory, and a large: number of papers have been read. These will compare favorably in average merit with those of any preceding Session. In additiou to the regular work of the Institute, a course of three popular public lectures on sanitary subjects.
was arranged for and delivered in the Library under the joint auspices of the Institute and the Provincial Board of Health. The lecturers were Dr. Oldright, Dr. Cassidy and Dr. Bryce.

The number of members has increased from 225 to 236 , and a larger number than heretofore have made use of the reading-room and library. As will be seen by reference to one of the appendices to this report, the number of books and periodicals taken out by members has nearly doubled. The number of Societies with whinh we exchange publications is now 140 . The number of donations and exchanges received has ieen 500 , as against 280 during the preceding year. One hundred and twenty volumes have been bound, and eighty volumes and numbers purchased to complete sets. It is much to be desired that funds should be forthcoming to bind the whole of the 700 volumes that. are now awaiting the binder.

A change has been made in the method of publishing the Proceedings, which. it is believed, will have the effect of rendering our transactions more acceptable to our members without rendering them less valuable to other Societies.

The Council having devoted so much attention to the Library, Readingroom, Journal and Exchanges, has not been able to put the collections in the museum in order or increase them. This department, however, has not been altogether neglected. A few valuable skins have been stuffed, and the very handsome offer made by Mr. Brodie to furnish a collection of insects, provided the Institute supplied cases, has been accepted, and a number of cases have been placed at his disposal.

Herewith are submitted appendices, showing (1) the membership, (2) the financial condition of the Institute, which will be found very satisfactory, (3) the number and sources of the donations and exchanges, (4) the number of books and periodicals issued to members, (5) the list of periodicols subscribed for, and (6) the list of periodicals presented to the Institute, with the names of the donors.

All of which is respectfully submitted.
J. M. BUCHAN,

Phesidents.

APPENDIXI. MEMEERSMIP.

Number of Members, March 31st, 1883 225
Withdrawals and Deaths during the past year 25
meted during the Sesion 2089
Elected during the Session 1883-S4 36
Total number of Members, April 1st, 1884............. 236
Composed of:
'Corresponding Member ...

Life Members... 17
Ordinary Members ... 217
Total ... 236

APPENDIX

To Summary $\$$ cts.
" Balance on hand . iS9 04
" Anmual subseriptions .
" Rents 179 50
" Journals Sold. 17 25
" Interest on Deposits 1710
" Freight 120
$\xrightarrow[\square]{\equiv 1,49209}$
By Summary S cts.
" Salaries 2S6 47
" Periodicals.. 244 34
.. Interest on Mortgacre . 238 . 78
" Printing 209279
" Fuel $14 \geq 23$
" P'ustage . is 07
" Vixpress 34 S2
" (ias 40.19
" Furuiture 12 so

" Repairs
" Writer . 2400
"Contingencies. 1430
" Taxes 949
". (ash in Bank. 7150

Liabilities.

Mortgage	$53,+1100$
Balance in favour of Institute	17,909 00
	$\$ 21,32000$

Examined, compared with vonchers and found correct. $\left.\begin{array}{l}\text { E. A. IIEREDITH, } \\ \text { J. (iALBRAITH, }\end{array}\right\} A \|$ liours.
1fth April, 1SSt.

APPEN donatrons a	IX III. exchanges.
Book	
April 1, 1SS2, to April 1, 1883.	April i, 1883, to April 1, 1884.
Canadian 30	Canadian 90
United States 60	United States 300
Great Britain and Ireland 100	Great Britain and Yreland 200
India, and other British Colonies, exclusive of Canada 20	India, and other British Colonies, exclusive of Canada 40
Foreign 70	Foreign 170
Total 280	Total 800

The number of Societies with which the Institute exchanges is 140

The following are the principal Institutions that have supplied back numbers .of their publications to completed sets.

Smithsonian Institution.
Essex Institute.
New York Academy of Sciences.
Academy of Natural Sciences, Philadelphia.
Worcester Society of Antiquity.
Harvard University Library.
Muscum of Comparative Zoölogy at Harvard College.
Comnecticut Academy of Arts and Sciences.
Historical Society of Pemnsylvania.
Peabody Institute, Baltimore.
Entomological Socicty of Ontario.
Royal Scottish Society of Arts.
Anthropological Institute of Great Britain and Ircland.
Cambrilge Philosophical Society.
Leeds Philosophical Society.
Royal Feological Society of Ireland.
Royal Dublin Society.
Royal Colonial Institute.
Royal Gcographical Society.
Institution of Civil Engineers: G. B.
The Victoria Institute.
The Linnean Society.
New Zealand Institute.
Naturwissenschaftliche Gesellschaft "Isis," Dresden.
The Literary and Philosophical Society, of Liverpool.
Yote.-The douations presented by the above, and some others have : already been given in detail.

APPENDIX IV.

The number of books and periodicals issued to members :-
(1) From April 1, 1882, to April 1, 1883 450
(2) "، "، 1,1883 , " $1,1884 \ldots \ldots \ldots \ldots \ldots$........... 860

APPENDIX V.

List of periodicals subscribed for :--
American Journal of the Medical Lancet.
Sciences.
Athenxum.
Atlantic Monthly.
Blackwood's Magazine.
Brain.
British Quarterly Review.
Builder.
Century Magazine.
Contemporary Review.
Critic.
Edinburgh Review.
English Mechanic.
Fortnightly Review.
-Graphic.
To the above have been added for the current year:-
Illustrated London News. English Illustrated Magazine.
Saturday Review. Harper's Monthly Magazine. The Week.
The following were discontinued at the end of 1853 :-
The Builder.
St. James's (azette.
(ritic.
The Medical News.

APPENDIX VI.

Periodicals presented to the Institute, and the names of the donors:Das Echo -W. H. VanderSmissen, Esq., M.A. Le Temps, Paris-Dr. C. W. Covernton. Spectator-Prof. Hutton.
$\left.\begin{array}{l}\text { Le Figaro, for } 1883 \text {. } \\ \text { Le Courrier de l'Europe, for rsS4. }\end{array}\right\}$ Geo. E. Shaw, Esq., B.A.
On motion of Mr . J. C. Dunlop, seconded by Mr . Alan Macdougall, the Report was adopted.

The following Officers and Members of Council nominated at last meeting were elected for the ensuing year :

President, W. H. Ellis, Esq., M. A., M. B.
First Vice-President, George Murray, Esq.

Second Vice-President, (icorge Kennedy, Esc., M. A,, LL.D. 'Third Vice-President, E. A. Meredith, Esq., LL.D.
Treasurer, John Notman, Esiq.
Recording Secretary, James Bain, jun., Esq.
Corresponding Secretary, IV. H. VanderSmissen, Esq., M. A.
Librarian, George E. Shaw, Esq., B. A.
Curator, David Boyle, Esy.

members of colictil.

James Loudon, Esq., M. A., F. R. S. C.
T. M. Buchan, Esq., M. A.

Alan Macdougall, Esq., ('. C., F. R. S. C.
P. H. Bryce, Esi., M. A., M. D.

Danicl Wilson, Esy., LL.D., F. R. S. E., F. R. S. C.
Alexander Marlmg, Esq., LL.B.
On motion of W. H. VanderSmissen, M. A., it was resolved: "That in Section III, Pau. G, of the Regulations, the words "an Editor "* be inseried after the word "Librarian."

It was moved by Mr. Alan Machongatl, and seconded by Mr. B. B. Hughes: "Thai the thanks of the Institute be presented to Mr. J. M. Buchan, the retiring President, in recognition of his valuable services rendered during the past year." Ciarried.

It was moved by MIr. Macdougall scconded by Dr. Ciassidy: "That the thanks of the Institute be tendered to the "etiring members of the Council in recognition of their valuable services during their term of office." Carried.

[^3]

[^0]: * AIr. VanderSmissen has kindly called my attention to the fact that Professor Schlecher, whom in my former paper on the Khitan Languages I inadve:tently represented as constituting grammatical construction the sou of language, really gives great prominence to the phonetic element, especially to that portion of it which expresses relation. I am glad to acknowledge this correction of an extreme statement by so competent a disciple of the great German philologist.

[^1]: - The records, which through the courtesy of the Superimendent of the Meteormbagal Serviee, were furnished the writer, embrace the neriod between February list, iSia, and Aught 31st, 1SS.. The records for May, Octriver and November, 1S79, and Ajril and November. 1sso, are incomplete or wholly wanting. The mean temperature for these missing monthe has been approximated liy the writer after eareful examinatien of the records of Windsor and Sandusky, what is believed to be due allowance having been made for the peculiaritics of the Pelec climate. The hours of olservation were 7 a.m. and 2 and 9 p.m. The mean temperature is found by adding together the reading; at the lirst two hours, and twice the 9 p.an. reading. and dividing the sum by 4 . The maximum and minimum temperatures given are those of the

[^2]: hours of observation only, but a eareful consideration of the fants as to clondiness, dreetion of wind, se., at the times of their oesurrence, and for some time before and after, leads to tide conclusion that in many instances they represent within a fration of a degree the true max. or min., as the case may be, and that in few instances can the highest or lowest temperatures have differed more than one or two degrees from these quantities as taken from hours of observation alone. Where the mean temperature of the month is not derived from the original records no attempt has been made at supplying maximum and minimum, or arorages other than for mean temperature. The mean maximum and mean minimum of November is consequently derived from but one month, that of Octnber from only two, those of January, February. April und May from three, and the remaining months of the year from four.

[^3]: - I: : Rev. Hemry Sodding: D. D., was derled Editor at ameci. \because of Council hed on May 3及:, :

