CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Canadian Institute for Historicel Microreproductions / Insthtut canadien de microreproductions historiques
(C)

The Institute has attempted to obtruin the beet original copy availeble for filming. Features of this copy which may be bibliegraphically unique, which moy diter any of the inneges in the reprodvetion, or whiah may signifieantly change the usued method of filming, are chacked bolow.

Colsured covera/
Couverture de coulour
Cowrs damayed/
Courwture endommento
Covers restored and/or leminutud/
Couverture resteuris et/ou pelliculte
Cower title missing/
Le titre de courerture mangue
Coloured mape/
Carwes phopraphiques an coulcur
Coloured ink (I.e. other than blue or black)/
Enere de couviour (i.a. autre que blowe ou noira)
Coloured plates and/or illustrations/
Planches ef/ou Illustrations en coulour
Bound with other material/
Ralif avec d'autres documents
Tight blading may enuse shadows of distortion along interior margin/
La rellure serrio peut cevaer de l'ombire ou de la distorsion fe long de la mare intirioure

Bienk laaves iddad during restoration may appear within the text. Whemever powible, these heve been omittod from fillming/
II se pens que certaines peges blencties ajourties lors d'ume restauretion apporaiseent dems la waxte, mais, lorsque cola était porsible. ces peges n'ont pas itt filmies.

Additional comments:/
Commentaires supplomentaires:
This item is filmed as the reduction ratio checked below/ Ce document est filmé au taux de ríduction indiqut ci-dessous.

L'Institus a mierofilme te moillour axemplalre qu'il lui a the posibibe de se procurer. Les ditallis de eer axcmplaire qul sont peort-tive uniques du point de vue bibliographiquo, qui peuvent modifior una imape reproduite. ou qul peuremt axigor une modification dens la míthode normale de fllmage some indiqués ci-dessous.

\square
Coloured para/
Pages de couleur

\square
Peges drmaged/
Puges endommariesPeges restored and/or laminated/
Puges restauries et/ou palliculices
Pages discoloured, stained or foxed/
Pages dicolorites, tachnties ou piquites
Poges detechod/
Puges ditichins
Showthrough/
Transparence
Ouality of print varies/
Oualité indeala de l'impression
Continuous pecination/
Pegination comtinue

Includes index(es)/
Comprend un (des) index
Title on haverer taken from:/
La titre de lem-tete provient:
Titta page of issua/
Puge de titre de la livroison

Coption of issue/
Titre de dipart de la livraison

Mastheed/
Gínírique (périodiques) de la livraisen

\square

The copy filmed here has been reproduced thenke to the generosity of:

National Llbrary of Cenade

The images eppacring hare ore the bers quality poselible considaring the condition and legibility of the original copy and in keeping with tha filiming contrect specifications.

Original copies in printed papar covere are filimed beginning whth the front oover and ending on the last page with a printed or illuetreted impres. cion, or the back cover when epproprlate. All other original coples ere filmed beginning on the firet page with a printed or Illustrated Impression, and ending on the last page with a printed or illuetrated impression.

The last recorded frama on sach microfiche sholl contaln the eymbol \rightarrow (mesning "CONTINUED"I, or the eymboi ∇ (meaning "END"I, whichever appiles.

Mape, pistes, cherts, otc., mey be filmed at different reduction ratios. Theas too larga to be antirely inciuded in ona exposure are filmed beginning in the uppar ioft hend corner, left to right and top to bottom, ts many fremee ee requited. The following diagrame iliustrate the mothod:

L'exempleire filmb fut reprodult grace its ćndroelté de:

Blbllothidque nationale du Canade

Les imegee eulventee ont itt reprodultee avec lo plua grend coin, compta tonu da la condition at de io nattetd de l'exempieire filmb, ot en conformitt avec lee conditions du contrat de filimege.

Les examplaires originaux dont il oouverture an paplor cat imprimis sont filimis on commencant par io promior plat ot an terminant colt par lo dernidre pege qui comporte une empreinte d'impresalon ou d'llustration, solt par is second plat, selon le eas. Tous iee autres axemploiree originaux sont fllmis on commongant par io premidice page qui comperte une emprointe d'impreseion ou d'illustrution of en terminant par la dernilire pege qui comporte une telle empreinte.

Un des eymbolee euivante apparettre eur la dernilice image de chague miorofiche, ecton ia cee: is aymbele \rightarrow slgnifle "A SUIVRE". io symbole ∇ cignifia "FIN".

Les cartee, planches, tableaux, etc., pauvent Otre filmis 1 des taux de réduction différents. Lorequa io document eat trop grend pour tire reproduit an un aeul clichs. il cet filmó a partir de l'engle auplifiour gaucha, de gauche al droita, of de heut an bes, en prenant lo nombre d'imeges nifceseaire. Les diagremmee auivants ililuetrent le méthoda.

MICROCE' RESOUTION TEST CHART

 (ANSI and ISO TEST CHART No. 2)

\square

THE FIXED "YEARAL" Proposed to Replace Changing Almanaks and Calendars

Profeced by Mustrations and Notee showing their Evalution
By MOSES B. COTSWORTH, F.G.S.
New Westmineter, B. C., Canada
(Farmerty of York, Endland)
Authar of the "Rettonal Mmenak"
"Rellway Maxdmum Rata and Charioe"
the "Dirnot Celouletors"
and other publloationa.

N. B.-The INTERNATIONAL CONGRESS OF CHAMBERS OF COMMERCE has UNANIMOUSLY REOUESTED Dipiomatic OFFICIAL of ALL NATIONS to CONVOKE FIXED INTERNATIONAL CARENCE to ESTABLISH The ROYAL
"That Mr. M. B. Coty OF CANADA unanimously resoived: Caiendar receive the endorenth's proponal for the Reform of the號 of the Society."
Society) has REQUESTED CANADA (petitioned by the Royal TO ASSEMBLE THE the BRITISH GOVERNMENT CONFERENCE AT AN EARLY DATE INTERNATIONAL President Hadley, of Yel U.Y DATE. University, U.S.A., Approving these "This reform with its
it is a commercial necessity." four weeks will sureiy come,
Sir Sandford Fleming, the veteran simplifier of our daily Time (who originated "Standard Time" adjustments by complete hours, as now used by all nations), recorded the most experienced opinion, by the reommending this reform to the Royal Society of Canada
"Thet such: whatever," ${ }^{\text {such a needed change can be effected, I have no doubt }}$ THE AMERICAN CONPERENCE MAY MEET AT PANAMA

The PROPOSED "INTERNATIONAL FIXED CALENDAR" or "YEARAL"

Eprron'c Notr-Readess of formage articles by Mr. Cotswosth which have apgened In the British Colnmbia Maganive muse have been imprewed hy the long yeate of arduous setearch which he has devoted to studying the orlgin and methods of aimanak making in many couatrics. The outcoms of che erpenditure of his time and money lo a scheme to abollich ous prosent olumay ealeadaf, whith ltw uocqual moaths and changlas day aames-athe undoubted source of lons and worsy to overy elviliaed pervon, The average mana doees not senillated to what extent the prownt syatem rotarde him io boch hin busingse and bome ilfo. It la a syotem that was arbltrarily aet up 1940 yeare ago, wasped hy the pelde and arsogance of Roman rulere

The tank of alterling the daliy cuatome of mo many milifione of poople of diveete nationalltiet
 Infialte padienes, and aboolutc uneelifichaere would cootemplata if It may ceem promaturs at the precent moment to felicitate Mf. Cotsworth on what he has done, but haviag been privileged to gather come knowledge of his work and tha almost unimagianhls Sificulties be has surmounted we eanaot let the opportunity past, and we place upon record the fact that Britiah Columaia lo mont fortunate in belag ahlo to elalam Mr. Coteworth a. a eitizta today, although he began hle laboes originally in the hlecoric oity of Yort, England. If the lates. national confereace of the sepresentaly future as a direct resule of the labore, adopte hla cugsentiona, thoy will heacfit us all every day hy facliltating hualnoes and roclal convenienes.

He undoubtedly lo the orlginator of the "Dies-ven" aystem, hy which the "odd (36 sth) day" Ia proposed tc be appended as an "extra 8aturday" In every year and la to be freed from week-day aame to avoid the present avoldable trouble all Calendara now make hy yoarly changlag week-day namen and monthly dates throughout all the 36 g daya of all yearo-a Calendar conatructora durlog more than anvo yeara had uneucceastully atriven to avold.

Upon that discovery, hy Ms. Coteworth Ia the year 1893, has been founded all the alightly varied proposals aines cusaremed hy ealendas soformees la all the greas nations of the world whove fovernmente are wolcomlag Mr. Cotuworth's proposala to entablioh the Imternutienal year of fixed weck-day namen for che 364 daya asch year, and separate the gogth day as the helpful hollday univeenally needed at the year'e end.

Roadeen will readily zeapy his idea, which lite all true and lating reforma lo very almple.
Dec. 3 sist, or the "Sheriest Dny" ondiaf anturc's year, is proposed as a "Diesonon" to be sepornted from beth wech-diny aanes nod monthly dates. The ffty-two wechs in whll she yewrs followiag iprs enn then casily be divided iate thirceen menths of four weehs cach, lihe Folruary. The preposed acto anonth cnn be permmanemly inseried between Jnne and July, innt as ensily ns b.ise apth February was inserted as Leap-day between Fehrmury and Mmrch, ypro.

That Fixzo datee chould he located for Eatar and all Fentivals, National Holldays, Falsa, \&c., was aleo proposed by Mr. Cotsworth in the year asps, to selieve all nations from the losees saused hy carly Easteet and the tiresome delfing periods now used for legislative, univeenty, college, school and law terme, which would he fas better rexed to avoid the proclamatione and laconvenleneet now eaused hy that lack of fixity.

He also furnished convincing reasoas why the yeas agis is the most convenient time to make thece denlrahle improvements for future yeara. The chlef se' son helng that the rear then ends with the week, and the change can then be most eacily made for the coavenienee of all.

After he lnvented the "Dies-non" method, the dificulty was not to draw up the schemeto one posesening such complete knowledge of the blatory and myareries of almanak-making, that was a congenal tast-but to overcome the national, historical and rellglous prejudicea of civilised people all over the world. To heoefit every human helng every day is a nohle tate, deserving of all the help we ean give. We, therefore, acked Mr. Cotsworth to write thle artiele.

It la aleo Interearing to semember that "standard time," which hae heen a boon to the whole world, had Ite Ineeption in Canada thirty yeara ago through Sir Sandford Fleming K.C.M.G., who after the fulleat conalderation hae endored Mr. Cotwworth's proposals as the simplest and

The Royal Soclety of Caneda after eareful conelderation unanimously commended Mr. Cotioworth's proposals as the best, and petlioned the Government of Canada, who have urged the Britiah Government to assemble an Interoational Conference to conaider thia timely propoal to ahandon our ehangling calendara and almanake for one Fixed "Yearnl."

Thot is the more appropriate nmme suggested for the proposed Internationnl "Fixed" Almonah which Sir Sandford Fleming reported to the Rayal Society, will daily "benefit the greot hnmon family throughomt oll fnimre time."

For the convenience of reader, the connected serlea of Illustrations have heen grouped into Fore-plates " B " to " J " preceding the explanatory pages, on which are printed euch further pletures as are hetter interspersed with the type. The End-platea " K " to " W " illustrate the more detailed references to which readers specially interested in such rescarch may refer.

Between the "fore" and "end" platea are printed: z. Notea re the Evolution of Almanals and Calendara; 2. The Proposals for Calendar Reform.
References to Encyclopadias and "Rotional Almannk" (os "R. A.") will facilitate verificotions.
(PLATE "B.") Ancient EGYPTIAN CALENDAR af TWELVE MONTHS, ohawn by BIGNS of the zODIAC

This repraduction fram the Temple at Denderah is similar to athers at Esneh and Ed Dayr. It appears to ba the earlieat representation of that Anclent Calendar Syatem whicb tha Egyptian Prients kept profoundly secret, and never portrayed, until their degenereme whicb tha were induced to engrave thelr Zodiac In this Temple to atiasy their Greek berefacerendants

Herodotus, the chief hiatorlan of Anelent Griece record that "Ther benefactora. first to discouer the solar ycar and to tortion aus its course into that "The Egyptians wert the their knowledge from the stars." The great yatue of course into twelee parts. They obtained origin and construction of Calendaro probably caused the Eret knowledge concerning the Herodotus the cruclal explanation of how their ancient the Egyptian prietts to keep from the precise length of the year by mourtheir ancient pyramid builders had firat discovered during many centuries, as later moaspuping the daily lengths of the pyramids' noon-shadows Equinoctial pyramid slope, was ensential to enable the Egyptians to locate the huge pointing or weeks of 10 days each, into which their chable the Egyptians to locate the 36 "decans" being observed at mid-nlght pasaing above the apex of divided by 36 atara, nearly equidistant, 10 daye apart-as depicted by the 36 boats, or "astrooomical houses" shown above with their reapective stare over each. Three of those ro-day weeks constituted EACH OF THEIR MONTHS which WERE EQUAL, and with five Feative-days intercalated at the end

The simple but enormously extensive scale of observations the Pyramid toserve secrecy. accomplish before knowledge of extensive scale of observations the Pyramid Priests had to basis upon whlch the Zodiacal Syatem of Stur Any' year was discovered, as the ensential End-plate "T," where the Fans illuatrate in 10° Aarcenomy was elucidated, is indicated on 10 day ranges of the sun's noon track among the "fi'ixed natural nrigio of those periods of along the Sun's apparent Eecliptic Path, throughout every season" locating each daily position

Plate C. The oarlion "BPHINX" METHOD of I.OCATINO the BEABONS of the YEAR by regiateting the eraconal "ANPLITUDE POINTS" OP SUNRISE aionk the horicon.

1. "The Sphina" viewed from behind, ohowing the SUN-RISE-DIRECTING-RAY-LINES omphadzed on the ioft side of the wig, directing oberrvation acrose the Nile Vailoy, to the daliy pointa of Sunrize throughout the yoar. See Plate "J."

Thase "ray-liaes"" after prihehty mere thea 7,000 years of exposare, were so iadistiact os this small-scale photograph that the ertist "emphasieed" pert on the loaver herh edpe of the wif, to iadicete the rey-liaes sprecdiag from the anpe if the aech, like the dopenese sumorays.

II. "Tho Sphina," photographod at Sunrize with the actual Sun "dicked" on its hoad at the "Equinox," whon day and night are of equal iength. The approximate direction and limited 30° rango at Cairo, dieplayed by the season-matting Sun-rise-pointe over the diatant hilio acroen the Niis, have been painted on the photo at rayed-oune, to indicate the utmost limits of "Ampitude" in Sunriesa hotweon the Longent and Shortest Daye, when viowed from the same pointe of observation at the roar of the Sphinx. Thone are indicated on Piate "fo" whors the -acred "Asp" is shown as it originally eurmounted the top of the hoad, so that the Aap'e tip eerved as a "Fixed Pointer" to the conter of the Riving-Sun, when the Priently observero looked from the "rear-point" over the iongth of the Sphinx to the Sun diated on the Horizen-like the navai gunneri sight targets aiong the "fixed line of sight," from gun roar to fore-points.

For causes that have deflected the Axie if the Sphinx to the North of Eest, see Plate F. The later star-recording ases of the Fromt of the Wif asd decp. Excovations in front, are indicated in the Sphims section. uchere an Ancient Egytian Hffr diagram is regroduted.
(PLATE "D")-The "AMPLITEDE METHOD" uned by the "Sun-worshippers" of JAPAN

1. Japanese "TORII Gatoway" of the Shinto Temple on Miyajima bland, used like the "Ephinz to iocate the seasonal points of sunrise, shown on Plate "J." where its mid-rear-poilut " E " served lite the mid-sitit beneath the eanopy of thit pedestal to focus observations.

II. "AMPLITUDE" Diagram contrasting the narrow 30 " range at Cairo with the in * london range of Suntise and Sunset points along the horizon-represented by the complete circle. W. denotes Winter, Dec. asnd; E. Equinoxes, March aist and Sept. asrd; S. Summer, June azst.
(PLATE "E")-The "AMPLITUDE METHOD" was WORLD-WIDE

Fic. 33z. - Stele from Lilyboran Cortur, plute 29.
I. This diepleye the "Amplitude Method" uted by the antient Carthagenians at their atronghoid in Sicily. The eye of the Sun is located at peeping over the three monoliths denoting the three neatonal dividing pointa of Shortent-day. Eqnal-day-and-nitht, aod Longent day.

The priest is taking the observationa over the fixed point to the Sun "diaked" at the Equinox.

Note. -The Sun and Mnon "chalted together" on the rod to typily the eombined diameters of their diska the rod to typily the combined diameters of their digka to form the "degree-nnit" or
$\mathbf{3} 60$ degreen round the horison.

11. Ancient Druidical observatory at Macs-howe, Scotiand. Note the three monoliths on promontoriea to reginter meanonal amplitudes "aighted" through the "Observation Pasarge" from the centre of the mound.
"Silbury Hill" in Witshire contains more than $1,000,000$ tons of chalk amilarly piled artificiaily. See R. A. 290 and 342 .

III. The three ancient "Zignrata" of Bahylonrepietnred at thope atepped towers were raged.

IV. Chaldeao Temple, hased on the ruina of the aupponed "Tower of Babel." The gradual ascent from the coutheast contrants with the ateep descent to the northwent needed to retister noon, etc., shadown.

The ground plan show! ita southeat orientatloo to nature'a yearending oo the ahortest-day, Dec. 22.

V. The three aveient British "Amplitude Monolitha" near York (England). weighing about 30 tons each. See R. A. . p. 10
Each natbon had to devise ite own permanent indi. cator: (which were oecetsarily huge and wide apart) for locating the seasone hefore refined antronomical inatrumenta or calendare were invented.
N.B.-The "R. A." refereneea indicate where further information is avaiiable in the author'a book on the "Rational Almantec," first advocating Calendar Reform is epitomised on end leaf,
(PLATE "F")-AMPLITUDE METHODS proved TOO CRUDE and DRIFTING

I. A Typical Esyptisn Templo on the weat bank of ths Nlop facion tho Sum-rioe-rays, whieh enter the lower openlop ot tho front, and plerco through like apertures (evidenced hy the plans below) to the "Holy of Holles in tho reer, where the jewel on the breast. plste of the High.pricst shloes brliliantly os the sunbeamis shaft of jight jliumisates it of this Annual
 preuense" to worahlppers In thla Temple st Abydoz At prevence to worahlppers in thls Temple it Abydos An Equinoxes." they had to sdfuat their Temple ss below:

III. The above record of Observetion at Sunrise on the "Longent Day" at STONEHENGE evidencen both the mont complete Druidical ayatem used by the Ancient Britona when measuring the Horizon polnts of Suorise end Sunset hy the complete circle of monolith, end their extended method of using distant monolitha and erections so merk the shifting direction af Suarise and Sunser Sir Norman Lockyer proved to have moved a diameters of the Sun on the Horizon, sioce Stonehenge was erected.
The same change of elignment ceused hy the "Precention of the Equinoxes," scc. deflected the axls of the lower Egyptien Temple till the sun's rays falled to reach the "Holy of Holies" et thelr Annuel Fentivel. Then the wormhippers, thinking sheir Sun-god was forsaking themp, had to halld e new Temple in the reer, directed to the more recent sun-rise-point on their "Yeerley:"
Similerly the Priests of almost all religions continued thet ayatem of "orientating" their atructures for worship to the Sunrise on the Caleoder Fentivel of thelr patron anint: e.f.e 'hurchen dedicated to St. George ere still orientated to the Sunrise polnt on April asrd while ochers named after St. Peter are pointed to Sunrlae on June agth-St. Peter's Day,

But they wers only ahle to locate the precise detes hy the Calendar, as greactexperience and distant "sighting-pointers" were needed to derive exact datea from the narrow change of
daily Sunrise.
(PLATE "G") - Next the MERIDIAN METHOD of TRACING the SEASONS by MEASURING the NOON-SHADOWS of OBELISKS, \&c., WAS DEVISED

I. The OBELISK in ST. PETER'S SOUARE, ROME, cats ite Noon-shadow long the Merdian: iine, ehown on the photograph to the right, extending heyond the fountain from the front ovaj disk wbich ie inseribed with the words "Cancerl Solatict," manifesting its purpose to regieter the Obeiick's ehortent ahadow there paeeing at noon on the "Longent-Day" (sune 21st) when the Sun reaches ita northernmont range on tha Tropic of Cancer.
The second diec registere both the shortening shadow in May and ths iengthening shadow in Iuly. The third diec recorde the imits for Aprii and Auguet. and so forth.

II. Model of "Cleopatra'a Needie," removed from Alexandria to London, where ita Diaj with the Meridian- line and reven eteps (iike the Dial of Ahas) is in the British Museum.

III. Meridian-dins of St. Peter'a Obeizsk at Romedemonatrating the inaufficieney of the iargeet Obelieka to register 31 noon rhadowa between thoge disca. Later Obefiake were eievated on masonry as per Block IV to cast longer mhadows.

IV. The Obeliak or "Lat of Asoka" in India in of speciai intereat because tha ancient native writinga record the fact that this regieter of Latitude and locator of the Seasons was during thrce separate generations raised higher by building terracen of masonry to extend their Meridian shadow register and oo derive truer knowiedge of the paening Seasons, as
(PLATE "H")-EVOLUTION of the PYRAMID SYSTEM

IV. This shows the Intermediate shape between Step and Slope Pyramid bulding, whilst trying to find
the best slope.

V. The Giseh Pyramida nesr Calro These evidence bssis of both our Csiendsr building, by which the were derived, our Csiendsr syatem and Astronomy pamphiet. The Inundstion in tha latter half of this

AA Orieme Mastama.
 Rome I man toint mis.
II. Section of the oldest Pyramid, at Medum, dis closing ite successive increased heights to Obeniok was raised above the originsl A. A. Msotsb of polished granite so the nucleus.

II1. Photo of Esypt's first Pyramid st Medum proving that it never bad the uniform Equinoctisi slope developed on later Pyramids. The next oldest Pyramid of Sakkarsh was cimilarly built in etepe The Egyptisns ultimstely found tbst the sloping Pyramid was beat to attsin the greatest beigbt required to differentiate the dsily shadow leogtha on the Meridin line. See R. A. 200, almo Salkarah Prramid on
paipt. The Inundstion wster is over the fieids.

VI. The Babyloniso cculptre of tive 3750 B. C., demonstrstes that these Ancie Nisramsin, used Pyramids to locate the movements of Nstions Sun and Woan for mational calcndar purposes. The fine sculpture looky like the work of captive Eases. The

(J 1.) WHY PYRAMIDS WERE BUILT

1. The greatest need of every nation is to produce isdequate supplies of food to feed its people throughout the year. That need was most intensified during the Era of Pyramid Building, more than 5,000 years ago, when the increasing populations of Assyria to the north and Ethiopia to the south insistently strove to conquer Egypt. 2. In that Era, conquest generally resulted in slaughter of the conquered men, and bondage for their women and children, involving family and national ruin. Consequently imperative necessity forced the Egyptians to maintain at least as large a population as the increasing Assyrians.
2. As the total area of land capable of cultivation was limited to about 13,000 square miles in the Delta area and the two narrow Nile-side strips within the sandhills dividing the surrounding vast Desert Area of Egypt (as evidenced by the adjoining map), the Ancient Egyptians could not increase the cultivable area much beyond the confines of the yearly Inundation. Therefore they were compelled to rely upon producing more crops from the same area of cultivation by intensive culture.
3. Such increased crops could only be intensively developed by locating the precise seasons for each tilling and sowing for the numerous varieties of crops required. They grow many more varieties of crops than we.
4. That precise knowledge of the Seasons could not be made available without studying the Sun's Seasonal Elevations.
5. Those Seasonal Elevations could best be located each year by studying the Sun's noon-day height locations on the Meridian.
6. As Egyptians had neither telescopes nor "smoked-glass' for observations, and the glare of the Sun in the clear Egyptian sky was too fierce for "sighting" direct, they had to observe the Sun's Seasonal position indirectly by measuring the ever varying lengths of Sun-shadows cast from the highest possible structures.
7. Pyramids as huge Sun-dials were the easiest structures they could best erect sufficiently high to differentiate the lengths of Sun-shadows which indicated by their different daily lengths the best Season for each of the yearly recurring operations necessary to produce abundant crops. They ensured permanent prosperity $; \cdot \mathrm{d}$ national safety by maintaining sufficient men to defend and intensively cultivate their land.
Thus Pyramids were built to safeguard the life of Egypt which depended upon the Nile Valley's advantages being utilized by deriving and applying Calendar knowledge.

MAP OF EOYPT.
4 cen-

$\square \infty$

(Plate "J") BIRTH-PLACE of ALMANAKS and CALENDARS

This range of Sun. Sphrix's fan too neritude ia too net precise le preciac deya. it could only the seroximate whe sessor one weel (See Fron
Plates C. E and F .)

1. The PYEAMID AND SPhinX AREA Adiolite

Location of Rear.pointere (Obelialk tops or move ble survey; tripoda) uaed like the Priest's.pointe on Fore. Hlate ${ }^{2}$ or the Rear.tips of our fearitip. Seconds. Polnter on Clocks and Watches, wher the circumference when divided lnto the horlzon's 360 degrees would indicate the "Longest. Dey ${ }^{* 0}$ (Tune 21) ecrose the $121 / 2$ minutea point. snd the "Shortent Dey ${ }^{31}$ (Dec. 22) terose the $171 / 2$ minutea point With the "Fquinoxes" mld. wey of thet 30 degrees Amplitude. range, located acrose the 15 minutes point

Front-plate "C" how how used from the rear
II. The SPHINX in the DAYS of ITS PRIME** now in tha Britioh Muivot-pointer sbove the Brow. The inest "4, Sphere, 20th Dec., 1915), thowing
 indicate how anclent observer Amplltude obaervation for geasonal Spmrises and W. denoting the gummer c
(J2) The followian comdenend list of 20 on of the
 Eypptiane overy year, domonetrates how virit euc Egyptinge wis to ageure preaperlty of the Ancleat

$$
\begin{aligned}
& \text { "EGYPTIAN (COPTIO) CALENDA事, }
\end{aligned}
$$

Note-The Coptic Egyptiane etill use the perma. calated at she year's end, Pyramid Pricate ortginated.

CALENDAR most needed in EGYPT

Beyond the preparation of the Dytes and Channels for the Nile's Inundation, the nearly 1,000 miles length of Eeypt necessitated prompt administrative orders being despatcied in advance by the Pyramid Priests to their distant henchmen, who directed the myriads of Ezyptian slaves working the land which was then almost entirely owned by Pharaoh and the powerful cults of Pyramid and Temple, Prieste.
The adjoining Esyptian (Coptic) Callendar is that from which Julius Caesar derived the $365 \% / 4$ Days' year-length of the Roman Calendar that all Europeans Itater adopted. Its Esyptian advantage of equal Tonths of 30 dayz each he failed to copy. Their 5 days added at the year's end, he distribured in alternate 31 day months which looked more original and loses sike copying.
This condensed Calendat lists only This condensed Calendar lists only part of Che responsible orders the High Priests had in advance of the requisite number of days tant workers at the work, to reach the disperiod of the year, as no one then dare every out any such calendar list, which if copied would have deprived the Priests of most of their immense power, and if captured would have served to entich their enemies. To enable readers to undertand something of the astounding advantages which the Egyptians derived from their wise and inevitable labors of Pyramid building to direct their Calendar records, reference may be directed to the fuller list in "The Egyptian Calendar," by R. L. N. Mitchell, B.A.t as published above, and the following condensed note from the Encyclopadia Britannica, Vol. VII, page yo8:
"After the waicrs :3ve retired, about the end or October or beginning of November, the rei land is sown with wheat, barley, lentils, beans, lupins, or chick-peas, ettc. But the 'sharake' lands (or those which are too high to be subject to the natural Inundation) and some parts of the rei (lower), by artificial irrigation are made to produce threb crops eviry ybar."
"The linds artificially irrigated first produce their winter crop. Secondly in the southern part, about the Vernal Equinox they are sown with millet (durah) or with indigo or cotton, etc. Thirdly, in ti. s period of tile rise of the Nile, commencing about the Summer Solstitec they are sown again with millet or maize, etc., and are thus crowned with a THIRD HARVEST."

NOTES re the EVOLUTION of ALMANAKS and CALENDARS

By M. B. COTsWORTH, F.G.\&

Eorron's Nort.-Mr. Cotaworth has made very exteosive aod thorough researchen to remot ceasons aod the divisioo the origio of our methods of marking the adreot aod extent of the conciueinn that our preseot syatem is irrationai and groups of days. He has arrived at the He has secured the support of eeverai governments in arurce of lone to maokind io geoorai. as a "Yearai" for une throughout the worid. Ho hap han labors to entahiish a "Fixed Caleodar" seoeral une about the years 1987 or 1918 as the me hopes that this "Yoarai" wiil be adopted fer syotem. If we were suddeoly deprived of our preavorahie cime to suboritute it for our prevent time we thouid at onee realize the extreme important facilities for marking the pangage of to think once io a year of the vast and complicated orgee of the Caicodar. We do not atop to govero our syatem of kesping time correctiy organisation that is workiog day and oight to the very ilfe of the peopie that the men who hed ancieot days this work was no esseotial the atrilhutes of priesthood and their work was eharge of the tast wert invested with aii for inatance, the hirthpiaee of the Caiendar, wnowiedge of as a anered eniliag. In Esypt, © importaot that any error in computiog it was fitely of the proper time to now reed was of thousaods of the Egyptian. It is prohahis true that iend to famioe and eanse the death method of Ca Jeeoh aod his eons wore starving wat due to fact that there "wae corn io Pygamid, and other recording. Mr. Cotaworth expiaine the Patriarchai Arery of the Esyptiac Fuller cvidences may be foad in his boet "The Roent the Evoiution of Aimanaks and Caiendara.

The evolution of Almanals and Calendars began thousands of years before historic records were available for the dawning intelligences of primeval men, who first noticed the changes of the Seasons and stored food for later use.
The length of the year was far too long for their mental perceptions, and the Sun's incessantly varying elevations tow intricate for them to attempt to elucidate the mystery of the Sun's vivifying disk of glowing light they worshipped no the source of heat, life and power. Early tribesmen were so engrossed with the wild struggle for existence that systematic tracing of the very slow progress of the Sun through the Seasons could hardly be thought of until long after these 3 pre-year-counts of expanding units naturally evolved, as intelligence for observations developed slowly among the civilizations then separately arising in different parts of the world:

1. Monthly tallying of moons pessed.
2. Counting 5 moons by hand or tally.
3. Counting 6 moons for summer and another 6 moons for winter. Instead of this 3rd stage, some tribes extended their next count to mis-named so moon-"years."

Notched Almanahs as pirmanemt recorders

It is significant that the Ancient histories of Egypt, Assyriz, Chint and other nations began by counting vast numbers of lunations (moons), such as the then probable life limit of 1,000 moons (81 years) recorded for the mystic Helius, son of Vulcan, in the Old Egyptian Chronicle sculptured on the Great Temple at Karnak.
There is a strong probability that as the Sun's-noon-disk changed altitude so slightly, early men could only count its daily appearances up to the ro digits of their hands. But the incontrovertible fact is that the near weekly changing phases of the moon (from which our week was derived as the 7 full days in each distinctive quarter), were the only possible means by which early communities could distinguish times to count their lives and approximate the Seasons in lunar months, as remote tribes still continue to do by monthly "notches" cut upon tallysticks or tent-poles, of simpler form than those evidenced by plates on pages 2 and 43 . Men merely cut one notch per moon on that first form of Almanak used to record moons passed. That copies in the writer's possession, such as the notched-stick-moontallies used by the Fiji Isianders, prove.

Moon-sticks used in Fiji Isiands to tally Moons eariy men tallied as "Years,"

The upper stick with 36 consecutive notch-cuts, plus one at the end-together recording 37 moons-is part of a series on a model of the tally-atick used by the natives of the Fiji Islands to record their ages, \&cc.
It is of special interest as exemplifying the tally system used by South-Pacific Iolanders whom the British Governor, about the year 1870, agreed to employ for wages payable at the end of 3 years.
Those primitive people, like all the earliest Races of Mankind, did not know what a year was. Their untrained minds could not grasp the great 365 -day-length of time, which we are only able to understand through our printed Calendars measuring it into defined weeks and months.
They explained to the Governor that their only method of measuring time, beyond each day, was by the moon's cycle. Then the Governor's interpreter explained that as there were 12 moons in one year, they would have to serve during 36 moons -which he indicated by 3 displays of the 10 digits on his open hands, denoting 30 , plus one hand for 5 and his and thumb as the 6th unit completing the 36 .
At the end of the 36 moons those servants asked for their wages, and were told that they had another moon (month) to serve. But they promptly disproved that statement by producing their tally-stick on which they had, according to their custom, cut a notch for each moon served.

The difference of 33 days-between the Governor's 3 years of 365 days, together totalling 1095 days, m-d his servants' 36 moons of $291 / 2$ days ea, together totalling 1062 days-was found to have arisen through the fact that 12 moons wax and wane during 354 days, leaving i1 days more in each Governor's year than his servants were unintentionally led to believe.
As those 11 days per year totalled 33 days, or more than another (37th) moon, the Governor rightly decided to pay them for that 37 th moon they notched at the end.
The foregoing is typical of the tallying.
syatem earlient Races necemarrily developed, before leaders amongat their dexcendants were enabled by long ancestral experience to evolve the next stage of counting by the combined unit of $5-40$ inevitably suggested by the 5 digits (4 fingers and thumb) on "Inch hand, and evidenced by the Mexican "Indications" and dot-counta opposite.
From the time mankind began to take interest in sowing sepds to increase food supplies, more permanent records, such as nntches on stick and dot or switch counts became a practical necessity for the rulers of tribes to tally the number of days in each season, to locate the best times for sowing various seed to ensure better crops. Norchis usid por counting livea From the earliest recorded times "notched-aticks" have been used to tally the Ages of families, as shown upon the 2 lower illustrations where the 3 series of 41, 39 and 15 notches respectively served to count the co-developing ages of Father, Mother and Child when their later developed years were continuously tallied on such naturally fixed dates as suggested by the Longest (Mid-Summer) Day, or the Shortest (Mid-Winter-Solstice) Day, just as the Japanese still count all their childden's Ages from the same all-pervading "Children's-united-Birthday" celebrated for all on the appointed fixed day now calendared in each year on the Japanese date corresponding to our 3rd of March for Females, and to our 5th of May for Males. The 41, 39 and 15 notches are all recorded on the one family stick, which is shown as the lower pair illustrated apparently as 2 sticks, but in reality the 15 notch one, shorter in appearance, is simply foreshortened by the refection through the looking-glass deflecting it further from the camera, while the 41 and 39 notches on the upper-side of that same stick were being con-currently photographed.
Such "notched-taily-sticks" have lingeringly survived in belated tribes through most of the Calendar developments of humanity.

Early Mexicans (Aztecs) used to count by dots, lines of 3 dota, and signs.

ММА

These NUMERICAL CHARACTERS AND SYMBOL from Clavigero's "History of Mexico," display some of the libolical FIGURES the efforts of all early races to express numbera. The dots fomitations which retarded for twenties, and trees for each 400, all are applied dots for units, the farg-like signs 1787, with the year of 4 semsons sign prefixed. applied as 20 signs to record the number

These, used 4,000 years after the Egyptian Pyrane was needed to write 1787. naturally men counted by 5 , and thence expanded to our decimere built, show how such Races as the Israelites developed the expanded to our decimal system of 10; while Central America raised to its "square" of 400 , and its "Scores," which the Azteci of Tree and Fruit Signs above, all based upon the 20 digits "cube" of 8,000 , as per the 20 digits on our hands and feet.

[^0]52 years in their Great Cycle they thus divided into 4 Quarters, arranged in the order of their 4 signs for Rabbit, Maize (Reed), Arrow (Flint) and Housc, which repeated both vertically and horizontally, so that when prefixed by their reapective number of dots denoting the required year's number in its "Indiction" with its emblem sign alongside there need be no doubt as to which year was intended, because each number of dots is only combined once with each of their 4 recurring signs. Their lack of a more concise syytem of figuring forced them to go through the cumbersome process of impressing each dot up to 13 and drawing the con-joined symbol. Thus to denote the first and last years of each Indiction they had to draw a Rabbit and 1 dot, a Rabbit and 13 dots; a Maize Reed and 1 dot, a Maize Reed and 13 dots; an Arrow and I dot, an Arrow and 13 dots; a House and 1 dot, a House and 13 dots-whereas by our numeral figures we only need write 1, 13; 14, 26; 27, 39; 40 and 52, to locate those years.
It is not deemed worth the expense of engraving the 3rd and the Indictions, which only differ by beginning with the great Arrow and House respectively, as illustrated on "the Great Mexican Cycle of 52 years," shown on pages 39 to 42.

Anclente counted by units to 5 Months-thence to 6 and 32 Monthe

The Europenn numerds 1 to 13 are prefixed for the convenie..se of reader, but the dots up to 5 per line in the and column with the 4 years' range of recurring symbols in the 3rd column are reproduced as used by the Ancient dwellers its Mexico from remore Times until about 1,000 years ago.
Like all early civiliza ${ }^{\text {I }}$)ns, those people of the Aztec Race were only able to count from 1 to 5 during the early period of their evulution, therefore to record larger numbers they had to repeat tallies of 5 dots, cutt, sticks or other counters, as above, appending 1 more to denote 6, or 2 unita more to record 7, and so forth till our 10 was later recorded by pairing the 2 rows of V, from which our sign X for 10 was derived as the double of V (five), through humanity having as their easiest counters 5 digits on each hand and foot, the 4 of which were used to denote twenty as the ancibnt goman and bible scome of xx

Most tribes and races, like the Arabians and Romans, advanced from 5 to the 10 month count as, their next unit, mistranslated "year," long before they were able to locate 365 days to derive the 12 month year. Others like Jacob, the father of the Israelites, specially interested in breeding sheep and goats, counted from 5 to 6 , which they long after doubled to derive truer 12 month years.
The 3rd column's emblems of Rabbit, Maize, Flint (arrow) and House denoted the recurring period of 4 years, at the end of which the Aztec Priests could by this, their zealously guarded sacred Calendar, secretly keep count of the 366 th day (which we now publicly intercalate as "Leap Day") each 4th (House) year, and adjust their heraldic declarations for all agricultural operations accordingly to public advantage. By that Calendar knowledge they developed Maize as the best Food Amcrica has raised for her people and humanity.
ancient leap ybaas
It is interesting to notice how naturally that extra (366 th) day each 4th year gave to Leap-year such a National importance as instanced in the Olympiads of Greece, when the great Festival of Sports was held, and the like prominence of each ath year in the Mexican (Aztec) Calendar, evidenced by the 4 recurring year signs arranged 13 times eacia around the great Mexican Cycle of 52 years.

Meanwhile they appear to have purposely allowed the Public Calendars to drift I day wrong each 4 years until 13 accumulated at the end of thre 52 years' cycie, when they publicly added those 13 Leapdays to the end of the $52 n d$ year as extraordinary Festival Days, to readjust their

Calendars more iruly to the Season. The advantages of and desire for powe: have led early Priesthoode of many paga. falths to evolve similar Calendar myyterles, by uoing correct secret Calenders alony with incorrect public onen, to retain and yearly renew their power over the coiling maves of people by truly announcing the Semeons which were partly creeping through misleading publicly calendared years-or oceasionally wielding their power to vary the lengthe of public "years," as we shall later record how Joseph in Egypt and the Pre-Christian Pontiffy of Rome reapectively did, for and against public welfare.
The main points of interest in the above Mexiean Indictions are the incessant use of dots up to 5 later extended by such multiples of 5 as naturally led to the development of the "Abacus Method of Counting."

CHINESE ABACUS COUNTS BY 5

This engraving of a Chinese Abacus (there named a swanpan or rectoningboard) is shown as registering the number $5,196,301$. The 5 digits of the hand are represented by beads threaded on wires in the upper part for use like the Aztec first rows of dots up to the number 5 , a figure some tribes represented by one thumb for 5 and a pair of thumbs for 10. These are shown in the lower part of the frame where each bead counts 5 , to which when moved up to the middle bar, the finger units above them are added for the number moved down their respective wires for each denomination, ending with "units" to the right.

Like forms of Abacus are still in daily use practieally throughout Asia and North Africa, and were universally used throughout Europe until about 700 years ago for recording the successive arithmetical operations now performed by use of Multiplication Tables and applying the zero (0), which a great Hindoo mind many centuries before invented in India.
Until that brilliant and most useful idea was embodied for use as the symbol "O" to record tens passed forvard, and passed by intercourse from India to Europe, arithmetic as we understand it could only

Red-Indians continue using 5 month counters- Nooh most probebly did.
be done by similar laborious counting as that indicated by the tallies of "dots" "yon the Aztec Calendar, or the use of the emblems, knotted string, beads, shells or other such counting devices as the tallywitehes ued by the Sarcee Indians of Northwest Canada.

Thove witch-sticks, 5 bundles of 30 each, are illustrated by proxy on the next pare, because the original set given to me by "Bull's Head," the expiring Chief of the Sarcees, appear to have got lost or dentroyed whiie the extemsive alterations were being made to the Yorkshire Muscum, at Yort, in England, where 1 deposited them. They were so much like small shewers or fire-lighters that they may have met their fate by being consumed, but happily their anthenticity is established by the photographs and records more conveniently noted on the middle pares of this souvenir concerning the Evolution of Our Calendar.
The Sarcees, like other Red Indian Tribes, had progressed beyond the mere counting of Moon-months which, being nearer to 30 than 29 days long, led their Medicine-men as the tribal Almanalmakers to discern through generations of experience, that they could locate better times for sowing tobnceo, grain and other reeds, by tallying 30 switreh stleks as 30 days in every monsh, to better locate the Seasons and thence win more profitable crops for food and comfort.

Although they could nor count beyond 5. their Medicine-man could tally up to 30 in units, after gathering 6 hand-counts of 3 each into 1 bundle of 30 pusy-willowswitches they used extensively as stewers to hang up buffalo and other meat to dry into pemmican, for food during Winter.
It was that haunting necessity to prudently provide in advance sufficient food to last their families throughout the Winter that ultimately impelled every tribe and nation to devise the most reiiable system by which they could tally the passing days, to measure the length of time their yearly crops and game food would have to last, and the amount of each kind of food required to yearly sustain them during that period of greatest need.
The spur of hunger, and its dread, had impelied generations of Sarcee Chiefs to insist upon their Medicine-men tallying each passing day by puiling one tally out from the monthly bundle of 30 switches or skewers, as I found Chief "Bull's Head" doing on that Sunday morning before that powerful (but then blind) old warrior said his impressive prayer of thanks to the

Supreme Spirit, withou: knowing that any stranger was there wein ig and hearing.
Thar day happened to be near the middie of the month, when 1 noticed that his bundle for 30 days was divided into a nearly equal halves-almost lite the middle true halves of $t 5$ skewers each illustratinr the June and December monthly tallies.

the next page.

From the slightly larger half-bundle for "days to come" recreted between the wall and his bed-side, he took the tally for the current day (as illustrated on the Repeat-month for the Ist day of a new month) and inserted it into the thong-tied smaller bundle of "nights that were gone," similarly secreted beneath the mattress near his piilow, as ths Patriarch Noah lihsly did.
Through the interpreter he explained how his thoughtful ancestors had progressed "beyond mere primitive moncounters" and arranged their Calendar ("which sufficed before the white-men came") by using s bundles of 30 tallies each, commencing with the firse Thunder of God bringing Rain each Spring.
Next "Bull's Head" explained how eavily they approximated the Seasons and time food had to last, by always splitting the more ruddy-tinted 3rd bundie into 2 halves of 15 each, before they began to count their months corresponding to our June and December, to locate the Longest and Shortest Daya, by the isth tally-stick, as the Chinese calendar 15 ths a Full-Moons.

Finally he told bow they had had to use the last bundle over again for the 6th and 12 th months, as they had since learned that there were 12 months and a few extra days in their Year. Those extra days, between their Goose and Frog months, were used for their New Year's (Spring) Fentival.

These are shown : to demonstrate to readers part of the limitations which retarded Ancient Calendar and Chronological
recorders, whose evolution of recorders, whose evolution of ideas and methods of record consequently most naturally expanded from the inevitable lunar month to 5 months and thence to 10 , whist more observant communities advanced from 5 to 6 months and thence to 12. That is approximately depicted in the adjoining illustration of the child's periodic growth during the first year of life's measure which all early Races used more or less as developing groups of months, wrongly transiared "years," as proved by the great Chinese "Bamboo Classic" aid records from Ancient Indian, Assyrian, Egyptian, Grecian and Ruman civilizations.

The 5 EUNDLES CALENDAR ueed to count lives 2,000 yoess egor in miatranaleted "Yoast" only 8 monthe loag-mert aztended to 6 months and thonce to 12 monthus
 The stich wf the rand dowetes .he pussing duy, cash mapsing drovew from its mosthis buydle of ja

Red-Indian namu a for thelr firch 6 monthe, during which the eticks were polated upwarde

	8proating	Jue (Ducis		Flying	
Abent	May		$J_{\text {wly }}$	Angusi	Srpermber

Red-Indien nemes for their lace 6 months, during which the sticks were pointed down
 $1-15$ (Split) 16-31 Thle 5 Bundies form of Calender heving 30 sticks for the 30 days \ln eech of their elwaye EQUAL MONTHS, was probably the eerliest atyle of record used by our remote anceotora to count thair days thet were zone, end their more important coming daye when drewing near to thelr Seesone for Hunting end Sowing Seeds. The 5 Bundles of 30 twige aach, appeers to heve been the form mont naturally uned by the Bible Petriarchs, from Noah to Abreham and Ieaec. Next Jecob epperently brought the Oth month into uae, by egeln using hia lest bundle, es tha Cbinese and other races using Lunar Celendera heve continued to do when adding 13th months. Tba Red-Indians of Nortbwest Ceneda atill sacretly une thet 5 Bundlea form of Celender. They elways split the middle bundle lnto 2 of 15 eech, to locete Mid-summer end Mid-winter, es explained on pega 5 .

To Illustrate the GROWTH of Ear,g MEN'S IDEAS of the LENGTH of the YEAR

Months 1 to 5-thence 6 to 15 (past 20)-to "one-year-old" I grew aa you see. The Ages of Early great Bible-men-were counted in "parts-of-years," like me!

The abova comblined reriea of 4 pletures approaimateiy represent the $1,5,6$ and 12 monthe atagea of a childa "Iat yerr", of life, with a view to mpreaning the minds of readirs with the Chronological fact that there wat a vary alimilhar but incomparsbly alowar natural Evolution In the ldens of tha early Tribes and Racea of Manltind, pending "month-groupintonite" kradually as: pending "month-grouping-onita" (mitu-tranalated as "yearg") by which tbe zreat Blble-recordad Early menas ldeas of counted their livas. Early men's ldeas of the langth of the year yrimitiva man looking througb Nature of y yeara, Hona to the apparent aource of Hfe and powar in the Sun, were too dazzled to be able to count the differant nnmbera of daya between long and alowly changing Seasons. They ware baffad by the changing phanes of the Moon, and ovar-awed by the mystarioua approximation of recurring Moone to the re-vitalizing perioda of female-ganarative-ifita.

They were alao bewildarad by the amazing myriada of evar-ahifting atara, the the mazigtean and moat attractiva of which, as Planets, whirled so confualngly paen the alower atarg that obscured by erratic wather, it waa practicelily impomible for primitive men to comprehend from thooe conflictIng and complex manifatationa, evan the 12 and nearly ons-third moondellangth of tha year thair deacindants later diacoverad.
Dasplas thet array of formidable difficultios whlia impeded by rivalries and tribal warfare thair leadars during many generations, through atern aaperiance of bonger and naceaslty to provide by agriculture food in advance for WIntar, accumulatid ynowledge of these bext days in the yar for priparing the coll, sowing different meds, mating live atock, etc, now nacessarily embodied in our Agricultural Calandare, at the onited result of the mighty Pyrannid and other world-wide afforts they eactred during manhind's "Evolotion of our Almanaksed and Calendarai" DID NOT LIVE ANY LONGER Alendarz".

THAN WE

The Bible Ages of Patriarchs Only Equalled Our Lengths of Life

They could not discern the year's 365.242 days' length which we are only able to measure by astronomical instruments, printed records, arithmetical counts and precisely timed hours and minutes regulated by clocks and watches-all of which highly necessary aids to Calendar observation have been invented thousands of years since even Early Bible men zealously tried to trace out Nature's most useful and valuable secret of the "true length of the Year," to increase their food supplies.
As the Jewish historic record of the lives of early patriarchs printed in our Bibles is typical of other Ancient evidences and can be most easily understood, the following excerpts from the writer's notes on "The Natural Solution of the Early Ages of Men" (R. A. p. 65) may serve to demonstrate the 3 pre-year stages of "Almanak Evolution" recording time passed, which preceded the more useful development of Calendar dates as guides for seasons to come.
The following summary is typical for all patriarchs in their respective Eras, until the Exodus, when Moses having learned the true year's length from the Egyptians, gave the Israelites the great advantage of the 12 months year, as the surest means towards ensuring their permanent national velfare then and to their beloved children.

Unit uead to count livee	PATRIARCH	$\begin{gathered} \text { MENAMED } \\ \text { YEARS" } \end{gathered}$	$\begin{aligned} & \text { TAUE } \\ & \text { yana } \end{aligned}$
single moons only	Adam	930	75
	Methuselah	1969	79
	Noab	950	77
5 months anch of 50 daye	Aerah	130	53
	Abrahar	175	72
	Itanc	180	74
5 monthe ($\%$ year) Jecob Yeurare (in EryN); Moses Yetre after Exodus		147	73
		$120\left\{\begin{array}{l}80-40\end{array}\right\}$	
		$120\} 4040$ \}	80

Exodus XII, v. 2, reads: "This month shall be unto you the beginning of months; it shall be the first month of the year to you." Moses derived the true year's lengtb through his education as an Egyptian prince. That conclusively proves that the Israelites, including Moses and Joshua, at the Exodus first began to caunt their lives in full years. Consequently the earlier parts of their lives spent in Egypt (where they tenaciously held to their for: 'father Jacob's "Israelitish $1 / 2$ year counts"'; should be reduced by half to derive the true years to be added to their final years lived in the Wilderness, as above shown for Moses whose recorded 120 years only totalled 80 of our years.
Joshua's ino combined years corroborates that, as he was younger than Moses on leaving Egypt. Unfortunately his then age is not recorded.

Similarly no record exists to prove the age at which Joseph adopted the Egyptian full year as his life measure. Being the favorite son of Jscob, who doubtiess taught him the most cherished secret of the $1 / 2$ yearly theep breeding reasons, he probably adhered to that count till middle age, say 40 true years, or 80 "Israelitish (half) years," to which may reasonably be added the remsining 30 as Egyptian full years, to complete his 210 years age, according to the last verse of Genesis.
After the "Exodus" all the ages of men recorded in the Bible are within the normal range of lives, the Psalmist naturally recorded as from " 3 score years and 10 " (70) to "4 score years" (80).
The term "year" was, during those 3 Eras, an expanding "Wheel of Time" evolved by 1,5 and 6 (or 10) mion periods as units of life-count.
Will readers kindly note that the foregoing "Natural Solutiot of the Bible Ages of Men," as ordinary lives, has arisen simply through research into the cvolution of early men's Calendar methods.

IST (NOMADIC) ERA OF MOON COUNTS

Early men lived by fishing and bunting.
It was impossible for early races to count longer units of time than the month, indicated so mysteriously by the moon's cbanging phases when she was regarded as the mother of nature controlling the vita izing period of motherhood, the drifting 'lides facilitating primitive fishing along the Coasts of early settlements, and also serving as the light of night to communities who necessarily travelled during the cooler bours of night, in those hot countries where most of the ancient great nations were cradled.
The 930 "years" Adam is stated to have lived, were simply $291 / 2$ day cycles of the moon only totalling 75 of our years of $3651 / 4$ days. The following evidences are submitted to demonstrate that the lives of the patriarchs did not exceed the present lengths of matured lives, but that the; counted by shorter cycles, wrongly translated as "years"-neither ancient scribes nor later translators dare alter the hoary but literal age-counts of the people's remote ancestors.
Methuselah's recorded 969 "years" were simoly "moon-counts," only totalling 79 of our full years. He may have been the oldest man tallied up to the close of that 1st era of moons, but easier conditions now enable men who live well ordered lives to exceed that age.

2nd (Pastoral) Era, Counting by 5 Moons-Postible Origin of the Deluge

This "Patriarchal Year" apparently applied from the time of Noah, until Jacob discovered the two 6 months' periods for double breeding sheep and goats. Naturally Noah's age was traditionally passed down ly his descendants as the 950 "Moons" according to the Ist simple mooncounts used by his parents. But as populstion increased separate moon-accounts became so tedious, that the much better recyrd of bolder notches beginning every 5 th month (later counting like the Egyptians 30 days to each) was probably begun as the 2nd stage of Almanak Evolution, by cutting successive series of 5 notches on the tent-pole of their head tribesman, like the 7 week-day notches used during the Middle Ages, were cut to count weeks by the deeper notches for Sundays later illustrated on page 43.

Pastoral tribes were probably 1st led to notch on tent-poles their most profitable " 5 -moon periods" during which sheep and goats produce their young. Those animals were both the medium of exchange and important sources of food; therefore the ti'nes from mating till the crops of lambs and kids were born, gave the incentive to tally longer periods than single moons.

Some tribes found that it was easier to count a fixed 30 days per month, because the moon's 29.53 lunation is nearer 30 than 29 days, and 30 stick-notches easier to tally:

They could not tally fractions of days, and needed equal-months divisible into halves, so they used a and long unit of 150 days, tallied as 5 months of 30 days each-or $11 / 2$ "scores," as counted on hands and feet.

This 2nd "Era of 150 day periods" is strongly confirmed by the biblical Aiges of Abraham's 175 "years," corroborated by Isaac's 180 "years," which when messured by our years of 365 days, indicate that Abraham only lived 72 years, and Isave 74.

The following records indicate that the elaborate record of the "Flood" was apparently needed to impress that far better method of fixed count into general use among Noah's descendents, because he discemed that they could more assuredly increase their flocks and crops by using fixed 5 -months periods of 150 days, which the writer found being used by the Sarcee Indians of Canada, as illustrated on page 6 and explained on the middle pages.

1. Genesis, Chap. VII, v. 24, records, "And the waters prevailed upon the earth 150 days."
2. Gen. VIII, v. 3، records, "and after the end of the 150 days the waters were abated."
3. As the River Nile's Inundation generally rises about 150 days and falls about 150 days, remaining at "low Nile" a little more than 65 days, the following facts seem specially significant:
4. Genesis, Chapter VII, yerse 20: " 15 , cubits upwards did the waters prevail."
5. ("R.A." p. 138) 15 cubits equal 25 ft.
6. The Nile Inundation at Cairo (vide tbe Encyclopaedia Britannica, Vol. VII, p. 706) usually rises that height of 25 feet, causing such an overwhelming flood that a family of nomadic predatory wanderers having crossed the Isthmus of Suez and temporarily settled on one of the slightly raised farm-stead-mounds, being surrounded by the Inundation may have bad to construct a boat or raft which drifted out to the Mediterranean, where the East-drifting waves washed it to the Sy, ian shore, near which Noah's traditional Tomb is located near Baalbeck, north-east of Beyrout, the port for Damascus.
The knowing Egyptian frontiersmen may have relied upon the Inundation flooding the intruders out, as better than risking family lives in combat. Subsequently many generations traditionally telling Noah's story would likely add to its wondrous tale, after which the successive priestly recorders may, with the best intention, have added more elaborate details to make it more impressive, as some ${ }^{6}$ them certainly did.

That seems evidenced by the strange insertion of the 6th to loth months belonging to a later period, when the Arabs and Europeans prior to the foundation of the Roman Empire in 754 B. C. used the year of 10 months, which could not equate Abraham's age to 72 and Jacob's to 74 years, as the 150 days emphasized by the "Deluge record" makes credible. Further, the "Babylonian record" in the IIth lay of the Ancient Epic, Mr. Geo. Smith discovered, proves that only the live stock used on Eastern Farms were named.

Our beneficent Creator has ever tended to elevate-not to exterminate-humanity.

Early men could not adopt the later "10 month year" directly after using single moon counts. They had to learn to group months into fives counted on one hand, long before they could double that count as the 2 hands unit of 10 months.

That, the calculating abacus frames still used by Chinese and Eastern Nations demonstrate, by their 5 beads or balls threaded on wires or rods, linking up 2 counter-part-beads (used as thumbs) to pair in order to record "ten," as shown on page 4. It is significant that the easiest system of tallying by "fives" is still used in every port in the world as these tables prove:

The Tally Table on the left shows how the univeral 5 eount indleates the totals figured in the right ia the British Customs Scale for scriving timber

3RD (SEMI-SETTLED) ERA OF 6 MONTHCOUNTS, JACOA DEVELOPRD AS SUMMER AND WINTER OROUPS OP MONTHS
This 3rd stage of Almanak Evolution based upon amplitude sun-rise observations, may be easily understood by reference to the illustrations on front plates \mathbf{C} to \mathbf{F}, and the first of the end plates " K ," where the diagram and explanation of Jacob's rudimentary observatory of "pilled-stakes of Hazel, Chestnut and Poplar" are displayed as the most natural means which the increasing intelligence of progressive men could use, to locate the Seasons and thereby ensure yearly food to enable their families to live more settled, prosperous lives.
Young Jacob naturally following the noblest incentives for fuller life by striving to win a wife and flocks to live more com-
fortably, noticed by watching the varying fortably, noticed by watching the varying points of sunrise, measured by what we now term the Sun's $1 / 2$ degree unit (vide
Plate E, Fig. 1) that at the Mid-summer

Season-about June 21st-in Syria, the Sun-rises appeared about 30 Sun-disk-ppaces 15° North of East (East by North), but in the Mid-winter Season-about Dec. 22nd -the sun-rises were located, as per Frontplate " D ," about 30 disk-spaces South of East (Enst by South) at that eeason, which interested him most, because his crops of lambs and kids then began to multiply, and upon their increase his prosperity depended.
To locate those Seasons for future guidance, he yearly tried to locate the most profitable breeding seasons by driving more distant stakes to more trui; point his lines of observation.
As will be later explained, theorghtful Jacob was naturally led to count two of his misnamed "years" to our one. That $1 / 2$-year basis of count appears to have been used as the measure of his life, and by his descendants, until the Exodus.

Generally the early nomadic tribes developed their long-time units of 5 and io months entirely by moons, unt. 1 their successors began to realize the advantage of sowing seeds, when 30 fixed days per month often replaced the lunar period of 29.53 days. Next, as experience showed that better crops were gained by approximating the seasons, they were led to watch the seasonal sunrise points by erecting their horizon-wards advancing series of observatory stakes, as indicated on end-plate " K," using different kinds for each season, and notching or peeling distinctive rings thereon to denote fo. which years, as the Philistines of Gazz and the Ancient Druids of Western France similarly erected long "sun-set". rows of monoliths, where the level sea horizon season-points could not be differentiated until "sighting posts" were erected to focus season-locating observations on land adjoining Western shores. The seasons can be approximated as well by sunsets as by sunrises, provided that natural or artificial points are available for yearly tests. See Fore-plates \mathbf{C} to \mathbf{F}.
Those early British teachers-the Ancient Druids-for like Almanak purposes erected the triple monoliths seen footing front-plate E. The larger illustration here following, displays more clearly the Eastern horizon-directing curve of those most important W. E. and S. points which divide the Seasons by nearly three times the degrees of Amplitude Jacob had for guidance, as reference to the diagram on front-plate "D" proves. Jacob had only

British Druids Observed the Seasons by Sunrise and Sunset Amplitudea

the 30 sun-disk horizon range within which to differentiste the 182 days in each half year, which made his task (like that of earlier Sphinx observers) nearly thrice more difficult than the nearly 3 times wider

82 horizon-sun-breadths range that enlarged the "Amplitude Range" between the Midsummer and Midwinter sunnises, for the easier guidance of Ancient British Druids,

These three everlating wedre-ahaped monolitha on the riaina ground over. jooking the wideat slain In England, have an uninterrupted aunrise view to the undui ating hijiz of tho Yorkmire wolda bounding the eatern horizon,
Tbey formed

- most ideal
"Amplitude
Observatory"
for locating
the seasona
hy tho moat
obviour and
beat method early peoplo could employ to eaiendar their "yeara,"

> The Druidical "Ampitu

The essential W, E and S tight. poinlera to auitably named "arrowa" weiah thout 35 tont eaeh. Heavy weiah wat intended to prevent enemiea from deatroying and weallier from wearins away thoso fixed pointa inlended for permanent obaervaliona during many generationa.
They formed the triuno Dointera of thia ancient observatory. uned at the Sphinx pointa W, E and S, diaplayed on forepiate "J."
Sunrise (East) and Sunset (Weat) ${ }^{\text {P }}$ " of observationa being dependent upon watching the erect theno highly usefui "Arrow-pointers, Daturally led the thoughtful Druid observers to Eats and Went reapectively, to give trner points for their thinner wedge-like sides facing the "aighting locations" fixed to the right and ieft of for their observations, made from their the middle monolith as their "pivot pointer."

HALF YEARLY IN BRITIGLE CROPS OF SHEEP AND GOATS BY BREEDINO PARTS OF THE WORLD OTHER SUITABLE
 HALF YEARLY IN BRITISH COL PARTS OF THE WORLD

On page 257, ending the writer's description of ancient almanaks and calendars printed in the British Columbia Magazine for April, 1912, the reference to the double breeding seasons so patiently won from Nature by Jacob to enrich his family who developed the nation of Israelites, led many readers to enquire how Jacob found the great and valuable secret by which he redoubled the offspring from his flocks of
both sheep and goats, by breeding both flocks in March and again in September.
While fickle Laban could only increase flocks in the ratio of one, two, three and fours, Jacob solved the problem of how to increase facilities of living for his family, by breeding sheep and goats in the double ratio of two, four, eight, sixteen and so forth, by the simple means recorded in Genesis, Chapters XXXX to XXXI, when rightly read.

Jacob's Seasons of 6-Months for Double-breeding Sheep and Goats

EWE \&I AND LAME, AGAN WITH HEL TWINE,
Fill. 13, 1922 siFT. 6, 2912
This ceve was rosted during the autumn of gotz, Mar, 31, 1913, AND HER TRAR-OLD LAME

The plain fact is, vide $\mathbf{X X X}$ v. 37 , that "Jacob took him rods of green poplar, and of the haxel and chestnut tree; and pilled white straker in them, and made the white appear which was in the rods."
Those strakes or notches enabled him to recognize their respective dates and locations in his primitive observatory as diagrammet on End-plate "K," when be set them up the forked valleys of streams meeting where his "Fixed Central Sight-ing-Stake" or stone was erected-just as the ancient Druids during many centuries set up more permanent stone pillars in rows dirested to enable them to locate precise seasons tur farming purposes, by watching the monthly variations of the points of sunrise along the horizon.
The vital ppint of observation he had to watch for was the central distant stake in lioe from the central sightung stake, to see when the sun rose due east on March 21 and September 23, in order to guide him to the righ! dates for driving the rams and he goats to their respective flocks for breeding, as $S v$. an farmers now locate by means of prit t: \perp calendars Jacob lacked. Jacob had only the sun and his own powers of observation to guide him by means of the farthest stakes he erected eacb six months, as indicated by the recent dates I have secorded on End-plate " K 's" diagram.

Jacob was not the trickster some people wrongly judge him, after superficially reading Genesis XXIX to XXXI. While abiding by his contracts he served unobservant Laban according to his deserts. After Laban had reduced Jacob's wages ten times, and palmed Leah upon him instead of Rachel, it was not reasonable to expect
that Jacob would disclose to Laban the great secret means by which sheep and goats could be so rapidly increased, when they were then used as we use "money" (for exchange). That secret was consequently worth more than any patent since invented, so long as he could ensure good grazing for his flocks in the sheltered valleys during winter, and drive them to the bracing hill-sides in surnmer, as he could so easily do in Syria.
As both sheep and goats carry their young five months, Jacob allowed one month for the lambs to draw the mother's milk, and then got them to rely more upon the tender grass from the time rams were mated to the ewes. So Jacob (by observing that during about 6 cooler moons the Sun rises appeared South of his East atake, but during the warmer 6 moons they were located North of East) established two breeding seasons of six months each, which have been misinterpreted as "years."

Consequently the séven seasons he served for Leah and Rachel, respectively, were only three and a half years for each. it is further interesting to note tbat hi- descendants kept to that secret form of reckoning their lives until Moses won the secret of the true year's $365^{1 / 4-d a y s}$ length from the Egyptians, as the most useful knowledge requisite to enable the Israelites to provide food during their forty years in the wilderness, where Arab tribes still live by the same means.
Thus Exodus XII, verse 40, mistakenly reads, "Now the sojourning of the Children of Israel, who dwelt in Egypt, was 430 years," whicb were really balf years, as proved by their going down to Egypt in 1706 B. C. and their Exodus in 1491 B. C.

Jacob's Half-yearly Breeding of Sheep Succeasful in Britlah Columbia

-a difference of 215 years only. Similarly Jacob lived only $731 / 2$ years, counted as the 147 seasons (not years) of six months each.

These three pictures of ewe No. 41 and her lambs raised in both the spring and autumn seasons at the Canadian Government's Experimental Farm at Agassiz, B.C., demonstrate the fact that she had a lamb on February 18, 1912, and twins on September 6, 1912, followed by another lamb on March 31, 1913-lambs each six months in succession.

The following copy of a letter from Superintendent Moore establishes the fact that this great benefit of increasing the supply of human food in the form of mutton and lamb can be steadily attained without material', increasing the cost of keeping the ewes, we equently $t^{\prime} \times$ cost of production can be reduced consio:rably.

DOMINION OF CANADA depaatment of achicultuai

Experimental Farm for British Coiumbia
Agassiz, B.C., November 19, 1913.
Dear Sir:
In reply to your oote of recent date, we beg to advise that ewe No. 41 did not have a lamb this fall. . . . We did oot wisb ber to have any, as four io auccession is almont too hard on her and detrimental to the offapriog.
With regard to the other sheep, we beg to say tbat two others had lambs this spring and fall; one had hers while we were away at the exbibitions aod a pair of twing died. Ewe No. 39 had $a \mathrm{ram}$ lamb oo February 24 and again a ram lamb on September 26, 1933.

Faithfuily yours,
P. H. Mooss,

Superiotendeot.
Moses B. Cotsworth, Esq.
N.B.-These sheep had not the extra change and feed Jacob so easily found in Syria.
When the higher valleys above the Lower Fraser become available for grazing, as in Syria, the abundant feed and invigorating air will enable the double crops to be maintained, as they are now in Southern England, Argentina and other parts where graxing for two seasons is available for two crops of lambs per year.
But hulf-yearly lambing is not practicable on the colder prairies and Eastern provinces of Canada.
The main point is that, by using Jacob's method in British Columbia we can reduce
the cost of living, as indicated fifteen years ago in my preface to the "Rational Almanak" by the words: "Much can be done to ennoble our race and benefit mankind by patient efforts: even in such unlooked-for directions as increasing the production of sheep for food-whilst attempting to reform our drifting calendar system, which needlessly changes day-names throughout every year," and fails to yield the equal monthly measure needed in these times of monthly earnings and payments.
Those italic words, written during the writer's travels under ideal conditions through Syria and the Holy Land, observing the natural facilities which there existed for duplicate breeding, referred to the patient observation of the breeding seasons by Jacob (as recorded in Genesis, Chapters XXVI to XXXI) during the "years" he labored for Laban, whilst serving for Leah, Rachel and the "ringstraked, speckled and spotted" sheep and goats.
The superscription prefacing the last half of the XXXth Chapter of Genesis reads, "Jacob's policy, whereby he became rich." Verses 31 to 43 under the light of research made during recent years into the Calendar methods of Ancient nations, discloses the very natural and worthy process by which Jacob laid that foundation of prosperity to ensure the suzcess of his family and their descendants, who during the succeeding 1,000 years developed the thriving nation of Israelites, whose unprecedented welfare and happiness culminated in the reign of Solomon.
It may seem strange to find after the lapse of nearly $4: 000$ years that beyond the sterling characteristics of that worthy family for steadfast perseverance, the practical factor which led to their abundant and lasting success was the value of Almanak knowledge of the Seasons which Jacob discovered and inculcated secretly into the minds of his children-as the Egyptians and Babylonians (who both bred sheep and goats twice yearly) with other great races similarly won permanent prosperity for their nations.

The limited space available for this article precludes recording the more complete proofs detailed in the 43 pages from 149 onwards in the "Rational Almanak" and since proved by extended researches.

How Joseph Nationalized the Land of Egypt

But it seems advisable to ritomize therefrom, as below, the natural planation the writer has derived conrerning the astute scheme of highest statesmanship by which Jacob's favorite taught ron, Joseph, later accomplished his most beneficial Land Reform in Egypt.

By working through the then degenerate Priests whom he, with Pharaoh's aid, induced to declare the Season for agricultural operations accurately throughout 7 years, he was enabled to ensure the people bumper crops, while he bought in the surplus corn, etc., at very low prices, and stored it to thereby force the relatively high prices he was enabled to charge during the next 7 years of famine he incurred by reducing crops artifically through inducing the Priests to declare the seasons in wrong months.
Thus "by cornering the market"-not as Leiter and other base bleeders of industrious people have recently done, to the detriment of humanity-but to rid the Egyptian toilers from the incubus of extortionate money-lenders who were by usury grinding their beholden farmers down into servitude, Joseph schemed and carried into effect that noble plan by which he used the money derived from the sale of the highpriced corn during the 7 years of artificial famine, to buy up for the nation the thus depreciated land at its lowest price, and thereafter establish for the Egyptians that most just and helpful system of statetenancy of land, which Genesis XLVII, v. 26, records, "Joseph made it a law over the land of Egypt unto this day, that Pharaoh should have the fifth part (of the produce as rent), except the land of the Priests only, which became not Pharaoh's."
The priests alone were allowed to retain their land, as the reward for loyalty to Joseph's scheme and the secret help they were able to give, through being the sacred heralds upon whose fidelity the people (without any other calendar guide) depended for timely calendar declarations to direct seasonal agricultural work, as proved by verse 22, which reads, "Only the land of the priests bought he not; for the priests had a portion (of corn, etc.) assigned to them of Pharaoh, and did eat their portion which Pharaoh gave them; wherefore they sold not their lands."
We need not wonder that "the thing was good in the eyes of Pharaoh" (XLI, v. 37), as by the scheme so plainly indicated by the priestly duplications in

Pharaoh's dream, Joseph first ensured 7 years of surplius food he stered for use during the famine, before inducing the priests to purposely direct the times for sowing, etc., one or more moon's wrong (when none outside of the priesthood could detect), during the 7 years of wrong season crops thus greally reduced, causing the famines, to accomplish Joseph's purpose. By that every Egyptian was brought to regard Pharaoh as the noble monarch, to whom they owed everything, including their lives saved by bis and Joseph's foresight in storing food.
They were thenceforth glad to unite in what really was a co-partnership that resultantly bound the nation together, as the royal landlord mutually sharing in the prosperity of the Nation's Agricultural Tenants, who were the strongest possible backbone of Egyptian life-as farmers have ever been in every permanently prosperous nation.

As such they became rightly safe-guarded by just and liberal , government efforts nobly directed to always assure farmers and workers, that however abundant crops they produced, their Economic Rent (including taxes) wnuld justly remain only one-fifth of the value derived from the nation's land, through which neither speculators nor usurers could inflict any of the cruel handicaps now imposed upon farmers.
That uprooted the ruinous speculative and usury methods which have ruined some civilizations and blighted others, but benefitted none in reality, by their extortions.
After forty years study of the operations of the land systems of Europe and America the writer considers that the most beneficial land system humanity has ever known was the one-fifth part of the value produced (here termed "Economic Rent") Joseph designed under such ideal conditions, that if any lazy tenant failed to work his land e^{m} ciently it "reverted to the nation" (represented by Pharaoh) and was promptly available to be granted for productive use to the next better man available.

That admirably established system provided the best possible incentive for every family and colony to fully develop their permanently rented lots of Land, Quarries, Mines, etc., wbich, so long as they were worked consistent with the public interest, were as secure to them as land purchased or "pre-empted" from American governments.

Land Benefita Joseph Derived by Re-gearing the Calendar

It further promptly won for Egypt that greatest possible national advantage, of being able to reward by promoting the best working families and colonies (whether formed by groups of either sex or mutually or arbitrarily zelected) to the more productive Lands, Quarrics, etc., vacated by deaths or forfeitures, so that the most worthy families and colonies prospered best.
The natural result enkindled the ennc 3 ling spirit of admiration and emulation in friends and neighbors, who observed those excellent examples-just as school children, college graduates, and adults with well-ordered minds, profit by appreciating the successful acconsplishment of persons who produce the best results.
If ancient Joseph, after 3600 years, could now review the highly dangerous speculative developments in the Natural Resources of such recently settled countries as the iorthwest of the United States and Canada (especially in British Columbia) he would deplore that greatest scourge of our civilization now relentlessly levering up the Cost of Living throughout America and Europe-through the lack of that simple but most effective "Power of Reversion to the Nation" of Land or other such Natural Resources as Minerals, Timber, Waterpower, etc., when not used in the rightful interests of the nation.
If excessive "Equatorial Rains" caused the Nile to overflow and ruin part of their 3rd crop on the higher "sharake" fieldsor extraordinary heat through "Sunspots" diminish crops beyond the control of farm-ers-then that "Economic Rent" of onefifth the value derived from the nation's land, automatically reduced that Rent and Tax Charge, rightly giving timely reliefwithout imposing on loyal workers the indignity of having to ask for that simple justice-but happily sharing mutually during adversity and prosperity, thus preventing usurers and legal abusers from handicapping poor Farmers laboring under misfortune.
The like mutual sharing in both prosperity and adversity applied to their flocks, herds, poultry, etc. In abundant seasons the Government got the 5 th part and accumulated the safe-guarding surplus for relief during seasons when misfortunes by the spread of disease, drought or accident befel worthy farmers.
If workers homes were destroyed by fire
or earthquakes, that just "economic rent" syatem afforded like relief.

But most beneficial of all for Egypt was the ever-watchful care of Joseph's administration through Pharaoh, thereafter exercised to ensure prompt and right Calendar directions, to ensure agricultural and other work being done in due season, to enhanre the prosperity and happincess of all.
We may realize the feasibility of that scheme Joseph so beneficially imposed on the illiterate people in Egypt, when we recall the fact that no calendar information wss available to guide agriculture, except by priestly declarations; and the further fact that about 1600 years later, far worse trickery was practised upon the masses of the people of the great Roman Empire, necessitating Julius Casar's Reform of their Calendar in the year 46 B. C.; when he found the Roman Calendar was drifted about 3 months out of gear with the seasons. The pre-Christian Pontiffs had pandered to some powerful military provincia! governors, who, to graft an extra month taxes for personal gain, bribed the Calendar-declaring Pontiffs, to herald in the 1 3th moon (month) more frequently than every 3rd year, to which it naturally should have been added, because there are about 12 and one-third moons comprised in one Solar year, or 37 moons in 3 years.
The fact of the then Egyptian civil year being drifted through all Seasons of a series of 1460 years, provided further cover for Joseph's scheme through its being developed during the "Sothic Period" of 1460 sacred or full years of observation, during which $36 \mathrm{~s}^{1 / 4} \times 4=1461$ of the then Egyptian Civil Years of 365 days each (without any Leap-day adjustment) elapsed between the celebrated occasions when the Sothic Star, "Sirius," rose just before the Sun on the Ist day of the month Thoth-the Egyptian Civil New Year's Day.
According to Michell's "Egyptian Year," p. 30, that "Sothic Period" ended in B. C. ${ }^{1322}$. Thence the writer deduces that it began B. C. 2782 (morc than 1,000 years before Joseph's system was devised about B. C. 1715) and probably about 500 years after the descendants of the Great Pyramid's founders had discovered and so far developed Astronomy of the Fixed Stars, by the simple means of direct obser-

How the Sphinx and Pyrsmld Were Used

vation pointed by that pyramid's Apexas indicated on end-plates "T" and "U"that their local priests in distant Temples were secretly enabled to note that Sothic sun-rise point of the true jear.

We should bear in mind that shortly before Joseph's Time, Egypt was conquered and oppressed by the savage hordes the Egyptians later recorded in derision as "Shepherd Kings," who probably killed the Pyramid Priests, whose secret Calendar knowledge probably died with them.

Further we note that the Hebrew priesthood writers of Genesis and Exodus were incensed by the Egyptian oppression of their ancestors descended from Joseph and his brethren during the reign of later Pharaohs who (vide Exodus I, v. 8) knew not Joseph-consequently they did not record the many good features of Egyptian civil affairs.

Some idea of the marvels of utility developed by the long preceding Egyptian pyramid-builders may be gathered from the following outline disclosing the great Calendar directing purpose for which they erected those greatest structures mankind have built-the Pyramids of Egypt, before which the Sphinx was apparently used.
The Sphinx typifies the earliest "amplitude" method of tracing the seasons in order that every year the proper dates for tilling and sowing might be exactly located. A mistake of a week or more would mean the failure of one crop, which was a serious disaster in the thickly-peopled Nile Valley. The data could be derived by standing at the rear of the Sphinx and using its Asp like a rifle sight for noting the exact position of the sun as it rose between the points of a range of hills on the other side of the Nile Valley. In order to render the observation as accurate as possible the most essential 3 pillars, or socket-holes for "sighting staffs," would inevitably be located on the higher rear-ground, as indicated by W. E. and S. on Front-plate "J." The pointed Asp above the Sohinx-brow served as the "pivot-point" to fix the sighting-line from those rearpoints to the 3 season-dividing sun-risepoints, as readers can easily see by watching how the seconds-pointer on a watch guides our sight more distinctly from the pointer's rear-extension, across the fixed pivot, to the long point's tip when pointing to the vertical 12, indicating noon, which divides our days equally, like the sun-rise point on the Sphinx's Eastern horizon at the Equinoxes divides the Seasons equally, vide Plate "C."

The Great Pyramid is the acme of the "meridian" method by which the grestest of the ancient nations searched out the precise limits of the seasons. They did that by measuring the varying seasonal lengths of the shadow thrown by the pyramid along the meridian line, as on Plate 5 the almanakmakers of Sarawak are shown measuring that noon-shadow cast by the guomon pole still used by scattered races. But to feed Egypt's dense populstion, from crops grown on the narrow areas adjoining the Nile, needed such intensive agriculture that generations of Egyptians were impelled to build pyramids as the only structures they could erect high enough to record precise days by shadows-then used as the best guide to direct most vital efforts and ensure national food supplies-as explained on Fore-plates "J, 1 and 2."
The stupendous labors of the pyramid builders, which 'Jday cause wonder and amazement, were more necessary to secure Egyptian food supply than the building of the navy in our generation is needed to insure the food supply of the British people. the sionificance of pyramid shadows 1.

Owing to the varying movements of the sun towards its highest and lowest points in the noonday sky during the 4 seasons of the year, the shadow uf a pyramid has two extreme limits, namely, when the shadow is longest at noon and when it is shortest at noon. These limits mark mid-winter and the equinoxes. Before the spring equinox when the sun is midway towards its highest point, the shadow shortens about four feet every noon. After the autumnal equinox the shadow reappears and begins to lengthen about four feet more every day at noon. This rate of increase in the length of the shadow diminishes in October and is further curtailed in November, and finally the shadow reaches its extreme length on the shortest day, December 22.

When the pyramids were built five thousand years ago, the shortest shadow apparently fell about the Equinoctial Day, March 21, when history records that the ancient Egyptian year began, but if the Slope was not then truly Equinoctial, the pyramid's New Year's Day may have been earlier, though it is almost incredible that the Pyramid Priests could have missed that central point of Astronomy, "the 1st point of Aries," from which the Astronomic year has always been reckoned since the Evolution of Meridian Astronomy began.

The Pyramid's secret Shadow-rods disclose ita Calendar-recording Purposes

Plate 3. The Great Pyramid and the Sphlnx, marking the blrthplace of our Almanak and Calendar. Tbese huge arructurat are regarded with curlous awe by the twentieth-century tourists, and are generally supposid to be merely atupendous monuments and tombs of anclent rulers of Egypt. They are really the greatest instrumants of their kind used to eatablish and keep a correct yearly record of the seanons. They were built on that "reed time and harveat may not fail." Note the triangular shadow on the pyramid's light slda; for lo une see paragraph 3 . (tome courses of the Stars.

Plate 2. These photographs were taken on a consecutive days in March, at the foot of the Great Pytamid, to illustrate the use of the "meridian rod" for marking the length of the shadow at noon aach day. Note the pebbles one foot apart on the rod to photograph the varying length of the pyramid's shadow from the mid-font of the Northern Slopt, which befori next noon had "Iwallowed its own Shadow" (as did "Aaron's Rod" and the like "Rods" of tbe Egyptian magicians when thus used). The adjoining picture proves by tha absence of thadow on the rod, that the Sun had rissin above the Slope and so had brgun that tyramid's "New Year."

Thase rods were removable in order that the priatts could preterve the mystiry nurrounding the scisnce of Almanak-making. This mystery led the peopla to regard with revirential farar the priats who y rescribed the seasons. To be buried in the mysterious pyramids was an honor resirved for the greatest men, as wi bury our griatist in cathadrals and around sacrad placera.

An examination of End-Plates N and P will thow that the daily elevation of the Sun to a higher nown-point in tha shy towards the Spring Equinox shortinas the shadow of the pyramid about four feet iach day. That in measurad by the 4 thadowed pebblai on the rod, whereon the mort than 4 feat long thadow (diagrammad for Spring, 1903, footlng End-Plate P) Ind
where the sunlit part of Ancient Rods markad the whits end to be cut off on the "Yaarwhere the sunlit part of Ancient Rods marked the whits end to be cut off on the "Yiarday," whan the Pyramid Prlest filed the shadowed part for comparison (as per P, Fig. VI) and noted over 1 foot of elongation eacb 365 -day yarr, followed by the mystic LEAP BACK
over 3 feet in 366 -day (Leap) years. Thence the Priests countad days ior Calendar purposes.

Practical Use of the Pyramid's Shedown

The natural cauges and data checks divplayed on End-Plate " N " prove that even if the Slope was then to the noun- iun a few days earlier, the Egyptian yearending-noon-shadow would always disappear within 24 hours of the same numbered day's date in each Solar Year, and the next day would always be the pyramid's regiatered New Year's Day, as Plate " P " demonatrates.
2. While the Egyptian farmer rejoiced in having plenty of work for the myriads of slaves who toiled in the hot sunshine of that fertile and densely-peopled valley, the toilern themselves longed for the hour of the noonday rest, just like the toilert in every country today. The signal for rest was the shadow of the pyramid at noon. Thle could be seen by many of them. To others it was recorded by Obelisks or Shadow-staffi, such as that shown on Plate 5 , or those on ForePlate G and End-Plate M. The toilers in the great railway and other workshops today regard no less gratefully "standard noon time," which is fleshed to them by telegraph. This is part of what we spend money on observatories and antronomers for in these modern times. The correct noon time has been a most vital factor in the life of the people through all the ages. It must ever be the central point in all astronomy and transactions controlling time in human affairs. But what is more important to both paid workers and daves is the signal for quitting work, recording the time when they are free to seek the joys of home and rest. That time was evidenced by the triangular chadow of the Second Pyramid shown on the Great Pyramid's Eust Slope.
3. The interesting feature of that picture is not the author on the camel, nor the mounted policeman, nor the old guide and his attendants. It is that triangular shadow on the Great Pyramid. During 5,000 years that shadow has indicated every day more surely and more extensively than any clock, the precise time for the toilers in the valley of the Nile to leave work. In ancient times the hill of Keswick was used for similar purposes in England, as per End-plate L.

The shadow explains why pyramids were built finally within shadow reach of their less perfect predecessors. While the orientation of pyramids nust be governed by the position of the true north, couth, east and west points of the cumpass, they are built in angular relation to each
other 20 that the time may be displayed by certain shadows being cast on adjacent pyra. mide, visible daily for many miles around.
4. That shadow was cate by the sun retting west of the Second Pyramld, which is situated a third of a mile away. The photograph was taken towards $6.0 \mathrm{p} . \mathrm{m}$. on the 3rd December, 1900, and could be seen through the clear alr of Egypt by thousands of toilers to the couthwards of Cairo-vide Fore-plate "J."

Of the many wonderful sights the writer has been privileged to see in his travels in Europe, Syria, Egypt and America, the most Impreasive was wltnewed just after this photograph was taken. Allee Gabree, the most experienced gulde to the pyramid, took us up the broken tlope of the Great Pyramid to see the sunset. Glorious as that wes seen acrose scores of miles of the Sahara Desert, it was not so impressive me the vare and rapidly-moving shadow of the pyramld to be seen eastward. It extended for miles, "like the wingl of time," 20 often used symbolically over the doors of Egyptian temples, as depicted on pages 50,57 , 129 and 132 in the "Rational Almanak"" and condensed in part on End-Plate O. There we saw this wonderful shadow flitting from point to point at railway speed over sand duncs, palm trees and river as its wing was defected by the sinking sun.
5. The contrast between our puny shadows and the vast shadow-wing cast by the Great Pyramid under our feet disclosed why the pyramids were built to such enormous heights. After most strenuous and protracted labor, Egyptians built neariy seventy pyramids before they perfected the Great Pyramid as their final Almanak recorder. By these they wrested from their living sungod, "Ra," the mystery of the varying seasons. To them he appeared to control their lives by rising to the meridian, and lowering to the horizon each day. His priests measured the daily variations in length as each noon's shadow crossed that equating line of astronomy, the meridian (zide Plates 2 and 5). By cutting off shadow rods at the shadow's edge and preserving them for comparison during the equinoxes of each year, and counting the days in months between, those early astronomers first revealed to humanity the length of the year.

[^1]
Mempuring the Calender of Daye by shadowe on the Meridian

They Inter gradually developed the Almanak by counting the days between esch final disappearance of the noonshadow in March and its reappearance in Sepreniber, when mensurements would be rewumed, each noon-shadow's tip marking the location of its day in the six Winter: month.

minithuit

ee vasimatas
(r)

End-Plate "P" diagrams 10 yearr' shadows.
At the winter solstice, the lowest point
of the sun in the noonday sky, the Egyp-
tians invoked their god not to sink any lower
as they were afraid he would forsake them
altogether. It will be obvious what an
opportunity was presented to the priests to
impress the religious aspect of their work
on the simple minds of the people. The
ancient Chinese had a similar fear at that
time of the year, but they thought the sun
was being pulled down by devils, whom they tried to scare away by beating gongs, letting off firecrackers and making noises.
6. In addition to finding the length of the year and the order of the seasona, the priests of Ra, the sun-god, had to record the varying lengths of the dayz. The meridian line extended north from the centre of the base of every pyramid, obelisk or pole, to locate the yearly position of the day and its length as indicated by their dgily and yearly observations. These observatioris were made on the "shadow floor," and over the Arrisridges cornering and uniting the Pyramid's 4 slopes.

The mld day M.W. and N.E. ahelows could
 durp tho dx Winter modith wheo tho X.W. and N. b. "artio rides "woald both bo broughi Italo pioy thrion dily, bas durios the broughers anc ride of roeld oaly aces tim "esrialivic" ahedow durting moraliag and orvening of esch

ixplatmantah eraonam for eontreating manaic

Tha above aymmetricai eliipric curva on tha shadow foor outiines tha path of the Apexpointed tip of the Great Pyramide shodow between 9.0 a.m. and 30 p.m. on the Equinoctial Day, when it wae shortert as the Sun croned the ${ }^{\text {kly }}$-meridian ${ }^{\text {At }}$ E, forethortening tha thadow's tip to "e" at it croeed that floor: meridian-iine on the day the Sun eroned tha Pyramid'e Indiented Equalor, tbus marking its "swt point of Arles" ae the day begianing their "New Year."
For Mid-rummer noon the 83° ehained line 5 to " 4 " showi tha angia of tha Obeliek't shadow-and the iowett 37° angie W to " $\mathrm{m}^{\prime \prime}$ indicater the longeet noon lieogth for the Midwinter thadow meanured on the meridian line.
The Sun's Equinoctial Elevation of 60° (indicated by the "dotted line") demonitrates tha 30° latilude of the Great Pyramid't location by ihe 30° compiementary angle $\mathbf{E}, \mathbf{P}, \mathbf{Z}$, between tha verical 90° of the Z enith's " Z^{\prime} " and the Equinocliai line "E" that determined the pyramid's siope.
The benutifully-levelled shadow floor of that famous observatory temple, the Great Pyramid, is splendidly preserved under the accumulated debris of 4,000 years. Plate 2, showing photographs taken on consecutive days, showa how the shadows varied from day to day at noontide. In March as the final shadows approached the pyramid they shorr:. : id by more than four feet each day, and witer the autumnal equinox the shadows lengthened about 4 feet per day. In each recurring year these phenomena indicated the approach of summer and winter.

Pharaoh snd tha Prieats of "Ra" Haralded the Seasons

It is aignificant that at the instant of noon, when the shadows were menaured by the priests of Ra, then began the Esyptian noon-time of prayer. Noon is still the pivotal universal time for beginning astronomical "days."

After the passing of Miu-winter the shadows began to show faint signs of steadily shortening. Then came the lengthening days, full of promise to the worshippers of "Ru."

Piate 3. Pharaoh with his quaen and children olntrihuting sifts of lifs, power, knowledgs of the teatons, etc., direct to his peupls, al recelved from thgip living suo-sod.
The sun is pictured as handing dowo firm the ten days (five counted on sach hand) of the anciant "decade," a trinlty (thrse) of which conatituted their uniform monthe nf thlrty days each-used untii the end of tha year, when another "hand" of fiva daya was added.
We next notice that the iongent rayn from tha centre of tha suo reach down around Pharaoh's body till they clasp hin heart to kesp him wholeheartediy for God, and avold ths great danger of aelfinhnem.

Ths source of life In the suo It denoted hy the loop-key "emhlem of lifa" appended beiow the diak. Lower down the sun's ray-like sannis ars conferring that gift of lifs upon Photaoh and his queen, who, reaching them jownward to the people, graciouniy pane on tie horrenhoelike "gift-ring1 of Menes" to the Egyptiann, irreipective of rank or cante. The legend In: scribed on thone rings at a daily; reminder alwaye was: "Ths sun-god of the two solar mountains-the eant (sunrine) and the west (suniet)- Whone name in the darter of beama and who lives in the disk of the sun, daily watching in love over the children of men."
7. Pharaoh was the High Priest of Ra and the King of the Egyptians. He was regarded as the only medium through whom Ra_{2} distributed his blessings. Plate 3 illustrates the position Pharaoh held in relation
to the sun in the minds of wosshippers of Ra. to whom the Priests heralded such Calendar essentials as those condensed on the Kixyptian Calendar's agricultural noten facing page 1 , periodically announcing each, sufficient days in mdvance, to locate:
(a) When to prepare their land in advance for sowing rice and other craps needing preparation before the Inundation.
(b) The best dates upon which to sow each of the numeroun varieties of crops grown.
(c) The seasonal dates on which to mate camels, cattle, sheep, goats and other live stock.
(d) Such further information as is yearly printed on the present Esyptian Calendar for Agricultural, Festival, Civic and National purposes.

Pharooh is here pictured with his family as receiving direct from the sun the gifts that he distributed to his subjects. The rays which reach down and embrace the figures symbolize the direct benefits the Sun-God "Ra" confirred on Egyptians through Pharaoh.
Pharaohs then were like the present rulers of Abyssinia and Persia. Their title of "Shadow of God, Centre of the Universe," and the sun on their royal standards indicate a surviving idea of rulers receiving life and seacon knowledge from the sun.

There was more fervency and full-oouled worship among the Egyptians than among any other sun-worshippers. The following inscription was taken from under a representation of the symbol shown in Plate 3. It appears in a tomb or hallowed restingplace at El Amarna, and reads: "Thou shinest, O! Lord beneficent, the Sun King, giving life for ever and ever, even the living disk of the Sun. No guide goes before Thee: when Thou emittest Thy beams all eyes see clearly. Now Thou art rising, O1 King, from the mountains of the East to make perfect the lives of man, bird and beast. All things in the world glorify Thee; they are made strong by Thy gifts," etc.

Druidical Circles Erected to Regulate Ancient British Calendare

Place 4. Druldical arone clrcle near Keowick, England, ueed in anclent daya so trace the oraconai movemente of the oun and moon for the purpose of copetructos Druld Aimanaki. The mose famous of these myaterlous clreles 1 l , of courte, the one at Btonehenge on salisbury Plain. In this connection azaln the methode of locationg "oeed elme and harvent" for the common good cemions, in which the sacred momementoe wis. The Drulde' feotivale whth thelr ascrifices and pro-
 primarily antronomerr, who zrew to oceupy the Egyptan prienti of Ra, the sun.God, were the peopio, who made them arew to occupy a mystic place In the imaglations and thoughte of
 ualng the polnted otone tipo acrons opposile siden of the clecle on Fore-Piates C, D, E and F, point) to licente tha Seaconal Sun-rine and Sun-ant pointm, of the ancient sphine abe ite plvot. in Egypt, vide fors-piata "J." Tha Druldic observatories urually conciented of so otones (eypleal
ariz, fixed and rqual 30 day monthly gaugea of tha salar Yoar) arranged as, nmetrically In a circle rapreseoting a practical fired model of the horleon circle's limit of vininn, on locate the asasonal pontilone of the Bun on the horison--for calendar purposes to aid axricul-
eure and public weffare.

The ANCIENT DRUIDICAL OBSERVATORY TEMPLE at

Probable Calendar Origin of the "North and South Poles"

Had the unknown person who wrote those words, "strange religion," known more of the practical lives and useful culture of the Ancient Druids, that phrase would have been better described as the "Legislative-Assemblage" of the rulers and leaders of thought in Ancient Britain.
This representation of Stonehenge during the great Mid-summer Festival of the Druids on June 21st, about 3,600 years ago (as evidenced by Front-plate F illustrating its present condition) is intended to convey some idea of that very early center of Ancient British government and culture, as the Arch-Druid led the precession into the ceremonial enclosure.
The blazing Sun heading the Serpent, together with the Moon and emblem cluster representing the Stars, indicate the vital year-recording-purpose of that marvellous erection of huge stone pillars conjoined by the raised horizontal stones forming that remarkable "Elevated Circle," which the writer submits was astronomically used to measure off sections of the starry dome of night by thus contracted and localized star horizons, as Eratosthenes the Egypto-Greck Astronomer at Alexandria, about 250 B.C., similarly used the elevated horizon of the Armillary Sphere he invented (as illustrated below) and thereby extended Astronomical Science, and made the first measurement of the Earth, vide Fore plate "JI:"
The engraver of that old print, evidently through lack of knowledge, omitted the high Star-sighting Pole, also used as a shadow deflector, upheld by the Groovedstone as Dr. Eddowes of London proved per "R. A. 291."
The shorter pole (apparently crowned with summer foliage like the May-pole) may represent the "North Pole" that registered the North direction of the "Floor Meridian Line" as per Fore-plates D and
G, by which the Mid G, by which the Mid-day Shadow from the higher "South Pole" divided the hours of the Day as per End-plate "M."
Those mast-like Poles have long since decayed, and been forgotten in the hoary ages of the past, like the 2 reverse coiled serpent sizns, which probably typified 2 competing cults of priests, the ist locating its Seasons and Festivals by the "clock-wise" direction of the Sun and Zodiacal Stars, while the less exacting College of Priests in that Primeval University at Stonehenge apparently used the more obvious reverse method indicated by the "Twin-pointers" on Nature's "Polar Clock in the Sky."

The ARMILLARY SPHERE, as used by Eratosthenes, who made the first measurements of the Earth (vide Map on Fore-plate J_{2}) by a combination of Elevated, Circles like this.
Although some superficially educated persons affect to scoff at the idea of such an instrument being useful, the fact is that Eratosthenes thereby diacovered the distance between the Tropics, and made great advances in Astronomy. The Armillary Sphere, representing the great circles of the Celestial heavens, thence became extremely useful to early navigators, especially when they had a fair-sized celestialglobe repretenting the Earth in the centre, on which were depicted the Principal Stara visible to the naked eye. Then the outer sphere for celeatial circles could be turned to suit any Latitude and Meridian near which the "fixedstars" of prominence used by navigators could be located, at the precise Seasona and times of night, as may be seen indicated herein by the 4 Seasonal Star Maps of the visible heavena, with their appended Time-Table for each night, thence Calendared throughout the Year.

ELEVATED GTONECIRCLE near BAALBECX

Practical Use of Druid

This photograph, taken by the writer in the year 1900 while investigating the wonderful Ancient Temples to the Sun and "Baal" near which it was apparently errcted about the time of Christ, illustrates the advantage of the elevated horizontal circle, which the writer's personal observations at such Druidical Observatories and Stone Circles in different parts of the World lead him to conclude were errcted to establish the then necessary "above-ground-horizon-gauge" to more accurately register the Seasons by "sighting" the prominent Stars diagonally across the circle, at an elevation as far as practicable clear of the lowland fogs and mists which obstructed the lower "risings and settings" of Nature's Calendar-indicators-the Sun and Stars.
The "elevated circle" also enabled the priestly observers to use that sighting-plane to better locate the precise times of transit of the Sun at Sunrise, Noon and Sunset, also of the Calendar's chief date-locating Stars of 1st magnitude, over the edge of that truer Observatory circle, to the thus more equal and definitely registered Calendar points, along and above the thence better observed horizon and meridian.
The priests could further use the highpole so erected in the enclosure that its top, like the one used by the Pyramid builders, located the Pole-Star when viewed from the South-point on the edge of that elevated cir-
cle, and thus with cle, and thus with approximate aceuracy fix
the North-line of the Meridian, past which the North-line of the Meridian, past which the ever cycling Circumpolar Stars each clear night ticked off the passing Calendarday, as registered by the nightly 4 minutes precession of the twin-directing "PointerStars" I have arrowed both to the Pole-Star and their outer Calendar locating dial-dates, on the Intermediate Calendar Basis diagrammed as "The Polar Clock in the Sky."
That higher plane for Horizon-use of the Elevated-Circle seems conclusively evidenced by the low crescent arches, so superpnsed above the 8 orientated sides of the Elevated-horizon-gauge, that vertical rods or sharp-pointed indicators could be inserted therein, to establish fixed horizontal sighting riauneters as 'Sighting-line-direction-marks" rojecting the line of observation across from th e peep-hcles on opposite sides of that "Ylevated-Circle," and thereby locate the "Rising and Setting Points" for both the Sun and Stars, to thence Calendar the Days throughout the year according to the guiding data thus acquired.
Some of the monoliths and imposts have been shattered and displaced by earthquakes.
-Circles-Arctic Ice-cap Moving.
8. The earlier tracing of Seasons by Sunrise, as typified on Fore-plate J. by the Sphinx-rays to $: 1$, minis visible on the east side of the fite, hai its couni-rrart in other
countries countries. The anciest Mc: icans used truncated, , richrated pyrami/n, and the Peruvians ""ones," "huacss," | cc., to "sight" across their cinno mides the direction of sunrise at each season, to derive their separately acquired Almanak knowledge. The ancient Druids of Europe used stonecircles as observatories for similar seasonfinding purposes, as pictured in Plate 4 and Front-plates C, D, E, F and J.
9. Beyond all the wonderful and almost incredible results obtained by the Egyptians through their pyramid observations, there were certain unknown factors at work that puzzled and misled them. For instance, as per Front-Plates C, D, E and F, they saw the result of the ${ }^{\mathrm{P}}$ astronomical movement now known as the Precession of the Equinoxes, but were not acquainted with its cause. It was not until 200 B.C. that Hipparchus differentiated that phenomenon. The Egyptians saw that every cycle of four years the Shortest Shadow leaped back just behind the tip of the "rod" used to measure it 4 years before, and that apparently a day was added to the usual number of 365 . It caused the shadow cast by the pyramid to "leap back," as it were, on a certain date a shadow distance equal to one day. This was because the Sun crosses the Equator at different quarters of the Earth on the. Equinoctial Day in each year as is now perfectly understood by modern astronomers, as later shown.
10. Geological evidences and recent explorations over Greenland and Alaska, demonstrate the stupendous fact that during the 5,000 years elapsed since the Great Pyramid was built, there has been an incessant removal of the Polar Ice-cap from Alaska towards Greenland by evaporation and-redeposit as snow, yearly accumulating countless millions of tons of Glacial Ice, forming the Ice-cap of Greenland, covering almost the whole of that continent to a depth of 9,000 feet. That mass if spread over Europe and North America would be about 500 feet thick. There is nothing to counterpoise it on the Siberian side, hence the gravitation of the world is disturbed by it, so that the latitude of every place is gradually changing and seems further deffected by the preponderance of land around the North Pole as depicted on End-plate R.

DEFLECTION of the PYRAMID'S SLOPE indicates CHANGING LATITUDE, and tands to explain why older pyramide bscams defective, and an adjusting series was built.

MID-NORTH TO-SOUTH - SECTION of the OREAT PYRANID, showing the Sun'a wide-apread raya compietely conauming all ohadowe. at noon on tha Anciant Equinoctial Day.
The iater incet Sun io repreaented as caating a divergent beam dows the North Slope to contraat tha
preanat Increased Altitude of the Sun when Day and Night are aquai.
That divergence now appeare to ovidence chasing Latluda and account for that Daflection of tha Pyramid'a liope from the Equinoctiai Eun, which provanted ao many intervening ganeratione nf awoInepired dwellere aronnd, and vinitore to tha Pyramida from underntanding tha highly practicat and benoficial purposes for which the ibic and worthy Pyramidbulidate dacigned and solied-primarily to Caiaadar Dayi and Seacona to grow mora food, siao to iocata that pointa of tha compana, houra of Tima, and filke atronomical and practical avory-day knowiadga, upon which our clviliastion hat bean securaly bulit.
Aa that Deflection of tha Pyramid's Slopa aecme to discion tha firat and moct roliabia index-masaure of the Farth' Ereateat movament now cbanging the climataa and vitalitiaa of landing Nationa, it ateme my duty to her a ineart plates (a), (b) and (c) to cnabia acientific raadare to realias how that Defieetion of the 8lope mey heve beun cauned - aepeciafily an the Atronomical Evidencas in Egypt point concluaively to the fact that the Equinoctial Apax-polntingaiope than pointed to that moat ceatral poiat (lat point of Aries) in Autronomy. at tha pivotal equal. dividing indicator for Natura'a Yaar, duriag tha Pyramid Era.

Plate (o). The black arene upon tha abova cbart of Giacier Bay, Aiabla, ahow tha areas which, thougb covared by Oiacial ica of very great thicknaas when the Aiaka Boundary Commitalon aurvayed around Clacier Eay during the years mild-dating isgo, wera found to ba bare of ica ia the year 1907, having molted back at the woadarfui rate of about half-a-mila per year, elleacing shont 2,054 acrea per year, from

Glaciat ice. Both tha "Muir" and the "Orand Pacift" glaciera recedad at the rate of about alght And-ahall milee during thone asventeen ytars.
ohieited the fice from died aifatly where mountains Tha dotted ice from diract raya of the Sun
Tba dotted jince marking tha old poeltiona at the end $18{ }^{\circ} 2$ the lea macorded in the yeara 1794, 1818 ovidencing changing cifimate, by cnatinuouamaiting back,

RECESSION of GLACIERS indicate: CHANGING CLImATE and Latitude.

Piote (b), Photographle proof of the recension of the These phoic and Mur glaciers between 1894 and 1907. These photos, ranking sbout 20 miles lonts. weri veyore independens Uaited States and Camidien ourtbeir combinen ice-fronter they establioh the foct thot tbeir combinen ice-fronts, then sbout 1,000 fust thick.
hove milted bsck, uncovering sbout 2,000 scres per year, The enormous weight of ise thue yourly moved Alsaksn Ics-csp thousise times grester, sis the whole Aselen lCs-cEp is being thinned down by eveporstion, about 400 feet sbove the of tha Mulr Giscier wos about 400 feet sbove the wistar and much more beiow.

Piste (c). Msp of the Glecisted Aresg in North Americs snd Europe from Profenor Geo. F. Wrifht's book, "Men ind the Glecisl Period;" mplifisht's
ehow progremion of the Pols.
and
The isrge equare croes I heve innerted to the Esit of the preeent ponition of the North Pole spproximately loceses whers the Pole was sbout 3.000 yeore $\ln \mathrm{E}_{\mathrm{E}} \mathrm{Es}$ indiceted by tbe stope of the Grest Pyramid the Ancient Equinoctiol to hove bsen deflected from aided stupendous weight of soo by tha Woticis lop Poler ice sbout 9.000 feet thick, now in miles of Further proofe may be found in tay pariand
very slowly gravitating the Earth's crust around it chene centrifugally-bsfenced cors. Thet erreticsily durine tbs Lettrudes End chmates of the World heet formerly melted down, being moved by ear America dowly currents towards Greenlend by evoporition and sir 210 to 231 of my "Retions1 Asplaned on pigee heart-sheped curve I edfed, Ammari. The thick Pole the spparent conrse of praces backwirde from th cated $231 / 3$ degree North of Poiter progrension, is indiof the oldar moving Poler-ice-ohestri' Eoutharn mornines.

Almanak-makers of Sarawak Locating S
We have evidence of this change in the careful observations of Eratosthenes, who about 276 B. C. recorded the fact that Syene (now Assouan) was directly under the Tropic of Cancer. It now appears to be some miles irom that tropic (see Encyclopaedia Britannica, Vol. 2, Page 748).
The pyramid's fixed slope is the best possible permanent register of ancient astronomical evidence of that changing latitude by which our beneficent Creator rests and renews the varying zones of climate all over the earth.
Geologists in every nation are yearly finding such increasing proofs of that ever varying change, that will soon convince leading scientists of its reality, as indicated in my paper read before the British Association on "The Continuous Glacial Period."
11. These causes indicated on Plate " R " affected the relative slope of the pyramid to the noonday angle of the sun at the equinox. For example, when the so-called Second Pyramid was built, this angle was 52 degrees 20 minutes. Other older pyramids were deflected still more. These causes hive deflected the shadows from the fixed slope of the Great Pyramid, so that the shortest noon shadow registering on March 21 about 5,000 years ago now falls carly in March. That deflection has until recently prevented the re-discovery of the great and noble purposes for which the
pyramids of Eeypt were pyramids of Egypt were built.

Plate s. Almanal-makera of Sarawnik. Theae
men are measuring the varying shadow thrown hy the pole thown in the photograph. They make a hurinese of suppiying information which wo hnd in our modern caiendars ready-made, as it were. This pole is used as a gnomon, and left fixed in the ground. The "Clog" the man is holding he will take away becture cut upon it are secree notch measured leogtha of noonhhadowa for certain seasons. A1 thore noteh lengthe pegi are driven and left in the ground to that farmera may eee, hy tie lengtha of the paning noon-thadows, when to till their iand, Tow, ete. The photo wae taten hy Dr. Hore. The men are arcertrining the approximate dater mont profiabie for zowing rice and maize.
This method ie seili uaed in Africa and remote parts of the world. End-Plate M proves
that it wae used the rith Century in Egypt and England during the "8th Century, The "Traveller's Stuf", known as "Aaron's Rod" wae thus uned in conjunction with Calendare which had the drily lengtha of "Mhatows printed, as on Plate 111 of End-plate "M." The Meridian "Clog", the of End Endilate
veloped into the "Clog Almanak."
12. Plate 5 shows the calendar-makers of Sarawak at work and typically illustrates the methods by which our ancestu,'s developed their systems of daily and yearly time during thousands of years. This method was perfected by the stupendous labors of the Epyptians in building the pyramids 60 times higher to calendar all days by 60 times longer shadows.
This 8 ft. pole is only a crude guide to within 2 weeks of any date. Owing to their unexcelled knowledge of the true location of the seasons, the Egyptians prospered above all other races of antiquity. They had learned the secret of when to sow each kind of seed and multiply their crops. Thenceforward there was always "corn in Egypt."
The most useful dates for sowing different seeds, mating various livestock on farms, holding festivals, etc., were very gradually tabulated by the Priests as the sacred "Mystic Tablets," which were cautiously extended to the double paged (Diptych) Tablets-as similarly used by early Christians during the ist Century.Those were later extended to the 3 paged "triptychs" having an inner leaf for fuller records of Agricultural and Festival Dates, until the 4 sided "Clog Almanaks" were developed, recording the 4 seasons $2 s$ Quarters of the year, carved upon their respective sides of the "Clog," as shown on the later Clog Almanak page.
Some of the "Literati" later expanded such records, into book-form "calendars." Meantime the nomadic and semi-settled communities of Northern Europe, Asia and America, continued to use the crude stickcounts, notched-sticks and Druidical Calendars, as they attained by various stages to more practical knowledge concerning uses of Seasons of the year, the Egyptians used best.

Solution of Star Astronon: $\%$ Discovered by Pyramid Astronomers
 13. After compiling reliable calenders

by mesns of shadow astronomy, the pyrs-mid-builders found they possessed the key to a more accurate system of time measurement, namely, star astronomy. They noted the regular cycles of the stars which passed nightly across the apex of the pyrnmid, tracing an imaginary semi-circle on the background of the night sky over Egypt. Following up this observation, in conjunction with the calendar they had already constructed, they recorded the course of what is now known as the Path of the Ecliptic (so-called because the eclipses of the moon appear in that Equatorial Zone.) The priests marked out the great circle of the Ecliptic by means oi twelve constellations or prominent groups of stars about thirty degrees apart, making up the full 360 degrees of the circle. That is depicted on Front-Plare "A," where the proposed new-month "Sol" has been inserted. Front-Plate A indicates how the North Slope of the Pyramid coincided with the "Angle of the Ecliptic," so that at Equinoctial noons the Apex of the Pyramid pointed direct to the centre of the Sun, when the 1st point of Aries "The Ram" marked "Equal day and night" on the Pyramids' "Year-day" in March.

During the next twelve months the constant slope of the Pyramid by its apex pointed nightly during each month successively to these 12 Zodical locating stars:

 Juiy ….. Leo" "The Lion' … 120

 November . Sazitrarius ... "The Arcber". 240 December : Capricornua \cdots."The Areper. .240 Januery … Aquariuv"The Witer'... 300 February .. Piscie "The Fitheen" $\cdot 330$

Those 360° measures of the year $\ldots{ }^{360}$ ever since been conceded the year have the best practicable basis for astronomical efforts directed to locate and calendar dates throughout all years, as the globe plate on the next page indicates.

How completely the North Slope and Apex of the pyramid were shaped to planeoff clearly and for every seazon permanently locate the meridian transits of the Zodiacal Stars, may be seen by the preceding pyramid illustrations, and End-plates " T " and " U ," which (so far as space admits) explain how the Egyptian Zodiacal Calendar was derived and subdivided into equal months of 30 days, tri-parted into 3 decads or weeks of 10 days each denoted by the crescent arcs, measuring 10 degrees each, grouped into months denoted by ZO_{o} diacal signs, as reproduced on Fore-plate B.

That method of registering stars passing high erections is confirmed by the next illustration, showing the extension of Egyptian astronomy to register the hourly transits of stars over a figure like the Sphinx, which was also probably used in that way, by later cults of Sphinx priests observing from the excavations below the: Sphinx breast after the Pyramid shadow method became as obsolete as we now naturally regard the old Sundials used by our grandfathers.

EAnLY BTUOY of the BTAns ase oulor te the YiAR.

The ayatematio atudy of Star movemanta would only beoome practionbie after the study of the San and Moon'a motions were fairiy divanoed and the N.S.E. and W. fixed directions of observationa were settied by

After that, no doubt, the more easily treced obwervations then foen to be obtripable by the Stars would give greater prominence to gradually an the Stars, which would thue gradually anpersede or lead to be forgotten most of the oid Sam and Moon experiment formeriy derived through the pyramid.

Acoondingly, we ind interest in the pyramids Fened, and, during later Dynusties, liatids of the temples as the following appear zecorded in wo comples and tombs:-

Ex Emanto "LIFE IN ANCIENT EOYFT."
On the 16th of Paophi, for instanco, they thas indionted the poritions of the riarre for ench
fon. Drume
Iat-the ing of the glint .o. 2ndeathe etare of Hep erd-the otap of Amy.... 4th-the olaw of the reene sth-the hindarient boen thr-the atere ef thoueanci
7th-the otiop of stap.... th-the fintarpoint of the

Stantime \cdots over hoart
\ldots over heart.
... ever left eye.
a. ovep int oy
\cdots ovep int oy
". ovap hoapt. on thateractont of the
 oth-the otap er er or (0)
loth-the tet thet (OWon) a owe in oye
 Ifith-the otere $e=$ the weth atare over risht allow

Alter "ffteen dave on the ise vor the heavt. have moved one point the Iet of Athyr, the etine es proved by charts, maph, otc., on pares 28 to 14 .
The above reprodnotion of the ancient Eggptina diagram of the Stans with deveriptive himeogiyphice, indiontece mout poolitivery that the early Ecyptian ayotem of otudying the above was by noting thair houriy positiona above and around come huga ngure llike the oye, heart, that the racring poaitions "orer groconciled de dibow, eto." "could bo intalligentiy

The CALENDAR'S BASIS
as finally evolved by star-recording inIACAL CLOCK in the SKY"

This Southern Star-Clocr's Fsce REVOL VES
The Pyramid's North Slope snd Apex FIX it clock-wise" ss depicted on Fore-plates A and B circle completely round, sind "overlsp 1 day-cog" more each 24 hours in the 365 dase stars
 the GREAT PYRAMID-FROM the SUN at NOON on DEC. a2nd Both globes were photograpbed with cam

MID-SUMMER INCLINATION of the GREAT PYRAMID-TO the SUN at NOON on JUNE 2 rat SUN at NOON on JUNE 2rst

PYRAMID OBSERVATON 29

OPED STAR ASTRONOMY

 through a transparent protractor laid on tographing a model of the Great Pyramid Slope, which, when used to Astronomic the plane of the erect Pyramid's Northern dome. when viewed from the Pyramid's Observe off the under part of the night-ikywhere the quadrant-lines intersect), registered Equinoxes when the Sun crossed the Equator ${ }_{1}$ as per End Plane of the Ecliptic at the The protractor, aub-divided into 360° 00 a of the Ercles, represeots the Equinoctial Plaoe Zodiacal stare wheo tha upper semi-circle of the ety adjoiniog the co oightly circle acrosa ceoted hy the Inoer-elcle) follo Equator (repredurion daylighoer-circle) followed, uoobserved hat cycle at the Earth rotates hasif completion But se the Earth aloo progresses deily hours. 8-365th of its orbit around progresses daily over 4 mioutes of thore to crose the Merldlao Apex 4 mioutes earlies each 24 bours, so thas the whole $360^{\prime \prime}$ circle of atari daily moves forward one day'e cog, which ie almoet exscelly one Ekyptian marked on the Outer-circle. Thus Ekyptian Observere in ro dayz meacured z of below each mown by the triple crevceota (dayn). They are meatured bet arc of 30° middle circle, within which backwarda on the names of the month which, in this case only, backward, to mlluetrate the recorded one month defect that resulted io diminished crops when the 3 3th lunar mooth wae Intercalated before Pyramid Observere bad hy their hatadow-recorda located the true leogtin of the Yead, and when the Calendar was lampered with prior to Juliws of Famine." Then Merch "Joseph's 7 years till the warmer April weither be held back cowing, delaying and diminisbing causing late throughout later months, except when the astute priesth proclaimed the requipite when the astute each Season as the Chequisite adjuatments for orately printed Agricuisural Cole their elabThe Zodiacal Stararal Calendars. grouped by connecting lines beticated and of the Zodiac and those crescent been the Signs like, hulged circle Intertestent arcs. The contiono hat 365 day congervecting thote Conatella. regiater of dally proge along that Yearly circuit Stars, knowo yprogreasions amidat thoee Flxed cause opposite each night, of the Ecliptic, be(pointed to bv the Pyramid's day Sun's position Pyramid's Apex) the midthe daily position of the E lod at it registered circuit around the Sun, as this rotating yearlyin 26 s day in 265 day-etages causes that over-lapplog world cyele of the Zodical Stery Ancient observers-but which is now astronomically used by all Modern Natione ase the baole of thels Calendars to daily tally the progreas of dayn throughout each year.
That circuit is shown as the ohlique circle oo Standard High-school Glol ec, and ranges between the Tropics of Cancer and Capricorn,
registering throughoue renpectivg daroughous the 365 day year the where it crosiges xenith locations of the Sun where it crosses that "Path" at that locality's noon, according to "Standard Time," measured Meridian teale ${ }^{\text {a }}{ }^{\circ}$. horizontal Equator by the Meridian reale r5 apart per hour. Uffixed ane of those Sisndard Globes I have Cairo, as next illuytrated Great Pyramid near relative angiex of inutrated, to show, rst, its in Mid-Winter incination to the Sun at Nooo foor-meridian (December 22nd), when the opposite extreme on la longest, and and, the atot), when the Noon-sun mosmer-dav (June H

Northern slope of the Pyramid as It doee during the 6 Summer Monthe between March and Sept. Below, jo order to ahow that extrema range of length lo day and oight which was ooly experienced in part by the great Nations of Antiquity, I have with cordial acknowledgeLoodoo the proprletors of the "Illuetrated Mr. Scriven for r3th January, 3914, and to Mr. Scriven Bolton, reproduced bia, and to Arctic Circle Me Mid-night Sun," chowing the Arctic Circle duriog its ${ }^{2} 4$ hours of daylight ing 24 bourn of darkness.

aketch of the NIGKT SUN," as the VIIIth aketch of the "Wonders of the Heavens,"
by Scriven Bolton, Esq, F.R.A.s. (civen Bolton, Esq, F.R.A.s.
tho 15 Calendates "Zodiacal Clock in the 85 fy." with bolow thatendar-dity range of hour-changese recorded Esyptioas masst of ftare on pase 27 Indicste how
 around the Nelaht into 24 hourw-15 15 ded Equinoc. around tha Celential Eigontor - then dogrege apart regietered by bey biy by the sun sa 12 houre sheircts of 12 houra by Day followed by the Nighte thentodow. drops houra timed by "witer-clocka" holed to ditircle drops is "seconds" per boor, to hourly to drip 300 Arch, which the Pen stare pasuing tho mely measure the Arch, which the Pyramidy high Iorldian Aper ot that Gropt 360 -degrees and complete the Apex enahled Fired Staregrese Circlo hasis of Antronom divind ble Pred itara.
thome Stare (anot the bition the very ueetul tact that rotation are (anot the brighter Planeutetul tact that nigbt, pretiming Moridian 4 minutes re-appear in completine the ons hour in 15 dave, cariler per 12 montha, toxity rly circuit in 360 dara, divided nenly 10 mentha, ensity raittied us 30 days in 3 divided into
 Th
Year's length could be reetractlon of the Astronomicat cecret shadow.rods bs resiatered hy the Prtesto onial syutem of star As os per pages 17 and 19 until thos superfor.

The "POINTER-STARS" nightly TICKING leftwards ROUND the POLE-STAR. The " 7 Star of the Plough" indicate Nature's 7 days of the week, ever meaturing

round 52 weeks as 13 Equal Months, from the Shortest-day. Nature'a "CALENDARCLOCK in the POLAR SKY" thus ticks off 365 Days in the "Yearal," for all Nations. This Polar-Sky-Clock's astrooomically dated RIM remaios FIXED hy the Meridiaoo od Comparse pointa. BOt the Plough's ${ }^{2}$ IN-and-OUT-ARROWED iodicators as Compass-pointers 7 -day-week StarYear ioto 52 wompasi-pointers dividing Nature's versely arrowed 52 weeks, plus 1 day, CIRCLE as innight aod indicatiog each outwardly timlog each left-wise around the year day's oumerical positioo monatrate the natural bagi, as diagrammed to dethe proposed "Yearal" of as and simple equality of the proposed new month "is equal month, whereln
The ancient construp sol is ioserted to the left. dara in latitudes north of of Almaoaks and Calenrely prima rily upon the a the 40th Parallel had to Plough," as depicted within the Inoer Circle of "the " 4 Quarter-days of the Y the Inoer Circle for the linet of the square-set Pre-Chriet 4 Swastiks-

Crosn, whlch appareotly was adopted hy SL George aod theoce has hecome perpetuated ha SL George feature of the British, Daoish, Greet, Swiss and other national Flagg.
Between esch of those 4 Quarter-day-atar-driuoted
poiots (which accorded poiots (which accorded to algnificaotly with the Solatices and its a daygent daya evldenced at the Mar. 2a aod Sep daya of Equal Day and Night on Mar. 22 aod Sep. 22), intermediate generations of lied orn-Caleodar-Recording-Priests probahly talthe 30 sticks per month depicted auch simple tallien as ly locating thos month depicted on page $f-$ eparate4 Quarterly Festivals Quar-year dividing dates as the assemble the leaders of Tribeneotally necenary to direct the yearly affairs Tripes and Communities to with the 3 th is affairs of puhlic life. Those 4 dates Year's Day on our Dec. 23, would complete for New

That 8ky-Eegeon-Chart ahow the procrealve 31
their diagram numbers when on the followng to

I11 ${ }^{3}$	if …. MAR. 22
1	JUN. 21
11	22

N.B. - Th

The lnner-Clrele showe the 4 Searonal Poitlone Start-Urase conapleuous Calendar-denoting Polar Its "Double-Pointers" 7 stars of the Piough," with Start of Uraa Minor In front, and tbe 3 prominent Star Map for Eprlane within denoted on the next winging by ite talling wip tethered the "Little Bear" Meridian by los Pole-Sta rethered to the Fole and a leading Shoulder-Stars-lnad downwards to its Guardlana of the Pole"-cycling para the "Twin and 6th Stara nf "the Plough." parallel to the sth The 4 Mid-nlght Plough."
are abown quartering the clrelearating the seasone and E. points, on the above-reles at the N., W., 8 . with the 4 earlier bours appended or liter-Daya,
From thoue dates we mey obided for later dates. average datal difference of oberve that there is an hourly times at whicb the of 85 daya between the 10 circum-polar Starg, pase their groupa, containing locating poaitionsara, pase their reapective Seatonatandard time for recording ormid-nlght at the Start which, through the Worpervations of the circle round in the 24 houra lidicated dally rotation, numbers within the amaller, cindicated by the bour Beyond that, the amaller circle.
Earth's ictason-producing progressive step of the around the Sun is recorided by along, itt orbit whish succeasively regited the the out-rising coga positioni of each pasiang day refative Calendar "out-polnted" by the a pointer of cvery year, as conversely point ioward pointer-atars (which also cunter of thls aky-clock's foce) Pole-Star as the "one-riay-degree" night's point 4 minutet, arriving at the previous tars as recurring one carliir, thus timing those Every Mid-night that "errowed hatair out is days. lasding the 7 Stars of Urer Mawed-pair of poisters") 7 days of the week as the Major (indicating the meanure for wecks) ticks off the erplring CalendarNature', Calendar. as surely the explring day from similarly ticks off the pasaing day each Nove the when croaning the Meridiansing day each Noon, mid section, on the world as shown io the PyraStar Clock's face which corg inverunding Zodiacal warched as its atara croas the invernely around when
The unity of motion in both these Northeridlan. Southern Star Clocks in both these Northern and the reader inspects the next 4 mape evildent if positions for the 4 Seasona, wapi of the StarTimes for Observations," with the "Table of Star located as the center-point benines the Poletranuparent umbrell center-point beneath an open
 Pole-Star, and apun compart, all converging to the the clock sach 24 hours to 1 deprece contrary to the apace moved by the nearest degree measured by beyond the meridian, during tranait atar pagaing ceding the nightly hour forg the last 4 minutes preObservation.
More precise and intereating observationa can oow be made by obrervers having-either a large abovearant protractor definitrly fixad like the inatrument properly graduated observatory rircling ingtruments to reginter each of the 365 nightly 4 -minute-upace-moves forward of "the Plough',
SEASONAL
The Vertical-line through the Pole-Star and Zenith is SPHERE mostly visible across Europe, North America, Central Asia and North Afriea
the Meridian at right-angles mid-way between the Zenith and the South Horizon is the Celestial Equator.- The and West halves. The part-circle crossing
Meridian and Equator obliquely, records the Sun's path along the Ecliptic, and is marked off in daily notches, as each nightly cog thereof passed the Apex
of the Great Pyramid 4 minutes before the 2 th hour of observation, during the Evolution of Star Calendars by Pyramid Priests about tuooo years aga,
That year-traversing Ecliptic curve double-crossing-the-Equator led early Chinese to select the double-curve-bisected-circle as their Emblem for Eternal Uife.

TABLT
4 minutes oarlier in their respective poit whon the ETARE recur Colder foures are datec io month aboer them, to which the toure cod minnecee refer.

 Fipa-spice -ooten-Araturue
yym-Vora
Oyrang-Deneb
Amang-Aldobaren
OHfichcopella
Otrion-Bitoltouse Oand riajor Eirle
omate arnozisive

Austre-Capella

307. 140 5an 50 2eo-Regulue

Yych-voga
Cryate-Denob
Ambindiobaran Ansin-capolla Orto -Rlop Ozion-Gotolgeum Gavis riajoz Eiriue Gays atrone Procyon
\qquad

OBELISK8 and HIOH SUN-DIA

L8, etc., used to register HOURS.

ROMAN OBELISK showing ito crude APEX and infetior workmaonhip, ae althoush the Romans copled from the Egyptiane they iacked the finished and thorough workmanahip oo char. actarintic of Egyptian ohelink acuiptors. The sog.ft, obelink (largast erected) in front of St. eter's at Rome was acuiptured in Egaypt.
Similariy the imitatioo Calendar which ha been imponed upon us by Juilue Caesas: having dar of the Earpiona the aymmetrical Calonteriorated hy acattering the Eerreapoodingiy dedays an the odd gret day Egyptian s terminal equal Egvptian moothe of bo dayd the aiweyn whe apparantly causaed by the denire to defect hold from the proud Roman people the fo withtheir Caesar wae copying from the fact that Egyptians, who wiseiy uned equal months.

The PERSIAN "DRUIDICAL MONOLITHS" are showo to tha right and left of the ineet of the Britioh "Stoow-henge", to demoontrate their Flat siec. They were uned ilite the "Ampijtude Obnervatories" siready explaioed "Ampijtucte
" E_{2} " "gr" and "Th Pleten

HINDOO OBSERVATORY
(Iodia), showing (htory at JEYPORE DIAL (oo the right) huge Equatoriai SUN. obervatory (on the left), the s-tier circular uned to trace the left, which may have heen "Fired Start" at the cencoot progrencioon of tha 8. polots, an indica ted ho-Eividing W. E. and and "T," That Equatorini Suodial " N, " "P" aignifichotiry comhine equal Suodial appeara to ecaic, the adrantage aod reduce to a omalier (repiaced hy thotages of the pyramid's elope which the atepa great "atyic" up the middie of derived by pite akeod) with the Obelisk'r effect mounted etud or "nisbown cant from the surdowo to the hoor beyood the sbove the etepi dowo to the hoor begood the vertical wail.
(The Plough Lit+l Locations of the 3 Polar-diameter-joined Groups of Stars and Sunrise, as they circler and Casmopen) compared at Sunset, Midnight South to Enast, Quartering around the Pole-atar from North to Weat, thence

CHAET OF THE POLAE CONSTELLATIONs.

(The above Chart and the A, B and C star-diagrams opposite are from Mrs. Zelia Nuttall's "Fundamental Principles of Civilixatinn, 1901"; Harvard University, U.S.A.)
This Chart nf the prominent Narth Paiar Stare ehnwe the 7 Stars nf the Pinugh in Ura Majnr, the inswinging 7 Stars of tha Dlpper in Ursa Minor, and the less known W-lite group nf s atare in Caminpea (The Lady in Her Chair)- as shown on the "Spring" Star-Map far the convenient hour nf $100 \mathrm{p} \cdot \mathrm{m}$ on the 4 Seatondivlding nighte
Thus conjoined se a fixed circumpolar diameter, they daily turn togather like a rigid 24° hourr-clock'e-face-wide-pointer timed to gain 4 minuten to each mid-anght, thun gaining ln the gz daye per Quarter Year, the 6 hnur apace: which app roximate tha beginning if the 4 Seazones, at right-angien in the great Poiar
"Cloct in the Sky," se iater iliuetratinm prove.
Thh chart demonetrates the euperiority nf midnight obyrratione, which deveinp equare acroee the 4 Pniar-right-angiee noecenelveiy at thi commencemnot if eatu of the 4 Seseone at
the Vernal Equinor, Summer Solotice, Autumnal Equinox, and Winter Soletice, nn Mar. as, June 32, Sep. 33 and Dec. 23 renpectiveiy:-whereat the Sontet and Suntise alignments do not oquure truig, and their observation is uncertain becauce atmonpheric conditinne are thene liabia to be obscured by mism, foge, etc, and always etretched ∞ lrreguiar diagrams throngh morning and evening timee for observation varying with tha lengthe of days, ae vide-lined above.
The "A" and "B" groupinga of the 7 Stars nf the Plough diagrammed together for ail the 4 Sancong, indicate the nrigin uf the Swastike Emblem-almont universally uned hy the Ano cient Natinne of the Narthern Hemisphere.
The lown " "C" set of thrie-rayed grouplngy for Sunsec, Midnight and sunrice diagrame at each Seasont, indicate the origin of the Swantika Trinkeilion" ta the natural gign for nature'e utar iocationa at her year'eand on Dec, azand.

1

2

3

1. The "Triskelion" (3 legs of man) sign for the Mid-Winter end of the Year.
2. The Mexican " S " cign also empbasizes the natural year's end on Dec. 22nd, as manifested by its unmistakable resemblance to the 7 stars of the "Dipper" in Ursa Minor on the Winter Star Map.
That is significantly confirmed by the sculpture of that group, down the left-side of the Mexican Calendar Stone on page 40. It seems linked southwards by tbe chain of stars to those of First Magnitude around Orion, and thence through Canis Major to the Mexican southern horizon down the Meridian at mid-night, to locate which the Dec. 22 nd 10.0 p.m. position on the Winter Star Map needs 2 hours (30 degrees) further progression eastwards to the meridian.

Below those tbe most observed Stars of the Plough are shown enlarged as the Aztecs sculptured them (where they had most space) in their Winter Solstice aspect \rightarrow slightly tilted from the North towards the South-east-when Nature's Year ends with the stroke of Mid-night on Dec. 22nd.
3. The Hindu Jain Swastika so often linked with the Sun, Moon and Stars, has its ends turned out from its right-projecting arms to represent the rotation of the Plough's Stars like 1 windmill's sails set to catch the wind.
Their left-ward motion is indicated by the left-curve-tips representing the Midnight directions of the Plough's-out-curved-handle-stars, on the 4 Season-dividing-nights diagrammed on the "Chart of Polar Constellations," and shown for 2 hours before (at 10.0 p.m.) on the 4 Star Maps, where the left-curved-tail of the Ancient sign of the Great Bear on the Spring Star Map indicates the Calendar origin of both the Hindu Jain Swastika and the Buddhist Praying Wheel.
4. The "Normal Swastika" with its center cross representing the S., E., N. and W. locations of the Plough's 7 stars when each of the Spring, Summer, Autumn and Winter seasons begin, has its ends turned to the right to denote the right projection of the 5 tailing stars of the Plough, from the 2 "Pointer Stars" leading that Constellation
on its Yearly Circuit, advancing 4 minutes per night as indicated by those 2 out-pointing Stars on the "Polar Clock in the Sty" Where the 4 seasonal directions indicate that 7-Star origin of the Swastika in that most conspicuous group of Stars in the Northern Hemisphere.
5. The "Suavastika" with ends turned to the left-like the 7 Stars of the Little Dipper which always curve and tail-swing leftwards, hinging on the Polar Star-indicates its origin in that constellation of Ursa Minor, especially as that is most used in India and near the circuit of the Tropic of Cancer whence it is observed cycling above the horizon, whereas the 7 "Stars of the Plough" in Ursa Major disappear below the night-borizon during nearly half of the year.
The Chinese Months and Seasons were determined by the revolutions of the 7 Stars of the Plough, named 7 Directors, as indicated in the 4 Seasonal locations I have diagranmed on the "Polar Clock in the Sky," on page 30, thus:

When the Tail of the Plough as indicator on Mar. 22, points East, Sprino begins, On Jun. 21, " North, SUMMrr
On Sep. 22, "
West, Autumn On Sep. 22, " West, Autumn "
On Dec. 22, "

Special interest attaches to the fact that the earliest Cbinese emblem for the Year was a stalk of wheat; indicating that the prime purpose of the Calendar was to increase the agricultural supplies of food-as the Aztecs most successfully did with maize.
In Ancient Times the 7 days of the Chinese week were derived from the 7 bright Stars of the Plough and as Herodotus records that the Egyptians had a week of 7 days, and we know that the Hindoos had anciently the same, there seems a prohability that after Ancient Races began to tally the number of days in the year hy noting the recurring yearly cycle of the 7 Stars of the Plough, they abandoned unequal QuarterMoon counts for the 7 recurring days ruggested by those 7 "Director Stars" most naturally used to divide the 365 days of the Polar-sky-clock's year into 52 equal weeks.

Ancient Mexican Circular-Swastika, indicating Star-motions Around the Pole-Star, 13 Years per Quarter Cycle, and 13 Weeks per Quarter Year.

"A," the Mexican Calendar-Swastika This circular quadrant-like Swastika's evident design for Calendar use is particularly interesting, as it constitutes an absolute proof of native Mexican association of the Swastikn symbol with ideas of rotary starmotion and the progress of time, indicating ${ }^{2 s}$ Mrs. Nuttall well records that "the Swastika may have been primarily and generally employed by primitive races as a sign for a year or cycle."
I submit that this Circular-Swastika was used both as a yearly Calendar of 52 sacred 7 star-indicated and secretly recorded weeks of 7 days each, and their Aztec Era cycle of 52 years; both of which were quartered into the significant number of 13 , which when multiplied by the 7 days suggested by those
natural measurers of tbe year, "the natural measurers of tbe year, "the 7 Stars
of the Plough," recorded the 91 days in of the Plough," recorded
each Quarter of the year.
That seems indirectly corroborated by the

and "B," Its Explanatory This from page 49 of Mrs. Nuttall's book has the cycling Sun in the center, surrounded by 7 disks for days per secret week, and the ${ }^{13}$ outer weeks per Quarter Year (reasonably assumed to be indicated by the 13 diameter-joined stars as below). These may have led the priests to that mystic play on numbers, which established 7 plus 13 totalling 20 days in their months, so easily quartered by their 4 public weeks of 5 days each, in their always equal 20 -day months.
The 13 uniform Mexican emblems for Rabbit, Arrow, Maize and House, distinctively registered in each Quadrant, were used in the order indicated by the arrows surrounding the central Sun on the Explanatory Diagram's expanding circles, in accordance with dots ito 13 on the original.
A remarkable feature of that circular Calendar Swastikn is that, like the circumpolar Stars, its reading turns in reverse clock-motion.
Further, there seems good reason to believe that the peculiar shape of those Quadrants- each having 5 emblems to the right, I pivoted at the elbow, and 7 turned to the left, totalling 13; correspond to the 13 most prominent Circumpolar Stars as aligned together down the mid-night central diagranns on the "Chart of the Polar Constellations," where the 5 W-like Stars of Cassiopea, conjoined through tbe 1 Polestar to the 7 Stars of the Plough, are highly suggestive, especially as the 6 smaller Stars of the Minor "Dipper" seem to have been ignored through being out of the balanced
range naturally sugested by range naturally suggested by comparing the Polar Distance of the 5 Stars of Cassiopea
with the 7 Stars of the Plough, with the 7 Stars of the Plough, as may be readily understood from the 4 Star-Maps.

Sun, Moon and Planets on the 20 day signs for each of their 18 EQUAL MONTHS. Stars" on the West side, evidence projection, and the typical constellations of "Fixed parallel but not equi-distant shadow-rode as a Calendar-further confirmed by the 8 diagonal cords across to time Equinoxes and around its circumference to stretch the The Star-signs on the left are partly explained Solstices hy their Meridian shadows.

Mexican "PYRAMID OF THE SUN" (San de Teotihuacan) near Mexico City, where also is the amaller Pyramid of the Moon. The baseto W. Bullock-from whose 645 feet, according dence io Mexico" from whose "f Mooths' Residence io Mexico" the above is reproduced.
This Pyramid was orlginally surmoucet.ed hy an Apex-poioted Temple, indicatlog that early Elevatloon by observing the Suo's Searooal the early Egyptianos did. Pyramid Shadown as

(4)
 2

ANCIENT MEXICAN GNOMONS

That is evidenced io part by the above 3 typical atyles of Gnomons and Dials used by the Aztec Sun-Priest, to locate the Equiooxes periods Solstices as the 4 essential dividing periods of Yearly Time between which thelr marvellously useful Calendar Syatem was "Principlen of Civilization, of Mrs. Nuttall's vard Uoiversity in lization," published by Harvard Uoiversity in 1901. No. 4 was the sacred aymbol for the Fertival at the Spring Equinox.

The Great Mexican Cycle of 5 :
-divided into Quarters or "Indictions" (ex Clavigero's History of Mexico)
The year signs in the centre are surro 13 years each, exemplified on page 3. Moon they wisely discarded to establirrounded by the 20 confusing Phases of the Around those the signs for each of their 18 EQUL MONTHS of 20 days instead.

The outer-ring, bounded by the serper equal months of 20 days are shown.
signs, used in conjunction with the serpent, displays the 4 Leap Year repeating year to distinctively denote each year of insir Cycle of 52 , read Indiction, as per page 3,

THE GREAT MEXICAN PYRAMID AT CHOLULA
 (From Planche's Vues des Cordilleres)
 Date built, unknown (Pre-Aztec), sides 1,423 ft long heig

 44 acres. The 365 steps up the 4 Season slopes 3 ft . long, height 177 ft ., covers about "year-finding and recording purpose" of this huge their observatory, indicate the great to trace the Seasonal courses of the fixed Stare trumeated pyramid, apparently used that its base is about twice the length of the Gre. That seems evidenced by the facts than half, consequently Mexican observers Gereat Pyramid of Egypt, but its height less lines indicate. The Egyptians derived the 10 days' 20 days' star-gauge, as my dotted
Mexican Calendars Derived from Pyramid and Star Obnervationz

From the foregoing it is manifest that both the Ancient Egyptians and Mexicam used Pyramida to derive Calendars is the prime basis of their civilizations. The Egyp. tian Star List on page 27 is apecially significant as the "Pye" pyramid sign mathematicians atill use to express the ratin of a circle's diameter to its circumference was used to mark the hourly positions of the stars.
14. We have not apace now to further explain the reasons for the height and shape of the pyramids, both of which were the result of scientific observations on the part of the builders ; e.g., if the Great Egyptian pyramid 484 feet high was replaced by a pole of the same height it would be useless for the purpose of observing the shadows, because the half-degree width of the Sun would cause its outer-edges to shine round the Pole, and so cut off the shadow hundreds of feet above the ground.

The Mexican "Aztecs" (like the Chinese and other Ancient Nations) independently devised their unique Calendar System, by using truncated Pyramids.

weeks of 5 days each-the most convenientiy combined weekly and monthly aystem known. That they had engraved on their middle circle of their Calendar Stone.

MEXICAN CALENDAR STONE (Weighed about 50 toms as originelly gnerried.)
Plate 8.--Their yearly cycle of 365 days culptured around ait $28 \times 20=360-\mathrm{plua}$ the 5 days of Fentival ending the year.
proor that mexican pyramide ware uabd to locata tha ganhons ay tracino tha zun's fath ovis the pyanmid
Plate 7.-The Mexican yearly cycle of eighteen months, of twenty dayi each, at reproduced above, reginters their sixtesnth month as beginning about December 16 . Its name of "Retreating Sun" nignlfies mid-winter and tha emblem for that month is ignificantly thown In the sixteenth position al a pyramid surmounted by the double-curved sun, representing its rining in the eant and ita setting in the west. Note the iignificance of the "Step-Pyramid," also the snn daily cogring the moon and year around, at evidenced by the Sun, Moon and Earth circles surmounted by the 18 equal monthas in the yeara Mexicans thus derived.
Each year was divided into 18 manths consisting of 20 days each, quartered into

Study of the almanal methodn devited by different races throughout the world demontrates that whilat all were inexorably compelled by Nature to locate their ieasona by obsapervling the apparent movement of the oun, eycb race bad inevitably during la eariler, zenerationa to deviee lo own method. Mont of tere tropical and near-tropical races had to adopt the sbadow mecthod ibown in Plate 5. The bett tnowledge of the year was too valuable for nne race to tell to its competitors, bence the writer, after noting the direct observation lndications nif the truncated pyramids of Mexico submito that it in futile for apeculative theorists to urge that the Mexicans derived their methods from the Ekyptians, when they evidently found it by direct obrervation themselves, an their unique calendar Atone and recorde on preceding pages indicate. Apparently they, like the Exyptians, had two eufts of prienta who reapectively calendared by observing the Sun and the Starn.

Britioh "Clog Almanaks" Used Most About 1,000 Years Ago, Showing the Dot-counts then used by Europeans, like Mexican Dot-counts on Page 3.

Plati " "Ga." Photo-gravura of ANCIENT BRITISH "CLOG ALMANAK" nuvally carred on its 4 sides, about is laches long and I lneh squara at the enda; is deep cuts for Sundays hegan 13 weeks in sach Quartsr of the Almanal:
Plata 6 represente a "clog" or wood almanak, che origioni of which is preserved in the Brltidh Museum. Tha notches eut on tha edges of this Gixed-ysar log rapresent the sequential order of week days to they happen to have recurred doring 2972. It raxistors fifty-three Snaday laclnding the firtt and lase days of that typical year. The origianl is like nearly all otherta square atick with fonr long edget In which notches were cut to mark the daya. Suaday were marted hy deep notches. Tha same almanak was need for all yeara. In subseqnent years, owing to the change of tha day-names, Sunday was read as one or more notches from that rasittered in the fixed almanak as Sonday. For example, the parmanent almanalk ghowa in the illuutration happans to exaetly anlt $x 9 x x_{1}$ which hagan on a Sunday. In the year yaxi the "deep-cuts" would he read as Mondayn, and to on down to "Leap day," Fshruary a9, after which they wire read as Tuendaya, so two notchen above the deep cutt wire read as sundayn, hecanse ths extra day whis then added to Fshrnary. The four edges detailed the dayy for each of the four quartsrs. The hooks for g , \mathbf{X} for ro, and dota for unlts, on the lsft of each edgs, ladicated the golden-numhers of the Metonle Cycle for the yearly phases of ths moon. Ths emblems on the right of the edge wire hleroglyphles for Festivalz which the abbot or pricut announced on Sundays to thelr congregations.

diacram or ancient aerthe clog almanax
New-ysar's Day is marked by tha monthly upcut "patulous." March I is marited by the harp of SL David and locates the Wilah featival. April a3, St George's day is marked hy a lance. May-day la represented hy aranch of Mayhlonsom. Salnt Pets r's day has two keys. The invarted man tignifiea St Edward's day, as he was crucified hasad downwards. Saint Crispin's day has two shoes, which mart the featival of tha shoemaker's patron salnt. Thare ara many other slgus that wa have no space to explain here. The elog was suapsaded hy ths ring over the altar. Tha mora secret "tithe" producing agrienltural signs were uaually recorded on closely guarded private eloga, as the prlenta in the litersats of thsir priviliged clase, dis couraged such secuiar and sasily nadsratood algna as tha "hay rake," shown on June ix, to locats hay harreat; the plough for ploughing tims; ths fall for thrashing; the ram sign for rsturning rams to swes, ste Those, if mads pnhlic, wonld have enahied men to keep in closs enongh tonch with the seasonal times of ths year woithast atfouding chyrch to hiar the prleat proclaim what shonld be done durlog the easolag wsek. Ohvlonaly lt was to tha interent of the prieate that peopls ahould attend chareh to be halped hy the teachligg of Chriatian principles, and In return hslp the chnreh by thalr contributiona.
For detalled deacription see pages ay-jo and 306. 30 of "Tha Rational Almanak."

Calendar Decla
 44

Cloo (wooo) almanaks

15. The records of the early almanak. makers were in keeping with theis necessarily crude methods of making observations. The "Clog" form most easily aided the ancient astronomers in maintaining the atmosphere of mystery with which they invested their "office." The Sarawal almanak-makers are shown marking the meridian progress of the shadow by means of pegss stuck into the ground, vide. Plate 5 . The distances between these pegs were being measured by sticks inscribed and notched with the sacred and secret markings of part generations of observers. Those records were treasured and handed down to successive generations of almanak-makers, who were urged to faithfully discharge that annual duty which ensured adequate food supplies and the prosperity of the whole tribe. For this service the farmers paid them in kind, making the payment in proportion with the success or otherwise of the crops. This mode of payment exists today, in an altered form, in the "rithes" which are collected by the Established Church in England from tenants of certain lands.
Plate 6 illustrates a "Clog" Almanak similar to other originals in the British Museum. There are rare examples of these ancient records in England, and they form an elaborate counterpart of the notched sticks used in Sarawal. How highly they are valued may be judged from the fact that the writer tried to buy one at an auction sale in 1905. The competing, and successful, purchaser represented a millionaire who had promised it as a present to his son on his twenty-first birthday. The writer was permitted to have a model made from the original.
16. The gradual association of alma-nat-making with religion is shown by the fact that the clog almanaks compiled for various districts were hung beside the high altars in Monasteries, Abbeys and Cathedrals, during the "Middle Ages" of History.

Every Sunday throughout the year the officiating priest would read from the "Clog" to the congregation, including the farmers, the festivals and agricultural operations that were to be faithfully observed during the coming week in order to promote the welfare of the community. One cannot but admire the spirit which
and in Churches Originated "Tlthes."
moved the Church to asociata the blewings of Nature with the weekly service at which tha virtues of industry, good-fellow. ship, unselfishness and thankfulness were taught from the pulpit. In those simple communities, where the happiness of the whole depended upon the industry of every individual, there was a stata of general happiness and well-being that is sadly lacking in the rushing selfishness of modern life in North America. Something approaching it is still in be found in Sweden, Norway, Denmark, Iolland and Switzerland. It is not surprising, therefore, that every effort was made to keep the secrets that compelled the whole community to frequently meet together in common interest.
17. For this service to the community the church was paid tithes, or a tenth part of the produce of the cultivation of the soil. In olden days the tithes were paid in kind, so much wheat, barley, oats, etc., the tenth pig, the tenth calf. Naturally under this system there were many openings for bickering between the parson and the farmer.*
(*The iale Sir Richard Tangye, the famous Birmingham engineer, describes in his autobingraphy a hand-to-hand atruggic between tha viear and his mather nver a pig that was claimed as lithes. The Tangyes wera Quakers, and were therefnre predisponed to question tha right if the vicar to coilect tithes from them.
-Editor.) -Editor.)

Ultimately tithes were compounded into a form of money payments on a scale calculated by the market price of a quarter of wheat, barley, oats, etc., the previous year. The writer, before migrating to British Columbia, had the privilege of making the necessary calculations of these amounts for the Archbishopric of York.

Although the church no longer plays a direct part in advising farmers regarding the seasons, the privilege of collecting tithes has been jealously preserved. There are many places where land is covered by an ancient deed making the payment of tithes to the church a condition of tenaney.
maypoles orioinally "gnomons"
18. The picturesque custom of dancing round the Maypole is another modern survival of ancient astronomy and Pagan ritual. In Northern Europe "gnomons," similar to that used in Sarawak, Borneo, were used to make seasonal observations.

As in high latitudes beyond 48 degrees north, winter conditions were not fsvorable for weekly-much lese daily-observations of ahadows from such ordinary pole heights, the yearly obvervation was unually made about the tat of May, when some clear weather could usually be relied upon, to enable local Almanak recorders to locate the Maypole's - noon-shadow's - length to check their "Clog-Almanak" register, to keep their yearly count of $3651 / 4$ days for public announcements in necord with the Sun's indications for exch reason. After the usefulness of - locating the dates by means of shadows ceased, the worship of the Goddess Flora (Nature) was continued, and the use of the gnomon, or pole, which had been associated with this festi-
val, was continued by the priests, as well val, was continued by the priests, as well as the collection of tither. So the origin
of the Maypole of today became obscured in the misty ages of the past.. Most peopple in these dayz regard it matrely as a survival of some Pagan festival. +
(\dagger At
snnual Heisoon, in Cent Corowsii, Eogisnd, thero is an snnual fertival in Msyy cailed the Fiors, during which the whoie of the towoupeopie throw open thelr hounee to permit a procestion of dancers to eoler st the froot door aod dsmee out ${ }^{\text {st }}$ the back in their progrear rouod ths town. Thit is csiled the "Furry" dance. In ths morning of that day it is the cuttom to go out and gather brescheee of the ba wehorn which sre jurn thowing the new lesven. - Editior.)
May-pole shadows were measured by direct meridian lines like that shown for the Obelisk in Rome on Front-Plate G.
Generally the pioneer priess in North America had to cut a space clear of trees due north to allow the church flag-pole's shadow to indicate noon, and so re-time their watches before railways were invented.
Some farmers in Europe still continue to locate farmstead-noon by like meridian noon-marks on window-sills, floors or walls; and field-noon by "shadow-pins" the writer remembers secing his grand-parents using.
indian methods of almanak-makino
19. Now we come to 2 part of the story that is of special interest to dwellers on the North American Continent. Long before the old clog almanaks were used, and farther back than history or archeology records the use of "gnomons," prehisoric men resorted to still more crude methods, like those still in use hy the secretive North American Indians. The following is an account of the primitive Almanak method still employed by the Sarcee Indians, located on the Indian Reserve near Calgary, Alberta.

So zealously had their secret method been preserved, that neither the experienced Indian agent nor the watchful Archdeacon (who together had lived more than twentyfive years amongut those old warriors) had the slightest idea that the Indians ever used any other Almanak method than the white man's Calendars which "Big Plume," the former medicine-man had adopted, and so became a successful farmer.
That had caused jealousy and chay. rin to arise in the minds of his less wise tribesmen, who still held the white man's methods in contempt-for had not the white men deprived them of their happy hunting grounds, the prairies. Therefore Big Plume, having thus, to their minds, turned traitor against their tribe, was deemed an outcast and ostracized by the Sarcees. Consequently "Bull's Head," their great old warrior chief, who had taken many scalpa in the gory days before the Canadian Pacific Railway was built, had of necessity to take upon himself the onerous duties of tribal medicine man in declaring the season months of the year more privately than the ancient pontiffs and abbnts used to declare them to early Europeans.
20. That tribal disagreement with "Big Plume," coupled with the fact that "Bull's Head," being ill and very old, thought that he was about to die, enabled the following record to be obtained:
Mr. Geo. Hudson, who had during more than thirty years been interpreter to the Sarcess, kindly offered to accompany me on January 25, 1908, to interpre: a conversation with "Bull's Head," whose boottle of medicine we were taking. The old chief, being blind, did not notice our entrance to the room, where he reclined on a floor-bed praying, not as a Christian, but as a firm believer in the great Creator in whom the Indians earnestly believed before the white men came. That prayer, as interpreted, was both noble and impressive, he having that morning, like the patriarchs of old, divided his horses and cattle amongst his family preparatory to his anticipated departure to the "happy hunting grounds"
of death.
21. But after a solemn interval the question was asked, through the interpreter, "How did the Sarcees know when to sow grain and tobacco before the white men came?"
"Bull's Head" snortingly replied, "By the Indian's own way!"

Red Indian Almanak stick-counts

After being asked to explain that Indian way of locating the reasons, he expresed surprise at any white man coming prepared to believe that Indian ways were any good. The simple idea that Indian metloods were worthy of the white mann's consideration, when inverpreted, ceemed to animate the old warrio: with renewed life and interest. Partly raising himself, he deciared that Indians knew the semeons before the white men came.

He was then asked whin the Sarcees began their old Indian year, but could not locate the time nearer than that it began with the great Sun Dance, which was held during the first quarter of the new moon following the first thunder of God after the winter snow had melted away-i.e., about April, when the spring thunder and rain begin.
22. He detailed how on that eventful morning the tribe assembled to watch for the sunrise, when the chosen virgin of the tribe (like the European May Queen) cried our directly the sun was half-disked on the horizon four prayers to the north, south, east and west points, and after declaring herself pure in lifi, promising to be truthful always, took the oath to the sun, and was then fastened in a wicker cage painted with the colors of the sun, yellow and red. In that she had to remain three days fasting, during which she was in complete authority over the tribe, who were feasting and dancing the sun dances around the pole, which they then erected and were required to maintain erect during three months till all the crops were
sown.

During the three sacred days the virgin had to wear the "holy hat" and refrain from washing and scratching, always being in the cage. Throughout those three days the spring sun dances were kept up, whilst the "medicine man" led the songs for each dance, blessing the sun and saying "O Creatorl have mercy on us; accept our offerings ${ }^{\text {" }}$ " which were hung upon the central pole, finally praying that his tribe might all follo'v up the wisdom of their foretathers.
23. "Bull's Head" was then anked why they held those dances and why they had so many varieties? He replied that they were to impress the Sarcees, especially the young people, with the importance to the tribe of due observance of the seasons, according to the moons, which he read off as interpreted on the following table:
 September Running of the Deer.
October Fall Moon.
November Misty Moon.
December Clear, Frosty Moon. January Great Moon. February Eagle Moon. March Goose Moon. The practical utility of the Indian names for months is significant.
24. Upon being asked how they kept records of the days in each month, "Bull's Head" replied that they always counted 30 (as did the Ancient Egyptians and Druids) to every month, and that it was the medicine man's duty to keep record of them by each morning tal大ing a stick from the days-to-come bundle and adding it to the dayspast bundle. Those sticks (shown in the interpreter's arm, on Plate 9) were carefully scraped twigs of the "pussy" willows, which by their silvery catkins show the first sign of growth in the spring season.
Next he was asked whether he had any of thove sticks, when he, with evident delight, leaned back on his couch, and reaching under the far side of the bed, produced two bundles, explaining that they only kept 150 sticks for five months, as their method was
to use 30 evch for the to use 30 ench for the first two months after tbe spring thunder, but the thirty for the middle (third) month they always split into
two parts of 15 each, two parts of 15 each, so that after the first 15 dayy of that moon were passed they knew that it was midsummer, and then held their greatest sun dance (about June 10 to July 10, according to the moon's range).
After that 15th day the remaining 15 days were counted, as usual, by daily withdrawing one stick from the "unused" to insert it in the "used" bundle, leaving the former to show the remaining days of the Egg (June) month, as illustrated on page 6.
25. The last two bundles of 30 days each served for July and August, after which the last bundle was used again for September, their sixth, or odd, month, during which the great deer hunts took place.
(The Sarcees thus separately derived and combined the 5 months count of Noah and
the 6 th month count Jon the 6th month count Jacob invented.)
Afterwards the whole five bundles were

Flve-month Counts Extended

used again, one for October, one for November, and the middle (third) one being again split at the 1sth day to locate midwinter, when the sun flonts lowent across the aky-and to forth till February ended the eleventh moon, followed by the odd twelfth Goose Moon (March), which generally seemed to be nearly a quarter of a moon longer, till about every third or fourth year the great thunder and rain zeemed to be mysteriously delayed till after a thirteenth moon was counted. Then the medicine man had to hold his last bundle of 30 to count over a second time, ts the great spirit required that repetition to make them remember.
26. Therefore the chief, with the medicine man and elders of the tribe, knew that it was advisable to repeat the dances for the whole series of twelve moons each spring. time to impress their usefulness upon the minds of the growing generation. With that object the dances were made attractive, not only by bringing young and adult people together in joyous revelry, but by fur. ther uaing ornamental head-dresses and emblems diatinctly hung upon the central sun pole during each of the twelve spring festival dances.
Upon being asted where those emblems were, "Bull'" Head", replied that "Big Plume," their old medicine man, still kept them secreted, because when a young man he had given lots of horses and cattle for the privilege of holding that high office over the tribe, and as the tribe had become poor they could not raise sufficient to buy them back.
He added that "Big Plume" had the emblems for each dance and month in the sacred bag made of hide, but would not be able to show it to anybody, not even a red man, till the great thunder of spring, when it took three days to open it, according to the traditions of the red men, as a distinct ceremony should precede the production of each, though "Big Plume" had not exercised due care and dignity in displaying them to the tribesmen each spring.
THE OLD SQUAW DANCES WITH DELIGHT
27. Being requested, through the interpreter, to explain those dances, the old warrior, "Bull's Head"-whose name was probably derived from his massive head and great breadth of chest, denoting great strength-brightened up and began chanting the words sung at those great dances held so beneficially during his youth. The weird, wavy, musical notes recalled those

8ix Months (Jacob'a "Years")

happy days to hia squaw, who had been deeply interested in the converation passed through the interpreter. She, though very aged and haggard in appearance, rove to her feet, and joining in the song led by "Bull'a Head." began to trip and swirl about the floor in such grotesque gyrations, representing their old dances, that it was difficult for the writer to refrain from smiling, when all was taten so literally by them and the second Squaw present. The stiff efforte towarda making what should have been graceful twists and curves were, with the quicaky voice of the Squaw, very comical.

They all seemed so happy and plensed that any white man could appreciate good in their tribal ways that "Bull's Head" offered to give the writer the five bundles of almanat day-recording sticks, and Mr. Hudson most kindly presented the horns of the last buffalo killed by the tribe, and a piece of the last elk's horn they had found.

Plata 9-The Sarcee interproter holding the "puesy" willow almanak aticks, which had bean given to Mr. Cotsworth hy Bull's Head. The strangs objects hung on the line are the entralls of $\mathrm{c} \cdot \mathrm{Hl}$, haing drigd to form skine for sausalges.
28. Leaving those aged Indians happy by simple appreciation and the gift of come almanal signs on literature, the next evidence nought was to discover and, if possible, see the "sacred bag" secluded by the wily "Big Plume," who lived about sixteen miles away.

We found that "Big Plume" had some unjust grudge against the interpreter, who therefore could not be used just then, so the Rev. Archdeacon Tims (who had resided on the Sarcee Reserve about twenty-five

Rod Indian geered Monthly Embleme

years conducting a mimion) very kindly undertook to go as interpreter with the writer.
On arrival at the medicine man's ranch we cautiously questioned "Big Plume" concerning the sacred bag, which he first declined all knowiedge of, but on being told that we had come direct from "Bull's Head's" place to see it, he very reluctantly and evanively replied that it was absolutely impossihie for any white-man to be allowed to see it, because Indians only could ree the emblems during the great three days' festival immediately following the spring thunder.
29. As the month of January was passing, all Indians must patiently wait till then. White men could not be allowed to see it.

But as the writer had to go to Europe there was no poasibility of his being present, even if disquised as an Indian. So, after a tedious harangue to test "Big Plume's" vuinerability, the writer, having noticed the elaborate defence of " $\mathrm{Big}_{\mathrm{ig}}$ Plume"-who held that bad luck would fol. low the tribe if any white man saw the contents of the sacred bag-suggested that no harm could result from letting the faithful archdeacon, as the twenty-five years' trus'ed adviser of the tribe, see the "outside" of the bag. To that extent he relented, and brought forth the precious bag, at which we were privileged to peep, whilst he expisined that it contained the old flint arrowheads and other relics of the tribe, along with
the emblems.

Plats ro--Big Plume's squat diselosing the Sarcee's ascred bag, conteining the feative empblems for the respective months of each yas an
dercribed in paragraph 31.

3a. The writer's previous experience amongat the wily Arabs in Syria, and other triber in America, led him to alk whether "Big Plume" (who was known as being keen to earn dollars) believed that bad results would come to him and his tribe if a stranger looked in, found the bag, and aimply looked at the embleme whilor he and his family were away, He thoughe not,
He next was asked what harm could re. sult if, while he was saleep, his squaw root the bag outaide to dust the emblems in order to preserve them, when, say, the archdeacon and writer mighe be coming round the corner of his house and see the emblems -empecinlly if "Big Plume," on waking, should realize the happy dream that some then useful dollar notes had been mysteriously found for his benefit, as the result of sleeping while we saw the bag and its contents?

He seemed to like the idea of the dollar notes coming so enaily; could not see that much harm would rpsult if he did not order the bag to be taken out. In fact, his squaw had to do that when cieaning the house and airing the bed on fine, sunny days. He feigned wearinesa, and said that he was prepared to go to sleep then and there, whilst his squaw knew her housckeeping part of the businese

CONTANTE OF THI SACRED HAO DISCLOSED ty the souaw

3t. She certainly did, and plainly intimated that, while he was going to have the easy part by going to sleep (or pretending to), she should have some dollars for her o.vn use, because she would be taking the responsibility of disclosing the contents of the bag to our gaze.

After a littie bargaining, the dollars asked for were agreed upon, provided that she would give the writer the black-atone pipe she was smoking-after being photographed smoking it whilist holding the bag exposed, as shown in the photo.
aed indians could not find the length
of the yeal by moon counts
32. The most important fact gathered during those searches for almanak records amongst the Sarcees and other American Indians, in both the United States American ada, is that until missionaries brought the European almanaks for their use they had not been able to find out for themselves any definite measure of the year's length, nor any fixed register closer than the $291 / 2$ days range of moon-counted year closing-dates.

Eyptian Calendar copied by

The Moon's over-awing phaes, recurring differently each 19 Springet, 10 mialed them that they could not precisely locate either the beginning or the end of the Solar Year, without erecting Sun-guluging observatorics to guide them to the true commencement of the semons, especially at the Spring Equinox. when mose needed to gain better eropm.

Though their ancentors had during many centuries developed a hisher civilization than the now demoralized type of Indian experiences, having formerly well. eutablished trading routes over 3,000 miles long, from the St. Lawrence into the Northwese Territories, their abundance of animal and fah foods had tended to keep them simply as nomadic hunters and pastoral tribes for whose guidance the rough approximations of the seasons counted by the 30 day-units nearest to 29.53 days in lunar months sufficed, to long as Indians were sparsely scattered over the vast prainies and roved about fishing and hunting.

The commencement of their years varied very much like the church years beginning with Easter have fooliahly been no long oscillated between the a2nd of March and 25th of April by European churches,
During the curious accounting arrangement of the "ecclesiastical yenr" ending Easter, 1907 , there were only 90 Sundays, whereas during the next (1908) year 55 Sundays intervened, and the collections were 10 per cene. larger; bus 1909, with 91 Sundays, showed a corresponding shrinkagebecause Easter was allowed to drift backwards and forwards with the moon.

The foregoing notes regarding some of the interesting phases in the evolution of our Almanaks and Calendars are recorded to enable readers to appreciate the great practical every-day value of the Calendar, which was derived through the stupendous labors of the Egyptian Pyramid Builders to increase their needed food and to prevent their enemies from stealing the fertile yearly irrigatable land adjoining the Nile, which grows about three crops per year without any manuring as the Nile mud serves better -provided that the tillers of that soil are duly instructed concerning the best times to now each kind of seed and the precise Calendar days upon which they must perform the necessary operations to ensure fullest crops.

Thno inutruction fermers now frecly de.

 rive from orinted Caienders ment as that condensed on Forc-ilate Js. But dwring the Pyramid Ern the secres possession by Egyplian Raiers of that mons valmable Calemdar Anowiedoe they were the first to pecisely discover, after the most strrmaens efforts of hwidding their stmpendons Sinndials, (the Pyrmmidt), gave them the gecatest mdeantage over their enemies. As that smifreme ademmbage wemld have been jeopardised if their secrrt owide of the daily repister by Pyramid shadows had been dirmlged to their enemies, that viral Anouledse was (iike the secret code of the British Novy) reserved exclusively for the eyes of the Pyramid Priests who poverned the people. in all affairt of the Calendar. commanding the daily agricultneal operotions to be done in the mame of Pharcoh, to grow ample food to maintain the mation.Gradualiy pyramid astronomy by study of shadows became obsolete on finding that better almanak results conuld be derived from direct observations of the stars, which had the further immense advantage of being locatable wherever the observer might be, whereas Pyramid observations could only be made at the foot of the Pyramid they could not move. But the key to star astronomy was the older system of pyramid shadow observation, by which the length of the year was discovered and later used to develop Star Astronomy.

During the 19th, Century more convenient watches put Sundials almont out of use. -Similarly the easier "Star Astronomy" has, during about 5,000 years, relegated the Pyramid-ahadow-method into oblivion.

While the Egyptians and Israclites had long before derived the 12 months year, the scattered nations and tribes of Europe used notched-sticks to taliy 5, 6 and 10 moon "years" until Numa, the Roman king during the 7th century befor C'urist; added January and February months to mate 12, alternating 29 and 30 days with the moon, totalling only 354 days per year.

Various adjustments were tried during the next 600 years, after which Julius Caesar wisely determined to adopt the Egyptian fixid year of 365 days, but unfortunately failed, to adopt their equal months.
JULIUS CAESAR, in 46 B.C.-REJECTING the EQUAL-SO-DAY-MONTHS, which SOSIGENES righty ADVISED.
 Year. Unfortunately for Europeane Julius Caetar sharing the Rome belief anary, March, May, Juily, September and November. We may imakine Julius Caesar agping: wDo you Dayn, and apread them as the 3ive dayu of through Romans being paid monthly. Their "odd-numbered" 29 -day-month ana peopie beieve that 'odd-numbera are lucky'" That foolish belief aroue -

JULIUS CAESAR started all our YEARS NINE DAYS LATE

PLATE 13. The CYCLE nf OUR YEAR indicated hy hlack-lettered MONTHS (nnv geared 9 daye after thn Seamona), nutaidn the 363 Day-cogs' circle, Fithln which-geared to begin with the Seasono-arn named the uagreated 13 EQUAL MONTHS nf 4 weeks each.

The Frepertional Longths of Day and Nipht wt meath-ends are indicated by the leagths ef the ray-lines traversing the white space during the Dany, and through the durh aptle-shaped spece te the focus ef those ray-lines meaturiag Night-time, between stanses and sunfise.

A primai defect in our Caiendar's record of the Year and Seasons is that of heing nat-ofgear with Nature's Year and Seasons it is suppesed to register. They End on the Winter Soistice (December an) whence Days incrense in length hy daily accelerated ratio until the Equinozel, when Day and Night become Eqnai, and the daily increase in daylight is about 363 timet greater than at both the Shartent and Longeat Days. Towards June arst the inter-dayextenaion diminishes, and thence the Day's length becomes reduced in correspondlag ration expanded maxa at thn Septemher Equinoxes, whence they decrease to the "Shortetpoday," Dec, an.

Consequentiy nar Caiendara beging days after Nature's Year which la alway symmetricai, whereas nur Civii Year is atewed, days fate, and dragy along 9 dayi behind Nature's cycie.

When Jnlius Caenar found the Roman Calendar (from which ours was derived) about ninety days nut-offgear with the Seamons through the drifting nf the Lunar Caiendara the Romana used natii the year 46 B.C., he (like the Chinese Government are now doing) determined to ahandon the shifting Lunar Calendar, which couid not then bo tept so near to the Seatons for Agricultural usen as the Chinete, hy modern printing of agriculturai instruetions for each day in their elaborate Calendara, have heen ahle to approximate very neariy.

After learoing the auperinr advantagea the Egyptians enjoyed through their FIXED CALENDAR of 963 daya, Julius Caesar varying the advice of Sosigenen, the Egyptian Astronomer, decided to adopt the fixed year of alternate $3 z$ and so-day months, ending Fehruary with a9. But as the people nf the Roman Empirs did nnt gain the 7oday week tiii Conatantine the Great decreed it 366 yeara later, they then necenarily used the Moon as their mont practical guide to the pasaing dare each month. To meet that neeessity, Juiius Caesar decreed that the Julian Era nf Fixed 36 g -day Yeare mank begin "wifh the frst acev, meen thas shsae after the Winter Selstice".

Simply because that moon happened to rise nine daye after the Shortest Day, European Yeart have aince then iagged and logged along nine daye behind Naturc's cycling Yearopean But had that moon arisen na December and, nar Yeare wouid have been geared with Nature's, from which we hava been diverted chrough ancient anceotors being compelled to accept she moon inatead of the ann as their guide for passing daya, before they ancertained the year's length.

Augustus Caesar apoiled Jullua Caenar'a alternate 30 and 3 -day months

Plate 12
AUGUSTUS CAESAR (2940 yezm ago) RIGGING UP and MUDDLING our MONTHS

That our annually changing calendars of unequal months, fixed by Augustus Casar, will soon be replaced by one permanent "yearal" with equal months of four complete weeks each, is increasingly evidenced by the resolutions in favor of Calendar reform passed by the International Congress of Chambers of Commerce, financial and educational authorities in the various countries of Europe and America, who with the learned societies have urged the most powerful governments to assemble the forthcoming official Conference of International Representatives to consider the various proposals for Calendar reform, and finally recommend what is best to be done in the interests of humanity.
2. While our changing yearly calendar is accurate in recording the full number of days in each year, and sufficed for ancient nation, the unequal months. with troublesome aiterations of week-day names for every monthly date, causes much needless inconvenience to us all, now that businesa and social conditions have vastly changed
since the Cessars ruled the people of Europe, Africa and Western Asia.
3. When Julius Cresar was raised to power, nearly 2,000 years ago, be (like the President of the newly-formed Republic of China) felt the need of a FixED Calendar. The Roman calendar in the year 46 B. C. was about three months out of gear with the seasons, because the Pontiffs had been forced by powerful governors to falsify the calendar rolls to extend their periods of office. The masses of the people had no check on their calendars, which, like the Chinese "lunations," were based upon the moon's ever-varying cycle of days, from whence our months are derived.
The Chinese calendar wanders only about one month from the solar reasons now, jurt as Easter and other festivals of the Christian church "wander" according to whether there are twelve or thirteen new moons in the year. But that variation of an extra moon each third year is a potent cause of famines and poveriy as exemplified

Jullus Caesar's Reform of the Calendar

by the famines in Ireland which resulted when the earliest Easters led to planting potatoes, etc., too zoon, thereby causing the young shoots to be cut off by frost, which also blighted other early Easter-nown cropa.
4 To safeguard the food supply and weifare of the nation, Julius Cazsar considering that a fixed solar calendar, like that of the Egyptians, was necesarary to ensure national stability, wisely ignored the schemes of the Pontiffs and others, as he knew that the services of one thoroughly practical astronomer, trained to provide the best solar calendar information for the guidance of all engaged in agricultural work, was worth more than the divided opinions of the Pontiffs and a host of other theorists-simply chose Sosigenes, the Egyptian, as the best man available. Julius Cassar commanded him to suggest a fixed solar calendar for the Romans-who then had not our seven-day week, which regulates the civil affairs of most nations. Now the week forms the essential basis to rearrange months to complete calendar reform.

JULIUS CHESAR's REFORM

"Caesar's arrangement was substantially the same ns the reform of the Esyptian Calendar in the year 238 B. C. under Ptolemy III Energetes, a fact which remained unknown until the discoviry of the Decree of Canopius by Lepsins at Sanor Tanis in Egypt in the year 1866." Enc. Brit. XXII, p. 276.
That Eyptian Reform, probably due to the Observations of Eratosthenes, was copied by :"us Cuesar so far as "fixity" was concerne but he failed to copy their equal 30 day months, as depicted opposite, on the cartoon.
Most people erroneously believe that Julius Casar originated the calendar of 365 fixed dates in each year, wherens he copied it from the Egyptians, who by their stupendous pyramid labors discovered the fixed recurring seasons of the year, and thereby conferred the supreme benefit of a fixed 365 -days-repeating year to guide the seasonal work of humanity.
To Julius Cresar belongs the credit of being the practical etateman who raised the Romans and other Europeans to greater prosperity by adopting the fixed lengths of permanent months and the 363 -day year to replace the ancient moon-wandering calen-daro-just as the Chinese are now preparing to discard their mystifying lunar calendars. Sosigenes advised months of 30 days, but when Cessar insisted upon having oddnumbers to make "lucky-months," Sosigenes reluctantly suggested that, to be easily re-
membered, the odd numbered months be given thirty-one days each, and the even months thirty days each, with the exception of February, which then ended the year. It was to have the remaining twentynine days to complete the 363 days of the year then first permanently fixed for Europeans by the Romans.
That less desirable allocation of the then fixed twelve months was enforced by Julius Cassar. It's fixity established such widespread benefits throughout the Roman Empire that it brought more permanent glory to his name than his mighty conquests.
6. After his deato, Augustus Cessar, being jealous of the noble reputation Julius Cassar had earned by that beneficial reform, declined to allow the Senate to give the Augustian name to August (then called Sextilis), until they extended its days from thirty to thirty-one by taking away the twenty-ninth day from February. Then the bankers complained that Augustus had spoiled their quarterly periods for interess by leaving ninety days in the first quarter and ninety-three days in the third quarter. Augustus was too proud to put February 29th back, so to reduce the 3rd Quarter to its 92 days, he removed the 31st day of September to make the 3 Ist of October. On being advised that the latter day should have been made the 3 Ist day of December he ordered the 3rst of November to be removed to make the 3ist of December. Thus the presumptuous pride and arrogance of Augustus Cessar arbitrarily decided the lengths of February, August, September, October, November, and December, to which our ancestors and ourselves have servilely submitted during 1,940 years, without considering the many inconveniences which these clumas months inflict on us all. We have growia tip encumDered by Augustan month-jagged shackles. 7. When the twenty-eight to thirty-one day lengths of our months were selfishly fixed by Augustus, Europeans were mostly slaves, commerce was in its infancy, and commodities had to be hauled along roads or carried in galleys-all since replaced by railways, steamships and other means of rapid transportation in every country.
The enormous expansion of manufactures and trade, with the multiplication of innumeric and social needs, now necessitate innumerable references to calendars by slaves did whereas the masses of Roman were only pot have any calendarn, which Probably lessewed by the ruling Pontiffe. son per hundred an average of one perpermission to see the permanent wooden or

Constantine the Great established the Europer:: 7-day week and Sunday

 ivory almanaks which the succemive high priests kept secret to benefit the temples by yans of annual taxes now known as "uthes,", collected from the agricultural population as rewards for the monthly declarations made by the priesthood, wbo advised the farmers concerning the plowing, sowing, etc., to be done during the ennuing moon, just as our printed cale an er much better guide us all now, each wi ${ }^{-\frac{2}{2} \text {, a farm- }}$ ing and general affairs.The odd persons then privileged to see the permanent almanak basis of each year's calendars were priests and rulers only. Priesteraft had inculcated the belief that it was practically as much a sacrilege to behold the source of the calendar as it was for the Isracites to look upon Aaron's rod and the other contents of the sacred ark of the covenant.
Constantine the criat intaoduced
the week or 7 days, chancino datrs
8. The changing phases of the moon each month guided eartlier maces, and during the centuries in which succemive Csesars ruled the world from Rome, the numbered days of each month sufficed for ali the uses to which we apply the days of the week. Monthly dates did not then have different week-day names, as the zeven-day week was
not copied from the amall Christian community until about 350 years after Augus. tus had jumbled the months.
Constantine the Great, after observing the many practical advantages the Chris. tians derived by observance of the Sabbith rest every seventh day-which produced improved health and strength, brought freedom from nervous stress and resulted in longer and happier lives and capability to do more useful work-decided to entablish the recurring week of seven days throughout the Roman Empire as the most permanent benefit he could confer upon humanity. His great power and noble character carried that greatest culendar boon for all generations into world-wide operation.
9. The manifold advantages of the ge form deservedly outshone the one disedvantage it created in neceswitating the alteration of the week-day names for every one of the 365 culendar days each vear. This change is due to the fact that th. 365 avs constitute a year of fifty-two weeks, pl : s one odd day in ordinary years and plus two odd days in leap year. These two days respectively push the week-day names forward one day on each of three years and two days on the fourth year as shown below.

The CULPRITS "Odd-dar" and "Leap-day"
"BUTTING FORWARD" our DAY-NAMES for DATES "PLAYING THE MISCHIEF" by and Yeik.
Yet we complacently nobmitt to the confurion and lons canaed by thone conerunsions-iontead of looking beblind to find the enuse of the trouble, and then pramptly reparating "thote troublecauring Dasi" to enable oach day' belouging to ench recurring dato. may alwaye mort oanily identify to parmanont day-aame
Julius Caenar friled to reatie
Equal Months, wben ho had not tha week, now ro-slicing every month use of Constcatine-the-Great cowforred the ever-mpiceme sabzen

M点 Angustus. He moved Feb. 29 to Nov. 31 to Dec. 31, to satisfy hin overweening pride in having 31 Lengthe of MONTHS imponed That made haff-years nnequal.

 Wnicking values of dates and months. 7 th, 14 th, 21 eng ang on the
 35

 4 Complite

 I I

 . | 8 W | $\begin{array}{l}\text { Sat. } \\ \mathbf{M}\end{array}$ | $\begin{array}{l}\text { No more un-equal } \\ \text { months after 191. }\end{array}$ |
| :--- | :--- | :--- |

 20 N
20
20 S

 $1-1$ 3 In that nnwarrant4 ahle and nonsensical
5
re-shnffie, Angustus
6
fixed 7 months with
7
31 days each, thua $\begin{array}{ll}7 & 31 \text { days eacti, thua } \\ 8 & \text { npsetting the alter- } \\ 9 & \text { nate segnence of } 30 \\ 10 & \text { snd } 31 \text { days fixed hy }\end{array}$ 11 Jnlius Caesar. Bnt

 21
22
trantily fixed for the
23 Romans, they hed
not the changes of

 Lengths of MONTH8 from

 RQUAY MONTH8

In the Year 1582, POPE GREGORY the XIIIth ALTERED the JULIAN CALENDAR to the GREGORIAN, for Europe.

[^2]
Pope Gregory the XIIIth Misced Hia Greatent Opportunity

As Plate 11 demonatrates, Julius Cactar began the Year 1 of his "Julian" Era 9 days after nature's year ended on Dec. 22nd. His Jan. 1st, then necessarily located by the new moon as the widest known indicator, was where our Dec. 3 1st is.
Next Augustus Caesar, vide Plate 12, moved Nov. 318 st to Dec. 318 st , thus perversely inserting the 10th day between Nature's year-end and ours.
Fortunately that defect can very casily be remedied, by leaving out the last 10 days of the Pre-Reform year, as Pope Gregory the Great co readily skipped from the sth to the 15 th October, 1582, as cartooned opposite.
The factor that appears to have retarded the success of Pope Gregory's Reform was his failure to readjust that reforming year'send to accord with Nature's indication on the Shortest Day, by closing up the 10 days between Dec. 22nd and January 1st, which all Europeans could have better understood and would have readily accepted as the natural adjustment of the year.

Pope Gregory the XIIIth's retrograde terminal demand appended to his right decree to leave out 10 days aroused opposition and retarded that reform, by his misfit proposal to divert the Church's "New Year" from Christmas (Dec. 25th) to Jan. 1st, to accord with the Julian New Year, which would have been better reverted to Dec. 23rd to follow Nature's year, alwayz expiring on the Shortest Day-Dec, 22nd.

By sundering New Year's Day 7 days further away from the old Yuletide (Dec. 22nd), so dear in home-reviving memories to the stalwart Protestants of Northern Europe-harm was done to that wellintended Reform.

That was unfortunately pressed by the Roman Catholic Heirarchy during the then current Anti-Catholic Reformation period, when it naturally aroused the suspicions of Northern Europe that some ulterior ecelesiastical advantage was being sought by the Papacy, when apparently the better course would have been to have ended 1582, as the year of Calendar Reform, on the Shortest Day instead of increasing the 3 days lagging of Christmas behind Nature's year-end by 6 days more to end our years on Dec. 3 1st.

There was no basis for that suspicion which caused the Protestant parts of NorthWestern Europe to delay the revision of their Calendars till 1700, when 11 days
were dropped out, as Great Britain and Ireland last of all leff out 11 days in Sept, 1752, after experiencing 170 years of dualdate rectonings in European trade.
Western Europeans trading with Russia and other Eastern nations of Europe and Asia now differ 13 days, because Rusia, Greece and the Greek Church countries of Bulgaria, Roumania, etc., still persist in ignoring the Gregorian adjustment-which thus so largely failed, because of that lack of discernment entailing the forcing of the civil year further behind Nature's year-end.

Pope Gregory and the Vatican rightly left out the 10 days, but made the mistake of expunging them from October, instead of adjusting the Gregorian Year's-end to close with Nature's Year on the 'Shortest Day," and permanently Fixing Easter.

While none of the nations had any serious difficulty in leaving out the 10 days at any period of the year they chose to adjust by new Calendars-although printing was very. rare, and only in its infancy-they did not like the idea of closing out the 10 days in October, because neither their wishes nor convenience had been consulted; consequently France, while convinced that 10 days should be left out, decided to assert its independence by calendaring the roth Dec. as the 20th.
The "Low Countries," now Holland, Belgium and parts of Germany, for like reason more appropriately decided to eliminate the last 10 days of their year by naming the 15 th of Dee. as the 25 th for Christmas Day still ended the year in most European countries.
In England until the Norman Conquest in 1066 A.D., they began their years in some Saxon Kingdoms on March 25th and in others on their old Yuletide, December 25th.

Similarly in Germany, till 1544, their years began at Christmas.

From the earliest Christian period the years, according to which Papal Bulls have been dated, have always, as now, commenced with Christmas.

In Rome, the greater part of Italy and Southern Europe, the years began on December 25th, until Pope Gregory reformed the year in 1582, when he proclaimed the ist January as the 1st day of the year (vide Cath. Ency., Vol. 111, "Chronology").

EASTER and ALL FESTIVALS can EASILY be FIXED by U8E of the "8KIP-DAY"

Pope Gregory the XIIIth had to overcome the Pre-Reformation ignorance and prejudice prevailing among the masses of European vassals in 1582 when he unfortunately decided to regulate the fluctuationa of Easter "by establishing a fictitious moon, "which is purposely made to depart from "the place of the true Moon, in order to "prevent the coincidence of the Christian "Paschal Feast uith that of the Jews" (ex "Calendar" in the Century Dictionary).
Had Pope Gregory been able to FIX EASTER, as the forth-coming International Conference will almost certainly recommend the Nations to do, he would have conferred a yearly world-wide boon upon all Christian people.
That Conference, by bringing Fixed Easters into operation will thus remove the worst cause of disputes, controversies and dissensions which has afflicted and sundered Christian Churches from the earliest timen.-Therefore it is all the more incumbent upon the more enlightened leaders of the Chureh Councils in this 20th Century, to notify the President of the United States in advance for the impending Conference, of their willingness to accept FIXED DATES for ALL FESTIVALS.
The two great reasons which probably prevented Pope Gregory from fixing them in the year 1582 were, 1st, the then general use of the Moon by the common people for locating Festivals, Feasts, Fairs, sce., before printed Calendars became available; and and, the secret pressure exerted by the privileged persons who held the highly profitable monopolies for providing Calendars in different countries-and were partly dependent upon the Vatican for information which was indirectly of financial benefit to the Chureh.
Now all Church difficulties in those directions have been removed, as readers of pages 13 to 22 of the "Rational Almanak" may see.
Even the Church of England's custom of varying the Psalms for different dates can be easily met, as "R. A." page 16 shows, by applying the numbers of the proposed months, plus 7,14 and 21 to use on the proposed fixed Sundays.
Since the writing of that advocacy for Fixing Easter 19 years ago, the proposal has becn weicomed by the masses of the people in nearly every country, in terms similar to the following, reprinted from that
leading British newspaper, "The Times," on 17th April, 1914:
"Is it not more evident year by year that "a deplorable blunder has been made in fix"ing the first national apring holiday on "the most solemn fast day of the national "Chureh? In almoat every pulpit today "(Good Friday) mevere references are "made to holiday folk who spend the day "in the open air. In reality a great injury "is done to the closely-pent population of "the town by ear-marking one of their rare "days of rest for a devotional celebration wo "highly pitched that but few comparatively "can set themselves in tune to it.
"It is entirely untrue that the bulk of "the holiday crowds are either hoatile or "indifferent to the purposes of this great "memorial day. On the contrary, it is real "distress to many earnest religious people "to be branded as disloyal because they "make use of an oppontunity for getting air, "exercise and variety in their cramped lives.
"They know in their hearts, whatever the "preachers may say, that they are doing no "wrong, yet it sits heavy on them to seem "to set their Master at naught. The in"convenience of shifting the date of the "public holidays at this season to meet the "tradition of the Church has frequently "been commented on, and an early Easter "is generally unpopular.
"It would obviate the religious difficulty 'and suit public convenience if the public Choliday were fixed for a late date in April. "Few but the leisured attend such services "as last from 12 to 3 on that day; for the "others early morning and evening services "would suffice. The poignant contrasts "now observable would be done away, the "Church would no longer be scandalized "by flagrant disregard of a sacred anniver"sary, and the faint touch of guilt which "for many conscientious people damps the "joy of their spring day ir: the open would "be wiped away. Why should not the "April public holiday extend from Friday "to Monday inclusive?"

The Catholic Ency. III, p. 160, reads:
"The Council of Nicoer is believed to "have determined that Easter was to be "celebrated on the ist Sunday after the 1st "Full Moon which follows the Spring "Equinox.-According to this Rule, which "has ever since been accepted, the earliest "day upon which Easter can fall is March "22nd and the latest April 25th."

> durin
most
sarily
only

Another of the ABSURDITIES and ANOMALIES of our CALENDARS causing "Father Time" come hasardous jumpa, apoiling our holidays and church finances.

Plate 14.-How the Dates for EASTER are un-reasonably forced to CHANGE

The italic numbers down the right side record the number of days Easter jumps back in 1913, 1915 and 1917, and the boider 20 and 19 days denote the leaps forward. The left side records of the average temperature at Londoo (England) during the last thirty years prove a difference between early and late Easters of seven degrees, while the disparity in daylight is more than two hours per day during the 36 days of range between March 21st and April 25th, when the change of temperature is most risky for the ever-increasing number of children who then delight to put on their lighter and brighter dresses. That drifting is injurious to the vast number of families whose wage-earners necessarily plant potatoes, etc., during early Easter holidays, after which frosts too often impoverish their crops.

Surely we need a more remsonable and better way than the antiquated Lunar method which not only shifts Easters so needlesaly backwards and forwards, but also drifts Whitsuntide and all the other Movable Festivals contingent upon it, so that the dates for legislatures, colleges, schools, law courts, etc., are drifted inconveniently, and those longest public holidays generally spoiled by cold and wet experienced during early Easters. They do not benefit anyone, but inconvenience us all and risk health.

The remedy suggested is for the governments to fix the date permanently through the International Conference which will decide whether the mean date of present fluctuations (April 8th) or April 23rd, or other date is the most advisable to ensure international agreement and concurrence of the churches throughout Christendom who now realize that moon-wandering Easter-days do not truly locate the Anniversary of the great event they are intended to celebrate, as a fixed date could better do.

EASTER and ALL FESTIVALS should be FIXED for the GENERAL CONVENIENCE Of HUMANITY.

The following quotations taken from the Catholic Encyclopaedia are instructive:
"There can be little doubt but that the "early Christions felt as we do the incon"venience of the moeable element of Easter, "Sc., in the otheruise stoble frameu'ork of "the Jnlian Calendar.
"But we have to remember that the "movable element was established there by "right of prior occupation.
"Since the Jewish Christians hod never
"know'n any other compntation of time than
"thot based on the lunor month the only "woy which conld have occurred to them "of fixing the anniversary of Our Saviour's "Resurrection unas by referring it to the "Jouish Pasch.
"Instead of determining that the and day "after the Jewish Pasch (17 Nison) should "alwnys be counted as the anniversary of "the Resurrection, independently of the day "of the week upon which it might fall, the "Apostles appear to have settled (thongh "in this we have very little positive evi"dence) thmt the Sunday was to be kept as "the Christian Pasch which fell within the "Azymes, or days of unleavened bread, "whether it occurred at the beginning, "middle or end of the term.
"This arrangement had the drawback "that it made the Christian Feast depen"dent upon the computation of the Jewish "Calendar.

THE MOON-WANDE累INGS OF EASTER
Till Jerusalem was destroyed in 70 A.D. the insertion of the 13 th (intercalary) month by the Jews, about each 3rd year, followed no fixed Astronomical rule, but the Sanhedrin decided each time whether the year should be embolismic or notbeing influenced in their decision, not by Astronomical conditions alone, but by the forwardness or backwardness of the Sea-sons-to prevent their Paschal, 14 th of the Lunar month Nisan, from arriving too early, as corn in the ear and lambs for sacrifice had then to be presented to the Priests.

It was the difficulty created by that changing system, and the impossibility of accommodating it to the Jmlian Chromology, as adopted throughout the greater part of the Roman Empire, which led to those troubles about the determination of Easter (the Poschol Controversy) that
mearly rent asunder the corly Chrlstian Chureh.
"However, though Tertullian declares "without nisgiving that Christ suffered "upon the 2sth March (a tradition per"petuated in numberless Calendars through"out the Middle Ages) this dote was err"tainly urong."
"Moreover, it was probobly quire im"possible at that period. owing to the arbi"trary manner in which the Jewish Embo"lismic Years had been calculated, to calcu"late back to the true date. (See Easter "Controveriy.")

Further, ohat standard authority, the Catholic Ency., III, 160, records: "When the destruction of Jerusalem in 70 A.D. practically deprived the Jews of the Dispersion of any norm or standard of uniformity, they probably fell into eproneous nnd divergent reckonings, and this in turn entailed a difference of opinion among Christians"-as to the true date for Easter.
"If it had been possible to ascertain in terms of the Julian Chronology the day of the month on which Christ actually suffered is would probably have been simplest for Christians all over the Romon world to celebrote their Eoster (as later on they celebrated Christmas and St. Peter's Day) mpon a fixed anniversary.
"Yet this, be it noticed, would have interfered with their newly eatablished position of the 'Lord's Day' as the weekly memorial of the great Easter Sunday, os a fixed feast would of course have follen upon all of the days of the week in turn."

That italic phrase, together with historic records concerning the origin of the "Easter Controversy" and other disputations which have too long retarded the usefulness of various sects, indicate that most of their bitterest controversies could have been avoided if any of their Calendar constructors had invented the "Skip-day" to establish fixed week-day names throughout the 365 days of every year, as now proposed to benefit everybody.

The "Skip-day" name suggested herein is for the last-day in each year, to be observed as a duplicate Saturday between the end of the 5 and week and Sunday beginning all New Years.

"Father Time suggeats where we should FIX the "SKIP-DAY; " to follow the last week-day of December and thus close each Civil Year with Nature's Year on that "extra Saturdsy" to end 1916 Dec. 31, or 1918 Dec. 22, instead of Sunday
"The Sabbath was made for man, not maa for the Sabbath." Early Christians moe-1 it, as wes can, to fix permaneat dates for Snndays and weck-days, to benefit ceery human beiay. cvery day.

The simple adoption of the "Skip-day" duplicate Saturday Holiday is the key hy which we ean lock ali namen for days, weets and months to recur on Almanaks and Calendars, as surely and eanily as the seconds, minutes and hours are recorded on our clocks and watches, upon which they would be duiy recorded, to aave us from all Calendar-ereated worriea.

Let us make the "Sklp.day" the jolllest of puhiic Holidays, to be ceiebrated by all nations as the year-end Featival, to encourage peace and good will-on the duplicate Saturday proposed to permanentiy ciose every year, and thereby provide the much needed day for "stocktaking" and family re-unions. That would hlend and eatend both the Chrlatmas and New Year's Holiday with the week-end added most heipfully for both husiness and soclal conveniance.

Either December aand, agth, grat or January rat wonld do, hut as Natura', Year ends on December a3nd, that date is heat eapecially as nations naing the Gregorian Calendar would thereby be meeting more than haif way two-thirds of the world's population who hava been uning Lunar Caiendara, aiso the 1 so,000,000 Rumians, Greeik, Siave and other racet acill using the Julian Calendar, as fixed by Juliua Caesar, now 13 days behlnd oura.

That suggested nine days' Reverion to the "Shortest Day" (lodicated hy the long arrow reachlag from the grat to aand of December) whilat not essential is very desirahle. It would be final for ail time and far easler than the 10 to 18 daya' Revaralon, made by Pope Gregory the Grearis Reform in the years 8582 to 1752 reapectively.
 UNEOUAR MONTHE © Ammpertete the NEDDI 81 CHANOLE af WEEK.DAY NAME fer EVEAY MONTHIY an YEARLY DATE-matrawod widh the MUCH MONB COK
am Nixati-gev

 Tha dates are arranged ns la 2gat, beginalog wheh the wast. Tha chick hlact llinee show the Grolen wooht at tha ends of tha monthe. It will be seen chat the galy unbroken lina comee ot tha ead of 8sptomber, which was the ont monch lo igis that ended with tha wrot.

January rat, igit, Wieo on a 8unday. In 1912 II wis on Monday, and tha othar day names all through the montho of January and Fsbruary ware puahod forward ase day. 2 gis belot lsapoyoary tha Insortlon of Figbruary agth eaungd nll later weel-day namea to move a secsad dny.
 hece coloivated ns an oxtpa saturday "Shij-day" hsilidyy for stsch-tahing, ett., and "Leapolay" also thus ased-all the woeh-dny names wonld hecome germanently afixed to the sther 964 detes es go wochs in ally yonrs-vide lop-line and manthly drics aboect bnt oasier and hetter nrrnaged cohen eqnally divided into 13 manths of d-wochs cach, as condensod helow for the wehole goar.
The ossy, pormanont "YEARAL" proposed to REPLACE our CMANENE CNLENOARS

8. IAN
2. Me
3. man
4. ApR
t. may
a. IUM
 Eegter with all F

Plats 16.-Mr. Couworth proposeo that our envient month of 4 complete weeke (Feb, rgra) hs adopted to masoure evsry month. Iootead of twolve mooths thirtcos ars chowo. Ths extra one lo oamad "Sol." Of cource ths nams that wlll be njpplled to thie now month will fionlly be decided hy the Poweri ln Conference, to ouit that mid-cummer month hetweet June and July.

63
Un-equal Moathe defer Pay-days and Rotard Circulation of Money

Origin of the Present Proposals to Reform the Calendar

10. The monthly dates fixed by the Cersars serve as a permanent register over which the week-day names have to be reshufled every year hy the calendar-makers, who provide the printed calendars ready in advance for our use. We merely use the dates accordingly. When the almanakmakers insert the 29th of Fehruary in leap years we accept it without quewtioning either why it should be allowed to inflict the injustice of forcing malaried servants to work that extra day without pay when it should be a public holiday, or why it and the 36sth day should continue to drift our Christmas and national holidays into the middle of weeks, thus repeatedly, each year, depriving vast numbers of toilers throughout the world from deriving that extra happiness they could always enjoy if those holidays were permanently located on Mondays or Saturdays to link up with Sunday's restful extension.
11. The present turmoil of unequal months with changing day numes was accepted by everybody with complete resignation an an ineritable consequence of the year's length being subdivided by the week of seven daym, until the writer (then of York, England) in the year 1895, was impressed by the large amount of needless work and inconvenience caused by the change of day names for each monthly date and the fluctuations of dates for Easter, national holidays, fairs, markets, etc., when all should be permanently fixed.
12. He carefully considered the history and various factors blended in our calendars with those of other nations, knowing that every person in the civilized world is concerned in any proposal to simplify our time-worn calendars. Next an article was written demonstrating that by simply recording "Christmas Day" without either a week-day-name or a monthly-date, and similarly designating "leap day" by its name only, we could by locating them an dies non or general holidsys, win the everlasting convenience and facilities of an International Fixed Almanak and rid ourselves forever from the numerous and constantly-recurring doubts and worries concerning dates, which often cause loss and trouble. Because our calendars annually shift the week-day names for dates, we thereby disorganize periods of monthly payments, vitiate comparisons of busines on periodic records, break what should be the regular sequence of sotation duties, complicate business, eccounts, etc.
13. The 36 sth day ending our year was first considered as the suggestive Skip-day, but the ioternational advantage of locating that key to calendar reform nearest to December 220d, when Nature ends her year, was found to be by far the most advisuble, in view of the fact that the adoption of Nature's year-end would overcome all racial, religious and international prejudicen, whilst a much more practical advantage can be gained for all humanity at the end of the yeir 1918 now that the new Chinese government have determined to abandon their ancient calendars (which moonwander like thowe that Julius Cemar abandoned) and establish a fixed one, be cause the latter has now become a buaines and national neceasity to them.
Therefore, the Chinese Government are tentatively starting to use our Gregorian Calendar for Official documents, to prepare the way for the later change of the National Lunar Calendur-Books which have by far the largest circulation in the world. -They contain details for agriculture and gardening usea, as their sowing times vary yearly on their shifting moon Calendars.
14. Their drifting calendars vary like our Ensters, which fluctuate five weeks, nccording to whether twelve or thirteen new moons occur in the Christian ecclesiastical year. Owing to these fluctuations there were oniy fifty Sunday collections in 1907, but fifty-five in 1908. No wonder that ecelesiastical authorities, both Roman Catholic and Protestant, are now favoring calendar reform, especially as the writer, when publishing his pioneer book, "The Rational Almanak," on its page 16, outlined an easier way to vary the monthly Psalms.

All nations are now feeling the urgent need for equalizing our months into complete periods of four weeks each to permanently harmonise each recurring monthly date with the fixed cycle of week-day names, hy immovably calendaring fixed week-day names for each of the 364 days in the 52 weeks of every year, which should be rearranged into thirteen months of exactly four weeks ench.
The new model or thirteenth month would be inserted between June and July without disturbing tbe sensonal indications of our present names for months as easily as the 29th of Fehruary was in 1912. February 1914, being the exsiest, is the model all nations will adopt, because the dayz of the week will always perfectly harmonise with the dates of every month, thus:

Clocks and Watches May Calendar Both Current Day-names and Dates

WeExs	1	11	111	IV
Sundays --	1	8	15	22
Mondays .-	2	9	16	23
Tuesdaye --	3	10	17	24
Wednesdays	4	11	18	25
Thuredays -	5	12	19	26
Fridays ..--	6	13	20	27
Satur days--	7	14	21	28

All nations now use the week of 7 days.
15. This change can be very easily accomplished during 1917, 1918 or 1919. It will be welcomed by the Chinese, Japanese, Hindus and other races of India and Africa who still use the moon-wandering (lunar) calendars, which the rapid progress made by the national development of their civilizations is impelling them more quickly to abandon, because their out-of-season-drifting calendars are now proving inadequate for the intensive agricultural and industrial development of twentieth century needs.

CHINA MAY LEAD

16. What the Chinese government decides concerning the fixity of equal months, exactly divisible by complete weeks registering fixed week-day names for the same monthly dates throughout the year, will most probably be adopted by the abovementioned races, who together number 62 per cent. of the population of the world. The Greek calendar used by Russia, Roumania, Greece and others serves about 10 per cent., while our Gregorian calendar (which left out eleven days to correct errors in leap-year adjustments since Julius Cesar's reform) only serves about 28 per cent. of bumanity.

In cohsidering a permanent international fixed almanak we should bear those proportions carefully in mind.
Gregorian Calendar nations 28 per cent. Julian Calendar (Russia, \&tc.) 10 per cent. Asiatic and African Calendars 62 per cent. using 13 th month calendars every 3rd year.
17. How very easily the proposed thirteen months of four weeks each can be established is evidenced by the Chinese calendar for last year, when their extra (13th) moon was intercalated between June and July (exsectly where, nearly twenty years ago, the writer proposed to locate it), by simply repeating their June a second time. As their New Year's festival spreads over two days, that will readily absorb the "skipday" their and our New Year's Eve.
18. If the Chinese government altered to the Gregorian calendar now, with all its defects, they would inflict needless confusion on their $400,000,000$ countrymen, who in about four years would be again unsettled by altering to the International Fixed "Yearal," which most readily meets their permanent calendar needs and would be easily understond by all, because both the week-day names and monthly dates would be continuously cycling in unison as indicated on the outer edges of cheap dollar watches, as shown below. The Chinese calendar would then be easier every day, at on waking they would see at a glance, not only the time, but also the day of the week and month.

We, on the other hand, have to wonder every morning whether we can rest longer, if it is a Sunday, or whether we must get up for a work-day. After reflecting what day yesterday was, we deduce what today is, and then estimate, if we can, the day of the month, or find it on a calendar.
Ths "YEARAL" is appllicable to CLOCKS and WATCHES, the "Day-poinlsr" maving like tha hand if a csnier-seconds watch, r-ath per day, indicated by Day-lansrs and Monthly-dalsa circisd round sijher the fronl ar back nf watchss which wiil lhsn record complste tims.

Plata is.-Thit in a furthar iiiumratinn nf the great convenisnce that wiil be a fealurs nf the rsformed caiendar aa augerisd by Mr. Cotswarth. If rapresents an ordinary watch-face with a special hand added. (In nrder to mate the diakram more ciear the unual hour and minula hands hava been amitted in the drawing.) The new hand is cailed the des pointer. On rining in the morning and looking al such a. Watch ne cloct the observer can 1 gll al plance whal the time it, the day nf the week. the dale, and which wask of tha month it is.

The WEEK, its ORIGIN and SOME of its CHANGES

Although coneludve historic proof does not take us beck further than tha Igypian planatary mamee for thair 7 days of the meol, the ladiruct evidomeen of the carlieat revords in Biblical and other Bitstern writings indicate that at public asecmblages had to be arranged at Full and Ne 7 Yoons, the ate of Quarter-moons followed approxmatoly en 7, 7, $8,7,7,8,7,7,8$ day, th which the 7 ie fas predominated thot after star-observing prieztr during many geaeratloas had watched the ceasonal proyreen of the fixed 7 Btart of the Plough in the North Sty, they thereby entabliahed tha frod rotation of the 7 daye wook at the Chincee and primeval races of India old.

The Exyptlans keew of more planets than 7, and eounated to 10 .
The Jews moved the Sabbeth from Elaturdiay to Sunday, whopee the Christinas again moved the Eabbath to the Anciont Expptian Monday.

ORIGIN of the WEEK-(Vide Cath. Ency. III, Page 158.) "Our week of 7 "days is derived from the Egyptian system "of obverving the 7 most apparent planets"Saturn, Jupiter, Mars, the Sun, Venus, "Mercury and the Moon-in the order "of their periodic times (Saturn requiring "the longest, and the Moon the shortest, "time to complete their round of the "Heovens). Beginning with the planets in "order, the Eeyptians named the days by "the planet then pasuing during the ist "hour of ench day" of 24 houre, 7 of which formed the final weik Egyptian astron-omer-priests had long before derived, thus:
"By ist Hour ist day named Saturn"
"By 25th " and "" Sunday"
"By 49th " 3rd "" Moon-day"
"By 73rd " 4th " " Mars"
"By 97th " 5th "" " Mercury"
"By 121at " 6th " " Jupiter"
"By 145th " 7th " "Venus"
"Hence, apparently, Europeans derived "their Latin names for the days of the "week, which are still retained-except "Samedi (for Saturn) and Dimanche (for "Sunday)-in modern French and other "Tongues," while Saturday, Sunday and Monday still are used by the Anglo-Saxon Races of Britilh, German, American and other Nations.
"Those names were often used by the "early Christians, as instances hv Justin "Martyr.
"The special honor early Christians paid "to the Sunday (dies solis) coupled per"haps with the celebration of Christmas on "the day designated the natalis invicti "[Solis], may have helped later on, to "produce the impression that the Christians "had much in common with the wor"shippers of Mithras.
"Probably ot first most of the Christians "were Jews and as such they did not wholly "withdraw from the Synagogue. The "early Christian Sunday must have been "rather a prolongation of. than a substitu"tion for, the old-familiar Sabbath.
"But the observance of the ist day of "the week became distinctive of Chriatian "Worahip. St. John (Calose II, 16) "considered converts not bound to obverve "Jewish Festivals, or the Sabbath proper.
"That the enrly Christians kept with "special honor the anniversary of the "Resurrection itself is more a matter of "inference than of positive knowledge."No writer before Justin Martyr seems to "mention such a celebration.

Accordiang to Dio Casius (Ency, Britt. IV, 665a), "The Egyptisns commenced their weeks on Saturday. On their flight from Egypt the Jews, from hatred to their oppressors, made Saturday the last day of the week."

That pre-Jewish Egeptian origin seems further evidenced by the following excerpts from the Ency. Britt. XXII, p. 654: "The first writer who mertions the name of Sunday as applicable to the Lord's Day is Justin Martyr (about 140 A.D.). This dexignation of the 'first day of the week,' which is of heathen origin, had come into general use in the Roman world chortly before Juatin through lack of knowledge appended these well-intended but misleading words, "It is the first day in which God made the world."

He was alluding to that framebork of 7 days the writer of Genesie I uped for his concise word picture of Creation, which could not be liternl, nor then understood without such a setting within the inevitable 7 days all Races naturally derived as the fixed week because the nearest number of days in each Quarter of the Mnon's 29.53 days cycle divided by 49 averages 7.38 daje.

But as whole days only couid te counted, and the 4 Quarters of the Moon were the only available signs the people at firt had as guides to distinguiah the days in euch month, the week of 7 daye wais suggerted independently through the Moon's phaves to ench Race of mankind, who at different perinds developed separately beginning days for their featal cycles of 7 daye.

Some early records indicate that as early

Our Sundays, neither observed on the Jewish Sabbath, nor true to the' "rat day of the week" early Chriatians used.
men for mutual safety asembled and feasted encb "new-moon" - when nights were darkest and even priestly leaders were uncertain upon which day thas puzzling phenomenon might occur between nightthey developed the enay-roing congenial plan of duplicating that inicial reat-day of each month by a and rest-day; making the New Moon Feast last 2 daya, as we make Boxing Day, Dec. 26, the complement of Christmas Day, and the Chinese still spread their "New-Year's-Day" over 2 days, beginning with the New-Moon.
"In that case one exceptional week with a 7 th working day" (naturally a duplicate Saturday) "would occur only once in 2 moons." Hence we see how naturaliy the 7 days became universal, while quite ${ }^{5 s}$ naturally different Races began their Restdays and weeks on different days of our weeks.

We need only refer to the fact that the Masses of Chinese still know the 15th day of each of their Lunar Months, by the fact of its being "Full-Moon,"-and then call to mind how earlier Lunar Calendar people derived their weeks from the "Quarters of the Moon," which cannot halve 15 days-to realize that in pre-historictimes the alleged 7th day of Creation has been often diverted from its 7 th recurring day being truly observed as either the original Sabbath, or the Christian Sunday, now needlessly changing its dates through every following year.

Further, it seems evident that if the $7^{\text {th }}$ Day Egyptian Priests had instituted the week at either an earlier or later date, Sunday would have been observed on a different day of our wrek.

I respectfully submit that the foregoing, with kindred facts, prove that our Week of 7 days was lite the Calendar, derived from the Egyptians, and that it is most probable that Moves derived from the Egyptians his record in Genesis I of the great Periods of Evolution he so concisely described as the " 7 days of Creation" by the Lord Jehovah, and the 7 days of the week with the 7th day Sabbath he, at Mount Sunai during the Exodus, so beneficially commanded the Israelites to keep holy as the Day of Rest then establithed by the 4th Commandment.
The words-" 6 days ahalt thou labor "and do all thy work, but the 7th dav is "the Sabbath of the Lord thv God: in it "thou shalt not do any work. thou. nor
"thy son, nor thy daughter, nor thy man"servant, nor thy maidservant, nor thy "cattle, nor thy strunger that is within thy "gates"-all cumulatively prove that tbe great emential was to ensure that all workers ahould bave a dav of comolete rest after working 6, as nearlv all civilized nations still find necemary to eoforee by law to recuperste and maintain the vitalitv of their people.
Therefore if, as herein suggested, the Nations unitedly oroclaim that the orocoper "Skip-day" chall be Internationally observed as an "Extra Day of Rent," that ahould not leave any cause for quibbling about any alleged breach of that 4th Com-mandment-provided that the next day be calendared as Sunday.
Apart from the arguments of the Jews, Adventists and others who maintain that our Sunday is not held on the true Sabbath, we have the following irrefutable records from the mout reliable "Catholic Encyclopacedia," based on the oldest Christian records and published by authority of His Holiness the Pope and the Vatican, who have the authenticating records:
Vol. XIV, p. 336, "Sunday (Day of the "Sun) is derived from Egyptian astrology,"
"During the ist and and Centuries the "week of 7 days was introduced into Rome "from Egypt."
"Our Sunday is not the same as the "early Christians observed-as with the "Jewish Sabbath, the observance of the "cearly Christian Sunday began with sun"down on Saturday and lasted till sundown "on Snnday. That method of reckoning "Sunday, from Sunset to Sunset, continued "in some places down to the 17th Century "but in general since the Middle Ages the "reckoning from Mid-night to Mid-night "has been followed."
These prove that even after early Christians moved their Sabbath rest from the 7 th to the 1st day of the week the Roman Catholic Church, when completely representing all Christians during the 16th Century, moved the commencement of our Sunday from iss old beginning at sun-down to mid-night on Saturdays, so that even the early Christian Sabbath has certainly been moved and is not now truly kept even in Rome, and is now further varied in different parts of the World, by many hourh, currently over-lapping Westwards on parts of Saturdays, and Eastwards on parts of Mondays.

The Earlleat Sabbath Cannot be Located, but Humanity Can Benefit by Fixing International Sundays.

"The obligation to rest from work on "Sunday remained indefinite for several "centuries-even after the Edict of Con"stantine the Great in 321 A.D. forbade "Judges and townspeople to work on Sun-"day-he made exception in favor of "aoriculture."

We should bear in mind the facts that the Christian Era was not introduced even in Rome until about the year 527 A.D. by Dionysius Exiguus, and our Sundays not definitely fixed until Alcuin's time near the end of the 8th Century.

There is not any need for the Nations to be inconvenienced by the suggestion made by the reverend advocate in the United States who has suggested the impracticable limitation of ordinary years to 364 days, in order that the 365 th day may be accumulated with Leap-day to intercalate a full week, in years varying from 5 to 6 years zeart, - to more dogmatically enforce obedience to that 4 th Commandment, the spirit of which would not be contravened, but helped by the adoption of the "Skip-day" as the International yearly "Rest-day" in Mid-winter, and the use of "Leap-day" as a Mid-summer Holiday in all Nations each "Leap (4th) year."

It is not possible for any group of persons to prove that they observe Sundays on the 7th recurring day after tie cosmic Creation, as some suppose. Accumulating evidences from ancient records recently discovered indicate that the 7 days recorded in the ist chapter of our Bible were added long after the original Book of Genesis was written, beginning with what is now part of Chapter II.

But, vide 9th Ency. Britt. XXI, 125: "It appears certain that the decalogue (10 Commandments) as it lay before the Deuteronomist did not contain any allusion to the Creation, and it is generally believed that this reference (to the 6 Days of Creation) was added by the same post-exile hand that wrote Genesis I. The older account of Creation in Genesis II does not mention the 6 days."

Saint Chrysostom, the eminent scholar, writing during that great formative period in which the Christian Church attained its greatest vigor, near the close of the 4th Century (in his "roth Homily on Genesis") "discerns the fundamental principle" of Rest, required by the 4 th Commandment, "to be that we showld dedicate one whole day in the circle of she week and set is
apart for exercise in spirisual shings." Vide Ency. Britt. XXII, p. 654

There also is quoted from the Apostolic Constitutions (VIII, 33): "Let the slaves uork five days; but on the Sabbath Day (Saturday) and the Lord's Day (Sunday) let them have leisure."

Yet we after nearly 1,500 more years of Christian civilization have not risen to that ideal, which would so happily remove the great blight of unemployment from our 20th Century harried and tension-driven people-who after the greater folly of European nations fighting each other to the limits of exhaustion, may more readily welcome the Saturday's Rest as well as that of Sunday, and begin a New Era.

All these link up with the historical and earlier natural evidences, together demonstrating that the naturally required rest of I day in 7 was evolved by human necessities and has been equally profitable in ennobling mankind on whichever day of the week it has been kept by any nation.

The foregoing with earlier evidences concerning the long series of patchy Calendars early races had to use before priest and early astronomers ascertained and made known the true length of the year, prove how impossible it is for any person to locate the original Sabbath or find how often it has been changed. But we can all benefit by fixing Sundays to permanent dates in future years.

The hyper-critical few persons who quibble at moving the rightly movable Christian Sunday, overlook the historic fact that early Christians established that precedent of world-wide benefit derived by changing the Sabbath.
Yet those few condone, without protest, the greatest Nations of the World, now ruthlessly slaughtering each other most on Sundays, when they should at least mutually refrain from killing their fellowmen wholesale on that then most needed "Day of Rest."

Such a little minority cannot reasonably expect to persuade the vast majority of broader-minded, progressive people in their own and other nations to believe that they should longer ignore the far more important present-day-need for one uniform International Rest Day, as a non-sectarian, natural, star-indicated Sunday, to replace the confusing and conflicting Mahommedan Sabbaths on our Fridays, Jewish Sabbaths on Saturdays and the later changed Christian Sabbaths on Sundays.

Our SUNDAYS currently VARY to SATURDAYS and MONDAYS in DIFPERENT PARTS of the WORLD

SUNDAY with ALE WORK-DAYE concurrenty DIFFER in DAILY TIME betwoen different parts of the world-while "John Bull" as the father in England may
 the notives of India are anloep at mianight, the atromucus citionas af the UnIted Bratos are whe ewate at neom, advecating the adoption of 4 woels, as the etandard length for all monthw, which weuld be exacty quartered by the woik, to the earliost Calendars contruetod by Contral Alsericans did far more conveniontly than the Unoqual Mantha imponed by Roman Caeatrs apon Eruropeans ever can.

Whilo the koen cattlo-raterrs and the herdamen in Argentina are proparing th roond ap their cattio, the peacefol Chincse are enjoying their well-earmed aleop.

Concoqueatly when part of them mi greto is they are contlauouly dofing in everincreating aumbere-they cannot talo thelr homelond sunday times with them, bet quite natmrally aceept the changed Sanday hours they find tia use af in the housanaen if the United States and Canade-withoent the alighteat tiage of detriment or centimentil qualm anfecting anyono.

It will be mach cealer to practically and reverontly obearve Guadays after thay becume parmanently EIXID by the Intortion of the clocing day ni the year as "Reat Day" or Phip-day," whleh will very helpfully tend th harmonles all Creeds and Natimns.
 around about 6 hours earlior daring March and september, bet only 4 houre earlior during June, althengh on the shurteat Day, Dec. 20ad, the change tu Mid-night mode sundey begh about of hours eariler.

World-wide Need for Non-Sectarian International Sundays

In reality their phantom cource of quibble concerning whicb of the 7 days was the original Sabbath, harka back to the untraceable myths, Moon and Star-time-dividingmethods used in prehistoric times, and the disputed removal of the Hebrew Sabbath as Hitzig indicates anent the Feast of Pentecost.

Those appear to be very trivial when compared with the present-day-need for the greater convenience and mutual welfare the non-sectarian "Yearal"-fixed Sabbaths would through unity confer mutually upon all.

We should bear in mind tinat the 300 millions of Mahommedans, with the greater numbers in China, have as much moral right as we to denire the Sabbath to be fixed on their "Day of Rest," and that as the proposed "Skip-Day" would adjust the proposed mutually FIXED non-sectarian 52 Sundays fairly round in yearly turn during successive years, to each of their old Sunday's recurring 7th days; there are good reasons for feeling confident that all Na tions and Creeds will be even more glad to adopt the proposed universally FIXED SUNDAY, than the millions of their emigrants now resident in America have been pleased to enjoy the benefits of United-rest on the uniform American Sabbath, to which they unitedly conform.

But obviously more beneficial results will follow the united observance of the same day's rest, especially where different Calendars are used by nations adjoining each other in Europe, Asia and Africa-in some of which countries 2 or more Calendars are in use, e.g., 4 in Egypt, Syria, Turkey, but more in India. See page 91 .

Now that this most simple calendar is practically available, the Chinese government will not long continue our confusingly varying months which will expose their government to criticism for causing avoidable confusion by patchwork, needing another change in 1919.

Our months oddly vury in their length, February usually having twenty-eight daye, but in leap year twenty-nine; our fourth, sixth, ninth and eleventh months bave thirty days each, whilst scattered in between them, without "odd" or "even" order, are the other seven months with thirty-one days each. That jumble is increased by the unstable factor of evervarying split portions of weeks, beginning and ending our months as jemonstrated on page 62; and the shifting factor that throughout every one of ons twelve unequal mentha the weeld-day namer are confusingly moved forward one day in ordinary and two days in leap years. The result is that
we cannot truly realise what a month is, though we work and pay by the month, and every month's output of labor differs from that of the month before or after it and from the corresponding month list year.

That is neither good enough nor sufficiently practical for Oriental nations, who know that 28 per cent. of the world's popuIation using Gregorian calendars and the 10 per cent. uing the Julian (Greek) cal. endars are being compdled by national and business requirements to improve them into one International Fixed Almanak.

That name is too long for practical use. The phrase "International Fixed Calendar" is longer. The words calendar and almanak are generally confused, but should be distinguithed, because the calendar records our list of day-names varying throughout every year, wherems the almanak is the permanent register of fixed positions for the same numbered days in every year, as shown by the plate displaying the four quarters of the British Clog Almanak.

I submit that it would be better to discard both the words calendar and almanak as names for our list of days each year, and more concisely use the name "Yearal" to express the idea of the year and denote the proposed fixed register for all the days in all future year, just as our American cousins replaced the two words "post card" by the simpler "postal." That may be more acceptable to other nations now using the general term "year," especislly the 62 per cent. of bumanity who (vide par. 16) do not use Christian calendars and therefore are less inclined to accept Christmas Day, 1916, as the date for initiating the "Diesnon"' method to secure a fixed calendar.

New Year's Day, December 3 1st, Christmas Day, or the "Shortest Day" (Dec. 22) would do for the "Skip-day," but the best results would be gained by selecting December 22 nd as the right day to end all years with nature's year.
It may be tactful and helpful to cordiality amongst all nations if Europeans would, as per paragraph i3, gracefully accept Nasure's yrar's end on December 22, 1918 , as the "skip-day" date to end the use of our clumsy day-changing calendars by observing that day internationally as "Skip-day" in non-Christian nations and as Christmas Day among the 38 per cent. of humanity using Christian calendars. The next day, Sunday, would then be New Year's Day, 1919. What would ntherwise be the 23 rd to 3 ist December would then be readjusted as the first nine dava in January, as Pope Gregory the Great aimilarly readjuated ten days by his reform in

Proposed Location of the " $8 \mathrm{kip-day}$ " at the Year'a-closing Day.
the year 1582. Then in all following years the permanent sequence in the propooed style of 28 -day months would be 4 fixed weeks in each of 13 months ending Saturday, December 28th, with the Skipday following as a duplicate Saturday on Nature's "shortert day," as the last day of the "year-al" or permanent year almanak. The Skip-day and New Year's Day should be prescribed as International Public Holidaye by Calendar Reform Legislation.

Such a transfer of the last nine days of December to form the first nine days of January would cause persons whowe birthdaye recurred, or contracts expired, during those days, to keep their ages, etc., true by adopting their corresponding new dates from the Permanent Comparative Calendar the International Conference would in that case arrange to circulate 9 daye in advance of those tabled and exemplified on the circular Calendars herein, and on page 76.

The six days now intervening between Christmas and New Year would by that method be diverted and Christmas thus linked direct to New Year's Day. Some persons think that the increased convenience resulting from that arrangement might tend to curtail the combined holidays, but the extra day usually granted for Boxing Day or New Year's celebrations would surely be continued on the Monday, so then the permanent holidaye would always be together as Saturday afternoon, Skip-day, (as Christmas Day on December 29th corresponding to our December 2and), New Year's Day and Celebration Day.

> Several practical advantages would result from that course, especially as Saturday has so rapidly grown in popularity during recent years, e.g., the majority of all nations, womenkind, could better prepare for these greatest yearly feasts and festivities when Saturdayi rather than Sundays thus precede.

The Celebration Day following New Year would be highly appreciated by the Chinese, Japanere and other Oriental na. tions, whose most joyous New Year's holidays would, like those of Europeans, thus be expanded by being linked up with the happiest week-end closing every year.

That would be better than the present cleavages of both Christmas and New Year's weeks now recurring during three consecutive years, alternating with three later linked with weekends which when Christmas and New Year's Days come on Sunday cause more lose of holidays.
But the greetest adempege would nies through the Calendar being thus perfected in fixed form for all mankind for all time.

Christmas Day as a duplicate Saturday would give greater freedom for joyous use, and the preceding Saturday as Christmas Eve would help to extend the holidaya.
Similarly Christmas Day wben celebrated by our Soorch friends as New Year's Eve would be belped by New Year's Day being observed as the Sabbath, though they may reasonably prefer to begin with New Year's Day as a non-Sunday "Skip-day." But all should with greater remon conform to what the beat widdom of the majority at the International Conference decides, even if that decition is not unanimous, as we hope it will be. True reformers are not laying any rigid plan before them, but prefer to fairly consider all and maturely select the best.
But before even a Preliminary Conference of advocates can wisely decide upon the best recommendations to make, it is absolutely necemary that the leading advocates should all receive ample notice to formulate the best suggestions or amendments from every nation. For example, it migbt be advisable to facilitate astronomical calculations by hopping back 10 days from Jan. 1st to Dec. 22nd to begin New Year then.-The writer, after 19 years' frank study of this great problem concerning the needs of not only Europeans and Americans, but also of the teeming millions in Asia and Africa who desire our consideration, respectfully submits that the proposed Reform would best be initiated by locating Sunday, the "Shortest-day" of the year 1918, on Dec. 22nd, as the "Skip-day" or "Year-day," to free us from all the numerous and incessant Calendar inconveniences which now daily impede all day-fixing arrangements.

If the final Conference considers it inadvisable to revert to Nature's year-end on Dec. aznd, then the simplest plen, I submit, would be to adopt the original proposal to establish the week-day order of the fifty-two weeks of the year 1916, divided in thirteen months of four weeks each, except that Sunday, December 31st, could better be permanently repiaced by Skip-day as a duplicate Saturday and public holiday. That 365 th day of the year would thenceforward recur between the gand Saturday of every following year and the first Sunday beginning all new years. Thus the present anomaly of a 53 rd week-day ending each ordinary year, and two s3rds in leap-years, would be abolished. Sundar would in that way begin all new years, months and weeks concurrently.
Each nation would then use Skip-day to cuicbraic both its nationai year-end festival and by mutual international greetinge promote peace and goodwill.

LIST OF PERSONS INVITED TO PARTICIPATE IN THE PRELIMINARY CONFERENCE, TO FURTHER THE REFORM OF THE CALENDAR, AT LIEGE (BELGIUM) ON THE 27th, 28th AND 29th MAY, 1914

The invitations were sent out on the 6th May, 1914 2 by the Bourse Industrielle de Liege, at the request of M. Canon-Legrand, President of the International Chambers of Commerce, holding their biennial meeting during June, 1914, in Paris, after those International Chambers of the whole world had voted, at both their 1910 and 1912 meetinga, unanimously in favor of Calendar Reform.

The prominence of the Belcian advocates of this worthy ceuse, is highly creditable to that gallant little Nation's discernment.
Louis Canon-Legrand, President du Comite Permanent des Congres, Mons, Belgium
Charles Christophe, Secretaire de la Federation des Chambres de Commerce de Belgique, Ghene

Beldium
Emile Jottrand, Secretaire Permanent Congrees Internationaux, Mons, Belgium
G. Lecointe, Directeur de l'Observatoire de Beligique, Brusels - . . Belgium

Th. Zech Levie, Editeur Braine le Comte - Belgum
Preident de l'Anociation Commerciale et Industrielle du Luxembourg,

- Belgium

Pasteur A. Rey, re Hors Chateau 19, Liege - - - - Belgium
John Soubre, Secretaire Chambre de Commerce, Verveiers - . Belgium
G. N. de Stoppelaar, 48 Chausece de Charleroi, Bruxelles - - Belgium

Guatave Armelin, c/o M. Camille Flammarion, Rue Casoini 16, Paris - France
M. Bigourdan, Membre de l'Institue de France, Paris - - France

Paul Delaporte, Ingenieur, 5 Rue Ballu, Paris . . . - . France
H. Dealandres, Directour de l'Observatoire de Meudon - - - France

Camille Flammarion, Astronomer, Rue Casini 16, Paris . . . France
Emile Hanin, c/o M. Camille Flammerion, Rue Cassini 16, Paris - - France
M. Hetier, Revue Scientifique, Rue de Chateaudun 4i bis, Paris - France
M. Lallemand, Membre de l'Inatitut de France, Paris - - . France

Dr. Cesar Amsler, Herzog Wilhelmatrasce 7, Munich - - - - Germany
W. E. Buesching, Geometre, Halle sur Sasle - - - . . Germany

Hr. Foerster, Directeur hon. de l'Observatoire de Berlin, Westend 32,
Charlottenburg, Berlin $-\quad-\quad-\quad-\quad-\quad$ Germing
Robert Heinicke, Roda, Saxe Altenberg - - - . . . Germany
Arnold Kampe, Hambsurg - - - - - - - Germany
W. Koeppen, Observatoire de Hambourg - - Germany

Emile Rosenkranz, Pasteur, Wald - - - - - - Germany
Moses B. Cotsworth, York - - - England
(Now of 23I-7th St., Westminster, B. C., Canada.)
A. Pearce, Member of Parliament, London :- - . - . England

Cecil Reddie, Abbotsholme, Rocester, Derbyshire - England
Frederic Black, Inverness - Scotland
Alexinder Philip, Brechin - - - Srotland
John C. Robertion, Kirkcaldy . . . - Scotland
Georges Stringo, Secretaire Chambre de Commerce, du Piree - - . Greece
G. S. de Clercq, Secretaire, General Maatcchappy, Haarlem - - . Holland

Ad. Bertrand, Astronomer, Santo Domingo, Burgos - - - . Spain
Alfred Georg, Chambre de Commerce, Boulevarde du Theatre, Geneva, Switzerland L. A. Grosclaude, Professeur, Boulevard du Theatre 2, Geneva - - Switzerland Fritz Reininghaus, Zurich - - - - Switzerland Von Hesse Wartegg, Consul-General, Lucerne - . - . - Switzerland
H. T. Henry, Overbrook Seminary, Philadelphia, Pa, United States of North America Carlos Hesse, Astronomer, Iquique, Chili - - - . . South America

ANALYSIS OF PART INTERNATIONAL REPRESENTATION AT THE LIEGE PRELIMINARY CONFERENCE IN MAY, 1914

Minimum total unrepresented. 1,562 millions, who constitute at least 89.3 per cent. of the total estimated population of 1,750 millions needing world-wide consideration. Of there there may posably be about 150 millions in Africe, etc., without Calendars.

The firte eroes-ilpe Total of Powibie Attendore ends by ahowing thet nuiy 50.7% of the worid'e population were lavited, neeriy ail from the Northwest Quartor of Europe, and se the writer and othars did not roceive their iavitstiona in theme, it is wident that fess chan 30% of the prople coacerned were tepresented leeving more than go\% of bumanity mareprssented, so iscer deeide whether they will conform to the recommendatione of that teo husriediy summoned cosfersene at liege.
The Internatioali Almanet Reform League much regret that evinieient mutice was not given to permit any represmetatives from Narth ar Soveh America, Abia, Arrica, ar Australocle to attend, with the nseful practical date and evidence they would ocherwise have been ahie to hrlag to further this mone mended worid-wide reform.
That regret ie more widespread becauee euch eminent adrocaten of the eaclont Caicadar arrangement in 83 monche of 4 Wecks an 8 ir Sandford Fieming of Ottima, Canede, and Don Carion Hems, of fquiqne (Chili) for South Amerien, have been exciuded, sichough it wili be later found that mont of the 90% of the warld'e representatives thue excluded will prefer to uie the 13 monthe "Yearal" at oullined harein.

Unfortunctely the inadequate potiee for the

Llege mecting led aome uf the latter to fear that a mulaigeting or promatore vote ito favor of 32 months mighe be obtaised of Liege before the vate 90% majarity of humanity have npportunity to record thoir preference for the 13 monthe nf 4 weaks esch.
ft is cincerely hoped that the European repreentatives at liepe will frame their reeommendatione whith dine regard to the neede of the plas-fold more mumerove popuiations who will arrages to have more adoquate and timely representation at the finel Oficial Conference nf feternational Reprecentatives, who will uifimately docide the boot form in permanent Caiendar for noivernai pese.
The fiternational Almanalk Reform League have aifraye striven to eature that the proposed Caiendar Reform de made cocnpiete and final lo the form that will be bett for all humanity, inciuding the highere civiliantione of Europe.
The futernational langue, while aiway civing apportuntty for the advocetes of aif phase nf Caleitsar Reform to expound cheir viewh desire to impreme upon all readere the mupreme importapee of sdrocating noif the beat of the nuetionte withch the mosil experlenced Exienuar Refarmers are able to eubmil for the final concideration of the fartheoming Olicial Internationa! Conference.
Approximate Distribution of the Greater Calendar Users preparing to $\mathbb{S}_{\text {ind }}$ Representatives to the International Conference

[^3]
Some Reasons Why We Should Adopt the More Convenions "Yearal"

f. EVERY-MORNINO, directiy wo wake, the tmperfictioes of our changing Calendare force anr mindo to recall some focident fin yettoeday's experienes to remember what day it wes, and theroby deduce what moroingem it it, wistilar it may be Buaday for lacger rest A gotwal lifo of so yoens is burdeoed by e8, ggo of those ealendar worrices which are ouly part of the penaity we wasta jo meotel enorly, bectume our ancestral Almanah-mahers falied to diccover this "Bhip-day" remedy to perfoce our sybtem of Time-rceorders (indiented by Freat-plate A) to drow us dhe dat's meme ta we look at our watches to eve whener is is "fime to rise."
a. EVERY-DAY we likemine repertedly have to hoot for the Calendar's drifting woehodayoames for moothly dater, whe dating letters, chooning days for work or appointrocta, etce A Elanee as the "Diy-poloterd" poiltiao oo the oloch cate esve thoe perplexion revorts after this Reform in carriod lato affect, sbout ryis. Thener-fortword we will nluxeys hirowe by the
 orewrred.
s. EVERY-NIGHT Caiondar dofects came trouthe when scioctiog days aod dates for soclal gatherloga, meotiogs of societion, Unioos, Clubs, Compaotes sad other asoembilles, thround the chasios of wegh-day eomes ooccustitatian such decerptions at the hest Tuesday after the 8 rat Monday," "the Brat aed third Wedneeday"inoteded of the clastly defioed permancot detes the "Yoarai" would indicats as the 3zd, fth and 13th day respectivaly In every mooth every year. 4. EVERY-LADY Incator her "Al-home" daye ls foreed to write or prlot such repections as "firne Wednesdayn causlog her vibitoes to search thalr Calsodaces to 300 " 00 what date It falle this moath." With the "Yearal" 10 uso, a dainty 400 the card would always suffice for all uolng that day-ra for the "secood Thues. day" aad so on-arving trouhle for all conerraed. The evital 280-deys'-period of child-henrigo weald meture 10 menths frem the date nntart indicetcs.
S. EVERY-HOUSEWIFE and HOUSE. KEEPER maintalning a family or Boardare, wifitr Inconvenlence and cometimes dlatres when 5 martet daya or Saturdaye oecur in one moath (as they do 4 times sach yoar), causlog either relucteot requests for "more mocey," borrowing, or gradual drifting lato Arroart aed Dobe Wo sbould not aliow the vagarles of our Calendaes to impose those indignities os our home-hrightenefs. Wi need eqail menihs of woche to rqualiar fimes of Engriang and Spond. ing-to ense end brighten the lives of ewarhers.
6. EVERY-PERSON drawlig Moochly Pay Is theo placed at similar diandrantage becaute our monthe vary from as to $\$ 1$ days long. The danger confrontlof ender-pald Glrls who have to pay for Room sod Bosed whan the sth Saturdaye recur, adds to those causes of tempta. rios and Dobt, which more extensivily sod injuriously affect untold myrlads of poor families who L.lcoseciously drift inten aresare with thsis grocary and othar traderi accounts, through months belag unequal, and hroheo irregularly hy washs.
7. EVERY-BUSINESS-MAN sufism uitimatsly from those Calondar-cteated "Bed Dohts" eccumulathg, a od the temptatioo of Retailera and others to speod too fresly after the sth Saturday la mmonth has temporarlly infated "Cash-oa-hand." Some Banhrupteies and much Loss resule. The fractions of wreks split between months, where westly aad bi-weshly wagos are pald, Impose impediments retardlor the ancertainment of Conts of Production and Monthly

Balances. They really add to the coce of living. Bualope-peopia whe pay wages every a wooks are Inconvonionced whes s pay-days oceur 10 one mosth, is In Jeovary, 1914 wheo thow who paid oa Thurdays, fridaye of Eaturday: had to pay 6 mecha' mages (for 49 days) out of si daye Lacorac, Mralolag credit at thelr Dacho.
8. EVERY BUBINESS, howoter large, is loJured by our Caloodar's ueoqual monthe driftian 24 to 67 merts-days loto differset months, as Iater described uoder par. ©5, where the Tahles printed aed referred to prove that tha Caleadarcaused Suctuatioes of Earaioge oe Brithoh Rali-
 hling on groek Exchasgee for meth entra profics.
9. EVERY NATION eaporlenees the above disadraotages and mort, causion incospatot, but avoldahla refervaces to Calcoda es i alterlog dates for acoembllog Lemiblaturen, Law Courth Coligese schoole, eter: oecensitating needione Praclamations movion Puhlic Holiday, Falre, Marktedaya, oex, end reterdiag that grocter circulation of mency thronghoat the commanity which will rome to henofin nit, when menthe of 4 wech briag regalar periode for every parplese.
ALL THE ABOVE INDICATED TROUBLE I8 CAUSED BY THOSE TWIN-DEFECTS DEMONSTRATED oo pagen st and 62-THE UNEQUAL MONTHE PROJECTINO BE. YOND FOUR WEEKS, AND THE ITM DECEMDER PROJECTING BEYOND THE 38 WEEKS EACH YEAR THUS ALTERING ALL FOLLOWING "DAY-NAMES," TILL IT 18 SEPARATED A8 "SKIP-DAY."
The astchilshed Churches asd people nsoerally are also lneoovoolenced hy Eabern Jumpiog as dapicted 00 page 39 aod detalled below:

Table 'A'.
Wanes of ehanotatle date eltomg eatyen. Whiteuntion and other movalie fititivale
Revalts of the present changeahle oysteut. taking for examplo Eapter and Whitsmatile 7 weokn later) as sypleal of the others:-

Why should these Feativals lemp forward 19 or overy third Yoar, and thounder aloag this 35 dayn rages through the full Moon's waderinga after the fxed Equinox ? Thero is 00 wound reacon for thite abeordity which matren all thene recurring Fentivala untinuly and unreal.

Mingocom mecuution tey Cuant

 (ANSI ond ISO TEST CHART No. 2)

Table " E "

CHANGES AGBED UPON

(a) The leaders of calendar reform throughout Europe, North and South America, Australasis and South Africa have become prastically agreed upon the advisability of recording the 365 th day of the year (wbether December 22nd, 25 th, 31 st or January ist is for the International Conference to decide), apart from week-day name in order to avoid the useless changes of week-day names now confusingly made through every month and year, thereby divorcing national holidays from week-end extensions now so much needed to brighten the strenuous lives of toilers in all nations.
(b) There is general agreement that the moon-wandering of Easter should be replaced by plan under which that featival may be held on the fixed day in April most convenient for the people's Spring holiday. The most desirable date seems to be April 23rd, where Easter Sunday occurs in 1916. April 23rd will probably become May Ist in the proposed International Fixed Calendar or "Yearal," and so link up with and enhance the May-day holiday.
(c) Whilat nearly all are agreed that every month should begin wit! Sunday and end with Saturday, there is some difference of opinion regarding the or ly two methods by which that advantage ean be permanently established, as readers will find compared opposite.
(d) The "equal method," which is gaining most adherents, simply applics February, 1914, as the best "standard month of twenty-eight days" to measure all month in complete weeks exactly alike, by diverting the thirteenth week of each quarter into one thirteenth month of four weeks to be inserted between. June and July-probably

That location would preserve all our better ideas of mooths and seasons, because the last two weeks of June and the first two weeks of July would become the new month, locating mid-summer. That season being the longest and most constant of all, no one would feel the change except as a benefit, because the re-adjustment as gauged by the first day of each present montb would taper off to nothing at the year's end from the fourteen days diverted from both June and July to the new month "Sol," as evidenced by the gradual ascent of the step-bars marking the Ist of each new month on the "Combined Calendar" (e) The "unequal method" requires five complete weeks to be allotted to March, June, September and December after allowing four weeks to each of other 8 months.
into
to be

bably

cept

77 Table C.

COMPARISON OF METHODS A,B,C,D \& E

Respectively Proposed to Siroplify the Months.

A and O divide 12 montins of 30 and 31 days Into Fired Quarter Yearn, each consisting of 13 weeks, with week-day names for the same dater of months of 4 weeks 3 ach, with fixed Quarter Y Y is designed to secure 13 equal months of 4 weeks 3 ach, with fixed Quarter Years, and week-days recurrigg on
the sarre dater every monthoE adds 1 week to D, making 3rd month of 35 days.

The Academic "B" Method would not provide the Requisite Conveniences

Some European Academies appear to prematurely favor the following variation of the " B " method suzgested on Table C's comparisons of the alternatives outlined in my 1909 paper read before the Royal Society of Canada, as reproduced on the preceding page, with the black rules, etc., added down the side.

The " B " section thereon displays the first 3 months as a typical 91 days Quarter of the yrar. The 13 weeks of each Quar-ter-year are suggested for division into 3 months, by arranging 30 days in both the 1st and 2nd months, with 31 days ending the 3rd month only with the last day of the week as Saturday-New Year's Day was in that case provisionally outlined as Sunday.

The academic variation suggested leaves intact the 30 days for each of the two first months of each Quarter of the year, and the 31 days for March, June, September and December, but would end only these 4 months with the week on Sunday.

Its advocates thus suggested that all weeks should begin on Monday, instead of the Sunday now recognized as the 1 1st day of the week-in order to locate New Year's Day as Monday.

The International Reform League has not been able to trace any adequate cause or justification for that proposed change in the beginning of the week, which would raise entirely needless difficulties, without compensating advantages.

We need only refer to one practical inconvenience that would handicap our wives, mothers and housekeepers most-just at the time they need most consideration, whilst preparing their best for the home-feasts and joys of Christmas and New Year's Day.

That academic, unpractical scheme to fix Christmas and New Year's Day as Mondays, would unfairly compel housewives and many others to buy earlier and do most of their cooking on Saturday (or break Sunday's Rest), inflicting staler food on our digestions when being most heavily taxed at the Year's-end.

That is not fair to our good folks at home and is not likely to be accepted by the Official International Conference.

Some of the academicians of Europe claim in preliminary conference that the nations could thereby gain an equal number of working days in each month.

But while that technically appears to be the case, it is misleading and only of small advantage, because the work-day-values of those working-days differ in each of the three months. That difference is too much to be acceptable to the commercial authorities who virtually predominate in all the great nations-and form the controlling forces as President Hadley of Yale University (U. S. A.) in 1903 so tersely stated when concluding with the words: "This reform with its months of 4 weeks will surely come, because it is a commercial necessity."

Here it is highly important to emphasize the fact that the advantage obtainable through the "4-week-month" fitting all months as easily and completely as the weekly 7 days now fit current weeks, will continuously give far more practical benefits and conveniences to every human being in home-life, social and commercial affairs -than the combined fixing of "Skip-day," Easter and the proposed Academic arrangement of 30,30 and 31 day months per Quarter Year.
The latter necessitates 5 Mondays and Tuesdays in January, April, July and October; 5 Wednesdays and Thursdays in February, May, August and November; also 5 Fridays, Saturdays and Sundays in March, June, September and December.

That, we respectfully submit, would foolishly perpetuate the present jumble of unequal months in but trivially improved form-and leave the multitude of people in every nation without clear ideas as to what the length of a month really isbecause the broken weeks between 2 out of every 3 of the Academic months would be left to baffle the practical people and handicap workers in such ways as the following:

1. All persons then paid monthly would, out of every and months' salary or wages, have to purchase their 5 th week-end's provisions and pay for their 5th weekly lodgings, rooms or rent of houses, etc., in every 3rd month.
2. All workers paid half-monthly would be worse inconvenienced at the end of every 3 rd month, and further during each triplet of months would have to draw their mid-monthly pays up to Monday the 15th of the Ist months; to Wednesday the 15 th of the and months, and up to Friday the 15 th in all the 3rd months.

Quarter Years can be Equalized in Year of 13 Montha

3. All who are paid every 2 weeks would have to be paid up to the 13 th and 27th of the 1st months, the 1ith and 25th of the and months, and up to the 9th and 23rd of the 3rd months-leaving I week's pay hanging fire over the end of each 3 rd month ending the Quarter Years.

4 All employees paid weekly would have 2 days overhanging each ist month and 4 days over each 2nd month of each Quarter Year.

With the exception of the latter, all the above would prejudically affect the homelife of those myriads of workers, and including the latter would cause much needless trouble in commercial accounting, ascertaining the costs of production, etc.

That extra trouble ...uses extra cost and heaps a little more on the Cost of Living.

Most of the employees in the heavier trades cease work about noon on Saturdays, while others, such as coal-miners, seldom work at the mines on Saturday. On the other hand Retail Traders and Storekeepers on Saturdays generally do more than double the volume of business transacted on Thursdays.

Those and many more practical facts disprove the alleged Equality in the Earning and Spending Values on the broken months those Academicians voted for without sufficient practical experience to enable them to wisely recommend those artificial months.

The mere counting of the same number of working-days of different values can only mislead theorists who have not been able to fully consider the far-reaching advantages of the proposed permanent months of 4 -weeks each for all the great world-wide purposes for which they are urgently needed.
It is because the easier adoption of the 4 -week-month would entirely remove all those and very many other objectionable inconveniences, and also save much valuable time and labor now wasted, that the International Almanak Reform League feel it to be their duty to themselves, their children and humanity at large-to advocate the early adoption of the 13 -months' year, with a new-month between June and July because they believe it is the best in every way, for general purposes in all nations.

The best authorities are agreed that the insertion of the new month there could be as easily effected as was the 29th of February in Leap-years. No more inconvenience would result, but on the contrary far
greater calendar conveniences and facilities would be won for us all to enjoy every day.
22. There would be a slight difficulty at the outset in readjusting the monthly rate of salaries now paid regardless of the number of working days, but these would easily be computed once for all time, is per Computation Tables on pages 89 ano 90. Twelve divided by thirteen equals .923 , so that $\$ 100$ per month for twelve months now would be $\$ 02.30$ per month under the new system of thirteen months of four complete weeks, giving regular payments to all and avoiding the fifth week-end expenses which now cause housewives, and all who have to pay weekly for rent, food, etc., needless trouble and some anxiety when five Saturdays occur in 30 or 31 day months.

quaribr years bqualized

A few Europeans, who at first thought that to keep quarterly periods equal for insurance, etc., it would be advisable to include the thirteenth week of each quarter as a fifth week in March, June, September and December, were agreeably surprised on finding that the completion of all the quarter-years would be more conveniently met with the week-end as per Table D.
Then every "Quarter" would be equal, whereas now they range from 90 to 93 days, with their working days varying from 75 to 78 days, making a difference in manufacturing output of four per cent., although such "fixed charges" as rent, insuranee, etc., remain constant for every Quarter of the year.

Comparison of British working days in the years 1902-3-4:

Quarters-	1902	1903	1904
Ending March 31-	75	77	8
June 30 ---		75	75
September 30-		76	77
1 December 31		78	78
Half Years-			
Ending June 30	152	2	153
Year December 31-		154	155
		306	308

The number of days in half-years and years accounts for the calendar fluctuations of business, dividends and the resulting Stock Exchange gambling for "differences" as explained on pages 34 and 44 of the Rational Almanak, and evideneed by Table E.

Further, the fact that monthly payments for salaries, accounts, etc., are many thousand times more numerous than the odd "quarter" charges has lead the leaders of business to urge the universal adoption of the proposed "Yearal."

The "YEARAL" with its EQUAL MONTHS and QUARTER YEARS
Table D. Proposed "Yearal" of FIXED DATES suggested for each day in EVERY YEAR following 1916.

$\begin{aligned} & \text { WEEK } \\ & \text { DAYS } \end{aligned}$	${ }_{1}^{\text {JAN }}$	FEB.				J				SEP.		${ }_{12}^{12}$	0.	WORK
		$\begin{aligned} & 1 \\ & 2 \\ & 8 \\ & 4 \\ & 6 \\ & 6 \\ & 7 \end{aligned}$		on.				TON. 1 2 3 4 6 6 6 7		3 JN. 2 2 6 $\frac{1}{6}$ 6 6 7	$\begin{gathered} 1 \\ 2 \\ 6 \\ 4 \\ 4 \\ 6 \\ 6 \\ 7 \end{gathered}$	12 3 3 $\frac{3}{6}$ 6 7 7	$\begin{array}{\|cc\|}\text { Sow. } & 1 \\ & 2 \\ & 3 \\ 1 \\ & 6 \\ & 6 \\ & 7\end{array}$	
ednotic.		$\begin{array}{r} 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array}$	$\begin{array}{r} 8 \\ 9 \\ 10 \\ 11 \\ 112 \\ 13 \\ 14 \end{array}$		$\left.\begin{array}{r} \text { NT. } 8 \\ 0 \\ 10 \\ 11 \\ 12 \\ 10 \\ 14 \end{array} \right\rvert\,$	vx. 8 0 10 11 12 13 14	$\begin{array}{r} \text { Sov. } 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \text { Dom. } 14 \end{array}$	ON. 8 8 10 11 12 13 14 14	$\begin{array}{r} 8 \\ \text { N. } \\ 10 \\ 11 \\ 12 \\ 18 \\ 14 \end{array}$	$\begin{array}{r} \text { WN. } 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array}$	$\begin{array}{r} \text { M. } 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ \hline \end{array}$	$\begin{array}{r} 8 . \\ \hline 9 \\ 10 \\ 11 \\ 112 \\ 13 \\ 14 \end{array}$	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & \hline \end{aligned}$	
	$\begin{aligned} & 15 \\ & 15 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 20 \\ & \hline 21 \end{aligned}$	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 18 \\ & 20 \\ & 21 \end{aligned}$	Son. 18	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 18 \\ & 20 \\ & 20 \end{aligned}$	Ov. 15 16 17 18 19 20 21	On. 15 16 17 18 19 20 21	BRLF TBAR Bun. 15 $($ July 416 17 18 18 20 21	3 vN .15 16 17 18 18 20 21	Sun. 15 16 17 18 19 20 21	$\begin{array}{r} \text { Son. } 18 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \hline \end{array}$	30 n .15 16 17 18 19 20 21		$\begin{aligned} & 16 \\ & 16 \\ & 17 \\ & 18 \\ & 18 \\ & 20 \\ & 21 \end{aligned}$	
	$\begin{aligned} & 98 \\ & 23 \\ & 24 \\ & 25 \\ & 28 \\ & 27 \\ & 28 \end{aligned}$	23 23 24 28 28 27 28 28					$\begin{gathered} 801 . \\ 28 \\ 23 \\ 24 \\ 25 \\ 25 \\ 27 \\ 28 \end{gathered}$	Sun. 28 23 24 25 25 27 27 28	$\begin{array}{r} \text { son. } 28 \\ 28 \\ 24 \\ 25 \\ 25 \\ 28 \\ 27 \\ 28 \end{array}$		23 24 25 26 27 23 28			

81
Inequalities in our Calendars encoursge Stock-Exchange Gambling-Table E

[^4] of typieal amall shopkeeper, colliery company and railway company demonstrate the inequaltien Traking the laxt pmblivboll lie.jart of the lhanril of Traike ons latiways tor the year 1908 ithons of Expenditure, which will not be incrensed by the twe extra worl ciajs in 150 l
 $: 1$
$:$
1
1
1
1
\vdots
\vdots
5

 staimenance of WIy -93

Thus on the eatian Csyun
 The changes between the heavy-lyped figures and
 The changer in other months are
Dece 31 iat week-dify and are consequently limited to
but diferent week-days yary in yalue as indicated helow Tearly datem, Easter. cta., afect the ealruiegs of thoya further Table is appentiol.

 1

THE PROPOSED "SKIP-DAY" MAY MOVE SUNDAY

The Chief Questions the Official International Conference will assemble to decide, are indicated on the cartoon printed upon the back-cover.
As the contemplated insertion of "SkipDay" may move Sunday, -and some discussion may arise concerning the proposed ${ }^{13 \text { th }}$ month, the following notes are appended for readers whose time for research is limited.

While any 12 months arrangement ending where Dec. 31 st now closes the year, might, by inserting the "Skip-Day" forthwith secure a Fixed Calendar, that might not be absolutely final and universally adopted, as would the year ending with Nature's on Dec. 22nd, it would (with the exception of world-wide unity and international accounts) bring nearly all the other practical advantages reformers are striving to permanently win for humanity's daily convenience.

There are many business advantages that would result from having a fixed and easier working calendar for all the 364 days, plus that last day of each year thus freed for stocktaking and the final closing of all wages with other accounts, etc., concurrently with the ends of week, month, quarter, half-year and year.
As odd extremists have falteringly feared that some imaginary disadvantage might result if the "Skip-day" as a duplicate Saturday was inserted at the year's end and thus moved Sunday to the next day, the International Conference may advise that the "Skip-day" be reserved for "Rest" as
Sunday.
But its observance as a duplicate Saturday is more likely, because most people prefer to have Saturday's freedom to do whatever they deem best on that proposed year-ending holiday, on which all who prefer to rest or go to church should be free to do as they please. They can then be all the more happy to rejoice in observing the next day as the Sunday beginning the New Year. Practically all enlightened people know that when they travel from one part of the Earth to another they change their Sundays, as indicated by the page 69 Cartoon of Standard Time around the World at 6 p.m. on Sunday int England, which portrays the fact that while British citizens are at Church on Sunday their relatives in America, Australia and elsewhere may be at work, as part of a workday is current with them at that precise time.

Further, the fact is well-known that all voyagers across the Pacific Ocean, who
cross the "Standard cross the "Standard Time Line" shown upon the foliowing photograph of that side of the Globe, "lase one day when travelling Westbaund, and gain one day when crass-

Tha "STANDARD.TIME-LINE" dividing the World's Daye down the Cantral Pacific (180th) Maridian.

The removai of Sundey by one Intar. national "Skip-day" or "Raat-day" being inverted ameh year, wili not change the Wasthar; but it wili reauit in mora mutuai Considaration between all Nations and Creads, thus tandins to autablish permanant Paca and good-will. In that quiet way it will help forward tha beat intereata of
humanity. humanity.
ing Eastbaund," yet neither the advance of Sunday by one day, nor its being deferred one day, have had any adverse effect upon anyone.- Nor does anyone dream of quibbling about the change.
Some good persons may be at first inclined to think that some disadvantage to the observance of Sunday might arise through the proposed insertion of the "Skip-day" as a duplicate Saturday International Holiday between the last Saturway and Sunday of each year-because that would alter by one day the weekly recurrence of Sunday.

But when the more balanced minds among those temporary hesitants reflect that it is impossible for them-or even the most enlightened aggregation of scholars or his-torians- to now either distinguish or locate the particular day on which the first week began, they will realize how foolish they would be to discredit any sect or creed of worshippers by trying to stand on such a mere imaginary ground of shifting objection.

The only historic fact those few extremists among Christians can plead is, that after their Lord and Master's death a few early Christians devoutly changed their "Day of Rest" one day from the timehonored Jewish Sabbath, with far less warrant than an International Congress can and will soon do again, to benefit humanity.
How many changes were made befare, ar haw many days missed, can never be ascertained.

UNITED PEACE and REST on

It is not advisable tc neither will time or apace admit of here discussing the pharisaic and utterly futile controversy as to whether our current Sundays recur on any particular 7 th multiple of any of the 7 days of the Biblical record of Creation, which vide Genesis 2, v. 3 reads, "And God blessed the Seventh Day and sanctified it, because that in it He rested from all His Work."
It is that rest for humanity, on any 7 th day, which gives all Sabbatha alike their pre-eminence, whether observed on our Sunday, or by the more fervent Mahommedans and other sects of equally earnest God-fearing worshippers who now celebrate their Sabbaths on our Fridays-or by the Jews and their compatriots who believing themselves to be the race special chosen by God, adhere to their original Sabbaths still celebrated on our Saturdays. although they through Moses derived their week of 7 days and Sabbath from the Egyptians-merely moving Saturday from the Egyptian first day of the week, to be the Jewish last day of the week.

All races and creeds under Heaven should therefore unite to annually celeabrate the closing day of each year as an International Holyday or "Rest-day" to promote Rest, Peace and Good will throughout mankind, and welcome the change that will enable the noblest people of every creed on earth to unite on the same day as Sabbath at least once in every 7 years to mutually worship the Eternal Creator in harmony.
The world-wide benefits of such reunions, varying with each 7 years, will naturally and surely lead to blending the worship of all humanity into one glorious united Sabbath, wherein all will most heartily unite with the Psalmist in singing that noblest verse the most inspiring of poets wrote and taught all Mahommedans. Israelites and Christians alike, to sing in both Bethlehem and Jerusalem (where all now hold their Sunday worship in the same churches on our Fridays, Saturdays and Sundays respectively) from Psalm 118, v. 24:
"This is the Day which the Lord hath made; we will rejoice and be glad in it."
Let not the rulers of any section of either the Christian churches nor any other of the too many sects, warp their fields of usefulness as did the narrow-minded ruler of the synagogue when their Lord Jesua Christ helped up the infirm woman, when (vide Luke 13, v. 14) "the ruler of the "synagogue answered with indignation, be"cause that Jesus had healed on the Sab-
"bath day, and said unto the people: There "are 6 days in which men aught to work; "in them, therefore, come and be healed, "and not on the Sabbath day."
Even our medical men would not dare to hold to that 1 Such reactionary and intolerant views concerning any special day disappear like the mist the rising sun dispela alike on every day however named by us. That they had no weight, with that greatrst authority on Christianity, St. Paul, is evident from his greatest of Epistles, as when writing to the Romans in Chapter 14, concerning how to treat weaker brethren who should not be condemned for indifferent things, he thus writes in verses 5 and 6 emphasizing his breadth of mind on this particular point of which day shall be the Sabbath:
"5. One man esteemeth one day above "another: and another esteemeth every day "alike. Let every, man be fully persuaded "in his own mind."
"6. He that regardeth the day, regard"eth it unto the Lord; and he that re"gardeth not the day, to the Lord he doth "not regard it."
Finally it will be evident to all reasonable readers, who rightly consider the page 69 cartoon, that even, people of the same religion amidst the great populations on different continents, "now have to use parts of their homeland week-days as Sundays whenever they migrate either Eastwards or Westwards-as, for instance, British people or other Europeans who go to Australia, New Zealand, Canada or the United States or countries of South America.

Yet no one even from His Holiness the Pope downwards can truly say either that anyone thus migrating has been prejudiced by that partial divergence from their homeland Sunday times, or that they will be in anywise prejudiced if the extra day's rest is given to toilers in all nations on the closing day of the year, and Sunday is thereby moved one day to promote greater convenience and blessing to all humanity.
As a few superstitious people have a slight misgiving that it might be "unlucky" to have 13 months in the year,-even if such months are equal,-we will dispel that fading thought by the most prominent facts concerning the world-wide-use of 13 .
Such facts as the 5 following, culled from a vast number, convince sensible people that there is not the slightest element of justification for the mistaken belief a few odd persons lingeringly bold in the alleged unluckiness of the number 13:
Church-do not believe in "LUCK." They are considering these propocals:-

strate the fact that the oldest, greatest and most cosmopolitan of Christian Crei created at the Vatican on May 25th, 1914, demon4 suits, or have lived through our ineeper who selis 13 oranges per dozen (12), or when we play with cards having 13 in any inore
 become Pope, dispely any idea of the number is heing "unlurty" for him.
(1). The United Stater of America began their independence as the original 13 States, whose people have been the luckiest on Earth ever since. So complete is the confidence of the citizens of that most energetic nation of the world in the good luck those 13 States brought them, that they are now deciding to stud them as the 13 central stars to form the centre-piece of their proposed new national flag. Around those 13 stars are to be encircled the less glorious stars representing the newer States since linked up around the thus exalted 13 stars, "Which have always been the gems in the "Great Seal" of the United States, whose more than $100,000,000$ citizens are delighted to get those 13 sealed stars imprinted on their Title Deeds for land, etc.

GREAT SEAL of the UNITED STATES.
It is a remarkable coincidence that there are 13 constituent parts of the likewise lucky Cansda, corresponding to those 13 original States of the Union, thus:
United States

Connecticut
Delaware
Georgia
Maryland
Massachusetts
New Hampshire
New Jersey
New York
North Carolina
Pennsylvania
Rhode Island South Carolina Virginia

Canada

Alberta
British Columbia Manitoba New Brunswick Newfoundland Northwest Territory
Nova Scotia
Ontario
Prince Edward Island Quetec
Saskatchewan
Ungava (Labrador) Yukon.
(2). The "British Empire" is the greatest and luckiest empire mankind have ever known-yet it has 13 letters in its name, and consists of these 13 constituent parts: England, Scotland, Ireland, Wales; Canada, Australasia, South Africa; India,

Eyypt, East African, West African, East Indian and West Indian Colonies.
Similarly there are 13 countries in Asja and 13 in South America; but the number 13 has nothing whatever to do with making them rither lucky or unlucky.
(3). His Holiness the Pope, at Easteı 1914, created 13 Cardinals in one gn-s. and those 13 are considered by the adherents of that most cosmope itan an. numerous church organization in Christendom to be the luckiest of men--one of the 13 last elected was created Pope st the next Coneocation.
(4), The many people who use playing "cards" nearly always have "so spot cards" plus Jack, Queen, King, t talling 13 in ull 4 suites-yet that rimber 13 (which Was derived from the 13 weeks in each Quarter of the , weeks' year) docs not have the slightest effeet upon the "luck" o! any player, and never had, as all play with 13 cards in each suite.
(5). Eveiy human who has attained to years of discretion has lived through the most vigor-producing 13th year of life, and been so lucky that both he and she have survived ever since to perpetuate and improve the future of the human race.

The easiest and quickest method by which we can expedite that improvement throughout every nation is to Internationally agree to universally use the simplest month of 4 complete weeks 13 times each year, as depicted in the "Yearal" frame on the back cover-and thereby make this and futu - generations luckier than all their ancestors ' - securing equal and permanent months with day-names fixed for greater convenience throughout all Time.
The few people who clutch at the number 12 as though it was a life-buoy will survive more conveniently on the number 13, because months will pass more equably when their lengths are equalized to 4 weeks each, as those great steamship and banking companies, who are now using 4 weeks periods for accounting, are proving by experience.

We have to use 13 weeks in each Quarter of the year; so why not use 73 equal-morths with their 4 fixed weeks most conveniently quartering every month?

We British people have far too long been dominated by the number 12 as instanced by our trying to inaintain justice by "holding up" juries till all 12 agree, with the result that far too many scoundrels have escaped just penalties, simply because we were too proud to acknowledge the better system of other nationalities vho maintain better justice by deciding that the verdict of a two-thirds or more majority shall be law.

HOW PEACOCKE

friant paccock feathers, and only left us the crase lade and lasien have plucked out all the "You will arop those vulear to decorato thelr drawlag-rooma." for our vaces and for our LORD OF DHop vuigar youthe from setting them, won't
"Hoy, boyal DHE MANOR (to the youthful employsen who you, daar?"
(Aolde to the ynu know how UNLUCKY it in to wear po appreclate "fine foathers") -
Thue wee the falley)- That's ceared the giris! You'll earaily tock frathern?"
hnauguratad to peacock'. Fsathare were to beep your hing facthars now 1 "
LUCK is a mantal daluaion-furthar ramoved from truth and fasoon than the "Will-o'-thesolng home, hy long light dojudge the laggard gnited apontaneoualy. ficting apark of marah-gas ananeounly.
chace thmer ${ }^{5} 3$ has naithar more nor leme put into a hy othar number. If 8,000 peat are the sith will have thi same dramn out for any of the othar 999, of belog
The fact that the or any int rovining number. has is atripas, altersilined-aquirrsi of U.S.A. "Stars and Stripes"-from whed they were named hy patriotle Dr. S. L. Mirehill in 1825, when thers happened to he is original Statesdoes not diminleh the good fortume of thons dellghtful nut-secrsters in Naw York parks, who varlounly have 6 to \& body-langth-utripan, with 3 or 7 rowe-of-apote. Vide Spermephilus in the Centary Dictionary.
When we recall the fact that on tha isth of May. 1865, thi Confederation hostility in the Clvil War wan anded, and the Graatar United happaned to hified, also that the numbsr is has Unlted Statas io conapicuounly favorahle in thy vanishing cry of the may see how foolish is minded pensimity of the littie is cluh of lopevolve those foolish, Whons unhalanced hralna hy ohastion they allow to obscure is which - plough-boyl.
ramoning of mathomatical Ggures, whether concerning is or any other number.
The plain fact is that beligf in "iuck" in a aymptom of dotorted mind, generally imprensed ay watk parenta during chlldiah yeare, of later aequired through gambling hahley from the pervers or ovar-awed minds of eamhiers.
During the years of farful ware and alavary preceding Juitus Cacsar, the matsen of the ignorant people were cows rad into beligi in jurk. laedertha, King of Numidia, provid Roman grasping wars hribed. The powerful and wealthgrasping governors of Roman provinces gratified thalr avarice hy cosrcing Pontifa to Invert ryth that extre mont to extort more wialth through The hophonth's taxen.
The haphazard and arlitrary ways hy which both tha Jewish Sanhadrin and Roman Pontiff sth the Chriatian Era secratly jossited the Index) premorith, as praviounly mantioned (are cedin), prevonts ths location of tha years preisth malius Cassar's powar. When axcessive 60 B.C. on thonthe ware inserted-so the year
But the histarticon, it only an approximation. whea Julias Cecser frose teyend dispate, that he feund the Romar arose te power in to B.C. of-gear frem the sa years acarly 3 mosths oufceuraging agricwlaral abues inctifed that disConfusion" (40 B.C.), abuse if the "Yrat of Confwion" (to B.C.), thea extraded to tes days.

Right Pontiff (ande to Left Colleague)-If wa let then zreedy pro-conoult grab auch extra farmers onten, hy inverting the 2 th moon-month at thoir command, the land-ownere end ohort ratinns lant time we decien to pay the tithes dus to un. Remomberett thnu that we oufored Left Pontiff (to proconared a moon too many in the yeari?
meet your wiahoo in part yearra. But Yuor mighty minda know bnw willing we hava bean to your request. Did not your lands bite nurs gode thrnugh their Oracies have deciared againot endured famine after farmer asth mooos were declared ohortage of crope whilit tha people viniont doatho during yearo following thone having as mid not your predecesora aufier througb us to you and to all men that "IT is UNing ${ }^{23}$ moono? Therofore the Godi deciare

Righe Pontiff (auide to Left)-That' IS UNLUCKY to have is MOONS in the YEARI" onahie selfinh conouls to extort a Thatia acared them and will relieva un from being uned to

Then it certainly wat "uniueky" for the taxpayere then unjuotiy forced to fay idean of montho. But now the permanent inourting nf the zoch month of an unjuatiy forced to fay extra taxeo. hest meane to aurely win the equal monthe mont needed to weeka betwoen Juns and July is the

How anily those Calendar abuses could be perpetratod for private zain to thone in power may be afen from the fact that tha "Metonic Cycle" of 19 yeara required zyth monni to be inserted in whe srd, sth, the z thh, 23 th, 36 th and sgth years, for which Meton, the Astronomer, in t33 B.C. received ovatinn at the Olympic Gamees.

But he th noted, that during following centuries the Roman Calendar-dietatora kept the intercalatiun of the zyth moons secree and myztified its uxe by artinciai deviations, such at changing the Olympiads from Full Moons to the zith day, and imponing wrong a zth months. Thenee arose the sodaya Juliua Caesar adjusted.

LIBERTY AND TOLERATION
There is no more luck in 12 than 13 , as proved by the myriads of families who by putting one egg extra "for luck" place 13 under fowls hoping they will hatch out 12 and find themselves most lucky when 13 chicks appear. Similarly people in our cities induce bakers to give a $13^{\text {th }}$ bun "per dozen"-thus continuously making more attractive the number 13 .
During the nearly 2,000 years which have elapsed since the 13 th month's unjust taxation was imposed by Roman Rulers upon taxpayers who naturally felt that the 13 th exaction was rightly named "unlucky" -such factors as the foregoing have almost banished the idea of "luck in numbers" from the minds of sensible people now enlightened by education and world-wide intercourse, Knowledge founded upon realities has practically swept aside the last vestige of such craven ideas as "un-luck in 13," from the minds of progressive humanity.
The great advance in religious liberty and toleration made since the harsh times of Reformation has been most powerfully helped by the colonization of America, where all Races and Creeds are "free to pursue their own happiness" as the Declaration of Independence provides. We need only instance the widespread use of that simple elevating book, "Social Worshis," published by the Westminster Co., Toronto, which was originated by Sir Sandford Fleming for the use of men of all creeds wh.ilst building the Canadian Pacific Railway, and is now used mutually by Catholics and Protestants from all the Christian Churches on board ocean ships, because the leaders of all united in selecting the hymns, prayers and scripture readings free from dogma, in words all most cordially approve.

The fact that Protestants attending Racrian Catholic schools in America are not required to be present during catechism instruction emphasizes the spread of mutual consideration during the 162 years elapsed since the last European (British) Reform of the Calendar left out 11 days in 1752 .

In Canada some of the most thoughtful Protestants now move their children from the Frce Public Schools to pay at the Roman Catholic Seminaries because (especially in British Colembia) that simplest but greatest character moulding book, the Bible, is not allowed to be read in Public Schools.

NOW FACILITATE REFORM
ECCLESIASTIC AUTHORITIES ENCOURAGE REFORM
(Summarixed by Join C. Robertson, Kirkcaldy, Scotland)
Reports from the Holy Synod of Russia, Roumania, Servia, Montenegro and Greece, also the Patriarch of Jerusalem, were furnished to the London International Congress of Chambers of Commerce, by \mathbf{M}. Georges Stringo, The Piræus, Greece, and were generally favorable to the considering of the question of Calendar Reform. The Holy Synod of Russia referred to the Czar having appointed : Commission from the members of the Imperial Academy of Science to study the modifications which could be made on the Julian Calendar.
"The efforts to fix the date of Easter will not encounter serious opposition on the part of the Catholic or Protestant Churches."-From the report of the Mastschappy Van Nyverheid, Hzarlem, Holland, as summarised by the London Chamber of Commerce.
D_{r}. Grouitch, representative of the Servian Government, stated to the Congress that they were favorable to 2 Reform of the Calendar, so as te suppress the inconvenience arising from the existence of two differing Calendars, and that the Holy Synod of Servia was now favorable to the Reform of the Calendar being considered by all the Orthodox Churches.
"Conversation with the late Bishop of Truro, and later with other influential leaders of the Established Church and Nonconformists in England, as well as the very influential Papal Authority of the Roman Catholic Church, with whom I was privileged to discuss the matter in Rome, leads me to believe that there is a very encouraging prospect of the suggested Reform being carried into effect."-Mases B. Cotsworth, in The Rational Almanak.
M. 'ouis Canon-Legrand, President of the Congress, intimated that the Beigian Minister of Foreign Affairs had written to him on 12 th June, 1910 , that the question of the Reform of the Calendar was being favorably considered by the Vatican Council.
The President also, during the discussion on the Calendar question, read a telegram from Switzerland, as follows: "The Conference of the Swiss Reform Churches, after discussion in their sitting today, 21st June, sends to the International Congress of Chambers of Commerce, at London, the unanimous wish to see the date of Easter fixed."

Russia,
Greece, ere fural Conby M . ce, and sidering - The e Czar m the my of which r.

Easter on on estant the Наат. Lon-

TABLE POR CONVERTING
E6 8 CONVERTING AT A GL

ANCE

 $\begin{array}{lllll}.66 & 96.86 & 165.84 & 677.85 & 870.15 \\ 1.65 & 84.16 & 166.46 & 676.77 & 71.86 \\ 8.77 & 88.86 & 167.86 & 276.86 & 76.00 \\ 8.80 & 66.00 & 166.81 & 860.80 & 67.08\end{array}$
 41.6755 .17 4.95 71.25 + 1410

 880 6.898.6 | 7.66 | 96.77 | 181.8 | 68.69 | 674.77 |
| :--- | :--- | :--- | :--- | :--- |
| .31 | 100.8 | 198.00 | 264.81 | 75.86 |

 \begin{tabular}{llllll|l}
\hline .88 \& 101.84 \& 192.08 \& 265.26 \& 877.84 \& 1085.18 \& 878.4

 C8.62 581.80 .82 .6 74.96 67.46 69.8858 .18 88.58 745.86 886.18

10.15 \& 106.48 \& 184.77 \& 287.18 \& 77.16 \&

11.06 \& 102.66 \& 198.68 \& 886.00 \& 79.66
\end{tabular}

8.800	5.8						
8.000	8.1						
8.000	7	$.00 \quad 104.61168 .886 .00880$. 1.R 108.38197 .6486 .68 381.28 14.77102 .18 169.18 $800.77 \quad 688.18$	15.86	107.08	168.88	891.69	884.06
:---	:---	:---	:---	:---	:---		

 \begin{tabular}{llllllllll}

\hline

17.51 \& 109.65 \& 306.15 \& 398.64 \& 665.85

\hline 18.16 \& 110.77 \& 308.06 \& 9.18 \& 688.77

\hline

 $475.61868 .8850 .00 \quad 756.61$ 844.68 $\begin{array}{llllll}177.88 & 568.84 & 580.62 & 75.24 & 645.54\end{array}$

13.16 \& 110.77 \& 308.06 \& 895.66 \& 867.69
\end{tabular}

 $\begin{array}{lllll}81.28 & 118.84 & 208.65 & 897.86 & 89.5 \\ 8.18 & 118.18 & 0.65\end{array}$ 8.18 116.48 806.7789 .18690 .1 $\begin{array}{lllll}88.08 & 115.86 & 207.69 & 800.00 & 81.68 \\ \$ 4.00 & 118.61 & 206.89 & 700.0 & 29.81\end{array}$ $\begin{array}{lllll}21.00 & 118.61 & 206.68 & 700.98 & 688.88 \\ 24.96 & 117.88 & 209.64 & 601.65 & 804.18\end{array}$ $\begin{array}{llllll}25.86 & 118.15 & 610.46 & 601.65 & 894.18 \\ 26.77 & 116.08 & 11.76 & 08.77 & 995.08\end{array}$
\qquad
$\left\{\begin{array}{l}481 \\ 488 \\ 188\end{array}\right.$$\begin{array}{lllll}81.85 & 872.26 & 685.54 & 757.25 & 49 . \\ 88.77 & 87.15 & 865.4 & 75.75 & \end{array}$
-1,000 11.076.85 1,000 11,071.90 $\begin{array}{ll}18,000 & 18,000.00\end{array}$ 8 8.000 16.966 .08 $\begin{array}{ll}18.000 & 16.446 .15 \\ 18.000 & 14.769 .88\end{array}$ 17.000
15.69 .81 18,000
18,000
17815.38
 E E 1,000 18.461.64

 \begin{tabular}{llll|llllll}
29.54 \& 181.85 \& 214.28 \& 605.54 \& 697.85 \& 469.68 \& 561.84 \& 678.38 \& 766.15 \& 888.1

 $\begin{array}{llllllllllll}30.18 & 182.77 & 15.15 .06 & 807.86 & 98.77 & 491.08 & 582.46 & 674.77 & 767.06 & 659.46\end{array}$

81.66

82.61 \& 128.69 \& 616.00 \& 806.51 \& 899.69 \& 102.00 \& 564.61 \& 675.66 \& 768.00 \& 660.61
\end{tabular}

 | 64.15 | 166.16 | 216.85 | 610.15 | 106.48 | 196.65 | 586.16 | 676.48 | 770.77 | 866.18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{lllll}37.65 & 160.15 & 626.46 & 616.85 & 106.15 \\ 66.77 & 161.08 & 628.68 & 614.77 & 407.06\end{array}$

 $\begin{array}{lllllllllllll}10.82 & 182.92 & 225.61 & 616.62 & 108.96 & 500.61 & 898.64 & 664.82 & 777.28 & 889.82 & 41.000 & 87.848 .1\end{array}$

 \begin{tabular}{ccccc|ccccccc}
15.26 \& 167.54 \& 229.85 \& 528.15 \& 118.84 \& 505.65 \& 598.15 \& 690.48 \& 781.65 \& 674.15

\hline 16.15 \& 188.46 \& 280.77 \& 62.05 \& 415.46 \& 506.77 \& 899.09 \& 691.56 \& 788.77 \& 875.06

 $28.77 \quad 628.06 \quad 118.88$ 18.00 140.61 266.68 624.00 116.61 16.92141 .68 28.62 32.62. 417.88 $\begin{array}{llllll}19.85 & 146.18 & 284.46 & 826.77 & 418.15 \\ 50.77 & 148.85\end{array}$ $\begin{array}{lllll}50.77 & 148.08 & 845.68 & 828.77 & 418.08 \\ 5.78 .88 & 480.00\end{array}$ $\begin{array}{llllll}51.69 & 144.00 & 86.81 & 837.88 & 480.00\end{array}$ $\begin{array}{llllll}52.66 & 144.82 & 267.2 & 888.62 & 420.96 \\ 58.54 & 145.84 & 481.85\end{array}$ $\begin{array}{llllll}58.54 & 145.88 & 888.18 & 880.38 & 481.85 \\ 54.46 & 146.77 & 288.0 & & 38.77\end{array}$

55.68 \& 147.68 \& 840.00 \& 182.81 \& 426.69

\hline

 $\begin{array}{llllll}606.62 & 600.00 & 692.51 & 784.68 & 876.92\end{array}$ 509.64 600.92 696.28 785.54 818.82 $88.81 \quad 148.82 \quad 240.00 \quad 882.81 \quad 484.86$ $\begin{array}{llllll}67.28 & 148.54 & 241.85 & 884.16 & 485.54\end{array}$ $50.08151 .46242 .77685 .00 \quad 187.88$ 60.00188 .61 14.60 88.00428 .81 $80.02156 .68 \quad 48.62 \quad 156.92489 .62$ 81.85154 .15 48.8 287.85430 .15 $\begin{array}{lllll}62.77 & 155.00 & 847.88 & 88.77 & 481.06\end{array}$

88.69 \& 156.00 \& 847.88 \& 880.69 \& 452.00

\hline
\end{tabular} $\begin{array}{lllll}34.68 & 156.82 & 248.68 & 641.54 & 168.85 \\ 65.54 & 187.85 & 250.16 & 848.18 & 484.77\end{array}$ $\begin{array}{lllll}88.46 & 158.77 & 850.16 & 848.46 & 484.77 \\ 67.38 & 158.69 & 882.00 & 848.88 & 485.68\end{array}$ $\begin{array}{lllll}88.61 & 159.69 & 282.00 & 844.81 & 486.68 \\ 89.68 & 151.62 & 652.92 & 645.88 & 487.84\end{array}$ $\begin{array}{lllll}89.68 & 161.54 & 258.92 & 645.88 & 487.5 \\ 70.18 & 188.48 & 28.85 & 248.18 & 488.48\end{array}$ $\begin{array}{lllll}71.00 & 188.46 & 654.77 & 847.08 & 489.68\end{array}$

 $\begin{array}{llllll}76.86 & 168.18 & 888.48 & 360.77 & 448.16\end{array}$ $\begin{array}{llllll}74.77 & 187.08 & 858.56 & 880.77 & 448.08 \\ 75.68 & 188.00 & 860.61 & 858.68 & 444.00\end{array}$ $\begin{array}{llllll}76.66 & 188.00 & 280.61 & 358.65 & 444.82\end{array}$ $\begin{array}{lllll}77.84 & 160.65 & 286.18 & 684.18 & 446.88\end{array}$ $\begin{array}{llllll}78.4 & 170.77 & 263.08 & 355.56 & 447.77 \\ 70.88 & 171.36 & & 44.00 & & 55.51\end{array}$ $\begin{array}{lllll}70.88 & 171.66 & 864.00 & 65 \\ 80.61 & 178.61 & 448.64\end{array}$ $\begin{array}{llllll}80.61 & 178.88 & 284.92 & 687.28 & 448.58 \\ 81.88 & 178.54 & 245.85 & & 48.28 & 48.58\end{array}$ 81.88172 .54265 .85 856.15 450.54 $\begin{array}{lllllll}8.08 & 176.88 & 887.78 & 858.06 & 451.38\end{array}$ $\begin{array}{lllll}54.00 & 176.61 & 288.88 & 680.82 & 452.81 \\ 64.98 & 177.85 & 48.88\end{array}$ $84.81177 .28288 .54 \quad 881.88452 .8$ $\begin{array}{lllll}86.85 & 178.15 & 870.48 & 88.77 & 464.16 \\ 86.77 & 179.08 & 875.00\end{array}$ $6.77173 .08 \quad 271.68688 .69185 .00$ $8.89180 .00 \quad 76.61884 .8248 .00$ 8.82180 .58 72.68 865.54 $89.64 \quad 181.05 \quad 74.15 \quad 385.48$ $20.46168 .77 \quad 75.08 \quad 87.48 \quad 458.77$ Similer telte 278.00288 .61480 .84 $\begin{array}{llllll}551.08 & 648.68 & 765.68 & 088.00 & 819.86 \\ 556.80 & 84 & 8.61 & 785.88 & 688.85 & 81.61\end{array}$ 558.65845 .6172 .88688 .12521 .8

> 18,000 11.568.46 4.000 42.461.5 $\begin{array}{r}7.000 \\ 48.661 .8 \\ \hline\end{array}$ \$.000 15.897 .6

> $\begin{array}{ll}20,000 & 67.692 .61 \\ 51,000 & 28.615 .3\end{array}$ $\begin{array}{ll}21,000 & 28.615 .38 \\ 88,000 & 29.566 .46\end{array}$ 3,000 20.461. 5 +8,000 11.664 .6 50.000 8. 207.69 8.000 86.660.77 $\begin{array}{r}7.000 \\ \hline \\ \hline\end{array} \mathbf{0 0 8}$. 168.65 $\begin{array}{lllllll}510.48 & 602.77 & 585.08 & 786.46 & 878.77 & 8.000 & 47.076 .82\end{array}$ $\begin{array}{lllllll}511.38 & 603.68 & 696.00 & 787.81 & 878.89 & 6.000 & 48.000 .00 \\ 512.81 & 604.62 & 898.02 & 78.11 & 880.62 & 8.000 & 48.048\end{array}$ 515.28 605.54 $688.92789 .28881 .54 \quad 8.000 \quad 19.846 .15$ 514.15 608. $48 \quad 697.86 \quad 730.15 \quad 982.46$ $\begin{array}{llllll}516.08 & 607.48 & 198.77 & 781.08 & 888.48\end{array}$ \begin{tabular}{cccccc}
516.00 \& 106.81 \& 700.62 \& 782.00 \& 884.81

\hline

 $8,00061.896 .61$ $87.000 \quad 58.615$. E 0.000 58.888.46 $\begin{array}{llllll}516.92 & 809.28 & 701.54 & 798.85 & 886.16\end{array}$ $\begin{array}{llllll}518.77 & 611.08 & 708.48 & 794.77 & 887.06\end{array}$ $\begin{array}{llllll}518.65 & 618.00 & 704.81 & 798.68 & 868.00\end{array}$ $\begin{array}{llllll}520.68 & 118.92 & 705.26 & 798.6 & 888.82\end{array}$ $\begin{array}{llllll}581.54 & 816.88 & 706.16 & 796.18 & 880.85 \\ 558.48 & 814.77 & 707.08 & 708.8 & 890.77\end{array}$ $\begin{array}{lllll}528.48 & 814.77 & 707.08 & 799.88 & 891.69\end{array}$ $\begin{array}{llllll}528.38 & 615.59 & 708.00 & 800.61 & 891.69 \\ 584.81 & 616.62 & 708.88\end{array}$

525.28 \& 617.62 \& 708.82 \& 801.28 \& 898.68

\hline
\end{tabular} en.000 65.384.6 21.000 68.307.6 $\mathbf{0 0 0} 87.280 .7$

 $\begin{array}{lllll}87.08 & 619.88 & 711.68 & 804.08 & 89 K\end{array}$ 528.92821 .31 712. 86804.94897 .8 $\begin{array}{lllll}528.98 & 821.26 & 716.54 & 805.85 & 897.88 \\ 529.85 & 882.15 & 714.18 & 808.15 & 89.0\end{array}$ $\begin{array}{lllllll}529.85 & 682.15 & 714.46 & 805.85 & 898.15 \\ 610.77 & 688.00 & 715.4 & 808.77 & 898.08\end{array}$ $\begin{array}{lllll}610.77 & 668.00 & 715.80 & 808.77 & 898.08 \\ 561.68 & 64.00 & 71 & 807.69 & 800.00\end{array}$ $\begin{array}{lllll}581.68 & 24.00 & 716.81 & 808.64 & 900.82\end{array}$ $\begin{array}{lllll}888.68 & 664.98 & 717.24 & 808.64 & 900.82 \\ 582.64 & 685.85 & 718.18 & 810.84 & 301.88\end{array}$ $\begin{array}{llllll}582.54 & 685.85 & 718.15 & 810.44 & 301.88 \\ 684.46 & 828.77 & 718.08 & 818.77\end{array}$ $\begin{array}{lllllll}625.38 & 627.69 & 720.00 & 11.68 & 908.80\end{array}$ $\begin{array}{lllll}586.81 & 688.62 & 780.98 & 318.21 & 904.68 \\ 837.5 & & 205.54\end{array}$ $\begin{array}{llllll}837.5 .4 & 828.54 & 781.65 & 118.26 & 905.54 \\ 588.16 & 920.46 & 785.77 & 814.16 & 006.46\end{array}$ $\begin{array}{lllll}538.16 & 920.46 & 782.77 & 814.18 & 006.46 \\ 569.08 & 681.88 & 769.05 & 907.89\end{array}$ $\begin{array}{llllll}540.00 & 682.61 & 764.68 & 16.00 & 908.61\end{array}$ $540.88683 .88 \quad 786.86$ 618.86 008.26 $\begin{array}{llllll}841.85 & 884.16 & 768.48 & 818.85 & 210.16\end{array}$ $42.77 \quad 685.08 \quad 787.8$, 18.77 911.08 $\begin{array}{lllllll}546.69 & 888.00 & 728.81 & 880.69 & 916.00 \\ 54480 & 0 & 818.80\end{array}$ $\begin{array}{llllll}544.88 & 888.96 & 769.88 & 861.54 & 018.35\end{array}$

 648.61310 .64782 .00 824.61 818.88 $549.28 \quad 641.84 \quad 785.85 \quad 885.83 \quad 917.54$ $\begin{array}{llllll}550.18 & 642.46 & 784.77 & 824.15 & 013.46 \\ 551.08 & 010.86\end{array}$ 2.645 .26787 .54 888.85 881.88 ecimal terts of the British

CONFUSION

All the varioue calendar cysteme weed all over the world needieatly chaoge week-day anmen for all the $36{ }^{3}$ dayz eacb year, because not adopted by Europeans of seven days was after Augustue Curopeans until nbout isn year lengeths of ourtue Caesar arhitratily fixed the so unequally thene Ey, quarters and half years able to form a definitepeane have never been of time, consequently equal monthly measure sistent with our wiets our months ars inconealaries, rents, accounts, ete, we work and pay as to it daya' long-lnconvenienty erratic months per cent.
ntly differing 18
four complete permanent monthly measure of convenience to weeks for husiness and social because future timy quarter all montha alike eppoiotments, etce, beyond the of trading, work, dependent upon whetend the day are generally ffized to the rewbether the dny of the weel pene to be Sundared date in any month hapare therefore a sider how following forced every day to congoing to he affected by the of the month are names. That causes needlir abifting weet-day convenience when man needless trouble and infuture, necesaitates the arrangements for the tional feceagitates the postponement of national fentivitiea, holidaya, faire, markets and otber anniverasries from their true day regTbese year.
Tbese and other anomalies inflicteo upon un brought to the calendars were so conatantly references required write notice hy the incersant he invented required to printed calendare, that and Leap-day to separation of the "Stip-day" week-day name to iture the return of eacb tions in every month four fixed weekly posiand cloct facea ind act shown on the wateh win for bumanity the the covers hercof, to venlence! we can the many every-day conoames permanenty gain by having all wesk-day recur in futore yiaed for all nations as they aew month of four by simply inserting a July, to derive the menteeke between June and we can aftervere many world-wide advantages ing can afterwards enjoy hy thenceforward us. ing the perpetual "Yearal" an regiatered on
The need for this cimplita dar to hring other calenplaration of our calenforming it into the ceremar natione to unite in calendar is exemplified by possihie internatiooal CAIRO, July 8 , -0 be the following: recently came up for of the euhjects which national Congrepe of Chascuscion at the Interthe quertion of of Chambers of Commercethe question of a fixed Easter aod the reform of for calendar-is of particular intereat to Egypt for two restons. Fieatly, It was the Bishopa of Nicene Council, decided on the ordees of the which Easter wecided every year the date on lways sent out delege celebrated, and who to the world. delegatea to announce the date

It is, also, not generally known that the uee of no fewer tban five calendary is impoeed on the inhahitants of Egyp--the Moslem, the Coptic, the Hehrew, the Juilan and the Gregorian. A unification of tbese calendara, or some wotkable arrangemeot, has been proponed many times, for the complleations and proposed many re cauced hy their exittence rillemmate which Of conese, some dificulty are endleen. hringing the Mositemity would be found in into line. It is hirb and Jevolab calendars to eimplify the calendere something was done pecially hanks, calendara. Busineee houses, esvation, and would welcome euch an innoment baviou would heartily support any moveonly does the reform for its ohject, for not daya hinder multiplication of religioun holiand the reer husiness relations between Exypt and the rest of the world, but it in highly detriBual to the carryiog on of business locally. iderahle annoyace Egypt encounter con Eovotian annoyzoce from the fact that the endar and navernment keepa to the Moalem caltome of which it is celehrates its feastes, for addition to suspending for several daya, In takes one a suapending wort on Fridaye. It to this cloning long time to become sccuatomed and even we old the aixth day of the week, finding ourselves old reaidenta, are continually wall, hecauss in matought up againat a hrick out some lltele piece of angementa to carry omitted to take the Mosiem hueinets we have count.
But the wort
large financial impediment is met with in the re forced tol and other entahlighments, which feasts of eoch of their doors on the principal unique case of the five calendarr. It ie a employer-ideal for employce dictating to the a long list of ear the employee who thus gett thle forced regultra holidays. The reasoo for adherents of all then is, that as the presence of indiapenasble to eetern faiths ie a haolutely all work would othery extahlighment in Egyph, as the employeet would simply to a standstill, appearance. So the European husinete in an bow hefore the inevitahie. husinese housez To have to to inevitahle. movahle feaets is had eye on the dates of the only the Gregorian enougb in couotries using teep five calegidian calendar, hut to have to ccoount calendars going and alwayi take into whom you a faith of the man, or men, with one's businese dealiog in order to be certain tha some unerpect arrangementa will not encounter etrain.-Pall led bitch, is simply too great a
The complications Gaxette, July r8th, 19 ra . thue arise atations and inconveniencee which tom and an iocessant, and nothiog hut custhe eatremely simple way \ln which theace of conveniences can he obviated coul. count for the appar obviated coul? pasihly acthey bave been so long contentment with which L.L.B., J. P. Brechin.

CHAMBERS PRESSING THEIR GOVRCE in EVERY NATION UNANIMOUSLY R GOVERNMENTS to UNITE In ADOPIMOUSLY INTERNATIONAL CALENDAR The Chamares op Commerce of the

British Empiag, assembled in London 11th June, 1912, unanimously passed the following resolution, which the president (Lord Desborough) submitted thus:
"Thet in the pifioion of this Congeress it is meat a fised datie for Eatimer nedional agrocThe sarious Government oft, tade to aptroach a virov to semmoniam and of the Empire, with frence woith the object of limatic of ificial coninterrational calendery." of establishing a fixed
"The resolution. favor of having a he said, was one in and for summening fixed date for Easter of the world to meet various countrics introducing a to meet for the purpose of very much needed. Thendar which was been placed first on the proesolution had it had already been passed by business men at i great many congresser. It had been unanimously passed after a long debate of three hours at a meeting of the International Chambers of Commerce of the whole
world.
"It had been passed by the London Chamber of Commerce, and also at the last meeting of the Association of Chambers of Commerce of the United Kingdom; and he hoped that the present Congress would follow the example which had already been set. He might give one or two reasons for doing so.
"He had received an enormous number of letters from men of business, from the Bar, from schools, from Chambers of Come merce and members of the Stock Exchange, pointing out the great disturbance occurring to business generally, and to scholastic and law terms, from Easter being a date that hopped about, and which only the most learned people could hope to be able fairly to tell the date of within a week or two after a long study of the initial pages of
the Prayer Boout the Prayer Book.
"The present manner of fixing Easter was not right historically, astronomically, geographically, or from any other point of view. The present methad, he believed, was laid down three centuries before the Christian era by a certain gentlemanan called Meton. But times had progressed since then. It was also adopted by Julius Czessar, who was so dead that he had even become proverbially dead-(laughter)-and it was crystallized by Pope Gregory who died in
"He could not underatand why the whole year from a business point of view should be upset because a gentleman three hurdred years before Christ had made those calculations, and he felt sure that as business men they must think that that, at all events, was a subject which was worthy of some international re-consideration. The festival itself, celebrating the Goddess of Spring, was mainly Jewish in its origin, and was calculated on a very unscientific
basis.
"If the Congress passed the resolution they would be in good enmpany, inasmuch as the German Reichstag had passed a resolution in favor of fixing Easter and of calendar reform unanimously, he belirved, on more than one occasiou. The Swiss Government, too, as was well known, were longing to call a conference on the subject, and he understood that they were waiting for Great Britain and the Empire to move in the matter. :
"Convocation, too, had already appointed ${ }^{2}$ committce to inquire into it, and the Council of the Vatican and the Synods of Russia, Armenia, Servia, and Grecce had sympathetically considered the subject. The Swiss Reformed Church had also expressed its approval of it. Canada had already taken up the matter, and Sir Sanford Fleming and others had expressed their views on the subject.
" He ventured to submit to that great Congress that from every point of view, even from a religious point of view, it would be most advantageous to make the great festival of Easter more in conformity with real traditions and real dates.
"There was no more reason why Easter should hop about than Christmas; in fact, it disturbed the year much more than if. Christmas hopped about, beeause on Easter depended Lent and the great Whitsuntide holidays, and business men, especially those connected with trade, had told him that it was most upsetting to have an uncertain holiday of this magnitude coming in the middle of the business year, and they as well as all other learned and business professions would certainly welcome a conference of the nations of the world which would reform the calendar and fix the date for Easter within simple and reasonable limits." (Cheers.)

The INTERNATIONUL

 should hune those zs busihat, at worthy the less of origin, ientificand COMMERCIAL and aseembled at BOSTON, U.S.A., on SIAL ASSOCIATIONS UNANIMOUSLY panced the foll September asth, 3912, "Ths Congress renews the Reeol following RESOLUTION:
essalon in London in 1910, in favor of the which lt passed at the preceding Eater and of a uniform Calendar." the Entabllahment of a Fixed date for The three unanimous Resolutions were: 1. It is denirable to establieh a Fixed International Calendar. for Exater.
a Fixed Date
Governmenta to of entablishing a Fixed I a Diplomatic Official Conference with the object There what an entirely harmonious and a Fixed Internitional Calendar. parts are reprinted as being of special interest: from which the following M. Lowis Canon-Legrand (President), from Mons, Belgium, said:
"In 1907 the variability of Easter, "which can extend 35 days, was discussed "by us,-Considerable inconvenience is "occusioned in Commercial Life, in the "School Sessions, \&ic.-If Easter falls in "March, it causes a Ruined Season in' cer"tain industries."
"At the Congrese of London, two years "ago, this question was discussed thor"oughly, as well as that of the desired "uniformity of the Calendar."
"It is essential to have in the Calendar "an exact number of weeks.-It therefore "becomers necessary to suppress one day of "the 365.-For Banks and. Financial "Houses it is important that all months "should end on the same day."
"The London Congress, therefore, ex"pressed the opinion that it would be desirable to arrange for the establishment "of a Fixed International Celendar." Mr. F. Faithful Begg (Chairman of the London Chamber of Commerce) said:
"The London Chamber of Commerce, "ever since it was instructed in the merits "of this controveray by your respected "President some time ago, has been enthu"siastically in favor of the reforms which "ne so eloquently udvocates.
"There are two questions involved, two "questions of very great importance. One "is the regularization of the date of Easter, "and there is the question of the adoption "of a new calendar system. Now I shall "not detain you more than a very few "minutes, but I should like to say a few "words upon each of these subjects.
"Probably here in the United States you "may not have appreciated the difficulties "which arise in connection with the vari"able date upon which Easter falls. These "difficulties sre well explained in the com-
"munication of the President, and I do not "What I winh to them at all.
"larly to then to point out more particu"foundly studied this have not perhaps pro"is no resson whas subject, is that there "have a variable whatever why you should "old arrangement, into Easter. It is an "which I will not enter, but ir we wor for "only be content enter, but ir we would "sun instead oft to regulate Easter by the "moon, we should regulating the date by the "might have annually a point where we "Easter. have annually a fixed date for "That seems a very simple matter, but "it is by no means se simple; and it is satis"factory to know that, looking at the "difficulties from an international point of "view, this Congress has already been able "to interest the various governments in "Europe in the question, and I think we "may fully hope that in a short time a satis-d "factory result will be brought about.
"One point I desire to mention in con"nection with both questions: I will state "that my own Chamber is in favor, but I "wish to draw your special attention to a "paragraph in the President's communica"tion toward the close, where he mentions "that the seventh Congress of Chambers "of Commerce of the British Empire, meet"ing last June, passed unanimously a "favorable resolution. (See top of page 92 .) "I wish to point out to you that that "represents the combined wisdom, if I may "use the word "wisdom," of the Chambers "of Commerce of the British Empire, a new "organization which has been brought into "existence quite recently which met the "Other day in London and which contained "in its membership representative men from "all parts of the British Empire.
"I Now, gentlemen, with your permission "I should like to say one word about the "calendar. I am not going to discuss the

International Chambers 94

 "calendar, because again, the President has "provided us with full information with "regard to what ir is proposed should be "done in that connection, but I wish to "mention for a special reason a fact which "I think is perhaps not well known to "every one in this room, and it is this: That"there is here, on "proof that before Americe was continent, "by Columbus there existed on these shored "a system for the most accurate adjustment "of civil and solar time, and a system which "was superior in its method to that in use in Europe in the days of Columbus, and "to the calendar year under which we regu"late our affairs today, by the calendar of "the Pope Gregory.
"You may see for yourselves, if you "choose to visit the place, the calendar stone "of the Aztecs of Mexico. It exists in the "form of a sun-stone, twelve feet in "diameter, sculptured with great dexterity and fineness, and this stone is both a sundial and a calendar similar to that which was used by the Egyptians and the Chaldeans in time long gone by. By means of "not only the time of day, but determined "mined the solstices, and they kept accounts "of years and of days. On the face of the "stone there are inscriptions including the "division of the year into weeks and into "days, and the extraordinary thing is that "that stone includes also the computation of "centuries, with greater exactness, as I have "calendar.
"The error, and those of you who under"stand the error in the calendar will appre"ciate the force of this point, is equivalent "to only one day in thousands of years.
(Applause.)
This stone is supposed to have been "made in the year 1479 of our Lord; but "the science upon which it is based must "wherever that science came entiods to evolve, "it was European or native from, whether "that stune came intu existencern. How "been able to determine; but there it is. "My idea is that this stone should "brought into play in connection with the "proposal for the reform of the calendar, "and at all events that the system in exis"tence, as I have said, in this country before "the discovery of the country by Columbus "which are going on in connection sotiations "reform of the calendar." (Applause.)

Hert Ernse Krawse (Vicr-President), from Vienna, said: "The members

 "merce, whom I of the Chamber of Comsenting, are entirely the honor of repre"everything that is going to be decided with "that respect"All important factors in Vienna have agreed that Easter holidays should be set for a definite date and that a Uniform Calendar should be introduced for the entire world.
Mr. Alfred Aslett (Gemeral Manager, Fu:ness Railway, England) said:
"There are two competitive proposals "(compared as B and E on Table Croposals "one by Professor Grosclaude, of Switzer"land, and the other by Mr. John C. "Robertson, of Kircaldy, Scotland, the "latter of which two he preferred." President M. Lowis Canon-Legrand in conclusion referred to the question then being in the hands ot the Swiss Government.
"As regards the religious question."It is obvious that what we are asking does "not go against any religious conviction; "we respect all convictions; but we hold "a Uniform Calendar are interested to have (See page 88 re Ecclesiastical so arrange it." NOTES appended by M re Eclesiastical Authorities.) Mr. F. Faithful by M. B. Cotsworth the Ancient Mexican (Aztec) Calendat system was truer than the European Calendar is correct. Further, it was much more convenient, because all its MONTHS WERE EQUAL, consisting of 4 WEEKS of 5 DAYS each, which exactly qu: irtered every month, vide p. 40, and End-plate $\mathbf{7}$. That week of 5 days, with every 5 th day of Sunday or "Rest-Day," would require 18 of such months of 20 days, plus a "nonmonth week" to fullow the 18th month, to complete the Ancient Mexican Year.
CaTheirs was the most convenient of all worldars But its re-establishment as a . world-wide Calendar seems impracticable now that the Week-of-7-days is universal. Humanity may attain to that hundreds of years hence; but as we are concerned about the best Calendar we can get into universal use now, we must utilixe the 7-day week which now regulatus the affairs of all Nations, as Don Carlos Hesse, the South Ameriean Astronomer and Calendar Reformer at Iquique, Chili, so ably points out concerning the necessity of weeks being used to quarter-momths, as can only now be done by using months exactly 4 weeks long. To attempt weeks-of-5-days now, would postpone Calendar Reform many generations.
csident), of Comof reprewith cided in 12 have be set Jiform or the
anager, oposals), the vitzerin C . , the $n d$ in then wern-

WELL,UNCLF, WEVE GOT 'RECIPROCITY' iN MONTHS.
AHYHOW!
OUT CAN YOU TELL ME WHAT A MONTH REALYIIS:

 I

WHY the INTERNATIONAL

 of typical peont fact that many millions have mutually "se from almort all nations Americs, where ried in North and South creed have intuitiver of every color and gorian Calendar of Werterted the Greits Sundays and WWestern Europe, with those which East European, differing from African immigrants formerly, Aviatic and other Calendars, indicmerry used through of requesting the American adviambility to invite and awemble the Governments selected Repreventatives the to be officially the final Conference or Congress so Reform the Calendar.In NORTH and HOUTH AMEXICA
GNTE RETT WHETYROPEAN BUNDIY DIFFEREHTTHER DAY OF NDAY UNDAYIT Grom thetr HOMROUSD PITTED BY THD ALL ARE BINE ONE GREGORIAT UNITY UNDER CENTEALINGTHROUOLENDAR NOW ENTRAL and BOUTH sider thaternational Reform League sider that the initiative might moos appro-
priately of the United jointly by the President General of Canada (with the Governorthe British Government) the consent of coming celebration, in December, forththeir 100 years of peace-during, 1914, of soldier on either side has during wbich no to patrol any of their 4,000 milealled upon national Frontier. 4,000 miles of InterOn page 449 of nearly 10 years, apo, 1 indicated Almanak" European Authorities took inded that unless the President of the United States aoction, requested to call the Official Conference of Represenratives from all Nations, as it is now propused to do; ist, because of the preeminent impartiality with which the Ameri-
can Nation other nations and ectively can approach all question, and 2nd, becall Churches on this preeminently exceed all other Anited States Nations in infuence and other American this highly desirajue Reformer to facilitate
The bitternees aro Reform. the Nations of Europe caus wars between difficulties which can best be International assembling tiee Conference overcome by territory in Centralence on neu al Panama is the mostral America, where way of that great channel of at the gate-commerce-the P channel of International As Canada and tha Canal. gether, about 40 yeare United States tolished the world-wide "So, similarly eatabthe benefit of all nations, they came" for
memblaye eforn the nment of ned there new the General, ransmiternment
resident cral of pective tions to neutral ier the 0 into lendar ns can
lurch,
urely order thter outh pen-
pre-preand0 n,er-ily

of
of
re

IR SANDFORD PIEMEN 97

of CANADA to the ROYAL SOCIETY

mone cherendar of day3, weeka and "past ages, is found in many quarters from "inadequate for our modern quarters to be "especially in many branches of industrial "life, in business operations and vandustrial "fpheres of human activity; it is esprcially "companies. The wal and other tranaportation "companiee. The defects of the calendar are "generally, apparenitly by the community "no change can be made; that the monthe, for example, varying in length from 28 to "31 days, are fixed by some natural law and "ly unalierable as the motion of the heaven"ever, who There are a few perions, how"different light. A spokesman in favor of "rome change and improvement hes receently "been heard in the Parliament of the United "Kingdom. I hold in my hand a proposal "for a simplified caiendar by Mr. Alexander "Philip, of Brechin, in Scctland, and we "the City of York, Englend atentleman from "the subject prolonged considerations given $\left\{\begin{array}{l}\text { "myelf I warmly anged consideration. For } \\ \text { "to }\end{array}\right.$ "to simplify the calendar, of the movement my earneze
"desise is to see the Royal Society of Cunda "tasire is to see the Royal Society of Cinada take a leading part in promoting a needed
"change-a change which would be ned "greange-s change which would benefit the "That anch amily for all future time. Thave That such a change can be effected I "the right course, and the righe course to "follow is to begin by seeking the proper "means of gaining the aseent of all inter"ested in the proposal.
"The question arises: Who are interested? anations answer is, everybody-all civilized "mations are concerned in any proposition to "which has come down to us throughths "centuries.
"Members of the Royal Society will re"member a cognate case which presented "itself on this continent thirty or forty "years ago. The development of the rail"may system of this country was the direct "means of forcing the matter on our atten"railways, extending from the Canadian "Provinces westerly towards the Pacific, "brought to light difficulties in reckoning "time. It whs discovered that generally "speaking every town and city had its own "standard by which the hours of the day
"were reckoned. It was found that there "were nesrly a dozen standards of time "between Halifux and Sarnia, and there "was every proopect, in the absence of a "proper aystem, of having eventually nearly "anundred standards between the Atlentic "cand the Pacific. This was suggentive of "confusion, and worse than confusion, in "Among the records of the of the future. "will be found a records of the Royal Society "means taken to a detailed sccount of the "was evolved, and not only Canada and the "American Continent, but all countries on "the face of the globe were benefited by the "establishment of 'Standard Time.'
"In May, 1870, the matter was brought "to the attention of the Marquis of Lorne, "then Governor.General of Canada, by a "memorial from the Canadian Institute, "'Toronto. His Excellency took means to "bring the question to the notice of Her "Majesty's official and acientific authoritics "in London, and through the home govern"ment the attention of foreign governments "was directed to the subject.
"This was the first practical step taken, "and the world is more indebted than it "knows to the representative of the Queen "in this Dominion - to the same British "nobleman who, a few years afterwards, "became the founder of the Royal Society "of Canada. This step led eventually to an "International Conference being held at "Washington from which, as a direct out"come, the meridians of the globe were "standardized, and the reckoning of the "hours of the day simplified by having one "definite \neq andard for the world.
"I venture to think that the question of "simplifying the almanak can be dealt with "similarly. I see every reason for memorial"izing the Governor-General on the subject, "in the hope that His Excellency may take "the first practical step in a movement of "such general and wide importance. May "we not be justified in the expectation that "in due time an international conference "may be assembled, possibly in Ottawa, to "consider the matter? and that, as a result, "all civilized nations will have a simplified "and greatly improved calendar for their "common use and benefit in reckoning the "days, the weeks, and the months through-
"out each and every pear.
"Sandford Flemino."

ORIGIN of the PROPOSED REFORM

(Excerpts from M. B. Prtaworth's Puper read befort the Royal Bociety of Camada)

"The worid-wide need for reform of our "calendars has yearly engroved me the more "its everyday value to us all was mecertained "by inventigation, travel, discustion, and "corrempondence during the caceptional "opportunities provided by profemional work "on both siden of the Atlantic, in expert "buniness methods to avoid waste labor.
"The waste directly caused by our un"equal months was evidenced eariy during "my twenty-five years of statistical work, "abatracting the weekly, monthly and yearly "earninge, ete, for the railway company "carrying the largeat tonnage in the world, "who are also the largest dock owriers in "the world.
"In non-leap-yearn all the twenty-eight "days of February, being repeated during "the first twenty-ight days of March, with "the same week-day names to the respective
"dates, made all statistical comparisons easy "and exact between these two periods, but "then onily. The regular weekly aailinge of
"the continental and coasting steamers fitted
"both periods in the current and preceding "non-lenp-yeara.
"Everything in earnings and expenditure "was then on the same time basis, as, al"though the preceding year began a day "eariier in the week, there were four con"stant periods of four weeks each. That "enabled us to ascertain the cost of working "with less labor, and, further, we gained "greater accuracy. We were thus able to "get home cerlier and happier, without "working unpaid overtime.
"Being desirous of doing so every month, "my attention was directed to the loss and "anomalies developed by our imperfect "calendar system. Whilst investigating the "origin of our anomalous months and the "shifting weeks therein, the easy 'Skip-day' "way was disclosed by whieh all needless "calendar troublea can be avoided.
"Noticing that as business became more "exacting in accelerated ratio each follow"ing year, the chief officers reguired more "precise explanations of the differences in "the cost of handling the traffic each suc"cessive month, to avoid waste and increase "efficiency ; the extra trouble was so gener"ally caused by the needless variations of "our calendar (especially after the moon"wandering of Enster began), that the "child-born assumption as to the calendar
"system of our ancestors being best, grad"ually vanidhed, so the extent of our calen-"dar-created inconveniences, difficulties and "waste of labor forced on governments, "railway and canal companies, shipownert, "manufactureri, traders and workers be"came evident.
"The crude and imperfect syatem of "having twenty-eight to chirty-one day "months fixed nearly two thousand years "ago by the Cesarn, sufficed when the work "of the world was done by unpaid claves: "but the freedom and enterprise won since "then have developed new conditions need"ing better calendas facilities. The exclu"sive barriers of nations have been broken "down and interchange of trade is univerral, "necesaitating duplicate dates by buyers and "sellers where different calendars exist.
"Few persons realize that the one-third "of Europe's population (in Rusaia, Tur"key, Roumania, Greece, ete.) trade with "us in duplicate dates, involving interet "calculations and legal difficulties. The "introduction of steamships, railways, tele"graphs, cables, telephones and modern "business and social methods have very ex"tensively changed our calendar require"ments for equal months, and the same fixed "week-day-names throughout every month "and year.
"The business and social inconvenience "evidenced during the Christmas weeka of "t894 and 1895 (when Christmas Day "came in the middle of the week) disturbed "regular ideas of the week. Market-days "and weekly appointments had to be al"tered, causing trouble, confusion, expense "and disappointmenta.
"Noticing the heart-burning caused to "shop-asaistants and other toilers, whose "cherished Christmas family re-unions were "curtailed to get them back for Friday and "Saturday's business (because they could "not link up the nearest week-end with the "holidays), brought the idea to my mind "that as Christmas Day was kept like Sun"day, the boon of a permanent calendar "with FIXED Holidays always extended "over the week-end without splitting the "week, might be secured if we simply kept "its name as 'Christmas Day', and relieved "it from being enumerated as a day of the "week-a 'Dies-non' inserted as a public "holiday between Saturday and Sunday.

CALENDAR REPORM DESIRABLE and PRACTICABLE

"Furrher, I saw that by similarly giving
"'Leap-day' its proper name and letting it
"leap the week-day name as a 'Dies-nsn'
"and public holiday (rightly due to sularied
"servants who work that day for nothing),
"we might by relieving those exceptional
"year days from being regarded as days
"of the week, permanently win the many
"incremed facilities and benefits which the
"easiest ponible working month of four
"weeks would always bring by ending on
"Saturday-and evablish the emaiert pomi-
"ble permanent calendar. Thus the golden
"Key to colve our calendar difficulties and
"perfect the calendar appeared to be found
"in the FIXING of 'Skip-day,' Easter, and
"simpler months. Those form the ewential
"features of the various proposals which
"have slnce been made to improve our yearly
"regitter of time.
"The worte wource of the mischief in
"changing the week-day names through all
"the dates in euch year and separating
"Christmas, New Year's Day and other
"holidays from the week-ends, was then
"located in the odd 36sth day beyond the
"fifty-two weeks of the year, and our
"UNEQUAL MONTHS.
"Having arrived at the conclusion that "reform was highly desirable, the next con"sideration was to ascertain what was "practicable.
"That led to the subminsion of those sug"gested remedies to the late Dr. Gott, the "Bishop of Truro (England), to whom I "also explained in 1898 the advantages of "fixing Enter, having known him well in
"Leeds. He considered 'they would benefit
"the entire human race, and cordially en-
"couraged me to work for the reform, as
"almo did the Dean of York, Cardinal "Stonor (whom I was privileged to meet "in Rome), Dr. Tempest Anderson, of "York, and many otherse My proposals of " 1899 were then published.
"Knowing that progressive reform would "be more quickly paken up by the free, un"trammelled minds of Americans, I visited "the United States in 1903, and was highly "pleased when President Hadley, of Yale "University, told me that he thought the "month of four weeks 'would come as a "commercial necessity.' Prof. Geo. F. "Wright, D.D., and others said the reform "would surely be accomplished in reasonable "time if tactfully worked out - whilst "prominent bankers and lusiness men "ngreed that it was highly desirable and "practicahle. Indeed, the United States
"Trust CO_{0}. and other bankers had, by "printed interesk cards, etc., already tegun "to charge interent every four weeks, and "the U. S. A. comparative table of working "days in euch month (as reproduced on page "35 of my 'Rational Almanak') was in "regular use in the leading offices.
"The evovernments, railway companies "and other large employers had, through "changing days and unequal months, long "been burdened with vast numbert of "monthly calculations to apportion yearly "salaries, rents, etc., to the varying number "of work-days in each month, to ascertain "truer costs as against monthly revenue, "traffic, sales, etc. They had elaborate "tables printed and nome offered to pay for "shorter methods of calculation to meet "their incrensing needs, as my publications "to economize such work were widely "known, especially the Dircet Calemlator 0.
"That experience in America was empha"sized when the four-week (28 days) syz"tem was found to have sprend to the "British and German iron and steel trades, "steamship companies, etc., whilse all na"tions were feeling the increaing need for "equal monthly periods of serviee and pay, "as instanced by the Belgian Government "having to adopt the four weekly perlod for 'the employen' and employeer' contribu"tions to provide the best denigned pension "system for old age.
"Then, feeling that the time had arrived "to mrore publicly advocate the reform, my "book on 'The Rational Almanak' was pub"lished in 1905.
"Since that time increasing interest has "been aroused by the advocacy for reform "in both Europe and America. The eele"brated French astronomer, Camille Flam"marion, with others in Germany, Belgium, "Switzerland and other nations, have joined "with Lord Avebury, Sir Norman Lockyer, "Sir Oliver Lodge, Mr. Alex. Philip، Mr. "John C. Robertson and other British advo"cates, in urging for improvement.
"Sir Sandford Fleming, who is so widely "known for his valuable experience in the "ettablishment of International 'Standard "Time,' has personally told you 'that the "desired change can be effected I have no "doubt whatever.' Such testimonies com"mend the subject to your consideration. "Now he has pointed out the right course "to take by inducing the respective Govern"ments to call the Official International "Conference."

The COVERNMENT

ORES the propoed "YZARAL"
the progrew beime made towarda the reform of the prevent calendar oywem:

Excerpe from the Tranactions of the Rayal Society of Canada, May, 1908:
The foliongutary af Evetion. Ill. repere that ithe followlay revolution has iven adoped "harlarions y thy the sention:
Indructod is momerialleede them tbe Council be on the oubjoer af the Retor Coy crmor-Omeral acklog Hio Enecifeocy m brloo the Aheanak, now caliender to the amearion of the aned af a Goveramens with the viow of mopo bilige talealal to obrain the sowat sf ail elvilioed nationg thereme" The motion boing wit to thatione thercti", -arried unanimousity.
The sisia manual mecting of the Royal ioclety of Canada pawed the folliowing as thelp
poonl for the soform of M. B. Cotaworth's prsperal for the roform of the caicndar seceive the
endoration of the cocisty."

Dear Mr. Coteworth-

Ottewe, Juae \% $3 g 12$.
As len 1 con congr
having actuaily been mataty you on progreen have so loag lathered and in the ceform you Half to hour aco 1 ind adrocated.
whea the fuli Counell if the Promier's ofice, mot him hy sppolanement the Royai gociety the deliverasee which wee read to hlm. That with the portion af the traneactions of the Thath Soclety whleh was puhifihed to penphler form, from to the ofice of the Governor-Gearefl and Yrom there by filo Royal Highneme to the Home aunhoriten to diveribute among the eeveral gov.
 ard Time." In thlo way ail cefvilised nations time an International Conferemem and in due pected to deal whional Conforance will be \&Fpected to desi wheth the anhiect. for me to conatratujate procoat and lt remaino of the seform which wifi on belare the father of the soform which wilf be of much bencfit to
the human family is the furure yese of
The matrer ho now in a fels way of warld. meat by an Internationas conferance of evtele-
 Youra mona truily,}

\section*{(Alaped)

(Alaped)
 Copy of petition SANFORD FLEMING

 of Canado to His Royal Highmess the Governor-General in Council.The underoizned haterwa, June 6, 2912. in purcuance of a hatolue honor to otrste that igat annual meating of the sodopted at the Canade, bold in the moneth of May isenty of Council of the society wouid respectively the ioave to reprement to Your Royal Highnew in Council that the oubject of the roform of the Auguman Caiendar at preceat in upe in Europe and Amorias and mora or leso in evary part of the giobe, has of jate yeapt been occupying attention in many diferent countriea, and that there in reason to beilieve that otepa wili be taken, at no diatant day, for inviting a coanideration of the quartion by the lesding governmants of the worid.
Various nchemes for the simpilfication of the eniendar have been proposed. Ali aim at preventing that ditiocation of the reistion of the daye of the woek to the dayo of the month, which bas, hitherra been the hecersary reaution of dividag
tbe 36 s dayn of the yoar into weak.
 ine melomies whlah the foeloty then mememiach, day of the mon day af the year unaminal aco deot, and moneth and manound me a day of the
 Jos mone af the plate chat mprotualey of numy-
 cocially trouphe io it motee of Mr. Meaw Cobwarth af Now Woweminows, E. C. (form: eriy af Yort, Earland), Io a puper pend before
 growe of all.
Me. Colsworth' propenilion io ther the year
 dayo ench, mating 364 dayo in all. The 36 ab dey to would diepont af, th the mamnes alraidy acplaiand, by diving If a amme coly and nx

> Thin belag done, the dayn of the weet. we. throughous the year, and from yous to would, perpetulty fall on haed daye af the month. All suadare, for exampio, would fail elther no the 3at, lth, isth ns and of we month; ail Mus.daye on the ond, gth, 1 Geh of agrd, sad to ea. The thirrecath monch would be Interatiated, andes some coltahie namac, berwenn Jnoe and July; and the extre day requirod for leap yeas Would be atoiksed to mome culeahle place in of the month or belng countod elither at a day of the month or a day of the weet.
The Inconvenience of the proncat ealendar io underutaod by all Intelitigom percomas. The gtcourse had to priated eslenders and almanake, when matters of date a re in quertion to a conatent seminder of the drawhecte of the presems oyvtem.
Thar the lowe of rime and ocestional con. fuelon and orror thus ariajag comotifots, in the agerregate, no incomolderchio taz on human enerth may very roaconahly be malnealined.
 poform af the ealeadas was earsted at the mererJage of the International Acsoclation of Chamberm of Commerce hold laet year In Loadon: and, to lonk age ao Pebruary, 1gol, a Calondar Roform Bill, baod upon a wehome ver forth in apamphiex laved hy Mr. Aiexander Phillp, ILnB, of Brechla, scotiand, wat latroduced in the Houne of Coternona.
The Council of the Royal society, recelling the fact chas ehirty yeare ago the oyverang of "grenderd Time" now in ure hy ali loeding natione of the alobe wes latiated in Canada, and brought to the attention of the Imperial suthorities hy His Exealioncy the Maroulo of Lorne, then Governor General, who in the following year hecame the foundir of thio soclety, full emboldaned to hope that If Your Rayai Highness in Coumeil ohouid ife fit to tranomit the recommendation of this society in faver of the reform now in question to His Majesty', sovernment, tho result mightibe a furthar bonefit of the utmont importanca to the wbolecivilized worid. br thine C , sa the society is, in its operationa br the Cuvernment and Parliament of Canada, it freio calied upon to laterent liocif in alf that makes for the waifare, in the firut pisee, of thin country and the Britioh Emplre at large, and recondarliy of the general communtry of nationa; and it it under the lnfluases of thit sentiment that the Soclety hat surborized the action whieh the Council how taling in approzebing Yoor Royal Highnest fa Council on this question. (Signed) W. N. LESUEUR,

Prenidant.

That petition wee beartily endorved by the Canadian Covernmerant, who have mqueved the Britioh Covernment to 20. amble an OViciel Internetional Conference to conider the propowd improvement at an carily dote.
Ao the and and 3rd paragraphe of the Royal Society of Canada's Petition to His Royal Highnew the Governor-General-in. Council, whilat urging Mr. Cotsworth's propooals, refers to other plans that have oven surgested to oimplify tha Calendar, the Internutional Almanak Reform Lengue desire to record the fact that thowe alighty varied plans (which only suggent different locations for the "Skip-day" and leus convenient months) are but partinl modifies. tions of the original propoula made by Mr. Cotworth, who in the year 8895 originated the "Dief-non Ship-day" method of weparating the 365th day of each yeur-and "Leapday" in every Leap-yenr, from week-day names, to permanently win for humanity "Yearal." "International Caiendar" or
One proof-copy of thore proposelb, whise lent to a friend, was raken advantage of by the enterpriaing reporter then seeking "copy" for the tat edition of the "Sunday Mail" in London, England, wherein they were published withous consens, bus duly acknowledged as from him.

Mr. Cotsworth's eircular-letters, emays, ete., isured during the subrequent to years, advocating the Reform, gradually impremed thoughtful peopie that the proponalls were practicable and could woon be won to benefit this and future generations.
After his 472-page book on the "Rational Almanac" was published in 1909, readers became convinced the Fixed Calendar proposed was highly devirstbe, and advocated it

For example, Mr. J. F. Cole, F.R.A.S., of Sutton, Surtey, England, while in Switzerland, published in the 23th July, 1909 , issue of the "Gacette de Lausanne" a short explanation of Mr. Cotsworth's first proposals, which thence circulated through German, French, Beigian and other European newspapers, arousing the interest of our', able advocates in all nations as those leaders lirted on page 72-to all of whom the International Almanat Reform League tender cordial acknowledgement for the very valuable advocacy they have so help. fully rendered towards accomplishing Culendar Reform.
From those have arisen the alightly varied proposalo sinc. evolved by various advocates, who all agree that the time is now ripe for the present generation to otep forward, and by the ensy means of utilizing
the impending International Calendar Con. ference, murually benefit all people through. ous every nation by replacing our present defectiva calendors by one Fixed Inter. nutional Culendar or "Yearal" to better cervs humanity during all future years.
From the foresoing wa may fairly deduce that if the Olicial International Conference, to he coon amabled, recommends that the lart to days of our yenr 1928 thould be eloned our to begin all furure years truly with Nature's years by declaring Dec. a3rd of that year only chall become Jan. 2at, to begin a New Era and oimpler Calendar all Nations ean promptly adopt, then we may rest amured that such a beneficial ehange can be ensily accomplithed.
The draft legialation the Conference will in that event aubmit, will simply provide that for December, t918, only, zt per cent. of Rente, Taxes, ete., chall be payabiebecause the 22 days in thas December will only be 71 per cent. of our present 31 December day.
At to whether that advanced Jan. ist chall be Calendared as heginning the next year, 1919 (80 ensily remembered) or be Jan. int of the Year t in a new "Yera," dating from the year ending the most epochmarking readjustment of European affaira following the end of wars, will be for that International Conference to decide.

Suffieient evidence has been vubmitted herein to dispel from all reamonable minds the falie idens that our Calendars were either wisely arrauged or an unalterable as the motions of the Sun, Moon and Stars.
The plain facts disclose the crude, haphazard, and ill-considered ways by which our Calendars (though the best of many in use) have been patehed up, ewisted backwards and forwards in varying degrees mecording to the will or caprice of ancient Yontiffs and Creesurn, who have handicapped us by incemantly ehanging daynames in every month and yeur, and failed to fit weeks evenly within montha varying from 28 to $3 t$ days long-inflicting upon us the many inconveniences and increasing loss, all of which can be permanently overcome by the International adoption of the "Yearal."
THE GREAT TWIN PROGRESSIVE CONTINENTS of AMERICA HAVE COMBINED EUROPEANS, ASIATICS and APRICANS in the USE Of ONE CALENDAR-PROVING HOW EABILY the NATION8 of EUROPE, ABIA and APRICA. HANDICAPPED by their MANY CALENDARS, may PROFIT by adopting on INTERNATIONAL CAL GNDAR, and GAIN PAR MORE by UNITING IN CONPERENCE TO UNI. VERSALLY ADOPT tha "YEARAL,"

Photo-reproduction of the BRITI8H CALENDAR which "akipped" in day: between Sept. zod and 84th, 875 s .

PLATE 19

shown how the LAST BRITISH REFORM of the CALENDAR wa effected (connequent upon Pope Gregory XIIIth' wite reform of 1582), when the is days betreen Sept. and Sept. 14 wire omitted, and the foilowing pristed in that apace:
"According to an A:t of Parliament pagsed in the 34 th year of His Majeny's reign and in the year of our Lord 8751 , the Old Style censes here, and the New taties place; and consequentiy the next day, which in the Old Account would bave been the 3rd, is now to he called the 14 th, so that all the intermediate Nominal Daya, from the and to the 14th, are omitted, or rather annihiated this year, and the month containa no more than ig dayo, at the Title at the Head exprensen."

Simplicity of the Proposed Reform and How Enaily it Can be Won

52 weeks plus that day to complete the usual 365 -day year, and similarly cause "Leap-day" to leap the week-day-name each Lenp-year to keep the 52 permanent week: undisturbed.

Thus we have recent historic proofs of the facility with wbich a greater change than even the extreme 9 days' reversion of Skipday from December 31st to December 22nd was accomplished little more than 160 years ago, when the masses of even Europeans could neicher read nor write. Small wonder, therefore, that odd groups of ignorant farm lu'sorers then asked for their II days to be hopped back, and later were surprised to find that they had not lost them.

That Reform was effected under far more difficult conditions. Printed calendars were rare and religious prejudice extreme. Roman Catholic countries had Christmas, etc., II days before Protestants and their wrangling was incessant - but now those difficulties have been dissolved by education and mutual respect. See page 88.

SIMPLICITY OF THE PROPOSED CHANGE

The fact of having 52 weeks plus one day in ordinary years, results under our incessant week-system in that odd day becoming the 5 srd Sunday in non-leap years beginning with Sunday, tbus altering the following New Year's Day to Monday, which causes the next December 31st to become the 53 rd Monday, and in its turn force changes of day-names throughout following years.

We can avoid those confusing changes now consequently divorcing Christmas, Thanksgiving and other National Holidays from their best locations in conjunction with the week-end extensions now most needed to permanently enhance our recreative aod social enjoyment, by simply fixing that cod-day of each year as "Skip-day" without week-day-name, even if we let it count as an appendage to December, as Leap-day does when appended as the extra 29th of February inserted between February and March.

Similarly the proposed new month can be just as readily inserted between the last day of June and the first day of July, to derive 13 equal months of 4 weeks each, exactly like February, 1914, which begins on Sunday and ends its 28 days on Saturday, so that whether wages are paid weekly, fortnightly or monthly all periods of earning and expenditure for every purpose would then be most conveniently equated.

Business people will readily balance their booky to ascertain their profits and costa of working then, and avert such Bad Debte as our calendar propagates during months in which 5 Saturdays occur, in about 4 months each year, necessitating the purchase of the 5th week's provisions out of one month's pay, thus unconsciously drifting less thrifty people into arrears. The adoption of the "Yearal" would FIX all day-names, make all periods for earning and spending equal; and thus circulate money more frecly.

HOW EASILY THE "YEARAL" CAN

BE WON

1st. The International Conference will be assembled, with the advice of astronomers thereat, to decide:
(a) The location of the "Skip-day" to relieve the 53rd week-day (now occurring beyond the 52 weeks each year) from weekday name and proclaim it as an International "Grood-will" Holiday, preferably between the last day of December and New Year's Day, to secure permanent day-names. Also the removal of "Lrap-day" to midsummer, as an International Holiday.
(b) The best style of permanent months, preferably patterned like the 4 weeks comprised in February, 1914, in order that all months may end with the week-so gain equal months and the world-wide $1, \ldots$. venience that would bring equal periods jor earning, spending, etc.
(c) The best permanent date for Easter as the German Government, Vatican and other authorities are preparing to do.
(d) As to whether the "Yearal" shall begin as midnight closes the "Shortest Day," to win simultaneous acceptance by all Nations, Races and Creeds.
(e) The draft legislation the Conference will prepare for recommendation to the Governments of every Nation, for adoption on the date suggested by tbe Conference.
2nd. Each Nation will next enact that draft Bill through its Legislatures, and date therein its Special National Holidays, etc., transposed to their corresponding dates when registered upon the "Combined Calendar" the Conference's final draft form will prescribe in some such form as that tentatively suggested on "Table B," page 76.

FINALLY, the Astronomers, Tide-table Constructors, Calendar. Compilers and Printers will prepare the "Yearal Calendars," Almanaks, Diaries, Day-tablets, etc., accordingly; whilst the Watch and Clockmakers will print the outer.circle dates on future permanent Time-recorders, as per the Watch perehed on the Sphinx, on Plate "A." There cannot arise snct diffeulties as confront the universal adoption of the "Metric System."

TATHER CHRISTMAS presenting the proposed "YEARAL" and CALENDAR CLOCK to FATHER perpetual Calendar life, that he fo preparing to sbandon the "Old houth hy sdopting the "YEARAL" of

Difficulty having been experienced by advocates of Calendar Reform, in identifying the ewista, 1918. arrival in other cities and abroad, it has been suggested that this photo may facilitate identification by on white flat-tie, and expedite interviews with persons interested in this Reform, when meeting the writer

MOSES B. COTSWORTH, of NEW WESTMINSTER, B.C. CANADA, formerly of York, England

MR COTEWORTH DE SNOWN TO THE EUBINESS WORLD AS THE ORIGINATOR OP THE PROPOASD FIXED
 sational almanak., his otien vservl works include (a) "Rallway mazimum Rates" the Trandand baytish wors, AND THE (3) "DIISCT "CALCULATORS." THESE LATTER, WITH HIS (4) "gECIPROCALE," AEE UAED EY THE LEADING COMMERCIAL, PRDFESSIONAL AND BCIENTTIC MEN, AND THE

An epitome of the mainly all nations. advocating the Reform, also reasons for of some of the many practical indication can gain by use of the proposed "Yearal," are printed on the "inset-card" for handier reference by advocates of Calendar Reform

Study of the "Combined" Calendar on page 76, for transposing the dates between the present Shifting Calendar and the proposed Fixed "Yearal" after the year 1918, convinces our calendar-makers and weatherpredictors that the datal change will not harm anyone, but will benefit agriculture and every other beneficial interest, as the gradual change will be imperceptible when compared with the ordinary variations of seasonal weather. It will daily help ws all.

[^5]The "AMPLITUDE METHOD" of LOCATING the SEASONSDIAGRAM of JACOB'S "AMPLITUDE OBSERVATORY STAKES."

Jacob* Sunpite Oloservatery ahnwint The crutral cint in the \bigcirc mray be tavien to

1. York Minster's Square Unpinnacled Tower (England)

If. Sun-rise acroas York Minater'a N.E. cor:ter, 21 June, 1902

Plate "L." Later Methods of OBSERVATION to CALENDAR the SEASONS
 Ths followiog typify the 4 methods employed ln

 aseerrain ths seasona, before Afmanaks aod Calendars becams onhainatle the "MIddle Agee" to locally deseripetions from Mr Co postal and tranaport arrangements ontainable by farmerra and others through "Dipers irom Mr. Cotsworth's nomerous collection.sTapf: Thls was the by movable cmose Columbus used 1 t when discovering Americt method.

 kryen inteis of this the Croel

III. "INDIRECT BIOHTINO" by reSecting BEX mors precieve obsereaploge the 17 th Ccotury to derlva

 Put an minder lothowing.
 Comphaneme of the (or kitite Anch) wo innmbor of Depin) hef the the

Aftan
seasonal aititude of the Suo, and is moved along the the ${ }^{3}$ of proportionate extenslon aceordiog to the eordiog to the season's "cross," when read are measured by the scale carved on the side of when which and the Sun the

Llke the "Clos
to reglater the 4 seasonaly show o opposite paragraph 15 of the Fivointion section the atafi bad 4
 for locating high starn. HIGH RRIRECT SIGHTING" ACRGSS TOPS of

At Delhl (Iodia), by "sightiog" over tha Iron the Seanons could bs the passisg over the bleh tower Erections polot triser ipproximated. Higher (Pyramid) "ringway," wlth 4 openings ohservation, Note the Towere, to ohserve horizon "Ampiltuder." Round
IV. NATURAL sUN-DIALE

Nutural Surdal \#u Serthe, Yerkihtro. England.
called Costleberg. Until obout a hundred years ago great masa of rock on that hill fornied a naturil sun-dial. It is shown rather crudely on this page in reproduction of on old engraving, given in smith's old Yorksbire. It is thus described in tha letters of Bishop Pococke, written in 1750, and now edited for the Comden Society : -
${ }^{\text {u }}$ Crossing the Ribble, we eame in a quarter of a mite 10 Settle, a litete town situated under a quarter of a mite on the lowwer part of which, four atoincs beigh piaced, hilf; serve ss a sun-dial to the cumntery for thiee or fiur miles soothward, as they know what hour of the morn ft Ja. e ahadow comes to them from eigbt to twelve."
The stones range from the right lower corner up to the rock, whence ehsdowe were crudely wlrie is rom the Eryptian Pyramids.
Such simple shadow methode are atill used by 1 . mi tive races in many parts of the worlo.

(Plate "O") RECORDS of SHADOWS from PYRAMIDS and CONES
As Pyramide were used In Egyph, Asayria, Mexieo, etc, bul Cooen in Peru, 8iam and C.niral Africa, the writer experimenied duriog eeverai yeare witb modele of both, carefuily orienialed upon diagram-squared-paper, and oullined thereon their shadows every hour (as reproduced of squal height Eave Ideoticai secords of the Those demoonlrated that Pyramids and Cones higher, Both recorde renembied secords of the Searons, hut Pyramida were easier to huild

1. The BHADOW.WINGS on EGYPTIAN TEY. the "Flicht of Time." Shsdow on Sun-dials, indicsting

2. M. B. Cotoworth's models, ${ }^{2}$ Series A B C, the corresponding diagreme below shadow, recorded on

3. Shaiowrecords from models. Orientaled, then casting shadows true North up the Meridise-ling.
V. The undy of thye ied wo io thiak that the

for teroly the Hyars sumorus, nould it

 . idic. Ninstio.

 pyramithand conce wera niaily pruikel bo (lime of A. . A Axive tumethy pruvo ther whe hiow sfloel
 doveral ountime theorn the luill beleo of where the ont of whith the reikela wirt, itit:-

rex x ciopa Pranyiar A in thr aromeat overimath

 tlinim Pravidín them.
Tra Prouniti o ta ar exicet model of alve

 of trwe te the pramid with which tiver are rempoetivaly pirisel for cmopurnom.

[^6](Plate "P") SECTIONS of EGYPTLAN PYRAMIDS with DIAORAMS of their Observatory Tubes, Shadow Floors, and Lengthe of the shorteat final Shadows

I. Yertical Seetions of PYRAMIDS thowing their starn. pointing Tuben, used as teletcopen to focste

1I. Digrram ghowing how the Sun'a noon-rays at the Equinoxes indicated the Slope for Pyoon-rtys at Whir mid point of Seaconal Elevations hramids Irom Wanter and Mid-Summer (shown for London and Cairo) is the Sun erosses the Equator thus:

ly diagrammed for tha monthi, and the Seseon-dight ing points, "Quartering tha Year." the Sescon-divid-

Shortegt-noon Shadows meagured on tha Meridian Fioor.line during wing the difering length of the

(Piate "Q") Showing HOW the PYRAMIDS WERE BUILT and shaped

1. MOUNTAIM PEAE in INDIA, radieting the unarise Joy, uke promild slopes, whleh may have
 ries impects on pealte acroes the Nils (eet Plato "J").

2. Pigeon Houce being built by an Eeyptam former by using watis en incllyed-pioase to fypter levela, haesure nolther eco fold-poles nos hoiets were ovellabia, is ecen by the wrlter in Egyp.

III. MODEX innatrating HOW the PYRAMIDE WERE BUILT by uning the outer-courcee of atome, graded (Hike tha Deyptian Parmar's Incliaed-planea) around the a aide-alopes, to havi ap the buiding atones which wert hanaly hadded all over each of the neanty 200 recediag lapere, to the top that. the Ager and downwards, finighing ot the bottom of the whicb ware later silled up by coalng stonsa balow ahow the precticability of tba 4 or mort Incliat-w of ing Incline. Tha outer couras is mucb onlerged to

IV. The "BTEP.PYRAMID" at EAKXARAFH, typleat of the 2nd Stage of Pyramld Building, follow, Ing Medum (Pront-plate "H") and revembilig the Babylonlan "Etzurati" ontlined on Plotembing the Andedid the probabry tiar-alope-lines to Indieate the hease Incllane fos hauling atonep up tha nortb-ibaded alope.

V. The APEX of P PYRAMID, now in the cetro Munezan Note the embiemp of the Sun, and hia Originally thing wisgery engraved on tha sloping Apia Oricinally the great Pyramid had ouch an oping on its. now flat top to point observationa (see plates A end ψ).
(PLATE "R")-How POLAR PROGRESBION DEFLECTED the SLOFES af PYRAMIDS

II. The Rotation of tha Earth around its Eliiptic Orhit, top-welachted hy preponderance tinuous wobhling and Poiar Ice causing con innuous wabhling evidenced by Fig. I.

3. The preponderaos weight of Northern Hemiaphere Land dragaing the Earth's cruat down the Africao Meridian "Aaie of Land-

IV. The etupendous weikht of the Aretic Ice-
cap over Greeniand, Baffin's Land, etc. (Suficient
to cover North America about 600 ft. thick)
sceentuatea and deflects that tilit of the Earth's
cruat Southwards down the Atiantic Meridian.
IV. The etupendous weight of the Arctic Ice-
cap over Greeniand, Baffin's Land, etc. (sufficient
to cover North America about 600 ft. thick)
sceentuates and deflects that tiit of the Earth's
cruat Southwards down the Atiantic Meridian.
IV. The etupendous weight of the Arctic Ice-
cap over Greeniand, Baffin's Land, etc. (sufficient
to cover North America about 600 ft. thict)
aceentuates and defect that tilt of the Earth's
cruat Southwards down the Atiantic Meridian.
IV. The etupendous weikht of the Aretic Ice-
cap over Greeniand, Baffin's Land, etc. (sufficient
to cover North America about 600 ff. thick)
accentuatea and deflects that tift of the Eath's
cruat Southwards down the Atiantic Meridian.
IV. The etupendous weight of the Aretic Ice
cap oover Greeniand, Baffin's Land, etc. (auficien
to cover North America about 600 ff. thict)
accentuatee and defiects that tift of the Earth'
cruat Southwards down the Atiantic Meridian. derived from avidenced hy the above Diagram ieading Aotrooomers duriog the rearstions of sgra. Their tracing duriog the years sgos to of the exteoding wobblewiog tha varyiag curve to demonotrate the slowiy "cbanglis positione of the Polar aliz," with coosequenging poiltione of Earth'e Latitudes ants southward deffection of the Northero Equinoetlai Blopes of Pyramalda, Th ined on Plate "P."
That newly discovered minor movement of the Earth appeara to be mainly caused by tbe three gravitational deflecting forcen indicated on che right, whicb in varying degreet eeem to drax the Earth's cruat around itts viscuous-coated core, to that Egypt (with Europe, etc.) has during the past 6,000 yeara been gravitated several degrees towards the Equator. Consequentiy the difference between the present siope of the Pyramid (which reglatered the Equlnoctiai Elevation of the Sun when the Great Pyramid was built and the Sun'e present Altitude at the Equinoxet is eniarged both by that Southern tilit eaerted on the Pyramid by the mreater curvature of its Sun's Eievation, and the renulting Increase of the Sun's Eievation, sauging its noon-rays to beam
That conbined diefiection by cutelng eariier.
Ther Noon-Equinoctial-Shadowi apparently preft the the earlier re-discovery of tbe effective Preyramid mathode by which the Ancient Egyptiana derived their Caiendar, as the moot valuable knowledge they could win from nature by thone mighty efforte of the Pyramid builders.

This part. 70 foet nimb, is only obout i.7in of the fuit Pyromid height of 404 teat.

Alope fo 600 feet from late to Aper.

Men
of the Britial Novs.
oround the Slopes, or afretred up thio ahaded North Side to the Aper:

For the foot and calipg atonea used to wedse ond aiope up Mid.Section Mid.Section Plate 2 with Shodow rod
of 70 FRET. The OHING barely FER CENT, of the GREAT PYRAGID'g immenc: WIDTH loid on the North alde. Behind their feet is are atanding upon the vat "Shodow foor," which is onit of the Pyremid, scroos which the Egyptian yeor now rugged hut originally finely fhaished "Foot.lina eoucurrently crossed the Equator and the Pyremid.endigg Shadow flitted at noon on the day the Sum World-wide ceatrol point of Aatronomy. "The First Point of ot the March Equinox, marling that now iociting ite position in the Star-sphere, pointed hirt Point of Aries," the Pyramid oyatem oritineted by aytem of eaciustve sdvantagee woa more essentiat the Pyrumid'a Apea thot mid-night. That secrit Calender

(Fite "T"). Apparme sEAsONAL COURES of the SUN and FIXED ETARS acroe the Eypilon aky, on the SEACON-DIVIDING-DAYE, to PLANED OFT by the OREAT

Andicates the Iun'a higheat Noon-ZIevation as dagrees, on the "Loageat Bay" (Juan Mat),
Lack of funde has necesaitated use of the mame plane-acetor 00 whlch tha Stars frat shown above tha Apex for Dee, 22nd, "Tha Shorteat Day," are repeated in bigher Elevations, for both tha "Eauinovea" and "Longent Day." whereas their Skywide-circie by turning daily westwards, for both the "Equinoxe"" thoee Midnight Stara down to the Wextern horison by March 21 lat , wnd arda ooe degree would revolva by the 4 ends of the center-crossed bines which on by midnight of Scpt. 21rd, as depicted on the next page the 4 ends of the center-crossed bine: which separate the 4 Sesonn, as Quarterated our Caiendar Year.

This Zodiacel Star Map of the Year showe by the tikt of the erose diameters thet the "Quartere" of our Years Leys daye bolind Nature's smamone.

(Plate "U.") MAP of FIXED STARE In the 12 Zodfacal Conetelierions adjoioine the apprazimetaly Jodiceted' the bold white bun's ejlptic "Peth aloag Ite Belipetic Course" is progress at tha rets of oneoderree-peroder; cauced cycls reprotenting the Sun's eppersot eobuel
 That Catendar-Jocetinetrack wos neceneorily frat treled out hy the higheut cult of pyramid Priate

 the 3 ponilik pinater, in the manner axempilided on South-merfdian Hanatrotione on Plate "T." Thelf contint point of Staz oheervotion, and also reted the lom ito Eejpote peth mid-dey positions of the Sun ween the Great Premid for each day in the year, bo:
 the Equator durine the Soriae Ened on the Sem erowed Proqt point of the theriae Egviaon ot the orlginal Arat elueldoted hy Pyramid ana 8 tar Aetennomy wee The prominence eiven to the... both tha Euptian and Aco the "Socred Bull" hy trolled Calondira, indientea she protertily who cen. Eqoinon then oceterced in the prohehillty that the They needed the ofupendou then "Tourta." point to locste each of the preeice 365 of the Aper. around tha yeerly wheel of Tie 36 day cos polate Sersone, which our Nretiona Time to Calendar the iocate through tha mazrilfying powemers of converuely recently Invented to diecern beyond the of telencopes of the Stera asch 24 houre (caned complete cycla rotetion on lte exto) the daily pregreen the Earth's the Zodiocal Stars, is they pregectipely eromone Merldian a minute earller fach inectively erowe the That expedited estlier each night.
orhital motion of the Farth turn If emused by the nearly 10 fot of the Farth sround the Sun, is "onnual" ayclo of the etares tho observed extre which thas doy-graded, forms theif 366th turn, Calendare, anctenta natarally deacrited beste of our - rng.

Whe the Sua, at Iovatione varing dally, eroseed the Meridlan loeated hy the Pyramid'e Apez st noon,
not entira eycie of 12 cometeliotions of Zodical gene not only appeared to revolve each 24 heal stare Wather ardewed sbout one degres (dayregtater) more Agen wi gid.an nlftht. Therelore the gter paeing the Apen it mid-niatht on Mareh 201 s woild next mid Apen oppeated on depret to the Weat, ahilet the Apen gointed ta the Mereh 2104 spece devotion the New Yoar point beginalas the Pryamid-controlied
 If readera will reger thenty throughout all years. clrels acera win regard the bold whlta dot-and-daghcircie ac gppronimating the spparent rearly poth of revolving elrele with tha atar-aphare and lmarfoe thet revelvin nieht elrele tlehed off one of the 365 day coes 12 monthe pane Zodiacal 8tarn during tha reopective the Meridion reeprer the Apex of the Pyramid of Espptian were the Zodise and their Colondare out the atar-ejeme of "B" The tower Pen on the ahowa Pront-pleta daily weetward tarn of thet left jadicaten how the meneured (the the do y-coust shoarly eycle could he complete aky-clrele) en each daw, on page 28 for the Pyramld'e fina-pointed Apen day' defree puseed the now hlanted top depleted on when cormonated the
The 12 Eicyptian month of 30 A.
divided Jnto 3 perinda of 10 of 30 daye ach (anbIndicate) wera thum of 10 days each tha creacente 30° oree of risthle otarmaced to their 12 respeetlve fontertio "isient of the Roditech grouped fato the enakled an mathons to ore the which have gluee of 8 ter Afteniomy thate the Eew world-whde pyetem that wea long alier the freatesp of developed. But Pyramid buifitiae had won thet of human eftorts Ia tage of increased eropen thens the national odvenSeacons they registered hy Prra, by locating the therehy diacovered that needed hyramid ehodown, and -the preciec length ond exect soblivigiong of thonomy

This Zediacal Star Map of the Year shows by the tif of the croas dlameters that the "Quarters" of eur Years lety days behind Nature'a cemsons.
(Plate "U,") MAP of FIXED STARS In the as Zodiacal Constellationa adjoioing the

Piste "W"-The 13th Month is Already Used by about 60% of Rumanity, overy 8nd Year JEWISH CALENDAR (A.D. 1000, A.M. 868C-1). II. The CHINESE CAI PNDAR shot Year N.B. The additional or 13 th mouth Ve-adar cowes in this yeatr to adjust the Callendar to the Seasonssee the 13 moons recorded.
 rith MONTH lnserted between January and February, 1903. But in $\mathbf{2 g 1 1}$ their ryth month was inserted between Jupe and July, where this Althoush the would permanently locate it. CALENDOAR. Whe CHRISTIAN (Oregorian by the bove. Is used by phtially rogulated of the World is population about one thind in use. whillat othere ane ta extending Into diause. sevaral Asiatio slowly falling aerve to remind readere of tha dwindiling application of other Eatern Csinding with thair confuaing Eras.
THE CHINESE LUNAR RECKONINQ.
Its still esed by aboot $500.000,000$ parsons.
Our 1 eos

Junulay 8 ... ${ }^{2}$ 12th 1 toth (a) Computed by Jas. C. Maodonald, F.S.A. (Scot.) per th "Chronologios and Calanidrs"'(Wम.A. (Scot.) por the Chnese celebrate their New Year' Festival on 2 consecutlve days, the former of Fhestival on The obove if of epecial interent fropy "Skip-day." continuanca (almont perpetutat from Jto conservative continuanca (almost perpetuation) of the orlgimal pogible "fimelonis" the ema to have been tbe only
 by. at already expialned-M. B. C.
III. The ancient Mexican astronomical cyrie of 52 years, quartered into four periods of ry yeara, each year having ri equal months of 4 weeks. Pages 39-42 ohow Calendar and r8 months' cycie.

IV. MEXICAN ancient MONTH of 20 DAYS aiways quartered into four "hand-counts" or weeks of 5 dayn, fitting all their 18 months, which weets of 5 dayn, fitting all their 18 months, which
with a final s days' festival completed their year. sytems past gencrations evolved. But thls generation could hardly adopt the weok of 5 days I wish to could. Then the Egyptian ra months of 30 days divided into 6 Meak of 5 deya with the 73 rd week appended as the lant 5 days of the year, would be the most perfect Calendari and do more to abolish unemployment than yny other government measure.
Sufficient evidence io recorded in this ton the Caesart, are imperfect, and can caslly be to show that our Calendare were jumbled hy All Great Nations hive destred to The yeaes rgry or rgrt offer the beat to rath Fiqual Monilh of 4 Complete weole. The yeats rgry or rgrt offer the bent opportunities to unitediy win that boon for all mankind.

Ahacus, 4
Abuse of Calendari, 4, 14, 15, 29, 52, 86.
Academic Method, 78.
Ages of Early Men, 1, 6, 8, 9, 10.
Almanak, Definition, 70. (See Clog-Almanak.)
American (Ancient) Calendars, $5,6,38$ to 42,45 to 48.
American Indian Calendar, 5 6,45 to $48, \mathrm{~K}$.
Ameticans to Win, 88,96 to ros.
Amplitude Method, C, D, E, F,
J, 10 to 13, 2 $1,22,23$.
Armillary Sphere, 22.
Arris-ridgen, A.
Auguatus Caesar, 52 to 35, 57.
Aztecs (see Mexican).
Babel, Tower of, E.
Babylonian Towers, etc., E, H.
Begg, F. Fiithful, 93.
Bible Ages of Men, 8, $9,10$.
British Calendar, 92, 96, 102, M.
Calendar to Transpose Dates, 76.
Calendars, A, B, J, Ja, 28, 38,
42 to $56,62,65,70,74,76$.
Canada Advocates, 95 to 100 .
Canada's Governor-General, 96 to roo.
Canon-Legrand, M. Louis, 88, 93. 94.

Chaldean Temples, E.
Changes Agreed Upon, 76.
Chamhers of Commerce (see International).
Changing Climate, 23, 24, 25, R.
Chinese-Abacus and Calendar,
4. 38, 64, 70, 74, W.

Christmas, 57, 61, 70, 7 r.
Churches will Benefit, 38,88 , 94
Churches, Years of, 43, 44, 49, 57 .
Clocks and Watches, 35, 65.
Clocks (Water), 29.
Cole, J. F., 101 .
Clog Almanaks, 43.
Colliety Companies, 75, 8 s .
Confusion Now Caused, 9 I.
Conatintine-the-Great, 54,55 .
Cotaworth, M. B., Edifor's Note,
F, 5, 17, 23, 25, 45, 64, 65, 72, 96, 98, 101, 104.
Crone, Pre-Chistian, 30.
Cross-ttaff, L.
Daye Changing Names, 54,62,81.
Degree, Probable Origin, E.
Deluge, Probable Origin of, 9.
Desborougb, Lord, 92.
Direet Calculator "O," 99, 104.
Druide, Calendar Methods, E, F,
10, 11, 2F. 3d. 23.
Easter's W iuderings, 35 to 60 , 75, 76, 84
Ecclealastics Favor 3,24
Ecliptie, Path of, 27, 28, 29.
Egypt, Map of, J.
Egyptian Calendar, J2, 29, 49 to 35. 70, 9 r .

Egyptian Stay I.iat, B, 27.
Egyptian Temple, F.
Elevated. Stone.Circlet, az-23.
Equal Months, $3,5,6,37,29,35$,
$40,42,55,76,77,99$.
Equinoctial Slope, 16 to 19, N .
Eratozthenes, J1, 22, 26.
Evolutlon of Calendars and
Almanake, $1,7,8$ to 49.
Evolution of "Year," $2,7,8$ to 49.
Fiji Islanders' Moon-atleks, 2.
Five Bundlea Calendar, 6.

INDEX

Fives, Syatem, 3 to 6,45 to 4^{8}.
Flammarion, Camille, 72, 99.
Fleming Sir Sandford, 88,96-100
Fundamental Principles of Civi-
liration, 36 to 39.
Gambling Encour aged, 82.
Geological Evidences of Cbang. ing Climate, $23,24,25, \mathrm{R}$.
German Reichatag Advocates, 92 .
Gregorian Reform, 55,57,88, 102.
Gregory the XIIIth, 35 to $\mathbf{3 7 , 7 4}$.
Groaclaude, Piof., 72, $9+$
Hadley, Pres. Yale Univ., 78.
Hesse, Don Carlos, 72, 9t.
Hindoo, Invented Zero, 4.
Hindoo Observatory, etc., 35,38 .
Holidyja, Moon-wandered, 55 to $60,75,76,81$.
Hours, 27, 3r, 34.
India (Delhi Pillars, etc.), L, Q.
International Conference, $\mathrm{A}, 59$,
$62,70,71$ to 74,92 to 103.
International Congress, 93 to 103.
International Reform League,
Front-cover, 73, 78, 79, 82, 84 .
Jacob's 6 -month "Yenrs," 5, 6,

Japanese Calendai, 38, 64, 65, 70.
Japanese Children, 2; Torii, D.
Japanese Temple Gateway, D.
Jewish Calendar, W.
Joseph Nationalized Egyptian Land by 7 Years of Plenty and 7 of Famine, $14,15,29$.
Julian Calendar, 49 to $53,57,6 \mathrm{r}$.
Julius Caesar, 29, 49 to 53. 57, 86, 87.
Lat of Asoka, G.
Leap-day, 43, 54, 62, 75, so.
Leap-years, 4, 17, 19.
Maypolen, 44 .
Meridian Line, G, 17, r9, 22.
Methods to Simplify Months, 77.
Metonic Cycle, 87, 92.
Mexican (Aztec) Counts, 3, 4
Mexican Calendar, 3^{88} to 42 , 94 . W.; 52 Years' Cycle, erc., 41.

Mid-night Sun, 29.
Money, Circulation Retarded, 63.
Montbs Changing Day-names 62.
Montha, Methods to Simplify, 77.
Months, Unequal, 62, 63, 70,75.78.
Months With $\$$ Week-ends, 62.
Moon-sticks, 2.
Moon-tallies and Couats, 1, 2.
New Year's Day, 37, 61, 79, 78.
Nile, Delta of, J.
Nile, Inundatioo of, $9,49$.
Noah's " 5 -month" Years, 5, 6, 9.
Notched-aticks, 2.
Numa, 49.
Nuttill, Mrs. Zelia, 36 to 39.
Obelisks, G, 88, 35, M.
"Odd-day," 54, 751
Olympiadi, 4,87 .
Ohigin of Proposala, 64, ror
Pinama, Conference at, 74, 84 .
Papal Authorities, 84, 85, 88, 94-
Pastoial Eri, 9
Pay-daya Deferred, 63, 78.
Pharaoh, za.
Philip, Alexander, 72, 9r.
Polar-Ice-Cap Moving, 23-2 5, R.
Polar Sky-clozk, 30.
Polar Stire, 30 to 4.
Poles, Probable Origln of $\mathrm{N}_{\mathrm{n}} 22$. Pontiffs, Pre-Chriatian, 4, $25,52,86,87$
Paalms, Relayo of, 5 s.

Pyramid Emblem, H .
Pyiamid, Great. : H, J, 15, 16,
17, r8, 15, 33: 24. 2f, 4i, 28, 29.
 Pyramid, Slope Changition 24, :
Pyramlds Menc.au, to, 41.
Quarter-j (ars (see Year's).
Railway 1.0° y Affected, 75, 8
Rational Alunauid, i, 12.99 ror.
Reasons for Reform, 75.
Red-Indian Calendar, 5, 6, 45 .
Reform Easy, 65, 103.
Roherten, Jno. C., 72, 94 .
Roman Calendar, 4,49 to 56.
Royal Society, Canada, 96 to 100.
Russian Calendar, 74, 102.
Sahbath (ace Sunday).
Salaries, 63, 90.
Sarawak Almanak-makers, 26.
Sarcee Indian Calendar, 3, 6, 45. Scores, 4.
Seasont, J2, 2a, 32 to 44.
Shadow•method, 16, 57, 18, 19,
26, 49, 49, M to \mathbf{P}.
Sheep. breeding Half-yearly, 10. Shinto Temple, D.
Shortest-day (see Yuletide).
Six-month "Years," 5, 6, 9, 45.
Skip-day, 60 to $62,72,89,84$.
Smith, Asa, Star Charts, 31 to 33 .
"Sol," A, 30, 51, 76, 77, 80.
Sosigenes, 50 to 55.
Sothic Period, 15 .
Sphinx, A, C, J, r6, 17, 27.
Standard time, 82,96, 97, 100.
Star Astronomy, A, B, 22, 27 to
42, 49, T, U.
Star Maps and Magnitudes, 32.
Stock Exchange Gambling, 81 .
Stonehenge, F, $2 \mathrm{~F}, 22$.
Storekeepera Affected, 75, $\mathbf{8 1}$.
Sunday, 60, 66 to 70 .
Sunday, International, 68, 76, 82.
Sundiala, 33, 40, L, M.
Sun, Natural Gaugea, N.
Sun-rise Variations, C to F, 36.
Sun-set Variations, C to F, 36.
Swastika-Jain, ${ }^{38}$.
Swastika, Origin of, 36 to 39.
Swiss Government Advocate, 94.
Table " A," 75. Tahle "B," 76.
Tahle "C", 77. Table "D," 80.
Table "E," 81.
Tables for Calculationa, 89, 90.
Tally Sticki, a .
Ten-month "Yes $\boldsymbol{m}^{\prime \prime}$ ", 49.
Thirteen Not "Unlucky," 84 to 88.
Thirteen, Number of, $4,77,8 \mathbf{8}$.
Thirteen Months, 39 to 41, 49 to 56, 70, 71, 76, 77, 83 to 87, 90.
Time, A, 18, 26 to 35.
Tithes, 44
Triskelion, 36 to 3^{8}.
U.S.A., Tennewee Gorget, 39.
U.S.A., ${ }^{3} 3$ Stair, ete., 85, $86,99$.
U.S.A., President, 95, 96.

Wages, Delayed, 63, 79, 8r, 90. Week, Origip of, 66 .
Weeks, Proposals to Fir, :7.
Yearal, A, 30, 62, 65, 70, 74, 75.
Yearal, When to Begin, 7 r .
Year, Egyptian, B. Year, Quar-
ters of, 30-43, 51, 35, 77, 79, 81 .
Year, Evolution of, 1, 7, 8 to 49.
Yeara, Ends Varied, $31,57,88$.
Yuletide, 30 to 37, 51, 57, 65, $7 a$
Zero, 4
Ziguram, E.
Zodiac, A, B, 22, 27, 28, 29.

[^0]: ANCIENT MEXICAN INDICTIONS
 The Aztecs used 4 of these "Indictions" of 13 years each, to distinguish each of the

[^1]: "The Rational Almanak": \$r.50 post free. M. B. Cotaworth, New Westminater, B. C.

[^2]: celebrited at Chrietmas) from Dec. 2sth to Jan. zat-one week further away from Nature's Year's.end on Dec, zand. Rumaia and Greece have not complied.

[^3]:

[^4]: TABLE E. The following comparison of Calendar-created diferences ln the Earnings

[^5]: (1) and (2) published by G. Allem Sons, if Rathtone Place, London, (3) and (4) by MeCoquo. dale \& Co., 41 Coleman, St., London, E. Cy, MeCoquo

[^6]: IV. Shadow.grami from Modais wrongly Orientsted, ohowing Noon ahedorz defected from the heridian-tion

