DOCS CA1 EA255 G71 ENG March 2000 Cppy 1

0

March 2000

Canada's Export Controls

Department of Foreign Affairs and International Trade

Ministère des Affaires étrangères et du Commerce international

Information and Assistance

The issuance of Export Permits is administered by the Export Controls Division of the Department of Foreign Affairs and International Trade. The Division provides assistance to exporters in determining if export permits are required. It also publishes brochures and Notices to Exporters that are freely available on request.

The Export Controls Division can be contacted at the following:

Telephone:(613) 996-2387Facsimile:(613) 996-9933

MAILING ADDRESS:

Department of Foreign Affairs and International Trade Export Controls Division (EPE) Lester B. Pearson Building 125 Sussex Drive - C-6 Ottawa, Ontario K1A 0G2

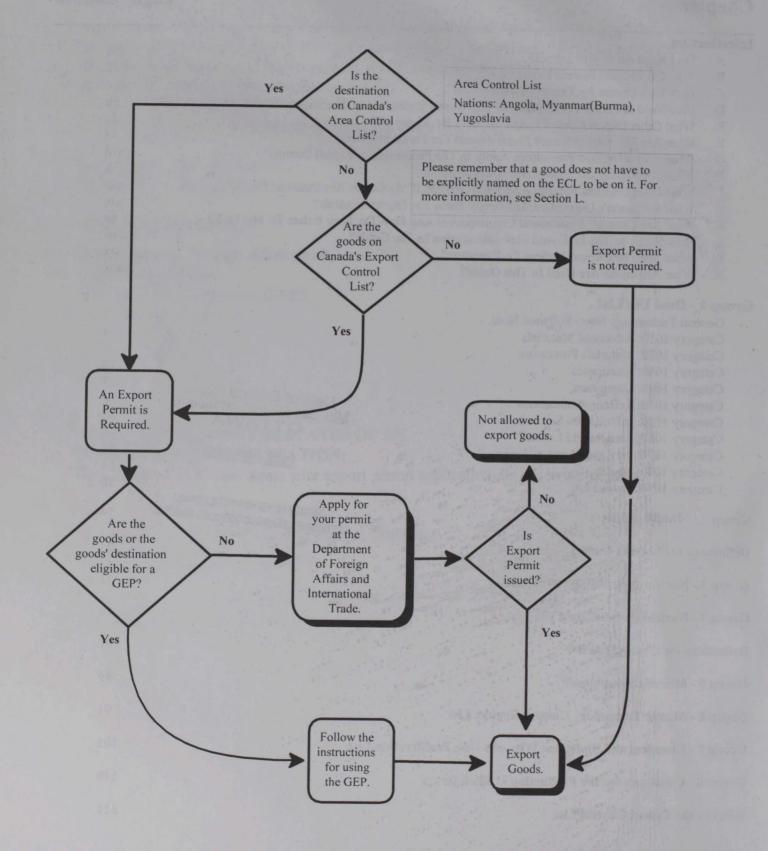
FOR ENQUIRIES ON THE STATUS OF AN EXPORT PERMIT APPLICATION:

Call (613) 996-2387 and quote your export permit application identification number.

This Guide is available at the departmental WEB Site: http://www.dfait-maeci.gc.ca

Export questions can be submitted to email address: ECL?@dfait-maeci.gc.ca

Table of Contents


Chapter

NON-CRETATINGT

Page Number

Introdu	iction		
А.			i
B.	Why Do Export Controls Exist?		ii
C.	How Do I Obtain An Export Permit?		ii
· D.	Do I Need A Permit For Exports To The United Sta	ates, or For The Export Of U.S. Origin Goods?	iii
E.	What Other Export Control Issues Should I Be Aw	are of?	iv
F.	What Are The Export Permit Requirements For Fo	rest Products?	vi
G.	What Administrative Procedures Apply In The Pro	cessing of Export Permits?	viii
H.	What Supporting Documentation Is Required?		х
I.	What Does Customs Require And What Do I Do If	f My Goods Are Detained?	xiii
J.	What Is Canada's Legislative And Policy Basis For	Export Controls?	xiv
к.	What Are Canada's Multilateral Commitments And	How Do They Relate To The ECL?	XV
L.	How Do I Use The ECL And Find Information In	The Guide?	xvii
M.			xix
NI.	What Acronyms Are Used In This Guide?		xix
IN.	what Actonyms Are Used in This Oulde.		
	1 - Dual Use List		1
	neral Technology Note, Software Note		1
	tegory 1010: Advanced Materials		1 7
	tegory 1020: Materials Processing		and so its second se
	tegory 1030: Electronics		18
Cat	tegory 1040: Computers	Dept. of External Attairs	23
Cat	tegory 1050: Telecommunications	Dept. of External Analy Min. des Affaires extérieures	28
Cat	tegory 1150: Information Security	Min. des Analisa WA	31
Cat	tegory 1060: Sensors and Lasers	OTT	33
Cat	tegory 1070: Navigation and Avionics	אינע 2 2000	43
	tegory 1080: Marine	NUL STOR	46
	tegory 1090: Propulsion		50
Group 2	2 - Munitions List	RETURN TO DEPARTMENTAL LIBRARY RETOURNER A LA BIBLIOTHEQUE DU MINISTERE	54
Definiti	ons for Groups 1 and 2	manual and in	62
Group 3	3 - Nuclear Non-Proliferation List		71
Group 4	4 - Nuclear-Related Dual Use List		79
Definiti	ons for Groups 3 and 4		87
Group	5 - Miscellaneous Goods		89
Group	6 - Missile Technology Control Regime List		91
Group	7 - Chemical and Biological Weapons Non-Prolife	ration List	105
Group	8 - Chemicals for the Production of Illicit Drugs		110
Index t	o the Export Control List		111

Do I Need an Export Permit?

Introduction

A. Do I Need An Export Permit?

This is the first question facing an exporter. Some categories of goods, some goods of certain origins, and goods going to some destinations, require that an exporter first obtain a federal export permit from the Export Controls Division (EPE) of the Department of Foreign Affairs and International Trade (DFAIT) before they can legally be exported. To help understand the decision process involved, please refer to the flow-chart on the opposite page.

Export permits are required if goods are:

Step 1: • destined for a country on Canada's Area Control List;

Step 2: • on Canada's Export Control List;

Step 3: • of U.S. origin; or

Step 4: • subject to export controls by other government departments/agencies.

Step 1: Destination of the Goods

Regardless of the product, any goods going to a country on the Area Control List (ACL) require a permit before they can be exported. At time of publication, the ACL included Angola, Myanmar (Burma) and Yugoslavia. Similarly, for any nation that is subject to a United Nations Security Council embargo, additional approvals may be required (e.g., all goods destined to Iraq).

Step 2: The Categories/Types of Goods

A variety of specific goods controlled by DFAIT require permits for export, regardless of their destination. The goods are found on the Export Control List (ECL), which is contained in this Guide. Most, but not all goods, are eligible for an exemption to usual permit requirements if destined for end-use in the U.S. (see paragraph D.1.). The ECL is quite detailed, covering many products that Canada controls for various reasons. Section L, "How Do I Use the ECL and Find Information in the Guide?", on page xvii, provides some practical information on using the ECL.

Step 3: U.S. Origin Goods

Exporters should note that the export of all goods of U.S. origin, as defined in ECL Item 5400, and regardless of their nature and destination, require permits (see paragraph D.2.). This is in recognition of the favourable permit/licence treatment accorded bilaterally on most controlled goods.

Step 4: Other Possible Export Controls

If goods are not destined for a country on the ACL (Step 1), are not listed on the ECL (Step 2), and are not of U.S. origin (Step 3), then there are no controls over the export of the goods under the *Export and Import Permits Act*. An **export permit from EPE/DFAIT is not required.** However, exporters should note that even if EPE/DFAIT controls do not exist, other controls may still apply, including the issuance of permits, licences and certificates. Some listed and non-listed goods may require an approval for export from, for example: the Canadian Nuclear Safety Commission [formerly the Atomic Energy Control Board] (nuclear/atomic items); Environment Canada (endangered species and hazardous waste); and Heritage Canada (cultural properties). For more information about exporting requirements, please contact your local Canada Customs office or the responsible Government Department or Agency. These can be found in the blue pages of your local telephone book under "Government of Canada".

In addition to other possible Canadian controls, some countries, most notably the United States, impose re-export controls on goods that originated in, or were manufactured in, that other country. If in doubt, exporters should contact the Export Controls Division or the original supplier in the country of origin/manufacture.

B. Why Do Export Controls Exist?

1. For some goods, such as U.S. origin items, controls exist to fulfill Canada's bilateral obligations. However, most of Canada's export controls exist because Canada is a partner in multilateral or international agreements (e.g., Wassenaar Arrangement) designed to control and monitor the movement of strategic goods. These international obligations are non-discretionary. They include goods such as chemicals which could be used for chemical weapons and/or for drug production, as well as nuclear and military items. As examples, consider these two multilateral agreements and the items they control:

The Australia Group - defines controls to address concerns about the proliferation and development of chemical and biological weapons.

Missile Technology Control Regime - controls missile weapons systems capable of delivering chemical, biological or nuclear weapons to prevent inappropriate proliferation.

- 2. Canada's export controls are not intended to hamper business. Rather, the regulations are designed to ensure that the movement of certain goods are in keeping with the strategic interest of Canada or its allies and are consistent with Canada's bilateral or multilateral commitments. Considering the volatility of the international political environment - and the speed with which new technologies are being developed - it is clear that these controls are necessary to safeguard Canadian security, political and international interests.
- 3. While strategic concerns are important in overall export controls, what many fail to realize is that Canadian export controls are also designed to protect trade interests. For example, by ensuring that controlled items are covered by appropriate end-use assurances from the recipient country, export controls provide a measure of assurance that the items are not diverted to unacceptable uses or destinations resulting in embarrassment to Canada or the exporting company.
- 4. If exporters have questions regarding the international agreements as identified in Section K, please contact the Export Controls Division. The telephone number and mailing address are on the inside front cover of this Guide.

C. How Do I Obtain An Export Permit?

1. In almost all cases, exporters apply for individual export permits through EPE/DFAIT. To receive a permit, an exporter must first complete an application form and send it - either by mail or courier - to EPE/DFAIT for processing. The form required is DFAIT's form EXT-1042, *Application for Permit to Export Goods*. These forms can be mailed to you from EPE/DFAIT in Ottawa, or can be obtained from any of the International Trade Centre offices listed on the back cover of this booklet, and most Customs offices. On the inside back cover of this booklet you will find a sample of the form; the mailing and courier addresses for EPE/DFAIT are on the inside front cover.

- 2. On the reverse of the export permit application form is detailed information on how to complete the form. Exporters should familiarize themselves with the elements that need to be included when completing the application in order to avoid any unnecessary delays in processing.
- 3. Every effort will be made to process the application for a permit quickly. For most goods, the processing time is within 10 working days of arriving in the Export Controls Division. Some goods, however, such as military and nuclear-related products, may require 4-6 weeks, and in some cases longer, to process. Exporters who would like DFAIT to courier approved permits back to them (the exporter must assume the courier costs) should note this on their application.
- 4. An approved application to export goods will be assigned a unique permit number. This will be featured prominently in the lower right-hand corner of the form. Exporters will be required by Canada Customs and Revenue Agency (CCRA) to record this number in the appropriate field of the B-13A document they complete when exporting the goods.
- 5. Export permits for goods in ECL Groups 1, 4, 6, 7, 8 and ECL Item 5400 are normally valid for two years. Extensions are not granted. Permits for goods in ECL Groups 2, 3, and most Items in Group 5 are normally valid for one year. Extensions to these permits may be granted for one additional year. Some items in Group 5, eg., logs or pulpwood, may have validity periods of less than one year. Extensions to these permits may be made on a case-by-case basis.
- 6. All export permits for military goods in ECL Group 2, and selected other ECL items are issued on the condition that a quarterly, semi-annual or annual report, as the case may be, is submitted to the Export Controls Division. This report must detail the actual shipments of goods made against each export permit.
- 7. Reporting conditions may also apply to other items on the ECL. Recipients of export permits should examine the processed export permit to determine whether or not any reporting conditions have been attached to the permit and if so, to whom the reports are to be supplied and at what frequency.

D. Do I Need A Permit For Exports To The United States, Or For The Export Of U.S. Origin Goods?

Exports to the United States

 Under a bilateral arrangement with the United States, export permits are not required for most ECL items when shipping goods to a final destination in the U.S. If the ECL goods are only transiting the U.S. for export to other destinations an export permit is required. However, all goods in Groups 3 and 4, and some goods in Groups 2, 5, 7 and 8 require an individual export permit when the final destination is the U.S. (contact the Export Controls Division to determine which items are exempt).

Export of United States Origin Goods Controlled by ECL Item 5400

2. United States origin goods identified in ECL Item 5400 only, and not covered elsewhere in the ECL, are controlled for re-export from Canada. Although ECL Item 5400. states that all U.S. origin goods require an export permit, exporters may benefit, in most cases, from a General Export Permit (GEP). GEPs have several advantages and are administratively easy to use. They are discussed in greater detail in Section E of this Guide. For the re-export of U.S. goods covered by Item 5400. of the ECL General Export Permit No. Ex. 12 may be applicable in most cases.

Export of United States Origin Goods Controlled Elsewhere in the ECL

- 3. The Government of the United States has traditionally controlled the export of goods that had their origins in the United States and as such, imposes re-export controls. Exporters are cautioned that some U.S. origin goods, including U.S. origin parts and components incorporated into a finished product, may be subject to U.S. re-export controls. If exporters are uncertain as what re-export controls, if any, might apply to their goods, they should contact the Export Controls Division or the original U.S. supplier for guidance.
- 4. With respect to paragraphs 2 and 3 above, if GEP No. Ex. 12 is not applicable, or goods of U.S. origin are included elsewhere on the ECL, and in either case an individual export permit is required, exporters may be required to provide a copy of a validated U.S. export licence or verification that the specified goods may be exported to the specified country without the U.S. licence, prior to issuance of an individual export permit. In some cases, the U.S. supplier may impose, as a condition of supplying certain goods, a requirement that the Canadian purchaser seek U.S. re-export approval before exporting the goods from Canada, and regardless of whether the goods have been incorporated into a finished product in Canada.

Export of U.S. Origin Goods: Iran, Cuba, Libya, North Korea, ACL Countries

5. As noted above, all U.S. origin goods defined under Item 5400. of the ECL require an export permit. If these goods are going to Iran, Cuba, Libya or North Korea, or to any country on Canada's Area Control List (ACL), the exporter must apply to EPE/DFAIT for an individual export permit. General Export Permit No. Ex. 12 is not applicable in these circumstances. For more information, contact the Export Controls Division.

E. What Other Export Control Issues Should I Be Aware Of?

Automatic Firearms Country Control List (AFCCL)

1. In addition to the ECL and the ACL, certain additional export controls exist specifically for prohibited firearms. These firearms may be exported only to countries with which Canada has intergovernmental defence, research, development and production arrangements. The countries on this list are:

Australia	France	Netherlands	Spain	United States
Belgium	Germany	Norway	Sweden	
Denmark	Italy	Saudi Arabia	United Kingdom	

Fees for Export Permits

2. Under the authority of the *Export and Import Permits and Certificate Fees Order, 1995* a fee is levied for each permit covering most Items in Group 5. Most goods under Group 5, except Items 5400., 5401., 5501., and 5502. of the Export Control List, are assessed a \$14 administrative fee for each export permit application submitted. For softwood lumber under Item 5104., a \$9 fee is assessed if export permit applications are completed and submitted electronically (see *Notices to Exporters no. 90 and 92*). There are no fees levied for Items in the other Groups in the ECL. For more information about fee charges please refer to *Notice to Exporters No. 109*.

3. Money orders or cheques payable to the Receiver General for Canada are acceptable forms of payment, and must be included with your application for an export permit. For more information about payment methods please refer to Notice to Exporters No. 109. Exporters who make frequent shipments may prefer to be placed on a monthly billing system. If you would prefer to be billed monthly, rather than making advance payment for each individual permit, please submit your request to:

Director General Export and Import Controls Bureau (EPD) Department of Foreign Affairs and International Trade P.O. Box 481, Station "A" Ottawa, Ontario K1N 9K6

General Export Permits (GEP)

4. General Export Permits (GEP) enable an exporter to export certain goods which are subject to control to eligible destinations without the necessity of submitting individual export permit applications. A GEP is a valid export permit, which is used to minimize the administrative burden for exporters and to streamline licensing procedures. By using a GEP, exporters do not have to apply to EPE/DFAIT for an individual export permit for each shipment of goods. Instead, a simple administrative procedure is used. No additional paperwork is required for exporters, and DFAIT does not become directly involved. However, some GEP's contain conditions, which must be adhered to in order to use them. In some cases, the use of a GEP is conditional on an exporter undertaking to report on actual volumes of exports or on specific final consignees made against the GEP.

GEP's are available for specific goods, and specific destinations. The following is a list of available GEP's:

1	GEP 1:	Export of Goods for Special and Personal	GEP 31:	Peanut Butter
		Use		Computers
	GEP 3:	Export of Consumable Stores Supplied to		Telecommunications
		Vessels and Aircraft		Certain Industrial Goods
	GEP 5:			CWC Chemicals and precursors to the USA
	GEP 12:			CWC Chemicals and precursors mixtures.
	GEP 26:	Industrial Chemicals	GEP 39:	Mass-Market Cryptographic Software

Again, GEPs apply only to eligible goods or destinations. For details about using a GEP, please contact the Export Controls Division or go to the departmental WEB Site at: 'http://www.dfait-maeci.gc.ca'.

Nuclear and Atomic Energy Goods and Technologies

- 5. In addition to the nuclear and nuclear-related items identified in Groups 3 and 4 and certain tems in Groups 1 and 2, the Canadian Nuclear Safety Commission CNSC (formerly the Atomic Energy Control Board) also controls, by regulation under the *Nuclear Safety and Control Act* (formerly the Atomic Energy Control Act), certain radioactive substances and isotopes which are deemed capable of releasing atomic energy or being required for the production, use, or application of atomic energy.
- 6. Exporters of certain radioactive materials not identified in this Guide, as well as Groups 3 and 4 goods require an export licence from the CNSC. Information relating to such controls may be obtained by contacting the Export Controls Division or:

Canadian Nuclear Safety Commission Non-Proliferation, Safeguards and Security Division P.O. Box 1046, Station "B" Ottawa, Ontario K1P 5S9

Telephone: (613) 995-0369 Facsimile: (613) 995-5086

Narcotics, Controlled Drugs and Precursors

- 7. In addition to the illicit drug precursors items identified in Group 8, which are controlled pursuant to international agreements, Health Canada also controls, by regulation under the *Controlled Drugs and Substances Act*, certain drugs, controlled substances, and precursors.
- 8. Exporters of drugs, controlled substances, and precursors not identified in this Guide, can obtain information relating to such controls by contacting:

Office of Controlled Substances Health Canada A.L. #201D3/D4/D5 and D6 Ottawa, Ontario K1A 1B9

Telephone: (613) 954-6522 Facsimile: (613) 952-7738

Other Government Departments

9. It is possible that export permission may be required for other goods from other government departments. These include, but are not limited to:

Heritage Canada Agriculture Canada Environment Canada Natural Resources Canada Canadian Wheat Board

F. What Are The Export Permit Requirements For Forest Products?

 A variety of export controls apply to Canadian forest products listed in Group 5 of the ECL. Remember that most Group 5 Items, including forest products, require a \$14 processing fee (softwood lumber's processing fee is \$9) for each export permit application. The following explains how exporters may obtain a permit to export a controlled forest product.

Logs and Pulpwood: All Provinces and Territories except British Columbia and the Yukon

2. Exporters are required to apply for an export permit for logs and pulpwood identified in ECL Group 5. The export permit application is sent directly to the Export Controls Division for processing.

Logs and Pulpwood: Originating from British Columbia

- 3. Details governing the export of logs from British Columbia are contained in Notice to Exporters No.102, dated April 1, 1998. In summary, exporters who harvest logs from non-provisional Crown land or private lands must apply to the Export Controls Division on the form "Application to Advertise Logs on the B.C. Federal BiWeekly List" (EXT 1718). This begins the surplus test procedures. Applications are reviewed by the Federal Timber Export Advisory Committee (FTEAC). If it is determined that the logs are surplus to domestic requirements, the exporter will be informed to submit the form "Information on Logs in Support of Federal Application EXT 1042" (EXT 1719) together with the federal form EXT 1042 to the Export Controls Division. In those instances where logs are determined not to be surplus to domestic requirements, the exporter will be so informed.
- 4. Applications to export woodchips (pulpwood) must include a copy of the relevant *Order of the Lieutenant Governor in Council* issued by the Province of British Columbia. The approval or rejection of an application will be issued by DFAIT on behalf of the Minister of Foreign Affairs

Logs and Pulpwood: Originating from Indian Reserves in British Columbia

- 5. For logs harvested from Indian Reserves and surrendered lands as defined in the *Indian Act* and *Indian Timber Regulations*, the applicant must submit the following documentation to the B.C. Ministry of Forests Provincial Regional Office:
 - i) The federal form, "Information on Logs in Support of Federal Application EXT-1042" (EXT 1719);
 - ii) Written Letter of Consent from the Department of Indian Affairs and Northern Development (DIAND); *and*
 - iii) A stock scale in approved format.
- 6. The exporter must obtain a Written Letter of Consent (5 above) by applying to DIAND in Vancouver. Once the Letter of Consent is issued by DIAND, it is sent to DFAIT with copies to the B.C. Ministry of Forests and the applicable Indian Band. For information contact:

Department of Indian Affairs and Northern Development Lands and Resources B.C. Region 300 - 1550 Alberni Street Vancouver, B.C. V6G 3C5 Telephone: (604) 666-6320 Facsimile: (604) 666-6474

- Upon receipt of the documentation noted in paragraph 5. above, the Provincial Regional Office will return copies of the documents to the applicant. The applicant then applies to EPE/DFAIT for a federal export permit on form EXT 1042, "Application for Permit to Export Goods" (EXT 1042), and include copies of all documents noted in paragraph 5. above.
- 8. Upon receipt of the documents noted in paragraph 7. above, the Export Controls Division will process the federal export permit application.
- 9. All logs are subject to, and must be available for, inspection by the B.C. Ministry of Forests. As well, all logs must be marked to identify their origin.

Logs and Pulpwood: Originating from the Yukon Territory

10. Exporters must apply to DFAIT for a normal export permit, and should allow 20 working days for processing. The delay in processing is due to the fact that each case must be discussed among DFAIT, DIAND and the government of the Yukon. While other governments are involved, the approval or rejection of an export application will be made by EPE/DFAIT officials on behalf of the Minister. Any questions exporters have about their application are to be directed to EPE/ DFAIT.

Softwood Lumber

11. Exports of softwood lumber require export permits if destined to the United States. For detailed information on these controls, please consult *Notices to Exporters No. 90, 92, 94, 107, 108, 110, 112, 114, 116, 118, 120, and 121 (Softwood Lumber Products)*.

G. What Administrative Procedures Apply In The Processing Of Export Permits?

Opinions on Proposed Exports

1. It is common for exporters to request an opinion on the prospect for receiving an export permit. This advice is provided wherever possible, but is not binding on the Minister. Therefore, exporters who want a binding decision are encouraged to apply for an export permit rather than requesting a written opinion.

Permits for Temporary Exports

- 2. Temporary permits are common for goods exported for trade shows, exhibitions, demonstrations, geological surveying, and other events where the goods will return to Canada. Exporters must apply for a permit as normal, but note in the body of the application that they are asking for a permit for a temporary export. In granting a permit for a temporary export, EPE/DFAIT may place certain conditions on the export. These conditions may include:
 - adhering to the expiry date of the permit (normally 12 months);
 - ensuring the goods are properly supervised while abroad; and
 - providing proof that the goods are returned to Canada unchanged.

and other conditions as required.

Multiple Shipments/Multiple Consignee Permits (Strategic/Other Goods)

3. In some cases, an exporter may use an export permit for more than one shipment to the consignee(s) specified on the export permit (a maximum of three consignees per permit in a single country) up to the value and quantity noted on the permit. This procedure applies to all goods in Groups 1, 4, 5 (except ECL Items 5501, 5502 and 5503), 6, 7 and 8.

Single Shipment Permits (Offensive Military Equipment)

4. As a general rule, export permits for military goods falling under ECL Items 2001, 2002., 2003., and 2004., and at the discretion of the Export Controls Division, ECL Items 2005., 2006., 2007., 2008., 2009.(a) and (g), 2010.(a), 2012., 2016., 2017.(b), 2019. will be issued for a single shipment/single consignee only. The export permit becomes invalid after the first shipment is made even if the shipment was only a partial one. Exporters must re-apply for a new export permit to cover any shortfall.

Multiple Shipments/Single Consignee Permits (Non-offensive Military/Atomic Energy Equipment)

5. Other ECL Items in Group 2 not identified in paragraph 4., above and all items in ECL Group 3 may be permitted to a single consignee on a multiple shipment basis.

Export Permit Status Enquiries

6. Exporters may obtain information regarding the processing of their permit application by contacting the direct telephone number (613) 996-2387 and citing the red I.D. number located in the upper right-hand corner of the export permit application. Please allow at least five working days from time of mailing before enquiring as to the status of applications.

Distribution and Retention of Permit Copies

- 7. Once the export permit has been approved, the exporter will receive an "Exporter's Copy" duly signed and authorized. This copy must be presented to Canada Customs at the port of export together with the appropriate shipping documents and Customs Export Declaration Form B13A (if applicable), prior to exportation. If the permit allows multiple shipments, then a photocopy of the "Exporters Copy" must be submitted to Customs for subsequent shipments.
- 8. The exporter must retain, at his/her place of business or residence, all documents in respect of each export made under an export permit whether it is a General Export Permit (GEP) or an Individual Export Permit (IEP), for a period of seven years total (6 + current).

Amendments and Extensions of Export Permits

9. Amendments to permits may be allowed to meet changed circumstances. Requests to amend existing export permits must be made in writing, addressed to the Director, Export Controls Division. All such requests should be received in the Division at least four weeks prior to the expiry date of the export permit.

Once the permit has expired, it cannot be amended.

10. Requests for amendments are reviewed individually in light of the circumstances prevailing at the time of the request. Extensions will be approved on a one time basis only for permits originally issued with an expiry date of one year. Where a permit is issued with an expiry date of two years, an extension will not normally be granted. In most cases, the number of consignees per permit is limited to three. Amendments to consignees will be considered although no increase in the number of consignees beyond three will be allowed. Changes in consignee must be accompanied by appropriate end-use assurances (see Section H, below). Requests to add new items or to change the quantities or values of items on existing permits will be reviewed on a case-by-case basis. Amendments to permits covering military goods (ECL Group 2) will generally be approved only when the changes are of a minor nature.

11. Goods not listed on the export permit, or goods destined to a consignee not listed on the export permit, may be subject to customs detention or seizure. Therefore, exporters should ensure that their export permit has been formally and legally amended before the export takes place.

Access to Information

12. As a general rule, under the *Privacy Act* and the *Access to Information Act*, information in the possession of the federal government cannot be disclosed, regardless of the source of such information. However, both the *Privacy Act* and the *Access to Information Act* contain provisions which require the government to disclose certain information under certain circumstances. Please refer to these Acts for more information.

H. What Supporting Documentation Is Required?

- 1. To a large extent, Canada and its major industrialized trading partners have harmonized their export control systems in order to prevent diversions or trans-shipments of controlled commodities for unauthorized end-uses or to unauthorized destinations. In addition, required documentation for nuclear and nuclear-related dual-use items may be somewhat different. In some cases, government-to-government assurances from the end-user may be necessary. Applicants should keep such considerations in mind when planning their requirements for an export permit. Generally speaking, however, **for end-use assurances**, Canada has in place a system whereby these assurances appear in several internationally recognized forms:
 - A. International Import Certificates (IIC);
 - B. End-use Certificates (EUC), and/or Import Licences (IL);
 - C. Delivery Verification Certificates (DV);
 - D. End-use Statements (EUS).
- 2. In order to expedite the processing of export permit applications, exporters are encouraged to obtain appropriate end-use assurances from the importers well in advance of applying for an export permit. This ensures that applications are processed with minimal delays.
- 3. Under certain defined circumstances, the need for end-use assurances may be waived. Please refer to section 12 entitled "Waiver of End-use Documentation" below, where the waivers are explained in detail.

International Import Certificates (IIC)

- 4. When an IIC is required, the exporter must request that the importer (or consignee) obtain an IIC from the government of the importing country. The IIC defines the items and quantities of the shipment, which means that the government of the importing country is aware of the nature of the import. Further, the IIC allows the government of the importing country to ensure that the goods are not diverted en route or upon arrival.
- 5. Once the IIC is validated by the foreign authorities, the original as well as the importer's office copy are returned to the importer. The original must then be sent by the importer to the Canadian exporter, who must forward it to the Export Controls Division with the export permit application. Only then can an export permit be processed. Exporters should note that IICs usually have a limited validity period (normally 6 months) and must be submitted to the Export Controls Division within the validity period.
- 6. For exports to Canada, the foreign government may require a Canadian IIC before the foreign export permit/licence is issued. The Canadian importer applies for the IIC from the Export Controls Division.

End-Use Certificates (EUC)/ Import Licences (IL)

7. The Canadian exporter should request the importer to obtain an EUC or IL, whichever is offered by the foreign government, from the designated authorities. The foreign importer forwards this document to the Canadian exporter for delivery to the Export Controls Division together with the export permit application.

Delivery Verification Certificates (DV)

- 8. Most countries that issue IICs also issue Delivery Verification Certificates (DV). DVs certify that the goods have arrived in the importing country. On some occasions, Canadian exporters may be required to obtain DVs from the importer's government. DVs are normally issued by import or export control authorities in the country of final destination. The DV provides official confirmation that the goods have been delivered in accordance with the terms of both the Canadian export permit and the foreign-issued IIC.
- 9. In the case of exports to Canada, the foreign government may require a Canadian DV. The DV is requested by the foreign exporter who forwards the request to the Canadian importer who, in turn, completes and submits a DV application form to the Export Controls Division for processing.

End-Use Statements (EUS)

- 10. Some governments do not issue any type of end-use certificates or other official assurances about the final use of a good. In such cases an End-Use Statement (EUS) from the importer may be acceptable. The statement must be on the importer's letterhead (photocopy not acceptable) and must:
 - i) identify the final end-user, the final location where the goods will be delivered, as well as purpose and use of the products to be imported;
 - ii) correspond to the commodity description which appears on the export permit application;
 - iii) identify whether there is any potential military use intended or if the goods are to be used for civilian purposes;
 - iv) declare that the imported goods will not be diverted or re-exported for any reason; and
 - v) declare that the goods will not be used for any purposes associated with the development or production of chemical, biological or nuclear weapons, or their delivery systems (i.e. missiles).
- 11. In recent years exports of certain goods are believed to have contributed to the proliferation of chemical, biological and nuclear weapons, as well as their delivery systems (i.e. missiles). These are known as Weapons of Mass Destruction or WMD. In some cases, therefore, and in order to prevent the proliferation of WMD, exporters may be required to provide an additional statement on the EUS, as noted in 10(v).

Waiver of End-use Documentation

- 12. At the discretion of the Export Controls Division, the supporting documentation requirements may be waived for applications involving the export of certain goods or to certain end users. Unless otherwise indicated below, the waiver normally applies only to ECL Group 1 goods. Exporters who consider that their particular transaction qualifies for waiver of supporting documentation should state this in the body of the export permit application. The following are common examples of discretionary waiver:
 - i. Single Shipments of Less Than \$6,000 (Cdn) (Except Firearms)
 - ii. Government Departments or Agencies (All ECL Groups)

Government Departments are entities operated by government-paid personnel performing governmental administrative functions: e.g., Ministry of Defence, Ministry of Health; etc. Government Agencies considered to be government-controlled (i.e. more than 50% government owned) are public service entities, such as transportation systems, postal, telephone, telegraph, broadcasting and hydro power systems.

iii. Relief Agencies for Use in Relief Projects

- iv. Educational Institutions (e.g. University, Academy, College, Research Institute, etc)
- v. Temporary Permits (All ECL Groups) For an application to export goods for exhibition, demonstration or testing purposes.

vi. Maintenance/Repair Parts-Commercial Aircraft

vii. Maintenance/Repair Parts -Other Goods

viii. Returned Goods

- Returned goods are those:
- returned from Canada to the foreign country for repair or replacement;
- returned after being repaired in Canada; or
- replace goods previously exported from Canada which have been returned to Canada for replacement.
- Note: In certain cases, GEP No. EX. 1 may apply to your export in situations identified in paragraphs vi, vii and viii above.

End-use Assurance for Firearms, Components, Ammunition and Explosives

13. Export permits for firearms, firearm components and ammunition will not be issued unless the exporter provides an import permit or other proof that the items will be legally entered into the country of destination. To meet the requirements of the OAS Convention on Firearms, Explosives and Related Material proof of a transit authorisation may be required if the goods are transiting a third country.

Countries Administering IIC, IL, EUC, and DV Requirements

14. Many countries maintain end-use assurance systems. While the list below identifies those countries that are known to have these systems in place, other countries not listed may also have acceptable systems.

IIC/DV	Hungary	IIC	Norway	IIC/DV
IIC/DV	Ireland	IIC/DV EUC	Pakistan	IIC/DV
IIC/DV	Israel	IIC/CC**	Portugal	IIC/DV
DV	Italy	IIC/DV	Singapore	IIC/DV
IL	Japan	IIC/DV	Spain	IIC/DV
IIC/DV equivalents	Republic of Korea	IIC/DV	Sweden	IIC/DV
EUC/MOFTEC	Liechtenstein	Swiss Blue	Switzerland	Swiss Blue
IIC/DV	Luxembourg	IIC/DV	Turkey	IIC/DV
EUC	Macau	IL	United Kingdom	IIC/DV
IIC/DV	Malaysia	IIC/DV	United States	IIC/DV
IIC/DV	Netherlands	IIC/DV	Yugoslavia	EUC
IIC/DV	New Zealand	EUC	and the state of the state	
IIC/DV MOFTEC	Nigeria	IIC		
	IIC/DV IIC/DV DV IL IIC/DV equivalents EUC/MOFTEC IIC/DV EUC IIC/DV IIC/DV IIC/DV	IIC/DVIrelandIIC/DVIsraelDVItalyILJapanIIC/DV equivalentsRepublic of KoreaEUC/MOFTECLiechtensteinIIC/DVLuxembourgEUCMacauIIC/DVNetherlandsIIC/DVNew Zealand	IIC/DVIrelandIIC/DV EUCIIC/DVIsraelIIC/CC**DVItalyIIC/DVILJapanIIC/DVIIC/DV equivalentsRepublic of KoreaIIC/DVEUC/MOFTECLiechtensteinSwiss BlueIIC/DVLuxembourgIIC/DVEUCMacauILIIC/DVNetherlandsIIC/DVIIC/DVNew ZealandEUC	IIC/DVIrelandIIC/DV EUCPakistanIIC/DVIsraelIIC/CC**PortugalDVItalyIIC/DVSingaporeILJapanIIC/DVSpainIIC/DV equivalentsRepublic of KoreaIIC/DVSwedenEUC/MOFTECLiechtensteinSwiss BlueSwitzerlandIIC/DVLuxembourgIIC/DVTurkeyEUCMacauILUnited KingdomIIC/DVNetherlandsIIC/DVYugoslaviaIIC/DVNew ZealandEUCYugoslavia

* PRC = People's Republic of China **Customs Certificate in lieu of a DV

I. What Does Customs Require And What Do I Do If My Goods Are Detained?

- 1. Before allowing the export of goods, it is the duty of Customs Officers, under the *Export and Import Permits Act* (EIPA), and the *Customs Act*, to satisfy themselves that the export does not contravene the EIPA.
- 2. At the time the goods are presented for export it is necessary to present a completed Canada Customs and Revenue Agency (CCRA) Export Declaration form B-13A along with the exporter's original copy of an export permit. In those instances where the exporter is unable to provide the original copy, an export permit stamped "this is a certified true copy" and signed by the appropriate officer of DFAIT will be accepted. It is the responsibility of the exporter to declare on the B-13A the Permit Number, if applicable. If a permit is required, the Individual Export Permit number or the General Export Permit number must be cited in Box 9 of the B-13A. If no permit is required, this fact must be stated on the export documentation.
- 3. For permits valid for multiple shipments, it is the responsibility of the exporter to present the original copy of the export permit to Customs at the time of the first exported shipment. Copies of attachments listing consignees, goods, etc., must also be presented with the same information stated on the B-13A (i.e., consignee name and address). Photocopies will be accepted for all additional exports. Each shipment will be recorded by Customs until the export permit expires or the quantity/value of the export permit has been reached, whichever comes first. However, it should be noted that it is the responsibility of the exporter to keep records and not to ship beyond the quantity or value limits of the export permit.
- 4. For more information on presentation and processing of Customs export documents, please contact your local CCRA office.
- 5. Exporters whose goods are being detained by Customs should contact the Enforcement Assistant, Export Controls Division, Department of Foreign Affairs and International Trade ([613]996-2387). If the detained goods require an Individual Export Permit, the exporter will be required to obtain and present to Customs the valid export permit before the goods will be considered for release. Failure to declare applicable GEPs is an offence under the EIPA.
- 6. Exporters believed to be in violation of the *Export and Import Permits Act* (EIPA) may have their goods seized by the CCRA. In these instances, the exporter may be liable for severe penalties under the *Customs Act* and/or the *EIPA*. Following seizure, CCRA assumes the sole responsibility for all seized goods and their final disposition will be determined through an adjudication process.
- 7. Permits are not valid for goods under seizure until such time as the goods are released to the exporter.

Reminder: CCRA compares the goods described on the export permit and the Customs Export Declaration form B-13A or equivalent export documentation with the contents of the shipment. Discrepancies in the documentation, including goods being exported without the required permit, or being shipped to a consignee not listed on the permit, or utilising an expired permit could result in the export being detained, pending clarification, or if a violation has occurred, the goods being seized. The most common detention/seizure cases involve goods of U.S. origin, although possibly purchased from Canadian retailers or distributors. Such goods are not exempt from controls and do require permits, either individual or general(GEP). Even when goods may be exported under a GEP, this still constitutes an obligation to cite the appropriate GEP number on the B-13A and if the goods are presented without citing the appropriate permit number, the goods may be detained or seized. 8. If the basis for the seizure is upheld, forfeiture of the goods, or an ascertained forfeiture (equivalent to a fine) will be levied.

J. What Is Canada's Legislative And Policy Basis For Export Controls?

General

1. The Minister of Foreign Affairs is responsible for the administration of the *Export and Import Permits Act* (EIPA). The Export Controls Division, Export and Import Controls Bureau administers this Act on behalf of the Minister. The Export Controls Division also co-operates with other government departments and agencies which administer policies and procedures, and exercise separate licensing responsibilities related to the export of controlled goods and technologies pursuant to other relevant legislation. Generally speaking, there are established guidelines, procedures, and policies with respect to exports of strategic and military goods.

Strategic Goods

2. Groups 1, 3, 4, 6 and 7 of the Export Control List cover strategic as well as dual-use goods and technologies. Dual-use goods, materials, equipment and components, though mainly civil/commercial in nature could contribute to chemical, biological and nuclear weapons proliferation, and their delivery systems as well as the development of conventional weapons. Generally, exports of strategic and dual-use civilian goods are considered favourably with some exceptions. For example, an export permit application may be denied where there is a risk of diversion of the goods to an unacceptable use or destination or where secondary military uses might be foreseen. An export application may be denied where there is a risk of proliferation of nuclear fuel cycle activity (Groups 3 and 4), missile systems (Group 6) or chemical/biological weapons (Group 7) to any country. The onus is on the exporter to indicate the final destination of the goods.

Military Goods

- 3. With respect to military goods, (ECL Group 2 and ECL Items 5501., 5502. and 5503.) Canadian export control policy has, for many years, been restrictive. Under present policy guidelines set out by Cabinet in 1986, Canada closely controls the export of military goods and technology to:
 - i) countries which pose a threat to Canada and its allies;
 - ii) countries involved in or under imminent threat of hostilities;
 - iii) countries under United Nations Security Council sanctions, or
 - iv) countries whose governments have a persistent record of serious violations of the human rights of their citizens, unless it can be demonstrated that there is no reasonable risk that the goods might be used against the civilian population.
- 4. These criteria are observed strictly, and any threat or possible misuse will be taken into account.

Policy Assessments

5. After a technical assessment is completed to determine which ECL item(s) applies to the permit, the application is further reviewed by taking into consideration the type of goods exported, the importing country and the intended use and end-user of the product. A thorough examination of the relevant foreign policy and security concerns is undertaken which involves policy guidance from other branches of government through a consultation process. For some countries and categories of goods this may be a protracted process.

Consultations

- 6. The purpose of intra/interdepartmental consultations is to fully assess the risks related to proposed exports. Consultations may be carried out at the national, bilateral or multilateral levels.
- 7. Various Canadian Government Departments, Agencies or Boards may be involved in the export control process. These may include the Departments of National Defence, Industry Canada, Canada Customs and Revenue Agency, the Canadian Nuclear Safety Commision; the Communications Security Establishment; the Canadian Security Intelligence Service; the Royal Canadian Mounted Police, Health Canada, Natural Resources Canada, and various Divisions within the Department of Foreign Affairs and International Trade.

K. What are Canada's Multilateral Commitments and How do They Relate to the ECL?

Wassenaar Arrangement (ECL Groups 1 and 2)

- 1. The Wassenaar Arrangement (WA) on Export Controls for Conventional Arms and Dual-use Goods and Technologies was established in order to contribute to regional and international security and stability, by promoting transparency and greater responsibility in transfers of conventional arms and dual-use goods and technologies, thus preventing destabilising accumulations. The thirty-three participating states of the WA seek to ensure that transfers of these items do not contribute to the development or enhancement of military capabilities which undermine these goals, and are not diverted to support such capabilities.
- 2. The WA complements and reinforces, with minimal duplication, the existing control regimes for weapons of mass destruction and their delivery systems. This arrangement is also intended to enhance co-operation to prevent the acquisition of armaments and sensitive dual-use items for military end-uses, if the situation in a region or the behaviour of a state is, or becomes, a cause for serious concern to the participating states. Finally, it will not be directed against any state or group of states and will not impede bona fide civil transactions. ECL Group 1 comprises dual-purpose goods and technologies that have both civilian and military application. ECL Group 2 comprises goods and technologies that are specially designed or modified for military purposes. The current members of the WA include:
 - Argentina Australia Austria Belgium Bulgaria Canada Czech Republic

Denmark Finland France Germany Greece Hungary Ireland

- Italy Japan Korea, Republic of Luxembourg Netherlands New Zealand Norway
- Poland Portugal Romania Russian Federation Slovak Republic Spain
- Sweden Switzerland Turkey Ukraine United Kingdom United States

Nuclear Non-proliferation (ECL Groups 3 and 4)

- 3. Canada has a long-standing nuclear non-proliferation policy which is designed, *inter alia* to ensure that Canada's nuclear exports are not used for any nuclear explosive purpose. Canada has concluded with its nuclear trading partners bilateral cooperation agreements in which there are reciprocal commitments. As a party to the Treaty on the Non-proliferation of Nuclear Weapons (NPT) that came into force in 1970, Canada is obliged not to provide source or special fissionable material, or equipment or material especially designed or prepared for the processing, use or production of special fissionable material to any non-nuclear weapon state (NNWS) for peaceful purposes unless the source or special fissionable material is subject to International Atomic Energy Agency (IAEA) safeguards. In the early 1970's, Canada, as a member of a group of states that became known as the Zangger Committee, adopted a common understanding with respect to the implementation of this commitment that included an elaboration of those nuclear goods requiring the application of IAEA safeguards.
- 4. In the late 1970's, a group of nuclear suppliers, including Canada, agreed on a further set of guidelines for nuclear transfers to any NNWS for peaceful purposes. These became known as the Nuclear Suppliers' Group (NSG) guidelines. In 1992, the NSG established a list of nuclear-related dual-use goods and technologies that could make a major contribution to a nuclear explosive activity or an non-safeguarded nuclear fuel cycle activity. There are thirty-five NSG member countries.
- 5. Group 3 includes goods that are nuclear-specific. Group 4 includes goods that are nuclear related, dual-use, goods; that is, items that can be used for nuclear as well as non-nuclear applications and that could be used in a nuclear explosive activity or a non-safeguarded nuclear fuel cycle activity.

Miscellaneous Non-Strategic Export Controls (ECL Group 5)

6. Canada is a participant in a number of bilateral and multilateral organisations designed to control the export from Canada of various non-strategic goods. Included in Group 5 are forest products, medical products, agricultural and food products, U.S. origin goods, anti-personnel land mines, blinding laser weapons and nuclear fusion reactors

Missile Technology Control Regime (ECL Group 6)

7. The MTCR was established in 1987 to address concerns about the proliferation of systems capable of delivering weapons of mass destruction, namely chemical, biological or nuclear weapons. As of 1998, thirty-two countries are members of the MTCR. The goods and technologies identified in Group 6 of this Guide encompass MTCR controls. Group 6 includes goods and technologies agreed upon by the MTCR that are used or could be used in the proliferation of systems capable of delivering chemical, biological and nuclear weapons.

Australia Group (ECL Group 7)

8. In 1985, Canada, together with a number of other countries, agreed that the proliferation of chemical and biological weapons required immediate attention. The Australia Group controls chemical substances and biological agents and related equipment that could be used in the production of chemical and biological weapons. As of 1998, thirty countries were members of the Australia Group. Chemical weapon precursors and biological agents and related dual-use equipment are identified in Group 7 of this Guide.

Chemical Weapons Convention (ECL Group 7)

9. Also contained in ECL Group 7 are chemicals and precursors controlled under the Chemical Weapons Convention (CWC). Many of the CWC chemicals and precursors are also controlled by the Australia Group and by the Biological and Toxic Weapons Convention (BTWC).

Chemical Action Task Force (CATF) (ECL Group 8)

10. The CATF maintains a list of chemical precursors that could be used in the production of illicit drugs. Group 8 contains a list of chemical precursors used in the manufacture of illicit drugs. Some of the chemicals are also subject to controls imposed under the "United Nations Convention Against Illicit Traffic in Narcotic and Psychotropic Substances". This list is not all-inclusive. Health Canada controls other chemicals used in the production of illicit drugs.

L. How do I Use the ECL and Find Information in the Guide?

1. Most of this Guide consists of the Export Control List, a lengthy and very technical list of goods that require federal permits if they are exported. Novice users can find themselves swamped in so much information they lose sight of what they are trying to find. Therefore understanding how to read the ECL and how to find information in it is vital. This section will help explain how the ECL is organised, and how to find specific information in it.

Reading the ECL

2. The ECL is divided into eight different chapters, known as **Groups**. These Groups each consist of items that in many ways appear similar to each other. The following is a list of all of the Groups, and the items that they control:

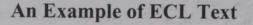
Group 1: Dual Use List*	Group 5: Miscellaneous Goods
Group 2: Munitions List	Group 6: Missile Technology Control Regime List
Group 3: Nuclear Non-Proliferation List	Group 7: Chemical and Biological Weapons Non-Proliferation List
Group 4: Nuclear-Related Dual Use List*	Group 8: Chemicals for the Production of Illicit Drugs.

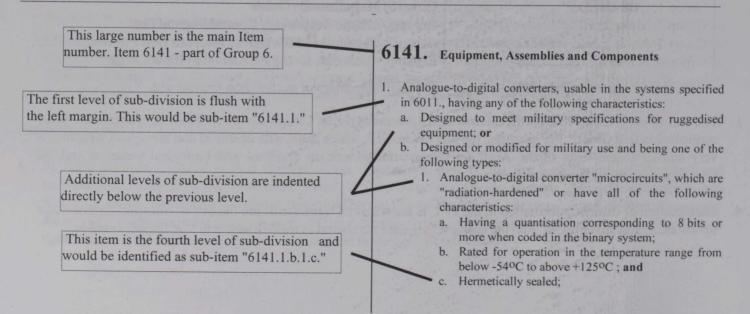
- * "Dual Use" items are industrial products with a civilian/military or nuclear/non-nuclear use.
- 3. The text of each Group reflects the international agreement(s) that Canada has entered into concerning the items controlled in that Group. For example, the text of Group 7, which deals with chemical and biological weapons, is very similar to the texts of the Australia Group arrangement on chemical and biological weapons and the Chemical Weapons Convention Treaty.
- 4. Each portion of distinct information in the ECL is known as an **Item**. Items are the bits of information that make up the ECL, and are collected into the Groups. Items are numbered to make it easier to find the information.

Introduction

- 5. Numbering of Items reflects the Group that contains that Item. For example, in Group 2 (the Group concerning Munitions) all of its Items' numbering starts with the number "2". So, for example, bombs, torpedoes and rockets are Item 2004. Item 2005. discusses fire control systems, such as bomb sights. All of the Items in Group 4 begin with the number 4, Group 6's begin with the number 6, and so on. This is important to remember, and makes it easier to find a listed good or technology: if you already know the good's Item number, you will automatically know which Group contains it.
- 6. **Sub-Items** are also given unique numbers. Numbers for sub-items are based upon the main Item number to which the sub-item refers: for example, Item 2004.a. is a sub-item of Item 2004. When there are many sub-items, the numbering can become complicated. Consider, for example, Item 1061.: it has dozens of sub-items, one of them being 1061.5.c.2.b)(1), which discusses Q-switched lasers.
- 7. As evidenced by the example above, the number of sub-items alternates between number and letter. Thus, in 1061.5.c.2.b).(1):

1061. is the main Item


5. is the first level of sub-item


c. is the second level of sub-item

2. is the third level

. etc.

- 8. In addition to numbering, sub-items are identified by indentations into the text.
- 9. Many of the terms in the ECL are in quotations. For example, "aircraft" appears several times. These quotes signify that the word or phrase contained in the quotes has a specific **definition** applied to it. The definitions for terms are found at the end of each Group, and apply to that specific Group. The definitions originate from the various international agreements to which Canada subscribes.
- 10. Below is an example that illustrates the text of the ECL. It may help demonstrate how the numbering system is structured, and how Items/sub-items relate to one another.

Finding a Specific Good in the ECL

- 11. It is common for readers to know specifically what products they deal with, and if those goods are controlled. There are two main ways to try to locate specific goods:
 - i) Use the Index to specifically find the Item.
 - ii) Search through Groups that contain like products to find any Items that apply to your goods.
- 12. The first step is obvious. At the back of this Guide is a detailed, but not exhaustive, index to items found in the ECL. By using this index, readers can quickly find all of the important references the ECL may have concerning a specific good. Exporters are cautioned that the index is not all-inclusive and that generic names or other terms may be used in place of common or trade terminology.
- 13. If specific goods are not mentioned, exporters are advised to review the pertinent sections of the ECL to find out if controls nonetheless apply. This is because some Items apply to a large number of goods, but do not list them by name; hence the goods do not appear in the index. Exporters are encouraged to contact the responsible government department or agency if there is any doubt about the applicability of a particular product or commodity. Item 5400., in Group 5 of the ECL, is a good example of this. No specific goods are mentioned in Item 5400., but it states that all U.S. origin products require an export permit, regardless of destination or the nature of the good.

Goods Identified Under More Than One Group /Item of this Guide

14. Each Group of this Guide must be considered independently, but goods or technologies identified in one Group/Item may also be identified in other Groups/Items. Exporters should ensure that they have reviewed this Guide in sufficient detail to assure themselves that all relevant Groups/Items have been considered.

M. What are the Current Notices to Exporters?

The Export Controls Division issues various Notices to Exporters to assist the exporting community in understanding current policies and procedures. While the most current Notices can be found on the departmental WEB Site at "http://www.dfait-maeci.gc.ca", at time of publication of this Guide, the following Notices to Exporters were in effect.

No. Subject

- 26. Exports of Red Cedar suitable for Use in the Manufacture of Shakes and Shingles
- 52. Export of Unprocessed Roe Herring
- 74. Chemical and Biological Weapons
- 79. Croatia
- 81. Peanut Butter
- 82. Sugar-Containing Products
- 83. Changes to the Export and Import Permits and Certificates Fees
- 86. Transfer of Missile Equipment and Technology

No. Subject

- 88. Textiles and Clothing: Administration under NAFTA
- 89. Yugoslavia
- 90. Softwood Lumber
- 92. Item 5104: Softwood Lumber Products
- 100. Export Controls to Myanmar (Burma)
- 102. Exports of logs from British Columbia.
- 105. Export controls over Chemicals Covered by the Chemical Weapons Convention (CWC)

No. Subject

- 109. New Financial Administration Rules on Export Permits/Certificates of Eligibility.
- 113. Export Controls on Cryptographic Goods.

No. Subject

567. Notice to IMPORTERS: Import controls over chemicals covered by the Chemical Weapons Convention.

N. What Acronyms are Used in this Guide?

ACL Area Control List EXT-1042 Application for Permit to Export Goods Atomic Energy Control Board (see CNSC) AECB EXT-1718 Application to Advertise Logs on the B.C. AFCCL Automatic Firearms Country Control List Federal Bi-Weekly List EXT-1719 Information on Logs in Support of Federal AG Australia Group **Customs Export Declaration Form B-13A** Application EXT-1042 CCRA Canada Customs and Revenue Agency GEP General Export Permit **Chemical Weapons Convention** CWC IAEA International Atomic Energy Agency Chemical Action Task Force CATF IEP Individual Export Permit Canadian Nuclear Safety Commission CNSC IIC International Import Certificate DFAIT Department of Foreign Affairs and IL Import Licence International Trade MTCR Missile Technology Control Regime Department of Indian Affairs and Northern DIAND **NNWS** Non-Nuclear Weapon State Development NPT Nuclear Non-proliferation Treaty DV **Delivery Verification Certificate** Nuclear Suppliers' Group NSG Royal Canadian Mounted Police ECL **Export Control List** RCMP EIPA Export and Import Permits Act UN United Nations EPE **Export Controls Division** WA Wassenaar Arrangement on Export Controls EUC End-use Certificate for Conventional Arms and Dual-Use Goods **EUS End-Use Statement** and Technologies

8

1

Group 1 – Dual Use List

Note:

Terms in "double quotation marks" are defined terms. Refer to "Definition of the Terms used in Groups 1 and 2" on pages 62 to 70.

General Technology Note

The export of "technology" which is "required" for the "development", "production" or "use" of products controlled in the Dual-Use List is controlled according to the provisions in each Category. This "technology" remains under control even when applicable to any uncontrolled product.

Controls do not apply to that "technology" which is the minimum necessary for the installation, operation, maintenance (checking) and repair of those products which are not controlled or whose export has been authorised.

N.B.:

This does not release such "technology" controlled in entries 1015.2.e. & 1015.2.f. and 1085.2.a. & 1085.2.b.

Controls do not apply to "technology" "in the public domain", to "basic scientific research" or to the minimum necessary information for patent applications.

Category 1010: Advanced Materials

1011. Systems, Equipment and Components

- 1. Components made from fluorinated compounds, as follows:
 - a. Seals, gaskets, sealants or fuel bladders specially designed for "aircraft" or aerospace use made from more than 50% by weight of any of the materials controlled by 1013.9.b. or 1013.9.c.;
 - b. Piezoelectric polymers and copolymers made from vinylidene fluoride materials controlled by 1013.9.a.:
 - 1. In sheet or film form; and
 - 2. With a thickness exceeding 200 µm;
 - c. Seals, gaskets, valve seats, bladders or diaphragms made from fluoroelastomers containing at least one vinylether group as a constitutional unit, specially designed for "aircraft", aerospace or missile use.
- "Composite" structures or laminates, having any of the following:
 - An organic "matrix" and made from materials controlled by 1013.10.c., 1013.10.d. or 1013.10.e.; or
 - b. A metal or carbon "matrix" and made from:
 - 1. Carbon "fibrous or filamentary materials" with:
 - a) A specific modulus exceeding 10.15 x 10⁶ m; and
 - b) A specific tensile strength exceeding 17.7 x 10⁴ m; or
 - 2. Materials controlled by 1013.10.c.

Note 1:

Item 1011.2. does not control finished or semi-finished items specially designed for purely civilian applications as follows:

- sporting goods;
 automotive industry;
- machine tool industry;
- 4. medical applications.

General "Software" Note

The Dual-Use List does not control "software" which is either:

- 1. Generally available to the public by being:
 - a. Sold from stock at retail selling points, without restriction, by means of:
 - 1. Over-the-counter transactions;
 - 2. Mail order transactions; or
 - 3. Telephone call transactions; and
 - b. Designed for installation by the user without further substantial support by the supplier; or

N.B.:

Entry 1 of the General Software Note does not release "software" controlled by Category 1150.

2. "In the public domain".

Note 2:

1011.2. does not control composite structures or laminates made from epoxy resin impregnated carbon "fibrous or filamentary materials" for the repair of aircraft structures or laminates, provided the size does not exceed 1 m^2 .

Technical Notes:

- Specific modulus: Young's modulus in pascals, equivalent to N/m² divided by specific weight in N/m³, measured at a temperature of (296 ± 2) K ((23 ± 2)°C) and a relative humidity of (50 ± 5)%.
- Specific tensile strength: ultimate tensile strength in pascals, equivalent to N/m² divided by specific weight in N/m³, measured at a temperature of (296 ± 2) K((23 ± 2)°C) and a relative humidity of (50 ± 5)%.
- Manufactures of non-fluorinated polymeric substances controlled by 1013.8.a.3., in film, sheet, tape or ribbon form:
 - a. With a thickness exceeding 0.254 mm; or
 - b. Coated or laminated with carbon, graphite, metals or magnetic substances.

Note:

- 1011.3. does not control manufactures when coated or laminated with copper and designed for the production of electronic printed circuit boards.
- 4. Protective and detection equipment and components not specially designed for military use, as follows:
 - a. Gas masks, filter canisters and decontamination equipment therefor designed or modified for defence against biological agents or radioactive materials "adapted for use in war" or chemical warfare (CW) agents and specially designed components therefor;
 - Protective suits, gloves and shoes specially designed or modified for defence against biological agents or radioactive materials "adapted for use in war" or chemical warfare (CW) agents;

1011.4. con't.

c. Nuclear, biological and chemical detection systems (NBC) specially designed or modified for detection or identification of biological agents or radioactive materials "adapted for use in war" or chemical warfare (CW) agents and specially designed components therefor.

Note:

- Item 1011.4. does not control .
- a. Personal radiation monitoring dosimeters;
- b. Equipment limited by design or function to protect against hazards specific to civil industries, such as mining, quarrying, agriculture, pharmaceuticals, medical, veterinary, environmental, waste management, or to the food industry.

N.B.:

Also see Item 2007. on Munitions List.

 Body armour, and specially designed components therefor, not manufactured to military standards or specifications, nor to their equivalents in performance.

Note 1:

Item 1011.5. does not control individual suits of body armour and accessories therefor, when accompanying their users for his/her own personal protection. Note 2:

Item 1011.5. does not control body armour designed to provide frontal protection only from both fragment and blast from non-military explosive devices.

N.B.:

Also see Item 2013. on Munitions List.

1012. Test, Inspection and Production Equipment

- 1. Equipment for the production of fibres, prepregs, preforms or "composites" controlled by 1011.2. or 1013.10., as follows, and specially designed components and accessories therefor:
 - Filament winding machines of which the motions for positioning, wrapping and winding fibres are coordinated and programmed in three or more axes, specially designed for the manufacture of "composite" structures or laminates from "fibrous or filamentary materials";
 - b. Tape-laying or tow-placement machines of which the motions for positioning and laying tape, tows or sheets are coordinated and programmed in two or more axes, specially designed for the manufacture of "composite" airframe or missile structures;
 - Multidirectional, multidimensional weaving machines or interlacing machines, including adapters and modification kits, for weaving, interlacing or braiding fibres to manufacture "composite" structures; Note:

Item 1012.1.c. does not control textile machinery not modified for the above end-uses.

- d. Equipment specially designed or adapted for the production of reinforcement fibres, as follows:
 - Equipment for converting polymeric fibres (such as polyacrylonitrile, rayon, pitch or polycarbosilane) into carbon fibres or silicon carbide fibres, including special equipment to strain the fibre during heating;
 - Equipment for the chemical vapour deposition of elements or compounds on heated filamentary substrates to manufacture silicon carbide fibres;
 - 3. Equipment for the wet-spinning of refractory ceramics (such as aluminium oxide);
 - 4. Equipment for converting aluminium containing precursor fibres into alumina fibres by heat treatment;

- e. Equipment for producing prepregs controlled by 1013.10.e. by the hot melt method;
- f. Non-destructive inspection equipment capable of inspecting defects three dimensionally, using ultrasonic or X-ray tomography and specially designed for "composite" materials.
- 2. Systems and components therefor, specially designed to avoid contamination and specially designed for producing metal alloys, metal alloy powder or alloyed materials controlled by 1013.2.a.2., 1013.2.b. or 1013.2.c.
- Tools, dies, moulds or fixtures, for "superplastic forming" or "diffusion bonding" titanium or aluminium or their alloys, specially designed for the manufacture of:
 - a. Airframe or aerospace structures;
 - b. "Aircraft" or aerospace engines; or
 - c. Specially designed components for those structures or engines.

1013. Materials

Technical Note:

Metals and alloys

Unless provision to the contrary is made, the words 'metals' and 'alloys' cover crude and semi-fabricated forms, as follows:

Crude forms

Anodes, balls, bars (including notched bars and wire bars), billets, blocks, blooms, brickets, cakes, cathodes, crystals, cubes, dice, grains, granules, ingots, lumps, pellets, pigs, powder, rondelles, shot, slabs, slugs, sponge, sticks;

Semi-fabricated forms (whether or not coated, plated, drilled or punched):

- a. Wrought or worked materials fabricated by rolling, drawing, extruding, forging, impact extruding, pressing, graining, atomising, and grinding, i.e.: angles, channels, circles, discs, dust, flakes, foils and leaf, forging, plate, powder, pressings and stampings, ribbons, rings, rods (including bare welding rods, wire rods, and rolled wire), sections, shapes, sheets, strip, pipe and tubes (including tube rounds, squares, and hollows), drawn or extruded wire;
- Cast material produced by casting in sand, die, metal, plaster or other types of moulds, including high pressure castings, sintered forms, and forms made by powder metallurgy.

The object of the control should not be defeated by the export of non-listed forms alleged to be finished products but representing in reality crude forms or semi-fabricated forms.

- Materials specially designed for use as absorbers of electromagnetic waves, or intrinsically conductive polymers, as follows:
 - a. Materials for absorbing frequencies exceeding 2 x 10⁸ Hz but less than 3 x 10¹² Hz;
 - Note 1:
 - Item 1013.1.a. does not control:
 - Hair type absorbers, constructed of natural or synthetic fibres, with non-magnetic loading to provide absorption;
 - Absorbers having no magnetic loss and whose incident surface is non-planar in shape, including pyramids, cones, wedges and convoluted surfaces;
 - Planar absorbers, having all of the following characteristics:
 Made from any of the following:
 - a. Plastic foam materials (flexible or non-flexible) with carbon-loading, or organic materials, including binders, providing more than 5% echo compared with metal over a bandwidth exceeding ±15% of the centre frequency of the incident energy, and not capable of withstanding temperatures exceeding 450 K (177°C); or
 - b. Ceramic materials providing more than 20% echo compared with metal over a bandwidth exceeding ±15% of the centre frequency of the incident energy, and not capable of withstanding temperatures exceeding 800 K (527°C);

2

Group 1: Dual Use List - Advanced Materials / Materials Processing

1013.1.a. Note 1 con't.

d

- **Technical Note:** Absorption test samples for 1013.1.a. Note1.c.1. should be a square at least 5 wavelengths of the centre frequency on a side and positioned in the far field of the radiating element.
- 2. Tensile strength less than 7 x 10^6 N/m²; and
- 3. Compressive strength less than 14 x 10⁶ N/m²;
- Planar absorbers made of sintered ferrite, having:
- 1. A specific gravity exceeding 4.4; and
- 2. A maximum operating temperature of 548 K (275°C). Note 2.:

Nothing in this note 1 releases magnetic materials to provide absorption when contained in paint.

1. b. Materials for absorbing frequencies exceeding

 1.5×10^{14} Hz but less than 3.7×10^{14} Hz and not transparent to visible light;

- c. Intrinsically conductive polymeric materials with a bulk electrical conductivity exceeding 10,000 S/m (Siemens per metre) or a sheet (surface) resistivity of less than 100 ohms/square, based on any of the following polymers:
 - 1. Polyaniline;
 - 2. Polypyrrole;
 - 3. Polythiophene;
 - 4. Poly phenylene-vinylene; or
 - 5. Poly thienylene-vinylene.

Technical Note:

Bulk electrical conductivity and sheet (surface) resistivity should be determined using ASTM D-257 or national equivalents.

2. Metal alloys, metal alloy powder and alloyed materials, as follows:

Note:

1013.2. does not control metal alloys, metal alloy powder or alloyed materials for coating substrates.

- a. Metal alloys, as follows:
 - Nickel or titanium-based alloys in the form of aluminides, as follows, in crude or semi-fabricated forms:
 - a) Nickel aluminides containing a minimum of 15 weight percent aluminium, a maximum of 38 weight percent aluminum and at least one additional alloying element;
 - b) Titanium aluminides containing 10 weight percent or more aluminium aluminum and at least one additional alloying element;
 - 2. Metal alloys, as follows, made from metal alloy powder or particulate material controlled by 1013.2.b.:
 - a) Nickel alloys with:
 - (1) A stress-rupture life of 10,000 hours or longer at 923 K (650°C) at a stress of 676 MPa; or
 - (2) A low cycle fatigue life of 10,000 cycles or more at 823 K (550°C) at a maximum stress of 1,095 MPa;
 - b) Niobium alloys with:
 - (1) A stress-rupture life of 10,000 hours or longer at 1,073 K (800°C) at a stress of 400 MPa; or
 - (2) A low cycle fatigue life of 10,000 cycles or more at 973 K (700°C) at a maximum stress of 700 MPa;

- 2. a. 2. c) Titanium alloys with:
 - (1) A stress-rupture life of 10,000 hours or longer at 723 K (450°C) at a stress of 200 MPa; or
 - (2) A low cycle fatigue life of 10,000 cycles or more at 723 K (450°C) at a maximum stress of 400 MPa;
 - d) Aluminium alloys with a tensile strength of:
 - (1) 240 MPa or more at 473 K (200°C); or (2) 415 MPa or more at 208 K (25°C);
 - (2) 415 MPa or more at 298 K (25°C);
 - e) Magnesium alloys with a tensile strength of 345 MPa or more and a corrosion rate of less than 1 mm/year in 3% sodium chloride aqueous solution measured in accordance with ASTM standard G-31 or national equivalents;

Technical Notes:

- The metal alloys in 1013.2.a. are those containing a higher percentage by weight of the stated metal than of any other element.
- Stress-rupture life should be measured in accordance with ASTM standard E-139 or national equivalents.
- 3. Low cycle fatigue life should be measured in accordance with ASTM Standard E-606 'Recommended Practice for Constant-Amplitude Low-Cycle Fatigue Testing' or national equivalents. Testing should be axial with an average stress ratio equal to 1 and a stress-concentration factor (Kt) equal to 1. The average stress is defined as maximum stress minus minimum stress divided by maximum stress.
- 2. b. Metal alloy powder or particulate material for materials controlled by 1013.2.a., as follows:
 - 1. Made from any of the following composition systems:

Technical Note:

X in the following equals one or more alloying elements.

- a) Nickel alloys (Ni-Al-X, Ni-X-Al) qualified for turbine engine parts or components, i.e., with less than 3 non-metallic particles (introduced during the manufacturing process) larger than 100 μm in 10⁹ alloy particles;
- b) Niobium alloys (Nb-Al-X or Nb-X-Al, Nb-Si-X or Nb-X-Si, Nb-Ti-X or Nb-X-Ti);
- c) Titanium alloys (Ti-Al-X or Ti-X-Al);
- d) Aluminium alloys (Al-Mg-X or Al-X-Mg, Al-Zn-X or Al-X-Zn, Al-Fe-X or Al-X-Fe); or
- e) Magnesium alloys (Mg-Al-X or Mg-X-Al); and
- 2. Made in a controlled environment by any of the following processes:
 - a) "Vacuum atomization";
 - b) "Gas atomization";
 - c) "Rotary atomization";
 - d) "Splat quenching";
 - e) "Melt spinning" and "comminution";
 - f) "Melt extraction" and "comminution"; or
 - g) "Mechanical alloying";
- c. Alloyed materials, in the form of uncomminuted flakes, ribbons or thin rods produced in a controlled environment by "splat quenching", "melt spinning" or "melt extraction", used in the manufacture of metal alloy powder or particulate material controlled by 1013.2.b.
- 3. Magnetic metals, of all types and of whatever form, having any of the following characteristics:
 - a. Initial relative permeability of 120,000 or more and a thickness of 0.05 mm or less;

- 1013.3.a. con't.
 - Technical Note:

Measurement of initial permeability must be performed on fully annealed materials.

- 3. b. Magnetostrictive alloys, having any of the following characteristics:
 - A saturation magnetostriction of more than 5 x 10⁻⁴; or
 - 2. A magnetomechanical coupling factor (k) of more than 0.8; or
 - c. Amorphous or nanocrystalline alloy strips having all of the following characteristics:
 - 1. A composition having a minimum of 75 weight percent of iron, cobalt or nickel;
 - 2. A saturation magnetic induction (B_8) of 1.6 T or more; and
 - 3. Any of the following:
 - a) A strip thickness of 0.02 mm or less; or
 - b) An electrical resistivity of 2×10^{-4} ohm cm or more. *Technical Note:*

'Nanocrystalline' materials in 1013.3.c. are those materials having a crystal grain size of 50 nm or less, as determined by X-ray diffraction.

- 4. Uranium titanium alloys or tungsten alloys with a "matrix" based on iron, nickel or copper, having all of the following:
 - a. A density exceeding 17.5 g/cm³;
 - b. An elastic limit exceeding 1,250 MPa;
 - c. An ultimate tensile strength exceeding 880 Mpa; and
 - d. An elongation exceeding 8%.
- 5. "Superconductive" "composite" conductors in lengths exceeding 100 m or with a mass exceeding 100 g, as follows:
 - a. Multifilamentary "superconductive" "composite" conductors containing one or more niobium-titanium filaments:
 - 1. Embedded in a "matrix" other than a copper or copper-based mixed "matrix"; or
 - Having a cross-section area less than 0.28 x 10⁻⁴ mm² (6 μm in diameter for circular filaments);
 - b. "Superconductive" "composite" conductors consisting of one or more "superconductive" filaments other than niobium-titanium, having all of the following:
 - A "critical temperature" at zero magnetic induction exceeding 9.85 K (-263.31°C) but less than 24 K (-249.16 °C);
 - 2. With a cross-section area less than $0.28 \times 10^{-4} \text{ mm}^2$; and
 - Remaining in the "superconductive" state at a temperature of 4.2 K (-268.96°C) when exposed to a magnetic field corresponding to a magnetic induction of 12 T.
- 6. Fluids and lubricating materials, as follows:
 - a. Hydraulic fluids containing, as their principal ingredients, any of the following compounds or materials:
 - 1. Synthetic silahydrocarbon oils, having all of the following:
 - Technical Note:

4

For the purpose of 1013.6.a.1., silahydrocarbon oils contain exclusively silicon, hydrogen and carbon.

- a) A flash point exceeding 477 K (204°C);
- b) A pour point at 239 K (-34°C) or less;
- c) A viscosity index of 75 or more; and
- d) A thermal stability at 616 K (343°C); or

2. Chlorofluorocarbons, having all of the following: *Technical Note:*

For the purpose of 1013.6.a.2., chlorofluorocarbons contain exclusively carbon, fluorine and chlorine.

- a) No flash point;
- b) An autogenous ignition temperature exceeding 977 K (704°C);
- c) A pour point at 219 K (-54°C) or less;
- d) A viscosity index of 80 or more; and
- e) A boiling point at 473 K (200°C) or higher;
- 6. b. Lubricating materials containing, as their principal
 - ingredients, any of the following compounds or materials:
 Phenylene or alkylphenylene ethers or thio-ethers, or their mixtures, containing more than two ether or thio-ether functions or mixtures thereof; or
 - Fluorinated silicone fluids with a kinematic viscosity of less than 5,000 mm²/s (5,000 centistokes) measured at 298 K (25°C);
 - c. Damping or flotation fluids with a purity exceeding 99.8%, containing less than 25 particles of $200 \,\mu\text{m}$ or larger in size per 100 ml and made from at least 85% of any of the following compounds or materials:
 - 1. Dibromotetrafluoroethane;
 - 2. Polychlorotrifluoroethylene (oily and waxy modifications only); or
 - 3. Polybromotrifluoroethylene;
 - d. Fluorocarbon electronic cooling fluids having all of the following characteristics:
 - 1. Containing 85% by weight or more of any of the following, or mixtures thereof:
 - a) Monomeric forms of perfluoropolyalkylether-
 - triazines or perfluoroaliphatic-ethers;
 - b) Perfluoroalkylamines;
 - c) Perfluorocycloalkanes; or
 - d) Perfluoroalkanes;
 - 2. Density at 298 K (25°C) of 1.5 g/ml or more;
 - 3. In a liquid state at 273 K (0°C); and
 - 4. Containing 60% or more by weight of fluorine.

Technical Note:

For the purpose of 1013.6.:

- a. Flash point is determined using the Cleveland Open Cup Method described in ASTM D-92 or national equivalents;
- Pour point is determined using the method described in ASTM D-97 or national equivalents;
- c. Viscosity index is determined using the method described in ASTM D-2270 or national equivalents;
- d. Thermal stability is determined by the following test procedure or national equivalents:

Twenty ml of the fluid under test is placed in a 46 ml type 317 stainless steel chamber containing one each of 12.5 mm (nominal) diameter balls of M-10 tool steel, 52100 steel and naval bronze (60% Cu, 39% Zn, 0.75% Sn);

The chamber is purged with nitrogen, sealed at atmospheric pressure and the temperature raised to and maintained at 644 \pm 6 K (371 \pm 6°C) for six hours;

The specimen will be considered thermally stable if, on completion of the above procedure, all of the following conditions are met: 1. The loss in weight of each ball is less than 10 mg/mm² of ball

- Surface;
- The change in original viscosity as determined at 311 K (38°C) is less than 25%; and
- 3. The total acid or base number is less than 0.40; Autogenous ignition temperature is determined using the method
- described in ASTM E-659 or national equivalents.

1013.6. con't.

- 7. Ceramic base materials, non-"composite" ceramic materials, ceramic-"matrix" "composite" materials and precursor materials, as follows:
 - Base materials of single or complex borides of titanium a. having total metallic impurities, excluding intentional additions, of less than 5,000 ppm, an average particle size equal to or less than 5 µm and no more than 10% of the particles larger than 10 µm;
 - b. Non-"composite" ceramic materials in crude or semi-fabricated form, composed of borides of titanium with a density of 98% or more of the theoretical density; Note:

Item 1013.7.b. does not control abrasives.

- c. Ceramic-ceramic "composite" materials with a glass or oxide-"matrix" and reinforced with fibres made from any of the following systems:
 - 1. Si-N;
 - 2. Si-C;
 - 3. Si-Al-O-N; or
 - 4. Si-O-N;
- having a specific tensile strength exceeding 12.7 x 10³ m; d. Ceramic-ceramic "composite" materials, with or without a
- continuous metallic phase, incorporating particles, whiskers or fibres, where carbides or nitrides of silicon, zirconium or boron form the "matrix";
- Precursor materials (i.e., special purpose polymeric or e. metallo-organic materials) for producing any phase or phases of the materials controlled by 1013.7.c., as follows:
 - 1. Polydiorganosilanes (for producing silicon carbide);
 - 2. Polysilazanes (for producing silicon nitride);
 - 3. Polycarbosilazanes (for producing ceramics with silicon, carbon and nitrogen components);
- f. Ceramic-ceramic "composite" materials with an oxide or glass "matrix" reinforced with continuous fibres from any of the following systems:
 - 1. Al2O3; or
 - 2. Si-C-N.
 - Note:

1013.7.f. does not control "composites" containing fibres from these systems with a fibre tensile strength of less than 700 MPa at 1,273 K (1,000° C) or fibre tensile creep resistance of more than 1% creep strain at 100 MPa load and 1,273 K (1,000° C) for 100 hours.

- 8. Non-fluorinated polymeric substances, as follows:
 - a. 1. Bismaleimides;
 - 2. Aromatic polyamide-imides;
 - 3. Aromatic polyimides;
 - 4. Aromatic polyetherimides having a glass transition temperature (Tg) exceeding 513 K (240°C) determined using the dry method described in ASTM D 3418.
 - Note

1013.8.a. does not control non-fusible compression moulding powders or moulded forms.

b. Thermoplastic liquid crystal copolymers having a heat distortion temperature exceeding 523 K (250°C) measured according to ASTM D-648, method A, or national equivalents, with a load of 1.82 N/mm² and composed of:

- 1. Any of the following:
 - a) Phenylene, biphenylene or naphthalene; or
 - b) Methyl, tertiary-butyl or phenyl substituted phenylene, biphenylene or naphthalene; and
- 2. Any of the following acids:
 - a) Terephthalic acid;
 - b) 6-hydroxy-2 naphthoic acid; or
 - c) 4-hydroxybenzoic acid;
- c. Polyarylene ether ketones, as follows:
 - 1. Polyether ether ketone (PEEK);
 - 2. Polyether ketone ketone (PEKK);
 - 3. Polyether ketone (PEK);
 - 4. Polyether ketone ether ketone ketone (PEKEKK);
- d. Polyarylene ketones;
- Polyarylene sulphides, where the arylene group is e. biphenylene, triphenylene or combinations thereof;
- Polybiphenylenethersulphone. f Technical Note: The glass transition temperature (Tg) for 1013.8. materials is determined using the method described in ASTM D 3418 using the dry method.
- 9. Unprocessed fluorinated compounds, as follows:
 - a. Copolymers of vinylidene fluoride having 75% or more beta crystalline structure without stretching;
 - b. Fluorinated polyimides containing 10% or more of combined fluorine;
 - c. Fluorinated phosphazene elastomers containing 30% or more of combined fluorine.

10. "Fibrous and filamentary materials" which may be used in organic "matrix", metallic "matrix" or carbon "matrix"

- "composite" structures or laminates, as follows:
- a. Organic "fibrous or filamentary materials" having all of the following:
 - 1. A specific modulus exceeding 12.7 x 10⁶ m; and
 - 2. A specific tensile strength exceeding 23.5×10^4 m; Note:

1013.10.a. does not control polyethylene.

b. Carbon "fibrous or filamentary materials", having all of the following:

1. A specific modulus exceeding 12.7 x 10⁶ m; and

2. A specific tensile strength exceeding 23.5×10^4 m; Technical Note:

Properties for materials described in 1013.10.b. should be determined using SACMA recommended methods SRM 12 to 17, or national equivalent tow tests, such as Japanese Industrial Standard JIS-R-7601, Paragraph 6.6.2., and based on lot average. Note.

1013.10.b. does not control fabric made from "fibrous or filamentary materials" for the repair of aircraft structures or laminates, in which the size of individual sheets does not exceed 50 cm x 90 cm.

- c. Inorganic "fibrous or filamentary materials", having all of the following:
 - 1. A specific modulus exceeding 2.54 x 10⁶ m; and
 - 2. A melting, decomposition or sublimation point exceeding 1,922 K (1,649°C) in an inert environment; Note:

1013.10.c. does not control :

- 1. Discontinuous, multiphase, polycrystalline alumina fibres in chopped fibre or random mat form, containing 3 weight percent or more silica, with a specific modulus of less than 10 x 10⁶ m; Molybdenum and molybdenum alloy fibres;
- 2. 3. Boron fibres;
- Discontinuous ceramic fibres with a melting, decomposition or 4. sublimation point lower than 2,043 K (1,770°C) in an inert environment.

1013.10. con't.

- 10. d. "Fibrous or filamentary materials":
 - 1. Composed of any of the following:
 - a) Polyetherimides controlled by 1013.8.a; or
 - b) Materials controlled by 1013.8.b. to 1013.8.f.; or
 2. Composed of materials controlled by 1013.10.d.1.a.
 - or 1013.10.d.1.b) and "commingled" with other fibres controlled by 1013.10.a., 1013.10.b. or 1013.10.c.;
 - e. Resin-impregnated or pitch-impregnated fibres (prepregs), metal or carbon-coated fibres (preforms) or "carbon fibre preforms", as follows:
 - 1. Made from "fibrous or filamentary materials" controlled by 1013.10.a., 1013.10.b. or 1013.10.c.;
 - 2. Made from organic or carbon "fibrous or filamentary materials":
 - a) With a specific tensile strength exceeding 17.7 x 10⁴ m;
 - b) With a specific modulus exceeding 10.15 x 10⁶ m;
 - c) Not controlled by 1013.10.a. or 1013.10.b.; and
 - d) When impregnated with materials controlled by 1013.8. or 1013.9.b., having a glass transistion temperature (T_g) exceeding 383 K (110°C) or with phenolic or epoxy resins, having a glass transition temperature (T_g) exceeding 418 K (145°C).

Note:

- 1013.10.e. does not control:
- Epoxy resin "matrix" impregnated carbon "fibrous or filamentary materials" (prepregs) for the repair of aircraft structures or laminates, in which the size of individual sheets of prepreg does not exceed 50 cm x 90 cm;
- Prepregs when impregnated with phenolic or epoxy resins having a glass transition temperature (Tg) less than 433 K (160°C) and a cure temperature lower than the glass transition temperature.

Technical Note:

The glass transition temperature (Tg) for 1013.10.e. materials is determined using the method described in ASTM D 3418 using the dry method. The glass transition temperature for phenolic and epoxy resins is determined using the method described in ASTM D 4065 at a frequency of 1 Hz and a heating rate of 2 K (2° C) per minute using the dry method.

Technical Notes:

- 'Specific modulus': Young's modulus in pascals, equivalent to N/m² divided by specific weight in N/m³, measured at a temperature of (296 ± 2) K ((23 ± 2)°C) and a relative humidity of (50 ± 5)%.
- 'Specific tensile strength': ultimate tensile strength in pascals, equivalent to N/m² divided by specific weight in N/m³, measured at a temperature of (296 ± 2) K((23 ± 2)°C) and a relative humidity of (50 ± 5)%.

11. Metals and compounds, as follows:

 Metals in particle sizes of less than 60 μm whether spherical, atomised, spheroidal, flaked or ground, manufactured from material consisting of 99% or more of zirconium, magnesium and alloys of these;

Note:

The metals or alloys listed in 1013.11.a. are controlled whether or not the metals or alloys are encapsulated in aluminium, magnesium, zirconium or beryllium.

Technical Note:

The natural content of halnium in the zirconium (typically 2% to 7%) is counted with the zirconium.

Note:

6

The metals or alloys listed in 1013.11.b. are controlled whether or not the metals or alloys are encapsulated in aluminium, magnesium, zirconium or beryllium.

Boron or boron carbide of 85% purity or higher and a particle size of 60 µm or less;

Note:

The metals or alloys listed in 1013.11.b. are controlled whether or not the metals or alloys are encapsulated in aluminium, magnesium, zirconium or beryllium.

- c. Guanidine nitrate.
- d. Nitroguanidine (NQ) (CAS 556-88-7)
- 12. Materials as follows:

Technical Note: These materials are typically used for nuclear heat sources.

 Plutonium in any form with a plutonium isotopic assay of plutonium-238 of more than 50 % by weight; *Note:*

1013.12.a. does not control:

- 1. Shipments with a plutonium content of one 1 g or less;
- Shipments of 3 "effective grammes" or less when contained in a sensing component in instruments.
- b. "Previously separated" neptunium-237 in any form.

Note:

1013.12.b. does not control shipments with a neptunium-237 content of 1 g or less.

1014. Software

- 1. "Software" specially designed or modified for the "development", "production" or "use" of equipment controlled by 1012.
- 2. "Software" for the "development" of organic "matrix", metal "matrix" or carbon "matrix" laminates or "composites".

1015. Technology

- 1. "Technology" according to the General Technology Note for the "development" or "production" of equipment or materials controlled by 1011.1.b., 1011.1.c., 1011.2. to 1011.5.,1012. or 1013.
- 2. Other "technology", as follows:
 - a. "Technology" for the "development" or "production" of polybenzothiazoles or polybenzoxazoles;
 - b. "Technology" for the "development" or "production" of fluoroelastomer compounds containing at least one vinylether monomer;
 - c. "Technology" for the design or "production" of the following base materials or non-"composite" ceramic materials:
 - 1. Base materials having all of the following characteristics:
 - a) Any of the following compositions:
 - Single or complex oxides of zirconium and complex oxides of silicon or aluminium;
 - (2) Single nitrides of boron (cubic crystalline forms);
 - (3) Single or complex carbides of silicon or boron; **or**
 - (4) Single or complex nitrides of silicon;
 - b) Total metallic impurities, excluding intentional additions, of less than:
 - (1) 1,000 ppm for single oxides or carbides; or

1015.2.c. con't.

- (2) 5,000 ppm for complex compounds or single nitrides;
 - and
- c) Having any of the following:
 - Zirconium with an average particle size equal to or less than 1 μm and no more than 10% of the particles larger than 5 μm.
 - (2) Other base materials with an average particle size equal to or less than 5 μm and no more than 10% of the particles larger than 10 μm; or
 - (3) Having all of the following:
 - (a) Platelets with a length to thickness ratio exceeding 5;
 - (b) Whiskers with a length to diameter ratio exceeding 10 for diameters less than 2 µm; and
 - (c) Continuous or chopped fibres less than 10 μm in diameter;
- c. 2. Non-"composite" ceramic materials composed of the materials described in 1015.2.c.1.;

Note: 1015.2.c.2. does not control technology for the design or production of abrasives.

Category 1020: Materials Processing

1021. Systems, Equipment and Components

N.B.:

For quiet running bearings, see Item 2009. on the Munitions List.

1. Anti-friction bearings and bearing systems, as follows, and components therefor:

Note:

1021.1. does not control balls with tolerances specified by the manufacturer in accordance with ISO 3290 as grade 5 or worse.

 Ball bearings and solid roller bearings having tolerances specified by the manufacturer in accordance with ABEC 7, ABEC 7P, ABEC 7T or ISO Standard Class 4 or better (or national equivalents), and having rings, balls or rollers made from monel or beryllium; Note:

1021.1.a. does not control tapered roller bearings.

 b. Other ball bearings and solid roller bearings having tolerances specified by the manufacturer in accordance with ABEC 9, ABEC 9P or ISO Standard Class 2 or better (or national equivalents); Note:

1021.1.b. does not control tapered roller bearings.

- c. Active magnetic bearing systems using any of the following:
 - 1. Materials with flux densities of 2.0 T or greater and yield strengths greater than 414 MPa;

- d. Technology for the "production" of aromatic polyamide fibres;
- e. Technology for the installation, maintenance or repair of materials controlled by 1013.1.;
- f. Technology for the repair of "composite" structures, laminates or materials controlled by 1011.2., 1013.7.c. or 1013.7.d. *Note*:

1015.2.f. does not control technology for the repair of "civil aircraft" structures using carbon "fibrous or filamentary materials" and epoxy resins, contained in aircraft manufacturers' manuals.

 All-electromagnetic 3D homopolar bias designs for actuators; or

S

3. High temperature (450 K (177°C) and above) position sensors.

1022. Test, Inspection and Production Equipment

Technical Notes:

- Secondary parallel contouring axes, (e.g., the w-axis on horizontal boring mills or a secondary rotary axis the centre line of which is parallel to the primary rotary axis) are not counted in the total number of contouring axes. Rotary axes need not rotate over 360°. A rotary axis can be driven by a linear device (e.g., a screw or a rack-and-pinion).
- Axis nomenclature shall be in accordance with International Standard ISO 841, 'Numerical Control Machines - Axis and Motion Nomenclature'.
- 3. For the purposes of this Category a "tilting spindle" is counted as a rotary axis.
- 4. Stated positioning accuracy levels derived from measurements made according to ISO 230/2 (1997) or national equivalents may be used for each machine tool model instead of individual machine tests. Stated positioning accuracy means the accuracy value provided to national licensing authorities as representative of the accuracy of a machine model.

Determination of Stated Values:

- a. Select five machines of a model to be evaluated;
- b. Measure the linear axis accuracies according to ISO 230/2 (1997);
- Determine the A-values for each axis of each machine. The method of calculating the A-value is described in the ISO standard;
- Determine the mean value of the A-value of each axis. This mean value A becomes the stated value of each axis for the medel (Ax..Ay..):
- e. Since the Category 1020 list refers to each linear axis there will be as many stated values as there are linear axes;

Group 1: Dual Use List - Materials Processing

1022.4. con't

- 1022.1.c. has a stated accuracy of 5 microns for grinding machines and 6.5 microns for milling and turning machines or better, the builder should be required to reaffirm the accuracy level once every eighteen months.
- Machine tools, as follows, and any combination thereof, for removing or cutting metals, ceramics or composites, which, according to the manufacturer's technical specification, can be equipped with electronic devices for "numerical control":
 - a. Machine tools for turning, having all of the following characteristics :
 - Positioning accuracy with "all compensations available" equal to or less (better) than 4.5 μm according to ISO 230/2 (1997) or national equivalents along any linear axis; and
 - Two or more axes which can be coordinated simultaneously for "contouring control";

Note:

1022.1.a. does not control turning machines specially designed for the production of contact lenses.

- b. Machine tools for milling, having any of the following characteristics :
 - a) Positioning accuracies with "all compensations available" equal to or less (better) than 4.5 μm according to ISO 230/2 (1997) or national equivalents along any linear axis; and
 - b) Three linear axes plus one rotary axis which can be coordinated simultaneously for "contouring control";
 - 2. Five or more axis which can be coordinated simultaneously for "contouring control"; or
 - A positioning accuracy for jig boring machines with "all compensations available", equal to or less (better) than 3.0 μm according to ISO 230/2 (1997) or national equivalents along any linear axis;
- c. Machine tools for grinding, having any of the following characteristics:
 - a) Positioning accuracy with "all compensations available" equal to or less (better) than 3.0 μm according to ISO 230/2 (1997) or national equivalents along any linear axis; and
 - b) Three or more axes which can be coordinated simultaneously for "contouring control"; or
 - 2. Five or more axis which can be coordinated simultaneously for "contouring control";

Notes:

1022.1.c. does not control grinding machines, as follows:

- 1. Cylindrical external, internal, and external-internal grinding
 - machines having all the following characteristics:
 - a. Limited to cylindrical grinding; and
 - b. Limited to a maximum workpiece capacity of 150 mm outside diameter or length;
- Machines designed specifically as jig grinders having any of the following characteristics:
 - The c-axis is used to maintain the grinding wheel normal to the work surface; or
 - b. The a-axis is configured to grind barrel cams;
- Tool or cutter grinding machines limited to the production of tools or cutters;
- 4. Crank shaft or cam shaft grinding machines;
- 5. Surface grinders.

8

- d. Electrical discharge machines (EDM) of the non-wire type which have two or more rotary axes which can be coordinated simultaneously for "contouring control";
- e. Machine tools for removing metals, ceramics or "composites":
 - 1. By means of:
 - a) Water or other liquid jets, including those employing abrasive additives;
 - b) Electron beam; or
 - c) "Laser" beam; and
 - 2. Having two or more rotary axes which:
 - a) Can be coordinated simultaneously for "contouring control"; and
 - b) Have a positioning accuracy of less (better) than 0.003°;
- f. Deep-hole-drilling machines and turning machines modified for deep-hole-drilling having a maximum depthof-bore capability exceeding 5,000 mm and specially designed components therefor.

2. Deleted.

- 3. "Numerically controlled" or manual machine tools, and specially designed components, controls and accessories therefor, specially designed for the shaving, finishing, grinding or honing of hardened ($R_c = 40$ or more) spur, helical and double-helical gears with a pitch diameter exceeding 1,250 mm and a face width of 15% of pitch diameter or larger finished to a quality of AGMA 14 or better (equivalent to ISO 1328 class 3).
- 4. Hot "isostatic presses", having all of the following, and specially designed components and accessories therefor:
 - a. A controlled thermal environment within the closed cavity and a chamber cavity with an inside diameter of 406 mm or more; **and**
 - b. Any of the following:
 - 1. A maximum working pressure exceeding 207 MPa;
 - 2. A controlled thermal environment exceeding 1,773 K (1,500°C); or
 - 3. A facility for hydrocarbon impregnation and removal of resultant gaseous degradation products.

Technical Note:

The inside chamber dimension is that of the chamber in which both the working temperature and the working pressure are achieved and does not include fixtures. That dimension will be the smaller of either the inside diameter of the pressure chamber or the inside diameter of the insulated furnace chamber, depending on which of the two chambers is located inside the other.

N.B.:

For specially designed dies, moulds and tooling see Items 1012.3., 1092.9. and 2018. of the Munitions List.

5. Equipment specially designed for the deposition, processing and in-process control of inorganic overlays, coatings and surface modifications, as follows, for non-electronic substrates, by processes shown in the Table and associated Notes following 1025.3.f., and specially designed automated handling, positioning, manipulation and control components therefor:

1022.5. con't

- a. "Stored programme controlled" chemical vapour deposition (CVD) production equipment having all of the following:
 - 1. Process modified for one of the following:
 - a) Pulsating CVD;
 - b) Controlled nucleation thermal deposition
 - (CNTD); or
 - c) Plasma enhanced or plasma assisted CVD; and
 - 2. Any of the following:
 - a) Incorporating high vacuum (equal to or less than 0.01 Pa) rotating seals; or
 - b) Incorporating in situ coating thickness control;
- b. "Stored programme controlled" ion implantation production equipment having beam currents of 5 mA or more;
- c. "Stored programme controlled" electron beam physical vapour deposition (EB-PVD) production equipment incorporating power systems rated for over 80 kW, having any of the following:
 - 1. A liquid pool level "laser" control system which regulates precisely the ingots feed rate; or
 - 2. A computer controlled rate monitor operating on the principle of photo-luminescence of the ionised atoms in the evaporant stream to control the deposition rate of a coating containing two or more elements;
- 5. d. "Stored programme controlled" plasma spraying
 - production equipment having any of the following characteristics:
 - 1. Operating at reduced pressure controlled atmosphere (equal to or less than 10 kPa measured above and within 300 mm of the gun nozzle exit) in a vacuum chamber capable of evacuation down to 0.01 Pa prior to the spraying process; **or**
 - 2. Incorporating in situ coating thickness control;
 - e. "Stored programme controlled" sputter deposition production equipment capable of current densities of 0.1 mA/mm² or higher at a deposition rate of 15 μm/hr or more;
 - f. "Stored programme controlled" cathodic arc deposition production equipment incorporating a grid of electromagnets for steering control of the arc spot on the cathode;
 - g. "Stored programme controlled" ion plating production equipment allowing for the *in situ* measurement of any of the following:
 - 1. Coating thickness on the substrate and rate control; or

2. Optical characteristics.

Note:

1022.5.a., 1022.5.b., 1022.5.e., 1022.5.f. and 1022.5.g. do not control chemical vapour deposition, cathodic arc, sputter deposition, ion plating or ion implantation equipment specially designed for cutting or machining tools.

- 6. Dimensional inspection and measuring systems and equipment, as follows:
 - a. Computer controlled, "numerically controlled" or "stored programme controlled" dimensional inspection machines, having a three dimensional length (volumetric) "measurement uncertainty" equal to or less (better) than (1.7 + L/1,000) μm (L is the measured length in mm) tested according to ISO 10360-2;
 - b. Linear and angular displacement measuring instruments, as follows:

- 1. Linear measuring instruments having any of the following:
 - a) Non-contact type measuring systems with a "resolution" equal to or less (better) than 0.2 μm within a measuring range up to 0.2 mm;
 - b) Linear voltage differential transformer systems having all of the following characteristics:
 - (1) "Linearity" equal to or less (better) than 0.1% within a measuring range up to 5 mm; and
 - (2) Drift equal to or less (better) than 0.1% per day at a standard ambient test room temperature ±1 K; or
 - c) Measuring systems having all of the following:
 - (1) Containing a "laser"; and
 - (2) Maintaining, for at least 12 hours, over a temperature range of ±1 K around a standard temperature and at a standard pressure, all of the following:
 - a. A "resolution" over their full scale of
 - 0.1 µm or less (better); and
 - b. A "measurement uncertainty" equal to or less (better) than (0.2 + L/2,000) µm (L is the measured length in mm);

Note:

1022.6.b.1. does not control measuring interferometer systems, without closed or open loop feedback, containing a "laser" to measure slide movement errors of machine-tools, dimensional inspection machines or similar equipment.

Angular measuring instruments having an "angular position deviation" equal to or less (better) than 0.00025°;
 Note:

1022.6.b.2. does not control optical instruments, such as autocollimators, using collimated light to detect angular displacement of a mirror.

c. Equipment for measuring surface irregularities, by measuring optical scatter as a function of angle, with a sensitivity of 0.5 nm or less (better).

Notes:

. Machine tools which can be used as measuring machines are controlled if they meet or exceed the criteria specified for the machine tool function or the measuring machine function.

 A machine described in 1022.6. is controlled if it exceeds the control threshold anywhere within its operating range.

- 7. "Robots", having any of the following characteristics, and specially designed controllers and "end-effectors" therefor:
 - Capable in real time of full three-dimensional image processing or full three-dimensional scene analysis to generate or modify "programmes" or to generate or modify numerical programme data;

Technical Note:

The scene analysis limitation does not include approximation of the third dimension by viewing at a given angle, or limited grey scale interpretation for the perception of depth or texture for the approved tasks ($2 \frac{1}{2}$ D).

- b. Specially designed to comply with national safety standards applicable to explosive munitions environments;
- c. Specially designed or rated as radiation-hardened to withstand greater than 5×10^3 Gy (Si) without operational degradation; or
- d. Specially designed to operate at altitudes exceeding 30,000 m.

1022. con't

- Assemblies, units or inserts specially designed for machine tools, or for equipment controlled by 1022.6. or 1022.7., as follows:
 - a. Linear position feedback units (e.g., inductive type devices, graduated scales, infrared systems or "laser" systems) having an overall "accuracy" less (better) than (800 + (600 x L x 10⁻³)) nm (L equals the effective length in mm);
 N.B.

For "laser" systems see also Note to Item 1022.6.b.1.

- B. Rotary position feedback units (e.g., inductive type devices, graduated scales, infrared systems or "laser" systems) having an "accuracy" less (better) than 0.00025°;
 N.B.
 - For "laser" systems see also Note to Item 1022.6.b.1.
- c. "Compound rotary tables" and "tilting spindles", capable of upgrading, according to the manufacturer's specifications, machine tools to or above the levels specified in 1022.
- 9. Spin-forming or flow-forming machines and flow-forming machines, which, according to the manufacturer's technical specification, can be equipped with "numerical control" units or a computer control and having all of the following:
 - a. Two or more controlled axes of which at least two can be coordinated simultaneously for "contouring control"; and
 - b. A roller force more than 60 kN.

Technical Note:

Machines combining the function of spin-forming and flow-forming are for the purpose of 1022.9. regarded as flow-forming machines.

1023. Materials

None.

1024. Software

- 1. "Software", other than that controlled by 1024.2., specially designed or modified for the "development", "production" or "use" of equipment controlled by 1021. or 1022.
- "Software" for electronic devices, even when residing in an electronic device or system, enabling such devices or systems to function as a "numerical control" unit, capable of any of the following:
 - a. Coordinating simultaneously more than 4 axes for "contouring control"; or
 - b. "Real time processing" of data to modify tool path, feed rate and spindle data, during the machine operation, by any of the following:
 - Automatic calculation and modification of part program data for machining in two or more axes by means of measuring cycles and access to source data; or
 - "Adaptive control" with more than one physical variable measured and processed by means of a computing model (strategy) to change one or more machining instructions to optimize the process.

Note:

1024.2. does not control "software" specially designed or modified for the operation of machine tools not controlled by Category 1020.

1025. Technology

- "Technology" according to the General Technology Note for the "development" of equipment or "software" controlled by 1021., 1022. or 1024.
- "Technology" according to the General Technology Note for the "production" of equipment controlled by 1021. or 1022.
- 3. Other technology, as follows:
 - a. "Technology" for the "development" of interactive graphics as an integrated part in "numerical control" units for preparation or modification of part programmes;
 - b. Technology for metal-working manufacturing processes, as follows:
 - 1. Technology for the design of tools, dies or fixtures specially designed for the following processes:
 - a) "Superplastic forming";
 - b) "Diffusion bonding"; or
 - c) "Direct-acting hydraulic pressing";
 - Technical data consisting of process methods or parameters as listed below used to control:
 - a) "Superplastic forming" of aluminium alloys, titanium alloys or "superalloys":
 - (1) Surface preparation;
 - (2) Strain rate;
 - (3) Temperature;
 - (4) Pressure;
 - b) "Diffusion bonding" of "superalloys" or titanium alloys:
 - (1) Surface preparation;
 - (2) Temperature;
 - (3) Pressure;
 - c) "Direct-acting hydraulic pressing" of aluminium alloys or titanium alloys:
 - (1) Pressure;
 - (2) Cycle time;
 - d) "Hot isostatic densification" of titanium alloys, aluminium alloys or "superalloys":
 - (1) Temperature;
 - (2) Pressure;
 - (3) Cycle time;
 - c. "Technology" for the "development" or "production" of hydraulic stretch-forming machines and dies therefor, for the manufacture of airframe structures;
 - d. "Technology" for the "development" of generators of machine tool instructions (e.g., part programmes) from design data residing inside "numerical control" units;
 - "Technology" for the "development" of integration "software" for incorporation of expert systems for advanced decision support of shop floor operations into "numerical control" units;
 - f. Technology for the application of inorganic overlay coatings or inorganic surface modification coatings (specified in column 3 of the following Table of Deposition Techniques), to non-electronic substrates

8

1025.f. con't

(specified in column 2 of the following table), by processes specified in column 1 of the following table and defined in the Technical Note.

N.B.:

This Table should be read to control the technology of a particular 'Coating Process' only when the 'Resultant Coating' in column 3 is in a paragraph directly across from the relevant 'Substrate' under column 2. For example, Chemical Vapour Deposition (CVD) coating process technical data are controlled for the application of 'silicides' to 'Carbon-carbon, Ceramic and Metal "matrix" "composites" substrates, but are not controlled for the application of 'silicides' to 'Cemented tungsten carbide (16), Silicon carbide (18)' substrates. In the second case, the 'Resultant Coating' is not listed in the paragraph under column 3 directly across from the paragraph under column 2 listing 'Cemented tungsten carbide (16), Silicon carbide (18)'.

Coating Process (1)*	Substrate	Resultant Coating		
* Note: The numbers in brackets refer to the <i>Notes</i> following this table.				
A. Chemical Vapour Deposition (CVD)	"Superalloys"	Aluminides for internal Passages		
	Ceramics (19) and Low-expansion glasses (14)	Silicides Carbides Dielectric layers (15) Diamond Diamond-like carbon (17)		
	Carbon-carbon, Ceramic and Metal "matrix""composites"	Silicides Carbides Refractory metals Mixtures thereof (4) Dielectric layers (15) Aluminides Alloyed aluminides (2) Boron nitride		
	Cemented tungsten carbide (16), Silicon carbide (18)	Carbides Tungsten Mixtures thereof (4) Dielectric layers (15)		
	Molybdenum and Molybdenum alloys	Dielectric layers (15)		
	Beryllium and Beryllium alloys	Dielectric layers (15) Diamond Diamond-like carbon (17)		
	Sensor window materials (9)	Dielectric layers (15) Diamond Diamond-like carbon (17)		
. Thermal-Evaporation Physical Vapour De	eposition (TE-PVD)	A STATISTICS		
 Physical VapourDeposition (PVD): Electron-Beam (EB-PVD) 	"Superalloys"	Alloyed silicides Alloyed aluminides (2) MCrA1X (5) Modified zirconia (12) Silicides Alumides Mixtures thereof (4)		
	Ceramics (19) and Low-expansion glasses (14)	Dielectric layers (15)		
	Corrosion resistant steel (7)	MCrAlX (5) Modified zirconia (12) Mixtures thereof (4)		
	Carbon-carbon, Ceramic and Metal "matrix""composites"	Silicides Carbides Refractory metals Mixtures thereof (4) Dielectric layers (15) Boron nitride		

Table - Deposition Techniques

\$

Coa	ting Process (1)*	Substrate	Resultant Coating
* Not	e: The numbers in brackets refer to the No.	otes following this table.	Arrive and Deriver and the second
B. 1.	Physical VapourDeposition (PVD): Electron-Beam (EB-PVD) Con't :	Cemented tungsten carbide (16), Silicon carbide (18)	Carbides Tungsten Mixtures thereof (4) Dielectric layers (15)
		Molybdenum and Molybdenum alloys	Dielectric layers (15)
		Beryllium and Beryllium alloys	Dielectric layers (15) Borides Beryllium
		Sensor window materials (9)	Dielectric layers (15)
		Titanium alloys (13)	Borides Nitrides
3. 2.	Ion assisted resistive heating Physical Vapour Deposition (PVD)	Ceramics (19) and Low-expansion glasses (14)	Dielectric layers (15) Diamond-like carbon (17)
	(Ion Plating)	Carbon-carbon, Ceramic and Metal "matrix""composites"	Dielectric layers (15)
		Cemented tungsten carbide (16), Silicon carbide	Dielectric layers (15)
		Molybdenum and Molybdenum alloys	Dielectric layers (15)
		Beryllium and Beryllium alloys	Dielectric layers (15)
		Sensor window materials (9)	Dielectric layers (15) Diamond-like carbon (17)
B. 3.	Physical Vapour Deposition (PVD): "Laser" Vaporization	Ceramics (19) and Low-expansion glasses (14)	Silicides Dielectric layers (15) Diamond-like carbon (17)
		Carbon-carbon, Ceramic and Metal "matrix""composites"	Dielectric layers (15)
		Cemented tungsten carbide (16), Silicon carbide	Dielectric layers (15)
		Molybdenum and Molybdenum alloys	Dielectric layers (15)
		Beryllium and Beryllium alloys	Dielectric layers (15)
		Sensor window materials (9)	Dielectric layers (15) Diamond-like carbon
B. 4.	Physical Vapour Deposition (PVD): Cathodic Arc Discharge	"Superalloys"	Alloyed silicides Alloyed aluminides (2) MCrAlX (5)
		Polymers (11) and Organic "matrix" "composites"	Borides Carbides Nitrides Diamond-like carbon (17

the state of the second s					
Coating Process (1)* Substrate Resultant Coating * Note: The numbers in brackets refer to the Notes following this table. Resultant Coating					
Carbon-carbon, Ceramic and metal	Silicides				
	Carbides				
and the second	Mixtures thereof (4)				
Titanium alloys (13)	Silicides				
	Aluminides				
In the second of the second designed and the	Alloyed aluminides (2)				
Refractory metals and alloys (8)	Silicides				
Refractory metals and anoys (6)	Oxides				
	OAIdes				
"Superalloys"	MCrAlX (5)				
The surface of the second s	Modified zirconia (12)				
	Mixtures thereof (4)				
a state of the second se	Abradable Nickel-Graphite				
	Abradable materials				
	containing Ni-Cr-Al				
and the second se	Abradable Al-Si- Polyester				
	Alloyed aluminides (2)				
Aluminium alloys (6)	MCrAlX (5)				
riuminum unoys (o)	Modified zirconia (12)				
and the second se	Silicides				
그는 그는 것이 아파 방송을 다 가지 않는다.	Mixtures thereof (4)				
Conversion residence are blicked in the Stationer and					
Refractory metals and alloys (8)	Aluminides				
a polla maralle polla hais starmal a plant a	Silicides				
The second	Carbides				
Corrosion resistant steel (7)	McrAlX (5)				
and the second	Modified zirconia (12)				
Carl Carl Strategy and	Mixtures thereof (4)				
Titanium alloys (13)	Carbides				
indinum diroys (15)	Aluminides				
	Silicides				
	Alloyed aluminides (2)				
the second s	Abradable Nickel-				
	Graphite				
	Abradable materials				
A TANK AND A SUPPORT OF THE ADDRESS OF THE ADDRESS OF	containing Ni-Cr-Al				
Patractory metals and allows (2)	Abradable Al-Si-Polyester Fused silicides				
Kenaciory metals and anoys (8)	Fused aluminides except for				
and the second	resistance heating elements				
in the second	in the second seco				
Carbon-carbon, Ceramic and Metal "matrix"	Silicides				
"composites"	Carbides				
	Mixtures thereof (4)				
"Superalloys"	Alloyed silicides				
	Alloyed aluminides (2)				
Contract of the second state of the second sta	Noble metal modified				
- Contraction of the second	aluminides (3)				
a shine and a since we the the	MCrAlX (5) Modified zirconia (12)				
	Platinum				
	Mixtures thereof (4)				
	 "matrix"" composites" Titanium alloys (13) Refractory metals and alloys (8) "Superalloys" Aluminium alloys (6) Refractory metals and alloys (8) Corrosion resistant steel (7) Titanium alloys (13) Refractory metals and alloys (8) Carbon-carbon, Ceramic and Metal "matrix" 				

8

Coating Process (1)*	Substrate	Resultant Coating
* Note: The numbers in brackets refer to	o the <i>Notes</i> following this table.	
F. Sputter Deposition (con't)	Ceramics and Low-expansion glasses (14)	Silicides
1. Sputter Deposition (cont)		Platinum
	경험 형 동안은 공격에 있는 것 같은 것은 것이 같은 것이 않는 것을 했다.	Mixtures thereof (4)
		Dielectic layers (15)
		Diamond-like carbon (17)
		Diamond-ince carboin (17)
	Titurium allana (12)	Borides
	Titanium alloys (13)	Nitrides
	And the factor of the second state of the second state	Oxides
	and the second	
	A A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY.	Silicides
	and the second	Aluminides
	and the second sec	Alloyed aluminides (2)
	and state and state of the second state of the	Carbides
	Carbon-carbon, Ceramic and Metal "matrix"	Silicides
		Carbides
	"composites"	
	and the second sec	Refractory metals
	wither the providence of the second s	Mixtures thereof (4)
	and the second states of the	Dielectric layers (15)
	And Street of Manager 1	Boron nitride
	Cemented tungsten carbide (16),	Carbides
	Silicon carbide (18)	Tungsten
	Sincon carolide (18)	Mixtures thereof (4)
		Dielectric layers (15)
	a segue a la la desta de la desta la desta de la	Boron nitride
	Molybdenum and Molybdenum alloys	Dielectric layers (15)
		Devides
	Beryllium and Beryllium alloys	Borides
		Dielectric layers (15)
	and the second se	Beryllium
	Sensor window materials (9)	Dielectric layers (15)
		Diamond-like carbon (17)
	Refractory metals and alloys (8)	Aluminides
		Silicides
	the second s	Oxides
	and the second sec	Carbides
G. Ion Implantation	High temperature bearing steels	Additions of Chromium,
. Ton implantation	The temperature searing storio	Tantalum or Niobium
	A DESTRUCTION OF A DEST	(Columbium)
	Party of the second sec	(Conumbruin)
	Titanium alloys (13)	Borides
	and the second s	Nitrides
	Beryllium and Beryllium alloys	Borides
	Cemented tungsten carbide (16)	Carbides
	Comonica languent carolae (10)	Nitrides
		THURS

Notes applicable to Table - Deposition Techniques:

- The term 'coating process' includes coating repair and refurbishing as well 1 as original coating.
- The term 'alloyed aluminide coating' includes single or multiple-step 2 coatings in which an element or elements are deposited prior to or during application of the aluminide coating, even if these elements are deposited by another coating process. It does not, however, include the multiple use of single-step pack cementation processes to achieve alloyed aluminides.
- The term 'noble metal modified aluminide' coating includes multiple-step 3 coatings in which the noble metal or noble metals are laid down by some other coating process prior to application of the aluminide coating
- The term 'mixtures thereof' includes infiltrated material, graded compositions, co-deposits and multilayer deposits and are obtained by one or more of the coating processes specified in the Table.
- MCrAIX refers to a coating alloy where M equals cobalt, iron, nickel or 5 combinations thereof and X equals hafnium, yttrium, silicon, tantalum in any amount or other intentional additions over 0.01 weight percent in various proportions and combinations, except:
 - CoCrAIY coatings which contain less than 22 weight percent of a. chromium, less than 7 weight percent of aluminium and less than 2 weight percent of yttrium;
 - CoCrAIY coatings which contain 22 to 24 weight percent of b chromium, 10 to 12 weight percent of aluminium and 0.5 to 0.7 weight percent of yttrium; or
 - NiCrAIY coatings which contain 21 to 23 weight percent of C chromium, 10 to 12 weight percent of aluminium and 0.9 to1.1 weight percent of yttrium.
- 6. The term 'aluminium alloys' refers to alloys having an ultimate tensile strength of 190 MPa or more measured at 293 K (20°C).
- The term 'corrosion resistant steel' refers to AISI (American Iron and Steel 7 Institute) 300 series or equivalent national standard steels.
- 'Refractory metals and alloys' include the following metals and their alloys: 8 niobium (columbium), molybdenum, tungsten and tantalum.
- 9 'Sensor window materials', as follows: alumina, silicon, germanium, zinc sulphide, zinc selenide, gallium arsenide, diamond, gallium phosphide, sapphire and the following metal halides: sensor window materials of more than 40 mm diameter zirconium fluoride and hafnium fluoride.
- Technology for single-step pack cementation of solid airfoils is not controlled 10. by Category 1020.
- 11. 'Polymers', as follows: polyimide, polyester, polysulphide, polycarbonates and polyurethanes.
- 12. 'Modified zirconia' refers to additions of other metal oxides, (e.g., calcia, magnesia, yttria, hafnia, rare earth oxides) to zirconia in order to stabilise certain crystallographic phases and phase compositions. Thermal barrier coatings made of zirconia, modified with calcia or magnesia by mixing or fusion, are not controlled.
- 13. 'Titanium alloys' refers only to aerospace alloys having an ultimate tensile strength of 900 MPa or more measured at 293 K (20°C).
- 'Low-expansion glasses' refers to glasses which have a coefficient of 14. thermal expansion of 1 x 10-7 K-1 or less measured at 293 K (20°C).
- 'Dielectric layers' are coatings constructed of multi-layers of insulator 15. materials in which the interference properties of a design composed of materials of various refractive indices are used to reflect, transmit or absorb various wavelength bands. Dielectric layers refers to more than four dielectric layers or dielectric/metal "composite" layers.
- 16. 'Cemented tungsten carbide' does not include cutting and forming tool materials consisting of tungsten carbide/(cobalt, nickel), titanium carbide/(cobalt, nickel), chromium carbide/nickel-chromium and chromium carbide/nickel.
- 17. "Technology" specially designed to deposit diamond-like carbon on any of the following is not controlled:

magnetic disk drives and heads, polycarbonate eyeglasses, equipment for the manufacture of disposables, bakery equipment, valves for faucets, acoustic diaphragms for speakers, engine parts for automobiles, cutting tools, punching-pressing dies, high quality lenses designed for cameras or telescopes, office automation equipment, microphones or medical devices

- 18. 'Silicon carbide' does not include cutting and forming tool materials.
- 19. Ceramic substrates, as used in this entry, does not include ceramic materials containing 5% by weight, or greater, clay or cement content, either as separate constituents or in combination

Technical Notes to Table - Deposition Techniques:

Processes specified in Column 1 of the Table are defined as follows:

- Chemical Vapour Deposition (CVD) is an overlay coating or surface a modification coating process wherein a metal, alloy, "composite", dielectric or ceramic is deposited upon a heated substrate. Gaseous reactants are decomposed or combined in the vicinity of a substrate resulting in the deposition of the desired elemental, alloy or compound material on the substrate. Energy for this decomposition or chemical reaction process may be provided by the heat of the substrate, a glow discharge plasma, or "laser" irradiation. NR ·
 - CVD includes the following processes: directed gas flow out-of-pack 1 deposition, pulsating CVD, controlled nucleation thermal deposition (CNTD), plasma enhanced or plasma assisted CVD processes.
 - 2 Pack denotes a substrate immersed in a powder mixture.
 - 3. The gaseous reactants used in the out-of-pack process are produced using the same basic reactions and parameters as the pack cementation process, except that the substrate to be coated is not in contact with the powder mixture.
- b Thermal Evaporation-Physical Vapour Deposition (TE-PVD) is an overlay coating process conducted in a vacuum with a pressure less than 0.1 Pa wherein a source of thermal energy is used to vaporize the coating material. This process results in the condensation, or deposition, of the evaporated species onto appropriately positioned substrates.

The addition of gases to the vacuum chamber during the coating process to synthesize compound coatings is an ordinary modification of the process. The use of ion or electron beams, or plasma, to activate or assist the coating's deposition is also a common modification in this technique. The use of monitors to provide in-process measurement of optical characteristics and thickness of coatings can be a feature of these processes. Specific TE-PVD processes are as follows

- Electron Beam PVD uses an electron beam to heat and evaporate the material which forms the coating;
- Ion Assisted Resistive Heating PVD employs electrically resistive 2. heating sources in combination with impinging ion beam(s) to produce a controlled and uniform flux of evaporated coating species;
- 3 "Laser" Vaporization uses either pulsed or continuous wave "laser" beams to vaporize the material which forms the coating,
- 4 Cathodic Arc Deposition employs a consumable cathode of the material which forms the coating and has an arc discharge established on the surface by a momentary contact of a ground trigger. Controlled motion of arcing erodes the cathode surface creating a highly ionized plasma. The anode can be either a cone attached to the periphery of the cathode, through an insulator, or the chamber. Substrate biasing is used for non line-of-sight deposition. N.B.:

C.

This definition does not include random cathodic arc deposition with non-biased substrates.

- 5. Ion Plating is a special modification of a general TE-PVD process in which a plasma or an ion source is used to ionize the species to be deposited, and a negative bias is applied to the substrate in order to facilitate the extraction of the species from the plasma. The introduction of reactive species, evaporation of solids within the process chamber, and the use of monitors to provide in-process measurement of optical characteristics and thicknesses of coatings are ordinary modifications of the process.
- Pack Cementation is a surface modification coating or overlay coating process wherein a substrate is immersed in a powder mixture (a pack), that consists of:
 - The metallic powders that are to be deposited (usually aluminium, chromium, silicon or combinations thereof);
 - An activator (normally a halide salt); and 2
 - An inert powder, most frequently alumina.

The substrate and powder mixture is contained within a retort which is heated to between 1,030 K (757°C) and 1,375 K (1,102°C) for sufficient time to deposit the coating.

Plasma Spraying is an overlay coating process wherein a gun(spray torch) which produces and controls a plasma accepts powder or wire coating materials, melts them and propels them towards a substrate, whereon an integrally bonded coating is formed. Plasma spraying constitutes either low pressure plasma spraying or high velocity plasma spraying. N.B.:

- Low pressure means less than ambient atmospheric pressure. 2. High velocity refers to nozzle-exit gas velocity exceeding 750 m/s calculated at 293 K (20°C) at 0.1 MPa.
- Slurry Deposition is a surface modification coating or overlay coating e. process wherein a metallic or ceramic powder with an organic binder is suspended in a liquid and is applied to a substrate by either spraying, dipping or painting, subsequent air or oven drying, and heat treatment to obtain the desired coating.

Technical Notes to Table - Deposition Techniques(Con't):

- Sputter Deposition is an overlay coating process based on a momentum transfer phenomenon, wherein positive ions are accelerated by an electric field towards the surface of a target (coating material). The kinetic energy of the impacting ions is sufficient to cause target surface atoms to be released and deposited on an appropriately positioned substrate. N.B.
 - The Table refers only to triode, magnetron or reactive sputter deposition which is used to increase adhesion of the coating and rate of deposition and to radio frequency (RF) augmented sputter deposition
 - used to permit vapourisation of non-metallic coating materials Low-energy ion beams (less than 5 keV) can be used to activate the deposition.
- Ion Implantation is a surface modification coating process in which the q. element to be alloyed is ionized, accelerated through a potential gradient and implanted into the surface region of the substrate. This includes processes in which ion implantation is performed simultaneously with electron beam physical vapour deposition or sputter deposition.

Statement of Understanding

It is understood that the following technical information, accompanying the table of deposition techniques, is for use as appropriate.

- "Technology" for pretreatments of the substrates listed in the Table, as follows
 - Chemical stripping and cleaning bath cycle parameters, as follows: a.
 - Bath composition
 - a) For the removal of old or defective coatings, corrosion product or foreign deposits;
 - For preparation of virgin substrates; b)
 - 2 Time in bath;
 - 3. Temperature of bath;
 - Number and sequences of wash cycles;
- Visual and macroscopic criteria for acceptance of the cleaned part; h
- Heat treatment cycle parameters, as follows: C. 1.
 - Atmosphere parameters, as follows: Composition of the atmosphere; a)
 - b) Pressure of the atmosphere;
 - Temperature for heat treatment; Time of heat treatment; 2
- Substrate surface preparation parameters, as follows: d
- Grit blasting parameters, as follows: 1.
 - Grit composition; a)
 - b) Grit size and shape:
 - Grit velocity; c)
 - Time and sequence of cleaning cycle after grit blast;
 - Surface finish parameters; 3
 - Application of binders to promote adhesion;
- Masking technique parameters, as follows:
- Material of mask;
- Location of mask; 2
- "Technology" for in situ quality assurance techniques for evaluation of the coating processes listed in the Table, as follows:
 - Atmosphere parameters, as follows:
 - Composition of the atmosphere;
 - Pressure of the atmosphere;
 - Time parameters; b.

a.

- C. Temperature parameters;
- d. Thickness parameters;
- Index of refraction parameters; e.
- Control of composition;
- "Technology" for post deposition treatments of the coated substrates listed in the Table, as follows:
 - Shot peening parameters, as follows: a.
 - Shot composition;
 - Shot size;
 - Shot velocity;
 - b. Post shot peening cleaning parameters; Heat treatment cycle parameters, as follows: C.
 - Atmosphere parameters, as follows:
 - Composition of the atmosphere; a)
 - Pressure of the atmosphere; b)
 - Time-temperature cycles;
 - d. Post heat treatment visual and macroscopic criteria for acceptance of the coated substrates:

- "Technology" for quality assurance techniques for the evaluation of the coated substrates listed in the Table, as follows:
 - Statistical sampling criteria; Microscopic criteria for: h
 - Magnification;
 - Coating thickness uniformity;
 - 3
 - Coating integrity; Coating composition;
 - Coating and substrates bonding; 5 Microstructural uniformity; 6
 - Criteria for optical properties assessment (measured as a function of
 - wavelength): 1. Reflectance;
 - 2 Transmission:
 - 3 Absorption;
 - 4 Scatter;

b.

C

- "Technology" and parameters related to specific coating and surface modification processes listed in the Table, as follows: a. For Chemical Vapour Deposition (CVD):
 - - Coating source composition and formulation; 1
 - Carrier gas composition; 3. Substrate temperature; 2
 - 4 Time-temperature-pressure cycles;
 - 5 Gas control and part manipulation
 - For Thermal Evaporation Physical Vapour Deposition (PVD):
 - Ingot or coating material source composition;
 - Substrate temperature; 2
 - 3 Reactive gas composition;
 - Ingot feed rate or material vaporisation rate; 4
 - Time-temperature-pressure cycles; 5
 - 6. Beam and part manipulation;
 - "Laser" parameters, as follows: 7.
 - Wave length; a)
 - Power density; b)
 - Pulse length; c)
 - d) Repetition ratio;
 - e) Source;
 - For Pack Cementation:
 - Pack composition and formulation; 1
 - Carrier gas composition; 2
 - Time-temperature-pressure cycles;
 - For Plasma Spraying: d.
 - Powder composition, preparation and size distributions;
 - Feed gas composition and parameters; 2
 - Substrate temperature; 3.
 - 1 Gun power parameters;

Electrical bias;

Triode power;

For Ion Implantation:

parameters:

parameters;

For Ion Plating:

Part manipulation;

- 5. Spray distance;
- 6. Spray angle;
- 7. Cover gas composition, pressure and flow rates;
- Gun control and part manipulation; 8

Reactive gas composition;

Ion source design details;

Ion source design details;

Substrate temperature;

Substrate bias parameters.

For Sputter Deposition: e

3

4.

5.

6.

2.

3.

4

2

3.

4

5.

6

g.

- Target composition and fabrication; 1.
- 2 Geometrical positioning of part and target;

Time-temperature-pressure cycles;

Beam control and part manipulation;

Time-temperature-pressure cycles;

Beam control and part manipulation;

Time-temperature-pressure cycles;

Control techniques for ion beam and deposition rate

Control techniques for ion beam and deposition rate

A Guide to Canada's Export Controls - March 2000 17

Coating material feed rate and vaporisation rate;

Category 1030: Electronics

1031. Systems, Equipment and Components

Notes:

- The control status of equipment and components described in 1031., other than those described in 1031.1.a.3. to 1031.1.a.10. or 1031.1.a.12., which are specially designed for or which have the same functional characteristics as other equipment is determined by the control status of the other equipment.
- The control status of integrated circuits described in 1031.1.a.3. to 1031.1.a.9. or 1031.1.a.12. which are unalterably programmed or designed for a specific function for another equipment is determined by the control status of the other equipment.

N.B.:

When the manufacturer or applicant cannot determine the control status of the other equipment, the control status of the integrated circuits is determined in 1031.1.a.3. to 1031.1.a.9. or 1031.1.a.11.

If the integrated circuit is a silicon-based "microcomputer microcircuit" or microcontroller microcircuit described in 1031.1.a.3. having an operand (data) word length of 8 bit or less, the control status of the integrated circuit is determined in 1031.1.a.3.

- 1. Electronic components, as follows:
 - a. General purpose integrated circuits, as follows: *Notes:*
 - The control status of wafers (finished or unfinished), in which the function has been determined, is to be evaluated against the parameters of 1031.1.a.
 - Integrated circuits include the following types: "Monolithic integrated circuits"; "Hybrid integrated circuits"; "Multichip integrated circuits"; "Film type integrated circuits", including silicon-on-sapphire integrated circuits; "Optical integrated circuits".
 - 1. Integrated circuits, designed or rated as radiation hardened to withstand any of the following:
 - a) A total dose of 5 x 10^3 Gy (Si) or higher; or
 - b) A dose rate upset of 5 x 10^6 Gy (Si)/s or higher;
 - 2. "Microprocessor microcircuits", "microcomputer microcircuits", microcontroller microcircuits, storage integrated circuits manufactured from a compound semiconductor, analogue-to-digital converters, digital-to-analogue converters, electro-optical or "optical integrated circuits" designed for "signal processing", field programmable logic devices, neural network integrated circuits, custom integrated circuits for which either the function is unknown or the control status of the equipment in which the integrated circuit will be used is unknown, Fast Fourier Transform (FFT) processors, electrical programmable read-only erasable memories (EEPROMs), flash memories or static random-access memories (SRAMs), having any of the following:
 - a) Rated for operation at an ambient temperature above 398 K (+125°C);
 - b) Rated for operation at an ambient temperature below 218 K (-55°C); or
 - c) Rated for operation over the entire ambient temperature range from 218 K (-55°C) to 398 K (+125°C);

1031.1.a.2. does not apply to integrated circuits for civil automobile or railway train applications.

 a. 3. "Microprocessor microcircuits", "microcomputer microcircuits" and microcontroller microcircuits, having any of the following characteristics: *Note:*

1031.1.a.3. includes digital signal processors, digital array processors and digital coprocessors.

- a) A "composite theoretical performance ("CTP") of 3,500 million theoretical operations per second (Mtops) or more and an arithmetic logic unit with an access width of 32 bit or more;
- b) Manufactured from a compound semiconductor and operating at a clock frequency exceeding 40 MHz; or
- c) More than one data or instruction bus or serial communication port for external interconnection in a parallel processor with a transfer rate exceeding 2.5 Mbyte/s;
- 4. Storage integrated circuits manufactured from a compound semiconductor;
- 5. Analogue-to-digital and digital-to-analogue converter integrated circuits, as follows:
 - a) Analogue-to-digital converters having any of the following:
 - (1) A resolution of 8 bit or more, but less than 12 bit, with a total conversion time of less than 10 ns;
 - (2) A resolution of 12 bit with a total conversion time of less than 200 ns; or
 - (3) A resolution of more than 12 bit with a total conversion time of less than 2 μs;
 - b) Digital-to-analogue converters with a resolution of 12 bit or more, and a "settling time" of less than 10 ns;

Technical Note:

- A resolution of n bit corresponds to a resolution of 2ⁿ levels
- 2. Total conversion time is the inverse of the sample rate.
- 6. Electro-optical and "optical integrated circuits" designed for "signal processing" having all of the following:
 - a) One or more than one internal "laser" diode;
 - b) One or more than one internal light detecting element; and
 - c) Optical waveguides;
- 7. Field programmable gate arrays having any of the following:
 - a) An equivalent usable gate count of more than 30,000 (2 input gates);

A typical "basic gate propagation delay time" of less than 0.4 ns; or

Note:1031.1.a.7. includes

- Simple Programmable Logic Devices (SPLDs)
- Complex Programmable Logic Devices (CPLDs)
 Sidd Devices (CPLDs)
- Field Programmable Gate Arrays (FPGAs) Field Programmable Logic Arrays (FPLAs)
- Field Programmable Interconnects (FPICs)

Note:

1031.1.a.7. con't.

N.B.

Field Programmable logic devices are also known as field programmable logic arrays.

- 8. Neural network integrated circuits;
- Custom integrated circuits for which the function is unknown, or the control status of the equipment in which the integrated circuits will be used is unknown to the manufacturer, having any of the following:
 - a) More than 208 terminals;
 - b) A typical "basic gate propagation delay time" of less than 0.35 ns; or
 - c) An operating frequency exceeding 3 GHz;
- 10. Digital integrated circuits, other than those described in 1031.1.a.3. to 1031.1.a.10. or 1031.1.a.12., based upon any compound semiconductor and having any of the following:
 - An equivalent gate count of more than 3000 (2 input gates); or
 - b) A toggle frequency exceeding 1.2 GHz;
- 11. Fast Fourier Transform (FFT) processors having any of the following:
 - a) A rated execution time for a 1,024-point complex FFT of less than 1 ms;
 - b) A rated execution time for an N-point complex FFT of other than 1,024 points of less than N log₂ N /10,240 ms, where N is the number of points; or
 - c) A butterfly throughput of more than 5.12 MHz;
- 1. b. Microwave or millimetre wave components, as follows:
 - 1. Electronic vacuum tubes and cathodes, as follows: *Note:*

1031.1.b.1. does not control tubes designed or rated to operate in the ITU allocated bands at frequencies not exceeding 31 GHz.

- a) Travelling wave tubes, pulsed or continuous wave, as follows:
 - (1) Operating at frequencies higher than 31 GHz;
 - (2) Having a cathode heater element with a turn on time to rated RF power of less than 3 seconds;
 - (3) Coupled cavity tubes, or derivatives thereof, with an "instantaneous bandwidth" of more than 7% or a peak power exceeding 2.5 kW;
 - (4) Helix tubes, or derivatives thereof, with any of the following characteristics:
 - (a) An "instantaneous bandwidth" of more than one octave, and average power (expressed in kW) times frequency (expressed in GHz) of more than 0.5;
 - (b) An "instantaneous bandwidth" of one octave or less, and average power (expressed in kW) times frequency (expressed in GHz) of more than 1; or
 (c) Being "space qualified";
- b) Crossed-field amplifier tubes with a gain of more than 17 dB;

- c) Impregnated cathodes designed for electronic tubes producing a continuous emission current density at rated operating conditions exceeding 5 A/cm²;
- 2. Microwave integrated circuits or modules having all of the following:
 - a. Containing "monolithic integrated circuits"; and
 b. Operating at frequencies exceeding 3 GHz;
 Note:

1031.1.b.2. does not control circuits or modules for equipment designed or rated to operate in the ITU allocated bands at frequencies not exceeding 31 GHz.

- Microwave transistors rated for operation at frequencies exceeding 31 GHz;
- 4. Microwave solid state amplifiers, having any of the following:
 - a) Operating frequencies exceeding 10.5 GHz and an "instantaneous bandwidth" of more than half an octave; **or**
 - b) Operating frequencies exceeding 31 GHz;
- 5. Electronically or magnetically tunable band-pass or band-stop filters having more than 5 tunable resonators capable of tuning across a 1.5:1 frequency band (f max /f min) in less than 10 μs having any of the following:
 - a) A band-pass bandwidth of more than 0.5% of centre frequency; or
 - b) A band-stop bandwidth of less than 0.5% of centre frequency;
- 6. Microwave assemblies capable of operating at frequencies exceeding 31 GHz;
- 7. Mixers and converters designed to extend the frequency range of equipment described in 1031.2.c., 1031.2.e. or 1031.2.f. beyond the limits stated therein;
- 8. Microwave power amplifiers containing tubes controlled by 1031.1.b. and having all of the following:
 - a) Operating frequencies above 3 GHz;
 - b) An average output power density exceeding 80 W/kg; and
 - c) A volume of less than 400 cm^3 ;
 - Note:

1031.1.b.8. does not control equipment designed or rated for operation in an ITU allocated band.

- c. Acoustic wave devices, as follows, and specially designed components therefor:
 - Surface acoustic wave and surface skimming (shallow bulk) acoustic wave devices (i.e., "signal processing" devices employing elastic waves in materials), having any of the following:
 - a) A carrier frequency exceeding 2.5 GHz;
 - b) A carrier frequency exceeding 1 GHz but not exceeding 2.5 GHz, and having any of the following:
 - (1) A frequency side-lobe rejection exceeding 55 dB;
 - (2) A product of the maximum delay time and the bandwidth (time in μs and bandwidth in MHz) of more than 100;

1031.1.c.1.b. con't.

- (3) A bandwidth greater than 250 MHz; or
- (4) A dispersive delay of more than 10 μ s; or
- c) A carrier frequency 1 GHz or less, having any of the following:
 - A product of the maximum delay time and the bandwidth (time in µs and bandwidth in MHz) of more than 100;
 - (2) A dispersive delay of more than 10 µs; or
 - (3) A frequency side-lobe rejection exceeding 55 dB and a bandwidth greater than 50 MHz;
- 2. Bulk (volume) acoustic wave devices (i.e., "signal processing" devices employing elastic waves) which permit the direct processing of signals at frequencies exceeding 1 GHz;
- Acoustic-optic "signal processing" devices employing interaction between acoustic waves (bulk wave or surface wave) and light waves which permit the direct processing of signals or images, including spectral analysis, correlation or convolution;
- Electronic devices and circuits containing components, manufactured from "superconductive" materials specially designed for operation at temperatures below the "critical temperature" of at least one of the "superconductive" constituents, with any of the following:
 - Current switching for digital circuits using "superconductive" gates with a product of delay time per gate (in seconds) and power dissipation per gate (in watts) of less than 10⁻¹⁴ J; or
 - 2. Frequency selection at all frequencies using resonant circuits with Q-values exceeding 10,000;
- 1. e. High energy devices, as follows:
 - 1. Batteries and photovoltaic arrays, as follows:

Note: 1031.1.e.1. does not control batteries with volumes equal to or less than 27 cm³ (e.g., standard C-cells or R14 batteries).

- a) Primary cells and batteries having an energy density exceeding 480 Wh/kg and rated for operation in the temperature range from below 243 K (-30°C) to above 343 K (70°C);
- b) Rechargeable cells and batteries having an energy density exceeding 150 Wh/kg after 75 charge/discharge cycles at a discharge current equal to C/5 hours (C being the nominal capacity in ampere hours) when operating in the temperature range from below 253 K (-20°C) to above 333 K (60°C);

Technical Note:

Energy density is obtained by multiplying the average power in watts (average voltage in volts times average current in amperes) by the duration of the discharge in hours to 75% of the open circuit voltage divided by the total mass of the cell (or battery) in kg.

- c) "Space qualified" and radiation hardened photovoltaic arrays with a specific power exceeding 160 W/m² at an operating temperature of 301 K (28°C) under a tungsten illumination of 1 kW/m² at 2,800 K (2,527°C);
- 2. High energy storage capacitors, as follows:
 - a) Capacitors with a repetition rate of less than 10 Hz (single shot capacitors) having all of the following:

- (1) A voltage rating equal to or more than 5 kV;
- (2) An energy density equal to or more than 250 J/kg; and
- (3) A total energy equal to or more 25 kJ;
- b) Capacitors with a repetition rate of 10 Hz or more (repetition rated capacitors) having all of the following:
 - (1) A voltage rating equal to or more than 5 kV;
 - (2) An energy density equal to or more than 50 J/kg;
 - (3) A total energy equal to or more than 100 J; and
 - (4) A charge/discharge cycle life equal to or more than 10,000;

 "Superconductive" electromagnets and solenoids specially designed to be fully charged or discharged in less than one second, having all of the following: *Note:*

1031.1.e.3. does not control "superconductive" electromagnets or solenoids specially designed for Magnetic Resonance Imaging (MRI) medical equipment.

- a) Energy delivered during the discharge exceeding 10 kJ in the first second;
- b) Inner diameter of the current carrying windings of more than 250 mm; **and**
- c) Rated for a magnetic induction of more than 8 T or "overall current density" in the winding of more than 300 A/mm²;
- 1. f. Rotary input type shaft absolute position encoders having any of the following:
 - 1. A resolution of better than 1 part in 265,000 (18 bit resolution) of full scale; or
 - 2. An accuracy better than ± 2.5 seconds of arc.
- 2. General purpose electronic equipment, as follows:
 - a. Recording equipment, as follows, and specially designed test tape therefor:
 - 1. Analogue instrumentation magnetic tape recorders, including those permitting the recording of digital signals (e.g., using a high density digital recording (HDDR) module), having any of the following:
 - a) A bandwidth exceeding 4 MHz per electronic channel or track;
 - b) A bandwidth exceeding 2 MHz per electronic channel or track and having more than 42 tracks; or
 - c) A time displacement (base) error, measured in accordance with applicable IRIG or EIA documents, of less than $\pm 0.1 \ \mu s$;

Note:

Analogue magnetic tape recorders specially designed for civilian video purposes are not considered to be instrumentation tape recorders.

 Digital video magnetic tape recorders having a maximum digital interface transfer rate exceeding 360 Mbit/s;

Note: 1031.2.a.2. does not control digital video magnetic tape recorders specially designed for television recording using a single format, which may include a compressed signal format, 1031.2.a.2. note con't.

standardised or recommended by the ITU, the IEC, the SMPTE, the EBU or the IEEE for civil television applications.

- 2. a. 3. Digital instrumentation magnetic tape data recorders employing helical scan techniques or fixed head techniques, having any of the following:
 - a) A maximum digital interface transfer rate exceeding 175 Mbit/s; or
 - b) Being "space qualified";
 - Note:

1031.2.a.3. does not control analogue magnetic tape recorders equipped with HDDR conversion electronics and configured to record only digital data.

- 4. Equipment, having a maximum digital interface transfer rate exceeding 175 Mbit/s, designed to convert digital video magnetic tape recorders for use as digital instrumentation data recorders;
- 5. Waveform digitisers and transient recorders having all of the following:
 - a) Digitising rates equal to or more than 200 million samples per second and a resolution of 10 bits or more; and
 - b) A continuous throughput of 2 Gbit/s or more; **Technical Note:**

For those instruments with a parallel bus architecture, the continuous throughput rate is the highest word rate multiplied by the number of bits in a word.

Continuous throughput is the fastest data rate the instrument can output to mass storage without the loss of any information whilst sustaining the sampling rate and analogue-to-digital conversion.

- 2. b. "Frequency synthesiser" "electronic assemblies" having a "frequency switching time" from one selected frequency to another of less than 1 ms;
 - "Signal analysers", as follows:

C.

- 1. "Signal analysers" capable of analysing frequencies exceeding 31 GHz;
- 2. "Dynamic signal analysers" having a "real-time bandwidth" exceeding 25.6 kHz; Note:

1031.2.c.2. does not control those "dynamic signal analysers" using only constant percentage bandwidth filters (also known as octave or fractional octave filters).

- d. Frequency synthesised signal generators producing output frequencies, the accuracy and short term and long term stability of which are controlled, derived from or disciplined by the internal master frequency, and having any of the following:
 - 1. A maximum synthesised frequency exceeding 31 GHz;
 - 2. A "frequency switching time" from one selected frequency to another of less than 1 ms; or
 - 3. A single sideband (SSB) phase noise better than -(126 + 20 log 10 F - 20 log 10 f) in dBc/Hz, where F is the off-set from the operating frequency in Hz and f is the operating frequency in MHz;

Note:

1031.2.d. does not control equipment in which the output frequency is either produced by the addition or subtraction of two or more crystal oscillator frequencies, or by an addition or subtraction followed by a multiplication of the result.

e. Network analysers with a maximum operating frequency exceeding 40 GHz;

- f. Microwave test receivers having all of the following:
 - 1. A maximum operating frequency exceeding 40 GHz; and
 - Being capable of measuring amplitude and phase 2. simultaneously;
- Atomic frequency standards having any of the following: g.
 - Long term stability (aging) less (better) than 1.
 - 1 x 10⁻¹¹ /month; or
 - 2. Being "space qualified". Note:

1031.2.g.1. does not control non-"space qualified" rubidium standards.

1032. Test, Inspection and Production Equipment

- 1. Equipment for the manufacturing of semiconductor devices or materials, as follows, and specially designed components and accessories therefor:
 - a. "Stored programme controlled" equipment designed for epitaxial growth, as follows:
 - Equipment capable of producing a layer thickness 1. uniform to less than $\pm 2.5\%$ across a distance of 75 mm or more;
 - 2. Metal organic chemical vapour deposition (MOCVD) reactors specially designed for compound semiconductor crystal growth by the chemical reaction between materials controlled by 1033.3. or 1033.4.;
 - 3. Molecular beam epitaxial growth equipment using gas or solid sources;
 - b. "Stored programme controlled" equipment designed for ion implantation, having any of the following:
 - 1. A beam energy (accelerating voltage) exceeding 1 MeV;
 - 2. Being specially designed and optimized to operate at a beam energy (accelerating voltage) of less than 2 keV;
 - 3. Direct write capability; or
 - 4. Being capable of high energy oxygen implant into a heated semiconductor material "substrate";
 - c. "Stored programme controlled" anisotropic plasma dry etching equipment, as follows:
 - 1. Equipment with cassette-to-cassette operation and load-locks, and having any of the following: a) Magnetic confinement; or
 - b) Electron cyclotron resonance (ECR);
 - 2. Equipment specially designed for equipment controlled by 1032.1.e. and having any of the following:
 - a) Magnetic confinement; or
 - b) ECR;
 - d. "Stored programme controlled" plasma enhanced CVD equipment, as follows:
 - 1. Equipment with cassette-to-cassette operation and load-locks, and having any of the following:
 - a) Magnetic confinement; or b) ECR;
 - 2. Equipment specially designed for equipment controlled by 1032.1.e. and having any of the following:
 - a) Magnetic confinement; or

1032.1.d.2. con't.

b) ECR;

- 1. e. "Stored programme controlled" automatic loading multichamber central wafer handling systems, having all of the following:
 - 1. Interfaces for wafer input and output, to which more than two pieces of semiconductor processing equipment are to be connected; **and**
 - Designed to form an integrated system in a vacuum environment for sequential multiple wafer processing; Note:

1032.1.e. does not control automatic robotic wafer handling systems not designed to operate in a vacuum environment.

- f. "Stored programme controlled" lithography equipment, as follows:
 - Align and expose step and repeat (direct step on wafer) or step and scan (scanner) equipment for wafer processing using photo-optical or X-ray methods, having any of the following:
 - a) A light source wavelength shorter than 350 nm; or
 - b) Capable of producing a pattern with a minimum resolvable feature size of 0.5 μm or less; *Technical Note:*

The minimum resolvable feature size is calculated by the following formula:

MRF = (<u>an exposure light source wavelength in mm</u>) X K FACTOR) numerical aperture

> where the K factor = 0.7. MRF = minimum resolvable feature size.

- 2. Equipment specially designed for mask making or semiconductor device processing using deflected focussed electron beam, ion beam or "laser" beam, having any of the following:
 - a) A spot size smaller than 0.2 µm;
 - b) Being capable of producing a pattern with a feature size of less than 1 μm; or
 - c) An overlay accuracy of better than $\pm 0.20 \,\mu\text{m}$ (3 sigma);
- g. Masks and reticles designed for integrated circuits controlled by 1031.1.;

h. Multi-layer masks with a phase shift layer.

- "Stored programme controlled" test equipment, specially designed for testing finished or unfinished semiconductor devices, as follows, and specially designed components and accessories therefore:
 - a. For testing S-parameters of transistor devices at frequencies exceeding 31 GHz;
 - b. For testing integrated circuits capable of performing functional (truth table) testing at a pattern rate of more than 333 MHz;

Note:

1032.2.b. does not control test equipment specially designed for testing:

 "Electronic assemblies" or a class of "electronic assemblies" for home or entertainment applications; Uncontrolled electronic components, "electronic assemblies" or integrated circuits.

Technical Note:

For the purpose of this entry, pattern rate is defined as the maximum frequency of digital operation of a tester. It is therefore equivalent to the highest data rate that a tester can provide in non-multiplexed mode. It is also referred to as test speed, maximum digital frequency or maximum digital speed.

c. For testing microwave integrated circuits controlled by 1032.2.b.

1033. Materials

- 1. Hetero-epitaxial materials consisting of a "substrate" with stacked epitaxially grown multiple layers of any of the following:
 - a. Silicon;
 - b. Germanium; or
 - c. III/V compounds of gallium or indium. *Technical Note:*

III/V compounds are polycrystalline or binary or complex monocrystalline products consisting of elements of groups IIIA and VA of Mendeleyev's periodic classification table (e.g., gallium arsenide, gallium-aluminium arsenide, indium phosphide).

- 2. Resist materials, as follows, and "substrates" coated with controlled resists:
 - Positive resists designed for semiconductor lithography specially adjusted (optimised) for use at wavelengths below 350 nm;
 - b. All resists, designed for use with electron beams or ion beams, with a sensitivity of $0.01 \,\mu coulomb/mm^2$ or better;
 - c. All resists, designed for use with X-rays, with a sensitivity of 2.5 mJ/mm² or better;
 - All resists optimized for surface imaging technologies, including silylated resists. *Technical Note:*

Silylation techniques are defined as processes incorporating oxidation of the resist surface to enhance performance for both wet and dry developing.

- 3. Organo-inorganic compounds as follows:
 - Organo-metallic compounds of aluminium, gallium or indium having a purity (metal basis) better than 99.999%;
 - b. Organo-arsenic, organo-antimony and organophosphorus compounds having a purity (inorganic element basis) better than 99.999%.

Note:

1033.3. only controls compounds whose metallic, partly metallic or nonmetallic element is directly linked to carbon in the organic part of the molecule.

 Hydrides of phosphorus, arsenic or antimony, having a purity better than 99.999%, even diluted in inert gases or hydrogen. Note:

1033.4. does not control hydrides containing 20% molar or more of inert gases or hydrogen.

1034. Software

- "Software" specially designed for the "development" or "production" of equipment controlled by 1031.1.b. to 1031.2.g. or 1032.
- 2. "Software" specially designed for the "use" of "stored program controlled" equipment controlled by 1032.
- Computer-aided-design (CAD) "software" designed for semiconductor devices or integrated circuits, having any of the following:
 - a. Design rules or circuit verification rules;
 - b. Simulation of the physically laid out circuits; or
- c. Lithographic processing simulators for design.

Technical Note:

A lithographic processing simulator is a "software" package used in the design phase to define the sequence of lithographic, etching and deposition steps for translating masking patterns into specific topographical patterns in conductors, dielectrics or semiconductor

material. Note 1:

1034.3. does not control "software" specially designed for schematic entry, logic simulation, placing and routing, layout verification or pattern generation tape.

Note 2: Libraries, design attributes or associated data for the design of semiconductor devices or integrated circuits are considered as "technology".

1035. Technology

 "Technology" according to the General Technology Note for the "development" or "production" of equipment or materials controlled by 1031., 1032. or 1033. *Note:*

1035.1. does not control "technology" for the "development" or "production" of:

- a. Microwave transistors operating at frequencies below 31 GHz;
- Integrated circuits controlled by 1031.1.a.3. to 12., having both of the following:
 - 1. Using "technology" of 0.7 µm or more; and
 - 2. Not incorporating multi-layer structures.
 - N.B.:

Category 1040: Computers

Note 1:

Computers, related equipment and "software" performing telecommunications or "local area network" functions must also be evaluated against the performance characteristics of Category 1050 (Telecommunications).

Note2:

Control units which directly interconnect the buses or channels of central processing units, "main storage" or disk controllers are not regarded as telecommunications equipment described in Category 1050 (Telecommunications).

N.B.

For the control status of "software" specially designed for packet switching, see Category 1054. (Telecommunications).

Note 3:

Computers, related equipment and "software" performing cryptographic, cryptanalytic, certifiable multi-level security or certifiable user isolation functions, or which limit electromagnetic compatibility (EMC), must also be evaluated against the performance characteristics in Category 1150. (Information Security).

The term multi-layer structures in Note b.2. above does not include devices incorporating a maximum of two metal layers and two polysilicon layers.

- 2. Other "technology" for the "development" or "production" of:
 - a. Vacuum microelectronic devices;
 - b. Hetero-structure semiconductor devices such as high electron mobility transistors (HEMT), hetero-bipolar transistors (HBT), quantum well or super lattice devices;
 c. "Superconductive" electronic devices;
 - d. Substrates of films of diamond for electronic components;
 - e. Substrates of silicon-on-insulator (SOI) for integrated circuits in which the insulator is silicon dioxide;
 - f. Substrates of silicon carbide for electronic components;
 - g. "Technology" according to the General Technology Note other than that controlled in 3.E.1. for the "development" or "production" of "microprocessor microcircuits", "micro-computer microcircuits" and micrcontroller microcircuits having a "composite theoretical performance" ("CTP") of 530 million theoretical operations per second (Mtops) or more and an arithmetic logic unit with an access width of 32 bits or more.

Note:

1035.1. and 1035.2.g. do not control "technology" for the "development" or "production" of:

- a. Microwave transistors operating at frequencies below 31 GHz;
- Integrated circuits controlled by 1031.1.a.3. to 1031.1.a.12. having all of the following:
 - Using "technology" of 0.7 μm or more, and
 Not incorporating multi-layer structures.

Technical Note:

The term multi-layer structures in Note b.2. above does not include devices incorporating a maximum of two metal layers and two polysilicon layers.

1041. Systems, Equipment and Components

- Electronic computers and related equipment, as follows, and "electronic assemblies" and specially designed components therefor:
 - a. Specially designed to have either of the following characteristics:
 - Rated for operation at an ambient temperature below 228 K (-45°C) or above 358 K (85°C);

Note:

1041.1.a.1. does not apply to computers specially designed for civil automobile or railway train applications.

- 2. Radiation hardened to exceed any of the following specifications:
 - a) Total Dose 5×10^3 Gy (Si);
 - b) Dose Rate Upset 5 x 10⁶ Gy (Si)/sec; or
 - c) Single Event Upset 1 x 10⁻⁷ Error/bit/day;

For equipment designed or rated for transient ionising radiation, see Group 2, Munitions List.

1041.1. con't.

 Having characteristics or performing functions exceeding the limits in Category 1150 (Information Security). *Note:*

1041.1.b. does not control electronic computers and related equipment when accompanying their user for the user's personal use.

- "Hybrid computers", as follows, and "electronic assemblies" and specially designed components therefor:
 - a. Containing "digital computers" controlled by 1041.3.;
 - b. Containing analogue-to-digital converters having all of the following characteristics:
 - 1. 32 channels or more; and
 - 2. A resolution of 14 bits (plus sign bit) or more with a conversion rate of 200,000 conversions/s or more.
- 3. "Digital computers", "electronic assemblies", and related equipment therefor, as follows, and specially designed components therefor:

Notes:

2.

- 1. 1041.3. includes the following:
 - a. vector processors;
 - b. array processors;
 - c. digital signal processors;
 - d. logic processors;

e. Equipment for "image enhancement" or "signal processing". The control status of the "digital computers" and related equipment

described in 1041.3. is determined by the control status of other equipment or systems provided:

- a. The "digital computers" or related equipment are essential for the operation of the other equipment or systems;
- b. The "digital computers" or related equipment are not a "principal element" of the other equipment or systems; and N.B.:
 - The control status of "signal processing" or "image enhancement" equipment specially designed for other equipment with functions limited to those required for the other equipment is determined by the control status of the other equipment even if it exceeds the "principal element" criterion.
 - 2 For the control status of "digital computers" or related equipment for telecommunications equipment, see Category 1050 (Telecommunications).
- c. The technology for the "digital computers" and related equipment is determined by 1045.

a. Designed or modified for "fault tolerance"; Note:

For the purposes of 1041.3.a., "digital computers" and related equipment are not considered to be designed or modified for "fault tolerance" if they utilize any of the following:

- Error detection or correction algorithms in "main storage";
 The interconnection of two "digital computers" so that, if the active central processing unit fails, an idling but mirroring central processing unit can continue the system's functioning;
- The interconnection of two central processing units by data channels or by using shared storage to permit one central processing unit to perform other work until the second central processing unit fails, at which time the first central processing unit takes over in order to continue the system's functioning; or
- 4. The synchronisation of two central processing units by "software" so that one central processing unit recognises when the other central processing unit fails and recovers tasks from the failing unit.
- b. "Digital computers" having a "CTP" exceeding 6500 Mtops;
- c. "Electronic assemblies" specially designed or modified for enhancing performance by aggregation of "computing elements" ("CEs") so that the "CTP" of the aggregation exceeds the limit in 1041.3.b.;

Notes:

 1041.3.c. applies only to "electronic assemblies" and programmable interconnections not exceeding the limit in 1041.3.b. when shipped as unintegrated "electronic assemblies". It does not apply to "electronic assemblies" inherently limited by nature of their design for use as related equipment controlled by 1041.3.d. or 1041.3.e.

- 1041.3.c. does not control "electronic assemblies" specially designed for a product or family of products whose maximum configuration does not exceed the limit of 1041.3.b.
- Graphics accelerators and graphics coprocessors exceeding a "three dimensional vector rate" of 3,000,000;
- e. Equipment performing analogue-to-digital conversions
- exceeding the limits in 1031.1.a.5.;
- f. Deleted;

2

g. Equipment specially designed to provide external interconnection of "digital computers" or associated equipment which allows communications at data rates exceeding 80 Mbyte/s. Note:

1041.3.g. does not control internal interconnection equipment (e.g., backplanes, buses), passive interconnection equipment, "network access controllers" or "communications channel controllers".

- Computers, as follows, and specially designed related equipment, "electronic assemblies" and components therefor:
 - a. "Systolic array computers";
 - b. "Neural computers";
 - c. "Optical computers".

1042. Test, Inspection and Production Equipment

None.

1043. Materials

None.

1044. Software

Note:

The control status of "software" for the "development", "production", or "use" of equipment described in other Categories is dealt with in the appropriate Category. The control status of "software" for equipment described in this Category is dealt with herein.

- "Software" specially designed or modified for the "development", "production" or "use" of equipment or "software" controlled by 1041. or 1044.
- "Software" specially designed or modified to support "technology" controlled by 1045.
- 3. Specific "software", as follows:
 - a. Operating system "software", "software" development tools and compilers specially designed for "multi-data-stream processing" equipment, in "source code";
 - b. "Expert systems" or "software" for "expert system" inference engines providing both:
 - 1. Time dependent rules; and
 - 2. Primitives to handle the time characteristics of the rules and the facts;
 - c. "Software" having characteristics or performing functions exceeding the limits in Category 1150 (Information Security); Note:

1044.3.c. does not control "software" when accompanying its user for the user's personal use.

8

1044.3. con't.

d. Operating systems specially designed for "real time processing" equipment which guarantees a "global interrupt latency time" of less than 20 μs.

1045. Technology

1. "Technology" according to the General Technology Note, for the "development", "production" or "use" of equipment or "software" controlled by 1041. or 1044.

Technical Note on "Composite Theoretical Performance" ("CTP"):

Abbreviations used in this Technical Note:

is expressed in bits

"CE"	= "computing element" (typically an arithmetic logical unit)
FP	= floating point
XP	= fixed point
t	= execution time
XOR	= exclusive OR
CPU	= central processing unit
TP	= theoretical performance (of a single "CE")
"CTP"	= "composite theoretical performance" (multiple "CEs")
R	= effective calculating rate
WL	= word length
L	= word length adjustment
*	= multiply
	tion time "t' is expressed in microseconds, TP and "CTP" are sed in millions of theoretical operations per second (Mtops) and WL

Outline of "CTP" Calculation Method

"CTP" is a measure of computational performance given in Mtops. In calculating the "CTP" of an aggregation of "CEs" the following three steps are required:

- 1. Calculate the effective calculating rate R for each "CE";
- 2. Apply the word length adjustment (L) to the effective calculating rate (R), resulting in a Theoretical Performance (TP) for each "CE",
- 3. If there is more than one "CE", combine the TPs, resulting in a "CTP" for the aggregation.

Details for these steps are given in the following sections.

Note 1:

For aggregations of multiple "CEs" which have both shared and unshared memory subsystems, the calculation of "CTP" is completed hierarchically, in two steps: first, aggregate the groups of "CEs" sharing memory; second, calculate the "CTP" of the groups using the calculation method for multiple "CEs" not sharing memory.

Note 2:

"CEs" that are limited to input/output and peripheral functions (e.g., disk drive, communication and video display controllers) are not aggregated into the "CTP" calculation.

The following table shows the method of calculating the Effective Calculating Rate R for each "CE":

The Effective Calculating Rate R: Step 1:

For "CEs" Implementing: Note: Every "CE" must be evaluated independently	Effective calculating Rate, R
XP only	$\frac{1}{3*(t_{xp add})}$
(R _{xp})	if no add is implemented use: 1 (t xp mult)
	if neither add nor multiply is implemented use the fastest available arithmetic operation as follows: $\frac{1}{3^* t_{xp}}$
FP Only (R _{fp})	See Notes X and Z. max 1 t_{xp} add t t_{xp} add t_{fp} mult See Notes X and Y.
Both FP and XP (R)	Calculate both R xp, R fp
For simple logic processors not implementing any of the specified arithmetic operations.	$\frac{1}{3^{*} t_{log}}$ Where t log is the execute time of the XOR, or for logic hardware not implementing the XOR, the fastest simple logic operation. See Notes X and Z.
For special logic processors not using any of the specified arithmetic or logic operations.	R = R' * WL / 64 Where R' is the number of results per second, WL is the number of <u>bits</u> upon which the logic operation occurs, and 64 is a factor to normalize to a 64 bit operation.

Technical Note on "Composite Theoretical Performance" (Con't):

Note W:

For a pipelined "CE" capable of executing up to one arithmetic or logic operation every clock cycle after the pipeline is full, a pipelined rate can be established. The effective calculating rate (R) for such a "CE" is the faster of the pipelined rate or non-pipelined execution rate.

Note X:

For a "CE" which performs multiple operations of a specific type in a single cycle (e.g., two additions per cycle or two identical logic operations per cycle), the execution time t is given by:

t = cycle time the # of identical operations per machine cycle

"CEs" which perform different types of arithmetic or logic operations in a single machine cycle are to be treated as multiple separate "CEs" performing simultaneously (e.g., a "CE" performing an addition and a multiplication in one cycle is to be treated as two "CEs", the first performing an addition in one cycle and the second performing a multiplication in one cycle).

If a single "CE" has both scalar function and vector function, use the shorter execution time value.

Note Y:

For the "CE" that does not implement FP add or FP multiply, but that performs FP divide:

$$R_{fp} = \frac{1}{t_{fp \text{ divide}}}$$

If the "CE" implements FP reciprocal but not FP add, FP multiply or FP divide, then:

$$R_{fp} = \frac{1}{t_{fo reciprocal}}$$

If none of the specified instructions is implemented, the effective FP rate is 0.

Note Z:

In simple logic operations, a single instruction performs a single logic manipulation of no more than two operands of given lengths.

In complex logic operations, a single instruction performs multiple logic manipulations to produce one or more results from two or more operands.

Rates should be calculated for all supported operand lengths considering both pipelined operations (if supported), and non-pipelined operations using the fastest executing instruction for each operand length based on:

Note Z con't.

- Pipelined or register-to-register operations. Exclude extraordinarily short execution times generated for operations on a predetermined operand or operands (for example, multiplication by 0 or 1). If no register-to-register operations are implemented, continue with 2;
- The faster of register-to-memory or memory-to-register operations; if these also do not exist, then continue with 3;
- 3. Memory-to-memory.

In each case above, use the shortest execution time certified by the manufacturer.

Step 2: TP for each supported operand length WL:

Adjust the effective rate R (or R') by the word length adjustment L as follows:

TP = R * L

where L = (1/3 + WL/96)

Note:

The word length WL used in these calculations is the operand length in bits. (If an operation uses operands of different lengths, select the largest word length.) The combination of a mantissa ALU and an exponent ALU of a floating point processor or unit is considered to be one "CE" with a Word Length (WL) equal to the number of bits in the data representation (typically 32 or 64) for purposes of the "CTP" calculation.

This adjustment is not applied to specialized logic processors which do not use XOR instructions. In this case TP = R.

Select the maximum resulting value of TP for:

- Each XP-only "CE" (Rxp);
- Each FP-only "CE" (Rfp);
- Each combined FP and XP "CE" (R);

Each simple logic processor not implementing any of the specified arithmetic operations; and

Each special logic processor not using any of the specified arithmetic or logic operations.

Step 3: "CTP" for aggregations of "CEs", including CPUs.

For a CPU with a single "CE",

$$"CTP" = TP$$

(for "CEs" performing both fixed and floating point operations $TP = max (TP_{fp}, TP_{xp})$)

"CTP" for aggregations of multiple "CEs" operating simultaneously is calculated as follows:

Notes:

 For aggregations that do not allow all of the "CEs" to run simultaneously, the possible combination of "CEs" that provides the largest "CTP" should be used. The TP of each contributing "CE" is to be calculated at its maximum value theoretically possible before the "CTP" of the combination is derived. N.B.:

To determine the possible combinations of simultaneously operating "CEs", generate an instruction sequence that initiates operations in multiple "CEs", beginning with the slowest "CE" (the one needing the largest number of cycles to complete its operation) and ending with the fastest "CE". At each cycle of the sequence, the combination of "CEs" that are in operation during that cycle is a possible combination. The instruction sequence must take into account all hardware and/or architectural constraints on overlapping operations.

- A single integrated circuit chip or board assembly may contain multiple "CEs".
- Simultaneous operations are assumed to exist when the computer manufacturer claims concurrent, parallel or simultaneous operation or execution in a manual or brochure for the computer.
- "CTP" values are not to be aggregated for "CE" combination (inter)connected by "Local Area Networks", Wide Area Networks, I/O shared connections/devices, I/O controllers and any communication interconnection implemented by software.
- "CTP" values must be aggregated for multiple "CEs" specially designed to enhance performance by aggregation, operating simultaneously and sharing memory,- or multiple memory/"CE"- combinations operating simultaneously utilising specially designed hardware.

This aggregation does not apply to "electronic assemblies" described by 1041.3 c.

"CTP" = TP 1 + C 2 * TP 2 + ... + C n * TP n,

where the TPs are ordered by value, with TP $_1$ being the highest, TP $_2$ being the second highest, ..., and TP $_n$ being the lowest. C $_i$ is a coefficient determined by the strength of the interconnection between "CEs", as follows:

For multiple "CEs" operating simultaneously and sharing memory: C $_2$ = C $_3$ = C $_4$ = ... = C $_n$ = 0.75

Notes:

 When the "CTP" calculated by the above method does not exceed 194 Mtops, the following formula may be used to calculate C_i:

 $C_i = 0.75$ (*i* = 2, ..., *n*)

 \sqrt{m}

where m = the number of "CEs" or groups of "CEs" sharing access.

provided:

- a. The TP₁ of each "CE" or group of "CEs" does not exceed 30 Mtops;
 b. The "CEs" or groups of "CEs" share access to main memory
- (excluding cache memory) over a single channel; and
- c. Only one "CE" or group of "CEs" can have use of the channel at any given time.

NR.

This does not apply to items controlled under Category 1030.

 "CEs" share memory if they access a common segment of solid state memory. This memory may include cache memory, main memory or other internal memory. Peripheral memory devices such as disk drives, tape drives or RAM disks are not included. For Multiple "CEs" or groups of "CEs" not sharing memory, interconnected by one or more data channels. C;

- = 0.75 * k; (i = 2, ..., 32) (see Note below)
- $= 0.60 * k_i$ (*i* = 33, ..., 64)
- $= 0.45 * k_i$ (i = 65, ..., 256)
- $= 0.30 * k_i$ (i > 256)

The value of C ; is based on the number of "Ces", not the number of nodes.

where $k_i = \min(S_i/K_r, 1)$, and

S.

- K, = normalizing factor of 20 MByte/s.
 - = sum of the maximum data rates (in units of MByte/s) for all data channels connected to the i th "CE" or group of "CEs" sharing memory.

Category 1050: Telecommunications

Notes:

- The control status of components, "lasers", test and production 1 equipment, and "software" therefor which are specially designed for telecommunications equipment or systems is determined in Category 1050.
- "Digital computers", related equipment or "software", when essential for 2 the operation and support of telecommunications equipment described in this Category, are regarded as specially designed components, provided they are the standard models customarily supplied by the manufacturer. This includes operation, administration, maintenance, engineering or billing computer systems.

1051. Systems, Equipment, and Components

- 1. Any type of telecommunications equipment having any of the following characteristics, functions or features:
 - Specially designed to withstand transitory electronic a. effects or electromagnetic pulse effects arising from a nuclear explosion;
 - b. Specially hardened to withstand gamma, neutron or ion radiation: or
 - c. Specially designed to operate outside the temperature range from 218 K (-55°C) to 397 K (124°C). Note:

1051.1.c. applies only to electronic equipment.

Note:

1051.1.b. and 1051.1.c. do not control equipment designed or modified for use on board satellites.

- 2. Telecommunication transmission equipment and systems, and specially designed components and accessories therefor, having any of the following characteristics, functions or features:
 - Being underwater communications systems having any of a. the following characteristics:
 - 1. An acoustic carrier frequency outside the range from 20 kHz to 60 kHz;
 - 2. Using an electromagnetic carrier frequency below 30 kHz; or
 - 3. Using electronic beam steering techniques;
 - Being radio equipment operating in the 1.5 to 87.5 MHz band and having any of the following characteristics:
 - 1. Incorporating adaptive techniques providing more than 15 dB suppression of an interfering signal; or
 - 2. Having all of the following:
 - a. Automatically predicting and selecting frequencies and "total digital transfer rates" per channel to optimize the transmission; and

When calculating a Ci for a group of "CEs", the number of the first "CE" in a group determines the proper limit for C j. For example, in an aggregation of groups consisting of 3 "CEs" each, the 22nd group will contain "CE" 54, "CE" 55 and "CE"₆₆ The proper limit for C_i for this group is 0.60.

Aggregation (of "CEs" or groups of "CEs") should be from the fastest-to-slowest: i.e.

$TP_1 \ge TP_2 \ge \dots \ge TP_n$, and

in the case of TP $_i = TP_{i+1}$, from the largest to smallest; i.e., : C $_i \ge C_{i+1}$

The k, factor is not to be applied to "CEs" 2 to 12 if the TP, of the "CE" or group of "CEs" is more than 50 Mtops; i.e., C, for "CEs" 2 to 12 is 0.75.

- 2. b. 2. b. Incorporating a linear power amplifier configuration having a capability to support multiple signals simultaneously at an output power of 1 kW or more in the 1.5 to 30 MHz frequency range or 250 W or more in the 30 to 87.5 MHz frequency range, over an "instantaneous bandwidth" of one octave or more and with an output harmonic and distortion content of better than -80 dB;
 - c. Being radio equipment employing "spread spectrum" techniques, including "frequency hopping" techniques, having any of the following characteristics:
 - 1. User programmable spreading codes; or
 - 2. A total transmitted bandwidth which is 100 or more times the bandwidth of any one information channel and in excess of 50 kHz. Note:

1051.2.c.2. does not control radio equipment specially designed for use with civil cellular radio-communications systems.

Note:

1051.2.c. does not control equipment designed to operate at an output power of 1.0 Watt or less.

- d. Being digitally controlled radio receivers having all of the following:
 - 1. More than 1,000 channels;
 - 2. A "frequency switching time" of less than 1 ms;
 - Automatic searching or scanning of a part of the 3. electromagnetic spectrum; and
 - 4. Identification of the received signals or the type of transmitter; or

Note: 1051.2.d. does not control radio equipment specially designed for use with civil cellular radio-communications systems

- Employing functions of digital "signal processing" to e. provide voice coding at rates of less than 2,400 bits/s.
- Optical fibre communication cables, optical fibres and 3. accessories, as follows:
 - a. Optical fibres of more than 500 m in length specified by the manufacturer as being capable of withstanding a proof test tensile stress of 2 x 10^9 N/m² or more; Technical Note:

Proof Test: on-line or off-line production screen testing that dynamically applies a prescribed tensile stress over a 0.5 to 3 m length of fibre at a running rate of 2 to 5 m/s while passing between capstans approximately 150 mm in diameter. The ambient temperature is a nominal 293 K and relative humidity 40% Equivalent national standards may be used for executing the proof test.

1051.3. con't.

3. b. Optical fibre cables and accessories designed for underwater use.

> Note: 1051.3.b. does not control standard civil telecommunication cables and accessories.

> **N.B.1:** For underwater umbilical cables, and connectors therefor, see 1081.2.a.3.

N.B.2: For fibre-optic hull penetrators or connectors, see 1081.2.c.

4. "Electronically steerable phased array antennae" operating above 31 GHz.

Note:

1051.4. does not control "electronically steerable phased array antennae" for landing systems with instruments meeting ICAO standards covering microwave landing systems (MLS).

1052. Test, Inspection and Production Equipment

 Equipment and specially designed components or accessories therefor, specially designed for the "development", "production" or "use" of equipment, functions or features controlled by Category 1050.

Note: 1052.1. does not control optical fibre characterization equipment not using semiconductor "lasers".

- 2. Equipment and specially designed components or accessories therefor, specially designed for the "development" of any of the following telecommunication transmission or "stored programme controlled" switching equipment:
 - Equipment employing digital techniques, including "Asynchronous Transfer Mode" ("ATM"), designed to operate at a "total digital transfer rate" exceeding 1.5 Gbit/s;
 - b. Equipment employing a "laser" and having any of the following:
 - 1. A transmission wavelength exceeding 1750 nm;
 - 2. Performing "optical amplification";
 - 3. Employing coherent optical transmission or coherent optical detection techniques (also called optical heterodyne or homodyne techniques); or
 - Employing analogue techniques and having a bandwidth exceeding 2.5 GHz;

1052.2.b.4. does not control equipment specially designed for the "development" of commercial TV systems.

- c. Equipment employing "optical switching";
- d. Radio equipment employing quadrature-amplitudemodulation (QAM) techniques above level 128:
- e. Equipment employing "common channel signalling" operating in either non-associated or quasi- associated mode of operation.

1053. Materials

None.

1054. Software

- "Software" specially designed or modified for the "development", "production" or "use" of equipment, functions or features controlled by Category 1050.
- "Software" specially designed or modified to support "technology" controlled by 1055.
- 3. Specific "software" as follows:
 - a. "Software" specially designed or modified to provide characteristics, functions or features of equipment controlled by 1051. or 1052.;
 - b. "Software" which provides the capability of recovering "source code" of telecommunications "software" controlled by 1054.;
 - c. "Software", other than in machine-executable form, specially designed for "dymanic adaptive routing".
- 4. "Software" specially designed or modified for the "development" of any of the following telecommunication transmission or "stored programme controlled" switching equipment:
 - Equipment employing digital techniques, including "Asynchronous Transfer Mode" ("ATM"), designed to operate at a "total digital transfer rate" exceeding 1.5 Gbit/s;
 - b. Equipment employing a "laser" and having any of the following:
 - 1. A transmission wavelength exceeding 1750 nm; or 👔
 - 2. Employing analogue techniques and having a
 - bandwidth exceeding 2.5 GHz; Note:

1054.4.b.2. does not control "software" specially designed or modified for the "development" of commercial TV systems.

- c. Equipment employing "optical switching"; or
- d. Radio equipment employing quadrature-amplitudemodulation (QAM) techniques above level 128.

1055. Technology

- "Technology" according to the General Technology Note for the "development", "production" or "use" (excluding operation) of equipment, functions or features, or "software" controlled by Category 1050.
- 2. Specific technologies, as follows:
 - a. "Required" "technology" for the "development" or "production" of telecommunications equipment specially designed to be used on board satellites;
 - b. "Technology" for the "development" or "use" of "laser" communication techniques with the capability of automatically acquiring and tracking signals and maintaining communications through exoatmosphere or sub-surface (water) media;
 - c. "Technology" for the "development" of digital cellular radio systems;
 - d. "Technology" for the "development" of "spread spectrum" or "frequency agility" (frequency hopping) techniques.

Group 1: Dual Use List - Telecommunications / Information Security

1055. con't.

- 3. "Technology" according to the General Technology Note for the "development" or "production" of any of the following telecommunication transmission or "stored programme controlled" switching equipment, functions or features:
 - Equipment employing digital techniques, including "Asynchronous Transfer Mode" ("ATM"), designed to operate at a "total digital transfer rate" exceeding 1.5 Gbit/s;
 - b. Equipment employing a "laser" and having any of the following:
 - 1. A transmission wavelength exceeding 1750 nm;
 - Performing "optical amplification" using praseodymium-doped fluoride fibre amplifiers (PDFFA);
 - 3. Employing coherent optical transmission or coherent optical detection techniques (also called optical heterodyne or homodyne techniques);
 - Employing wavelength division multiplexing techniques exceeding 8 optical carriers in a single optical window; or

 Employing analogue techniques and having a bandwidth exceeding 2.5 GHz;
 Note:

1055.3.b.5. does not control "technology" for the "development" or "production" of commercial TV systems.

- c. Equipment employing "optical switching";
- Radio equipment employing quadrature-amplitudemodulation (QAM) techniques above level 128 *Note*

1055.3.d. does not control "technology" for the "development" or "production" of equipment designed or modified for operation in in any frequency band which is "allocated by the ITU" for radiocommunications services, but not for radio-determination.

 Equipment employing "common channel signalling" operating in either non-associated or quasi- associated mode of operation.

30 A Guide to Canada's Export Controls – March 2000

Category 1150: Information Security

Note 1:

The control status of "information security" equipment, "software", systems, application specific "electronic assemblies", modules, integrated circuits, components or functions is determined in this Category even if they are components or "electronic assemblies" of other equipment.

Note 2:

Category 1150 does not control products when accompanying their user for the user's personal use.

Note 3:

Cryptography Note

- 5.A.2. and 5.D.2. do not control items that meet all of the following:
- a. Generally available to the public by being sold, without restriction, from stock at retail selling points by means of any of the following:
 - 1. Over-the-counter transactions;
 - 2. Mail order transactions;
 - 3. Electronic transactions; or
 - 4. Telephone call transactions;
- b. The cryptographic functionality cannot easily be changed by the user;
- Designed for installation by the user without further substantial support by the supplier;
- d. Does not contain a "symmetric algorithm" employing a key length exceeding 64 bits; and
- e. When necessary, details of the items are accessible and will be provided, upon request, to the appropriate authority in the exporter's country in order to ascertain compliance with conditions described in paragraphs a. to d. above.
 N.B.:

The 'appropriate authority' means an officer of the Export Controls Division of the Department of Foreign Affairs and International Trade.

Technical Note:

In Category 1150., parity bits are not included in the key length.

1151. Systems, Equipment and Components

1. Systems, equipment, application specific "electronic assemblies", modules or integrated circuits for "information security", as follows, and other specially designed components therefor:

N.B.:

For the control of global navigation satellite systems receiving equipment containing or employing decryption (i.e., GPS or GLONASS), see 1071.5.

1. a. Designed or modified to use "cryptography" employing

digital techniques performing any cryptographic function other than authentication or digital signature having any of the following:

Technical Notes:

- Authentication and digital signature functions include their associated key management function.
- Authentication includes all aspects of access control where there is no encryption of files or text except as directly related to the protection of passwords, Personal Identification Numbers (PINs) or similar data to prevent unauthorised access.
- "Cryptography" does not include "fixed" data compression or coding techniques.

Note:

1151.1.a. includes equipment designed or modified to use "cryptography" employing analogue principles when implemented with digital techniques.

- A "symmetric algorithm" employing a key length in excess of 56 bits; or
- An "asymmetric algorithm" where the security of the algorithm is based on any of the following:

- 1. a. 2. a. Factorisation of integers in excess of 512 bits (e.g., RSA);
 - b. Computation of discrete logarithms in a multiplicative group of a finite field of size greater than 512 bits (e.g., Diffie-Hellman over Z/pZ); or
 - c. Discrete logarithms in a group other than mentioned in 1151.1.a.2.b. in excess of 112 bits (e.g., Diffie-Hellman over an elliptic curve);
 - b. Designed or modified to perform cryptanalytic functions;
 - c. Deleted;
 - d. Specially designed or modified to reduce the compromising emanations of information-bearing signals beyond what is necessary for health, safety or electromagnetic interference standards;
 - e. Designed or modified to use cryptographic techniques to generate the spreading code for "spread spectrum" systems, including the hopping code for "frequency hopping" systems;
 - f. Designed or modified to provide certified or certifiable "multilevel security" or user isolation at a level exceeding Class B2 of the Trusted Computer System Evaluation Criteria (TCSEC) or equivalent;
 - g. Communications cable systems designed or modified using mechanical, electrical or electronic means to detect surreptitious intrusion.

Note:

1151. does not control:

- a. "Personalised smart cards" where the cryptographic capability is restricted for use in equipment or systems excluded from control under entries b. to f. of this Note. If a "personalised smart card" has multiple functions, the control status of each function is assessed individually.
- b. Receiving equipment for radio broadcast, pay television or similar restricted audience broadcast of the consumer type, without digital encryption except that exclusively used for sending the billing or programme-related information back to the broadcast providers;
- c. Equipment where the cryptographic capability is not user-accessible and which is specially designed and limited to allow any of the following:
 - 1. Execution of copy-protected software;
 - 2. Access to any of the following:
 - a. Copy-protected read-only media; or
 - b. Information stored in encrypted form on media (e.g. in connection with the protection of intellectual property rights) when the media is offered for sale in identical sets to the public; or
 - 3. One-time copying of copyright protected audio/video data.
- Cryptographic equipment specially designed and limited for banking use or money transactions;

Technical Note:

'Money transactions' in 1151. Note d. includes the collection and settlement of fares or credit functions.

- Portable or mobile radiotelephones for civil use (e.g., for use with commercial civil cellular radiocommunications systems) that are not capable of end-to-end encryption;
- f. Cordless telephone equipment not capable of end-to-end encryption where the maximum effective range of unboosted cordless operation (i.e., a single, unrelayed hop between terminal and home basestation) is less than 400 metres according to the manufacturer's specifications.

1152. Test, Inspection and Production Equipment

- 1. Equipment specially designed for:
 - a. The "development" of equipment or functions controlled by Category 1150, including measuring or test equipment;
 - b. The "production" of equipment or functions controlled by Category 1150, including measuring, test, repair or production equipment.
- Measuring equipment specially designed to evaluate and validate the "information security" functions controlled by 1151. or 1154.

1153. Materials

None.

1154. Software

- "Software" specially designed or modified for the "development", "production" or "use" of equipment or "software" controlled by Category 1150.
- "Software" specially designed or modified to support "technology" controlled by 1155.
- 3. Specific "software" as follows:
 - a. "Software" having the characteristics, or performing or simulating the functions of the equipment controlled by 1151. or 1152.;
- b. "Software" to certify "software" controlled by 1154.3.a. Note:

1154. does not control:

- a. "Software" required for the "use" of equipment excluded from control under the Note to 1151.;
- b. "Software" providing any of the functions of equipment excluded from control under the Note to 1151.

1155. Technology

 "Technology" according to the General Technology Note for the "development", "production" or "use" of equipment or "software" controlled by Category 1150.

Category 1060: Sensors and Lasers

1061. Equipment, Assemblies and Components

1. Acoustics

- a. Marine acoustic systems, equipment and specially designed components therefor, as follows:
 - 1. Active (transmitting or transmitting-and-receiving) systems, equipment and specially designed components therefor, as follows:

Note: 1061.1.a.1. does not control:

- Depth sounders operating vertically below the apparatus, not including a scanning function exceeding ± 20°, and limited to measuring the depth of water, the distance of submerged or buried objects or fish finding;
- b. Acoustic beacons, as follows:
 1. Acoustic emergency beacons;
 - Pingers specially designed for relocating or returning to an underwater position.
- a) Wide-swath bathymetric survey systems designed for sea bed topographic mapping, having all of the following:
 - Being designed to take measurements at an angle exceeding 20° from the vertical;
 - (2) Being designed to measure depths exceeding 600 m below the water surface; and
 - (3) Being designed to provide any of the following:
 - (a) Incorporation of multiple beams any of which is less than 1.9°; or
 - (b) Data accuracies of better than 0.3% of water depth across the swath averaged over the individual measurements within the swath.
- 1. a. 1. b) Object detection or location systems having any of the following:
 - (1) A transmitting frequency below 10 kHz;
 - (2) Sound pressure level exceeding 224 dB (reference 1 μPa at 1 m) for equipment with an operating frequency in the band from 10 kHz to 24 kHz inclusive;
 - (3) Sound pressure level exceeding 235 dB (reference 1 μPa at 1 m) for equipment with an operating frequency in the band between 24 kHz and 30 kHz;
 - (4) Forming beams of less than 1° on any axis and having an operating frequency of less than 100 kHz;
 - (5) Designed to operate with an unambiguous display range exceeding 5,120 m; or
 - (6) Designed to withstand pressure during normal operation at depths exceeding 1,000 m and having transducers with any of the following:
 - (a) Dynamic compensation for pressure; or(b) Incorporating other than lead zirconate titanate as the transduction element;

1. a. l. c) Acoustic projectors, including transducers,

incorporating piezoelectric, magnetostrictive, electrostrictive, electrodynamic or hydraulic elements operating individually or in a designed combination, having any of the following: *Notes:*

- The control status of acoustic projectors, including transducers, specially designed for other equipment is determined by the control status of the other equipment.
- 1061.1.a.1.c) does not control electronic sources which direct the sound vertically only, or mechanical (e.g., air gun or vapour-shock gun) or chemical (e.g., explosive) sources.
- An instantaneous radiated acoustic power density exceeding 0.01 mW/mm²/Hz for devices operating at frequencies below 10 kHz;
- (2) A continuously radiated acoustic power density exceeding 0.001 mW/mm²/Hz for devices operating at frequencies below 10 kHz; or

Technical Note:

Acoustic power density is obtained by dividing the output acoustic power by the product of the area of the radiating surface and the frequency of operation.

(3) Side-lobe suppression exceeding 22 dB;

1. a. 1. d) Acoustic systems, equipment and specially

designed components for determining the position of surface vessels or underwater vehicles designed to operate at a range exceeding 1,000 m with a positioning accuracy of less than 10 m rms (root mean square) when measured at a range of 1,000 m;

Note:

Note:

1061.1.a.1.d) includes:

- Equipment using coherent "signal processing" between two or more beacons and the hydrophone unit carried by the surface vessel or underwater vehicle;
- Equipment capable of automatically correcting speed-of-sound propagation errors for calculation of a point.
- 1. a. 2. Passive (receiving, whether or not related in normal application to separate active equipment) systems, equipment and specially designed components therefor, as follows:
 - a) Hydrophones having any of the following characteristics:

The control status of hydrophones specially designed for other equipment is determined by the control status of the other equipemnt

 Incorporating continuous flexible sensors or assemblies of discrete sensor elements with either a diameter or length less than 20 mm and with a separation between elements of less than 20 mm;

1061.1.a.2.a) con't.

- (2) Having any of the following sensing elements:
 - (a) Optical fibres;
 - (b) Piezoelectric polymers; or
- (c) Flexible piezoelectric ceramic materials;(3) A hydrophone sensitivity better than -180 dB at any depth with no acceleration compensation;
- When designed to operate at depths not exceeding 35 m, a hydrophone sensitivity better than -186 dB with acceleration compen-sation; or
- (5) Designed for operation at depths exceeding 1,000 m;

Technical Note:

Hydrophone sensitivity is defined as twenty times the logarithm to the base 10 of the ratio of rms output voltage to a 1 V rms reference, when the hydrophone sensor, without a pre-amplifier, is placed in a plane wave acoustic field with an rms pressure of 1 μ Pa. For example, a hydrophone of -160 dB (reference 1 V per μ Pa) would yield an output voltage of 10⁻⁸ V in such a field, while one of -180 dB sensitivity would yield only 10⁻⁹ V output. Thus, -160 dB is better than -180 dB.

- a. 2. b) Towed acoustic hydrophone arrays having any of the following:
 - Hydrophone group spacing of less than 12.5 m;
 - Designed or able to be modified to operate at depths exceeding 35 m; Technical Note:

'Able to be modified' in 1061.1.a.2.b)(2) means having provisions to allow a change of the wiring or interconnections to alter hydrophone group spacing or operating depth limits. These provisions are: spare wiring exceeding 10% of the number of wires, hydrophone group spacing adjustment blocks or internal depth limiting devices that are adjustable or that control more than one hydrophone group.

- (3) Heading sensors controlled by 1061.1.a.2.d);
- (4) Longitudinally reinforced array hoses;
- (5) An assembled array of less than 40 mm in diameter;
- (6) Multiplexed hydrophone group signals designed to operate at depths exceeding 35 m or having an adjustable or removable depth sensing device in order to operate at depths exceeding 35 m; or
- (7) Hydrophone characteristics specified in 1061.1.a.2.a);
- a. 2. c) Processing equipment, specially designed for towed acoustic hydrophone arrays, having "user accessible programmability" and time or frequency domain processing and correlation, including spectral analysis, digital filtering and beamforming using Fast Fourier or other transforms or processes;
- 1. a. 2. d) Heading sensors having all of the following:
 - An accuracy of better than ± 0.5°; and
 Designed to operate at depths exceeding 35 m or having an adjustable or removable depth

sensing device in order to operate at depths exceeding 35 m;

- a 2. e) Bottom or bay cable systems having any of the following:
 - Incorporating hydrophones specified in 1061.1.a.2.a);
 - (2) Incorporating multiplexed hydrophone group signal modules having all of the following characteristics:
 - a) Designed to operate at depths exceeding 35 m or having an adjustable or removable depth sensing device in order to operate at depths exceeding 35 m; and
 - b) Capable of being operationally interchanged with towed acoustic hydrophone array modules;
- a 2. f) Processing equipment, specially designed for bottom or bay cable systems, having "user accessible program mability" and time or frequency domain processing and correlation, including spectral analysis, digital filtering and beamforming using Fast Fourier or other transforms or processes;
- b. Correlation-velocity sonar log equipment designed to measure the horizontal speed of the equipment carrier relative to the sea bed at distances between the carrier and the sea bed exceeding 500 m.

2. Optical Sensors

a. Optical detectors, as follows:

Note: 1061.2.a. does not control germanium or silicon photodevices.

- "Space-qualified" solid-state detectors, as follows:
 - a) "Space-qualified" solid-state detectors, having all of the following:
 - A peak response in the wavelength range exceeding 10 nm but not exceeding 300 nm; and
 - (2) A response of less than 0.1% relative to the peak response at a wavelength exceeding 400 nm;
 - b) "Space-qualified" solid state detectors, having all of the following:
 - A peak response in the wavelength range exceeding 900 nm but not exceeding 1,200 nm; and
 - (2) A response "time constant" of 95 ns or less;
- c) "Space-qualified" solid state detectors having a peak response in the wavelength range exceeding 1,200 nm but not exceeding 30,000 nm;
- a. 2. Image intensifier tubes and specially designed components therefor, as follows:
 - a) Image intensifier tubes having all of the following:
 - A peak response in the wavelength range exceeding 400 nm but not exceeding 1,050 nm;

1061.2.a.2.a) con't.

- (2) A microchannel plate for electron image amplification with a hole pitch (centre-tocentre spacing) of 15 µm or less; and
- (3) Photocathodes, as follows:
 - (a) S-20, S-25 or multialkali photocathodes with a luminous sensitivity exceeding 240 µA/lm;
 - (b) GaAs or GaInAs photocathodes;
 - (c) Other III/V compound semiconductor photocathodes; Note:

1061.2.a.2.a)(3)(c) does not control compound semiconductor photocath-odes with a maximum radiant sen-sitivity of 10 mA/W or less.

- b) Specially designed components, as follows:
 - (1) Microchannel plates having a hole pitch (centre-to-centre spacing) of 15 µm or less;
 - (2) GaAs or GaInAs photocathodes;
 - (3) Other III/V compound semiconductor photocathodes;

Note:

1061.2.a.2.b)(3) does not control compound semiconductor photocathodes with a maximum radiant sensitivity of 10 mA/W or less.

2. a. 3. Non-"space-qualified" "focal plane arrays", as follows:

Technical Note:

Linear or two-dimensional multi-element detector arrays are referred to as "focal plane arrays".

- Notes:
- 1061.2.a.3. includes photoconductive arrays and 1. photovoltaic arrays.
- 2. 1061.2.a.3. does not control silicon "focal plane arrays", multi-element (not to exceed 16 elements) encapsulated photoconductive cells or pyroelectric detectors using any of the following:
 - a. Lead sulphide;
 - b Triglycine sulphate and variants;
 - C. Lead-lanthanum-zirconium titanate and variants;
 - d. Lithium tantalate;
 - Polyvinylidene fluoride and variants, e.
 - f. Strontium barium niobate and variants; or
 - Lead selenide. q.
- 1061.2.a.3. does not control: 3.
 - a. Silicon "focal plane arrays";
 - Multi-element (not to exceed 16 elements) b. encapsulated photo-conductive cells using either lead sulphide or lead selenide; C.
 - Pyrolelctric detectors using anyof the following:
 - Triglycine sulphate and variants: 1)
 - 2) Lead-lanthanum-zirconium titanate and variants: 3) Lithiuim tantalate:
 - 4) Polyvinylidene fluoride and variants; or
 - 5) Strontium barium niobate and variants
- a) Non-"space-qualified" "focal plane arrays", having all of the following:
 - (1) Individual elements with a peak response within the wavelength range exceeding 900 nm but not exceeding 1,050 nm; and
 - (2) A response "time constant" of less than 0.5 ns;
- b) Non-"space-qualified" "focal plane arrays", having all of the following:
 - (1) Individual elements with a peak response in the wavelength range exceeding 1,050 nm but not exceeding 1,200 nm; and

(2) A response "time constant" of 95 ns or less;

c) Non-"space-qualified" "focal plane arrays", having individual elements with a peak response in the wavelength range exceeding 1,200 nm but not exceeding 30,000 nm.

2. b. "Monospectral imaging sensors" and "Multispectral

- imaging sensors" designed for remote sensing applications, having any of the following:
- 1. An Instantaneous-Field-Of-View (IFOV) of less than 200 µr (microradians); or
- 2. Being specified for operation in the wavelength range exceeding 400 nm but not exceeding 30,000 nm and having all of the following:
 - a) Providing output imaging data in digital format; and
 - b) Being any of the following:
 - (1) "Space-qualified"; or
 - (2) Designed for airborne operation, using other than silicon detectors, and having an IFOV of less than 2.5 mr (milliradians).
- c. Direct view imaging equipment operating in the visible or infrared spectrum, incorporating any of the following:
 - 1. Image intensifier tubes controlled by 1061.2.a.2.a); or
 - 2. "Focal plane arrays" controlled by 1061.2.a.3.

Technical Note:

'Direct view' refers to imaging equipment, operating in the visible or infrared spectrum, that presents a visual image to a human observer without converting the image into an electronic signal for television display, and that cannot record or store the image photographically, electronically or by any other means. Note:

1061.2.c. does not control the following equipment incorporating other than GaAs or GaInAs photocathodes:

- Industrial or civilian intrusion alarm, traffic or industrial a. movement control or counting systems;
- b. Medical equipment:
- Industrial equipment used for inspection, sorting or analysis of C. the properties of materials;
- d. Flame detectors for industrial furnaces;
- Equipment specially designed for laboratory use. e.
- d. Special support components for optical sensors, as follows:
 - 1. "Space-qualified" cryocoolers;
 - 2. Non-"space-qualified" cryocoolers, having a cooling source temperature below 218 K (-55°C), as follows:
 - a) Closed cycle type with a specified Mean-Time-To-Failure (MTTF), or Mean-Time-Between-Failures (MTBF), exceeding 2,500 hours;
 - b) Joule-Thomson (JT) self-regulating mini-coolers having bore (outside) diameters of less than 8 mm;
 - 3. Optical sensing fibres specially fabricated either compositionally or structurally, or modified by coating, to be acoustically, thermally, inertially, electromagnetically or nuclear radiation sensitive.
- "Space qualified" "focal plane arrays" having more than e. 2,048 elements per array and having a peak response in the wavelength range exceeding 300 nm but not exceeding 900 nm.

3. Cameras

N.B.:

For cameras specially designed or modified for underwater use, see 1081.2.d. and 1081.2.e.

a. Instrumentation cameras, as follows:

1061.3. con't.

Note: Instrumentation cameras, controlled by 1061.3.a.3. to 1061.3.a.5., with modular structures should be evaluated by their maximum capability, using "electronic assemblies" available according to the camera manufacturer's specifications.

 High-speed cinema recording cameras using any film format from 8 mm to 16 mm inclusive, in which the film is continuously advanced throughout the recording period, and that are capable of recording at framing rates exceeding 13,150 frames/s; *Note:*

1061.3.a.1. does not control cinema recording cameras designed for civil purposes.

- 2. Mechanical high speed cameras, in which the film does not move, capable of recording at rates exceeding 1,000,000 frames/s for the full framing height of 35 mm film, or at proportionately higher rates for lesser frame heights, or at proportionately lower rates for greater frame heights;
 - Mechanical or electronic streak cameras having writing speeds exceeding 10 mm/µs;
 - 4. Electronic framing cameras having a speed exceeding 1,000,000 frames/s;
 - 5. Electronic cameras having all of the following:
 - a) An electronic shutter speed (gating capability) of less than 1 µs per full frame; and
 - b) A read out time allowing a framing rate of more than 125 full frames per second.
- b. Imaging cameras, as follows:

Note: 1061.3.b. does not control television or video cameras specially designed for television broadcasting.

- 1. Video cameras incorporating solid state sensors, having any of the following:
 - a) More than 4 x 10⁶ "active pixels" per solid state array for monochrome (black and white) cameras;
 - b) More than 4 x 10⁶ "active pixels" per solid state array for colour cameras incorporating three solid state arrays; or
 - c) More than 12 x 10⁶ "active pixels" for solid state array colour cameras incorporating one solid state array;
- 2. Scanning cameras and scanning camera systems, having all of the following:
 - a) Linear detector arrays with more than 8,192 elements per array; and
 - b) Mechanical scanning in one direction;
- Imaging cameras incorporating image intensifier tubes having the characteristics listed in 1061.2.a.2.a);
- Imaging cameras incorporating "focal plane arrays" having the characteristics listed in 1061.2.a.3. Note:

1061.3.b.4. does not control imaging cameras incorporating linear "focal plane arrays" with twelve elements or fewer, not employing time-delay-and-integration within the element, designed for any of the following:

- Industrial or civilian intrusion alarm, traffic or industrial movement control or counting systems;
- Industrial equipment used for inspection or monitoring of heat flows in buildings, equipment or industrial processes;
 Industrial equipment used for inspection, sorting or
- analysis of the properties of materials; d. Equipment specially designed for laboratory use; or
- e. Medical equipment.

4. Optics

a. Optical mirrors (reflectors), as follows:

- "Deformable mirrors" having either continuous or multi-element surfaces, and specially designed components therefor, capable of dynamically repositioning portions of the surface of the mirror at rates exceeding 100 Hz;
- Lightweight monolithic mirrors having an average "equivalent density" of less than 30 kg/m² and a total mass exceeding 10 kg;
- Lightweight "composite" or foam mirror structures having an average "equivalent density" of less than 30 kg/m² and a total mass exceeding 2 kg;
- 4. Beam steering mirrors more than 100 mm in diameter or length of major axis which maintain a flatness of lambda/2 or better (lambda is equal to 633 nm) having a control bandwidth exceeding 100 Hz.
- b. Optical components made from zinc selenide (ZnSe) or zinc sulphide (ZnS) with transmission in the wavelength range exceeding 3,000 nm but not exceeding 25,000 nm and having any of the following:
 - 1. Exceeding 100 cm³ in volume; or
 - 2. Exceeding 80 mm in diameter or length of major axis and 20 mm in thickness (depth).
- c. "Space-qualified" components for optical systems, as follows:
 - Lightweighted to less than 20% "equivalent density" compared with a solid blank of the same aperture and thickness;
 - Raw substrates, processed substrates having surface coatings (single-layer or multi-layer, metallic or dielectric, conducting, semiconducting or insulating) or having protective films;
 - Segments or assemblies of mirrors designed to be assembled in space into an optical system with a collecting aperture equivalent to or larger than a single optic 1 m in diameter;
 - Manufactured from "composite" materials having a coefficient of linear thermal expansion equal to or less than 5 x 10⁻⁶ in any coordinate direction.
- d. Optical control equipment, as follows:
 - 1. Specially designed to maintain the surface figure or orientation of the "space-qualified" components controlled by 1061.4.c.1. or 1061.4.c.3.;
 - 2. Having steering, tracking, stabilisation or resonator alignment bandwidths equal to or more than 100 Hz and an accuracy of 10 μ r (microradians) or less;
 - 3. Gimbals having all of the following:
 - a) a maximum slew exceeding 5°;
 - b) a bandwidth of 100 Hz or more;
 - c) Angular pointing errors of 200 μr (microradians) or less; and
 - d) Having any of the following:
 - Exceeding 0.15 m but not exceeding 1 m in diameter or major axis length and capable of angular accelerations exceeding 2 r(radians)/s²; or
 - Exceeding 1 m in diameter or major axis length and capable of angular accelerations exceeding 0.5 r(radians)/s²;
 - Specially designed to maintain the alignment of phased array or phased segment mirror systems

1061.4.d.4. con't.

- consisting of mirrors with a segment diameter or major axis length of 1 m or more.
- Aspheric optical elements having all of the following characteristics:
 - 1. The largest dimension of the optical-aperture is greater than 400 mm;
 - 2. The surface roughness is less than 1 nm (rms) for sampling lengths equal to ro greater than 1 mm; and
 - The coefficient of linear thermal expansion's absolute magnitude is less than 3x 10⁻⁶/K at 25° C; Technical Notes.
 - An 'aspheric optical element' is any element used in an optical system whose imaging surface or surfaces are designed to depart from the shape of an ideal sphere.
 - 2. The surface roughness is less than 1 nm (rms) for sampling lenghts equal to or greater than 1 mm; and
 - The coefficient of linear thermal expansion's absolute magnitude is less than 3 x 10⁻⁷/K at 25° C;
 - Note.

1061.a.4.e. does not control aspheric optical elements having any of the following:

- A largest optical-aperture dimension less than 1 m and a focal length to aperture ratio equal to or greater than 4.5:1;
- A largest optical-aperture dimension equal to greater than 1 m and a focal length to aperture ratio equal to or greater than 7:1:
- Being designed as Fresnel, flyeye, stripe, prism or diffractive optical elements;
- Being fabricated from borosilicate glass having a coefficient of linear themal expansion greater than 2.5x10⁻⁶/K at 25° C; or
- e. Being an x-ray optical element having inner mirror capabilities (e.g. tube-type mirrors).

N.B.

For aspheric optical elements specially designed for lithographi equipment, see Item 1061.a.3.b.1.

5. Lasers

"Lasers", components and optical equipment, as follows: *Notes:*

- Pulsed "lasers" include those that run in a continuous wave (CW) mode with pulses superimposed.
- Pulse-excited "lasers" include those that run in a continuously excited mode with pulse excitation superimposed.
- The control status of Raman "lasers" is determined by the parameters of the pumping source "lasers". The pumping source "lasers" can be any of the "lasers" described below.
- a. Gas "lasers", as follows:
 - 1. Excimer "lasers" having any of the following:
 - a) An output wavelength not exceeding 150 nm and having any of the following:
 - (1) An output energy exceeding 50 mJ per pulse; or
 - (2) An average or CW output power exceeding 1 W;
 - b) An output wavelength exceeding 150 nm but not exceeding 190 nm and having any of the following:
 - (1) An output energy exceeding 1.5 J per pulse; or
 - (2) An average or CW output power exceeding 120 W;
 - c) An output wavelength exceeding 190 nm but not exceeding 360 nm and having any of the following:
 - (1) An output energy exceeding 10 J per pulse; or
 - (2) An average or CW output power exceeding 500 W;
 or
 - d) An output wavelength exceeding 360 nm and having any of the following:

- (1) An output energy exceeding 1.5 J per pulse; or
- (2) An average or CW output power exceeding 30 W;
- N.B.:

For excimer "lasers" specially designed for lithography equipment, see 1032.1.

- 5. a. 2. Metal vapour "lasers", as follows:
 - a) Copper (Cu) "lasers" having an average or CW output power exceeding 20 W;
 - b) Gold (Au) "lasers" having an average or CW output power exceeding 5 W;
 - c) Sodium (Na) "lasers" having an output power exceeding 5 W;
 - d) Barium (Ba) "lasers" having an average or CW output power exceeding 2 W;
 - 3. Carbon monoxide (CO) "lasers" having any of the following:
 - a) An output energy exceeding 2 J per pulse and a pulsed "peak power" exceeding 5 kW; or
 - b) An average or CW output power exceeding 5 kW;
 - 4. Carbon dioxide (CO₂) "lasers" having any of the following:
 - a) A CW output power exceeding 15 kW;
 - b) A pulsed output having a "pulse duration" exceeding 10 µs and having any of the following:
 (1) An average output power exceeding 10 kW;
 - or
 - (2) A pulsed "peak power" exceeding 100 kW;
 - c) A pulsed output having a "pulse duration" equal to or less than $10 \ \mu s$ and having any of the following:
 - (1) A pulse energy exceeding 5 J per pulse ; or
 - (2) An average output power exceeding 2.5 kW.
 - 5. "Chemical lasers", as follows:
 - a) Hydrogen Fluoride (HF) "lasers";
 - b) Deuterium Fluoride (DF) "lasers";
 - c) "Transfer lasers", as follows:
 - (1) Oxygen Iodine (O₂-I) "lasers";
 - (2) Deuterium Fluoride-Carbon dioxide (DF-CO₂) "lasers";
 - 6. Krypton ion or argon ion "lasers", having any of the following:
 - a) An output energy exceeding 1.5 J per pulse and a pulsed "peak power" exceeding 50 W; or
 - b) An average or CW output power exceeding 50 W.
 - 7. Other gas "lasers" having any of the following: *Note:*

1061.5.a.7. does not control nitrogen "lasers".

- a) An output wavelength not exceeding 150 nm and having any of the following:
 - (1) An output energy exceeding 50 mJ per pulse
 - and a pulsed "peak power" exceeding 1 W; or
- (2) An average or CW output power exceeding 1 W;(b) An output wavelength exceeding 150 nm but not exceeding 800 nm and having any of the
 - following: (1) An output energy exceeding 1.5 J per pulse and
 - a pulsed "peak power" exceeding 30 W; or
 - (2) An average or CW output power exceeding 30 W;

1061.5.a.7. con't.

5.

- c) An output wavelength exceeding 800 nm but not exceeding 1,400 nm and having any of the following:
 - (1) An output energy exceeding 0.25 J per pulse
 - and a pulsed "peak power" exceeding 10 W; or(2) An average or CW output power exceeding 10 W; or
- d) An output wavelength exceeding 1,400 nm and an average or CW output power exceeding 1 W.
- b. Semiconductor "lasers", having a wavelength of less than 950 nm or more than 2000 nm, as follows:
 - Individual single-transverse mode semiconductor "lasers" having an average or CW output power exceeding 100 mW;
 - Individual, multiple-transverse mode semiconductor "lasers" and arrays of individual semiconductor "lasers", having any of the following:
 - a. An output energy exceeding 500 µJ per pulse and a pulsed "peak power" exceeding 10 W; or
 - b. An average or CW output power exceeding 10 W. Technical Note:

Semiconductor "lasers" are commonly called "laser" diodes. Notes:

- . Item 1061.5.b. includes semiconductor "lasers" having optical output connectors (e.g., fibre optic pigtails).
- The control status of semiconductor "lasers" specially designed for other equipment is determined by the control status of the other equipment.
- c. Solid state "lasers", as follows:
 - 1. "Tunable" "lasers" having any of the following: Note:

1061.5.c.1. includes titanium - sapphire(Ti: Al₂O₃), thulium -YAG (Tm: YAG), thulium - YSGG (Tm: YSGG), alexandrite (Cr: BeAl₂O₄) and colour centre "lasers".

- a) An output wavelength less than 600 nm and having any of the following:
 - (1) An output energy exceeding 50 mJ per pulse and a pulsed "peak power" exceeding 1 W; or
 - (2) An average or CW output power exceeding 1 W;
- b) An output wavelength of 600 nm or more but not exceeding 1,400 nm and having any of the following:
 - (1) An output energy exceeding 1 J per pulse and a pulsed "peak power" exceeding 20 W; or
 - (2) An average or CW output power exceeding 20 W; or
- c) An output wavelength exceeding 1,400 nm and having any of the following:
 - (1) An output energy exceeding 50 mJ per pulse and a pulsed "peak power" exceeding 1 W; or
 - (2) An average or CW output power exceeding 1 W.
- Non-"tunable" "lasers", as follows: *Note:* 1061.5.c.2. includes atomic transition solid state "lasers".

a) Neodymium glass "lasers", as follows:

- (1) "Q-switched lasers" having any of the following:
 - (a) An output energy exceeding 20 J but not exceeding 50 J per pulse and an average output power exceeding 10 W; or
 - (b) An output energy exceeding 50 J per pulse.

- (2) Non-"Q-switched lasers" having any of the following:
 - (a) An output energy exceeding 50 J but not exceeding 100 J per pulse and an average output power exceeding 20 W; or
 - (b) An output energy exceeding 100 J per pulse.
- b) Neodymium-doped (other than glass) "lasers", having an output wavelength exceeding 1,000 nm but not exceeding 1,100 nm, as follows: *N.B.:*

For neodymium-doped (other than glass) "lasers" having an output wavelength not exceeding 1,000 nm or exceeding 1,100 nm, see 1061.5.c.2.c).

- Pulse-excited, mode-locked, "Q-switched lasers" having a "pulse duration" of less than l ns and having any of the following:
 - (a) A "peak power" exceeding 5 GW;
 - (b) An average output power exceeding 10 W; or
 - (c) A pulsed energy exceeding 0.1 J.
- (2) Pulse-excited, "Q-switched lasers" having a pulse duration equal to or more than 1 ns, and having any of the following:
 - (a) A single-transverse mode output having:
 - i) A "peak power" exceeding 100 MW;
 ii) An average output power exceeding 20 W; or
 - iii) A pulsed energy exceeding 2 J; or
 - (b) A multiple-transverse mode output having:
 - i) A "peak power" exceeding 400 MW;
 - ii) An average output power exceeding 2 kW; or
 - iii) A pulsed energy exceeding 2 J;
- 5. c. 2. b) (3) Pulse-excited, non-"Q-switched lasers",
 - having:
 - (a) A single-transverse mode output having:
 - i) A "peak power" exceeding 500 kW; or
 - ii) An average output power exceeding 150 W; or
 - (b) A multiple-transverse mode output having:
 - i) A "peak power" exceeding 1 MW; or
 - ii) An average power exceeding 2 kW;
 - (4) Continuously excited "lasers" having:
 - (a) A single-transverse mode output having:
 i) A "peak power" exceeding 500 kW;
 or
 - ii) An average or CW output power exceeding 150 W; or
 - (b) A multiple-transverse mode output having:
 - i) A "peak power" exceeding 1 MW; or
 - ii) An average or CW output power exceeding 2 kW;
- 5. c. 2. c) Other non-"tunable" "lasers", having any of the following:
 - (1) A wavelength less than 150 nm and having any of the following:

Group 1: Dual Use List - Sensors and Lasers / Navigation and Avionics

1061.5.c.2.c.1 con't.

- (a) An output energy exceeding 50 mJ per pulse and a pulsed "peak power" exceeding 1 W; or
- (b) An average or CW output power exceeding 1 W;
- (2) A wavelength of 150 nm or more but not exceeding 800 nm and having any of the following:
 - (a) An output energy exceeding 1.5 J per pulse and a pulsed "peak power" exceeding 30 W; or
 - (b) An average or CW output power exceeding 30 W;
- (3) A wavelength exceeding 800 nm but not exceeding 1,400 nm, as follows:
 - (a) "Q-switched lasers" having:
 - An output energy exceeding 0.5 J per pulse and a pulsed "peak power" exceeding 50 W; or
 - ii) An average output power exceeding:a. 10 W for single-tranverse mode "lasers";
 - b. 30 W for multiple-transverse mode "lasers";
 - (b) Non-"Q-switched lasers" having:
 - An output energy exceeding 2 J per pulse and a pulsed "peak power" exceeding 50 W; or
 - ii) An average or CW output power exceeding 50 W; or
- (4) A wavelength exceeding 1,400 nm and having any of the following:
 - (a) An output energy exceeding 100 mJ per pulse and a pulsed "peak power" exceeding 1 W; or
 - (b) An average or CW output power exceeding 1 W;
- 5. d. Dye and other liquid "lasers", having any of the following:1. A wavelength less than 150 nm and:
 - a) An output energy exceeding 50 mJ per pulse and a pulsed "peak power" exceeding 1 W; or
 - b) An average or CW output power exceeding 1 W;
 - 2. A wavelength of 150 nm or more but not exceeding
 - 800 nm and having any of the following:
 - An output energy exceeding 1.5 J per pulse and a pulsed "peak power" exceeding 20 W;
 - b) An average or CW output power exceeding 20 W; or
 - c) A pulsed single longitudinal mode oscillator having an average output power exceeding 1 W and a repetition rate exceeding 1 kHz if the "pulse duration" is less than 100 ns;
 - 3. A wavelength exceeding 800 nm but not exceeding 1,400 nm and having any of the following:
 - a) An output energy exceeding 0.5 J per pulse and a
 - pulsed "peak power" exceeding 10 W; orb) An average or CW output power exceeding 10 W; or
 - 4. A wavelength exceeding 1,400 nm and having any of the following;

- a) An output energy exceeding 100 mJ per pulse and a pulsed "peak power" exceeding 1 W; or
- b) An average or CW output power exceeding 1 W;e. Components, as follows:
 - Mirrors cooled either by active cooling or by heat pipe cooling; *Technical Note:*
 - Active cooling is a cooling technique for optical components using flowing fluids within the subsurface (nominally less than 1 mm below the optical surface) of the optical component to remove heat from the optic.
 - Optical mirrors or transmissive or partially transmissive optical or electro-optical components specially designed for use with controlled "lasers";

f. Optical equipment, as follows:

For shared aperture optical elements, capable of operating in "Super-High Power Laser" ("SHPL") applications, see Item 2019., Note 2.d. on the Munitions List.

- 1. Dynamic wavefront (phase) measuring equipment capable of mapping at least 50 positions on a beam wavefront having any of the following:
 - a) Frame rates equal to or more than 100 Hz and phase discrimination of at least 5% of the beam's wavelength; or
 - b) Frame rates equal to or more than 1,000 Hz and phase discrimination of at least 20% of the beam's wavelength;
- "Laser" diagnostic equipment capable of measuring "SHPL" system angular beam steering errors of equal to or less than 10 µr (microradians);
- Optical equipment and components specially designed for a phased-array "SHPL" system for coherent beam combination to an accuracy of lambda/10 at the designed wavelength, or 0.1 μm, whichever is the smaller;
- 4. Projection telescopes specially designed for use with "SHPL" systems.

6. Magnetometers

"Magnetometers", "magnetic gradiometers", "intrinsic magnetic gradiometers" and compensation systems, and specially designed components therefor, as follows: *Note:*

1061.6. does not control instruments specially designed for biomagnetic measurements for medical diagnostics.

- a. "Magnetometers" using "superconductive", optically pumped or nuclear precession (proton/Overhauser) "technology" having a "noise level" (sensitivity) lower (better) than 0.05 nT rms per square root Hz;
 - b. Induction coil "magnetometers" having a "noise level" (sensitivity) lower (better) than any of the following:
 - 0.05 nT rms per square root Hz at frequencies of less than 1 Hz;
 - 2. 1 x 10⁻³ nT rms per square root Hz at frequencies of 1 Hz or more but not exceeding 10 Hz; or
 - 3. 1 x 10⁻⁴ nT rms per square root Hz at frequencies exceeding 10 Hz;
 - c. Fibre optic "magnetometers" having a "noise level" (sensitivity) lower (better) than 1 nT rms per square root Hz;

1061.6. con't.

- d. "Magnetic gradiometers" using multiple "magnetometers" controlled by 1061.6.a., 1061.6.b. or 1061.6.c.;
- e. Fibre optic "intrinsic magnetic gradiometers" having a magnetic gradient field "noise level" (sensitivity) lower (better) than 0.3 nT/m rms per square root Hz.
- f. "Intrinsic magnetic gradiometers", using "technology" other than fibre-optic "technology", having a magnetic gradient field "noise level" (sensitivity) lower (better) than 0.015 nT/m rms per square root Hz;
- g. Magnetic compensation systems for magnetic sensors designed for operation on mobile platforms;
- h. "Superconductive" electromagnetic sensors, containing components manufactured from "superconductive" materials and having all of the following:
 - Being designed for operation at temperatures below the "critical temperature" of at least one of their "superconductive" constituents (including Josephson effect devices or "superconductive" quantum interference devices (SQUIDS));
 - 2. Being designed for sensing electromagnetic field variations at frequencies of 1 kHz or less; **and**
 - 3. Having any of the following characteristics:
 - a) Incorporating thin-film SQUIDS with a minimum feature size of less than 2 µm and with associated input and output coupling circuits;
 - b) Designed to operate with a magnetic field slew rate exceeding 1 x 10⁶ magnetic flux quanta per second;
 - c) Designed to function without magnetic shielding in the earth's ambient magnetic field; **or**
 - d) Having a temperature coefficient less (smaller) than 0.1 magnetic flux quantum/K.

7. Gravimeters

Gravity meters (gravimeters) and gravity gradiometers, as follows:

 a. Gravity meters designed or modified for ground use having a static accuracy of less (better) than 10 μgal; Note:

1061.7.a. does not control ground gravity meters of the quartz element (Worden) type.

- b. Gravity meters designed for mobile platforms having all of the following:
 - 1. A static accuracy of less (better) than 0.7 mgal; and
 - 2. An in-service (operational) accuracy of less (better) than 0.7 mgal having a time-to- steady-state registration of less than 2 minutes under any combination of attendant corrective compensations and motional influences;
- c. Gravity gradiometers.

8. Radar

Radar systems, equipment and assemblies having any of the following characteristics, and specially designed components therefor:

Note:

- 1061.8. does not control:
- a. Secondary surveillance radar (SSR);

- b. Car radar designed for collision prevention;
- Displays or monitors used for air traffic control (ATC) having no more than 12 resolvable elements per mm;
- d. Meteorological (weather) radar.
- a. Operating at frequencies from 40 GHz to 230 GHz and having an average output power exceeding 100 mW;
 - b. Having a tunable bandwidth exceeding ± 6.25% of the centre operating frequency;

Technical Note: The centre operating frequency equals one half of the sum of the highest plus the lowest specified operating frequencies.

- Capable of operating simultaneously on more than two carrier frequencies;
- d. Capable of operating in synthetic aperture (SAR), inverse synthetic aperture (ISAR) radar mode or sidelooking airborne (SLAR) radar mode;
- e. Incorporating "electronically steerable phased array antennae";
- f. Capable of heightfinding non-cooperative targets; *Note:*

1061.8.f. does not control precision approach radar (PAR) equipment conforming to ICAO standards.

- g. Specially designed for airborne (balloon or airframe mounted) operation and having Doppler signal processing for the detection of moving targets;
- h. Employing processing of radar signals using any of the following:
 - 1. "Radar spread spectrum" techniques; or
 - 2. "Radar frequency agility" techniques;
- Providing ground-based operation with a maximum "instrumented range" exceeding 185 km; Note:
 - 1061.8.i. does not control:
 - a. Fishing ground surveillance radar;
 - b. Ground radar equipment specially designed for enroute air
 - traffic control, provided that all the following conditions are met:
 - It has a maximum "instrumented range" of 500 km or less;
 It is configured so that radar target data can be transmitted
 - It is configured so that radar target data can be transmitted only one way from the radar site to one or more civil ATC centres;
 - 3. It contains no provisions for remote control of the radar scan rate from the enroute ATC centre; and
 - 4. It is to be permanently installed
 - c. Weather balloon tracking radars.

Being "laser" radar or Light Detection and Ranging (LIDAR) equipment, having any of the following:

- 1. "Space-qualified"; or
- Employing coherent heterodyne or homodyne detection techniques and having an angular resolution of less (better) than 20 μr (microradians);

Note:

1061.8.j. does not control LIDAR equipment specially designed for surveying or for meteorological observation.

- k. Having signal processing sub-systems using "pulse compression" with any of the following:
 - 1. A "pulse compression" ratio exceeding 150; or
 - 2. A pulse width of less than 200 ns; or
- Having data processing sub-systems with any of the following:
 - "Automatic target tracking" providing, at any antenna rotation, the predicted target position beyond the time of the next antenna beam passage;

Group 1: Dual Use List - Sensors and Lasers / Navigation and Avionics

1061.8.1.1. con't. Note:

1061.8.1.1. does not control conflict alert capability in ATC systems, or marine or harbour radar.

- Calculation of target velocity from primary radar having non-periodic (variable) scanning rates;
- Processing for automatic pattern recognition (feature extraction) and comparison with target characteristic data bases (waveforms or imagery) to identify or classify targets; or
- Superposition and correlation, or fusion, of target data from two or more "geographically dispersed" and "interconnected radar sensors" to enhance and discriminate targets.

Note:

1061.8.1.4. does not control systems, equipment and assemblies used for marine traffic control.

1062. Test, Inspection and Production Equipment

- 1. Acoustics None.
- 2. Optical Sensors None.
- 3. Cameras None.
- 4. Optics
 - Optical equipment, as follows:
 - a. Equipment for measuring absolute reflectance to an accuracy of $\pm 0.1\%$ of the reflectance value;
 - b. Equipment other than optical surface scattering measurement equipment, having an unobscured aperture of more than 10 cm, specially designed for the non-contact optical measurement of a non-planar optical surface figure (profile) to an "accuracy" of 2 nm or less (better) against the required profile.

Note:

1062.4. does not control microscopes.

- 5. Lasers- None.
- 6. Magnetometers None.
- 7. Gravimeters

Equipment to produce, align and calibrate land-based gravity meters with a static accuracy of better than 0.1 mgal.

8. Radar

Pulse radar cross-section measurement systems having transmit pulse widths of 100 ns or less and specially designed components therefor.

1063. Materials

- 1. Acoustics None.
- 2. Optical Sensors
 - Optical sensor materials, as follows:
 - a. Elemental tellurium (Te) of purity levels of 99.9995% or more;
 - b. Single crystals of cadmium zinc telluride (CdZnTe), with zinc content of less than 6% by weight, or cadmium telluride (CdTe) or mercury cadmium telluride (HgCdTe) of any purity level, including epitaxial wafers thereof.
- 3. Cameras None.
- 4. Optics
 - Optical materials, as follows:

- 4. a Zinc selenide (ZnSe) and zinc sulphide (ZnS) "substrate blanks" produced by the chemical vapour deposition process, having any of the following:
 - 1. A volume greater than 100 cm³; or
 - 2. A diameter greater than 80 mm having a thickness of 20 mm or more;
 - b. Boules of the following electro-optic materials:
 - 1. Potassium titanyl arsenate (KTA);
 - 2. Silver gallium selenide (AgGaSe₂);
 - Thallium arsenic selenide (Tl₃AsSe₃, also known as TAS);
 - c. Non-linear optical materials having all of the following:
 1. Third order susceptibility (chi 3) of 10⁻⁶ m²/V² or more; and
 - 2. A response time of less than 1 ms;
 - d. "Substrate blanks" of silicon carbide or beryllium beryllium (Be/Be) deposited materials exceeding 300 mm in diameter or major axis length;
 - e. Glass, including fused silica, phosphate glass, fluorophosphate glass, zirconium fluoride (ZrF4) and hafnium fluoride (HfF4), having all of the following:
 - A hydroxyl ion (OH-) concentration of less than 5 ppm;
 - 2. Integrated metallic purity levels of less than 1 ppm; and
 - High homogeneity (index of refraction variance) less than 5 x 10⁻⁶;
 - f. Synthetically produced diamond material with an absorption of less than 10⁻⁵ cm⁻¹ for wavelengths exceeding 200 nm but not exceeding 14,000 nm.

5. Lasers

- Synthetic crystalline "laser" host material in unfinished form, as follows:
- a. Titanium doped sapphire;
- b. Alexandrite.
- 6. Magnetometers None.
- 7. Gravimeters None.
- 8. Radar None.

1064. Software

- 1. "Software" specially designed for the "development" or "production" of equipment controlled by 1061.4, 1061.5., 1061.8. or 1062.8.
- 2. "Software" specially designed for the "use" of equipment controlled by 1061.2.b., 1061.8. or 1062.8.
- 3. Other "software", as follows:
 - a. Acoustics
 - "Software", as follows:
 - "Software" specially designed for acoustic beam forming for the "real time processing" of acoustic data for passive reception using towed hydrophone arrays;
 - "Source code" for the "real time processing" of acoustic data for passive reception using towed hydrophone arrays;
 - "Software" specially designed for acoustic beam forming for the "real time processing" of acoustic data for passive reception using bottom or bay cable systems;

A Guide to Canada's Export Controls - March 2000 41

1064.3.a. con't.

- "Source code" for the "real time processing" of acoustic data for passive reception using bottom or bay cable systems;
- b. Optical Sensors None;
- c. Cameras None;
- d. Optics None;
- e. Lasers None;
- f. Magnetometers
 - "Software", as follows:
 - "Software" specially designed for magnetic compensation systems for magnetic sensors designed to operate on mobile platforms;
 - 2. "Software" specially designed for magnetic anomaly detection on mobile platforms;
- g. Gravimeters
 - "Software" specially designed to correct motional influences of gravity meters or gravity gradiometers;
- h. Radar
 - "Software", as follows:
 - 1. Air Traffic Control "software" application "programmes" hosted on general purpose computers located at Air Traffic Control centres and capable of any of the following:
 - a) Processing and displaying more than 150 simultaneous "system tracks"; or
 - b) Accepting radar target data from more than four primary radars;
 - 2. "Software" for the design or "production" of radomes which:
 - a) Are specially designed to protect the "electronically steerable phased array antennae" controlled by 1061.8.e.; and
 - b) Result in an antenna pattern having an average side lobe level more than 40 dB below the peak of the main beam level.

Technical Note:

'Average side lobe level' in 1064.3.h.2.b) is measured over the entire array excluding the angular extent of the main beam and the first two side lobes on either side of the main beam.

1065. Technology

- "Technology" according to the General Technology Note for the "development" of equipment, materials or "software" controlled by 1061., 1062., 1063. or 1064.
- "Technology" according to the General Technology Note for the "production" of equipment or materials controlled by 1061., 1062. or 1063.
- 3. Other "technology", as follows:
 - a. Acoustics None;
 - b. Optical Sensors None;
 - c. Cameras None;
 - d. Optics
 - "Technology", as follows:
 - Optical surface coating and treatment "technology" "required" to achieve uniformity of 99.5% or better for optical coatings 500 mm or more in diameter or major axis length and with a total loss (absorption and scatter) of less than 5 x 10⁻³; N.B.:

See also 1025.3.f.

- Optical fabrication "technology" using single point diamond turning techniques to produce surface finish accuracies of better than 10 nm rms on non-planar surfaces exceeding 0.5 m²;
- e. Lasers

"Technology" "required" for the "development", "production" or "use" of specially designed diagnostic instruments or targets in test facilities for "SHPL" testing or testing or evaluation of materials irradiated by "SHPL" beams;

f. Magnetometers

"Technology" "required" for the "development" or "production" of fluxgate "magnetometers" or fluxgate "magnetometer" systems, having any of the following:

- 1. A "noise level" of less than 0.05 nT rms per square root Hz at frequencies of less than 1 Hz; or
- 2. A "noise level" of less than 1 x 10⁻³ nT rms per square root Hz at frequencies of 1 Hz or more;
- g. Gravimeters None;h. Radar None.

42 A Guide to Canada's Export Controls – March 2000

Category 1070: Navigation and Avionics

1071. Systems, Equipment and Components

N.B.1:

For automatic pilots for underwater vehicles, see Category 1080.; For radar, see Category 1060.

N.B.2:

For inertial navigation equipment for ships or submersibles, see Item 2009.e. on the Munitions List.

- Accelerometers designed for use in inertial navigation or guidance systems and having any of the following characteristics, and specially designed components therefor:
 - a. A "bias" "stability" of less (better) than 130 micro g with respect to a fixed calibration value over a period of one year;
 - b. A "scale factor" "stability" of less (better) than 130 ppm with respect to a fixed calibration value over a period of one year; **or**
 - c. Specified to function at linear acceleration levels exceeding 100 g.
- 2. Gyros having any of the following characteristics, and specially designed components therefor:
 - a. A "drift rate" "stability", when measured in a 1 g environment over a period of three months and with respect to a fixed calibration value, of:
 - 1. Less (better) than 0.1° per hour when specified to function at linear acceleration levels below 10 g, or
 - Less (better) than 0.5° per hour when specified to function at linear acceleration levels from 10 g to 100 g inclusive; or
 - b. Specified to function at linear acceleration levels exceeding 100 g.
- 3. Inertial navigation systems (gimballed and strapdown) and inertial equipment designed for "aircraft", land vehicle or "spacecraft" for attitude, guidance or control having any of the following characteristics, and specially designed components therefor:
 - a. Navigation error (free inertial) subsequent to normal alignment of 0.8 nautical mile per hour (50% Circular Error Probable (CEP)) or less (better); or
 - b. Specified to function at linear acceleration levels exceeding 10 g.

Note 1:

2.

The parameters of 1071.3.a. are applicable with any of the following environmental conditions:

- Input random vibration with an overall magnitude of 7.7 g rms in the first half hour and a total test duration of one and one half hour and a total test duration of one and one half hour per axis in each of the three perpendicular axes., when random vibration meets the following:
 - a. A constant power spectral density (PSD) value of 0.04 g²/Hz over a frequency interval of 15 to 1,000Hz; **and**
 - b. The PSD attenuates with frequency from 0.04 g^2/Hz to
- 0.01 g²/Hz over a frequency interval from 1,000 to 2,000 Hz; **or** A roll and yaw rate of equal to or more than +2.62 radians/s (150

deg/s); orAccording to national standards equivalent to 1. or 2. above.

Note 2: 1071.3. does not control inertial navigation systems which are certified for use on "civil aircraft" by civil authorities of a participating state.

4. Gyro-astro compasses, and other devices which derive position or orientation by means of automatically tracking

celestial bodies or satellites, with an azimuth accuracy of equal to or less (better) than 5 seconds of arc.

- 5. Global navigation satellite systems (i.e., GPS or GLONASS) receiving equipment having any of the following characteristics, and specially designed components therefor:
 - a. Employing decryption; orb. A null-steerable antenna.
- 6. Airborne altimeters operating at frequencies other than 4.2 to 4.4 GHz inclusive, having any of the following characteristics:
 - a. "Power management"; or
 - b. Using phase shift key modulation.
- Direction finding equipment operating at frequencies above 30 MHz and having all of the following characteristics, and specially designed components therefor:
 - a. "Instantaneous bandwidth" of 1 MHz or more;
 - b. Parallel processing of more than 100 frequency channels; and
 - c. Processing rate of more than 1,000 direction finding results per second and per frequency channel.

50

1072. Test, Inspection and Production Equipment

 Test, calibration or alignment equipment specially designed for equipment controlled by 1071. Note:

1072.1. does not control test, calibration or alignment equipment for Maintenance Level I or Maintenance Level II.

Technical Notes:

- . Maintenance Level I
- The failure of an inertial navigation unit is detected on the aircraft by indications from the control and display unit (CDU) or by the status message from the corresponding sub-system. By following the manufacturer's manual, the cause of the failure may be localised at the level of the malfunctioning line replaceable unit (LRU). The operator then removes the LRU and replaces it with a spare.
- 2. Maintenance Level II

The defective LRU is sent to the maintenance workshop (the manufacturer's or that of the operator responsible for level II maintenance). At the maintenance workshop, the malfunctioning LRU is tested by various appropriate means to verify and localise the defective shop replaceable assembly (SRA) module responsible for the failure. This SRA is removed and replaced by an operative spare. The defective SRA (or possibly the complete LRU) is then shipped to the manufacturer. Maintenance Level II does not include the removal of controlled accelerometers or gyro sensors from the SRA.

- 2. Equipment, as follows, specially designed to characterize mirrors for ring "laser" gyros:
 - a. Scatterometers having a measurement accuracy of 10 ppm or less (better);
 - b. Profilometers having a measurement accuracy of 0.5 nm (5 angstrom) or less (better).
- 3. Equipment specially designed for the "production" of equipment controlled by 1071.

Note: 1072.3. includes:

- a. Gyro tuning test stations;
- b. Gyro dynamic balance stations;
- c. Gyro run-in/motor test stations;
- d. Gyro evacuation and fill stations;
- e. Centrifuge fixtures for gyro bearings;
- Accelerometer axis align stations

1073. Materials

None.

1074. Software

- 1. "Software" specially designed or modified for the "development" or "production" of equipment controlled by 1071. or 1072.
- "Source code" for the "use" of any inertial navigation equipment, including inertial equipment not controlled by 1071.3. or 1071.4, or Attitude and Heading Reference Systems (AHRS)

Note:

1074.2. does not control "source code" for the "use" of gimballed AHRS. Technical Note:

AHRS generally differ from inertial navigation systems (INS) in that an AHRS provides attitude and heading information and normally does not provide the acceleration, velocity and position information associated with an INS.

- 3. Other "software", as follows:
 - a. "Software" specially designed or modified to improve the operational performance or reduce the navigational error of systems to the levels specified in 1071.3. or 1071.4.;
 - b. "Source code" for hybrid integrated systems which improves the operational performance or reduces the navigational error of systems to the level specified in 1071.3. by continuously combining inertial data with any of the following navigation data:
 - 1. Doppler radar velocity;
 - 2. Global navigation satellite systems (i.e., GPS or GLONASS) reference data; or
 - 3. Terrain data from data bases;
 - c. "Source code" for integrated avionics or mission systems which combine sensor data and employ "expert systems";
 - d. "Source code" for the "development" of any of the following:
 - Digital flight management systems for "total control of flight";
 - 2. Integrated propulsion and flight control systems;
 - 3. Fly-by-wire or fly-by-light control systems;
 - 4. Fault-tolerant or self-reconfiguring "active flight control systems";
 - 5. Airborne automatic direction finding equipment;
 - 6. Air data systems based on surface static data; or
 - Raster-type head-up displays or three dimensional displays;
 - e. Computer-aided-design (CAD) "software" specially designed for the "development" of "active flight control systems", helicopter multi-axis fly-by-wire or fly-by-light controllers or helicopter "circulation controlled antitorque or cirulation-controlled direction control systems" whose "technology" is controlled in 1075.4.b., 1075.4.c.1. or 1075.4.c.2.

1075. Technology

- 1. "Technology" according to the General Technology Note for the "development" of equipment or "software" controlled by 1071., 1072. or 1074.
- 2. "Technology" according to the General Technology Note for the "production" of equipment controlled by 1071. or 1072.

"Technology" according to the General Technology Note for the repair, refurbishing or overhaul of equipment controlled by 1071.1. to 1071.4. *Note:*

1075.3. does not control maintenance "technology" directly associated with calibration, removal or replacement of damaged or unserviceable LRUs and SRAs of a "civil aircraft" as described in Maintenance Level I or Maintenance Level II. N.B.:

See Technical Notes to 1072.1.

- 4. Other technology, as follows:
 - a. Technology for the "development" or "production" of:
 - 1. Airborne automatic direction finding equipment operating at frequencies exceeding 5 MHz;
 - Air data systems based on surface static data only, i.e., which dispense with conventional air data probes;
 - Raster-type head-up displays or three dimensional displays for "aircraft";
 - Inertial navigation systems or gyro-astro compasses containing accelerometers or gyros controlled by 1071.1. or 1071.2.;
 - Electric actuators (i.e., electromechanical, electrohydrostatic and integrated actuator package) specially designed for "primary flight control";
 - "Flight control optical sensor array" specially designed for implementating "active flight control systems";
 - b. "Development" "technology", as follows, for "active flight control systems" (including fly-by-wire or fly-by-light):
 - Configuration design for interconnecting multiple microelectronic processing elements (on-board computers) to achieve "real time processing" for control law implementation;
 - Control law compensation for sensor location or dynamic airframe loads, i.e., compensation for sensor vibration environment or for variation of sensor location from the centre of gravity;
 - Electronic management of data redundancy or systems redundancy for fault detection, fault tolerance, fault isolation or reconfiguration; *Note:*

1075.4.b.3. does not control technology for the design of physical redundancy.

- 4. Flight controls which permit inflight reconfiguration of force and moment controls for real time autonomous air vehicle control;
- Integration of digital flight control, navigation and propulsion control data into a digital flight management system for "total control of flight"; Note:

1075.4.b.5. does not control:

- "Development" "technology" for integration of digital flight control, navigation and propulsion control data into a digital flight management system for "flight path optimization";
- b. "Development" "technology" for "aircraft" flight instrument systems integrated solely for VOR, DME, ILS or MLS navigation or approaches.
- Full authority digital flight control or multisensor mission management systems employing "expert systems"; N.B.:

For "technology" for Full Authority Digital Engine Control ("FADEC"), see 1095.3.a.9.

8

1075.4. con't.

- c. "Technology" for the "development" of helicopter systems, as follows:
 - 1. Multi-axis fly-by-wire or fly-by-light controllers which combine the functions of at least two of the following into one controlling element:
 - a) Collective controls;
 - b) Cyclic controls;
 - c) Yaw controls;
 - "Circulation-controlled anti-torque or circulation controlled directional control systems";
 - 3. Rotor blades incorporating "variable geometry airfoils" for use in systems using individual blade control.

Category 1080: Marine

1081. Systems, Equipment and Components

 Submersible vehicles and surface vessels, as follows: N.B.:

For the control status of equipment for submersible vehicles, see: Category 1150 Information Security for encrypted communication equipment; Category 1060 for sensors; Categories 1070 and 1080 for navigation equipment; Category 1081. for underwater equipment.

1. a. Manned, tethered submersible vehicles designed to operate at depths exceeding 1,000 m;

- Manned, untethered submersible vehicles having any of the following:
 - 1. Designed to operate autonomously and having a lifting capacity of all the following:
 - a) 10% or more of their weight in air; and
 - b) 15 kN or more;
 - 2. Designed to operate at depths exceeding 1,000 m; or
 - 3. Having all of the following:
 - a) Designed to carry a crew of 4 or more;
 - b) Designed to operate autonomously for 10 hours or more;
 - c) Having a range of 25 nautical miles or more; and
 - d) Having a length of 21 m or less;
 - Technical Notes:
 - For the purposes of 1081.1.b., operate autonomously means fully submerged, without snorkel, all systems working and cruising at minimum speed at which the submersible can safely control its depth dynamically by using its depth planes only, with no need for a support vessel or support base on the surface, sea-bed or shore, and containing a propulsion system for submerged or surface use.
 - 2. For the purposes of 1081.1.b., range means half the maximum distance a submersible vehicle can cover.
- Unmanned, tethered submersible vehicles designed to operate at depths exceeding 1,000 m, having any of the following:
 - 1. Designed for self-propelled manoeuvre using propulsion motors or thrusters controlled by 1081.2.a.2.; or
 - 2. Having a fibre optic data link;
- d. Unmanned, untethered submersible vehicles, having any of the following:
 - Designed for deciding a course relative to any geographical reference without real-time human assistance;
 - 2. Having an acoustic data or command link; or
 - 3. Having a fibre optic data or command link exceeding 1,000 m;
- Ocean salvage systems with a lifting capacity exceeding 5 MN for salvaging objects from depths exceeding 250 m and having any of the following:
 - Dynamic positioning systems capable of position keeping within 20 m of a given point provided by the navigation system; or
 - 2. Sea-floor navigation and navigation integration systems for depths exceeding 1,000 m with positioning accuracies to within 10 m of a predetermined point;

- f. Surface-effect vehicles (fully skirted variety) having all of the following characteristics:
 - A maximum design speed, fully loaded, exceeding 30 knots in a significant wave height of 1.25 m (Sea State 3) or more;
 - 2. A cushion pressure exceeding 3,830 Pa; and
 - 3. A light-ship-to-full-load displacement ratio of less than 0.70;
- g. Surface-effect vehicles (rigid sidewalls) with a maximum design speed, fully loaded, exceeding 40 knots in a significant wave height of 3.25 m (Sea State 5) or more;
- h. Hydrofoil vessels with active systems for automatically controlling foil systems, with a maximum design speed, fully loaded, of 40 knots or more in a significant wave height of 3.25 m (Sea State 5) or more;
- i. Small waterplane area vessels having any of the following:
 - 1. A full load displacement exceeding 500 tonnes with a maximum design speed, fully loaded, exceeding 35 knots in a significant wave height of 3.25 m (Sea State 5) or more; or
 - 2. A full load displacement exceeding 1,500 tonnes with a maximum design speed, fully loaded, exceeding 25 knots in a significant wave height of 4 m (Sea State 6) or more.

Technical Note:

A small waterplane area vessel is defined by the following formula: waterplane area at an operational design draft less than $2 \times (displaced volume at the operational design draft)^{2/3}$.

2. Systems and equipment, as follows: *N.B.*:

For underwater communications systems, see Category 1050 - Telecommunications.

- a. Systems and equipment, specially designed or modified for submersible vehicles, designed to operate at depths exceeding 1,000 m, as follows:
 - 1. Pressure housings or pressure hulls with a maximum inside chamber diameter exceeding 1.5 m;
 - 2. Direct current propulsion motors or thrusters;
 - 3. Umbilical cables, and connectors therefor, using optical fibre and having synthetic strength members;
 - Systems specially designed or modified for the automated control of the motion of submersible vehicles controlled by 1081.1. using navigation data and having closed loop servo-controls:
 - 1. Enabling a vehicle to move within 10 m of a predetermined point in the water column;
 - 2. Maintaining the position of the vehicle within 10 m of a predetermined point in the water column; or
 - 3. Maintaining the position of the vehicle within 10 m while following a cable on or under the seabed;
- c. Fibre optic hull penetrators or connectors;

Group 1: Dual Use List - Navigation and Avionics / Marine

1081.2. con't.

- d. Underwater vision systems, as follows:
 - 1. Television systems and television cameras, as follows:
 - a) Television systems (comprising camera, monitoring and signal transmission equipment) having a limiting resolution when measured in air of more than 800 lines and specially designed or modified for remote operation with a submersible vehicle;
 - b) Underwater television cameras having a limiting resolution when measured in air of more than 1,100 lines;
 - c) Low light level television cameras specially designed or modified for underwater use containing all of the following:
 - (1) Image intensifier tubes controlled by
 - 1061.2.a.2.a.; and
 - (2) More than 150,000 "active pixels" per solid state area array;
 - Technical Note:

Limiting resolution in television is a measure of horizontal resolution usually expressed in terms of the maximum number of lines per picture height discriminated on a test chart, using IEEE Standard 208/1960 or any equivalent standard.

- Systems, specially designed or modified for remote operation with an underwater vehicle, employing techniques to minimise the effects of back scatter, including range-gated illuminators or "laser" systems;
- e. Photographic still cameras specially designed or modified for underwater use below 150m having a film format of 35 mm or larger, and having any of the following:
 - 1. Annotation of the film with data provided by a source external to the camera;
 - 2. Automatic back focal distance correction; or
 - 3. Automatic compensation control specially designed to permit an underwater camera housing to be usable at depths exceeding 1,000 m;
- Electronic imaging systems, specially designed or modified for underwater use, capable of storing digitally more than 50 exposed images;
- g. Light systems, as follows, specially designed or modified for underwater use:
 - Stroboscopic light systems capable of a light output energy of more than 300 J per flash and a flash rate of more than 5 flashes per second;
 - 2. Argon arc light systems specially designed for use below 1,000 m;
- h. "Robots" specially designed for underwater use, controlled by using a dedicated "stored programme controlled" computer, having any of the following:
 - 1. Systems that control the "robot" using information from sensors which measure force or torque applied to an external object, distance to an external object, or tactile sense between the "robot" and an external object; or
 - The ability to exert a force of 250 N or more or a torque of 250 Nm or more and using titanium based alloys or "fibrous or filamentary" "composite" materials in their structural members;
- Remotely controlled articulated manipulators specially designed or modified for use with submersible vehicles, having any of the following:

- 1. Systems which control the manipulator using the information from sensors which measure the torque or force applied to an external object, or tactile sense between the manipulator and an external object; **or**
- Controlled by proportional master-slave techniques or by using a dedicated "stored programme controlled" computer, and having 5 degrees of freedom of movement or more; Note:

Only functions having proportional control using positional feedback or by using a dedicated "stored programme controlled" computer are counted when determining the number of degrees of freedom of movement.

- 2. j. Air independent power systems, specially designed for underwater use, as follows:
 - 1. Brayton or Rankine cycle engine air independent power systems having any of the following:
 - a) Chemical scrubber or absorber systems specially designed to remove carbon dioxide, carbon monoxide and particulates from recirculated engine exhaust;
 - b) Systems specially designed to use a monoatomic gas;
 - c) Devices or enclosures specially designed for underwater noise reduction in frequencies below 10 kHz, or special mounting devices for shock mitigation; or
 - d) Systems specially designed:
 - (1) To pressurise the products of reaction or for fuel reformation;
 - (2) To store the products of the reaction; and
 - (3) To discharge the products of the reaction against a pressure of 100 kPa or more;
 - Diesel cycle engine air independent systems, having all of the following:
 - a) Chemical scrubber or absorber systems specially designed to remove carbon dioxide, carbon monoxide and particulates from recirculated engine exhaust;
 - b) Systems specially designed to use a monoatomic gas;
 - c) Devices or enclosures specially designed for underwater noise reduction in frequencies below 10 kHz or special mounting devices for shock mitigation; and
 - d) Specially designed exhaust systems that do not exhaust continuously the products of combustion;
 - Fuel cell air independent power systems with an output exceeding 2 kW having either of the following:
 - a) Devices or enclosures specially designed for underwater noise reduction in frequencies below 10 kHz or special mounting devices for shock mitigation; or
 - b) Systems specially designed:
 - (1) To pressurise the products of reaction or for fuel reformation;
 - (2) To store the products of the reaction; and
 - (3) To discharge the products of the reaction against a pressure of 100 kPa or more;

1081.2.j. con't.

- 4. Stirling cycle engine air independent power systems, having all of the following:
 - a) Devices or enclosures specially designed for underwater noise reduction in frequencies below 10 kHz or special mounting devices for shock mitigation; and
 - b) Specially designed exhaust systems which discharge the products of combustion against a pressure of 100 kPa or more;
- 2. k. Skirts, seals and fingers, having any of the following:
 - Designed for cushion pressures of 3,830 Pa or more, operating in a significant wave height of 1.25 m (Sea State 3) or more and specially designed for surface effect vehicles (fully skirted variety) controlled by 1081.1.f.; or
 - Designed for cushion pressures of 6,224 Pa or more, operating in a significant wave height of 3.25 m (Sea State 5) or more and specially designed for surface effect vehicles (rigid sidewalls) controlled by 1081.1.g.;
 - 1. Lift fans rated at more than 400 kW specially designed for surface effect vehicles controlled by 1081.1.f. or 1081.1.g.;
 - Fully submerged subcavitating or supercavitating hydrofoils specially designed for vessels controlled by 1081.1.h.;
 - n. Active systems specially designed or modified to control automatically the sea-induced motion of vehicles or vessels controlled by 1081.1.f., 1081.1.g., 1081.1.h. or 1081.1.i.;
 - o. Propellers, power transmission systems, power generation systems and noise reduction systems, as follows:
 - 1. Water-screw propeller or power transmission systems, as follows, specially designed for surface effect vehicles (fully skirted or rigid sidewall variety), hydrofoils or small waterplane area vessels controlled by 1081.1.f., 1081.1.g., 1081.1.h. or 1081.1.i.:
 - a) Supercavitating, super-ventilated, partiallysubmerged or surface piercing propellers rated at more than 7.5 MW;
 - b) Contrarotating propeller systems rated at more than 15 MW;
 - c) Systems employing pre-swirl or post-swirl techniques for smoothing the flow into a propeller;
 - d) Light-weight, high capacity (K factor exceeding 300) reduction gearing;
 - Power transmission shaft systems, incorporating "composite" material components, capable of transmitting more than 1 MW;
 - 2. Water-screw propeller, power generation systems or transmission systems designed for use on vessels, as follows:
 - a) Controllable-pitch propellers and hub assemblies rated at more than 30 MW;
 - b) Internally liquid-cooled electric propulsion engines with a power output exceeding 2.5 MW;
 - c) "Superconductive" propulsion engines, or permanent magnet electric propulsion engines, with a power output exceeding 0.1 MW;
 - Power transmission shaft systems, incor-porating "composite" material components, capable of transmitting more than 2 MW;
 - e) Ventilated or base-ventilated propeller systems rated at more than 2.5 MW;

- o. 3. Noise reduction systems designed for use on vessels of 1,000 tonnes displacement or more, as follows:
 - a) Systems that attenuate underwater noise at frequencies below 500 Hz and consist of compound acoustic mounts for the acoustic isolation of diesel engines, diesel generator sets, gas turbines, gas turbine generator sets, propulsion motors or propulsion reduction gears, specially designed for sound or vibration isolation, having an intermediate mass exceeding 30% of the equipment to be mounted;
 - b) Active noise reduction or cancellation systems, or magnetic bearings, specially designed for power transmission systems, and incorporating electronic control systems capable of actively reducing equipment vibration by the generation of anti-noise or anti-vibration signals directly to the source;
 - p. Pumpjet propulsion systems having a power output

exceeding 2.5 MW using divergent nozzle and flow conditioning vane techniques to improve propulsive efficiency or reduce propulsion-generated underwater-radiated noise.

 Self-contained, closed or semi-closed circuit (rebreathing) diving and underwater swimming apparatus.
 Note:

1081.2.q. does not control an individual apparatus for use when accompanying its user

1082. Test, Inspection and Production Equipment

1. Water tunnels, having a background noise of less than 100 dB (reference 1 μ Pa, 1 Hz) in the frequency range from 0 to 500 Hz, designed for measuring acoustic fields generated by a hydro-flow around propulsion system models.

1083. Materials

- 1. Syntactic foam designed for underwater use, having all of the following:
 - a. Designed for marine depths exceeding 1,000 m; and
 - b. A density less than 561 kg/m^3 .
 - Technical Note:

Syntactic foam consists of hollow spheres of plastic or glass embedded in a resin matrix.

1084. Software

- "Software" specially designed or modified for the "development", "production" or "use" of equipment or materials controlled by 1081., 1082. or 1083.
- Specific "software" specially designed or modified for the "development", "production", repair, overhaul or refurbishing (re-machining) of propellers specially designed for underwater noise reduction.

80

1085. Technology

- "Technology" according to the General Technology Note for the "development" or "production" of equipment or materials controlled by 1081., 1082. or 1083.
- 2. Other "technology", as follows:
- a. "Technology" for the "development", "production", repair, overhaul or refurbishing (re-machining) of propellers specially designed for underwater noise reduction;
- b. "Technology" for the overhaul or refurbishing of
- equipment controlled by 1081.1., 1081.2.b., 1081.2.j., 1081.2.o. or 1081.2.p.

Category 1090: Propulsion

1091. Systems, Equipment and Components

N.B.:

For propulsion systems designed or rated against neutron or transient ionizing radiation, see Group 2, Munitions List.

- 1. Aero gas turbine engines incorporating any of the technologies controlled by 1095.3.a., as follows:
 - a. Not certified for the specific "civil aircraft" for which they are intended; Note: For the purpose of the "civil aircraft" certification process, a number of up to 16 civil certified engines, assemblies or components

including spares, is considered appropriate.

- Not certified for civil use by the aviation authorities in a participating state;
- c. Designed to cruise at speeds exceeding Mach 1.2 for more than thirty minutes.
- 2. Marine gas turbine engines with an ISO standard continuous power rating of 24,245 kW or more and a specific fuel consumption of less than 0.219 kg/kWh in the power range from 35 to 100 %, and specially designed assemblies and components therefor.

Note:

The term 'marine gas turbine engines' includes those industrial, or aero-derivative, gas turbine engines adapted for a ship's electric power generation or propulsion.

- 3. Specially designed assemblies and components, incorporating any of the technologies controlled by 1095.3.a., for the following gas turbine engine propulsion systems:
 - a. Controlled by 1091.1.; or
 - b. Whose design or production origins are either nonparticipating states or unknown to the manufacturer.
- 4. Space launch vehicles and "spacecraft".
- N.B.:
 - 1. 1091.4. does not control payloads.
 - For the control status of products contained in "spacecraft" payloads, see the appropriate Categories.
- 5. Liquid rocket propulsion systems containing any of the systems or components controlled by 1091.6.
- 6. Systems and components specially designed for liquid rocket propulsion systems, as follows:
 - a. Cryogenic refrigerators, flightweight dewars, cryogenic heat pipes or cryogenic systems specially designed for use in space vehicles and capable of restricting cryogenic fluid losses to less than 30% per year;
 - b. Cryogenic containers or closed-cycle refrigeration systems capable of providing temperatures of 100 K (-173°C) or less for "aircraft" capable of sustained flight at speeds exceeding Mach 3, launch vehicles or "spacecraft";
 - c. Slush hydrogen storage or transfer systems;
 - d. High pressure (exceeding 17.5 MPa) turbo pumps, pump components or their associated gas generator or expander cycle turbine drive systems;
 - e. High-pressure (exceeding 10.6 MPa) thrust chambers and nozzles therefor;

- f. Propellant storage systems using the principle of capillary containment or positive expulsion (i.e., with flexible bladders);
- g. Liquid propellant injectors, with individual orifices of 0.381mm or smaller in diameter (an area of 1.14 x 10⁻³ cm² or smaller for non-circular orifices) specially designed for liquid rocket engines;
- h. One-piece carbon-carbon thrust chambers or one-piece carbon-carbon exit cones with densities exceeding 1.4g/cm³ and tensile strengths exceeding 48 MPa.
- 7. Solid rocket propulsion systems with any of the following:
 - a. Total impulse capacity exceeding 1.1 MNs;
 - b. Specific impulse of 2.4 kNs/kg or more when the nozzle flow is expanded to ambient sea level conditions for an adjusted chamber pressure of 7 MPa;
 - Stage mass fractions exceeding 88% and propellant solid loadings exceeding 86%;
 - d. Any of the components controlled by 1091.8.; or
 - e. Insulation and propellant bonding systems using direct-bonded motor designs to provide a strong mechanical bond or a barrier to chemical migration between the solid propellant and case insulation material. *Technical Note:*

For the purposes of 1091.7.e., a strong mechanical bond means bond strength equal to or more than propellant strength.

- Components, as follows, specially designed for solid rocket propulsion systems:
 - Insulation and propellant bonding systems using liners to provide a strong mechanical bond or a barrier to chemical migration between the solid propellant and case insulation material; *Technical Note*:

For the purposes of 1091.8.a., a strong mechanical bond means bond strength equal to or more than propellant strength.

 b. Filament-wound "composite" motor cases exceeding 0.61 m in diameter or having structural efficiency ratios (PV/W) exceeding 25 km;

Technical Note:

d.

The structural efficiency ratio (PV/W) is the burst pressure (P) multiplied by the vessel volume (V) divided by the total pressure vessel weight (W).

- c. Nozzles with thrust levels exceeding 45 kN or nozzle throat erosion rates of less than 0.075 mm/s;
 - Movable nozzle or secondary fluid injection thrust vector control systems capable of any of the following:
 - 1. Omni-axial movement exceeding $\pm 5^{\circ}$;
 - 2. Angular vector rotations of 20°/s or more; or
 - 3. Angular vector accelerations of $40^{\circ}/s^2$ or more.
- 9. Hybrid rocket propulsion systems with:
 - a. Total impulse capacity exceeding 1.1 MNs; or
 - b. Thrust levels exceeding 220 kN in vacuum exit conditions.

1091. con't.

- Specially designed components, systems and structures for launch vehicles, launch vehicle propulsion systems or "spacecraft", as follows:
 - a. Components or structures exceeding 10kg, specially designed for launch vehicles manufactured using metal "matrix", "composite", organic "composite", ceramic "matrix" or intermetallic reinforced materials controlled by 1013.7. or 1013.10.; *Note:*

The weight cut-off is not relevant for nose cones.

- b. Components and structures specially designed for launch vehicle propulsion systems controlled by 1091.5. to 1091.9. manufactured using metal matrix, composite, organic composite, ceramic matrix or intermetallic reinforced materials controlled by 1013.7. or 1013.10.;
- c. Structural components and isolation systems specially designed to control actively the dynamic response or distortion of "spacecraft" structures;
- d. Pulsed liquid rocket engines with thrust-to-weight ratios equal to or more than 1kN/kg and a response time (the time required to achieve 90% of total rated thrust from start-up) of less than 30 ms.
- 11. Ramjet, scramjet or combined cycle engines and specially designed components therefor.

1092. Test, Inspection and Production Equipment

- 1. Specially designed equipment, tooling and fixtures, as follows, for manufacturing or measuring gas turbine blades, vanes or tip shroud castings:
 - a. Directional solidification or single crystal casting equipment;
 - b. Ceramic cores or shells;
- 2. On-line (real time) control systems, instrumentation (including sensors) or automated data acquisition and processing equipment, specially designed for the "development" of gas turbine engines, assemblies or components incorporating technologies controlled by 1095.3.a.
- 3. Equipment specially designed for the "production" or test of gas turbine brush seals designed to operate at tip speeds exceeding 335 m/s, and temperatures in excess of 773 K (500° C), and specially designed components or accessories therefor.
- 4. Tools, dies or fixtures for the solid state joining of "superalloy", titanium or intermetallic airfoil-to-disk combinations described in 1095.3.a.3. or 1095.3.a.6. for gas turbines.
- 5. On-line (real time) control systems, instrumentation (including sensors) or automated data acquisition and processing equipment, specially designed for use with any of the following wind tunnels or devices:
 - a. Wind tunnels designed for speeds of Mach 1.2 or more, except those specially designed for educational purposes and having a test section size (measured laterally) of less than 250 mm;

Technical Note:

Test section size: the diameter of the circle, or the side of the square, or the longest side of the rectangle, at the largest test section location.

b. Devices for simulating flow-environments at speeds exceeding Mach 5, including hot-shot tunnels, plasma arc

tunnels, shock tubes, shock tunnels, gas tunnels and light gas guns; or

- c. Wind tunnels or devices, other than two-dimensional sections, capable of simulating Reynolds number flows exceeding 25 x 106.
- 6. Acoustic vibration test equipment capable of producing sound pressure levels of 160 dB or more (referenced to 20 μ Pa) with a rated output of 4 kW or more at a test cell temperature exceeding 1,273 K (1,000 °C), and specially designed quartz heaters therefor.
- 7. Equipment specially designed for inspecting the integrity of rocket motors using non-destructive test (NDT) techniques other than planar X-ray or basic physical or chemical analysis.
- Transducers specially designed for the direct measurement of the wall skin friction of the test flow with a stagnation temperature exceeding 833 K (560°C).
- Tooling specially designed for producing turbine engine powder metallurgy rotor components capable of operating at stress levels of 60% of ultimate tensile strength (UTS) or more and metal temperatures of 873 K (600°C) or more.

1093. Materials

None.

1094. Software

- 1. "Software" specially designed or modified for the "development" of equipment or "technology" controlled by 1091., 1092. or 1095.3.
- 2. "Software" specially designed or modified for the "production" of equipment controlled by 1091. or 1092.
- 3. "Software" specially designed or modified for the "use" of full authority digital electronic engine controls ("FADEC") for propulsion systems controlled by 1091. or equipment controlled by 1092., as follows:
 - a. "Software" in digital electronic controls for propulsion systems, aerospace test facilities or air breathing aero-engine test facilities;
 - b. Fault-tolerant "software" used in "FADEC" systems for propulsion systems and associated test facilities.
- 4. Other "software", as follows:
 - a. 2D or 3D viscous "software" validated with wind tunnel or flight test data required for detailed engine flow modelling;
 - b. "Software" for testing aero gas turbine engines, assemblies or components, specially designed to collect, reduce and analyse data in real time, and capable of feedback control, including the dynamic adjustment of test articles or test conditions, as the test is in progress;
 - c. "Software" specially designed to control directional solidification or single crystal casting;
 - d. "Software" in "source code", "object code" or machine code required for the "use" of active compensating systems for rotor blade tip clearance control.

1094.4.d. does not control "software" embedded in uncontrolled equipment or required for maintenance activities associated with the calibration or repair or updates to the active compensating clearance control system.

1095. Technology

- 1. "Technology" according to the General Technology Note for the "development" of equipment or "software" controlled by 1091.1.c., 1091.4. to 1091.11., 1092. or 1094.
- "Technology" according to the General Technology Note for 2 the "production" of equipment controlled by 1091.1.c., 1091.4. to 1091.11. or 1092.

N.B.: For "technology" for the repair of controlled structures, laminates or materials, see 1015.2.f.

Note.

"Development" or "production" "technology" controlled by 1095. for gas turbine engines remains controlled when used as "use" "technology" for repair, rebuild and overhaul. Excluded from control are: technical data. drawings or documentation for maintenance activities directly associated with calibration, removal or replacement of damaged or unserviceable line replaceable units, including replacement of whole engines or engine modules

- Other "technology", as follows: a. "Technology" "required" for the "development" or "production" of any of the following gas turbine engine components or systems:
 - 1. Gas turbine blades, vanes or tip shrouds made from directionally solidified (DS) or single crystal (SC) alloys having (in the 001 Miller Index Direction) a stress-rupture life exceeding 400 hours at 1,273 K (1,000°C) at a stress of 200 MPa, based on the average property values;
 - Multiple domed combustors operating at average 2. burner outlet temperatures exceeding 1,813 K (1,540°C), or combustors incorporating thermally decoupled combustion liners, non-metallic liners or non-metallic shells:
 - 3. Components manufactured from any of the following: а. organic "composite" materials designed to operate above 588 K (315°C);
 - metal "matrix" "composite", ceramic "matrix", b. intermetallic or intermetallic reinforced materials controlled by 1013.7; or
 - "composite" material controlled by 1013.10. and c. manufactured with resins controlled by 1013.8.
 - 4. Uncooled turbine blades, vanes, tip-shrouds or other components designed to operate at gas path temperatures of 1,323 K (1,050°C) or more;
 - Cooled turbine blades, vanes or tip-shrouds, other than those described in 1095.3.a.1., exposed to gas path temperatures of 1,643 K (1,370°C) or more;
 - Airfoil-to-disk blade combinations using solid state joining;
 - Gas turbine engine components using "diffusion 7. bonding" "technology" controlled by 1025.3.b.;
 - Damage tolerant gas turbine engine rotating components using powder metallurgy materials controlled by 1013.2.b.;
 - 9. "FADEC' for gas turbine and combined cycle engines and their related diagnostic components, sensors and specially designed components;
 - 10. Adjustable flow path geometry and associated control systems for: or
 - a) Gas generator turbines;
 - b) Fan or power turbines;
 - c) Propelling nozzles;

Notes:

Adjustable flow path geometry and associated control systems in 1095.3.a.10. do not include inlet guide vanes,

variable pitch fans, variable stators or bleed valves for compressors

- 1095.3.a.10. does not control "development" or "production" "technology" for adjustable flow path geometry for reverse thrust.
- 3. a. 11 Wide chord hollow fan blades without part-span support;

3. b. "Technology" "required" for the "development" or "production" of any of the following:

- 1. Wind tunnel aero-models equipped with non-intrusive sensors capable of transmitting data from the sensors to the data acquisition system; or
- 2. "Composite" propeller blades or propfans capable of absorbing more than 2,000 kW at flight speeds exceeding Mach 0.55;
- "Technology" "required" for the "development" or 3. c. "production" of gas turbine engine components using "laser", water jet, ECM or EDM hole drilling processes to produce holes having any of the following sets of characteristics:
 - 1. All of the following:
 - a) Depths more than four times their diameter:
 - b) Diameters less than 0.76 mm; and
 - c) Incidence angles equal to or less than 25°; or
 - 2. All of the following:
 - a) Depths more than five times their diameter:
 - b) Diameters less than 0.4 mm; and
 - c) Incidence angles of more than 25°;
 - Technical Note:

For the purposes of 1095.3.c., incidence angle is measured from a plane tangential to the airfoil surface at the point where the hole axis enters the airfoil surface.

- 3. d. "Technology" "required" for any of the following:
 - 1. The "development" of helicopter power transfer systems or tilt rotor or tilt wing "aircraft" power transfer systems; or
 - 2. The "production" of helicopter power transfer systems or tilt rotor or tilt wing "aircraft" power transfer systems.
- 3. e. 1. "Technology" for the "development" or "production" of reciprocating diesel engine ground vehicle propulsion systems having all of the following:
 - a) A box volume of 1.2 m³ or less;
 - b) An overall power output of more than 750 kW based on 80/1269/EEC, ISO 2534 or national equivalents; and
 - c) A power density of more than 700 kW/m^3 of box volume:
 - **Technical Note:**

Box volume: the product of three perpendicular dimensions measured in the following way:

- Length: The length of the crankshaft from front flange to flywheel face;
- The widest of the following: Width:
 - The outside dimension from valve cover to valve a. cover;
 - b. The dimensions of the outside edges of the cylinder heads; or
 - The diameter of the flywheel housing; The largest of the following:
- Height:
 - The dimension of the crankshaft centre-line to the a. top plane of the valve cover (or cylinder head) plus twice the stroke: or
 - The diameter of the flywheel housing. b.

1095.3 e. con't.

- 3. e. 2.
 - "Technology" "required" for the "production" of pecially designed components, as follows, for high output diesel engines:
 - a) "Technology" "required" for the "production" of engine systems having all of the following components employing ceramics materials controlled by 1013.7:
 - (1) Cylinder liners;
 - (2) Pistons;
 - (3) Cylinder heads; and
 - (4) One or more other components (including exhaust ports, turbochargers, valve guides, valve assemblies or insulated fuel injectors);
 - b) "Technology" "required" for the "production" of turbocharger systems, with single-stage compressors having all of the following:
 - (1) Operating at pressure ratios of 4:1 or higher;(2) A mass flow in the range from 30 to 130 kg per minute; and
 - (3) Variable flow area capability within the compressor or turbine sections;
 - c) "Technology" "required" for the "production" of
 - fuel injection systems with a specially designed

multifuel (e.g., diesel or jet fuel) capability covering a viscosity range from diesel fuel (2.5 cSt at 310.8 K (37.8°C)) down to gasoline fuel (0.5 cSt at 310.8 K (37.8°C)), having both of the following:

- Injection amount in excess of 230 mm³ per injection per cylinder; and
- (2) Specially designed electronic control features for switching governor characteristics automatically depending on fuel property to provide the same torque characteristics by using the appropriate sensors;

 "Technology" "required" for the "development" or "production" of high output diesel engines for solid, gas phase or liquid film (or combinations thereof) cylinder wall lubrication, permitting operation to temperatures exceeding 723 K (450°C), measured on the cylinder wall at the top limit of travel of the top ring of the piston.

Technical Note:

High output diesel engines: diesel engines with a specified brake mean effective pressure of 1.8 MPa or more at a speed of 2,300 r.p.m., provided the rated speed is 2,300 r.p.m. or more.

Group 2 – Munitions List

Note 1:

Terms in "double quotation marks" are defined terms. Refer to "Definition of the Terms used in Groups 1 and 2" on pages 62 to 70. Note 2:

CAS numbers are shown as examples. They do not cover all the chemical and mixtures controlled by **the Munitions List**

General "Technology" Note

The export of "technology" which is "required" for the "development", "production" or "use" of items controlled in the Munitions List is controlled according to the provisions in the Munitions List entries. This "technology" remains under control even when applicable to an uncontrolled item.

Controls do not apply to that "technology" which is the minimum necessary for the installation, operation, maintenance (checking) and repair of those items which are not controlled or whose export has been authorised.

Controls do not apply to "technology" "in the public domain" or to "basic scientific research" or to the minimum necessary information for patent applications.

2001. Firearms and automatic weapons with a calibre of 12.7 mm (calibre of 0.50 inches) or less and accessories, as follows, and specially designed components therefor:

 Rifles, carbines, revolvers, pistols, shotguns, machine pistols and machine guns; (*All destinations*) *Note:*

2001.a. does not control the following:

- 1. Muskets, shotguns, rifles and carbines dated earlier than 1890;
- 2. Reproductions of muskets, shotguns, rifles and carbines, the originals of which were manufactured earlier than 1890;
- 3. Revolvers, shotguns, pistols and machine guns manufactured earlier than 1890, and their reproductions.

b. Silencers, special gun-mountings, clips, weapons sights and flash suppressors for arms controlled by sub-item 2001.a.

Note:

2001. does not control firearms specially designed for dummy ammunition and which are incapable of firing , or being modified to fire, any controlled ammunition.

2002. Armament or weapons with a calibre greater than 12.7 mm (calibre 0.50 inches), projectors and accessories, as follows, and specially designed components therefor:

a. Guns, howitzers, cannon, mortars, anti-tank weapons, projectile launchers, military flame throwers, recoilless rifles and signature reduction devices therefor; (*All destinations*) *Note:*

2002.a. includes injectors, metering devices, storage tanks and other specially designed components for use with liquid propelling charges for any of the equipment controlled by 2002.a.

- b. Military smoke, gas and pyrotechnic projectors or generators; (*All destinations*) Note: 2002.b. does not control signal pistols.
- c. Weapons sights.

2003. Ammunition, and specially designed components therefor, for the weapons controlled by Items 2001., 2002. or 2012.

(All destinations)

- Notes:
 - Specially designed components include: a. Metal or plastic fabrications such as primer anvils, bullet cups,
 - cartridge links, rotating bands and munitions metal parts;
 - b. Safing and arming devices, fuses, sensors and initiating devices;
 - c. Power supplies with high one-time operational output;
 - d. Combustible cases for charges;
 - e. Submunitions including bomblets, minelets and terminally guided projectiles.
- 2003. does not control ammunition crimped without a projectile (blank star) and dummy ammunition with a pierced powder chamber.
- 2003 does not control cartridges specially designed for any of the following purposes:
 - . Signalling:
 - b. Bird scaring; or
 - c. Lighting of gas flares at oil wells.
- **2004.** Bombs, torpedoes, rockets, missiles, and related equipment and accessories, as follows, specially designed for military use, and specially designed components therefor:
- Bombs, torpedoes, grenades, smoke canisters, rockets, mines, missiles, depth charges, demolition-charges, demolition -devices and demolition-kits, "military pyrotechnics", cartridges and simulators (i.e., equipment simulating the characteristics of any of these items); (*All destinations*) Note: 2004.a. includes:
 - Smoke grenades, fire bombs, incendiary bombs and explosive devices;
 - 2. Missile rocket nozzles and re-entry vehicle nosetips.

 Equipment specially designed for the handling, control, activation, powering with one-time operational output, launching, laying, sweeping, discharging, decoying, jamming, detonation or detection of items controlled by 2004.a. *Note:*

2004.b. includes:

 Mobile gas liquefying equipment capable of producing 1,000 kg or more per day of gas in liquid form;

- Buoyant electric conducting cable suitable for sweeping magnetic mines.
- 2005. Fire control, and related alerting and warning equipment, and related systems, test and alignment and counter-measure equipment, as follows, specially designed for military use, and specially designed components and accessories therefor:
- a. Weapon sights, bombing computers, gun laying equipment and weapon control systems;
- Target acquisition, designation, range-finding, surveillance or tracking systems; detection, data fusion, recognition or identification equipment; and sensor integration equipment;
- c. Countermeasure equipment for Items 2005.a. or 2005.b.;

2005. con't.

d. Field test or alignment equipment, specially designed for items controlled by 2005.a. or 2005.b.

2006. Ground vehicles and components therefor specially designed or modified for military use.

Technical Note:

For the purposes of 2006. the term ground vehicles includes trailers.

Note 1:

2006. includes:

- Tanks and other military armed vehicles and military vehicles fitted with mountings for arms or equipment for mine laying or the launching of munitions controlled under 2004.;
- b. Armoured vehicles;
- c. Amphibious and deep water fording vehicles;
- d. Recovery vehicles and vehicles for towing or transporting ammunition or weapons systems and associated load handling equipment.

Note 2:

Modification of a ground vehicle for military use entails a structural, electrical or mechanical change involving one or more specially designed military components. Such components include:

- Pneumatic tyre casings of a kind specially designed to be bullet-proof or to run when deflated;
- b. Tyre inflation pressure control systems, operated from inside a moving vehicle;
- c. Armoured protection of vital parts, (e.g. fuel tanks or vehicle cabs);
- d. Special reinforcements for mountings for weapons.

Note 3:

2006. does not control civil automobiles or trucks designed for transporting money or valuables, having armoured protection.

2007. Chemical or biological toxic agents, "tear gases", radioactive materials, related equipment, components, materials and "technology" as follows:

- Biological agents and radioactive materials "adapted for use in war" to produce casualties in humans or animals, degrade equipment or damage crops or the environment, and chemical warfare (CW) agents;
- b. CW binary precursors and key precursors, as follows:
 - Alkyl (Methyl, Ethyl, n-Propyl or Isopropyl Phosphonyl Difluorides such as: DF: Methyl Phosphonyldifluoride (CAS 676-99-3);
 - O-Akyl (H or equal to or less than C₁₀, including cycloalkyl) O-2-diakyl (Methyl Ethyl, n-Propyl or Isopropyl) amininoethyl alkyl (Methyl Ethyl, n-Propyl or Isopropyl) phossphonite and corresponding alkylated and protonated salts, such as:
 - QL: O-Ethyl-2-di-isopropylaminoethyl methylphosphonite (CAS 57856-11-8);
 - Chlorosarin: O-Isopropyl methylphosphonochloridate (CAS 1445-76-7);
 - 4. Chlorosoman: O-Pinakolyl methylphosphon-ochloridate (CAS 7040-57-5);
- c. "Tear gases" and "riot control agents" including:
 - 1. Bromobenzyl cyanide (CA) (CAS 5798-79-8);
 - o-Chlorobenzylidenemalononitrile (o-Chlorobenzalmalononitrile) (CS) (CAS 2698-41-1);
 - Phenylacyl chloride (ω-chloroacetophenone) (CN) (CAS 532-27-4);
 - 4. Dibenz-(b,f)-1,4-oxazephine (CR) (CAS 257-07-8);
- d. Equipment specially designed or modified for the dissemination of any of the following and specially designed components therefor;
 - 1. Materials or agents controlled by ML7.a or c.; or
 - 2. CW made up of precursors controlled by ML7.b.

 Equipment specially designed or modified for defence against materials or agents controlled by 2007.a. or c. and specially designed components therefor; *Note:*

2007.e. includes protective clothing;

 Equipment specially designed for the detection or identification of materials controlled by 2007.a. or c. and specially designed components therefor; *Note:*

2007.f. does not control personal radiation monitoring dosimeters. **N.B.**

For civil gas masks and protective equipment see also Item 1011.4. on the Dual Use List. (Group 1)

- g. "Biopolymers" specially designed or processed for the detection or identification of CW agents controlled by 2007.a., and the cultures of specific cells used to produce them;
- h. "Biocatalysts" for the decontamination or degradation of CW agents, and biological systems therefor, as follows:
 - "Biocatalysts" specially designed for the decontamination or degradation of CW agents controlled by 2007.a. resulting from directed laboratory selection or genetic manipulation of biological systems;
 - Biological systems, as follows: "expression vectors", viruses or cultures of cells containing the genetic information specific to the production of "biocatalysts" controlled by Item 2007.h.1.;
- "Technology" as follows:
 - "Technology" for the "development", "production" or "use" of toxicological agents, related equipment or components controlled by Item 2007.a. to 2007.f.;
 - 2. "Technology" for the "development", "production" or "use" of "biopolymers" or cultures of specific cells controlled by 2007.g.;
 - 3. "Technology" exclusively for the incorporation of "biocatalysts", controlled by 2007.h.l., into military carrier substances or military material.

Notes:

- 2007.a. includes the following: a. CW nerve agents:
 - CW nerve agents:

 O-Alkyl (equal to or less than C₁₀, including cycloalkyl) alkyl (Methyl, Ethyl, n-Propyl or Isopropyl) - phosphonofluoridates, such as: Sarin (GB): O-Isopropyl methylphosphonofluoridate (CAS 107-44-8); and Soman (GD): O-Pinacolyl
 - methylphosphonofluoridate (CAS 96-64-0);
 O-Alkyl (equal to or less than C₁₀, including cycloalkyl) N,N-dialkyl (Methyl, Ethyl, n-Propyl or Isopropyl) phosphoramidocyanidates, such as: Tabun (GA):O-Ethyl N,N-dimethylphosphoramidocyanidate (CAS 77-81-6);
 - O-Alkyl (H or equal to or less than C₁₀, including cycloalkyl) S-2-dialkyl (Methyl, Ethyl, n-Propyl or Isopropyl)-aminoethyl alkyl (Methyl, Ethyl, n-Propyl or Isopropyl) phosphonothiolates and corresponding alkylated and protonated salts, such as: VX:

Note 1 to 2007. con't.

O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (CAS 50782-69-9);

- b. CW vesicant agents:
 - Sulphur mustards, such as: 2-Chloroethylchloromethylsulphide (CAS 2625-76-5);
 - Bis(2-chloroethyl) sulphide (CAS 505-60-2),
 - Bis(2-chloroethylthio) methane (CAS 63869-13-6);
 - 1,2-bis (2-chloroethylthio) ethane (CAS 3563-36-8);
 - 1,3-bis (2-chloroethylthio) -n-propane (CAS 63905-10-2);
 - 1,4-bis (2-chloroethylthio) -n-butane;
 - 1,5-bis (2-chloroethylthio) -n-pentane;
 - Bis (2-chloroethylthiomethyl) ether;
 - Bis (2-chloroethylthioethyl) ether (CAS 63918-89-8);

2007.i. note 1.b. con't.

- 2. Lewisites, such as:
 - 2-chlorovinyldichloroarsine (CAS 541-25-3); Tris (2-chlorovinyl) arsine (CAS 40334-70-1), Bis (2-chlorovinyl) chloroarsine (CAS 40334-69-8); Nitrogen mustards, such as:
 - HN1: bis (2-chloroethyl) ethylamine (CAS 538-07-8); HN2: bis (2-chloroethyl) methylamine (CAS 51-75-2); HN3: tris (2-chloroethyl) amine (CAS 555-77-1);
 - CW incapacitating agents such as: 3 -Quinuclidinyl benzilate (BZ) C. (CAS 6581-06-2).
- CW defoliants such as: d.
 - 1. Butyl 2-chloro-4-flourophenoxyacetate (LNF); 2
 - 2,4,5,-trichlorophenoxyacetate acid mixed with 2,4dichlorophenoxyacetic acid (Agent Orange)
- 2 2007.e. includes air conditioning units specially designed or modified for nuclear, biological or chemical filtration.
- Sub-item 2007.a. and 2007.c. do not control: 3
 - a. Cyanogen chloride; h. Benzyl bromide;
 - b. Hydrocyanic acid; i Benzyl iodide;
 - c. Chlorine: Bromo acetone; j.
 - d. Carbonyl chloride (phosgene);
- k Cvanogen bromide.
- 1. Bromo methylethylketone;
- e. Diphosgene (trichlorom. Chloro acetone;
 - methyl- chloroformate); n. Ethyl iodoacetate:
- f. Ethyl bromoacetate; o. lodo acetone. Chloropicrin р.
- g. Xylyl bromide;
- The "technology", cultures of cells and biological systems listed in 2007.g., 2007.h.2. and 2007.i.3. are exclusive and these sub-items do not control "technology", cells or biological systems for civil purposes, such as agricultural, pharmaceutical, medical, veterinary, environmental, waste management, or in the food industry.
- 2007.c. does not control tear gases or riot control agents individually 5 packaged for personal self defence purposes
- 6 2007.d., 2007.e. and 2007.f. control equipment specially designed or modified for military purposes. N.B.

See also Group 1: Dual Use List, Item 1011.4.

2008. "Military explosives" and fuels, including propellants, and related substances, as follows:

Substances, as follows, and mixtures thereof: a.

- 1. Spherical aluminium powder (CAS 7429-90-5) with a particle size of 60 µm or less, manufactured from material with an aluminium content of 99% or more;
- 2. Metal fuels in particle form whether spherical, atomized, spheroidal, flaked or ground, manufactured from material consisting of 99 % or more of any of the following:
 - Metals and mixtures thereof: a.
 - 1) Beryllium (CAS 7440-41-7) in particle sizes of less than 60 µm;
 - 2) Iron powder (CAS 7439-89-6) with particle size of 3 µm or less produced by reduction of iron oxide with hydrogen;
 - b. Mixtures, which contain any of the following:
 - 1) Zirconium (CAS 7440-67-7), magnesium (CAS 7439-95-4) and alloys of these in particle sizes of less than 60 µm;
 - 2) Boron (CAS 7440-42-8) or boron carbide (CAS 12069-32-8) fuels of 85% purity or higher and particle sizes of less than 60 µm;
- 3. Perchlorates, chlorates and chromates composited with powdered metal or other high energy fuel components;
- Deleted (transferred to 1.C.11.d.) 4.
- Compounds composed of fluorine and any of the following: other halogens, oxygen, nitrogen;
- 6. Carboranes; decaborane (CAS 17702-41-9); pentaborane and derivatives thereof;

- 7. Cyclotetramethylenetetranitramine (HMX) (CAS 2691-41-0); octahydro-1,3,5,7-tetranitro-1,3,5,7tetrazine; 1,3,5,7-tetranitro-1,3,5,7-tetraza-cyclooctane; (octogen, octogene);
- 8. Hexanitrostilbene (HNS) (CAS 20062-22-0);
- Diaminotrinitrobenzene (DATB) (CAS 630-08-6):
- 10. Triaminotrinitrobenzene (TATB) (CAS 3058-38-6);
- 11. Triaminoguanidinenitrate (TAGN) (CAS 4000-16-2);
- 12. Titanium subhydride of stoichiometry TiH 0.65-1.68:
- 13. Dinitroglycoluril (DNGU, DINGU) (CAS 55510-04-8); tetranitroglycoluril (TNGU, SORGUYL) (CAS 55510-03-7);
- 14. Tetranitrobenzotriazolobenzotriazole (TACOT) (CAS 25243-36-1);
- 15. Diaminohexanitrobiphenyl (DIPAM) (CAS 17215-44-0);
- 16. Picrylaminodinitropyridine (PYX) (CAS 38082-89-2);
- 17. 3-nitro-1,2,4-triazol-5-one (NTO or ONTA) (CAS 932-64-9);
- 18. Hydrazine (CAS 302-01-2) in concentrations of 70% or more; hydrazine nitrate (CAS 37836-27-4); hydrazine perchlorate (CAS 27978-54-7); unsymmetrical dimethyl hydrazine (CAS 57-14-7); monomethyl hydrazine (CAS 60-34-4); symmetrical dimethyl hydrazine (CAS 540-73-8);
- 19. Ammonium perchlorate (CAS 7790-98-9);
- 20. Cyclotrimethylenetrinitramine (RDX) (CAS 121-82-4); cyclonite; T4; hexahydro-1,3,5-trinitro-1,3,5-triazine; 1,3,5-trinitro-1,3,5-triaza-cyclohexane (hexogen, hexogene);
- 21. Hydroxylammonium nitrate (HAN) (CAS 13465-08-2); hydroxylammonium perchlorate (HAP) (CAS 15588-62-2);
- 22. 2-(5-cyanotetrazolato) penta amine-cobalt (III) perchlorate (or CP) (CAS 70247-32-4);
- 23. cis-bis (5-nitrotetrazolato) tetra amine-cobalt (III) perchlorate (or BNCP);
- 24. 7-Amino-4,6-dinitrobenzofurazane-1-oxide (ADNBF) (CAS 97096-78-1); amino dinitrobenzofuroxan;
- 25. 5,7-diamino-4,6-dinitrobenzofurazane-1-oxide (CAS 117907-74-1), (CL-14 or diamino dinitrobenzofuroxan);
- 26. 2,4,6-trinitro-2,4,6-triazacyclohexanone (K-6 or Keto-RDX) (CAS 115029-35-1);
- 27. 2,4,6,8-tetranitro-2,4,6,8-tetraaza-bicyclo [3,3,0]octanone-3 (CAS 130256-72-3) (tetranitro-semiglycouril, K-55 or keto-bicyclic HMX);
- 28. 1,1,3-trinitroazetidine (TNAZ) (CAS 97645-24-4);
- 29. 1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) (CAS 135877-16-6);
- 30. Hexanitrohexaazaisowurtzitane (CAS 135285-90-4) (CL-20) or HNIW; and chlathrates of CL-20);
- 31. Polynitrocubanes with more than four nitro groups;
- 32. Ammonium dinitramide (ADN or SR 12) (CAS 140456-78-6);

33. Trinitrophenylmethylnitramine (tetryl) (CAS 479-45-8); b. Explosives and propellants that meet the following performance parameters:

Any explosive with a detonation velocity exceeding 1. 8,700 m/s or a detonation pressure exceeding 34 GPa (340 kbar);

2008.b. con't.

- Other organic explosives not listed in Item 2008. yielding detonation pressures of 25 GPa (250 kbar) or more that will remain stable at temperatures of 523 K (250° C) or higher for periods of 5 minutes or longer;
- Any other United Nations (UN) Class 1.1 solid propellant not listed in Item 2008. with a theoretical specific impulse (under standard conditions) of more than 250 s for non-metallised, or more than 270 s for aluminised compositions;
- Any UN Class 1.3 solid propellant with a theoretical specific impulse of more than 230 s for non-halogenised, 250 s for non-metallised and 266 s for metallised compositions;
- Any other gun propellants not listed in Item 2008. having a force constant of more than 1,200 kJ/kg;
- Any other explosive, propellant or pyrotechnic not listed in Item 2008. that can sustain a steady-state burning rate of more than 38 mm/s under standard conditions of 6.89 MPa (68.9 bar) pressure and 294 K (21° C); or
- Elastomer modified cast double based propellants (EMCDB) with extensibility at maximum stress of more than 5% at 233 K (-40° C);
- c. "Military pyrotechnics";
- d. Other substances, as follows:
 - 1. Aircraft fuels specially formulated for military purposes;
 - Military materials containing thickeners for hydrocarbon fuels specially formulated for use in flamethrowers or incendiary munitions, such as metal stearates or palmates (also known as
 - octal) (CAS 637-12-7) and M1, M2, M3 thickeners;
 Liquid oxidisers comprised of or containing inhibited red fuming nitric acid (IRFNA) (CAS 8007-58-7) or oxygen difluoride;
- e. "Additives" and "precursors", as follows:
 - 1. Azidomethylmethyloxetane (AMMO) and its polymers;
 - Basic copper salicylate (CAS 62320-94-9); lead salicylate (CAS 15748-73-9);
 - Bis(2,2-dinitropropyl) formal (CAS 5917-61-3) or Bis(2,2-dinitropropyl) acetal (CAS 5108-69-0);
 - 4. Bis-(2-fluoro-2,2-dinitroethyl) formal (FEFO) (CAS 17003-79-1);
 - Bis-(2-hydroxyethyl) glycolamide (BHEGA) (CAS 17409-41-5);
 - Bis(2-methyl aziridinyl) methylamino phosphine oxide (Methyl BAPO) (CAS 85068-72-0);
 - 7. Bisazidomethyloxetane and its polymers
 - (CAS 17607-20-4);
 - 8. Bischloromethyloxetane (BCMO) (CAS142173-26-0);
 - 9. Butadienenitrileoxide (BNO);
 - 10. Butanetrioltrinitrate (BTTN) (CAS 6659-60-5);
 - 11. Catocene (CAS 37206-42-1) (2,2-Bis-ethylferrocenyl propane); ferrocene carboxylic acids; N-butyl-ferrocene (CAS 319904-29-7); Butacene (CAS 125856-62-4) and other adducted polymer ferrocene derivatives;
 - 12. Dinitroazetidine-t-butyl salt;
 - Energetic monomers, plasticisers and polymers containing nitro, azido, nitrate, nitraza or difluoroamino groups;
 - Poly-2,2,3,3,4,4-hexafluoropentane-1,5-diol formal (FPF-1);
 - 15. Poly-2,4,4,5,5,6,6-heptafluoro-2-tri-fluoromethyl-3oxaheptane-1,7-diol formal (FPF-3);
 - Glycidylazide Polymer (GAP) (CAS 143178-24-9) and its derivatives;
 - Hexabenzylhexaazaisowurtzitane (HBIW) (CAS 124782-15-6);

- Hydroxyl terminated polybutadiene (HTPB) with a hydroxyl functionality equal to or greater than 2.2 and less than or equal to 2.4, a hydroxyl value of less than 0.77 meq/g, and a viscosity at 30° C of less than 47 poise (CAS 69102-90-5);
- Superfine iron oxide (Fe₂0₃ hematite) with a specific surface area more than 250 m²/g and an average particle size of 0.003 μm or less (CAS 1309-37-1);
- 20. Lead beta-resorcylate (CAS 20936-32-7);
- Lead stannate (CAS 12036-31-6), lead maleate (CAS 19136-34-6), lead citrate (CAS 14450-60-3);
- Lead-copper chelates of beta-resorcylate or salicylates (CAS 68411-07-4);
- Nitratomethylmethyloxetane or poly (3-Nitratomethyl, 3-methyl oxetane); (Poly-NIMMO) (NMMO) (CAS 84051-81-0);
- 24. 3-Nitraza-1,5-pentane diisocyanate (CAS 7406-61-9);
- 25. N-Methyl-p-Nitroaniline (CAS 100-15-2);
- 26. Organo-metallic coupling agents, specifically:
 a. Neopentyl [diallyl] oxy, tri [dioctyl] phosphato titanate (CAS 103850-22-2); also known as titanium IV, 2,2[bis 2-propenolato-methyl, butanolato, tris (dioctyl) phosphato] (CAS 110438-25-0); or LICA 12 (CAS 103850-22-2);
 - b. Titanium IV, [(2-propenolato-1) methyl, n-propanolatomethyl] butanolato-1, tris[dioctyl] pyrophosphate; or KR3538;
 - c. Titanium IV, [(2-propenolato-1)methyl, n-propanolatomethyl] butanolato-1, tris(dioctyl) phosphate;
- 27. Polycyanodifluoroaminoethyleneoxide (PCDE);
- Polyfunctional aziridine amides with isophthalic, trimesic (BITA or butylene imine trimesamide), isocyanuric or trimethyladipic backbone structures and 2-methyl or 2-ethyl substitutions on the aziridine ring;
- Polyglycidylnitrate or poly (nitratomethyl oxirane); (Poly-GLYN) (PGN) (CAS 27814-48-8);
- 30. Polynitroorthocarbonates;
- 31. Propyleneimine, 2-methylaziridine (CAS 75-55-8);
- 32. Tetraacetyldibenzylhexaazaisowurtzitane (TAIW);
- Tetraethylenepentaamineacrylonitrile (TEPAN) (CAS 68412-45-3); cyanoethylated polyamines and their salts;
- Tetraethylenepentaamineacrylonitrileglycidol (TEPANOL) (CAS 68412-46-4); cyanoethylated polyamines adducted with glycidol and their salts;
- 35. Triphenyl bismuth (TPB) (CAS 603-33-8);
- Tris-1-(2-methyl)aziridinyl phosphine oxide (MAPO) (CAS 57-39-6); bis(2-methyl aziridinyl) 2-(2-hydroxypropanoxy) propylamino phosphine oxide (BOBBA 8); and other MAPO derivatives;
- 1,2,3-Tris [1,2-bis (difluoroamino) ethoxy] propane (CAS 53159-39-0); tris vinoxy propane adduct (TVOPA);
- 38. 1,3,5-trichlorobenzene (CAS 108-70-3);
- 39. 1,2,4 trihydroxybutane (1,2,4-butanetriol);
- 40. 1,3,5,7 tetraacetyl-1,3,5,7,-tetraaza cyclo-octane (TAT) (CAS 41378-98-7);
- 41. 1,4,5,8 Tetraazadecalin (CAS 5409-42-7);
- Low (less than 10,000) molecular weight, alcoholfunctionalised, poly(epichlorohydrin); poly(epichlorohydrindiol) and triol.

2008. con't.

Notes:

- The military explosives and fuels containing the metals or alloys listed in 2008.a.1. and 2008.a.2. are controlled whether or not the metals or alloys are encapsulated in aluminium, magnesium, zirconium or beryllium. N.B
 - See also Group 1: Dual Use List, Item 1013.11.
- 2008. does not control boron and boron carbide enriched with boron-10 (20% or more of total boron-10 content).
- 3 Aircraft fuels controlled by 2008.d.1. are finished products not their constituents.
- 2008. does not control perforators specially designed for oil well logging. 2008. does not control the following substances when not compounded 5

 - or mixed with military explosives or powdered metals: Ammonium picrate: Ethylenediaminedinitrate X. b. Black powder; (EDDN) Hexanitrodiphenylamine; y. Pentaerythritoltetranitrate C. (PETN); d Difluoroamine (HNF₂); Nitrostarch; Z Lead azide, normal and e. basic lead styphnate, and Potassium nitrate. Tetranitronaphthalene; primary explosives or g. h Trinitroanisol: priming compositions Trinitronaphthalene; containing azides or azide Trinitroxylene; complexes j. K. Fuming nitric acid non-Triethyleneglycoldinitrate aa. inhibited and not enriched; (TEGDN): 2,4,6-trinitroresorcinol bb 1 Acetylene; m. Propane; (styphnic acid); Diethyldiphenyl urea; di-Liquid oxygen; n. Hydrogen peroxide in methylidiphenyl urea; 0. concentrations of less than methylethyldiphenyl urea [Centralites] 85%: Misch metal; dd. N,N-diphenylurea D N-pyrrolidinone; 1-methyl-(unsymmetrical q. 2-pyrrolidinone, diphenylurea), Dioctylmaleate. Methyl-N,N-diphenylurea ee. r (methyl unsymmetrical Ethylhexylacrylate; S Triethylaluminium (TEA), diphenylurea); trimethylaluminium (TMA), ff. Ethyl-N,N-diphenylurea and other pyrophoric metal (ethyl unsymmetrical alkyls and aryls of lithium, diphenylurea), 2-Nitrodiphenylamine sodium, magnesium, zinc gg. and boron: (2-NDPA): Nitrocellulose; hh U.
 - Nitroglycerin (or glycer-V. oltrinitrate, trinitroglycerine)
 - (NG) 2,4,6-trinitrotoluene (TNT); W
- 4-Nitrodiphenylamine
- (4-NDPA); ii. 2,2-Dinitropropanol;
 - Chlorine trifluoride.

2009. Vessels of war, special naval equipment and accessories, as follows, and components therefor, specially designed for military use :

ii.

- a. Combatant vessels and vessels (surface or underwater) specially designed or modified for offensive or defensive action, whether or not converted to non-military use, regardless of current state of repair or operating condition, and whether or not they contain weapon delivery systems or armour, and hulls or parts of hulls for such vessels;
- b. Engines, as follows:
 - 1. Diesel engines specially designed for submarines with both of the following characteristics:
 - a. A power output of 1.12 MW (1,500 hp.) or more; and
 - b. A rotary speed of 700 rpm or more;
 - 2. Electric motors specially designed for submarines having all of the following characteristics:
 - a. A power output of more than 0.75 MW (1,000 hp.);
 - b. Quick reversing;
 - c. Liquid cooled; and
 - d. Totally enclosed;

- 3. Non-magnetic diesel engines specially designed for military use with a power output of 37.3 kW (50 hp.) or more and with a non-magnetic content in excess of 75% of total mass:
- Underwater detection devices specially designed for military С.
- use and controls thereof;
- d. Submarine and torpedo nets;
- e. Equipment for guidance and navigation specially designed for military use;
- f. Hull penetrators and connectors specially designed for

military use that enable interaction with equipment external to a vessel:

Note:

2009.f. includes connectors for vessels which are of the single-conductor, multi-conductor, coaxial or waveguide type, and hull penetrators for vessels, both of which are capable of remaining impervious to leakage from without and of retaining required characteristics at marine depths exceeding 100 m; and fibre-optic connectors and optical hull penetrators specially designed for "laser" beam transmission regardless of depth. It does not include ordinary propulsive shaft and hydrodynamic control-rod hull penetrators.

Silent bearings with gas or magnetic suspension, active g. signature or vibration suppression controls, and equipment containing those bearings, specially designed for military use.

2010. "Aircraft". unmanned airborne vehicles. aero-engines and "aircraft" equipment, related equipment and components, specially designed or modified for military use, as follows:

- a. Combat "aircraft" and specially designed components therefor;
- b. Other "aircraft" specially designed or modified for military use, including military reconnaissance, assault, military training, transporting and airdropping troops or military equipment, logistics support, and specially designed components therefor;
- Aero-engines specially designed or modified for military use, C. and specially designed components therefor;
- Unmanned airborne vehicles and related equipment, specially d. designed or modified for military use, as follows, and specially designed components therefor:
 - 1. Unmanned airborne vehicles including remotely piloted air vehicles (RPVs) and autonomous programmable vehicles;
 - Associated launchers and ground support equipment; 2.
 - Related equipment for command and control. 3.
- Airborne equipment, including airborne refuelling equipment, e. specially designed for use with the "aircraft" controlled by 2010.a. or 2010.b. or the aero-engines controlled by 2010.c., and specially designed components therefor;
- Pressure refuellers, pressure refuelling equipment, equipment f. specially designed to facilitate operations in confined areas and ground equipment, developed specially for "aircraft" controlled by 2010.a. or 2010.b., or for aero-engines controlled by 2010.c.;
- Pressurised breathing equipment and partial pressure suits for g. use in "aircraft", anti-g suits, military crash helmets and protective masks, liquid oxygen converters used for "aircraft" or missiles, and catapults and cartridge actuated devices for emergency escape of personnel from "aircraft";

2010. con't.

- Parachutes used for combat personnel, cargo dropping or "aircraft" deceleration, as follows:
 - 1. Parachutes for:
 - a. Pin point dropping of rangers;
 - b. Dropping of paratroopers;
 - 2. Cargo parachutes;
 - Paragliders drag parachutes, drogue parachutes for stabilisation and attitude control of dropping bodies, (e.g., recovery capsules, ejection seats, bombs);
 - Drogue parachutes for use with ejection seat systems for deployment and inflation sequence regulation of emergency parachutes;
 - Recovery parachutes for guided missiles, drones or space vehicles:
 - 6. Approach parachutes and landing deceleration parachutes;
 - 7. Other military parachutes;
 - Automatic piloting systems for parachuted loads; equipment specially designed or modified for military use for controlled opening jumps at any height, including oxygen equipment.

Notes:

- 2010.b. does not control "aircraft" or variants of those "aircraft" specially designed for military use which:
 - a. Are not configured for military use and are not fitted with equipment or attachments specially designed or modified for military use; and
 - b. Have been certified for civil use by the civil aviation authority in a participating state.
- 2. 2010.c. does not control.
 - Aero-engines designed or modified for military use which have been certified by civil aviation authorities in a participating state for use in "civil aircraft", or specially designed components therefor;
 Reciprocating engines or specially designed components therefor.
- The control in 2010.b. and 2010.c. on specially designed components and related equipment for non-military "aircraft" or aero-engines modified for military use applies only to those military components and to military

related equipment required for the modification to military use.

2011. Electronic equipment, not controlled elsewhere on the Munitions List, specially designed for military use and specially designed components therefor.

Note:

- This Item includes:
- a. Electronic countermeasure and electronic counter-countermeasure equipment (i.e., equipment designed to introduce extraneous or erroneous signals into radar or radio communication receivers or otherwise hinder the reception, operation or effectiveness of adversary electronic receivers including their countermeasure equipment), including jamming and counter-jamming equipment;
- b. Frequency agile tubes;
- Electronic systems or equipment designed either for surveillance and monitoring of the electro-magnetic spectrum for military intelligence or security purposes or for counteracting such surveillance and monitoring;
- Underwater countermeasures, including acoustic and magnetic jamming and decoy, equipment designed to introduce extraneous or erroneous signals into sonar receivers;
- Data processing security equipment, data security equipment and transmission and signalling line security equipment, using ciphering processes;
- f. Identification, authentification and keyloader equipment and key management, manufacturing and distribution equipment.

2012. High velocity kinetic energy weapon systems and related equipment, as follows, and specially designed components therefor:

 Kinetic energy weapon systems specially designed for destruction or effecting mission-abort of a target; Specially designed test and evaluation facilities and test models, including diagnostic instrumentation and targets, for dynamic testing of kinetic energy projectiles and systems;

N.B.:

For weapon systems using sub-calibre ammunition or employing solely chemical propulsion, and ammunition therefor, see Items 2001. to 2004. Notes:

- 2012. includes the following when specially designed for kinetic energy weapon systems:
 - Launch propulsion systems capable of accelerating masses larger than 0.1 g to velocities in excess of 1.6 km/s, in single or rapid fire modes;
- b. Prime power generation, electric armour, energy storage, thermal management, conditioning, switching or fuel-handling equipment; and electrical interfaces between power supply, gun and other turret electric drive functions:
- Target acquisition, tracking, fire control or damage assessment systems;
- d. Homing seeker, guidance or divert propulsion (lateral acceleration) systems for projectiles.
- 2012. controls weapon systems using any of the following methods of propulsion:
 - a. Electromagnetic;
 - b. Electrothermal;
 - c. Plasma; d Light gas

3.

- . Light gas; or
- e. Chemical (when used in combination with any of the above).
 2012. does not control "technology" for magnetic induction for continuous

2013. Armoured or protective equipment and constructions and components, as follows:

- a. Armoured plate as follows:
 - Manufactured to comply with a military standard or specification; or
 - 2. Suitable for military use;

propulsion of civil transport devices.

- Combinations of metallic and non-metallic materials or combinations thereof specially designed to provide ballistic protection for military systems, and specially designed components therefor;
- c. Military helmets;
- d. Body armour, and flak suits manufactured according to military standards or specifications, or equivalent, and specially designed components therefor.

Notes:

- 1. 2013.b. includes materials specially designed to form explosive reactive armour or to construct military shelters.
- 2013.c. does not control conventional steel helmets, neither modified or designed to accept, nor equiped with any type of accessory device.
- 2013.d. does not control individual suits of body armour for personal protection and accessories therefor when accompanying their users.

N.B

See also Group 1: Dual Use List, Item 1011.5.

2014. Specialised equipment for military training or for simulating military scenarios, and specially designed components and accessories therefor.

Technical Note:

- 1. The term 'specialised equipment for military training' includes military types of attack trainers, operational flight trainers, radar target trainers, radar target generators, gunnery training devices, anti-submarine warfare trainers, flight simulators (including human-rated centrifuges for pilot/astronaut training), radar trainers, instrument flight trainers, navigation trainers, missile launch trainers, target equipment, drone "aircraft", armament trainers, pilotless "aircraft" trainers and mobile training units.
- Item 2014. includes image generating and interactive environment systems for simulators when specially designed or modified for military use.

2015. Imaging or countermeasure equipment, as follows, specially designed for military use, and specially designed components and accessories therefor:

- a. Recorders and image processing equipment;
- b. Cameras, photographic equipment and film processing equipment;
- c. Image intensifier equipment;
- d. Infrared or thermal imaging equipment;
- e. Imaging radar sensor equipment;
- f. Countermeasure or counter-countermeasure equipment for the equipment controlled by 2015.a. to 2015.e.

Note: 2015.

2015.f. includes equipment designed to degrade the operation or effectiveness of military imaging systems or to minimize such degrading effects.

Notes:

- The term 'specially designed components' includes the following when specially designed for military use:
 - a. Infrared image converter tubes;
 - b. Image intensifier tubes (other than first generation);
 - c. Microchannel plates;
 - d. Low-light-level television camera tubes;
 - Detector arrays (including electronic interconnection or read out systems);
 - f. Pyroelectric television camera tubes;
 - g. Cooling systems for imaging systems;
 - h. Electrically triggered shutters of the photochromic or electro-optical type having a shutter speed of less than 100 μs, except in the case of shutters which are an essential part of a high speed camera;
 i. Fibre optic image inverters;
 - j. Compound semiconductor photocathodes.
- 2015. does not control "first generation image intensifier tubes" or equipment specially designed to incorporate "first generation image intensifier tubes".

N.B.:

For the status of weapons sights incorporating "first generation image intensifer tubes" see entries 2001., 2002. and 2005.a.

N.B.: See also Items 1061.2.a.2. and 1061.2.b. on the Dual-Use List (Group 1).

- **2016.** Forgings, castings and other unfinished products the use of which in a controlled product is identifiable by material composition, geometry or function, and which are specially designed for any products controlled by 2001. to 2004., 2006., 2009., 2010., 2012. or 2019.
- 2017. Miscellaneous equipment, materials and libraries, as follows, and specially designed components therefor:
- a. Self-contained diving and underwater swimming apparatus, as follows:
 - 1. Closed or semi-closed circuit (rebreathing) apparatus specially designed for military use (i.e., specially designed to be non magnetic);
 - 2. Specially designed components for use in the conversion of open-circuit apparatus to military use;
 - 3. Articles designed exclusively for military use with self-contained diving and underwater swimming apparatus;
- b. Construction equipment specially designed for military use;
- Fittings, coatings and treatments for signature suppression, specially designed for military use;
- d. Field engineer equipment specially designed for use in a combat zone;

- e. "Robots", "robot" controllers and "robot" "end-effectors", having any of the following characteristics:
 - 1. Specially designed for military use;
 - 2. Incorporating means of protecting hydraulic lines against externally induced punctures caused by ballistic fragments (e.g., incorporating self-sealing lines) and designed to use hydraulic fluids with flash points higher than 839 K (566°C); or
 - 3. Specially designed or rated for operating in an electro-magnetic pulse (EMP) environment;
- f. Libraries (parametric technical databases) specially designed for military use with equipment controlled by Group 2, Munitions List;
- Nuclear power generating equipment or propulsion equipment, including nuclear reactors, specially designed for military use and components therefor specially designed or modified for military use;
- h. Equipment and material coated or treated for signature suppression specially designed for military use, other than those controlled elsewhere in Group 2, Munitions List;
- i. Simulators specially designed for military "nuclear reactors";
- j. Mobile repair shops specially designed to service military equipment;
- k. Field generators specially designed for military use;
- 1. Containers specially designed for military use.
- m Bridges specially designed for military use. Technical Note:

For the purpose of 2017., the term 'library' (parametric technical database) means a collection of technical information of a military nature, reference to which may enhance the performance of military equipment or systems.

2018. Equipment and "technology" for the production of products referred to in the Munitions List, as follows:

- a. Specially designed or modified production equipment for the production of products controlled by this List, and specially designed components therefor;
- b. Specially designed environmental test facilities and specially designed equipment therefor, for the certification, qualification or testing of products controlled by the Munitions List;
- c. Specific production "technology", even if the equipment with which such "technology" is to be used is not controlled;
- d. "Technology" specific to the design of, the assembly of components into, and the operation, maintenance and repair of complete production installations even if the components themselves are not controlled.

Technical Note:

For the purposes of 2018., the term 'production' includes design, examination, manufacture, testing and checking.

Note:

- 1. 2018.a. and 2018.b. include the following equipment:
 - a. Continuous nitrators;
 - b. Centrifugal testing apparatus or equipment having any of the following characteristics:
 - Driven by a motor or motors having a total rated horsepower of more than 298 kW (400 hp);
 - . Capable of carrying a payload of 113 kg or more; or
 - Capable of exerting a centrifugal acceleration of 8 g or more on a payload of 91 kg or more;
 - c. Dehydration presses;
 - d. Screw extruders specially designed or modified for military explosive extrusion;

2018. notes 1 con't.

- Cutting machines for the sizing of extruded propellants;
 Sweetie barrels (tumblers) 1.85 m or more in diameter and having over 227 kg product capacity;
- g. Continuous mixers for solid propellants;
- Fluid energy mills for grinding or milling the ingredients of military explosives;
- i. Equipment to achieve both sphericity and uniform particle size in metal powder listed in 2008.a.1.;
- i. Convection current converters for the conversion of materials listed in Item 2008.a.6.
- a. The term 'products referred to in the Munitions List' includes:
 - 1. Products not controlled if inferior to specified concentrations as follows:
 - a) hydrazine (see 2008.a.18.);
 - b) "Military explosives" (see 2008.);
 - Products not controlled if inferior to technical limits, (i.e. "superconductive" materials not controlled by 1013.5. on the Dual-Use List; "superconductive" electromagnets not controlled by 1031.1.e.3. on the Dual-Use List; "superconductive" electrical equipment excluded from control under Item 2020.b.);
 - Metal fuels and oxidants deposited in laminar form from the vapour phase (see 2008.a.2.);
- 2. b.

2

- The term 'products referred to in the Munitions List' does not include: 1 Signal pistols (see Item 2002.b.);
 - 2. The substances excluded from control under Note 3 to Item 2007.
 - Personal radiation monitoring dosimeters (see 2007.f.) and masks for protection against specific industrial hazards (see also Group 1, Dual-Use List);
 - Acetylene, propane, liquid oxygen, difluoramine (HNF2), fuming nitric acid and potassium nitrate powder (see Note 5 to Item 2008.);
 - 5. Aero-engines excluded from control under Item 2010.;
 - Conventional steel helmets not equipped with, or modified or designed to accept, any type of accessory device (see Note 2 to Item 2013.);
 - Equipment fitted with industrial machinery which is not controlled, such as coating machinery not elsewhere specified and equipment for the casting of plastics;
 - Muskets, rifles and carbines dated earlier than 1938, reproductions of muskets, rifles and carbines dated earlier than 1890, revolvers, pistols and machine guns dated earlier than 1890, and their reproductions;
- Note 2.b.8. of 2018. does not release from controls "technology" or production equipment for non-antique small arms, even if used to produce reproductions of antique small arms.
- 2018.d. does not include "technology" for civil purposes, such as agricultural, pharmaceutical, medical, veterinary, environmental, waste management, or in the food industry (see Note 5 to Item 2007.).

N.B.

(See Note 4 to 2017)

2019. Directed energy weapon systems (DEW), related or

countermeasure equipment and test models, as follows, and specially designed components therefor:

- a. "Laser" systems specially designed for destruction or effecting mission-abort of a target;
- b. Particle beam systems capable of destruction or effecting mission-abort of a target;
- c. High power radio-frequency (RF) systems capable of
- destruction or effecting mission-abort of a target;
- d. Equipment specially designed for the detection or identification of, or defence against, systems controlled by 2019.a., 2019.b. or 2019.c.;
- e. Physical test models and related test results for the systems, equipment and components controlled by this Item.
- f. Continuous wave or pulsed "laser" systems specially designed to cause permanent blindness to unenhanced vision, i.e., to the naked eye or to the eye with corrective eyesight devices.

notes:

- Directed energy weapon systems controlled by 2019. include systems whose capability is derived from the controlled application of:
 - "Lasers" of sufficient continuous wave or pulsed power to effect destruction similar to the manner of conventional ammunition;
 - b. Particle accelerators which project a charged or neutral particle beam with destructive power;
 - c. High pulsed power or high average power radio frequency beam transmitters which produce fields sufficiently intense to disable electronic circuitry at a distant target.
- 2019. includes the following when specially designed for directed energy weapon systems:
 - Prime power generation, energy storage, switching, power conditioning or fuel-handling equipment;
 - b. Target acquisition or tracking systems;
 - Systems capable of assessing target damage, destruction or mission-abort;
 - d. Beam-handling, propagation or pointing equipment;
 - Equipment with rapid beam slew capability for rapid multiple target operations;
 - f. Adaptive optics and phase conjugators;
 - g. Current injectors for negative hydrogen ion beams;
 - h. "Space qualified" accelerator components;
 - i. Negative ion beam funnelling equipment;
 - j. Equipment for controlling and slewing a high energy ion beam;
 - k. "Space qualified" foils for neutralising negative hydrogen isotope beams.

2020. Cryogenic and "superconductive" equipment, as follows, and specially designed components and accessories therefor:

- a. Equipment specially designed or configured to be installed in a vehicle for military ground, marine, airborne or space
 - applications, capable of operating while in motion and of producing or maintaining temperatures below 103K (-170°C); *Note:*

2020.a. includes mobile systems incorporating or employing accessories or components manufactured from non-metallic or non-electrical conductive materials, such as plastics or epoxy-impregnated materials.

 "Superconductive" electrical equipment (rotating machinery and transformers) specially designed or configured to be installed in a vehicle for military ground, marine, airborne or space applications, capable of operating while in motion. *Note:*

2020.b. does not control direct-current hybrid homopolar generators that have single-pole normal metal armatures which rotate in a magnetic field produced by superconducting windings, provided those windings are the only superconducting component in the generator.

2021. "Software", as follows:

- a. "Software" specially designed or modified for the "development", "production" or "use" of equipment or materials controlled by the Munitions List;
- b. Specific "software", as follows:
 - 1. "Software" specially designed for:
 - Modelling, simulation or evaluation of military weapon systems;
 - b. "Development", monitoring, maintenance or up-dating of "software" embedded in military weapon systems;
 - c. Modelling or simulating military operation scenarios, not controlled by 2014.;
 - d. Command, Communications, Control and Intelligence (C³I) applications;
 - 2. "Software" for determining the effects of conventional, nuclear, chemical or biological warfare weapons.
 - 3. "Software", not controlled by 2021.a., b.1. or b.2., specially designed or modified to enable equipment

2021.b.3. con't.

which is not controlled by the Munitions List to perform the function of equipment controlled by 2005, 2007.f., 2009.e., 2010.e., 2011, 2014, 2015, 2017.i., or 2018.

2022. "Technology" according to the General Technology Note of the Munitions List for the "development", "production" or "use" of items controlled in the Munitions List, other than that "technology" controlled in Items 2007. and 2018.

Definitions for Terms in Groups 1 and 2

"Accuracy"

(Usually measured in terms of inaccuracy) is the maximum deviation, positive or negative, of an indicated value from an accepted standard or true value.

"Active flight control systems"

Function to prevent undesirable "aircraft" and missile motions or structural loads by autonomously processing outputs from multiple sensors and then providing necessary preventive commands to effect automatic control.

"Active pixel"

A minimum (single) element of the solid state array which

has a photoelectric transfer function when exposed to light

(electromagnetic) radiation.

"Adapted for use in war"

Any modification or selection (such as altering purity, shelf life, virulence, dissemination characteristics, or resistance to UV radiation) designed to increase the effectiveness in

producing casualties in humans or animals, degrading equipment or damaging crops or the environment.

"Adaptive control"

A control system that adjusts the response from conditions detected during the operation (Reference: ISO 2806-1980).

"Additives"

Substances used in explosove formulations to improve their properties.

"Aircraft"

A fixed wing, swivel wing, rotary wing (helicopter), tilt rotor or tilt- wing airborne vehicle.

"Angular position deviation"

The maximum difference between angular position and the actual, very accurately measured angular position after the workpiece mount of the table has been turned out of its initial position. (Reference: VDI/VDE 2617, Draft: 'Rotary tables on coordinate measuring machines').

"Asynchronous transfer mode" ("ATM")

A transfer mode in which the information is organised into cells; it is asynchronous in the sense that the recurrence of cells depends on the required or instantaneous bit rate. (CCITT Recommendation L.113)

"ATM"

"ATM" is equivalent to "Asynchronous transfer mode". "Automatic target tracking"

A processing technique that automatically determines and provides as output an extrapolated value of the most probable position of the target in real time.

"Basic gate propagation delay time"

The propagation delay time value corresponding to the basic gate used within a "family" of "monolithic integrated circuits". This may be specified, for a given "family", either as the propagation delay time per typical gate or as the typical propagation delay time per gate. N.B.: "Basic gate propagation delay time" is not to be confused with the input/output delay time of a complex "monolithic integrated circuit".

"Basic scientific research"

Experimental or theoretical work undertaken principally to acquire new knowledge of the fundamental principles of phenomena or observable facts, not primarily directed towards a specific practical aim or objective.

"Bias" (accelerometer)

An accelerometer output when no acceleration is applied. "Biocatalysts"

Enzymes or other biological compounds which bind to and accelerate the degradation of CW agents.

N.B.: 'Enzymes' means "biocatalysts" for specific chemical or biochemical reactions.

"Biopolymers"

Biological macromolecules as follows:

a. Enzymes;

- b. Antibodies, monoclonal, polyclonal or anti-idiotypic;
- c. Specially designed or specially processed receptors;
- N.B.1: 'Enzymes': means "biocatalysts" for specific chemical or biochemical reactions;
- **N.B.2:** 'Anti-idiotypic antibodies' means antibodies which bind to the specific antigen binding sites of other antibodies;
- **N.B.3:** 'Monoclonal antibodies' means proteins which bind to one antigenic site and are produced by a single clone of cells;
- **N.B.4:** 'Polyclonal antibodies' means A mixture of proteins which bind to the specific antigen and are produced by more than one clone of cells;
- **N.B.5:** 'Receptors' means Biological macromolecular structures capable of binding ligands, the binding of which affects physiological functions.

"Camming" (axial displacement)

Axial displacement in one revolution of the main spindle measured in a plane perpendicular to the spindle faceplate, at a point next to the circumference of the spindle faceplate (Reference: ISO 230/1 1986, paragraph 5.63).

"CE"

"CE" is equivalent to "computing element".

"Chemical Laser"

A "laser" in which the excited species is produced by the output energy from a chemical reaction.

"Circuit element"

A single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.

"Circulation-controlled anti-torque or circulation-controlled direction control systems"

Use air blown over aerodynamic surfaces to increase or control the forces generated by the surfaces.

"Civil aircraft"

Those "aircraft" listed by designation in published airworthiness certification lists by the civil aviation authorities to fly commercial civil internal and external routes or for legitimate civil, private or business use.

"Commingled"

Filament to filament blending of thermoplastic fibres and reinforcement fibres in order to produce a fibre reinforcement "matrix" mix in total fibre form. "Comminution"

A process to reduce a material to particles by crushing or grinding.

"Common channel signalling"

A signalling method in which a single channel between exchanges conveys, by means of labelled messages, signalling information relating to a multiplicity of circuits or calls and other information such as that used for network management.

"Communications channel controller"

The physical interface which controls the flow of synchronous or asynchronous digital information. It is an assembly that can be integrated into computer or telecommunications equipment to provide communications access.

"Composite"

A "matrix" and an additional phase or additional phases consisting of particles, whiskers, fibres or any combination thereof, present for a specific purpose or purposes.

"Composite theoretical performance" ("CTP")

A measure of computational performance given in millions of theoretical operations per second (Mtops), calculated using the aggregation of "computing elements"

N.B.: See Category 1040, Technical Note.

"Compound rotary table"

A table allowing the workpiece to rotate and tilt about two non-parallel axes, which can be coordinated simultaneously for "contouring control".

"Computing element" ("CE")

The smallest computational unit that produces an arithmetic or logic result.

"Contouring control"

Two or more "numerically controlled" motions operating in accordance with instructions that specify the next required position and the required feed rates to that position. These feed rates are varied in relation to each other so that a desired contour is generated (Ref. ISO/DIS 2806 - 1980).

"Critical temperature"

(sometimes referred to as the transition temperature) of a specific "superconductive" material is the temperature at which the material loses all resistance to the flow of direct electrical current.

"Cryptography"

The discipline which embodies principles, means and methods for the transformation of data in order to hide its information content, prevent its undetected modification or prevent its unauthorized use. "Cryptography" is limited to the transformation of information using one or more secret para-meters (e.g., crypto variables) or associated key management.

N.B.: Secret parameter': a constant or key kept from the knowledge of others or shared only within a group.

"CTP"

"CTP" is equivalent to "Composite theoretical performance". "Data signalling rate"

The rate, as defined in ITU Recommendation 53-36, taking into account that, for non-binary modulation, baud and bit per second are not equal. Bits for coding, checking and synchronisation functions are to be included.

N.B.1: When determining the "data signalling rate", servicing and administrative channels shall be excluded.

N.B.2: It is the maximum one-way rate, i.e., the maximum rate in either transmission or reception.

"Deformable Mirrors"

Mirrors:

- a. Having a single continuous optical reflecting surface which is dynamically deformed by the application of individual torques or forces to compensate for distortions in the optical waveform incident upon the mirror; **or**
- b. Having multiple optical reflecting elements that can be individually and dynamically repositioned by the application of torques or forces to compensate for distortions in the optical waveform incident upon the mirror.

"Deformable mirrors" are also known as adaptive optic mirrors.

"Development"

Is related to all stages prior to serial production, such as: design, design research, design analyses, design concepts, assembly and testing of prototypes, pilot production schemes, design data, process of transforming design data into a product, configuration design, integration design, layouts.

"Diffusion bonding"

A solid state molecular joining of at least two separate metals into a single piece with a joint strength equivalent to that of the weakest material.

"Digital computer"

Equipment which can, in the form of one or more discrete variables, perform all of the following:

- a. Accept data;
- b. Store data or instructions in fixed or alterable (writable) storage devices:
- c. Process data by means of a stored sequence of instructions which is modifiable; **and**

d. Provide output of data.

N.B.: Modifications of a stored sequence of instructions include replacement of fixed storage devices, but not a physical change in wiring or interconnections.

"Digital transfer rate"

The total bit rate of the information that is directly transferred on any type of medium. (See also "total digital transfer rate").

"Direct-acting hydraulic pressing"

A deformation process which uses a fluid-filled flexible bladder in direct contact with the workpiece. "Discrete component"

A separately packaged "circuit element" with its own external connections.

"Drift rate" (gyro)

The time rate of output deviation from the desired output. It consists of random and systematic components and is expressed as an equivalent input angular displacement per unit time with respect to inertial space.

"Dynamic adaptive routing"

Automatic rerouting of traffic based on sensing and analysis of current actual network conditions.

N.B.: This does not include cases of routing decisions taken on predefined information.

"Dynamic signal analysers"

"Signal analysers" which use digital sampling and transformation techniques to form a Fourier spectrum display of the given waveform including amplitude and phase information.

"Effective gram"

- "Effective gram" for plutonium isotope is defined as the isotope weight in grams.
- "Electronically steerable phased array antenna"

An antenna which forms a beam by means of phase coupling, i.e., the beam direction is controlled by the complex excitation coefficients of the radiating elements and the direction of that beam can be varied in azimuth or in elevation, or both, by application, both in transmission and reception, of an electrical signal.

"Electronic assembly"

A number of electronic components (i.e., "circuit elements", "discrete components", integrated circuits, etc.) connected together to perform (a) specific function(s), replaceable as an entity and normally capable of being disassembled.

"End-effectors"

"End-effectors" include grippers, active tooling units and any other tooling that is attached to the baseplate on the end of a "robot" manipulator arm. *Technical Note:*

'Active tooling units' are devices for applying motive power, process energy or sensing to a workpiece.

"Equivalent Density"

The mass of an optic per unit optical area projected onto the optical surface.

"Expert systems"

- Systems providing results by application of rules to data which are stored independently of the "programme" and capable of any of the following:
- a. Modifying automatically the "source code" introduced by the user;
- b. Providing knowledge linked to a class of problems in quasi-natural language; **or**
- c. Acquiring the knowledge required for their development (symbolic training).

"Expression Vectors"

Carriers (e.g., plasmid or virus) used to introduce genetic material into host cells.

"FADEC"

Full Authority Digital Engine Control (FADEC) - an electronic control system for gas turbine or combined cycle engines utilising a digital computer to control the variables required to regulate engine thrust or shaft power output throughout the engine operating range from the beginning of fuel metering to fuel shutoff.

"Family"

Consists of microprocessor or microcomputer microcircuits, having all of the following:

a. The same architecture;

- b. The same basic instruction set; and
- c. The same basic "technology" (e.g., only NMOS or only CMOS).

"Fault tolerance"

The capability of a computer system, after any malfunction of any of its hardware or "software" components, to continue to operate without human intervention, at a given level of service that provides continuity of operation, data integrity and recovery of service within a given time.

"Fibrous or filamentary materials"

- Include:
- a. Continuous monofilaments;
- b. Continuous yarns and rovings;
- c. Tapes, fabrics, random mats and braids;
- d. Chopped fibres, staple fibres and coherent fibre blankets;e. Whiskers, either monocrystalline or polycrystalline, of
- any length;
- f. Aromatic polyamide pulp.

"Film type integrated circuit"

An array of "circuit elements" and metallic interconnections formed by deposition of a thick or thin film on an insulating "substrate".

"First generation image intensifier tubes"

Electrostatically focused tubes, employing input and output fibre optic or glass face plates, multi-alkali photocathodes (S-20 or S-25), but not microchannel plate amplifiers.

"Fixed"

The coding or compression algorithm cannot accept externally supplied parameters (e.g., cryptographic or key variables) and cannot be modified by the user.

"Flight control optical sensor array"

A network of distributed optical sensors, using "laser" beams, to provide real-time flight control data for on-board processing.

"Flight path optimization"

A procedure that minimizes deviations from a fourdimensional (space and time) desired trajectory based on maximizing performance or effectiveness for mission tasks.

"Focal plane array"

A linear or two-dimensional planar layer, or combination of planar layers, of individual detector elements, with or without readout electronics, which work in the focal plane.

N.B.: This definition does not include a stack of single detector elements or any two, three or four element detectors provided time delay and integration is not performed within the element.

"Frequency agility" (frequency hopping)

A form of "spread spectrum" in which the transmission frequency of a single communication channel is made to change by discrete steps.

"Frequency switching time"

The maximum time (i.e., delay) taken by a signal, when switched from one selected output frequency to another selected output frequency, to reach any of the following:

a. A frequency within 100 Hz of the final frequency; or

b. An output level within 1 dB of the final output level. "Frequency synthesiser"

Any kind of frequency source or signal generator, regardless of the actual technique used, providing a multiplicity of simultaneous or alternative output frequencies, from one or more outputs, controlled by, derived from or disciplined by a lesser number of standard (or master) frequencies.

"Gas Atomisation"

A process to reduce a molten stream of metal alloy to droplets of 500 μm diameter or less by a high pressure gas stream.

"Gateway"

The function, realised by any combination of equipment and "software", to carry out the conversion of conventions for representing, processing or communicating information used in one system into the corresponding but different conventions used in another system.

"Geographically dispersed"

Sensors are considered "geographically dispersed" when each location is distant from any other more than 1,500 m in any direction. Mobile sensors are always considered "geographically dispersed".

"Global interrupt latency time"

The time taken by the computer system to recognize an interrupt due to the event, service the interrupt and perform a context switch to an alternate memory-resident task waiting on the interrupt.

"Hot isostatic densification"

A process of pressurising a casting at temperatures exceeding $375 \text{ K} (102^{\circ}\text{C})$ in a closed cavity through various media (gas, liquid, solid particles, etc.) to create equal force in all directions to reduce or eliminate internal voids in the casting.

"Hybrid computer"

Equipment which can perform all of the following:

- a. Accept data;
- b. Process data, in both analogue and digital
- representations; and

c. Provide output of data.

"Hybrid integrated circuit"

Any combination of integrated circuit(s), or integrated circuit with "circuit elements" or "discrete components" connected together to perform (a) specific function(s), and having all of the following characteristics:

- a. Containing at least one unencapsulated device;
- b. Connected together using typical IC production methods;
- c. Replaceable as an entity; and

d. Not normally capable of being disassembled.

"Image enhancement"

The processing of externally derived information-bearing images by algorithms such as time compression, filtering, extraction, selection, correlation, convolution or transformations between domains (e.g., fast Fourier transform or Walsh transform). This does not include algorithms using only linear or rotational transformation of a single image, such as translation, feature extraction, registration or false coloration.

"Information security"

All the means and functions ensuring the accessibility, confidentiality or integrity of information or communications, excluding the means and functions intended to safeguard against malfunctions. This includes "cryptography", cryptanalysis, protection against compromising emanations and computer security.

N.B.: 'Cryptanalysis': the analysis of a cryptographic system or its inputs and outputs to derive confidential variables or sensitive data, including clear text. (ISO 7498-2-1988 (E), paragraph 3.3.18).

"Instantaneous bandwidth"

The bandwidth over which output power remains constant within 3 dB without adjustment of other operating parameters.

"Instrumented range"

The specified unambiguous display range of a radar. "Integrated Services Digital Network" ("ISDN")

A unified end-to-end digital network, in which data originating from all types of communication (e.g., voice, text, data, still and moving pictures) are transmitted from one port (terminal) in the exchange (switch) over one access line to and from the subscriber.

"Interconnected radar sensors"

Two or more radar sensors are interconnected when they mutually exchange data in real time.

"In the public domain"

This means "technology" or "software" which has been made available without restrictions upon its further dissemination. **N.B.:** Copyright restrictions do not remove "technology" or "software" from being "in the public domain".

"Intrinsic magnetic gradiometer"

A single magnetic field gradient sensing element and associated electronics the output of which is a measure of magnetic field gradient.

"ISDN"

"ISDN" is equivalent to "Integrated Services Digital Network". "Isostatic presses"

isostatic presses

Equipment capable of pressurising a closed cavity through various media (gas, liquid, solid particles, etc.) to create equal pressure in all directions within the cavity upon a workpiece or material.

"Laser"

An assembly of components which produce both spatially and temporally coherent light that is amplified by stimulated emission of radiation.

"Linearity"

(Usually measured in terms of non-linearity) is the maximum deviation of the actual characteristic (average of upscale and downscale readings), positive or negative, from a straight line so positioned as to equalise and minimise the maximum deviations.

"Local area network"

A data communication system having all of the following characteristics:

- a. Allows an arbitrary number of independent 'data devices' to communicate directly with each other; **and**
- b. Is confined to a geographical area of moderate size (e.g., office building, plant, campus, warehouse).

Technical Note:

'Data device' means equipment capable of transmitting or receiving sequences of digital information.

"Magnetic gradiometers"

Are designed to detect the spatial variation of magnetic fields from sources external to the instrument. They consist of multiple "magnetometers" and associated electronics the output of which is a measure of magnetic field gradient. (See also "Intrinsic Magnetic Gradiometer")

"Magnetometers"

Are designed to detect magnetic fields from sources external to the instrument. They consist of a single magnetic field sensing element and associated electronics the output of which is a measure of the magnetic field.

"Main storage"

The primary storage for data or instructions for rapid access by a central processing unit. It consists of the internal storage of a "digital computer" and any hierarchical extension thereto, such as cache storage or non-sequentially accessed extended storage.

"Matrix"

A substantially continuous phase that fills the space between particles, whiskers or fibres.

"Measurement uncertainty"

The characteristic parameter which specifies in what range around the output value the correct value of the measurable variable lies with a confidence level of 95%. It includes the uncorrected systematic deviations, the uncorrected backlash and the random deviations (Reference: ISO 10360-2, or VDI/VDE2617). "Mechanical alloying"

An alloying process resulting from the bonding, fracturing and rebonding of elemental and master alloy powders by mechanical impact. Non-metallic particles may be incorporated in the alloy by addition of the appropriate powders.

"Media access unit"

Equipment which contains one or more communication interfaces ("network access controller", "communications channel controller", modem or computer bus) to connect terminal equipment to a network.

"Melt extraction"

A process to "solidify rapidly" and extract a ribbon-like alloy product by the insertion of a short segment of a rotating chilled block into a bath of a molten metal alloy.

"Melt spinning"

A process to "solidify rapidly" a molten metal stream impinging upon a rotating chilled block, forming a flake, ribbon or rod-like product.

"Microcomputer microcircuit"

A "monolithic integrated circuit" or "multichip integrated circuit" containing an arithmetic logic unit (ALU) capable of executing general purpose instructions from an internal storage, on data contained in the internal storage.

N.B.: The internal storage may be augmented by an external storage.

"Microprocessor microcircuit"

A "monolithic integrated circuit" or "multichip integrated circuit" containing an arithmetic logic unit (ALU) capable of executing a series of general purpose instructions from an external storage.

- N.B.1: The "microprocessor microcircuit" normally does not contain integral user-accessible storage, although storage present onthe-chip may be used in performing its logic function.
- **N.B.2:** This definition includes chip sets which are designed to operate together to provide the function of a "microprocessor microcircuit".

"Microprogramme"

A sequence of elementary instructions maintained in a special storage, the execution of which is initiated by the introduction of its reference instruction register.

"Military explosives"

Solid, liquid or gaseous substances or mixtures of substances which, in their application as primary, booster, or main charges in warheads, demolition and other military applications, are required to detonate.

"Military pyrotechnics"

Mixtures of solid or liquid fuels and oxidizers which, when ignited, undergo an energetic chemical reaction at a controlled rate intended to produce specific time delays, or quantities of heat, noise, smoke, visible light or infrared radiation. Pyrophorics are a subclass of pyrotechnics, which contain no oxidizers but ignite spontaneously on contact with air.

"Monolithic integrated circuit"

A combination of passive or active "circuit elements" or both which:

- Are formed by means of diffusion processes, implantation processes or deposition processes in or on a single semiconducting piece of material, a so-called 'chip';
- b. Can be considered as indivisibly associated; and
- c. Perform the function(s) of a circuit.

"Monospectral imaging sensors"

Are capable of acquisition of imaging data from one discrete spectral band.

"Multichip integrated circuit"

Two or more "monolithic integrated circuits" bonded to a common "substrate".

"Multi-data-stream processing"

The "microprogramme" or equipment architecture technique which permits simultaneous processing of two or more data sequences under the control of one or more instruction sequences by means such as:

- a. Single Instruction Multiple Data (SIMD) architectures such as vector or array processors;
- b. Multiple Single Instruction Multiple Data (MSIMD) architectures;
- c. Multiple Instruction Multiple Data (MIMD) architectures, including those which are tightly coupled, closely coupled or loosely coupled; or
- d. Structured arrays of processing elements, including systolic arrays.

"Multilevel security"

A class of system containing information with different sensitivities that simultaneously permits access by users with different security clearances and needs-to-know, but prevents users from obtaining access to information for which they lack authorization.

N.B.: "Multilevel security" is computer security and not computer reliability which deals with equipment fault prevention or human error prevention in general.

"Multispectral imaging sensors"

Are capable of simultaneous or serial acquisition of imaging data from two or more discrete spectral bands. Sensors having more than twenty discrete spectral bands are sometimes referred to as hyperspectral imaging sensors.

"Network access controller"

A physical interface to a distributed switching network. It uses a common medium which operates throughout at the same "digital transfer rate" using arbitration (e.g., token or carrier sense) for transmission. Independently from any other, it selects data packets or data groups (e.g., IEEE 802) addressed to it. It is an assembly that can be integrated into computer or telecommunications equipment to provide communications access.

"Neural computer"

A computational device designed or modified to mimic the behaviour of a neuron or a collection of neurons, i.e., a computational device which is distinguished by its hardware capability to modulate the weights and numbers of the interconnections of a multiplicity of computational components based on previous data.

"Noise level"

An electrical signal given in terms of power spectral density. The relation between "noise level" expressed in peak-to-peak is given by $S^2_{pp} = 8N_0(f_2-f_1)$, where S_{pp} is the peak-to-peak value of the signal (e.g., nanoteslas), N_0 is the power spectral density (e.g., (nanotesla) $^2/Hz$) and (f_2-f_1) defines the bandwidth of interest.

"Nuclear reactor"

Includes the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the components which normally contain or come into direct contact with or control the primary coolant of the reactor core.

"Numerical control"

The automatic control of a process performed by a device that makes use of numeric data usually introduced as the operation is in progress (Ref. ISO 2382).

"Object code"

"Object code": An equipment executable form of a convenient expression of one or more processes ("source code" (or source language)) which has been converted by a programming system.

"Optical amplification"

In optical communications, an amplification technique that introduces a gain of optical signals that have been generated by a separate optical source, without conversion to electrical signals, i.e., using semiconductor optical amplifiers, optical fibre luminescent amplifiers.

"Optical computer"

A computer designed or modified to use light to represent data and whose computational logic elements are based on directly coupled optical devices.

"Optical fibre preforms"

Bars, ingots, or rods of glass, plastic or other materials which have been specially processed for use in fabricating optical fibres. The characteristics of the preform determine the basic parameters of the resultant drawn optical fibres.

"Optical integrated circuit"

A "monolithic integrated circuit" or a "hybrid integrated circuit", containing one or more parts designed to function as a photosensor or photoemitter or to perform (an) optical or (an) electro-optical function(s).

"Optical switching"

The routing of or switching of signals in optical form without conversion to electrical signals.

"Overall current density"

The total number of ampere-turns in the coil (i.e., the sum of the number of turns multiplied by the maximum current carried by each turn) divided by the total cross-section of the coil (comprising the superconducting filaments, the metallic matrix in which the superconducting filaments are embedded, the encapsulating material, any cooling channels, etc.).

"Peak power"

Energy per pulse in joules divided by the pulse duration in seconds.

"Personalized smart card"

A smart card containing a microcircuit, in accordance with ISO/IEC 7816, which has been programmed by the issuer and cannot be changed by the user.

"Power management"

Changing the transmitted power of the altimeter signal so that received power at the "aircraft" altitude is always at the minimum necessary to determine the altitude.

"Precursors"

Speciality chemicals used in the manufacture of military explosives.

"Previously separated"

The application of any process intended to increase the concentration of the controlled isotope.

"Primary flight control"

"Aircraft" stability or manoeuvering control using force/moment generators, i.e., aerodynamic control surfaces or propulsive thrust vectoring.

"Principal element"

An element is a "principal element" when its replacement value is more than 35% of the total value of the system of which it is an element. Element value is the price paid for the element by the manufacturer of the system, or by the system integrator. Total value is the normal international selling price to unrelated parties at the point of manufacture or consolidation of shipment.

"Production"

Means all production stages, such as: product engineering, manufacture, integration, assembly (mounting), inspection, testing, quality assurance.

"Programme"

A sequence of instructions to carry out a process in, or convertible into, a form executable by an electronic computer.

"Pulse compression"

The coding and processing of a radar signal pulse of long time duration to one of short time duration, while maintaining the benefits of high pulse energy.

"Pulse duration"

Duration of a "laser" pulse measured at Full Width Half Intensity (FWHI) levels.

"Q-switched laser"

A "laser" in which the energy is stored in the population inversion or in the optical resonator and subsequently emitted in a pulse.

"Radar frequency agility"

Any technique which changes, in a pseudo-random sequence, the carrier frequency of a pulsed radar transmitter between pulses or between groups of pulses by an amount equal to or larger than the pulse bandwidth.

"Radar spread spectrum"

Any modulation technique for spreading energy originating from a signal with a relatively narrow frequency band, over a much wider band of frequencies, by using random or pseudo-random coding.

"Real-time bandwidth"

For "dynamic signal analysers", the widest frequency range which the analyser can output to display or mass storage without causing any discontinuity in the analysis of the input data. For analysers with more than one channel, the channel configuration yielding the widest "real-time bandwidth" shall be used to make the calculation.

"Real time processing"

The processing of data by a computer system providing a required level of service, as a function of available resources, within a guaranteed response time, regardless of the load of the system, when stimulated by an external event.

"Required"

As applied to "technology", refers to only that portion of "technology" which is peculiarly GTN responsible for achieving or exceeding the controlled performance levels, characteristics or functions. Such "required" "technology" may be shared by different products.

"Resolution"

The least increment of a measuring device; on digital instruments, the least significant bit.

(Reference: ANSI B-89.1.12)

"Riot control agents"

Substances which produce temporary irritating or disabling physical effects which disappear within minutes of removal from exposure. There is no significant risk of permanent injury and medical treatment is rarely required.

"Robot"

- A manipulation mechanism, which may be of the continuous path or of the point-to-point variety, may use sensors, and has all the following characteristics:
- a. Is multifunctional;
- b. Is capable of positioning or orienting material, parts, tools or special devices through variable movements in three dimensional space;
- c. Incorporates three or more closed or open loop servodevices which may include stepping motors; **and**
- d. Has "user-accessible programmability" by means of the teach/playback method or by means of an electronic computer which may be a programmable logic controller, i.e., without mechanical intervention.

N.B.:

3.

- The above definition does not include the following devices:
- Manipulation mechanisms which are only manually/teleoperator controllable;
- Fixed sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is mechanically limited by fixed stops, such as pins or cams. The sequence of motions and the selection of paths or angles are not variable or changeable by mechanical, electronic or electrical means;
 - Mechanically controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is mechanically limited by fixed, but adjustable stops, such as pins or cams. The sequence of motions and the selection of paths or angles are variable within the fixed programme pattern. Variations or modifications of the programme pattern (e.g., changes of pins or exchanges of cams) in one or more motion axes are accomplished only through mechanical operations;
- 4. Non-servo-controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is variable but the sequence proceeds only by the binary signal from mechanically fixed electrical binary devices or adjustable stops;
- Stacker cranes defined as Cartesian coordinate manipulator systems manufactured as an integral part of a vertical array of

storage bins and designed to access the contents of those bins for storage or retrieval.

"Rotary atomisation"

A process to reduce a stream or pool of molten metal to droplets to a diameter of 500 μm or less by centrifugal force. "Run out" (out-of-true running)

Radial displacement in one revolution of the main spindle measured in a plane perpendicular to the spindle axis at a point on the external or internal revolving surface to be tested (Reference: ISO 230/1-1986, paragraph 5.61).

"Scale factor" (gyro or accelerometer)

The ratio of change in output to a change in the input intended to be measured. Scale factor is generally evaluated as the slope of the straight line that can be fitted by the method of least squares to input-output data obtained by varying the input cyclically over the input range.

"SDH"

"SDH" is equivalent to "Synchronous Digital Hierarchy".

"Settling time"

The time required for the output to come within one-half bit of the final value when switching between any two levels of the converter.

"SHPL"

"SHPL" is equivalent to "Super High Power Laser".

"Signal analysers"

Apparatus capable of measuring and displaying basic properties of the single-frequency components of multifrequency signals.

"Signal processing"

The processing of externally derived information-bearing signals by algorithms such as time compression, filtering, extraction, selection, correlation, convolution or transformations between domains (e.g., fast Fourier transform or Walsh transform).

"Software"

A collection of one or more "programmes" or "microprogrammes" fixed in any tangible medium of expression.

"Solidify rapidly"

A process involving the solidification of molten material at cooling rates exceeding 1,000 K/sec.

"SONET"

"SONET" is equivalent to "Synchronous Optical Network" "Source code"

A convenient expression of one or more processes which may be turned by a programming system into equipment executable form ("object code" (or object language)).

"Spacecraft"

Active and passive satellites and space probes.

"Space qualified"

Products designed, manufactured and tested to meet the special electrical, mechanical or environmental requirements for use in the launch and deployment of satellites or high altitude flight systems operating at altitudes of 100 km or higher.

"Spectral efficiency"

A figure of merit parameterized to characterize the efficiency of .ransmission system which uses complex modulation

schemes such as QAM, Trellis coding, QSPK (Q-phased shift key), etc. It is defined as follows:

"Spectral efficency" = "Digital transfer rate"(bits/sec) 6 dB spectrum bandwidth (Hz)

"Splat quenching"

A process to "solidify rapidly" a molten metal stream impinging upon a chilled block, forming a flake-like product.

"Spread spectrum"

The technique whereby energy in a relatively narrow-band communication channel is spread over a much wider energy spectrum.

"Spread spectrum" radar - see "Radar spread spectrum" "Stability"

Standard deviation (1 sigma) of the variation of a particular parameter from its calibrated value measured under stable temperature conditions. This can be expressed as a function of time.

"Stored programme controlled"

A control using instructions stored in an electronic storage which a processor can execute in order to direct the performance of predetermined functions.

N.B.: Equipment may be "stored programme controlled" whether the electronic storage is internal or external to the equipment.

"Substrate"

A sheet of base material with or without an interconnection pattern and on which or within which "discrete components" or integrated circuits or both can be located.

"Substrate blanks"

Monolithic compounds with dimensions suitable for the production of optical elements such as mirrors or optical windows.

"Superalloy"

Nickel-, cobalt- or iron-base alloys having strengths superior to any alloys in the AISI 300 series at temperatures over 922 K (649°C) under severe environmental and operating conditions.

"Superconductive"

Refers to materials, (i.e., metals, alloys or compounds) which can lose all electrical resistance (i.e., which can attain infinite electrical conductivity and carry very large electrical currents without Joule heating).

N.B.: The "superconductive" state of a material is individually characterised by a "critical temperature", a critical magnetic field, which is a function of temperature, and a critical current density which is, however, a function of both magnetic field and temperature.

"Super High Power Laser" ("SHPL")

A "laser" capable of delivering (the total or any portion of) the output energy exceeding 1 kJ within 50 ms or having an average or CW power exceeding 20 kW.

"Superplastic forming"

A deformation process using heat for metals that are normally characterised by low values of elongation (less than 20%) at the breaking point as determined at room temperature by conventional tensile strength testing, in order to achieve elongations during processing which are at least 2 times those values. "Switch fabric"

That hardware and associated "software" which provides the physical or virtual connection path for in-transit message traffic being switched.

"Synchronous Digital Hierarchy"

A digital hierarchy providing a means to manage, multiplex and access various forms of digital traffic using a synchronous transmission format on different types of media. The format is based on the Synchronous Transport Module (STM) which is defined by CCITT Recommendation G.703, G.707, G.708, G.709 and others yet to published. The first level rate of "SDH" is 155.52 Mbit/s.

"Synchronous Optical Network"

A network providing a means to manage, multiplex and access various forms of digital traffic using a synchronous transmission format on fibre optics. The format is the North America version of "SDH" and also uses the Synchronous Transport Module (STM). However, it uses the Synchronous Transport Signal (STS) as the basic transport module with a first level rate of 51.81 Mbit/s. (The "SONET" standards are being integrated into those of "SDH").

"System tracks"

Processed, correlated (fusion of radar target data to flight plan position) and updated aircraft flight position report available to the Air Traffic Control centre controllers.

"Systolic array computer"

A computer where the flow and modification of the data is dynamically controllable at the logic gate level by the user. "Tear gases"

Gases which produce temporary irritating or disabling effects which disappear within minutes of removal from exposure.

"Technology"

Specific information necessary for the "development", "production" or "use" of a product. The information takes the form of "technical data" or "technical assistance". Controlled "technology" is defined in the General Technology Note and in the Dual-Use List.

N.B.1: "Technical data" may take forms such as blueprints, plans, diagrams, models, formulae, tables, engineering designs and specifications, manuals and instructions written or recorded on other media or devices such as disk, tape, read-only memories.

N.B.2:

"Technical assistance" may take forms such as instruction, skills, training, working knowledge, consulting services. "Technical assistance" may involve transfer of "technical data".

"Terminal interface equipment"

Equipment at which information enters or leaves the telecommunication system, e.g., telephone, data device, computer, facsimile device.

"Three dimensional Vector Rate"

The number of vectors generated per second which have 10 pixel poly line vectors, clip tested, randomly oriented, with either integer or floating point X-Y-Z coordinate values (whichever produces the maximum rate).

"Tilting spindle"

A tool-holding spindle which alters, during the machining process, the angular position of its centre line with respect to any other axis.

"Time constant"

The time taken from the application of a light stimulus for the current increment to reach a value of 1-1/e times the final value (i.e., 63% of the final value).

"Total control of flight"

Automated control of "aircraft" state variables and flight path to meet mission objectives responding to real time changes in data regarding objectives, hazards or other "aircraft".

"Total digital transfer rate"

The number of bits, including line coding, overhead and so forth per unit time passing between corresponding equipment in a digital transmission system. (See also "digital transfer rate")

"Transfer laser'

A "laser" in which the lasing species is excited through the transfer of energy by collision of a non-lasing atom or molecule with a lasing atom or molecule species.

"Tunable"

The ability of a "laser" to produce a continuous output at all wavelengths over a range of several "laser" transitions. A line

selectable "laser" produces discrete wavelengths within one "laser" transition and is not considered "tunable". "Use"

Operation, installation (including on-site installation), maintenance (checking), repair, overhaul and refurbishing.

"User-accessible programmability"

The facility allowing a user to insert, modify or replace "programmes" by means other than:

- a. A physical change in wiring or interconnections; or
- b. The setting of function controls including entry of parameters.

"Vacuum atomisation"

A process to reduce a molten stream of metal to droplets of a diameter of 500 μm or less by the rapid evolution of a dissolved gas upon exposure to a vacuum. "Variable geometry airfoils"

Use trailing edge flaps or tabs, or leading edge slats or pivoted nose droop, the position of which can be controlled in flight.

Acronyms and Abbreviations in Groups 1 and 2

ABEC	Annular Bearing Engineers Committee	
AGMA	American Gear Manufacturers' Association	
AHRS	attitude and heading reference systems	
ALU	arithmetic logic unit	
ATC	air traffic control	
C ³ I	command, communications, control & intelligence	
CAD	computer-aided-design	
CDU	control and display unit	
CEP	circular error probable	
CNTD	controlled nucleation thermal deposition	
CVD	chemical vapour deposition	
CW	chemical warfare	
CW (for lasers) continuous wave		
DEW	directed energy weapon systems	
DME	distance measuring equipment	
DS	directionally solidified	
EB-PVD	electron beam physical vapour deposition	
ECM	electro-chemical machining	
ECR	electron cyclotron resonance	
EDM	electrical discharge machines	
EEPROMS	S electrically erasable programmable	
read only memory		
EIA	Electronic Industries Association	
EMC	electromagnetic compatibility	
EMCDB	elastomer modified cast double based propellants	
FFT	Fast Fourier Transform	
GLONASS global navigation satellite system		
GPS	global positioning system	
HBT	hetero-bipolar transistors	
HDDR	high density digital recording	
HEMT	high electron mobility transistors	
ICAO	International Civil Aviation Organisation	
IFOV	instantaneous-field-of-view	
ILS	instrument landing system	
IRIG	inter-range instrumentation group	
ISAR	inverse synthetic aperture radar	
ISO	International Standards Organization	
ITU	International Telecommunication Union	

JIS	Japanese Industrial Standard
JT	Joule-Thomson
LIDAR	light detection and ranging
LRU	line replaceable unit
MAC	message authentication code
Mach	ratio of speed of an object to speed of sound
	(after Ernst Mach)
MLS	microwave landing systems
MOCVD	metal organic chemical vapour deposition
MRI	magnetic resonance imaging
MTBF	mean-time-between-failures
Mtops	million theoretical operations per second
MTTF	mean-time-to-failure
NBC	Nuclear, Biological and Chemical
NDT	non-destructive test
PAR	precision approach radar
PIN	personal identification number
ppm	parts per million
PSD	power spectral density
QAM	quadrature-amplitude-modulation
RF	radio frequency
RPV	remotely piloted air vehicles
SACMA	Suppliers of Advanced Composite Materials Association
SAR	synthetic aperture radar
SC	single crystal
SLAR	sidelooking airborne radar
SRA	shop replaceable assembly
SRAM	static random access memory
SRM	SACMA Recommended Methods
SSB	single sideband
SSR	secondary surveillance radar
TCSEC	trusted computer system evaluation criteria
TIR	total indicated reading
UTS	ultimate tensile strength
VOR	very high frequency omni-directional range
YAG	yttrium/aluminum garnet

Group 3 – Nuclear Non-Proliferation List

Category 3000: Controlled Nuclear Substances

3001. Special fissionable material, as follows:

- 1. plutonium and all isotopes, alloys and compounds and any material that contains any of the foregoing, other than plutonium 238 that is contained in heart pacemakers; and
- 2. uranium 233, uranium enriched in the isotopes 235 or 233 and all alloys and compounds and any material that contains any of the foregoing.

3002. Source material

Source materials that are in any form, including ore, concentrate, compound, metal or alloy, or that are incorporated in any substance other than medicinals and in which the concentration of source material is greater than 0.05 weight %, as follows:

- a. uranium that contains the mixture of isotopes that occurs in nature;
- b. uranium that is depleted in the isotope 235; and
- c. thorium.

3003. Deuterium and heavy water

Deuterium, heavy water (deuterium oxide) and any other deuterium compound in which the ratio of deuterium to hydrogen atoms exceeds 1:5,000.

3006. Nuclear-grade Graphite

Graphite having a purity level better than 5 ppm boron equivalent and with a density greater than 1.50 g/cm^3 .

3012. Tritium

Tritium, tritium compounds or mixtures containing tritium in which the ratio of tritium to hydrogen by atoms exceeds 1 part in 1000 and products containing any of the foregoing.

Category 3100: Controlled Nuclear Equipment

3101. Nuclear reactors and especially designed or prepared equipment therefor including:

1. Complete nuclear reactors

Nuclear reactors capable of operation so as to maintain a controlled self-sustaining fission chain reaction.

- 2. Nuclear reactor vessels Metal vessels, or major shop-fabricated parts therefor, especially designed or prepared to contain the core of a nuclear reactor as well as relevant reactor internals as defined in 3101.8.
- 3. Nuclear reactor fuel charging and discharging machines Manipulative equipment especially designed or prepared for inserting or removing fuel in a nuclear reactor.
- 4. Nuclear reactor control rods and equipment Especially designed or prepared rods, support or suspension structures therefor, rod drive mechanisms or rod guide tubes to control the fission process in a nuclear reaction.
- 5. Nuclear reactor pressure tubes

Tubes which are especially designed or prepared to contain fuel elements and the primary coolant in a nuclear reactor at an operating pressure in excess of 50 atmospheres.

6. Zirconium tubes

Zirconium metal and alloys in the form of tubes or assemblies of tubes especially designed or prepared for use in a nuclear reactor and in which the relation of hafnium to zirconium is less than 1:500 parts by weight.

7. Primary coolant pumps Pumps especially designed or prepared for circulating the

primary coolant for nuclear reactors.

8. Nuclear reactor internals

Nuclear reactor internals especially designed or prepared for use in a nuclear reactor including support columns for the core, fuel channels, thermal shields, baffles, core grid plates and diffuser plates.

9. Heat exchangers

Heat exchangers (steam generators) especially designed or prepared for use in the primary coolant circuit of a nuclear reactor.

10. Neutron detection and measuring instruments

Especially designed or prepared neutron detection and measuring instruments for determining neutron flux levels within the core of a nuclear reactor.

A Guide to Canada's Export Controls - March 2000 71

3103. Plants for the reprocessing of irradiated fuel elements, and equipment especially designed or prepared therefor, including:

1. Irradiated fuel element chopping machines

Remotely operated equipment especially designed or prepared for use in a reprocessing plant as identified above and intended to cut, chop or shear irradiated nuclear fuel assemblies, bundles or rods.

2. Dissolvers

Critically safe tanks (e.g., small diameter, annular or slab tanks) especially designed or prepared for use in a reprocessing plant as identified above, intended for dissolution of irradiated nuclear fuel and which are capable of withstanding hot, highly corrosive liquid, and which can be remotely loaded and maintained.

3. Solvent extractors and solvent extraction equipment

Especially designed or prepared solvent extractors such as packed or pulse columns, mixer settlers or centrifugal contactors for use in a plant for the reprocessing of irradiated fuel. Solvent extractors must be resistant to the corrosive effect of nitric acid. Solvent extractors are normally fabricated to extremely high standards (including special welding and inspection and quality assurance and quality control techniques) out of low carbon stainless steels, titanium, zirconium or other high-quality materials.

4. Chemical holding or storage vessels

Especially designed or prepared holding or storage vessels for use in a plant for the reprocessing of irradiated fuel. The holding or storage vessels must be resistant to the corrosive effect of nitric acid. The holding or storage vessels are normally fabricated of materials such as low carbon stainless steels, titanium or zirconium, or other high-quality materials. Holding or storage vessels may be designed for remote operation and maintenance and may have the following features for control of nuclear criticality:

- a. walls or internal structures with a boron equivalent of at least 2%;
- b. a maximum diameter of 175 mm (7 in.) for cylindrical vessels; or
- c. a maximum width of 75 mm (3 in.) for either a slab or annular vessel.

5. Plutonium nitrate to oxide conversion systems

Complete systems especially designed or prepared for the conversion of plutonium nitrate to plutonium oxide, in particular adapted so as to avoid criticality and radiation effects and to minimize toxicity hazards.

6. Plutonium oxide to metal production system Complete systems especially designed or prepared for the production of plutonium metal, in particular adapted so as to avoid criticality and radiation effects and to minimize toxicity hazards.

3104. Plants for the fabrication of fuel elements, and equipment especially designed or prepared therefor, including equipment which,

- 1. normally comes in direct contact with, or directly processes, or controls, the production flow of nuclear material;
- 2. seals the nuclear material within the cladding;
- 3. checks the integrity of the cladding or the seal; or
- 4. checks the finish treatment of the sealed fuel.

3105. Plants for the separation of isotopes of uranium and equipment, other than analytical instruments, especially designed or prepared therefor including:

Gas centrifuges and assemblies and components especially designed or prepared for use in gas centrifuges, including: a. Rotating components

1. complete rotor assemblies:

thin-walled cylinders, or a number of interconnected thin-walled cylinders, manufactured from one or more high strength to density ratio materials. If interconnected, the cylinders are joined together by flexible bellows or rings as described in paragraph (3). The rotor is fitted with an internal baffle(s) and end caps, as described in paragraphs (4) and (5), if in final form. However the complete assembly may be delivered only partly assembled;

2. rotor tubes:

especially designed or prepared thin-walled cylinders with thickness of 12 mm (0.5 in.) or less, a diameter of between 75 mm (3 in.) and 400 mm (16 in.), and manufactured from one or more high strength to density ratio materials;

3. rings or bellows:

components especially designed or prepared to give localized support to the rotor tube or to join together a number of rotor tubes. The bellows is a short cylinder of wall thickness 3 mm (0.12 in.) or less, a diameter of between 75 mm (3 in.) and 400 mm (16 in.), having a convolute, and manufactured from high strength to density ratio materials;

4. baffles:

disc-shaped components of between 75 mm (3 in.) and 400 mm (16 in.) diameter especially designed or prepared to be mounted inside the centrifuge rotor tube, in order to isolate the take-off chamber from the main separation chamber and, in some cases, to assist the UF₆ gas circulation within the main separation chamber of the rotor tube, and manufactured high strength to density ratio materials; **and**

5. top caps / bottom caps:

disc-shaped components of between 75 mm (3 in.) and 400 mm (16 in.) diameter especially designed or prepared to fit to the ends of the rotor tube, and so contain the UF₆ within the rotor tube, and in some cases to support, retain or contain as an integrated part an element of the upper bearing (top cap) or to carry the rotating elements of the motor and lower bearing (bottom cap), and manufactured from high strength to density ratio materials.

b. Static components

1. magnetic suspension bearings:

especially designed or prepared bearing assemblies consisting of an annular magnet suspended within a housing containing a damping medium. The housing will be manufactured from a UF₆-resistant material. The magnet couples with a pole piece or a second magnet fitted to the top cap described in item 3105.1.a.5. The magnet may be ring-shaped with a relation between outer and inner diameter smaller or

3105.1.b.1. con't.

equal to 1.6:1. The magnet may be in a form having an initial permeability of 0.15 H/m (120,000 in CGS units) or more, or a remanence of 98.5% or more, or an energy product of greater than 80 kJ/m³ (107 gauss-oersteds). In addition to the usual material properties, it is a prerequisite that the deviation of the magnetic axes from the geometrical axes is limited to very small tolerances (lower than 0.1 mm or 0.004 in.) or that homogeneity of the material of the magnet is specially called for;

2. bearings / dampers:

especially designed or prepared bearings comprising a pivot/cup assembly mounted on a damper. The pivot is normally a hardened steel shaft with a hemisphere at one end with a means of attachment to the bottom cap described in item 3105.1.a.5 at the other. The shaft may however have a hydrodynamic bearing attached. The cup is pellet-shaped with a hemispherical indentation in one surface. These components are often supplied separately to the damper;

3. molecular pumps:

especially designed or prepared cylinders having internally machined or extruded helical grooves and internally machined bores. Typical dimensions are as follows: 75 mm (3 in.) to 400 mm (16 in.) internal diameter, 10 mm (0.4 in.) or more wall thickness, with the length equal to or greater than the diameter. The grooves are typically rectangular in cross-section and 2 mm (0.08 in.) or more in depth;

4. motor stators:

especially designed or prepared ring-shaped stators for high speed multiphase AC hysteresis (or reluctance) motors for synchronous operation within a vacuum in the frequency range of 600 Hz to 2,000 Hz and a power range of 50 VA to 1,000 VA. The stators consist of multiphase windings on a laminated low loss iron core comprised of thin layers typically 2 mm (0.08 in.) thick or less;

5. centrifuge housing / recipients:

components especially designed or prepared to contain the rotor tube assembly of a gas centrifuge. The housing consists of a rigid cylinder of wall thickness up to 30 mm (1.2 in.) with precision machined ends to locate the bearings and with one or more flanges for mounting. The machined ends are parallel to each other and perpendicular to the cylinder's longitudinal axis to within 0.05° or less. The housing may also be a honeycomb type structure to accommodate several rotor tubes. The housings are made of or protected by materials resistant to corrosion by UF₆; and

6. scoops:

especially designed or prepared tubes of up to 12 mm (0.5 in.) internal diameter for the extraction of UF₆ gas from within the rotor tube by a Pitot tube action (that is, with an aperture facing into the circumferential gas flow within the rotor tube, for example by bending the end of a radially disposed tube) and capable of being fixed to the central gas extraction system. The tubes are made of or protected by materials resistant to corrosion by UF₆.

- 2. Especially designed or prepared auxiliary systems, equipment and components for gas centrifuge enrichment plants including:
 - a. Feed systems/product and tails withdrawal systems
 - especially designed or prepared process systems including:
 - 1. feed autoclaves (or stations), used for passing UF₆ to the centrifuge cascades at up to 100 kPa (15 psi) and at a rate of 1 kg/h or more;
 - 2. desublimers (or cold traps) used to remove UF₆ from the cascades at up to 3 kPa (0.5 psi) pressure. The desublimers are capable of being chilled to 203 K (-70° C) and heated to 343 K (70° C); and
 - 3. product and tails stations used for trapping UF₆ into containers.

This plant, equipment and pipework is wholly made of or lined with UF₆-resistant materials and is fabricated to very high vacuum and cleanliness standards.

b. Machine header piping systems

Especially designed or prepared piping systems and header systems for handling UF₆ within the centrifuge cascades. The piping network is normally of the triple header system with each centrifuge connected to each of the headers. There is thus a substantial amount of repetition in its form. It is wholly made of UF₆-resistant materials and is fabricated to very high vacuum and cleanliness standards.

c. UF₆ mass spectrometers / ion sources

Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking on-line samples of feed, product or tails, from UF₆ gas streams and having all of the following characteristics:

- 1. unit resolution for atomic mass unit greater than 320;
- ion sources constructed of or lined with nichrome or monel or nickel-plated;
- 3. electron bombardment ionization sources; and

4. having a collector system suitable for isotopic analysis.

d. Frequency changers

Frequency changers (also known as converters or invertors) especially designed or prepared to supply motor stators as defined under 3105.1.b.4., or parts, components and subassemblies of such frequency changers having all of the following characteristics:

- 1. a multiphase output of 600 to 2000 Hz;
- 2. high stability (with frequency control better than 0.1%);
- 3. low harmonic distortion (less than 2%); and
- 4. an efficiency of greater than 80%.

3. Especially designed or prepared assemblies and components for use in gaseous diffusion enrichment, including:

a. Gaseous diffusion barriers

- 1. Especially designed or prepared thin, porous filters, with a pore size of 100 Å to 1,000 Å (angstroms), a thickness of 5 mm (0.2 in.) or less and for tubular forms, a diameter of 25 mm (1 in.) or less, made of metallic, polymer or ceramic materials resistant to corrosion by UF₆; and
- 2. especially prepared compounds or powders for the manufacture of such filters. Such compounds and powders include nickel or alloys containing 60% or more nickel, aluminium oxide, or UF6-resistant fully fluorinated hydrocarbon polymers having a purity of 99.9% or more, a particle size less than 10 microns, and a high degree of particle size uniformity, which are especially prepared for the manufacture of gaseous diffusion barriers.

3105.3. con't:

b. Diffuser housings

Especially designed or prepared hermetically sealed cylindrical vessels greater than 300 mm (12 in.) in diameter and greater than 900 mm (35 in.) in length, or rectangular vessels of comparable dimensions, which have an inlet connection and two outlet connections all of which are greater than 50 mm (2 in.) in diameter, for containing the gaseous diffusion barrier, made of or lined with UF₆-resistant materials and designed for horizontal or vertical installation.

c. Compressors and gas blowers

Especially designed or prepared axial, centrifugal, or positive displacement compressors, or gas blowers with a suction volume capacity of 1 m³/min or more UF₆, and with a discharge pressure of up to several hundred kPa (100 psi), designed for long-term operation in the UF₆ environment with or without an electrical motor of appropriate power, as well as separate assemblies of such compressors and gas blowers. These compressors and gas blowers have a pressure ratio between 2:1 and 6:1 and are made of, or lined with, materials resistant to UF₆.

d. Rotary shaft seals

Especially designed or prepared vacuum seals, with seal feed and seal exhaust connections, for sealing the shaft connecting the compressor or the gas blower rotor with the driver motor so as to ensure a reliable seal against inleaking of air into the inner chamber of the compressor or gas blower which is filled with UF₆. Such seals are normally designed for a buffer gas in-leakage rate of less than 1,000 cm³/min (60 in³/min);

e. Heat exchangers for cooling UF6

Especially designed or prepared heat exchangers made of or lined with UF₆-resistant materials (except stainless steel) or with copper or any combination of those metals, and intended for a leakage pressure change rate of less than 10 Pa/h (0.0015 psi/h) under a pressure difference of 100 kPa (15 psi).

4. Especially designed or prepared auxiliary systems, equipment and components for use in gaseous diffusion enrichment including:

a. Feed systems/product and tails withdrawal systems

Especially designed or prepared process systems, capable of operating at pressures of 300 kPa (45 psi) or less, including:

- feed autoclaves (or systems) used for passing UF₆ to the gaseous diffusion cascades;
- 2. desublimers (or cold traps) used to remove UF₆ from diffusion cascades;
- 3. liquefaction stations where UF₆ gas from the cascade is compressed and cooled to form liquid UF₆; and
- 4. products and tails stations used for transferring UF₆ into containers.

b. Header piping systems

Especially designed or prepared piping systems and header systems for handling UF6 within the gaseous diffusion cascades. This piping network is normally of the double header system with each cell connected to each of the headers.

c. Vacuum systems

- especially designed or prepared large vacuum manifolds, vacuum headers and vacuum pumps having a suction capacity of 5 m³/min (175 ft³/min) or more; and
- vacuum pumps especially designed or prepared for service in UF₆-bearing atmospheres atmospheres made of, or lined with, aluminium, nickel, or alloys bearing more than 60% nickel. These pumps may be either rotary or positive, may have displacement and fluorocarbon seals, and may have special working fluids present.

d. Special shut-off and control valves

Especially designed or prepared manual or automated shut-off and control bellows valves made of UF₆-resistant materials with a diameter of 40 to 1,500 mm (1.5 to 59 in.) for installation in main and auxiliary systems of gaseous diffusion enrichment plants.

e. UF6 mass spectrometers / ion sources

Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking on-line samples or feed, product or tails, from UF₆ gas streams and having all of the following characteristics:

- 1. unit resolution for atomic mass unit greater than 320;
- 2. ion sources constructed of or lined with nichrome or
- monel or nickel-plated;
- 3. electron bombardment ionization sources; and
- 4. collector system suitable for isotopic analysis.

5. Especially designed or prepared systems, equipment and components for use in aerodynamic enrichment plants including:

a. Separation nozzles

Especially designed or prepared separation nozzles and assemblies thereof. The separation nozzles consist of slit-shaped, curved channels having a radius of curvature less than 1 mm (typically 0.1 to 0.05 mm), resistant to corrosion by UF₆ and having a knife-edge within the nozzle that separates the gas flowing through the nozzle into two fractions.

b. Vortex tubes

Especially designed or prepared vortex tubes and assemblies thereof. The vortex tubes are cylindrical or tapered, made of or protected by materials resistant to corrosion by UF₆, having a diameter of between 0.5 cm and 4 cm, a length to diameter ratio of 20:1 or less, one or more tangential inlets. The tubes may be equipped with nozzle-type appendages at either or both ends.

c. Compressors and gas blowers

Especially designed or prepared axial, centrifugal or positive displacement compressors or gas blowers made of or protected by materials resistant to corrosion by UF₆ and with a suction volume capacity of $2 \text{ m}^3/\text{min}$ or more of UF₆/carrier gas (hydrogen or helium) mixture.

d. Rotary shaft seals

Especially designed or prepared rotary seals, with seal feed and seal exhaust connections, for sealing the shaft connecting the compressor rotor or the gas blower rotor with the driver motor so as to ensure a reliable seal against out-leakage of process gas or in-leakage of air or seal gas into the inner chamber of the compressor or gas blower which is filled with a UF₆/carrier gas mixture;

e. Heat exchangers for gas cooling

Especially designed or prepared heat exchangers made of or protected by materials resistant to corrosion by UF_6 .

f. Separation element housings

Especially designed or prepared separation element housings, made of or protected by materials resistant to corrosion by UF_6 , for containing vortex tubes or separation nozzles.

g. Feed systems/product and tails withdrawal systems

Especially designed or prepared process systems or equipment for enrichment plants made of or protected by materials resistant to corrosion by UF₆, including:

- feed autoclaves, ovens, or systems used for passing UF₆ to the enrichment process;
- desublimers (or cold traps) used to remove UF₆ from the enrichment process for subsequent transfer upon heating;
- solidification or liquefaction stations used to remove UF₆ from the enrichment process by compressing and converting UF₆ to a liquid or solid form; and
- 4. product or tails stations used for transferring UF₆ into containers.

h. Header piping systems

Especially designed or prepared header piping systems, made of or protected by materials resistant to corrosion by UF₆, for handling UF₆ within the aerodynamic cascades. This piping network is normally of the double header design with each stage or group of stages connected to each of the headers.

i. Vacuum systems and pumps

- specially designed or prepared vacuum systems having a suction capacity of 5 m³/min or more, consisting of vacuum manifolds, vacuum headers and vacuum pumps, and designed for service in UF₆bearing atmospheres; and
- vacuum pumps especially designed or prepared for service in UF6-bearing atmospheres and made of or protected by materials resistant to corrosion by UF6. These pumps may use fluorocarbon seals and special working fluids.

j. Special shut-off and control valves

Especially designed or prepared manual or automated shut-off and control bellows valves made of or protected by materials resistant to corrosion by UF_6 with a diameter of 40 mm to 1,500 mm for installation in main and auxiliary systems of aerodynamic enrichment plants;

k. UF6 mass spectrometers / ion sources

Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking on-line samples of feed, product or tails from UF_6 gas streams and having all of the following characteristics:

1. unit resolution for mass greater than 320;

 ion sources constructed of or lined with nichrome or monel or nickel-plated;

- 3. electron bombardment ionization sources; and
- 4. collector system suitable for isotopic analysis.

I. UF₆ /carrier gas separation systems

6. Especially designed or prepared systems, equipment and components for use in chemical exchange or ion exchange enrichment plants, including:

a. Liquid-liquid exchange columns (chemical exchange)

Countercurrent liquid-liquid exchange columns having mechanical power input (*i.e.*, pulsed columns with sieve plates, reciprocating plate columns, and columns with internal turbine mixers), especially designed or prepared for uranium enrichment using the chemical exchange process. For corrosion resistance to concentrated hydrochloric acid solutions, these columns and their internals are made of or protected by suitable plastic materials (such as fluorocarbon polymers) or glass. The stage residence time of the columns is designed to be short (30 s or less).

b. Liquid-liquid centrifugal contactors (chemical exchange)

Liquid-liquid centrifugal contactors especially designed or prepared for uranium enrichment using the chemical exchange process. Such contactors use rotation to achieve dispersion of the organic and aqueous streams and then centrifugal force to separate the phases. For corrosion resistance to concentrated hydrochloric acid solutions, the contactors are made of or are lined with suitable plastic materials (such as fluorocarbon polymers) or are lined with glass. The stage residence time of the centrifugal contactors is designed to be short (30 s or less).

c. Uranium reduction systems and equipment (chemical exchange)

 especially designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with process solutions must be corrosion resistant to concentrated hydrochloric acid solutions; and

 especially designed or prepared systems at the product end of the cascade for taking the U⁴⁺ out of the organic stream, adjusting the acid concentration and feeding to the electrochemical reduction cells.

d. Feed preparation systems (chemical exchange)

Especially designed or prepared systems for producing high-purity uranium chloride feed solutions for chemical exchange uranium isotope separation plants.

e. Uranium oxidation systems (chemical exchange)

Especially designed or prepared systems for oxidation of U^{3+} to U^{4+} for return to the uranium isotope separation cascade in the chemical exchange enrichment process.

f. Fast-reacting ion exchange resins/adsorbents (ion exchange)

Fast-reacting ion-exchange resins or adsorbents especially designed or prepared for uranium enrichment using the ion exchange process, including porous macroreticular resins, and pellicular structures in which the active chemical exchange groups are limited to a coating on the surface of an inactive porous support structure, and other composite structures in any suitable form including particles or fibres. These ion exchange resins/adsorbents have diameters of 0.2 mm or less and must be chemically resistant to concentrated hydrochloric acid solutions as well as physically strong enough so as not to degrade in the exchange columns. The resins/adsorbents are especially designed to achieve very fast uranium isotope exchange kinetics (exchange rate half-time of less than 10 s) and are capable of operating at a temperature in the range of 100°C to 200°C.

Especially designed or prepared process systems for separating UF₆ from carrier gas (hydrogen or helium).

3105.6. con't:

g. Ion exchange columns (ion exchange) Cylindrical columns greater than 1,000 mm in diameter for containing and supporting packed beds of ion exchange resin/absorbent, especially designed or prepared for uranium enrichment using the ion exchange process. These columns are made of or protected by materials (such as titanium or fluorocarbon plastics) resistant to corrosion by concentrated hydrochloric acid solutions and are capable of operating at a temperature in the range 100°C to 200°C and pressures above 0.7 MPa (102 psi).

h. Ion exchange reflux systems (ion exchange)

- especially designed or prepared chemical or electrochemical reduction systems for regeneration of the chemical reducing agent(s) used in ion exchange uranium enrichment cascades; and
- 2. especially designed or prepared chemical or electrochemical oxidation systems for regeneration of the chemical oxidizing agent(s) used in ion exchange uranium enrichment cascades.
- 7. Especially designed or prepared systems, equipment and components for use in laser-based enrichment plants, including:
 - a. Uranium vaporization systems (AVLIS)
 - Especially designed or prepared uranium vaporization systems which contain high-power strip or scanning electron beam guns with a delivered power on the target of more than 2.5 kW/cm.
 - **b.** Liquid uranium metal handling systems (AVLIS) Especially designed or prepared liquid metal handling systems for molten uranium or uranium alloys, consisting of crucibles and cooling equipment for the crucibles.
 - c. Uranium metal product and tails collector assemblies (AVLIS)

Especially designed or prepared product and tails collector assemblies for uranium metal in liquid or solid form.

d. Separator module housings (AVLIS)

Especially designed or prepared cylindrical or rectangular vessels for containing the uranium metal vapor source, the electron beam gun, and the product and tails collectors.

- e. Supersonic expansion nozzles (MLIS)
 - Especially designed or prepared supersonic expansion nozzles for cooling mixtures of UF₆ and carrier gas to 150 K or less and which are corrosion resistant to UF₆.
- f. Uranium pentafluoride product collectors (MLIS) Especially designed or prepared uranium pentafluoride (UF₅) solid product collectors consisting of filter, impact, or cyclone-type collectors, or combinations thereof, and which are corrosion resistant to the UF₅/UF₆ environment.

g. UF₆/carrier gas compressors (MLIS) Especially designed or prepared compressors for UF₆/carrier gas mixtures, designed for long term operation in a UF₆ environment. The components of these compressors that come into contact with process gas are made of or protected by materials resistant to corrosion by UF₆.

h. Rotary shaft seals (MLIS)

Especially designed or prepared rotary shaft seals, with seal feed and seal exhaust connections, for sealing the shaft connecting the compressor rotor with the driver motor so as to ensure a reliable seal against out-leakage of process gas or in-leakage of air or seal gas into the inner chamber of the compressor which is filled with a $UF_6/carrier$ gas mixture.

i. Fluorination systems (MLIS)

Especially designed or prepared systems for fluorinating UF₅ (solid) to UF₆ (gas).

j. UF₆ mass spectrometers/ion sources (MLIS)

Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking on-line samples of feed, product or tails, from UF₆ gas streams and having all of the following characteristics:

- 1. unit resolution for mass greater than 320;
- ion sources constructed of or lined with nichrome or monel or nickel-plated;
- 3. electron bombardment ionization sources; and
- 4. collector system suitable for isotopic analysis.
- k. Feed systems/product and tails withdrawal systems (MLIS)

Especially designed or prepared process systems or equipment for enrichment plants made of or protected by materials resistant to corrosion by UF₆, including:

- 1. feed autoclaves, ovens, or systems used for passing UF₆ to the enrichment process;
- 2. desublimers (or cold traps) used to remove UF₆ from the enrichment process for subsequent transfer upon heating;
- 3. solidification or liquefaction stations used to remove UF₆ from the enrichment process by compressing and converting UF₆ to a liquid or solid form; **and**
- 4. product or tails stations used for transferring UF₆ into containers.

1. UF₆ /carrier gas separation systems (MLIS)

Especially designed or prepared process systems for separating UF₆ from carrier gas. The carrier gas may be nitrogen, argon, or other gas.

m. Laser systems (AVLIS, MLIS and CRISLA)

Lasers or laser systems especially designed or prepared for the separation of uranium isotopes.

8. Especially designed or prepared systems, equipment and components for use in plasma separation enrichment plants, including:

a. Microwave power sources and antennae

Especially designed or prepared microwave power sources and antennae for producing or accelerating ions and having the following characteristics: greater than 30 GHz frequency and greater than 50 kW mean power output for ion production.

b. Ion excitation coils

Especially designed or prepared radio frequency ion excitation coils for frequencies of more than 100 kHz and capable of handling more than 40 kW mean power.

c. Uranium plasma generation systems

Especially designed or prepared systems for the generation of uranium plasma, which may contain high-power strip or scanning electron beam guns with a delivered power on the target of more than 2.5 kW/cm.

3105.8. con't.

d. Liquid uranium metal handling systems

Especially designed or prepared liquid metal handling systems for molten uranium or uranium alloys, consisting of crucibles and cooling equipment for the crucibles.

e. Uranium metal product and tails collector assemblies Especially designed or prepared product and tails collector assemblies for uranium metal in solid form. These collector assemblies are made of or protected by materials resistant to the heat and corrosion of uranium metal vapour, such as yttria-coated graphite or tantalum.

f. Separator module housings

Cylindrical vessels especially designed or prepared for use in plasma separation enrichment plants for containing the uranium plasma source, radio-frequency drive coil and the product and tails collectors.

9. Especially designed or prepared systems, equipment and components for use in electromagnetic enrichment plants including:

a. Electromagnetic isotope separators

Electromagnetic isotope separators especially designed or prepared for the separation of uranium isotopes, and equipment and components therefor, including:

1. ion sources:

especially designed or prepared single or multiple uranium ion sources consisting of a vapour source, ionizer, and beam accelerator, constructed of suitable materials such as graphite, stainless steel, or copper, and capable of providing a total ion beam current of 50 mA or greater;

2. ion collectors:

collector plates consisting of two or more slits and pockets especially designed or prepared for collection of enriched and depleted uranium ion beams and constructed of suitable materials such as graphite or stainless steel;

3. vacuum housings:

especially designed or prepared vacuum housings for uranium electromagnetic separators, constructed of suitable non-magnetic materials such as stainless steel and designed for operation at pressures of 0.1 Pa or lower; **and**

4. magnet pole pieces:

especially designed or prepared magnet pole pieces having a diameter greater than 2 m used to maintain a constant magnetic field within an electromagnetic isotope separator and to transfer the magnetic field between adjoining separators.

b. High voltage power supplies

Especially designed or prepared high-voltage power supplies for ion sources, having all of the following characteristics: capable of continuous operation, output voltage of 20,000 V or greater, output current of 1 A or greater, and voltage regulation of better than 0.01% over a time period of 8 hours.

c. Magnet power supplies

Especially designed or prepared high-power, direct current magnet power supplies having all of the following characteristics: capable of continuously producing a current output of 500 A or greater at a voltage of 100 V or greater and with a current or voltage regulation better than 0.01% over a period of 8 hours.

3106. Plants for the production or concentration of heavy water, deuterium and deuterium compounds and equipment especially designed or prepared therefor, including:

1. Water-hydrogen sulphide exchange towers

Exchange towers fabricated from fine carbon steel (such as ASTM A516) with diameters of 6 m (20 ft) to 9 m (30 ft), capable of operating at pressures greater than or equal to 2 MPa (300 psi) and with a corrosion allowance of 6 mm or greater, especially designed or prepared for heavy water production utilizing the water-hydrogen sulphide exchange process.

2. Blowers and compressors

Single stage, low head (i.e., 0.2 MPa or 30 psi) centrifugal blowers or compressors for hydrogen-sulphide gas circulation (i.e., gas containing more than 70% H₂S) especially designed or prepared for heavy water production utilizing the water-hydrogen sulphide exchange process. These blowers or compressors have a throughput capacity greater than or equal to $56 \text{ m}^3/\text{s}$ (120,000 SCFM) while operating at pressures greater than or equal to 1.8 Mpa (260 psi) suction and have seals designed for wet H₂S service.

3. Ammonia-hydrogen exchange towers

Ammonia-hydrogen exchange towers greater than or equal to 35 m (114.3 ft) in height with diameters of 1.5 m (4.9 ft) to 2.5 m (8.2 ft) capable of operating at pressures greater than 15 MPa (2,225 psi) especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process. These towers also have at least one flanged, axial opening of the same diameter as the cylindrical part through which the tower internals can be inserted or withdrawn.

4. Tower internals and stage pumps

Tower internals and stage pumps especially designed or prepared for towers for heavy water production utilizing the ammonia-hydrogen exchange process. Tower internals include especially designed stage contactors which promote intimate gas/liquid contact. Stage pumps include especially designed submersible pumps for circulation of liquid ammonia within a contacting stage internal to the stage towers.

5. Ammonia crackers

Ammonia crackers with operating pressures greater than or equal to 3 MPa (450 psi) especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process.

6. Infrared Absorption Analyzers

Infrared absorption analyzers capable of on-line hydrogen/deuterium ratio analysis where deuterium concentrations are equal to or greater than 90%.

7. Catalytic burners

Catalytic burners for the conversion of enriched deuterium gas into heavy water especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process.

8. Complete heavy water upgrade systems, or columns therefor

Complete heavy water upgrade systems, or columns therefor, especially designed or prepared for the upgrade of heavy water to reactor-grade deuterium concentration. UF6 to UF4.

3107. Plants for the conversion of uranium and equipment especially designed or prepared therefor, including:

- 1. Especially designed or prepared systems for the conversion of uranium ore concentrates to UO₃.
- Especially designed or prepared systems for the conversion of UO₃ to UF₆.
- Especially designed or prepare systems for the conversion of UO₃ to UO₂
- Especially designed or prepared systems for the conversion of UO₂ to UF₄.
- Especially designed or prepared systems for the conversion of UF4 to UF6.
- 6. Especially designed or prepared systems for the conversion of UF₄ to U metal.
- Especially designed or prepared systems for the conversion of UF6 to UO2.
- 8. Especially designed or prepared systems for the conversion of

3108. Parts for controlled nuclear equipment included in items 3101 to 3107.

3110. Controlled Nuclear Information

Technical data including, but not limited to, technical drawings, models, photographic negatives and prints, recordings, design data and technical and operating manuals whether in written form or recorded on other media or devices such as disk, tape and readonly memories for the design, production, construction, operation or maintenance of any item in Group 3, except data available to the public (e.g., in published books or periodicals, or that which has been made available without restrictions upon its further dissemination).

Group 4 – Nuclear-Related Dual Use List

4501. Nuclear related dual-use substances

- 1. Alpha-emitting radionuclides having an alpha half-life of 10 days or greater but less than 200 years, compounds or mixtures containing any of these radionuclides with a total alpha activity of 1 Ci/kg (37 GBq/kg) or greater, and products or devices containing any of the foregoing, except a product or device containing less than 3.7 GBq (100 mCi) of alpha activity.
- Aluminium alloys capable of an ultimate tensile strength of 460 MPa (0.46 x 10⁹N/m²) or more at 293 K (20°C), in the form of tubes or cylindrical solid forms (including forgings) with an outside diameter of more than 75 mm (3 in.).
 Note:

The phrase "capable of" encompasses aluminium alloys before or after heat treatment.

- 3. Beryllium metal, alloys containing more than 50% beryllium by weight, beryllium compounds, and manufactures thereof, except:
 - a. metal windows for X-ray machines, or for bore-hole logging devices;
 - b. oxide shapes in fabricated or semi-fabricated forms specially designed for electronic component parts or as substrates for electronic circuits; **and**
 - c. beryl (silicate of beryllium and aluminium) in the form of emeralds or aquamarines.

Note:

Item 4501.3. includes waste and scrap containing beryllium as defined above.

- 4. High-purity (99.99% or greater) bismuth with very low silver content (less than 10 ppm).
- 5. Boron and boron compounds, mixtures, and loaded materials in which the boron-10 isotope is more than 20% by weight of the total boron content.
- 6. Calcium (high purity) containing both less than 1,000 ppm by weight of metallic impurities other than magnesium and less than 10 ppm of boron.
- 7. Chlorine trifluoride (ClF3).
- 8. Crucibles made of materials resistant to liquid actinide metals, as follows:
 - a. crucibles with a volume of between 150 ml and 8 L and made of or coated with any of the following materials having a purity of 98% or greater:
 - 1. calcium fluoride (CaF₂);
 - 2. calcium zirconate (metazirconate) (Ca2ZrO3);
 - 3. cerium sulfide (Ce₂S₃);
 - 4. erbium oxide (erbia) (Er₂O₃);
 - 5. hafnium oxide (hafnia) (HfO₂);
 - 6. magnesium oxide (MgO);
 - nitrided niobium-titanium-tungsten alloy (approximately 50%Nb, 30%Ti, 20%W);
 - 8. yttrium oxide (yttria) (Y2O3);
 - 9. zirconium oxide (zirconia) (ZrO₂);
 - b. crucibles with a volume of between 50 ml and 2 L and made of or lined with tantalum, having a purity of 99.9% or greater; **and**

- c. crucibles with a volume of between 50 ml and 2 L and made of or lined with tantalum (having a purity of 98% or greater) coated with tantalum carbide, nitride, or boride (or any combination of these).
- 9. Fibrous or filamentary materials, prepregs and composite structures, as follows:

a. carbon or aramid fibrous or filamentary materials having a specific modulus of 12.7×10^6 m or greater or a specific tensile strength of 23.5×10^4 m or greater, except aramid fibrous or filamentary materials having 0.25% or more by weight of an ester based fibre surface modifier;

- b. glass fibrous or filamentary materials having a specific modulus of 3.18×10^6 m or greater and a specific tensile strength of 7.62×10^4 m or greater;
- c. thermoset resin impregnated continuous yarns, rovings, tows or tapes with a width no greater than 15 mm (prepregs), made from carbon or glass fibrous or filamentary materials specified in paragraph a. or b.; and *Note:*

The resin forms the matrix of the composite.

d. composite structures in the form of tubes with an inside diameter of between 75 mm (3 in.) and 400 mm (16 in.) made with any of the fibrous or filamentary materials specified in paragraph a. or carbon prepreg materials specified in paragraph c.

Note: For the purpose of this paragraph,

- a. "fibrous or filamentary materials" means continuous monofilaments, yarns, rovings, tows or tapes;
- b. "specific modulus" is the Young's modulus in N/m² divided by the specific weight in N/m³ when measured at a temperature of $23 \pm 2^{\circ}$ C and a relative humidity of $50 \pm 5\%$; and
- c. "specific tensile strength" is the ultimate tensile strength in N/m² divided by the specific weight in N/m³ when measured at a temperature of 23 ± 2 °C and a relative humidity of 50 ± 5%.
- 10. Hafnium metal, alloys, and compounds of hafnium containing more than 60% hafnium by weight and manufactures thereof.
- 11. Helium-3 or helium isotopically enriched in the helium-3 isotope, mixtures containing helium-3, and products or devices containing any of the foregoing, except a product or device containing less than 1 g of helium-3.
- 12. Lithium enriched in the lithium-6 isotope (6Li) to greater than 7.5 atom percent, alloys, compounds or mixtures containing lithium enriched in the lithium-6 isotope, and products or devices containing any of the foregoing, except thermoluminescent dosimeters. *Note:*

The natural occurence of the 6 isotope in lithium is 7.5 atom percent.

- 13. Magnesium (high purity) containing both less than 200 ppm by weight of metallic impurities other than calcium and less than 10 ppm of boron.
- Maraging steel capable of an ultimate tensile strength of 2,050 MPa (2.050 x 10⁹N/m²) (300,000 lbs./sq.in.) or more at 293 K (20°C), except forms in which no linear dimension exceeds 75 mm.
 Note:

The phrase "capable of" encompasses maraging steel before or after heat treatment.

4501. con't.

- 15. Nickel powder and porous nickel metal, as follows:
 - a. powder with a nickel purity content of 99.0% or greater and a mean particle size of less than 10 µm measured by the ASTM B 330 standard, except filamentary nickel powders; *Note:*

Nickel powders which are especially prepared for the manufacture of gaseous diffusion barriers are controlled by Item 3105.3.a.2.

 b. porous nickel metal produced from materials referred to in paragraph a., except single porous nickel metal sheets not exceeding 1,000 cm² per sheet.

Note: 4501.15.b. refers to porous metal formed by compacting and sintering the material in item 4501.15.a. to form a metal material with fine pores interconnected throughout the structure.

- 16. Radium-226, radium-226 compounds, or mixtures containing radium-226, and products or devices containing any of the foregoing, except medical applicators and a product or device containing not more than 0.37 GBq (10 mCi) of radium-226 in any form.
- 17. Titanium alloys capable of an ultimate tensile strength of 900 MPa $(0.9 \times 10^9 \text{N/m}^2)$ (130,500 lbs./sq.in.) or more at 293 K (20°C) in the form of tubes or cylindrical solid forms (including forgings) with an outside diameter of more than 75 mm (3 in.)

Note:

The phrase "capable of" encompasses titanium alloys before or after heat treatment.

- 18. Tungsten, as follows: parts made of tungsten, tungsten carbide, or tungsten alloys (greater than 90% tungsten) having a mass greater than 20 kg and a hollow cylindrical symmetry (including cylinder segments) with an inside diameter greater than 100 mm (4 in.) but less than 300 mm (12 in.), except parts specifically designed for use as weights or gamma-ray collimators.
- 19. Zirconium with a hafnium content of less than 1 part hafnium to 500 parts zirconium by weight, in the form of metal, alloys containing more than 50% zirconium by weight, and compounds and manufactures wholly thereof; except zirconium in the form of foil having a thickness not exceeding 0.10 mm (0.004 in.).

4501.19. includes waste and scrap containing zirconium as defined above.

4502. Industrial equipment

- 1. Flow-forming machines and spin-forming machines capable of flow-forming functions, and mandrels, as follows, and specially designed software therefor:
 - a. having three or more rollers (active or guiding) and, according to the manufacturer's technical specification, can be equipped with numerical control units or a computer control; **and**
 - b. rotor-forming mandrels designed to form cylindrical rotors of inside diameter between 75 mm (3 in.) and 400 mm (16 in.).

Note:

4502.1. includes machines which have only a single roller designed to deform metal plus two auxiliary rollers which support the mandrel, but do not participate directly in the deformation process.

- . Numerical control units, numerical controlled machine tools, and specially designed software as follows:
 - a. for numerical control units controlled by its associated software, see item 4502.2.c.2.;
 - machine tools, as follows, for removing or cutting metals, ceramics or composites, which, according to the manufacturer's technical specifications, can be equipped with electronic devices for simultaneous contouring control in two or more axes:
 - machine tools for turning, that have positioning accuracies with all compensations available less (better) than 0.006 mm along any linear axis (overall positioning) for machines capable of machining diameters greater than 35 mm; *Note:*

Bar machines (Swisstum), limited to machining only bar feed thru, are excluded if maximum bar diameter is equal to or less than 42 mm and there is no capability of mounting chucks. Machines may have drilling and/or milling capabilities for machining parts with diameters less than 42 mm.

- 2. machine tools for milling, having any of the following characteristics:
 - a) positioning accuracies with all compensations available are less (better) than 0.006 mm along any
 - linear axis (overall positioning); or
 - b) two or more contouring rotary axes;

Note:

This does not include milling machines having the following characteristics:

- a. x-axis travel greater than 2 m; and
- overall positioning accuracy on the x-axis more (worse) than 0.030 mm.
- 3. machine tools for grinding, having any of the following characteristics:
 - a) positioning accuracies with all compensations available are less (better) than 0.004 mm along any linear axis (overall positioning); **or**
 - b) having two or more contouring rotary axes; and *Note:*
 - The following grinding machines are excluded:
 - a. cylindrical external, internal, and external-internal grinding machines having all the following characteristics:
 - 1. limited to cylindrical grinding;
 - a maximum workpiece outside diameter or length of 150 mm;
 - 3. not more than two axes that can be coordinated
 - simultaneously for contouring control; and
 - 4. no contouring c axis;
 - b. jig grinders with axes limited to x, y, c, and a, where c axis is used to maintain the grinding wheel normal to the work
 - surface, and the a axis is configured to grind barrel cams; c. tool or cutter grinding machines with software specially
 - designed for the production of tools or cutters; and
 - d. crankshaft or camshaft grinding machines.
- non-wire type electrical discharge machines (EDM) that have two or more contouring rotary axes and that can be coordinated simultaneously for contouring control; and

Note:

Guaranteed positioning accuracy levels instead of individual test protocols may be used for each machine tool model using the agreed ISO test procedure.

Technical Notes:

- Axis nomenclature shall be in accordance with International Standard ISO 841, "Numerical Control Machines - Axis and Motion Nomenclature".
- Not counted in the total number of contouring rotary axes are secondary parallel contouring rotary axes the centre line of which is parallel to the primary rotary axis.
- Rotary axes do not necessarily have to rotate over 360°. A rotary axis can be driven by a linear device, e.g., a screw or a rack-and-pinion.

4502.2. con't.

c. software:

- 1. software specially designed or modified for the development, production, or use of equipment referred to in paragraph a. or b.; **and**
- 2. for any combination of electronic devices or system enabling such device(s) to function as a numerical control unit capable of controlling 5 or more interpolating axes that can be coordinated simultaneously for contouring control.

Note 1:

Software is controlled whether exported separately or residing in a numerical control unit or any electronic device or system. Note 2:

Software specially designed or modified by the manufacturers of the control unit or machine tool to operate an uncontrolled machine tool is not controlled.

- 3. Dimensional inspection machines, devices, or systems, as follows, and specially designed software therefor:
 - a. computer controlled or numerically controlled dimensional inspection machines having both of the following characteristics:
 - 1. 2 or more axes; and
 - 2. a one-dimensional length measurement uncertainty equal to or less (better) than $(1.25 + L/1000) \mu m$ tested with a probe of an accuracy of less (better) than $0.2 \mu m$ (L is the measured length in mm) (Ref: VDI/VDE 2617, parts 1 and 2);
 - b. linear and angular displacement measuring devices, as follows:
 - linear measuring instruments having any of the following characteristics:
 - a) non-contact type measuring systems with a resolution equal to or less (better) than 0.2 μm within a measuring range up to 0.2 mm;
 - b) linear variable differential transformer (LVDT) systems having both of the following characteristics:
 - (1) linearity equal to or less (better) than 0.1% within a measuring range up to 5 mm; **and**
 - (2) drift equal to or less (better) than 0.1%/d at a standard ambient test room temperature of ± 1 K; or
 - c) measuring systems that have both of the following characteristics:
 - (1) contain a laser; and
 - (2) maintain for at least 12 hrs., over a temperature range of ± 1 K around a standard temperature and a standard pressure:
 - a. a resolution over their full scale of 0.1 μm or better; and
 - b. with a measurement uncertainty equal to or less (better) than (0.2 + L/2000) µm (L is the measured length in mm), except measuring interferometer systems, without closed or open loop feedback, containing a laser to measure slide movement errors of machine tools, dimensional inspection machines, or similar equipment; and
 - angular measuring instruments having an angular position deviation equal to or less (better) than 0.00025°; and Note:

4502.3.b.2. does not include optical instruments, such as autocollimators, using collimated light to detect angular displacement of a mirror.

- c. systems for simultaneously linear-angular inspection of hemishells, having both of the following characteristics:
 1. measurement uncertainty along any linear axis equal
 - to or less (better) than 3.5 µm per 5 mm; and

2. angular position deviation equal to or less than $0.02^\circ.$ Note:

Specially designed software for these systems include software for simultaneous measurements of wall thickness and contour.

Technical Notes:

- Machine tools that can be used as measuring machines are controlled if they meet or exceed the criteria specified for the machine tool function or the measuring tool function.
- A machine described in 4502.3. is controlled if it exceeds the control threshold anywhere within its operating range.
- The probe used in determining the measurement uncertainty of a dimensional inspection system shall be as described in VDI/VDE 2617 parts 2, 3, and 4.
- All parameters of measurement values in this item represent plus/minus, i.e., not total band.
- 4. Vacuum or controlled environment (inert gas) induction furnaces capable of operation above 850°C and having induction coils 600 mm (24 in.) or less in diameter, and designed for power inputs of 5 kW or more; and power supplies specially designed therefor with a specified power output of 5 kW or more. *Note:*

4502.4. does not include furnaces designed for the processing of semiconductor wafers.

5. Isostatic presses capable of achieving a maximum working pressure of 69 MPa or greater having a chamber cavity with an inside diameter in excess of 152 mm and specially designed dies, molds, controls or specially designed software therefor.

Note:

The term "isostatic presses" means equipment capable of pressurizing a closed cavity through various media (gas, liquid, solid particles, etc.) to create equal pressure in all directions within the cavity upon a workpiece or material.

Technical Note:

The inside chamber dimension is that of the chamber in which both the working temperature and the working pressure are acheived and does not include fixtures. That dimension will be the smaller of either the inside diameter of the pressure chamber or the inside diameter of the insulated furnace chamber, depending on which of the two chambers is located inside the other.

- Robots or end-effectors having either of the following characteristics; and specially designed software or specially designed controllers therefor:
 - a. specially designed to comply with national safety standards applicable to handling high explosives (for example, meeting electrical code ratings for high explosives); or
 - b. specially designed or rated as radiation hardened to withstand greater than 5×10^4 Gy (Silicon) [5×10^6 rad (Silicon)] without operational degradation.

Notes:

"Robot" means a manipulation mechanism, which may be of the continuous path or of the point-to-point variety, may use sensors, and has all of the following characteristics:

- a. is multifunctional;
- b. is capable of positioning or orienting material, parts, tools, or special devices through variable movements in threedimensional space;
- c. incorporates three or more closed or open loop servo-devices which may include stepping motors; and
- d. has user-accessible programmability by means of
- teach/playback method or by means of an electronic computer which may be a programmable logic controlled, i.e., without mechanical intervention.

4502.6. Note con't:

- The above definition does not include the following devices: a. manipulation mechanisms which are only manually/teleoperator controllable;
- b. fixed sequence manipulation mechanisms which are automated moving devices operating according to mechanically fixed programmed motions. The program is mechanically limited by fixed stops, such as pins or cams. The sequence of motions and the selection of paths or angles are not variable or changeable by mechanical, electronic, or electrical means;
- c. mechanically controlled variable sequence manipulation mechanisms which are automated moving devices operating according to mechanically fixed programmed motions. The program is mechanically limited by fixed, but adjustable, stops such as pins or cams. The sequence of motions and the selection of paths or angles are variable within the fixed program pattern. Variations or modifications of the program pattern (e.g., changes of pins or exchanges of cams) in one or more motion axes are accomplished only through mechanical operations;
- d. non-servo-controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The program is variable but the sequence proceeds only by the binary signal from mechanically fixed electrical binary devices or adjustable stops; or
- e. stacker cranes defined as Cartesian coordinate manipulator systems manufactured as an integral part of a vertical array of storage bins and designed to access the contents of those bins for storage or retrieval.
- "End-effectors" include grippers, active tooling units, and any other tooling that is attached to the baseplate on the end of a robot manipulator arm.
- The definition in paragraph 1.a. does not include robots specially designed for non-nuclear industrial applications such as automobile paint-spraying booths.
- 7. Vibration test systems, equipment, components and software therefor, as follows:
 - a. electrodynamic vibration test systems, employing feedback or closed loop control techniques and incorporating a digital controller, capable of vibrating at 10 g RMS or more between 20 Hz and 2,000 Hz and imparting forces of 50 kN (11,250 lbs.) measured bare table, or greater;
 - b. digital controllers, combined with specially designed software for vibration testing, with a real-time bandwidth greater than 5 kHz and being designed for use with the systems referred to in 4502.7.a.;
 - c. vibration thrusters (shaker units), with or without associated amplifiers, capable of imparting a force of 50 kN (11,250 lbs.), measured bare table, or greater, which are usable for the systems referred to in 4502.7.a.;
 - d. test piece support structures and electronic units designed to combine multiple shaker units into a complete shaker system capable of providing an effective combined force of 50 kN, measured bare table, or greater, which are usable for the systems referred to in 4502.7.a.; and
 - e. specially designed software for use with the systems referred to in 4502.7.a. or for the electronic units referred to in 4502.7.d.
- 8. Vacuum and controlled atmosphere metallurgical melting and casting furnaces as follows, and specially configured computer control and monitoring systems and specially designed software therefor:
 - a. arc remelt and casting furnaces with consumable electrode capacities between 1,000 cm³ and 20,000 cm³ and capable of operating with melting temperatures above $1,700^{\circ}$ C; and

electron beam melting and plasma atomization and melting furnaces with a power of 50 kW or greater and capable of operating with melting temperatures above 1,200°C.

4503. Uranium isotope separation equipment and components (other than items listed in Group 3, Item 3105.)

- 1. Electrolytic cells for fluorine production with a production capacity greater than 250 g of fluorine per hour.
- 2. Rotor fabrication and assembly equipment and bellowsforming mandrels and dies, as follows:
 - rotor assembly equipment for assembly of gas centrifuge rotor tube sections, baffles, and end caps. Such equipment includes precision mandrels, clamps, and shrink fit machines;
 - b. rotor straightening equipment for alignment of gas centrifuge rotor tube sections to a common axis; (Note: Normally such equipment will consist of precision measuring probes linked to a computer that subsequently controls the action of, for example, pneumatic rams used for aligning the rotor tube sections); **and**
- c. bellows-forming mandrels and dies for producing singleconvolution bellows (bellows made of high-strength aluminum alloys, maraging steel, or high-strength filamentary materials). The bellows have all of the following dimensions:
 - 1. 75 mm to 400 mm (3 in. to 16 in.) inside diameter;
 - 2. 12.7 mm (0.5 in.) or more in length; and
 - 3. single convolution depth more than 2 mm (0.08 in.).
- 3. Centrifugal multiplane balancing machines, fixed or portable, horizontal or vertical, as follows:
 - a. centrifugal balancing machines designed for balancing flexible rotors having a length of 600 mm or more and having all of the following characteristics:
 - 1. a swing or journal diameter of 75 mm or more;
 - 2. mass capability of from 0.9 kg to 23 kg (2 lb. to 50 lb.); and
 - 3. capable of balancing speed of revolution more than 5,000 rpm;
 - b. centrifugal balancing machines designed for balancing hollow cylindrical rotor components and having all of the following characteristics:
 - 1. a journal diameter of 75 mm or more;
 - 2. mass capability of from 0.9 kg to 23 kg (2 lb. to 50 lb.);
 - 3. capable of balancing to a residual imbalance of 0.010 kg mm/kg per plane or better; and
 - 4. belt drive type,

and specially designed software therefor.

4. Filament winding machines in which the motions for positioning, wrapping, and winding fibres are coordinated and programmed in two or more axes, specially designed to fabricate composite structures or laminates from fibrous and filamentary materials and capable of winding cylindrical rotors of diameter between 75 mm (3 in.) and 400 mm (16 in.) and length of 600 mm (24 in.) or greater; coordinating and programming controls therefor, precision mandrels; and specially designed software therefor.

4503. con't.

- 5. Frequency changers (also known as converters or inverters) or generators having all of the following characteristics:
 - a. a multiphase output capable of providing a power of 40 W or more;
 - b. capable of operating in the frequency range between 600 Hz and 2,000 Hz;
 - c. total harmonic distortion below 10%; and
 - d. frequency control better than 0.1%;

except such frequency changers specially designed or prepared to supply motor stators and having the characteristics listed in 4503.5.b. and d., together with a total harmonic distortion of less than 2% and an efficiency of greater than 80%.

Note:

'Motor Stators': Specially designed or prepared ring-shaped stators for high-speed multiphase AC hysteresis (or reluctance) motors for synchronous operation within a vacuum in frequency range of 600 Hz to 2000 Hz and a power range of 50 VA to 1000 VA. The stators consist of multiphase windings on a laminated low-loss iron core comprising thin layers typically 2.0 mm (0.008 in.) thick or less.

- 6. Lasers, laser amplifiers and oscillators as follows:
 - a. copper vapor lasers with 40 W or greater average output power operating at wavelengths between 500 nm and 600 nm;
 - b. argon ion lasers with greater than 40 W average output power operating at wavelengths between 400 nm and 515 nm;
 - c. neodymium-doped (other than glass) lasers as follows:
 - having an output wavelength between 1,000 nm and 1,100 nm, being pulse-excited and Q-switched with a pulse duration equal to or greater than 1 ns and having either of the following:
 - a) a single-transverse mode output having an average output power exceeding 40 W; or
 - b) a multiple-transverse mode output having an average output power exceeding 50 W; or
 - 2. operating at a wavelength between 1,000 nm and 1,100 nm and incorporating frequency doubling giving an output wavelength between 500 nm and 550 nm with an average power at the doubled frequency (new wavelength) of greater than 40 W;
 - d. tunable pulsed single-mode dye oscillators capable of an average power output of greater than 1 W, a repetition rate greater than 1 kHz, a pulse less than 100 ns, and a wavelength between 300 nm and 800 nm;
 - e. tunable pulsed dye laser amplifiers and oscillators, except single mode oscillators, with an average power output of greater than 30 W, a repetition rate greater than 1 kHz, a pulse width less than 100 ns, and a wavelength between 300 nm and 800 nm;
 - f. alexandrite lasers with a bandwidth of 0.005 nm or less, a repetition rate of greater than 125 Hz, and an average power output greater than 30 W operating at wavelengths between 720 nm and 800 nm;
 - g. pulsed carbon dioxide lasers with a repetition rate greater than 250 Hz, an average power output of greater than 500 W, and a pulse of less than 200 ns operating at wavelengths between 9,000 nm and 11,000 nm; N.B.:

4503.6.g. does not include higher power (typically 1 kW to 5 kW) industrial CO_2 lasers used in applications such as cutting and welding, as these latter lasers are either continuous wave or are pulsed with a pulse width more than 200 ns.

- h. pulsed excimer lasers (XeF, XeCL, KrF) with a repetition rate greater than 250 Hz and an average power output of greater than 500 W operating at wavelengths of between 240 nm and 360 nm; and
- para-hydrogen Raman shifters designed to operate at 16 µm output wavelength and at a repetition rate greater than 250 Hz.

Technical note:

Machine tools, measuring devices and associated technology that have the potential for use in the nuclear industry are included in Items 4502.2. and 4502.3. of this list.

- 7. Mass spectrometers capable of measuring ions of 230 atomic mass units or greater and having a resolution of better than 2 parts in 230, and ion sources therefor as follows:
 - a. inductively coupled plasma mass spectrometers (ICP/MS);
 - b. glow discharge mass spectrometers (GDMS);
 - c. thermal ionization mass spectrometers (TIMS);
 - electron bombardment mass spectrometers which have a source chamber constructed from or lined with or plated with materials resistant to UF6;
 - e. molecular beam mass spectrometers as follows:
 - 1. which have a source chamber constructed from or lined with or plated with stainless steel or molybdenum and have a cold trap capable of cooling to 193 K (-80°C) or less; or
 - 2. which have a source chamber constructed from or lined with or plated with materials resistant to UF₆; and
 - f. mass spectrometers equipped with a microfluorination ion source designed for use with actinides or actinide fluorides; except specially designed or prepared magnetic or quadruple mass spectrometers capable of taking on-line samples of feed, product or tails from UF₆ gas streams and having all of the following characteristics:
 - 1. unit resolution for mass greater than 320;
 - ion sources constructed of or lined with nichrome or monel or nickel-plated;
 - 3. electron bombardment ionization sources; and
 - 4. having a collector system suitable for isotopic analysis.
- 8. Pressure transducers which are capable of measuring absolute pressure at any point in the range 0 kPa to 13 kPa, with pressure sensing elements made of or protected by nickel, nickel alloys with more than 60% nickel by weight, aluminum or aluminum alloys as follows:
 - a. transducers with a full scale of less than 13 kPa and an accuracy of better than $\pm 1\%$ of full scale; **and**
 - b. transducers with a full scale of 13 kPa or greater and an accuracy of better than ± 130 Pa.

Note:

For the purposes of this paragraph,

- a. pressure transducers are devices that convert pressure measurements into an electrical signal.
- b. "accuracy" includes non-linearity, hysteresis and repeatability at ambient temperature.
- Valves 5 mm (0.2 in.) or greater in nominal size, with a bellows seal, wholly made of or lined with aluminum, aluminum alloy, nickel, or alloy containing 60% or more nickel, either manually or automatically operated. *Note:*
 - For valves with different inlet and outlet diameters, the nominal size parameter above refers to the smallest diameter.

4503. con't.

- 10. Superconducting solenoidal electromagnets with all of the following characteristics:
 - a. capable of creating magnetic fields or more than 2 T (20 kilogauss);
 - b. with an L/D (length divided by inner diameter) greater than 2;
 - c. with an inner diameter of more than 300 mm; and
 - d. with a magnetic field uniform to better than 1% over the central 50% of the inner volume.

Note:

Item 4503.10. does not cover magnets specially designed for and exported as parts of medical nuclear magnetic resonance (NMR) imaging systems. It is understood that the wording 'As part of does not prohibit separate shipments from different sources provided the related export documents clearly specify the 'part' of the relationship.

 Vacuum pumps with an input throat size of 38 cm (15 in.) or greater with a pumping speed of 15,000 L/s or greater and capable of producing an ultimate vacuum better than 10⁻⁴ torrs (1.33 x 10⁻⁴ mbar).

Notes:

- 1. The ultimate vacuum is determined at the input of the pump with the input of the pump blocked off.
- 2. The pumping speed is determined at the measurement point with nitrogen gas or air.
- 12. Direct current high-power supplies capable of continuously producing, over a time period of 8 hours, 100 V or greater with current output of 500 amps or greater and with current or voltage regulation better than 0.1%.
- 13. High-voltage direct current power supplies capable of continuously producing, over a time period of 8 hours, 20,000 V or greater with current output of 1 amp or greater and with current or voltage regulation better than 0.1%.
- Electromagnetic isotope separators, designed for or equipped with, single or multiple ion sources capable of providing a total ion beam current of 50 mA or greater.
 Notes:
 - 4503.14. includes separators capable of enriching stable isotopes as well as those for uranium. A separator capable of separating the isotopes of lead with a one-mass unit difference is inherently capable of enriching the isotopes of uranium with a three-unit mass difference.
 - 4503.14. includes separators with the ion sources and collectors both in the magnetic field and those configurations in which they are external to the field.
 - 3. A single 50 mA ion source will produce less than 3 g of separated HEU per year from natural abundance feed.

4504. Heavy water production plant-related equipment (other than items listed in Group 3, Item 3106.)

- 1. Specialized packings for use in separating heavy water from ordinary water, made of phosphor bronze mesh (chemically treated to improve wettability) and designed for use in vacuum distillation towers.
- 2. Pumps circulating solutions of diluted or concentrated potassium amide catalyst in liquid ammonia (KNH₂ / NH₃), with all of the following characteristics:
 - a. airtight (i.e., hermetically sealed);
 - b. for concentrated potassium amide solutions (1% or greater), operating pressure of 1.5 Mpa to 60 MPa (15 to 600 atmospheres); for dilute potassium amide solutions (less than 1%), operating pressure of 20 Mpa to 60 Mpa (200 to 600 atmospheres); **and**
 - c. a capacity greater than $8.5 \text{ m}^3/\text{h}$ (5 cubic feet per minute).

3. Water-hydrogen sulfide exchange tray columns constructed from fine carbon steel with a diameter of 1.8 m or greater, which can operate at a nominal pressure of 2 MPa (300 psi) or greater, and internal contactors therefor.

Notes:

- Internal contactors of the columns are segmented trays which have an effective assembled diameter of 1.8 m or greater, are designed to facilitate countercurrent contacting and are constructed of materials resistant to corrosion by hydrogen sulfide/water mixtures. These may be sieve trays, valve trays, bubble cap trays or turbogrid trays.
- Fine carbon steel in this paragraph is defined to be steel with the austenitic ASTM (or equivalent standard) grain size number of 5 or greater.
- Materials resistant to corrosion by hydrogen sulfide/water mixtures in 4504.3. are defined to be stainless steels with a carbon content of 0.03% or less.
- Hydrogen-cryogenic distillation columns having all of the following applications:
 - a. designed to operate with internal temperatures of -238°C (35 K) or less;
 - b. designed to operate at internal pressure of 0.5 MPa to 5 MPa (5 to 50 atmospheres);
 - c. constructed of fine-grain stainless steels of the 300 series with low sulphur content or equivalent cryogenic and H₂-compatible materials; **and**
 - d. with internal diameters of 1 m or greater and effective lengths of 5 m or greater.

Note:

Fine-grain stainless steels in 4504.4. are defined to be fine-grain austenitic stainless steels with an ASTM (or equivalent standard) grain size number of 5 or greater.

- Ammonia synthesis converters or synthesis units in which the synthesis gas (nitrogen and hydrogen) is withdrawn from an ammonia/hydrogen high-pressure exchange column and the synthesized ammonia is returned to said column.
- Turboexpanders or turboexpander-compressor sets designed for operation below 35 K and a throughput of hydrogen gas of 1,000 kg/hr or greater.

4505. Implosion systems development equipment

- Flash x-ray generators or pulsed electron accelerators with peak energy of 500 keV or greater, as follows, except accelerators that are component parts of devices designed for purposes other than electron beam or x-ray radiation (electron microscopy, for example) and those designed for medical purposes:
 - a. having an accelerator peak electron energy of 500 keV or greater but less than 25 MeV and with a figure of merit (K) of 0.25 or greater, where K is defined as:
 - $K=1.7 \times 10^{3} V^{2.65} Q$,

where V is the peak electron energy in million electron volts and Q is the total accelerated charge in coulombs if the accelerator beam pulse duration is less than or equal to 1 μ s; if the accelerator beam pulse duration is greater than 1 μ s, Q is the maximum accelerated charge in 1 μ s [Q equals the integral of i with respect to t, over the lesser of 1 μ s or the time duration of the beam pulse (Q=Jidt), where i is beam current in amperes and t is time in seconds]; or b. Having an accelerator peak electron energy of 25 MeV or greater and a peak power greater than 50 MW. [Peak power = (peak potential in volts) x (peak beam current in amperes).]

Notes:

1. "Time duration of the beam pulse" means, in machines, based on microwave accelerating cavities, the time duration of the beam pulse is the lesser of 1 µs or the duration of the bunched beam packet resulting from one microwave modulator pulse.

"Peak beam current" means, in machines, based on microwave accelerating cavities, the peak beam current is the average current in the time duration of a bunched beam packet.

 Multistage light gas guns or other high-velocity gun systems (coil, electromagnetic, electrothermal, or other advanced systems) capable of accelerating projectiles to 2 km/s or greater.

- Mechanical rotating mirror cameras, as follows, and specially designed components therefore:
 - a. framing cameras with recording rates greater than 225,000 frames per second; **and**
 - b. streak cameras with writing speeds greater than 0.5 mm/μs.

Note:

Components of such cameras include synchronizing electronics units and rotor assemblies consisting of turbines, mirrors, and bearings.

- 4. Electronic streak and framing cameras, and tubes as follows:
 - a. electronic streak cameras capable of 50 ns or less time resolution and streak tubes therefor;
 - electronic (or electronically shuttered) framing cameras capable of 50 ns or less frame exposure time;
 - c. framing tubes and solid-state imaging devices for use with cameras controlled in paragraph b. as follows:
 - proximity focused image intensifier tubes having the photocathode deposited on a transparent conductive coating to decrease photocathode sheet resistance;
 - 2. gate silicon intensifier target (SIT) vidicon tubes, where a fast system allows gating the photoelectrons from the photocathode before they impinge on the SIT plate;
 - 3. Kerr or pocket cell electro-optical shuttering; or
 - 4. other framing tubes and solid-state imaging devices having a fast-image gating time of less than 50 ns specially designed for cameras controlled by sub-item 4505.4.b.
 - 5. Specialized instrumentation for hydrodynamic experiments as follows:
 - a) velocity interferometers for measuring velocities in excess of 1 km/s during time intervals less than 10 μs (VISARSs, Doppler laser interferometers, DLIs, etc.);
 - b) manganin gauges for pressures greater than 100 kilobars; and
 - c) quartz pressure transducers for pressures greater than 100 kilobars.

4506. Explosives and related equipment

- 1. Detonators and multipoint initiation systems (exploding bridge wire, slapper, etc.):
 - a. electrically driven explosive detonators, as follows:
 - 1. exploding bridge (EB);
 - 2. exploding bridge wire (EBW);
 - 3. slapper; and
 - 4. exploding foil initiators (EFI); and

b. Arrangements using single or multiple detonators designed to nearly simultaneously initiate an explosive surface (over [greater] than $5,000 \text{ mm}^2$) from a single firing signal (with an initiation timing spread over the surface of less than $2.5 \text{ }\mu\text{s}$).

Technical Note:

The detonators described in Item 4506.1. all utilize a small electrical conductor (bridge, bridge wire, or foil) that explosively vaporizes when a fast, high current electrical pulse is passed through it. In nonslapper types, the exploding conductor starts a chemical detonation in a contacting high-explosive material such as PETN (pentaerythritoItetranitrate). In slapper detonators, the explosive vaporization of the electrical conductor drives a 'flyer' or 'slapper' across a gap and the impact of the slapper on an explosive starts a chemical detonation. The slapper in some designs is driven by magnetic force. The term exploding foil detonator may refer to either an EB or a slapper-type detonator. Also, the word 'initiator' is sometimes used in place of the word 'detonator'. **Note:**

Item 4506.1. does not include detonators using only primary explosives, such as lead azide.

- 2. Electronic components for firing sets (switching devices and pulse discharge capacitors):
 - a. switching devices:
 - cold-cathode tubes (including gas krytron tubes and vacuum sprytron tubes), whether gas filled or not, operating similarly to a spark gap, containing three or more electrodes, and having all of the following characteristics:
 - a) anode peak voltage rating of 2,500 V or more;
 - b) anode peak current rating of 100 A or more; and
 - c) anode delay time of 10 μ s or less;
 - triggered spark-gaps having an anode delay time of 15 μs or less and rated for a peak current of 500 A or more; and
 - 3. modules or assemblies with a fast switching function having all of the following characteristics:
 - a) anode peak voltage rating greater than 2,000 V;
 - b) anode peak current rating of 500 A or more; and
 - c) turn-on time of 1 µs or less; and
 - b. Capacitors with the following characteristics:
 - 1. voltage rating greater than 1.4 kV, energy storage greater than 10 J, capacitance greater than 0.5 μ F, and series inductance less than 50 nH, or
 - 2. voltage rating greater than 750 V, capacitance greater than 0.25 μF and series inductance less than 10 nH.

3. Firing sets and equivalent high-current pulse generators (for controlled detonators), as follows:

- a. explosive detonator firing sets designed to drive multiple controlled detonators covered in 4506.1.; and
- modular electrical pulse generators (pulsers) designed for portable, mobile, or ruggedized-use (including xenon flashlamp drivers) having all the following characteristics:
 - 1. capable of delivering their energy in less than 15 µs;
 - 2. having an output greater than 100 A;
 - having a rise time of less than 10 μs into loads of less than 40 ohms. (Rise time is defined as the time interval from 10% to 90% current amplitude when driving a resistive load);
 - 4. enclosed in a dust-tight enclosure;
 - 5. no dimension greater than 25.4 cm (10 in.);
 - 6. weight less than 25 kg (55 lb.); and
 - specified for use over an extended temperature range (-50°C to 100°C) or specified as suitable for aerospace use.

4506. con't.

- High explosives or substances or mixtures containing more than 2% of any of the following:
 - a. Cyclotetramethylenetetranitramine (HMX);
 - b. Cyclotrimethylenetrinitramine (RDX);
 - c. Triaminotrinitrobenzene (TATB);
 - d. Any explosive with a crystal density greater than 1.8 g/cm³ and having a detonation velocity greater than 8,000 m/s; or
 - e. Hexanitrostilbene (HNS).

4507. Nuclear testing equipment and components

- Photomultiplier tubes with a photocathode area of greater than 20 cm² having an anode pulse rise time of less than 1 ns.
- 2. High-speed pulse generators with output voltages greater than
- 6 V into a less than 55 ohm resistive load and with pulse transition times less than 500 ps (defined as the time interval between 10% and 90% voltage amplitude).

4508. Other equipment

- 1. Neutron generator systems, including tubes, designed for operation without an external vacuum system and utilizing electrostatic acceleration to induce a tritium-deuterium nuclear reaction.
- 2. Equipment related to nuclear material handling and processing and to nuclear reactors as follows:
 - a. remote manipulators that can be used to provide remote actions in radiochemical separation operations and hot cells, as follows:
 - having a capability of penetrating 0.6 m or more of hot cell wall (through-the-wall operation); or
 - 2. having a capability of bridging over the top of a hot cell wall with a thickness of 0.6 m or more (over-the-wall operation);

Note:

Remote manipulators provide translation of human operator actions to a remote operating arm and terminal fixture. They may be of a master/slave type or operated by joystick or keypad.

- b. high-density (lead glass or other) radiation shielding windows greater than 0.09 m² on cold area and with a density greater than 3 g/cm³ and a thickness of 100 mm or greater and specially designed frames therefor; and
- c. radiation-hardened TV cameras, or lenses therefor, specially designed or rated as radiation hardened to withstand greater than 5×10^4 Gy (Silicon) (5×10^6 rad (Silicon)) without operational degradation.

- 3. Tritium facilities, plants and equipment, as follows:
 - a. facilities or plants for the production, recovery, extraction, concentration or handling of tritium, tritium compounds or mixtures; and
 - b. equipment for tritium facilities or plants, as follows:
 - hydrogen or helium refrigeration units capable of cooling to 23 K (-250°C) or less, with heat removal capacity greater than 150 W; and
 - hydrogen isotope storage and purification systems using metal hydrides as the storage or purification medium.
- 4. Platinized catalysts specially designed or prepared for promoting the hydrogen isotope exchange reaction between hydrogen and water for the recovery of tritium from heavy water or for the production of heavy water.
- 5. Lithium isotope separation facilities, plants and equipment, as follows:
 - a. facilities or plants for the separation of lithium isotopes; and
 - b. equipment for the separation of lithium isotopes, as follows:
 - packed liquid-liquid exchange columns specially designed for lithium amalgams;
 - 2. mercury and/or lithium amalgam pumps;
 - 3. lithium amalgam electrolysis cells;
 - evaporators for concentrated lithium hydroxide solution.

4510. Controlled nuclear information

Technical data including, but not limited to, technical drawings, models, photographic negatives and prints, recordings, design data and technical and operating manuals whether in written form or recorded on other media or devices such as disk, tape and readonly memories for the design, production, construction, operation or maintenance of any item in Group 4, except data available to the public (e.g., in published books or periodicals, or that which has been made available without restrictions upon its further dissemination).

Definitions of Terms used in Groups 3 and 4

"Accuracy"

Usually measured in terms of inaccuracy, defined as the maximum deviation, positive or negative, of an indicated value from an accepted standard or true value.

"Adaptive control"

A control system that adjusts the response from conditions detected during the operation (Ref. ISO 2806-1980).

"Angular position deviation"

The maximum difference between angular position and the actual, very accurately measured angular position after the workpiece mount of the table has been turned out of its initial position. (Reference: VID/VDE 2617. Draft: "Rotary table on coordinate measuring machines.")

"Contouring control"

Two or more "numerically controlled" motions operating in accordance with instructions that specify the next required position and the required feed rates to that position. These feed rates are varied in relation to each other so that a desired contour is generated (REF. ISO/DIS 2806-1980).

"Development"

Is related to all stages prior to "production", and includes: design, design research, design analysis, design concepts, assembly and testing of prototypes, pilot production schemes, design data, process of transforming design data into a product, configuration design, integration design, layouts.

"End-effectors"

as described in Item 4501.6 include grippers, active tooling units, and any other tooling that is attached to the baseplate on the end of a "robot" manipulator arm.

"Isostatic Presses"

Is defined as equipment capable of pressurizing a closed cavity through various media (gas, liquid, solid particles, etc.) to create equal pressure in all directions within the cavity upon a workpiece or material.

"Laser"

An assembly of components which produce coherent light that is amplified by stimulated emission of radiation.

"Linearity"

(Usually measured in terms of nonlinearity) is the maximum deviation of the actual characteristic (average of upscale and downscale readings), positive or negative, from a straight line so positioned as to equalize and minimize the maximum deviations.

"Measurement uncertainty"

The characteristic parameter which specifies in what range around the output value the correct value of the measurable variable lies with a confidence level of 95%. It includes the uncorrected systematic deviations, the uncorrected backlash and the random deviations (Reference: VDI/VDE 2617).

"Microprogram"

A sequence of elementary instructions, maintained in a special storage, the execution of which is initiated by the introduction of its reference instruction into an instruction register.

"Numerical control"

The automatic control of a process performed by a device that makes use of numeric data usually introduced as the operation is in progress (Ref. ISO 2382).

"Positioning accuracy"

Of "numerically controlled" machine tools is to be determined and presented in accordance with paragraph 2.13, in conjunction with the requirements below:

a. Test conditions (ISO/DIS/230/2, paragraph 3):

1. For 12 hours before and during measurements, the machine tool and accuracy measuring equipment will be kept at the same ambient temperature. During the premeasurement time, the slides of the machine will be continuously cycled identically to the way they will be cycled during the accuracy measurements;

- 2. The machine shall be equipped with any mechanical, electronic, or software compensation to be exported with the machine;
- Accuracy of measuring equipment for the measurements shall be at least four times more accurate than the expected machine tool accuracy;
- 4. Power supply for slide drives shall be as follows:
 - a. Line voltage variation shall not be greater than $\pm 10\%$ of nominal rated voltage;
 - b. Frequency variation shall not be greater than ±2 Hz of normal frequency;
 - c. Lineouts or interrupted service are not permitted.

b. Test Program (paragraph 4):

1. Feed rate (velocity of slides) during measurement shall be the rapid traverse rate;

N.B.:

In the case of machine tools which generate optical quality surfaces, the feed rate shall be equal to or less than 50 mm per minute;

- 2. Measurements shall be made in an incremental manner from one limit of the axis travel to the other without returning to the starting position for each move to the target position;
- 3. Axes not being measured shall be retained at midtravel during test of an axis.
- c. Presentation of test results (paragraph 2): The results of the measurements must include:
 - 1."positioning accuracy" (A) and
 - 2. The mean reversal error (B).

"Production"

Means all production stages, such as: construction, product engineering, manufacture, integration, assembly (mounting), inspection, testing, quality assurance.

"Program"

A sequence of instructions to carry out a process in, or convertible into, a form executable by an electronic computer.

"Real-time processing"

Processing of data by an electronic computer in response to an external event according to time requirements imposed by the external event.

"Resolution"

The least increment of a measuring device; on digital instruments, the least significant bit. (Reference: ANSI B-89.1.12)

"Robot"

A manipulation mechanism, which may be of the continuous path or of the point-to-point variety, may use "sensors" and has all the following characteristics:

- a. Is multifunctional;
- Is capable of positioning or orienting material, parts, tools or special devices through variable movements in three-dimensional space;
- Incorporates three or more closed or open loop servodevices which may include stepping motors; and
- d. Has "user-accessible programmability" by means of teach/playback method or by means of an electronic computer which may be a programmable logic controlled, i.e. without mechanical intervention.

N.B.:

a.

C

The above definition does not include the following devices:

Manipulation mechanisms which are only manually/teleoperator controllable;

- b. Fixed sequence manipulation mechanisms which are automated moving devices operating according to mechanically fixed programmed motions. The program is mechanically limited by fixed stops, such as pins or cams. The sequence of motions and the selection of paths or angles are not variable or changeable by mechanical, electronic or electrical means;
 - Mechanically controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The program is mechanically limited by fixed, but adjustable, stops such as pins or cams. The sequence of motions and the selection of paths or angles are variable within the fixed program patterns. Variations or modifications of the program pattern (e.g. changes of pins or exchanges of cams) in one or more motion axes are accomplished only through mechanical operations;
- d. Non-servo-controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The program is variable, but the sequence proceeds only by the binary signal from mechanically fixed electrical binary devices or adjustable stops;
 - Stacker cranes defined as Cartesian coordinate manipulator systems manufactured as an integral part of a vertical array of storage bins and designed to access the contents of those bins for storage or retrieval.

"Sensors"

e.

Detectors of a physical phenomenon, the output of which (after conversion into a signal that can be interpreted by a controller) is able to generate "programs" or modify programmed instructions or numerical program data. This includes "sensors" with machine vision, infrared imaging, acoustical imaging, tactile feel, inertial position measuring, optical or acoustic ranging or force or torque measuring capabilities.

"Software"

A collection of one or more "programs" or "microprograms" fixed in any tangible medium of expression.

"Specially designed software"

The minimum "operating systems", "diagnostic systems", "maintenance systems" and "application software" necessary to be executed on particular equipment to perform the function for which it was designed. To make other, incompatible equipment perform the same function requires:

a. modification of this "software" or

b. addition of "programs."

"Technical assistance"

May take forms, such as: instruction, skills, training, working knowledge, consulting services.

N.B.:

"Technical assistance" may involve transfer of "technical data".

"Technical data"

May take forms such as blueprints, plans, diagrams, models, formulae, tables, engineering designs and specifications, manuals and instructions written or recorded on other media or devices such as disk, tape, read-only memories.

"Technology"

Specific information required for the "development", "production", or "use", of any item contained in the List. The information takes the form of "technical data" or "technical assistance".

"Use"

Operation, installation (including on-site installation), maintenance (checking), repair, overhaul and refurbishing. "User-accessible programmability"

The facility allowing a user to insert, modify of replace "programs" by means other than:

a. A physical change in wiring or interconnections; or

b. The setting of function controls including entry of parameters.

Group 5 – Miscellaneous Goods

5001.	Pancreas glands of cattle and calves.
	(All destinations)

- 5011. Human serum albumin. (All destinations)
- 5101. Logs of all species of wood. (All destinations)
- 5102. Pulpwood of all species of wood. (All destinations)
- 5103. Blocks, bolts, blanks, boards and any other material or product of red cedar that is suitable for use in the manufacture of shakes or shingles. (All destinations)
- 5104. Softwood Lumber Products
- (1) The definition in this subsection applies in this item.
- "province of first manufacture" means the province where the mill at which a softwood lumber product was first manufactured into such a product is situated, whether or not that product is further processed (for example, by planing or kiln-drying) or is transformed from one softwood lumber product into another such product (for example, a remanufactured product) in another province. (*province de première transformation*)
- (2) Softwood lumber products, as follows:
 - a) coniferous wood sawn or chipped lengthwise, sliced or peeled, whether or not planed, sanded or finger-jointed, of a thickness exceeding 6 mm, that is classified under subheading 4407.10.00 of the *Harmonized Tariff Schedule of the United States (1996)* (United States International Trade Commission Pub. 2937, 19 U.S.C. 1202 (1988)) and in respect of which the province of first manufacture is the Province of Ontario, the Province of Alberta; (United States) and
 - b) coniferous wood (including strips and friezes for parquet flooring, not assembled), continuously shaped (tongued, grooved, rebated, chamfered, V-jointed, beaded, moulded, rounded or the like) along any of its edges or faces (other than wood mouldings and wood dowel rods), whether or not planed, sanded or finger-jointed, that is classified under subheading 4409.10.10, 4409.10.20 or 4409.10.90 of the *Harmonized Tariff Schedule of the United States (1996)* (United States International Trade Commission Pub. 2937, 19 U.S.C. 1202 (1988)) and in respect of which the province of first manufacture is the Province of Ontario, the Province of Alberta. (*United States*)
- (3) This item ceases to be in force on March 31, 2001.

Agriculture and Food Products

5201. Peanut Butter that is classified under tariff item No. 2008.11.10 of Schedule I to the *Customs Tariff. (All destinations)*

5202. Roe Herring

1. In this item,

"fishing zones of Canada" has the same meaning as in subsection 4(1) of the Territorial Sea and Fishing Zones Act; (zone de pêche du Canada)

"internal waters of Canada" has the same meaning as in subsection 3(2) of the Territorial Sea and Fishing Zones Act; (*eaux intérieures du Canada*)

"territorial sea of Canada" has the same as in subsection 3(1) of the Territorial Sea and Fishing Zones Act; (mer territoriale du Canada)

"unprocessed roe herring" means roe herring from which the roe has not been extracted. (*hareng rogué non traité*)

- 2. Unprocessed roe herring that are caught in:
 - a. those parts of the territorial sea of Canada that are adjacent to the coast of British Columbia;
 - b. those parts of the internal waters of Canada that are adjacent to the coast of British Columbia; or
 - c. those parts of the fishing zones of Canada that are adjacent to the coast of British Columbia.

(All destinations)

5203. Sugar-containing Products

Sugar-containing products that are classified under subheadings 1701.91.54, 1704.90.74, 1806.20.75, 1806.20.95, 1806.90.55, 1901.90.56, 2101.10.54, 2101.20.54, 2106.90.78 and 2106.90.95 of *Harmonized Tariff Schedule of the United States* (1995) (United States International Trade Commission Pub. 2831, 19 U.S.C. § 1202 (1988)). (United States)

5204. Sugars, Syrups and Molasses

Sugars, Syrups and Molasses that are classified under subheadings 1701.12.10, 1701.91.10, 1701.99.10, 1702.90.10, and 2106.90.44 of *Harmonized Tariff Schedule of the United States (1995)* (United States International Trade Commission Pub. 2831, 19 U.S.C. § 1202 (1988)). (United States)

United States Origin Goods

5400. United States Origin Goods

All goods that originate in the United States, unless they are included elsewhere in this List, whether in bond or cleared by Canadian Customs, other than goods that have been further processed or manufactured outside the United States so as to result in a substantial change in value, form or use of the goods or in the production of new goods.

(All destinations other than the United States)

Goods in Transit

5401. Goods in Transit

- 1. All goods that originate outside Canada that are included in this List, whether in bond or cleared by Canadian Customs, other than goods that are in transit in bond on a through journey on a billing that originates outside Canada where the billing
 - a. indicates that the ultimate destination of the goods is a country other than Canada; (*All destinations other than the United States*) and
 - b. in the case of goods that are shipped from the United States,
 - 1. is accompanied by a certified true copy of the United States *Shipper's Export Declaration*, where the export declaration does not contain terms which conflict with those of the billing and is presented to the Canadian Collector of Customs,
 - 2. cites from a Shipper's Export Declaration, or
 - 3. cites a summary Authorization Number or Symbol, assigned to the United States exporter by the United States Bureau of the Census. (*All destinations other than the United States*)

Prohibited weapons

5501 Blinding Laser Weapons.

Laser weapons specifically designed, as their sole combat function or as one of their combat functions, to cause permanent blindness to non-enhanced vision, that is to the naked eye or to the eye with corrective eyesight devices. (*All destinations*).

5502 Nuclear Fusion Reactors.

- 1. Subject to subitem (2), systems, equipment, material, components, software and technology for use in research, development, design, testing, demonstration, or training related to nuclear fusion or the construction and operation of a nuclear fusion reactor, including:
 - reactor assemblies incorporating toroidal and poloidal field coils;
 - b. independent electrical and magnet power supply systems;
 - c. high-power microwave radio frequency systems; and
 - d. feedback, control and data acquisition systems.

(All destinations)

- 2. This item does not apply to data:
 - a. that is contained in published books or periodicals or that is otherwise available to the public; or
 - b. that has been made available without restrictions on its further dissemination
- 3. Subject to subitem (2), systems, equipment, material, components, software and technology for use in research, development, design, testing, demonstration, or training related to nuclear fusion or the construction and operation of a nuclear fusion reactor, including:
 - a. reactor assemblies incorporating toroidal and poloidal field coils;
 - b. independent electrical and magnet power supply systems;
 - c. high-power microwave radio frequency systems; and
 - d. feedback, control and data acquisition systems.

(All destinations)

- 4. This item does not apply to data:
 - a. that is contained in published books or periodicals or that is otherwise available to the public; **or**
 - b. that has been made available without restrictions on its further dissemination.

5503 Anti-personnel Mines.

"Anti-personnel mine" means a mine that is designed, altered or intended to be exploded by the presence, proximity or contact of a person and that is capable of incapacitating, injuring or killing one or more persons.

(All destinations)

Group 6 – Missile Technology Control Regime List

Note:

Terms in "double quotation marks" are defined terms. Refer to "Group 6 - Definitions" on page 103.

General Technology Note

The export of "technology" directly associated with any goods controlled in Group 6 is controlled according to the provisions in each Item.

Controls do not apply to that "technology" which is the minimum necessary for the installation, operation, maintenance (checking) and repair of those goods which are not controlled or whose export has been authorized.

Controls do not apply to "technology" "in the public domain", to "basic scientific research" or to the minimum necessary information for patent applications.

Category 6010: Complete Delivery Systems

6011. Equipment, Assemblies and Components

- Complete rocket systems (including ballistic missile systems, space launch vehicles, and sounding rockets) capable of delivering at least a 500 kg payload to a range of at least 300 km.
- 2. Complete unmanned air vehicle systems (including cruise missile systems, target drones and reconnaissance drones) capable of delivering at least a 500 kg payload to a range of at least 300 km.

(All Destinations)

6012. Test and Production Equipment

1. "Production facilities" specially designed for the systems specified in 6011.

6013. Materials

None.

6014. Software

- "Software" specially designed or modified for the "use" of "production facilities" specified in 6012.
- "Software" which co-ordinates the function of more than one subsystem, specially designed or modified for "use" in systems specified in 6011.

General Software Note

The Missile Technology Control Regime List does not control "software" which is either:

- 1. Generally available to the public by being :
 - a. Sold from stock at retail selling points without restriction, by means of:
 - 1. Over-the-counter transactions;
 - 2. Mail order transactions; or
 - 3. Telephone call transactions; and
 - b. Designed for installation by the user without further substantial support by the supplier; or
- 2. "In the public domain".

Note:

The General Software Note only applies to general purpose, mass market "software".

6015. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6011., 6012., or 6014.

Category 6020: Complete Subsystems Usable for Complete Delivery Systems

6021. Equipment, Assemblies and Components

- 1. Complete subsystems usable in the systems specified in 6011., as follows:
 - a. Individual rocket stages usable in the systems specified in 6011.;
 - b. Re-entry vehicles, and equipment designed or modified therefor, usable in the systems specified in 6011., as follows, except as provided in Note 1 below for those designed for non-weapon payloads:
 - 1. Heat shields, and components thereof, fabricated of ceramic or ablative materials;
 - 2. Heat sinks and components thereof fabricated of light-weight, high heat capacity materials;
 - 3. Electronic equipment specially designed for re-entry vehicles;
 - c. Solid propellant rocket motors or liquid propellant rocket engines, usable in the systems specified in 6011., having a total impulse capacity of 1.1 x 10⁶ Ns (2.5 x 10⁵ lb.s) or greater;

6021.1.c. con't.

Note:

Governments may permit the export of liquid propellant apogee engines specified in 6021.1.c., designed or modified for satellite applications, if the subsystem is exported subject to end-use statements and quantity limits appropriate for the excepted end-use stated above, when having all of the following parameters: a, nozzle throat diameter of 20 mm or less, and

- b. combustion chamber pressure of 15 bar or less.
- d. 'Guidance sets', usable in the systems specified in 6011., capable of achieving system accuracy of 3.33% or less of the range (e.g. a 'CEP' of 10 km or less at a range of 300 km), except as provided in Note 1 below for those designed for missiles with a range under 300 km or manned aircraft;

Technical Notes:

- A 'guidance set' integrates the process of measuring and computing a vehicle's position and velocity (i.e. navigation) with that of computing and sending commands to the vehicle's flight control systems to correct the trajectory.
- 'CEP' (circle of equal probability) is a measure of accuracy, defined as the radius of the circle centred at the target, at a specific range, in which 50% of the payloads impact.
- e. Thrust vector control sub-systems, usable in the systems specified in 6011., except as provided in Note 1 below for those designed for rocket systems that do not exceed the range/payload capability of systems specified in 6011.; Technical Note:

6021.1.e. includes the following methods of achieving thrust vector control:

- a. Flexible nozzle;
- b. Fluid or secondary gas injection;
- c. Movable engine or nozzle;
- d. Deflection of exhaust gas stream (jet vanes or probes);
- e. Use of thrust tabs.
- f. Weapon or warhead safing, arming, fusing, and firing mechanisms, usable in the systems specified in 6011., except as provided in Note 1 below for those designed for systems other than those specified in 6011.

Note:

 Governments may permit the export of items identified as exceptions in 6021.1.b., 6021.1.c., 6021.1.d., 6021.1.e. and 6021.1.f. above if the subsystem is exported subject to end-use statements and quantity limits appropriate for the excepted end-use stated above.

6022. Test and Production Equipment

- 1. "Production facilities" specially designed for the subsystems specified in 6021.
- 2. "Production equipment" specially designed for the subsystems specified in 6021.

6023. Materials

6024. Software

- 1. "Software" specially designed or modified for the "use" of "production facilities" specified in 6022.1.
- "Software" specially designed or modified for the "use" of rocket motors or engines specified in 6021.1.c.

 "Software", specially designed or modified for the "use" of 'guidance sets' specified in 6021.1.d. Note:

6024.3. includes "software", specially designed or modified to enhance the performance of 'guidance sets' to achieve or exceed the accuracy specified in 6021.1.d.

- "Software" specially designed or modified for the "use" of subsystems or equipment specified in 6021.1.b.3.
- "Software" specially designed or modified for the "use" of systems in 6021.1.e.
- "Software" specially designed or modified for the "use" of systems in 6021.1.f.

Note:

Subject to end-use statements appropriate for the excepted end-use, governments may permit the export of "software" controlled by 6024.2. to 6024.6. as follows:

- Under 6024.2., if specially designed or modified for liquid propellant apogee engines, designed or modified for satellite applications as specified in the Note to 6021.1.c.
- Under 6024.3., if designed for missiles with a range of under 300 km or manned aircraft.
- Under 6024.4., if specially designed or modified for re-entry vehicles designed for non-weapon payloads.
- Under 6024.5., if designed for rocket systems that do not exceed the range payload capability of systems specified in 6011.
- 5. Under 6024.6., if designed for systems other than those specified in 6011.

6025. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6021., 6022. or 6024.

Category 6030: Propulsion Components and Equipment

6031. Equipment, Assemblies and Components

- Lightweight turbojet and turbofan engines (including turbocompound engines), usable in the systems specified in 6011., that are small and fuel efficient, as follows:
 - a. Engines having both of the following characteristics :
 - 1. Maximum thrust value greater than 1,000 N (achieved un-installed) excluding civil certified engines with a maximum thrust value greater than 8,890 N (achieved un-installed); **and**
 - Specific fuel consumption of 0.13 kgN⁻¹h⁻¹ or less (at sea level static and standard conditions);
 - Engines designed or modified for systems specified in 6011., regardless of thrust or specific fuel consumption. *Note:*

Governments may permit the export of engines specified in 6031. as part of a manned aircraft or in quantities appropriate for replacement parts for a manned aircraft.

 Ramjet/scramjet/pulse jet/combined cycle engines, including devices to regulate combustion, and specially designed components therefor, usable in the systems specified in 6011.

None.

6031. con't.

 Rocket motor cases, 'insulation' components and nozzles therefor, usable in the systems specified in 6011. *Technical Note:*

In 6031.3. 'insulation' intended to be applied to the components of a rocket motor, i.e., the case, nozzle inlets, case closures, includes cured or semicured compounded rubber components comprising sheet stock containing an insulating or refractory material. It may also be incorporated as stress relief boots or flaps. Note:

Refer to 6033.2. for 'insulation' material in bulk or sheet form.

- 4. Staging mechanisms, separation mechanisms, and interstages therefor, usable in the systems specified in 6011.
- Liquid and slurry propellant (including oxidisers) control systems, and specially designed components therefor, usable in the systems specified in 6011., designed or modified to operate in vibration environments of more than 10 g RMS between 20 Hz and 2 kHz.

Note 1: The only servo valves and pumps specified in 6031.5. are the following:

- a. Servo valves designed for flow rates of 24 litres per minute or greater, at an absolute pressure of 7,000 kPa (1,000 psi) or greater, that have an actuator response time of less than 100 ms;
- Pumps, for liquid propellants, with shaft speeds equal to or greater than 8,000 RPM or with discharge pressures equal to or greater than 7,000 kPa (1,000 psi).

Note 2:

Governments may permit the export of systems and components specified in 6031.5. as part of a satellite.

6. Hybrid rocket motors and specially designed components therefor, usable in the systems specified in 6011.

6032. Test and Production Equipment

- 1. "Production facilities" specially designed for equipment or materials specified in 6031. or 6033.
- 2. "Production equipment" specially designed for equipment or materials specified in 6031. or 6033.
- 3. Flow-forming machines, and specially designed components therefor, which:
 - a. according to the manufacturers technical specification can be equipped with numerical control units or a computer control, even when not equipped with such units at delivery; **and**
 - b. have more than two axes which can be co-ordinated simultaneously for contouring control.

Technical Note:

Machines combining the function of spin-forming and flow-forming are, for the purpose of this item, regarded as flow-forming machines. Note:

This item does not include machines that are not usable in the "production" of propulsion components and equipment (e.g., motor cases) for systems specified in 6011.

6033. Materials

1. 'Interior lining' usable for rocket motor cases in the systems specified in 6011.

Technical Note:

In 6033.1. 'interior lining' suited for the bond interface between the solid propellant and the case or insulating liner is usually a liquid polymer-based dispersion of refractory or insulating materials e.g., carbon-filled HTPB or other polymer with added curing agents to be sprayed or screeded over a case interior. Insulation material in bulk form usable for rocket motor cases in the systems specified in 6011. Technical Note:

In 6033.2. 'insulation' intended to be applied to the components of a rocket motor, i.e., the case, nozzle inlets, case closures, includes cured or semicured compounded rubber sheet stock containing an insulating or refractory material. It may also be incorporated as stress relief boots or flaps specified in 6031.3.

6034. Software

- 1. "Software" specially designed or modified for the "use" of "production facilities" and flow forming machines specified in 6032.1. or 6032.3.
- 2. "Software" specially designed or modified for the "use" of equipment specified in 6031.1., 6031.2., 6031.4., 6031.5. or 6031.6.

Notes:

- Government may permit the export of "software" specially designed or modified for the "use" of engines specified in 6031.1. as part of a manned aircraft or as replacement "software" therefor.
- 2. Governments may permit the export of "software" specially designed or modified for the "use" of propellant control systems specified in 6031.5. as part of a satellite or as replacement "software" therefor.
- 3. "Software" specially designed or modified for the "development" of equipment specified in 6031.2., 6031.3. or 6031.4.

6035. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment, materials or "software" specified in 6031., 6032., 6033. or 6034.

Category 6040: Propellants and Chemicals

6041. Equipment, Assemblies and Components

None.

6042. Test and Production Equipment

None.

6043. Materials

- 1. Composite and composite modified double-base propellants.
- 2. Fuel substances as follows:
 - a. Hydrazine with a concentration of more than 70 percent and its derivatives including monomethylhydrazine (MMH);
 - b. Unsymetrical dimethylhydrazine (UDMH);
 - c. Spherical aluminium powder with particles of uniform diameter of less than 200 x 10^{-6} m (200 μ m) and an aluminium content of 97 percent by weight or more, if at

Group 6 - Missile Technology Control Regime List

6043.2. con't.

least 10 percent of the total weight is made up of particles of less than 63 x 10-6 m (63 µm), according to ISO 2591:1988 or national equivalents such as JIS Z8820; Technical Note:

A particle size of 63 µm (ISO R-565) corresponds to 250 mesh (Tyler) or 230 mesh (ASTM standard E-11).

Zirconium, beryllium, magnesium and alloys of these in particle size less than 60 x 10⁻⁶ m (60 µm), whether spherical, atomised, spheroidal, flaked or ground, consisting of 97 percent by weight or more of any of the above mentioned metals;

Technical Note:

The natural content of hafnium in the zirconium (typically 2% to 7%) is counted with the zirconium.

- Boron and boron alloys in particle size less than 60 x 10-6 m (60 µm), whether spherical, atomised, spheroidal, flaked or ground with a purity of 85 percent by weight or more;
- High energy density materials such as boron slurry, f. having an energy density of 40 x 106 J/kg or greater.
- 3. Oxidisers/Fuels as follows:
 - a. Perchlorates, chlorates or chromates mixed with powdered metals or other high energy fuel components.
- Oxidiser substances as follows: 4
 - a. Liquid oxidiser substances as follows:
 - 1. Dinitrogen trioxide;
 - 2. Nitrogen dioxide/dinitrogen tetroxide;
 - 3. Dinitrogen pentoxide;
 - 4. Inhibited Red Fuming Nitric Acid (IRFNA);
 - 5. Compounds composed of fluorine and one or more of other halogens, oxygen or nitrogen;
 - b. Solid oxidiser substances as follows:
 - 1. Ammonium perchlorate;
 - 2. Ammonium dinitramide (ADN);
 - 3. Nitro-amines (cyclotetramethylene tetranitramine (HMX); cyclotrimethylene - trinitramine (RDX).
- 5. Polymeric substances, as follows:
 - a. Carboxy terminated polybutadiene (CTPB);
 - b. Hydroxy terminated polybutadiene (HTPB);
 - c. Glycidyl azide polymer (GAP);
 - d. Polybutadiene Acrylic Acid (PBAA);
 - e. Polybutadiene Acrylic Acid- Acrylonitrile (PBAN).
- 6. Other propellant additives and agents as follows:
 - Bonding agents as follows: a.
 - 1. tris (1-(2-methyl)aziridinyl) phosphine oxide (MAPO);
 - 2. trimesoyl-1 (2-ethyl) aziridine (HX-868, BITA);
 - Tepanol (HX878), reaction product of 3.
 - tetraethlylenepentamine, acrylonitrile and glycidol; 4. Tepan (HX-879), reaction product of
 - tetraethlylenepentamine and acrylonitrile; 5. Polyfunctional aziridine amides with isophthalic,
 - trimesic, isocyanuric, or trimethyladipic backbone also having a 2-methyl or 2-ethyl aziridine group (HX-752, HX-874 and HX-877);
 - b. Curing agent and catalysts as follows:
 - 1. Triphenyl bismuth (TPB); c. Burning rate modifiers as follows:
 - 1. Catocene;
 - 2. N-butyl-ferrocene;

 - 3. Butacene;

- 4. Other ferrocene derivatives;
- Carboranes, decarboranes, pentaboranes and derivatives thereof;
- d. Nitrate esters and nitrated plasticisers as follows:
 - 1. Triethylene glycol dinitrate (TEGDN):
 - 2. Trimethylolethane trinitrate (TMETN);
 - 3. 1,2,4-butanetriol trinitrate (BTTN);
 - 4. Diethylene glycol dinitrate (DEGDN);
 - Stabilisers as follows:
 - 1. 2-Nitrodiphenylamine;
 - 2. N-methyl-p-nitroaniline.

6044. Software

None.

e.

6045. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of materials specified in 6043.

Category 6050: Propellant Production

6051. Equipment, Assemblies and Components

None.

6052. Test and Production Equipment

- "Production equipment", and specially designed components 1. therefor, for the "production", handling or acceptance testing of liquid propellants or propellant constituents specified in 6040.
- "Production equipment", other than that described in 6052.3., 2. and specially designed components therefor, for the production, handling, mixing, curing, casting, pressing, machining, extruding or acceptance testing of solid propellants or propellant constituents specified in 6040.
- Equipment as follows, and specially designed components 3 therefor:
 - Batch mixers with provision for mixing under vacuum in a. the range of zero to 13.326 kPa and with temperature control capability of the mixing chamber and having all of the following:
 - 1. a total volumetric capacity of 110 litres or more; and
 - 2. at least one mixing/kneading shaft mounted off centre:
 - Continuous mixers with provision for mixing under b. vacuum in the range of zero to 13.326 kPa and with temperature control capability of the mixing chamber and having all of the following:
 - 1. two or more mixing/kneading shafts; and
 - 2. capability to open the mixing chamber;
 - c. Fluid energy mills usable for grinding or milling substances specified in 6040.;
 - Metal powder "production equipment" usable for the d. "production", in a controlled environment, of spherical or atomised materials specified in 6043.2.c. or 6043.2.d..

6052.3.d. con't:

Note: 6052.3.d. includes

- Plasma generators (high frequency arc-jet) usable for obtaining sputtered or spherical metallic powders with organization of the process in an argon-water environment;
- Electroburst equipment usable for obtaining sputtered or spherical metallic powders with organization of the process in an argon-water environment;
- Equipment usable for the "production" of spherical aluminium powders by powdering a melt in an inert medium (e.g., nitrogen).

Notes:

- The only batch mixers, continuous mixers usable for solid propellants or propellants constituents specified in 6040., and fluid energy mills controlled in 6050., are those specified in 6052.3.
- 2. Forms of metal powder "production equipment" not specified in 6052.3.d. are to be evaluated in accordance with 6052.2.

6053. Materials

None.

6054. Software

1. "Software" specially designed or modified for the "use" of equipment specified in 6052. for the "production" and handling of materials specified in 6040.

6055. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment specified in 6052.

Category 6060: Production of Structural Composites

6061. Equipment, Assemblies and Components

None.

6062. Test and Production Equipment

- 1. Equipment for the "production" of structural composites, fibres, prepregs or preforms, usable in the systems specified in 6011., as follows, and specially designed components, and accessories therefor:
 - a. Filament winding machines of which the motions for positioning, wrapping and winding fibres can be coordinated and programmed in three or more axes, designed to fabricate composite structures or laminates from fibrous or filamentary materials, and co-ordinating and programming controls;
 - Tape-laying machines of which the motions for positioning and laying tape and sheets can be coordinated and programmed in two or more axes, designed for the manufacture of composite airframes and missile structures;
 - c. Multi-directional, multi-dimensional weaving machines or interlacing machines, including adapters and

modification kits for weaving, interlacing or braiding fibres to manufacture composite structures; *Note:*

6062.1.c. does not control textile machinery not modified for the enduses stated.

- d. Equipment designed or modified for the production of fibrous or filamentary materials as follows:
 - Equipment for converting polymeric fibres (such as polyacrylonitrile, rayon, or polycarbosilane) including special provision to strain the fibre during heating;
 - 2. Equipment for the vapour deposition of elements or compounds on heated filament substrates;
 - 3. Equipment for the wet-spinning of refractory ceramics (such as aluminium oxide);
- e. Equipment designed or modified for special fibre surface treatment or for producing prepregs and preforms, including rollers, tension stretchers, coating equipment, cutting equipment and clicker dies.

Note:

Examples of components and accessories for the machines specified in 6062.1. are moulds, mandrels, dies, fixtures and tooling for the preform pressing, curing, casting, sintering or bonding of composite structures, laminates and manufactures thereof.

6063. Materials

None.

6064. Software

1. "Software" specially designed or modified for the "use" of equipment specified in 6062.

6065. Technology

- 1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6062. or 6064.
- 2. "Technical data" (including processing conditions) and procedures for the regulation of temperature, pressures or atmosphere in autoclaves or hydroclaves when used for the production of composites or partially processed composites, usable for equipment or materials specified in 6080.

Category 6070: Pyrolytic Deposition and Densification

6071. Equipment, Assemblies and Components

None.

6072. Test and Production Equipment

- 1. Nozzles specially designed for the processes referred to in 6075.1.
- Isostatic presses having all of the following characteristics:
 a. Maximum working pressure of 69 MPa (10,000 psi) or greater;
 - b. Designed to achieve and maintain a controlled thermal environment of 600°C or greater; and

Group 6 - Missile Technology Control Regime List

6072.2. con't.

- Possessing a chamber cavity with an inside diameter of 254 mm (10 inches) or greater.
- Chemical vapour deposition furnaces designed or modified for the densification of carbon-carbon composites.
- Equipment and process controls, other than those specified in 6072.2. or 6072.3., designed or modified for densification and pyrolysis of structural composite rocket nozzles and reentry vehicle nose tips.

6073. Materials

None.

6074. Software

1. "Software" specially designed or modified for the equipment specified in 6072.2., 6072.3. or 6072.4.

6075. Technology

- "Technology" for producing pyrolytically derived materials formed on a mould, mandrel or other substrate from precursor gases which decompose in the 1300°C to 2900°C temperature range at pressures of 130 Pa (1 mm Hg) to 20 kPa (150 mm Hg) including "technology" for the composition of precursor gases, flow-rates, and process control schedules and parameters.
- "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6072. or 6074.

Category 6080: Structural Material

6081. Equipment, Assemblies and Components

- Composite structures, laminates, and manufactures thereof, specially designed for use in the systems specified in 6011. and the subsystems specified in 6021.
- 2. Resaturated pyrolised (i.e., carbon-carbon) components having all of the following:
 - a. designed for rocket systems; and
 - b. usable in the systems specified in 6011.

6082. Test and Production Equipment

None.

6083. Materials

Resin impregnated fibre prepregs and metal coated fibre preforms, for the goods specified in 6081.1., made either with organic matrix or metal matrix utilising fibrous or filamentary reinforcements having a specific tensile strength greater than 7.62 x 10⁴ m and a specific modulus greater than 3.18 x 10⁶ m.
 Note:

The only resin impregnated fibre prepregs specified in 6083.1. are those using resins with a glass transition temperature (Tg), after cure, exceeding 145°C as determined by ASTM D4065 or national equivalents.

- Resaturated pyrolised (i.e., carbon-carbon) materials having all of the following:
 - a. designed for rocket systems; and
 - b. usable in the systems specified in 6011.
- 3. Fine grain recrystallised bulk graphites (with a bulk density of at least 1.72 g/cm^3 measured at 15°C) and having a particle size of $100 \times 10^{-6} \text{ m}$ ($100 \,\mu\text{m}$) or less, usable for rocket nozzles and re-entry vehicle nose tips usable in systems specified in 6011.
- Pyrolytic or fibrous reinforced graphites usable for rocket nozzles and re-entry vehicle nose tips usable in systems specified in 6011.
- 5. Ceramic composite materials (dielectric constant less than 6 at frequencies from 100 Hz to 10 GHz) for use in missile radomes usable in systems specified in 6011.
- 6. Bulk machinable silicon-carbide reinforced unfired ceramic usable for nose tips usable in systems specified in 6011.
- 7. Tungsten, molybdenum, and alloys of these metals in the form of uniform spherical or atomised particles of 500×10^{-6} m (500 µm) diameter or less with a purity of 97% or higher for fabrication of rocket motor components, i.e., heat shields, nozzle substrates, nozzle throats, and thrust vector control surfaces, usable in systems specified in 6011.
- 8. Maraging steels having an Ultimate Tensile Strength of 1.5×10^9 Pa or greater, measured at 20°C, in the form of sheet, plate or tubing with a wall or plate thickness equal to or less than 5.0 mm usable in systems specified in 6011. *Technical Note:*

Maraging steels are generally characterised by high nickel, very low carbon content and use substitutional elements or precipitates to produce agehardening.

- Titanium-stabilized duplex stainless steel (Ti-DSS) usable in the systems specified in 6011. and having all of the following:
 - a. Having all of the following characteristics:
 - containing 17.0 23.0 weight percent chromium and 4.5 - 7.0 weight percent nickel,
 - 2. having a titanium content of greater than 0.10 weight percent; and
 - 3. a ferritic-austenitic microstructure (also referred to as a two-phase microstructure) of which at least 10 percent is austenite by volume (according to ASTM E-1181-87 or national equivalents), and
 - b. Having any of the following forms:
 - 1. ingots or bars having a size of 100 mm or more in each dimension,
 - 2. sheets having a width of 600 mm or more and a thickness of 3 mm or less, or
 - 3. tubes having an outer diameter of 600 mm or more and a wall thickness of 3 mm or less.

6084. Software

None.

6085. Technology

 "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or materials specified in 6081. or 6083.

Category 6090: Instrumentation, **Navigation and Direction** Finding

6091. Equipment, Assemblies and Components

- 1. Integrated flight instrument systems which include gyrostabilisers or automatic pilots, designed or modified for use in the systems specified in 6011., and specially designed components therefor.
- 2. Gyro-astro compasses and other devices which derive position or orientation by means of automatically tracking celestial bodies or satellites, and specially designed components therefor.
- 3. Accelerometers with a threshold of 0.05 g or less, or a linearity error within 0.25% of full scale output, or both, which are designed for use in inertial navigation systems or in guidance systems of all types, and specially designed components therefor.

Note:

Accelerometers which are specially designed and developed as MWD (Measurement While Drilling) sensors for use in downhole well service operations are not controlled in 6091.3.

- 4. All types of gyros usable in the systems specified in 6011., with a rated 'drift rate' 'stability' of less than 0.5 degrees (1 sigma or rms) per hour in a 1 g environment and specially designed components therefor. **Technical Notes:**
 - 'Drift rate' is defined as the time rate of output deviation from the desired output. It consists of random and systematic components and is expressed as an equivalent angular displacement per unit time with respect to inertial space.
 - 'Stability' is defined as the standard deviation (1 sigma) of the variation of a particular parameter from its calibrated value measured under stable temperature conditions. This can be expressed as a function of time
- 5. Continuous output accelerometers or gyros of any type, specified to function at acceleration levels greater than 100 g, and specially designed components therefor.
- Inertial or other equipment using accelerometers specified in 6091.3. or 6091.5. or gyros specified in 6091.4. or 6091.5., and systems incorporating such equipment, and specially designed components therefor.

6092. Test and Production Equipment

1. "Production equipment", and other test, calibration and alignment equipment, other than that described in 6092.2., designed or modified to be used with equipment specified in 6091.

Note:

- Equipment specified in 6092.1. includes the following:
 - For laser gyro equipment, the following equipment used to characterise mirrors, having the threshold accuracy shown or better:
 - Scatterometer (10 ppm); a.
 - b. Reflectometer (50 ppm);
 - Profilometer (5 Angstroms).

2 For other inertial equipment:

- Inertial Measurement Unit (IMU Module) Tester;
- IMU Platform Tester; b.
- IMU Stable Element Handling Fixture: C. d.
- IMU Platform Balance Fixture:
- Gyro Tuning Test Station; e.
- Gyro Dynamic Balance Station; Gyro Run-In/Motor Test Station; g.
- h Gyro Evacuation and Filling Station;
- i Centrifuge Fixture for Gyro Bearings;
- Accelerometer Axis Align Station; j.
- Accelerometer Test Station.

2. Equipment as follows:

- a. Balancing machines having all the following characteristics:
 - 1. not capable of balancing rotors/assemblies having a mass greater than 3 kg;
 - 2. capable of balancing rotors/assemblies at speeds greater than 12,500 rpm;
 - 3. capable of correcting unbalance in two planes or more; and
 - 4. capable of balancing to a residual specific unbalance of 0.2g mm per kg of rotor mass;
- b. Indicator heads (sometimes known as balancing instrumentation) designed or modified for use with machines specified in 6092.2.a.;
- c. Motion simulators/rate tables (equipment capable of simulating motion) having all of the following characteristics:
 - 1. two axes or more;
 - 2. slip rings capable of transmitting electrical power and/or signal information; and
 - 3. having any of the following characteristics: a. for any single axis having all of the following:
 - 1. capable of rates of 400 degrees/s or more, or
 - 30 degrees/s or less; and
 - 2. a rate resolution equal to or less than 6 degrees/s and an accuracy equal to or less than 0.6 degrees/s;
 - b. having a worst-case rate stability equal to or better (less) than plus or minus 0.05% averaged over 10 degrees or more; or
 - a positioning accuracy equal to or better than C. 5 Arc second;
- d. Positioning tables (equipment capable of precise rotary positioning in any axes) having the following characteristics:
 - 1. two axes or more; and
 - 2. a positioning accuracy equal to or better than 5 Arc second:
- e. Centrifuges capable of imparting accelerations above 100 g and having slip rings capable of transmitting electrical power and signal information.

Notes:

- The only balancing machines, indicator heads, motion simulators, rate tables, positioning tables and centrifuges specified in Category 6090 are those specified in 6092.2.
- 2 6092.2.a. does not control balancing machines designed or modified for dental or other medical equipment.
- 3. 6092.2.c. and d do not control rotary tables designed or modified for machine tools or for medical equipment.
- 4. Rate tables not controlled by 6092.2.c. and providing the characteristics of a positioning table are to be evaluated according to 6092.2.d.
- 5. Equipment that has the characteristics specified in 6092.2.d. which also meets the characteristics of 6092.2.c. will be treated as equipment specified in 6092.2.c.

6093. Materials

None.

6094. Software

- 1. "Software" specially designed or modified for the "use" of equipment specified in 6091. or 6092.
- 2. Integration "software" for the equipment specified in 6091.1.
- Integration "software" specially designed for the equipment specified in 6091.6.

6095. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6091., 6092. or 6094.

Note:

Governments may permit the export of equipment or "software" specified in 6091. or 6094. as part of a manned aircraft, satellite, land vehicle or marine vessel or in quantities appropriate for replacement parts for such applications.

Category 6100: Flight Control

6101. Equipment, Assemblies and Components

- 1. Hydraulic, mechanical, electro-optical, or electromechanical flight control systems (including fly-by-wire systems) designed or modified for the systems specified in 6011.
- 2. Attitude control equipment designed or modified for the systems specified in 6011.

Note:

Governments may permit the export of systems or equipment specified in 6101. as part of a manned aircraft or satellite or in quantities appropriate for replacement parts for manned aircraft.

6102. Test and Production Equipment

1. Test, calibration, and alignment equipment specially designed for equipment specified in 6101.

6103. Materials

None.

6104. Software

 "Software" specially designed or modified for the "use" of equipment specified in 6101. or 6102. Note:

Governments may permit the export of "software" specified in 6104.1. as part of a manned aircraft or satellite or in quantities appropriate for replacement parts for manned aircraft.

6105. Technology

- Design "Technology" for integration of air vehicle fuselage, propulsion system and lifting control surfaces, designed or modified for the systems specified in 6011., to optimise aerodynamic performance throughout the flight regime of an unmanned air vehicle.
- 2. Design "Technology" for integration of the flight control, guidance, and propulsion data into a flight management system, designed or modified for the systems specified in 6011., for optimisation of rocket system trajectory.
- "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6101., 6102. or 6104.

Category 6110: Avionics

6111. Equipment, Assemblies and Components

 Radar and laser radar systems, including altimeters, designed or modified for use in the systems specified in 6011. Technical Note:

Laser radar systems embody specialised transmission, scanning, receiving and signal processing techniques for utilisation of lasers for echo ranging, direction finding and discrimination of targets by location, radial speed and body reflection characteristics.

- 2. Passive sensors for determining bearings to specific electromagnetic sources (direction finding equipment) or terrain characteristics, designed or modified for use in the systems specified in 6011.
- 3. Global Positioning System (GPS) or similar satellite receivers, designed or modified for use in the systems specified in 6011., having any of the following characteristics:
 - a. Capable of providing navigation information under the following operational conditions:
 - 1. At speeds in excess of 515 m/s (1,000 nautical miles/hour); and
 - 2. At altitudes in excess of 18 km (60,000 feet); or
 - b. Designed or modified for use with unmanned air vehicles specified in 6011.2.
- Electronic assemblies and components, designed or modified for use in the systems specified in 6011. and specially designed for military use and operation at temperatures in excess of 125°C.

Notes:

- 1. Equipment specified in 6111. includes the following:
 - a. Terrain contour mapping equipment;
 b. Scene mapping and correlation (both digital and analogue) equipment;
 - c. Doppler navigation radar equipment;
 - d. Passive interferometer equipment;
 - e. Imaging sensor equipment (both active and passive).
- Governments may permit the export of equipment specified in 6111. as part of a manned aircraft or satellite or in quantities appropriate for replacement parts for manned aircraft.

6112. Test and Production Equipment

None.

Group 6 - Missile Technology Control Regime List

6113. Materials

None.

6114. Software

- 1. "Software" specially designed or modified for the "use" of equipment specified in 6111.1., 6111.2. or 6111.4.
- "Software" specially designed for the "use" of equipment specified in 6111.3.

6115. Technology

- 1. Design "Technology" for protection of avionics and electrical subsystems against electromagnetic pulse (EMP) and electromagnetic interference (EMI) hazards from external sources, as follows:
 - a. Design "technology" for shielding systems;
 - b. Design "technology" for the configuration of hardened electrical circuits and subsystems;
 - c. Design "technology" for determination of hardening criteria for the above.
- 2. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6111. or 6114.

Category 6120: Launch Support

6121. Equipment, Assemblies and Components

- 1. Apparatus and devices, designed or modified for the handling, control, activation and launching of the systems specified in 6011.
- Vehicles designed or modified for the transport, handling, control, activation and launching of the systems specified in 6011.
- 3. Gravity meters (gravimeters), gravity gradiometers, and specially designed components therefor, designed or modified for airborne or marine use, and having a static or operational accuracy of $7 \times 10^{-6} \text{ m/s}^2$ (0.7 milligal) or better, with a time to steady-state registration of two minutes or less, usable for systems specified in 6011.
- 4. Telemetry and telecontrol equipment having all of the following:
 - a. usable for unmanned air vehicles or rocket systems; and
 - b. usable for systems specified in 6011.
- 5. Precision tracking systems, usable for systems specified in 6011., as follows:
 - Tracking systems which use a code translator installed on the rocket or unmanned air vehicle in conjunction with either surface or airborne references or navigation satellite systems to provide real-time measurements of inflight position and velocity;
 - B. Range instrumentation radars including associated optical/infrared trackers with all of the following capabilities:

- 1. angular resolution better than 3 mrad (0.5 mils);
- 2 range of 30 km or greater with a range resolution better than 10 m RMS; and
- 3. velocity resolution better than 3 m/s.

6122. Test and Production Equipment

None.

6123. Materials

None.

6124. Software

- 1. "Software" specially designed or modified for the "use" of equipment specified in 6121.1.
- 2. "Software" which processes post-flight, recorded data, enabling determination of vehicle position throughout its flight path, specially designed or modified for systems specified in 6011.
- 3. "Software" specially designed or modified for the "use" of equipment specified in 6121.4. or 6121.5., usable for systems specified in 6011.

6125. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6121. or 6124.

Category 6130: Computers

6131. Equipment, Assemblies and Components

- 1. Analogue computers, digital computers or digital differential analysers, designed or modified for use in the systems specified in 6011., having any of the following characteristics:
 - a. Rated for continuous operation at temperatures from below -45°C to above +55°C; or
 - b. Designed as ruggedised or "radiation hardened".

6132. Test and Production Equipment

None.

6133. Materials

None.

6134. Software

None.

6135. Technology

 "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment specified in 6131.

Note:

Governments may permit the export of equipment specified in 6130. as part of a manned aircraft or satellite or in quantities appropriate for replacement parts for manned aircraft.

Category 6140: Analogue to Digital Converters

6141. Equipment, Assemblies and Components

- 1. Analogue-to-digital converters, usable in the systems specified in 6011., having any of the following characteristics:
 - a. Designed to meet military specifications for ruggedised equipment; or
 - Designed or modified for military use and being one of the following types:
 - Analogue-to-digital converter "microcircuits", which are "radiation-hardened" or have all of the following characteristics:
 - a. Having a quantisation corresponding to 8 bits or more when coded in the binary system;
 - b. Rated for operation in the temperature range from below -54°C to above +125°C ; and
 - c. Hermetically sealed;
 - 2. Electrical input type analogue-to-digital converter printed circuit boards or modules, having all of the following characteristics:
 - Having a quantisation corresponding to 8 bits or more when coded in the binary system;
 - b. Rated for operation in the temperature range from below -45°C to above +55°C; and
 - c. Incorporating "microcircuits" specified in 6141.1.b.1.

6142. Test and Production Equipment

None.

6143. Materials

None.

6144. Software

None.

6145. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment specified in 6141.

Category 6150: Test Facilities and Equipment

6151. Equipment, Assemblies and Components

None.

6152. Test and Production Equipment

- 1. Vibration test equipment, usable for the systems specified in 6011. or the subsystems specified in 6021., and components therefor, as follows:
 - a. Vibration test systems employing feedback or closed loop techniques and incorporating a digital controller, capable of vibrating a system at 10 g RMS or more over the entire range 20 Hz to 2 kHz and imparting forces of 50 kN (11,250 lbs), measured bare table, or greater;
 - b. Digital controllers, combined with specially designed vibration test software, with a real-time bandwidth greater than 5 kHz and designed for use with vibration test systems specified in 6152.1.a;
 - c. Vibration thrusters (shaker units), with or without associated amplifiers, capable of imparting a force of 50 kN (11,250 lbs), measured bare table, or greater, and usable in vibration test systems specified in 6152.1.a;
 - d. Test piece support structures and electronic units designed to combine multiple shaker units into a complete shaker system capable of providing an effective combined force of 50 kN, measured bare table, or greater, and usable in vibration test systems specified in 6152.1.a. *Technical Note:*

Vibration test systems incorporating a digital controller are those systems, the functions of which are, partly or entirely, automatically controlled by stored and digitally coded electrical signals.

- 2. Wind-tunnels for speeds of Mach 0.9 or more, usable for the systems specified in 6011. or the subsystems specified in 6021.
- 3. Test benches/stands, usable for the systems specified in 6011. or the subsystems specified in 6021., which have the capacity to handle solid or liquid propellant rockets, motors or engines of more than 90 kN (20,000 lbs) of thrust, or which are capable of simultaneously measuring the three axial thrust components.
- Environmental chambers and anechoic chambers, as follows, usable for the systems specified in 6011. or the subsystems specified in 6021.:

6152.4. con't:

- a. Environmental chambers capable of simulating all of the following flight conditions:
 - Vibration environments of 10 g RMS or greater between 20 Hz and 2 kHz imparting forces of 5 kN or greater; and
 - 2. any of the following:
 - a. Altitude of 15,000 m or greater; or
- b. Temperature range of at least -50°C to 125° C;
- b. Anechoic chambers capable of simulating all of the following flight conditions:
 - Acoustic environments at an overall sound pressure level of 140 dB or greater (referenced to 2 x 10⁻⁵ N/m²) or with a rated power output of 4 kW or greater; and
 - 2. any of the following:
 - a. Altitude of 15,000 m or greater; or
 - b. Temperature range of at least -50°C to 125°C.
- 5. Accelerators capable of delivering electromagnetic radiation produced by bremsstrahlung from accelerated electrons of 2 MeV or greater, and equipment containing those accelerators, usable for the systems specified in 6011. or the subsystems specified in 6021.

Note:

6152.5. does not control equipment specially designed for medical purposes.

6153. Materials

None.

6154. Software

1. "Software" specially designed or modified for the "use" of equipment specified in 6152. usable for testing systems specified in 6011. or subsystems specified in 6021.

6155. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6152. or 6154.

Category 6160: Modelling-Simulation and Design Integration

6161. Equipment, Assemblies and Components

1. Specially designed hybrid (combined analogue/digital) computers for modelling, simulation or design integration of systems specified in 6011. or the subsystems specified in 6021.

Note:

This control only applies when the equipment is supplied with "software" specified in 6164.1.

6162. Test and Production Equipment

None.

6163. Materials

None.

6164. Software

 "Software" specially designed for modelling, simulation, or design integration of the systems specified in 6011. or the subsystems specified in 6021. *Technical Note:*

The modelling includes in particular the aerodynamic and thermodynamic analysis of the systems.

6165. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6161. or 6164.

Category 6170: Stealth

6171. Equipment, Assemblies and Components

1. Devices for reduced observables such as radar reflectivity, ultraviolet/infrared signatures and acoustic signatures (i.e., stealth technology), for applications usable for the systems specified in 6011. or the subsystems specified in 6021.

6172. Test and Production Equipment

1. Systems, specially designed for radar cross section measurement, usable for the systems specified in 6011. or the subsystems specified in 6021.

6173. Materials

 Materials for reduced observables such as radar reflectivity, ultraviolet/infrared signatures and acoustic signatures (i.e. stealth technology), for applications usable for the systems specified in 6011. or the subsystems specified in 6021. Note 1:

^{6173.1.} includes structural materials and coatings (including paints), specially designed for reduced or tailored reflectivity or emissivity in the microwave, infrared or ultraviolet spectra. Note 2:

^{6173.1.} does not control coatings (including paints) when specially used for thermal control of satellites.

6174. Software

1. "Software" specially designed for reduced observables such as radar reflectivity, ultraviolet/infrared signatures and acoustic signatures (i.e. stealth technology), for applications usable for the systems specified in 6011. or the subsystems specified in 6021.

Note:

6174.1. includes "software" specially designed for analysis of signature reduction.

6175. Technology

 "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment, materials or "software" specified in 6171., 6172., 6173. or 6174.
 Note:

6175.1. includes databases specially designed for analysis of signature reduction.

Category 6180: Nuclear Effects Protection

6181. Equipment, Assemblies and Components

- 1. "Radiation Hardened" "microcircuits" usable in protecting rocket systems and unmanned air vehicles against nuclear effects (e.g., Electromagnetic Pulse (EMP), X-rays, combined blast and thermal effects), and usable for the systems specified in 6011.
- 'Detectors' specially designed or modified to protect rocket systems and unmanned air vehicles against nuclear effects (e.g., Electromagnetic Pulse (EMP), X-rays, combined blast and thermal effects), and usable for the systems specified in 6011.

Technical Note:

A 'detector' is defined as a mechanical, electrical, optical or chemical device that automatically identifies and records, or registers a stimulus such as an environmental change in pressure or temperature, an electrical or electromagnetic signal or radiation from a radioactive material.

3. Radomes designed to withstand a combined thermal shock greater than 4.184 x 10⁶ J/m² accompanied by a peak over pressure of greater than 50 kPa, usable in protecting rocket systems and unmanned air vehicles against nuclear effects (e.g., Electromagnetic Pulse (EMP), X-rays, combined blast and thermal effects), and usable for the systems specified in 6011.

6182. Test and Production Equipment

None.

6183. Materials

None.

6184. Software

None

6185. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment specified in 6181.

Category 6190: Other Complete Delivery Systems

6191. Equipment, Assemblies and Components

- 1. Complete rocket systems (including ballistic missile systems, space launch vehicles, and sounding rockets), not specified in 6011.1., capable of a maximum range equal to or greater than 300 km.
- 2. Complete unmanned air vehicle systems (including cruise missile systems, target drones and reconnaissance drones), not specified in 6011.2., capable of a maximum range equal to or greater than 300 km.

(All destinations)

6192. Test and Production Equipment

None.

6193. Materials

None.

6194. Software

 "Software" which coordinates the function of more than one subsystem, specially designed or modified for "use" in the systems specified in 6191.

6195. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment specified in 6191.

Category 6200: Other Complete Subsystems

6201. Equipment, Assemblies and Components

1. Complete subsystems as follows:

- a. Individual rocket stages, not specified in 6021.1., usable in systems specified in 6191.
- b. Solid propellant rocket motors or liquid propellant rocket engines, not specified in 6021.1., usable in systems specified in 6191., having a total impulse capacity of 8.41 x 10^5 N s (1.91 x 10^5 lb s) or greater, but less than 1.1 x 10^6 N s (2.5 x 10^5 lb s).

6202. Test and Production Equipment

1. "Production facilities" specially designed for the subsystems specified in 6201.

Group 6 - Definitions

"Basic scientific research"

Experimental or theoretical work undertaken principally to acquire new knowledge of the fundamental principles of phenomena or observable facts, not primarily directed towards a specific practical aim or objective.

"Development"

Is related to all phases prior to "production" such as: design, design research, design analysis, design concepts, assembly and testing of prototypes, pilot production schemes, design data, process of transforming design data into a product, configuration design, integration design, layouts.

"In the public domain"

This means "software" or "technology" which has been made available without restrictions upon its further dissemination.

N.B.: Copyright restrictions do not remove "software" or "technology" from being "in the public domain".

"Microcircuit"

A device in which a number of passive and/or active elements are considered as indivisibly associated on or within a continuous structure to perform the function of a circuit.

"Microprogrammes"

A sequence of elementary instructions maintained in a special storage, the execution of which is initiated by the introduction of its reference instruction register.

"Production"

Means all production phases such as: production engineering, manufacture, integration, assembly (mounting), inspection, testing, quality assurance.

"Production equipment"

Means tooling, templates, jigs, mandrels, moulds, dies, fixtures, alignment mechanisms, test equipment, other machinery and components therefor, limited to those specially designed or modified for "development" or for one or more phases of "production". "Production equipment" specially designed for the subsystems specified in 6201.

6203. Materials

None.

6204. Software

- 1. "Software" specially designed or modified for the systems specified in 6202.1.
- "Software", not specified in 6024.2., specially designed or modified for the "use" of rocket motors or engines specified in 6201.1.b.

6205. Technology

1. "Technology", in accordance with the General Technology Note, for the "development", "production" or "use" of equipment or "software" specified in 6201., 6202. or 6204.

"Production facilities"

Means equipment and specially designed "software" therefor integrated into installations for "development" or for one or more phases of "production".

"Programmes"

A sequence of instructions to carry out a process in, or convertible into, a form executable by an electronic computer.

"Radiation Hardened"

Means that the component or equipment is designed or rated to withstand radiation levels which meet or exceed a total irradiation dose of 5×10^5 rads (Si).

"Software"

A collection of one or more "programmes", or "microprogrammes", fixed in any tangible medium of expression.

"Technical assistance"

May take forms such as: instruction, skills, training, working knowledge, consulting services.

N.B.: "Technical assistance" may involve transfer of "technical data". "Technical data"

May take forms such as: blueprints, plans, diagrams, models, formulae, engineering designs and specifications, manuals and instructions written or recorded on other media or devices such as: disk, tape, read-only memories.

"Technology"

Means specific information which is required for the "development", "production" or "use" of a product. The information may take the form of "technical data" or "technical assistance".

"Use"

Operation, installation (including on-site installation), maintenance, repair, overhaul, refurbishing.

Group 6 - Terminology

N.B.:

Where the following terms appear in Group 6, they are to be understood according to the explanations below:

"Designed or Modified"

Equipment, parts or components which, as a result of "development," or modification, have specified properties that make them fit for a particular application. " Designed or Modified" equipment, parts, components or "software" can be used for other applications. For example, a titanium coated pump designed for a missile may be used with corrosive fluids other than propellants.

"Specially Designed"

Equipment, parts, components or "software" which, as a result of "development", have unique properties that distinguish them for certain predetermined purposes. For example, a piece of equipment that is "specially designed" for use in a missile will only be considered so if it has no other function or use. Similarly, a piece of manufacturing equipment that is "specially designed" to produce a certain type of component will only be considered such if it is not capable of producing other types of components.

"Usable In" or "Capable Of"

Equipment, parts, components or "software" which are suitable for a particular purpose. There is no need for the equipment, parts, components or "software" to have been configured, modified or specified for the particular purpose. For example, any military specification memory circuit would be "capable of" operation in a guidance system.

"Modified" In the context of "software"

"Software" which has been intentionally changed such that it has properties that make it fit for specified purposes or applications other than those for which it was "modified".

Group 7 – Chemical and Biological Weapons Non-Proliferation List

Notes:

- Terms in "double quotation marks" are defined terms. Refer to "Group 7 -Definitions".
- 2. In items 7003. and 7004. the numbers in brackets following the chemical name in each item is the Chemical Abstracts Service Registry number for that chemical as listed in the Chemical Abstracts Service Registry Handbook published by the American Chemical Society, Washington, D.C.
- Mixtures containing any quantity of CWC Schedule 1A and 1B chemicals/precursors (Items 7003.1. and 7003.2.) are also controlled.
- 4. Mixtures containing any quantity of chemicals/precursors listed in the CWC Schedules 2A, 2B, 3A and 3B (items 7003.3. through 7003.6.) and Australia Group (item 7004.) are controlled unless the listed chemical is merely an impurity that was not intentionally added or is a normal ingredient in consumer goods packaged for retail sale for personal use.
- Items 7001. and 7003. are based on the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction. (known as the Chemical Weapons Convention or CWC.) The other items in the Group are based on the Australia Group (AG).

Category 7000: Chemical Weapons

7001. Equipment, Assemblies and Components

- 1. CWC Chemical Weapon Production Equipment.
 - a. Specialized equipment, as follows:
 - 1. The main production train, including any reactor or equipment for product synthesis, separation or purification, any equipment used directly for heat transfer in the final technological stage, such as in reactors or in product separation, as well as any other equipment which has been in contact with any chemical in items 7003.1. and 7003.2. or would be in contact with such chemical if the facility were operated;
 - 2. Any chemical weapons filling machines;
 - 3. Any other equipment specially designed, built or installed for the operation of the facility as a chemicals weapons production facility, as distinct from a facility constructed according to prevailing commercial standards for facilities not producing any chemical not specified in items 7003.1. and 7003.2., or corrosive chemicals, such as; special equipment for waste control, waste treatment, air filtering, or solvent recovery; special containment enclosures and safety shields; non-standard laboratory equipment used to analyze toxic chemicals for chemical weapons purposes; custom-designed process control panels; or dedicated spares for specialized equipment.

b. Standard Equipment

- 1. Production equipment which is generally used in the chemical industry and is not included in the types of specialized equipment noted in Item 7001.1.a.
- 2. Other equipment commonly used in the chemical industry, such as; fire-fighting equipment; security/safety surveillance equipment; medical facilities, laboratory facilities, or communications equipment.

2. CWC Chemical Weapons Facilities.

'Chemicals Weapons Facility' in the context of this item means an industrial site containing production units and auxiliary units, such as those listed below, which are under one operational control:

- a. Production unit;
- b. Administration, record keeping, and stores sections;
- c. Utility, repair and maintenance shops;
- d. Central, local control, and research laboratories;
- e. First aid and medical centre;
- f. Effluent, waste handling /treatment plant.

7002. AG Test, Inspection and Production Equipment, as follows:

- 1. Reaction Vessels, Reactors or Agitators, Storage Tanks, Containers or Receivers, Heat Exchangers or Condensers, Distillation or Absorption Columns, Valves, Multi-walled Piping, and Pumps, as follows:
 - a. Reaction Vessels or Reactors, with or without agitators, with a total internal (geometric) volume greater than 0.1 m^3 (100 l) and less than 20 m³ (20,000 l);
 - b. Agitators for use in reaction vessels or reactors listed in Item 7002.1.a;
 - c. Storage Tanks, Containers or Receivers, with a total internal (geometric) volume greater than 0.1 m³ (100 l);
 - d. Heat exchangers or Condensers with a heat transfer surface area of less than 20 m^2 ;
 - e. Distillation or Absorption Columns of internal diameter greater than 0.1 m;
 - f. Multiple-seal valves incorporating a leak detection port, bellows-seal valves, non-return (check) valves or diaphragm valves.
 - g. Multi-walled Piping incorporating a leak detection port;
 - h. Multi-seal, canned drive, magnetic drive, bellows or diaphragm pumps, with manufacturer's specified maximum flow-rate greater than 0.6 m³/h, or vacuum pumps with the manufacturer's specified maximum flowrate greater than 5 m³/h (under standard temperature (0°C) and pressure (101.30 kPa) conditions);

Technical Note:

Items listed in 7002.1.a. through h. are included in this Item only if all surfaces of any of the Items coming in direct contact with the chemical(s) being processed or contained are made from any of the following materials:

- Nickel or alloys with more than 40% nickel by weight;
- Alloys with more than 25% nickel and 20% chromium by weight; 2. 3 Fluoropolymers.
- Glass or glass-lined (including vitrified or enameled coating); 4
- Graphite (applies only to heat exchangers, condensers, distillation and 5. absorption columns, multi-walled piping and pumps);
- 6. Tantalum or tantalum alloys;
- Titanium or titanium alloys, 7
- Zirconium or zirconium alloys; 8.
- 9 Ceramics (applies only to pumps)
- Ferrosilicon (applies only to pumps). 10.
- Silicon carbide (applies only to heat exchanges and condensers); or 11 12
- Titanium carbide (applies only to heat exchanges and condensers

2. Remotely operated filling equipment.

Technical Note:

Items are considered to be included only if all surfaces that come in direct contact with the chemical(s) being processed or contained are made from any of the following materials:

- a. Nickel or alloys with more than 40% nickel by weight; or
- b. Alloys with more than 25% nickel and 20% chromium by weight.

3. Incinerators designed to destroy CW agents, controlled precursors or chemical munitions, possessing all of the following characteristics:

- a. Specially designed waste supply systems;
- b. Special handling facilities; and
- c. Average combustion chamber temperature greater than 1000°C;

Technical Note:

Items listed in 7002.3.a. through c. are considered to be included only if all surfaces in the waste supply system that come into direct contact with the waste products are made from or lined with any of the following materials:

- Nickel or alloys with more than 40% nickel by weight; 1
- Alloys with more than 25% nickel and 20% chromium by weight; or 2
- 3 Ceramics.

4. Toxic gas monitoring systems and dedicated detectors:

- a. Designed for continuous operation and useable for the detection of CW agents, AG-controlled precursors or organic compounds containing phosphorus, sulfur, fluorine or chlorine at concentrations of less than 0.3 mg/m^3 ; or
- b. Designed for the detection of cholinesterase-inhibiting activity.

Note:

Governments may permit the shipment of equipment (identified in Item 7002.) which is specially designed for use in civil applications such as food processing, pulp and paper processing, or water purification and is, by the nature of its design, inappropriate for use in storing, processing, producing or conducting and controlling the flow of chemical weapon agents or any of the precursors chemicals which are included in item 7004.

(Item 7002. applies to all destinations except Argentina, Australia, Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Republic of Korea, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Slovak Republic, Spain, Sweden, Switzerland, United Kingdom and United States.)

7003. CWC Materials

CWC Schedule 1 A Toxic Chemicals: 1.

a. **O-Alkyl** (equal to or less than C₁₀, including cycloalkyl) alkyl (Methyl, Ethyl, n-Propyl or Isopropyl) phosphonofluoridate;

- e.g. Sarin (GB):O-Isopropyl methylphosphono-fluoridate, (CAS 107-44-8); Soman (GD):O-Pinacolvl methylphosphono-fluoridate, (CAS 96-64-0);
- b. O-Alkyl (equal to or less than C10, including cycloalkyl) N,N-dialkyl (Methyl, Ethyl, n-Propyl or Isopropyl) phosphoramidocyanidates, e.g., Tabun: O-Ethyl N,N-dimethylphosphoramidocyanidate, (CAS 77-81-6);
- c. O-Alkyl (H or equal to or less than C10, including cycloalkyl) S-2-dialkyl (Methyl, Ethyl, n-Propyl or Isopropyl)-aminoethyl alkyl (Methyl, Ethyl, n-Propyl or Isopropyl) phosphonothiolates and corresponding alkylated or protonated salts, e.g., VX: O-Ethyl S-2-diisopropylaminoethyl methylphosphonothiolate, (CAS 50782-69-9);

d. Sulphur mustards:

2-Chloroethylchloromethylsulphide, (CAS 2625-76-5); Mustard gas: Bis(2-chloroethyl) sulphide, (CAS 505-60-2); Bis(2-chloroethylthio) methane, (CAS 63869-13-6); Sesquimustard: 1,2-Bis (2-chloroethylthio) ethane, (CAS 3563-36-8):

1,3-Bis (2-chloroethylthio) -n-propane, (CAS 63905-10-2); 1,4-Bis (2-chloroethylthio) -n-butane, (CAS 142868-93-7); 1,5-Bis(2-chloroethylthio) -n-pentane, (CAS 142868-94-8); Bis (2-chloroethylthiomethyl) ether; (CAS 63918-90-1); O-Mustard: Bis (2-chloroethylthioethyl) ether, (CAS 63918-89-8);

Lewisites: e.

Lewisite 1: 2-chlorovinyldichloroarsine, (CAS 541-25-3); Lewisite 2: Bis (2-chlorovinyl) chloroarsine,

(CAS 40334-69-8); Lewisite 3: Tris (2-chlorovinyl) arsine, (CAS 40334-70-1); f. Nitrogen mustards:

HN1: bis (2-chloroethyl) ethylamine, (CAS 538-07-8); HN2: bis (2-chloroethyl) methylamine, (CAS 51-75-2); HN3: tris (2-chloroethyl) amine, (CAS 555-77-1);

- g. Saxitoxin, (CAS 35523-89-8);
- Ricin, (CAS 9009-86-3). h.

2. CWC Schedule 1 B Precursors

- a. Alkyl(Me, Et, n-Pr or i-Pr)phosphonyldifluorides e.g., DF: Methylphosphonyldifluoride, (CAS 676-99-3);
- b. O-Alkyl (H equal to or less than C10, including cycloalkyl) O-2-dialkyl (Me, Et, n-Pr or i-Pr)-aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonites and corresponding alkylated or protonated salts;

e.g., QL: O-Ethyl O-2-diisopropylamino ethyl methylphosphonite, (CAS 57856-11-8);

- Chlorosarin: O-Isopropyl methylphosphonochloridate, C. (CAS 1445-76-7);
- d. Chlorosoman: O-Pinacolyl methylphosphonochloridate, (CAS 7040-57-5).

Group 7: Chemical and Biological Weapons Non-Proliferation List

3. CWC Schedule 2 A Toxic Chemicals:

- Amiton: O,O-Diethyl S-[2-(diethylamino)ethyl] phosphor-othiolate, (CAS 78-53-5) and corresponding alkylated or protonated salts;
- b. PFIB: 1,1,3,3,3-Pentafluoro-2-(trifluoromethyl)-1-propene, (CAS 382-21-8);
- c. BZ: 3-Quinuclidinyl benzilate, (CAS 6581-06-2).

4. CWC Schedule 2 B Precursors:

- a. Chemicals, except for those listed in Item 7003.1., or 7003.2. containing a phosphorus atom to which is bonded one methyl, ethyl or propyl (normal or iso) group but not further carbon atoms, such as:
 - a. Dimethyl methylphosphonate, (CAS 756-79-6);
 b. Methyl phosphonyl dichloride, (CAS 676-97-1);
 Note:

This Item does not control Fonofos: 0-Ethyl S-phenyl ethylphosphonothionate, (CAS 944-22-9).

- N,N-Dialkyl (Me, Et, n-Pr or i-Pr) phosphoramidic dihalides;
- Dialkyl (Me, Et, n-Pr or i-Pr) N,N-Dialkyl (Me, Et, n-Pr or i-Pr)-phosphoramidates;
- d. Arsenic trichloride, (CAS 7784-34-1);
- e. 2,2-diphenyl-2-hydroxyacetic acid, (CAS 76-93-7);
- f. Quinuclidin-3-ol, (CAS 1619-34-7);
- g. N,N-Dialkyl (Me, Et, n-Pr or i-Pr)
- aminoethyl-2-chlorides and corresponding protonated salts;
- h. N,N-Dialkyl (Me, Et, n-Pr or i-Pr) aminoethane-2-ols and corresponding protonated salts;

Note:

- This Item does not control: a. N,N-Dimethylaminoethanol, (CAS 108-01-0) and corresponding protonated salts.
- b. N,N-Diethylaminoethanol, (CAS 100-37-8);
- N,N-Dialkyl (Me, Et, n-Pr or i-Pr)aminoethane-2-thiols and corresponding protonated salts;
- j. Thiodiglycol: Bis(2-hydroxyethyl)sulfide, (CAS 111-48-8);
- Pinacolyl alcohol: 3,3-Dimethylbutan-2-ol, (CAS 464-07-3).

5. CWC Schedule 3 A Toxic Chemicals:

- a. Phosgene: Carbonyl dichloride, (CAS 75-44-5);
- b. Cyanogen chloride, (CAS 506-77-4);
- c. Hydrogen cyanide, (CAS 74-90-8);
- d. Chloropicrin: Trichloronitromethane, (CAS 76-06-2).

6. CWC Schedule 3 B Precursors:

- a. Phosphorus oxychloride, (CAS 10025-87-3);
- b. Phosphorus trichloride, (CAS 7719-12-2);
- c. Phosphorus pentachloride, (CAS 10026-13-8);
- d. Trimethyl phosphite, (CAS 121-45-9);
- e. Triethyl phosphite, (CAS 122-52-1);
- f. Dimethyl phosphite, (CAS 868-85-9);
- g. Diethyl phosphite, (CAS 762-04-9);
- h. Sulphur monochloride, (CAS 10025-67-9);
- i. Sulphur dichloride, (CAS 10545-99-0);
- j. Thionyl chloride, (CAS 7719-09-7);
- k. Ethyl diethanolamine, (CAS 139-87-7);
- 1. Methyldiethanolamine, (CAS 105-59-9);
- m. Triethanolamine, (CAS 102-71-6).

7004. AG Materials.

- 1. Chemical Weapons Precursor Chemicals, as follows:
 - a. 3-hydroxy-1-methylpiperidine, (CAS 3554-74-3);
 - b. Potassium fluoride, (CAS 7789-23-3);
 - c. 2-chloroethanol, (CAS 107-07-3);
 - d. Dimethylamine, (CAS 124-40-3);
 - e. Dimethylamine hydrochloride, (CAS 506-59-2);
 - f. Hydrogen fluoride, (CAS 7664-39-3);
 - g. Methyl benzilate, (CAS 76-89-1);
 - h. 3-quinuclidone, (CAS 3731-38-2);
 - i. Pinacolone, (CAS 75-97-8);
 - j. Potassium cyanide, (CAS 151-50-8);
 - k. Potassium bifluoride, (CAS 7789-29-9);
 - 1. Ammonium bifluoride, (CAS 1341-49-7);
 - m. Sodium bifluoride, (CAS 1333-83-1);
 - n. Sodium fluoride, (CAS 7681-49-4);o. Sodium cyanide, (CAS 143-33-9);
 - Dia 1 (CAS 143-33-9),
 - p. Phosphorous pentasulphide, (CAS 1314-80-3);q. Di-isopropylamine, (CAS 108-18-9);
 - r. Diethylaminoethanol, (CAS 100-37-8);
 - s. Sodium sulphide, (CAS 1313-82-2);
 - t. Triethanolamine hydrochloride, (CAS 637-39-8).

(All destinations other than the United States)

Note:

Chemical compounds created with any chemical listed in item 7004. are not covered in item 7004. unless that compound itself is listed in item 7004.

7005. Software.

None.

7006. Technology.

- 1. The export of "technology", including licences, directly associated with CW agents, precursors and equipment in items 7001. to 7004., is controlled.
- 2. Controls do not apply to that "technology" which is the minimum necessary for the installation, operation, maintenance, and repair of those products for which the export has been authorized.
- Controls do not apply to information "in the public domain" or to "basic scientific research".

Category 7010: Biological Weapons

7011. Equipment, Assemblies and Components

None.

7012. Biological Test, Inspection and Production Equipment, as follows:

1. Complete containment facilities at P3, P4 containment level; *Technical Note:*

Complete containment facilities that meet the criteria for P3 or P4 (BL3, BL4, L3, L4, BSL3, BSL4) containment as specified in the WHO Laboratory Biosafety Manual (Geneva, 1993 - 2nd Edition)

Group 7: Chemical and Biological Weapons Non-Proliferation List

7012. con't.

 Fermenters capable of cultivation of pathogenic microorganisms, viruses or for toxin production, without the propagation of aerosols, and having a capacity equal to or greater than 100 litres;

Technical Note:

For the purposes of Item 7012.2., sub-groups of fermenters include bioreactors, chemostats and continuous-flow systems.

- Centrifugal separators capable of the continuous separation of pathogenic microorganisms, without the propagation of aerosols, and having all the following characteristics:
 - a. flow rate greater than 100 litres/h;
 - b. component of polished steel or titanium;
 - c. double or multiple sealing joints within the steam containment area; and
 - d. capable of in-situ steam sterilisation in a closed state; *Technical Note:*

For the purposes of Item 7012.3., centrifugal separators include decanters.

4. Cross(tangential) flow filtration equipment designed for continuous separation of pathogenic microorganisms, viruses, toxins and cell cultures without the propagation of aerosols, and having all the following characteristics:

a. equal to or greater than 5 square metres; and

- b. capable of in-situ sterilization;
- 5. Steam sterilizable freeze-drying equipment with a condenser capacity greater than 50 kg of ice in 24 hours and less than 1000 kg of ice in 24 hours;
- 6. Equipment that incorporates or is contained in P3 or P4 (BL3, BL4, L3, L4, BSL3, BSL4) containment housing, as follows:
 - a. Independently ventilated protective full or half suits;
 - b. Class III biological safety cabinets or isolators with similar performance standards.
- Aerosol inhalation chambers designed for aerosol challenge testing with pathogenic microorganisms, viruses or toxins and having a capacity of 1 cubic meter or greater.

7013. Materials.

Biological Weapon Agents

1. Human pathogens, as follows: Note:

Except where the agent is in the form of a vaccine.

- a. Viruses:
 - 1. Chikungunya virus;
 - 2. Congo-Crimean haemorrhagic fever virus;
 - 3. Dengue fever virus;
 - 4. Eastern equine encephalitis virus;
 - 5. Ebola virus;
 - 6. Hantaan virus;
 - 7. Junin virus;
 - 8. Lassa fever virus;
 - 9. Lymphocytic choriomeningitis virus;
 - 10. Machupo virus;
 - 11. Marburg virus;
 - 12. Monkey pox virus;
 - 13. Rift Valley fever virus;
 - 14. Tick-borne encephalitis virus (Russian Spring Summer encephalitis virus);
 - 15. Variola virus;
 - 16. Venezuelan equine encephalitis virus;
 - 17. Western equine encephalitis virus;
 - 18. White pox;
 - 19. Yellow fever virus;
 - 20. Japanese encephalitis virus;

- b. Rickettsiae:
 - 1. Coxiella burnetii;
 - 2. Bartonella Qintana (Rickettsiae quintana, Rochalimea quintana);
 - 3. Rickettsiae prowazeki;
 - 4. Rickettsiae rickettsii;
 - c. Bacteria:
 - 1. Bacillus anthracis;
 - 2. Brucella abortus;
 - 3. Brucella melitensis;
 - 4. Brucella suis;
 - 5. Chlamydia psittaci;
 - 6. Clostridium botulinum;
 - 7. Francisella tularensis;
 - 8. Burkholderia Mallei (Pseudomonas mallei);
 - Burkholderia pseudomallei (Pseudomonas pseudo-mallei);
 - 10. Salmonella typhi;
 - 11. Shigella dysenteriae;
 - 12. Vibrio cholerae;
 - 13. Yersinia pestis;
 - d. Genetically Modified Microorganisms:
 - Genetically modified microorganisms or genetic elements that contain nucleic acid sequences associated with pathogenicity and are derived from organisms in the above list of human pathogens;
 - 2. Genetically modified microorganisms or genetic elements that contain nucleic acid sequences coding for any of the human toxins in the list below;

e. Toxins:

Note: Excluding Immunotoxins

- 1. Botulinum toxins;
- 2. Clostridium perfringens toxins;
- 3. Conotoxin;
- 4. Shiga toxin;
- 5. Staphylococcus aureus toxins;
- 6. Tretodotoxin;
- 7. Verotoxin;
- 8. Microcystin (Cyanginosin);
- 9. Aflatoxins.

2. Animal pathogens, as follows:

Note: Except where the agent is in the form of a vaccine.

- a. Viruses:
 - 1. African swine fever virus;
 - 2. Avian influenza virus;

Note:

This includes only those Avian influenza viruses of high pathogenicity as defined in EC Directive 92/40/EC:

- a. "Type A viruses with an IVPI(intravenous pathogenicity index) in 6 week old chickens of greater than 1.2; or
- b. Type A viruses H5 or H7 subtype for which nucleotide sequencing has demonstrated multiple basic amino acids at the cleavage site of haemegglutinin.
- 3. Bluetongue virus;
- 4. Foot and mouth disease virus;
 - 5. Goat pox virus;
 - 6. Herpes virus (Aujeszky's disease);

Group 7: Chemical and Biological Weapons Non-Proliferation List

7013.2.a. con't.

- 7. Hog cholera virus (syn. swine fever virus);
- 8. Lyssa virus;
- 9. Newcastle disease virus;
- 10. Peste des petits ruminants virus;
- Porcine enterovirus type 9 (syn. swine vesicular disease virus);
- 12. Rinderpest virus;
- 13. Sheep pox virus;
- 14. Teschen disease virus;
- 15. Vesicular stomatitis virus;
- b. Rickettsiae None;
- c. Bacteria:
 - 1. Mycoplasma mycoides;
- d. Genetically modified microorganisms or genetic elements that contain nucleic acid sequences associated with pathogenicity and are derived from organisms in the above list of animal pathogens.

3. Plant Pathogens, as follows:

- a. Virus none;
- b. Rickettsiae none;
- c. Bacteria:
 - 1. Xanthomonas albilineans;
 - 2. Xanthomonas campestris pv citri;
- d. Genetically modified microorganisms or genetic elements that contain nucleic acid sequences associated with pathogenicity derived from the plant pathogens identified on this list;

- e. Toxins none;
- f. Fungi:
 - Colletotrichum coffeanum var. virulans (Colletotrichum kahawae);
 - 2. Cochliobulus miyabeanus (Helminthosporium oryzae);
 - 3. Microcyclus ulei (syn. Dothidella ulei);
 - Puccinia graminis (syn. Puccinia graminis f.sp. tritici);
 - 5. Puccinia striiformis (syn. Puccinia glumarum);
 - 6. Pyricularia grisea/Pyricularia oryzae.

Note:

Governments may permit the shipment of medical products specifically packaged and marketed:

- 1. For medical or public health purposes.
- For irreversibly inactivated botulinum toxins in product form meeting all of the following criteria when they are:
 - a. pharmaceutical formulations designed for human administration in the treatment of medical conditions;
 - b. pre-packaged for distribution as medical products;
 - c. authorized by a state authority to be marketed as medical products.

(Item 7012. And 7013. apply to all destinations **except** Argentina, Australia, Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Republic of Korea, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Slovak Republic, Spain, Sweden, Switzerland, United Kingdom and United States.)

7014. Software:

None.

7015. Technology:

None.

Group 7 Definitions

"Basic scientific research"

Experimental or theoretical work undertaken principally to acquire new knowledge of the fundamental principles of phenomena or observable facts, not primarily directed towards a specific practical aim or objective.

"Development"

Development is related to all phases before "production" such as: design, design research, design analysis, design concepts, assembly of prototypes, pilot production schemes design data, process or transforming design data into a product, configuration design, integration design, layouts.

"In the public domain"

"In the public domain", as it applies herein, means "technology" that has been made available without restrictions upon it's further dessemination. (copyright restrictions do not remove technology from being in the public domain)

"Production"

Means all production phases such as: construction, production engineering, manufacture, integration, assembly (mounting), inspection, testing, quality assurance.

"Technical assistance"

May take forms, such as: instruction, skills, training, working knowledge, consulting services.

"Technical assistance" may involve transfer of "technical data".

"Technical data"

May take forms such as blueprints, plans, diagrams, models, formulae, tables, engineering designs and specifications, manuals and instructions written or recorded on other media or devices such as disk, tape, road-only memories.

"Technology"

Specific information necessary for the "development", "production" or "use" of a product. The information takes the form of "technical data" or "technical assistance".

"Use"

Operation, installation (including on-site installation), maintenance (checking), repair, overhaul and refurbishing.

Group 8 – Chemicals for the Production of Illicit Drugs

8011. Chemicals in excess of the indicated quantities, as follows:

- 1. Ephedrine (1 kg) (all destinations);
- 2. Ergometrine (10 g);
- 3. Ergotamine (10 g);
- 4. Lysergic acid (10 g);
- 5. 1-phenyl-2-propanone (20 kg);
- 6. Pseudoephedrine (1 kg) (all destinations);
- 7. N-Acetylanthranilic acid (40 kg);
- 8. 3,4-Methylenedioxyphenyl-2-propanone (4 kg).

8021. Chemicals in excess of the indicated quantities, as follows:

- 1. Piperidine (0.5 kg);
- 2. Safrole (4 kg);
- 3. Isosafrole (4 kg);
- 4. Piperonal (4 kg);
- 5. Anthranilic acid (30 kg);
- 6. Phenylacetic acid (1 kg).

8031. Chemicals in excess of the indicated quantities, as follows:

- 1. Acetone (2000 1);
- 2. Ethyl ether (2000 l);
- 3. Methyl ethyl keytone (2000 l);
- 4. Toluene (2000 l);
- 5. Potassium permanganate (500 kg);
- 6. Sulfuric acid (2000 l);
- 7. Hydrochloric acid (2000 1);
- 8. Acetic anhydride (1000 l).

Note:

Mixtures of chemicals where at least one of the chemicals is not listed in Items 8011., 8021. or 8031. are not included in those Items provided that the mixture was not created solely to avoid inclusion.

This non-exhaustive index is provided as a guide only.

A to D converters	1031, 1041, 6140	Aromatic polyetherimides	1013
Absorbents	3105	Artillery	2002
Absorbers, hair type	1013	Asymmetric algorithms	1151
Absorbers of electromagnetic waves	1013	Asynchronous transfer mode	1052, 1054, 1055
Absorption analyzers	3106	ATM	1052, 1054, 1055
Absorption columns	7002	Attitude control equipment	6100
Accelerators	6150	Atomic frequency standards	1031
Accelerometers	1071, 6090	Authentication	1151
Acoustic-optic devices	1031	Automatic firearms	2001
Acoustic projectors	1061	Automatic piloting systems	2010
Acoustic sensors	1061	Automatic pilots	6090
Acoustic systems	1061	Avionics	1070
Acoustic vibration test equipment	1092	Avionics equipment, rockets	6110
Acoustic wave devices	1031	Bacteria, human, animal, plant	7013
Additives, explosives	2008, 6040	Balancing machines	4503, 6090
Aero-engines	1091, 2010, 6030	Ballistic missile systems	6010
Aerodynamic analysis	6160	Ballistic protection, materials for	2013
Aerodynamic enrichment	3105	Banking equipment	1151
Aerosol inhalation chambers	7012	Batch mixers	6050
Agitators	7002	Bathymetric survey systems	1061
Aiming devices	2001, 2005	Batteries	1031
Air-independent power systems	1081	Bearing, silent	2009
Airborne equipment	2010	Bearings	1021
Aircraft	2010	Bellows equipment	3105
Aircraft handling equipment	2010	Beryllium	2008, 4501, 6040
Alexandrite	1063		
		Beryllium metal and alloys	4501
Alloyed materials	1013	Beryllium substrate blanks	1063
Altimeters	1071, 6110	Binary precursors	2007
Aluminium alloys	1013, 4501	Biocatalysts	2007
Aluminium powder	2008	Biological agents	2007,7013
Ammonia convertors	4504	Biological safety cabinets	7012
Ammonia crackers	3106	Biological systems	2007,7013
Ammonium perchlorate	6050	Biological test equipment	7012
Ammunition	2003	Biological Weapons (BW)	2007,7013
Amorphous alloy strips	1013	Biological weapons agents	7013
Amphibious vehicles	2006	Biopolymers	2007
Amplifiers, laser	4503	Bismaleimides	1013
Analog computers	6130	Bismuth	4501
Analog to digital converters	1031, 1041, 6140	Blast/thermal protection	6180
Analogue instrumentation recorders	1031	Blinding laser weapons	2019, 5501
Analyzers, digital differential (DDA)	6130	Blood products	5011
Analyzers, network	1031	Blowers	3105, 3106
Anechoic chambers	6150	Body armour	1011, 2013
Angular measuring instruments	4502	Bombing, computers	2005
Animal pathogens	7013	Bombs	2004
Antenna, microwave	3105	Bonding systems	1092
Antenna, phased array	1051, 1061	Boron and boron compounds	1013, 2008, 4501
Antibodies for biological warfare	2007	A A A A A A A A A A A A A A A A A A A	6040
Anti-personnel mines	5503	Breathing equipment	2010, 2017
Armament, large calibre	2002	Bulk graphite	6080
Armed vehicles	2002	Burning rate modifier	6040
Armoured plate	2013	C ³ I software	2021
Armoured railway trains	2006	Cable, secure communications	1151
Armoured vehicles	2006	Cables, fibre optic	1051, 1081
Arms, small	2000	Cadmium telluride (CdTe)	1063
Aromatic polyamide-imides	1013	Cadmium zinc telluride (CdZnTe)	1063

Calcium (high purity)	4501	Compasses	2009
Cameras	1061, 1081, 4505,	Components, nuclear	3108
	4508	Composite propellants	6040
Cameras, military	2015	Composite structures	1011, 6080
Cameras, reconnaissance	2015	Composite Theoretical Performance (CTP)	1041
Cannon	2002	Composites	1012, 1013
Capacitors	1031, 4506	Compressors	3105, 3106
Carbines	2001	Computer-Aided-Design (CAD) software	1034
Carbon-carbon materials	1091, 6080	Computers	1041, 2011, 6130
Carbon catalysts	4508	Condensers	7002
Carbon fibres	1013	Conductive polymers	1013
Cartridges	2003, 2004	Containers, chemical	7002
Casting equipment	1092	Containers, military	2017
Castings, military	2016	Containment facilities	7012
Catalysts	4508, 6040	Continuous mixers	6050
Catalytic burners	3106	Contouring machine tools	4502
Cattle pancreas	5001	Control systems	1092
Cedar, red -	5103	Converters, A to D	1031, 1041, 6140
Cellular communications equipment	1051, 1151	Cooled mirrors	1061
Centrifuges	6090	Copolymers	1011
Centrifugal blowers	3105, 3106	Cordless telephones	1151
Centrifugal multiplane balancing machines	4503	Counter measure equipment	2011, 2015
Centrifugal separators	7012	Counter-counter measure equipment	2011
Centrifuges, gas	3105	Crash helmets, military	2010
Ceramic	1013, 1092	Critically safe tanks	3103
Ceramic base materials	1013, 1032	Crucibles	4501
Ceramic cores	1013	Cruise missile systems	6010, 6190
Ceramic materials	6080	Cryocoolers	1061
Ceramic shells	1092	Cryogenic distillation columns	4504
	6150	Cryogenic equipment	2020
Chambers, anechoic	6150	Cryogenic systems	1091
Chambers, environmental			1151, 1154, 2011
Chemical agents	2007	Cryptography Curring agent	6040
Chemical compounds	7003	Curing agent	1022, 4502
Chemical exchange enrichment units	3105	Cutting machines	1022, 4502
Chemical for propellants	6040	Cutting tool	
Chemical mixtures	7000, 8011, 8021,	CVD equipment	1022, 1032, 6070
	8031	Damping fluids	1013
Chemical production equipment	7001, 7002	Data acquisition	1092
Chemical vapour deposition furnace	6070	Data processing security equipment	1151, 2011
Chemical vapour deposition	1022, 1025, 1032,	Decontamination equipment	1011
	6070	Decryption equipment	1151, 2011
Chemical warfare	2007, 7000	Deep-hole drilling machine tools	1022
Chemical weapon agent precursors	2007, 7003	Demolition charges	2004
Chemical weapon binary precursors	2007	Depth charges	2004
Chemical Weapons (CW)	2007, 7000	Design integration software	6160
Chemical weapons facilities	7001	Detection devices, underwater	1061, 2009
Chemical weapons production equipment	7001, 7002	Detection equipment	2005, 7002
CW, BW dissemination equipment	2007	Detectors	1061
CW, BW protective equipment	1011, 2007	Detonators	4506
CWC scheduled chemicals	7003	Deuterium	3003
Chemicals	1013, 2007, 2008,	Deuterium production plant	3106, 4504
	6040, 7003, 8011,	Diamond-like-carbon	1025
	8021, 8031	Dies	1012, 1022
Chlorine trifluoride (ClF3)	4501	Diffuser housings	3105
Chlorofluorocarbons (CFC's)	1013	Diffusion barriers, gaseous	3105
Closed-cycle refrigeration	1091	Diffusion bonding	1012
Coating machines	1022	Digital computers	1041, 2011, 6130
Combat vessels	2009	Digital Differential Analyzers (DDA)	6130
Combined cycle engines	1091, 6030	Digital instrumentation recorders	1031
Common channel signalling	1052, 1055	Digital signatures	1151
			1031

	1021		
Digital video recorders	1031	Fermenters for BW agents	7012
Dimensional inspection equipment	1022, 4502	Fibre optic cable and accessories	1051,1061
Directed energy weapons	2019	Fibre optic hull penetrators Fibres	1081
Direction finding equipment	1074, 6090, 6110		1013, 1051
Dissolvers	3103 4504, 7002	Fibrous & filamentary material	1013, 4502, 6060
Distillation columns	1081, 2017	Field engineer equipment Field programmable gate arrays	2017 1031
Diving apparatus	2017	Field programmable logic arrays	1031
Diving, underwater swimming equipment	2017 2010, 6010	Filament winding machines	
Drones, reconnaissance	2010, 6010	Filling equipment, remotely operated	1012, 4503, 6060 7002
Drones, target	8011, 8021, 8031	Filters, tunable	1031
Drugs	1054	Filtration equipment	7012
Dynamic adaptive routing ECM	2011	Fire bombs	2004
EEPROMs	1031	Fire control equipment	2004
	1022, 4502	Firearms	2003 2001, 2002,
Electrical Discharge Machines (EDM)	4503	Firearms, magazines	2001, 2002, 2001, 2002
Electrolytic cells, fluorine production	1031	Firearms, components	2001, 2002
Electromagnetic energy storage Electromagnetic enrichment plants	3105	First generation image intensifier tubes	2001, 2002
	2012	Fissionable materials	3001
Electromagnetic propulsion Electromagnets, superconductive	1031, 4503	Flak suits	2013
	4502	Flame throwers	2013
Electron beam furnaces	1022	Flash X-ray equipment	4505
Electron beam machine tools	1022	Flight control systems	1071, 6100
Electronic assemblies	6110	Flight control systems, rockets	6100
Electronic counter counter macauna aquimmant	2011	Flotation fluids	1013
Electronic counter-counter measure equipment	2011	Flow-forming machines	1022, 4502, 6030
Electronic counter measure equipment	1031	Fluid energy mills	6050
Electronic devices, superconductive	2011	Fluids	1013
Electronic equipment military		Fluorinated compounds	1013
Electronic framing cameras Electronic monitoring systems	1061, 4505 2011	Fluorination systems	3105
Electronic surveillance systems	2011	Fluorine production equipment	4503
Electronic streak cameras	1061, 4505	Fluoropolymers	7002
Electronic switching devices	4506	Fly cutting machines	1022
		Focal plane array detectors	1022
EMI technology EMP	1155, 6110 1051	Food products	5201, 5202, 5203,
EMP protection	6180	rood products	5201, 5202, 5205, 5204
EMP technology	6110	Forest products	5101, 5102, 5103,
Encryption equipment		Forest products	5101, 5102, 5105, 5104
End-effectors	1151, 2011	Forgings	2016
	1022, 2017, 4502 1075, 1094, 1095	Forgings	7012
Engine controls, full authority digital		Freeze-drying equipment	2011
Engines Engines for military eigereft	1091, 6030	Frequency agile tubes	
Engines for military aircraft	2010	Frequency changers, convertors, invertors	3105, 4503 1051, 1151
Engines for military vehicles Engines for military vessels	2006	Frequency hopping radio	1031
Enrichment plants	2009	Frequency standards, atomic	1031
Environmental chambers	3105	Frequency synthesizer	1011
Enzymes for BW, CW	6150	Fuel bladders	3104
Equipment for epitaxial growth	2007, 7013 1032	Fuel element fabrication plant	3104
Equipment for ion implantation	1032	Fuel fabrication plants Fuel thickeners	2004
Equipment for signal processing or	1032	Fueling machines, nuclear	3101
image enhancement	1041	Fuels	2008, 6040
Equipment for the production of tritium	4508	Full Authority Digital Engine Control	2000, 0040
Equipment for the separation of	4500	the second se	1075, 1094, 1095
isotopes of lithium	3105	(FADEC) Fungi	7013
Equipment for use with nuclear reactors	3101	Furnaces	4502
Exchange towers	3106	Furnaces, chemical vapour deposition	1022, 6070
Explosion proof motors	6050	Fusion Reactors	5502
Explosives	2008, 4506, 6040	Gallium arsenide	1061
Extractors, solvent	3103	Gas centrifuges	3105
FADEC	1075, 1094, 1095	Gas masks	1011, 2007
Fast Fourier Transform (FFT) processors	1075, 1074, 1075	Gas monitors	7002
(, , ,) processes			

Casariastan	2002
Gas projectors	2002
Gas turbine blade production equipment	1092
Gas turbine engines	1091, 6030
Gas turbine marine engines	1081, 1091
Gaseous diffusion enrichment	3105
Gaskets	1011
Gate arrays	1031
Generators, military	2017
Genetically modified micro-organisms	7013
Gimbals	1061
Glass	1063
Global Positioning Systems (GPS)	1071, 6110
Goods in transit	5401
Graphics accelerators	1041
Graphite	3006, 6080
Gravimeter production equipment	1062
Gravity gradiometers	1061, 6120
Gravity meters	1061, 6120
Grenades	2004
Grinding machines	1022, 4502
Guidance and navigation equipment	1071, 2009, 6020,
	6090
Gun-carriers	2006
Gun laying equipment	2005
Guns	2001, 2002
Guns, self-propelled	2006
Gyro-astro compasses	1071, 6090
Gyros	1071, 6090
Gyrostabilizers	6090
Hafnium	4501
Hair type absorbers	1013
Half-tracks	2006
Header piping	3105
Heat exchangers	3105, 7002
Heat shields	6020
Heat sinks	6020
Heavy water	3003
Heavy water production plant	3106, 4504
Heavy water upgrade systems	3106
Height finders	2005
Helicopters	2010
Helium	4508
Helium refrigeration	4508
Helmets, military	2013
Herring, roe	5202
Hetero-epitaxial materials	1033
High energy density propellants	2008, 6040
High energy storage capacitors	1031, 4506
High power D.C. supplies	4503
High power radio-frequency systems	2019
High pressure thrust chambers	1091
High voltage power supplies	3105, 4503
HMX	2008, 4506, 6040
Hot isostatic presses	1022, 4502, 6070
Housings, diffuser Howitzers	3105
	2002
Hull penetrators and connectors	1081, 2009
Hulls	2009
Human pathogens	7013
Human serum albumin	5011
Hybrid computers	
	1041, 6160

Hybrid rocket motors	6030
Hydraulic fluids	1013
Hydrodynamic instrumentation	4505
Hydrofoil vessels	1081
Hydrogen storage	1091
Hydrophones Identification equipment	1061
Illicit drugs	2005
Image enhancement, equipment for	8011, 8021, 8031 1041
Image intensifier tubes	1061, 2015
Image intensifiers	1061, 2015
Imaging equipment	1061, 2015
Imaging radar sensors	2012
Implosion systems	4505
Incendiary bombs	2004
Incinerators	7002
Indicator heads	6090
Induction furnaces	4502
Inertial equipment test equipment	6090
Inertial navigation systems	1071, 6090
Information security	1151, 2011
Infrared equipment	1061, 2015
Infrared imaging equipment	1061, 2015
Initiation systems, multipoint	4506
Inspection equipment, dimensional Insulation	1022, 4502
Integrated circuits	1091, 6030
Integrated flight instrument systems	1031 1071, 6090
Interferometers	6110
Interlacing machines	1012, 6060
Ion beam systems	1012,0000
Ion exchange enrichment plants	3105
Ion implantation equipment	1032
Ion plating equipment	1022
Iron powder	2008
Irradiated fuel processing plants	3103
Isostatic presses	1022, 4502, 6070
Isotope separation equipment	3105, 4503
Isotope separation plants	3105, 4503
Isotope separators	3105, 4503
Jamming equipment	2011
Joule-Thomson minicoolers	1061
Kinetic energy weapons	2012
Key management	1151
Large calibre armaments	2002
Laser based enrichment plants	3105
Laser diagnostic equipment Laser diodes	1061
Laser diodes	1052, 1054, 1055,
Laser inspection equipment	1061 1022, 1062
Laser production equipment	1022, 1002
Laser radar	1061, 6110
Laser test equipment	1062
Lasers	1052, 1054, 1055,
Start and an and a start of the start of the	1061, 2019, 3105,
	4503, 5501
Launch support equipment	6120
Launch support software	6120
Launch vehicles	1091, 6010
Linear displacement measuring equipment	1022, 4502
Liquid fit machine tools	1022

2008, 6040 4501	Motion simulators	
4301	Motor cases	1091
4508	Motors, submarine	1081, 2009
1032	Moulds	1012, 1022, 6060
1031	Multi level security	1151
5101	Multiple seal valves	7002
5104	Multispectral imaging sensors	1061
1013	Naval equipment	2009
3105		1070, 1081, 6090
2001		1013
1022, 4502		1041
		1031
1013, 2008, 4501		1041
		1031
	and the second se	
		3101
		4508
the second se		1013
the second difference is a second		1013, 3105, 4501
the second se		4501
and the second		1061, 2005, 2015
		1013
		6040
		6040
		1081, 6170
the second se	the second se	1091, 6070
		3101
		2017, 3101, 5502
		3101
		4507
		4502
The second s		1022, 4502
		1061
		1081
		1063
		1052, 1055
		1041
		1061
		1061
		1051, 1061
		1051, 1061
		1081, 2009
		1063
		1061
		1063
		1061 1061
		1061
		1052, 1054, 1055
		4503
		6040
		4504
		5001
		2010
		2010
		1061
		7013
		5201
2002	Pharmaceuticals	8011, 8021
	1032 1031 5101 5104 1013 3105 2001 $1022, 4502$ $1013, 2008, 4501$ 2008 3105 1061 2018 6060 4508 $4501, 6080$ $1081, 1091$ 1032 $3105, 4503$ $1022, 1092, 4502$ 1013 1013 1013 1013 1013 1013 1013 1031 1031 1031 1031 1031 1031 1031 1031 1031 1031 1031 1031 2019 $2017, 3101$ $1022, 4502$ $2004, 5503$ 2004 $2005, 6090$ 6180 $2005, 6120$ $2004, 6010, 6190$ 6050 2017 6160 5204 6080 2011	1032Moulds1031Multi level security5101Multiple seal valves5104Multiple seal valves1013Naval equipment3105Navigation, equipment and systems2001Neptunium1022, 4502Network access controllers1013, 2008, 4501Neural computers2008Neural network integrated circuits3105Neural network integrated circuits3105Neutron detection and measurement1061instruments1013Neutron generator systems1061Nickel2018Nickel powder6060Nickel powder6060Nickel powder1032Nitrate plasticizer3105, 4503Noise reduction systems1022, 1092, 4502Nozles1013Nuclear reactors1013Nuclear testing equipment1061Numerical control units1013Nuclear stang generators1013Nuclear stang equipment1013Nuclear stang equipment1014Optical absorption material1015Optical computers1031Optical computers1031Optical fibre1031Optical fibre1031Optical fibre1031Optical fibre cables1031Optical fibre1031Optical fibre1031Optical fibre1031Optical fibre1031Optical fibre1031Optical fibre1031Optical fibre<

Phased segment mirrors	1061
Photocathodes	1061
Photodiodes, semiconductor	1061
Photographic equipment	1061, 1081, 2015,
	4505, 4508
Photomultiplier tubes	4507
Photovoltaic arrays	1031
Piezoelectric polymers	1011
Piloting systems, automatic	2010
Piping, multiwalled	7002
Piping systems	3105
Pistols	2001 7013
Plant pathogens	3103
Plants for conversion of plutonium nitrate Plants for fabrication of fuel elements	3104
Plants for rabrication of fuel elements Plants for processing irradiated nuclear materials	3104
Plants for processing infantace nuclear materials	3103
Plants for production of plutonium metal	3103
Plants for reprocessing reactor fuel elements	3103
Plants for separation of fissionable materials	3103
Plants for the separation of isotopes	3105
Plants for the production of (UF_6)	3105
Plants for the production of (erg) Plants for the production of heavy water,	5100
deuterium	3106
Plants, tritium	4508
Plantinized catalysts	4508
Plasma dry etching equipment	1032
Plasma furnaces	4502
Plasma generation systems	3105
Plasma propulsion	2012
Plasma separation enrichment	3105
Plasma spraying equipment	1022
Plutonium	1013, 3001
Plutonium nitrate	3103
Plutonium oxide	3103
Poloidal Field Cells	5501
Polyamide-imides, aromatic	1013
Polyarylene ketones	1013
Polycarbosilazanes	1013
Polyetherimides, aromatic	1013
Polydiorganosilanes	1013
Polyimides, aromatic	1013
Polymeric substances	1011, 6040 1011
Polymers Polymers, conductive	1011
Polysilazanes	1013
Position encoders	1015
Position finders	2005
Positioning tables	6090
Potassium titanyl arsenate (KTA)	1063
Power generating systems, nuclear reactor	3101
Power supplies, direct current, high power	3105, 4503
Precursors, chemical	2007, 7003, 8011
	8021, 8031
Precursors, explosives	2008
Preform production equipment	1012, 6060
Preforms	6080
Prepreg production equipment	1012, 6060
Prepegs	1013, 4501, 6080
Presses, hot isostatic	1022, 4502, 6070
Pressure measuring instruments	4503

Pressure refuellers	2010
Pressure suits	2010
Pressure transducers	4503
Primary cells	1031
Process technology, chemical	7006 6030
Production equipment, aero engines Production equipment, direction finding	6090
Production equipment, flight control	6100
Production equipment, gas turbines	1092, 6030
Production equipment, military	2018
Production equipment, missiles, rockets	
and UAVs	6020, 6200
Production equipment, navigation	6090
Production equipment, propellant	6050
Production equipment, propulsion	6030
Production equipment, structural composites	6060
Production equipment, telecommunications	1052
Production equipment, tritium	4508
Production facilities, aero engines	1092, 6030
Production facilities, missiles, rockets and UAVs	6010, 6020, 6200
Production facilities, propulsion	6030
Production plant, heavy water	3106
Production plant, plutonium	3105
Production plant, uranium hexafluoride	3105
Production technology, military	2018 6090
Profilometer	2001, 2002
Prohibited weapons Projectile launchers	2001, 2002
Projection telescopes	1061
Projectors, acoustic	1061
Propellant additives and agents	2008, 6040
Propellant production equipment	6050
Propellant storage systems	1091
Propellants	2008, 6040
Propellers	1081
Propulsion equipment, nuclear	2017, 3101
Propulsion inspection equipment	1092
Propulsion production equipment	1092
Propulsion systems	1081, 1091
Propulsion test equipment	1092
Propulsive substances	2008, 6040
Protective clothing	1011, 2007, 7012
Pulpwood	5102
Pulse generators, high speed	4507
Pulse jet	6030
Pulsers	4506
Pumps	1091, 3106, 4504,
	6030, 7002 6070
Pyrolytic equipment	2004
Pyrotechnic flare signals	2004
Pyrotechnic projectors	2002
Pyrotechnics Quartz heaters	1092
Radar	1061, 2011, 6110,
Nauar	6120
Radar cross section measurement systems	1062, 6170
Radar reflectivity material	1011, 1013, 6170
Radiation hardened computer equipment	1041
Radiation hardened microcircuit	1031, 6180
Radiation hardened rocket systems	6180
Radiation hardened telecommunication	

P P P P P P P P P

P P P P P P P

H

equipment	1051	Security equipment	1151, 2011
Radiation hardened TV cameras	4508	Self-propelled guns	2006
Radiation shielding windows	4508	Semiconductor lasers	1052, 1054, 1055,
Radio equipment	1051, 2011		1061
Radio receivers	1051, 2011	Semiconductor photodiodes	1061
Radioactive agents	2007, 3001	Sensors integration equipment	2005
Radiographic equipment	6150	Sensors	1061
Radionuclides	4508	Separation equipment, gas	3105
Radium	4501	Separation mechanisms	6030
Radomes	1064, 6180	Separators	7012
Ramjet engines	1091, 6030	Serum albumin	5011
Range finders	2005	Servo valves	6030
Rate tables	6090	Shared aperture optical elements	2019
RDX	2008, 4506, 6040	Shielding technology	1155, 6110
Re-entry vehicle nose tips	6070	Shutters, electronically triggered	2022
Re-entry vehicles	6020	Shotguns	2001
Reaction vessels	7002	Sighting devices	2001, 2002, 2005
Reactors, chemical	7002	Signal analysers	1031
Reactors, nuclear	2017, 3101, 5502	Signal processing	1041, 1051
Reactors, synthesis	4504	Silencers, firearm	2001
Rechargeable cells	1031	Silicon carbide substrate blanks	1063
Reconnaissance drones	6010, 6190	Silver gallium selenide	1063
Recorders, digital video	1031	Simulation software	2021, 6160
Recovery vehicles	2006	Simulators	2014
Reduced observable	6170	Single element detectors	1061
Reduced observables, materials for		Slide way assemblies	1022
	1013, 2017, 6170	Small arms	2001
Reduced radar reflectivity	6170		
Reflectance measuring equipment	1062, 6170	Smart cards	1151
Reflectometer	6090	Smoke canisters	2004
Reflux systems	3105	Smoke grenades	2004
Refrigeration systems	1091	Smoke projectors	2002
Refuelling	2010	Smooth bore weapons	2001
Remote manipulators	4508	Software (see corresponding equipment)	2021
Remotely piloted air vehicles	2010, 6010, 6190	Software embedded in weapon systems	2021
Repair shops, mobile	2017	Software, aero engines	6030
Reprocessing plants	3103	Software, densification	6070
Resins	3105	Software, design integration	6160
Revolvers	2001	Software, direction finding	6090
Rickettsiae	7013	Software, environmental test facilities	6150
Rifles	2001	Software, flight control	6100
Robots	1022, 1081, 2017,	Software, flight instrument integration	6090
	4502	Software, launch support	6120
Rocket engines	2004, 6020, 6200	Software, marine	1084
Rocket launchers	2002	Software, missiles, rockets and UAVs	6010, 6190, 6200
Rocket motors	2004, 6020, 6200	Software, modelling	6160
Rocket motor cases	2004, 6030	Software, navigation and avionics	1074, 6090, 6110
Rocket propulsion systems	1091, 2004, 6020	Software, nuclear effects	6180
Rocket stages	2004, 6020, 6200	Software, optical sensors	1064
Rocket subsystems	2004, 6020, 6200	Software, propellant production	6050
Rocket systems	2004, 6010, 6190	Software, propulsion	1094, 6030
Rockets	2004, 6010, 6200	Software, pyrolytic deposition	6070
Rotor component production equipment	1092	Software, radiation hardening	6180
Rotor equipment	4503	Software, simulation	6160
Routers	1151	Software, stealth	6170
Satellite	1091, 6030	Software, structural composites	6060
Scatterometers	6090	Softwood lumber	5104
Scrambling equipment	1151, 2011	Solid fuels	2008, 6040
	1091, 6030	Solvent extractors	3103
Scramjer engines			
Scramjet engines Sealants	1011	Solvents	8031
	1011 1011, 3105	Solvents Sonar equipment	8031 1061

Source materials	3002
Space launch vehicles	1091, 6010
Spacecraft	1091
Spectrometers	3105, 4503
Spin-forming machines	1022, 4502, 6030
Spindle assemblies	1022, 4502
Spotting instruments	2005
Spread spectrum radio equipment	1051, 1151, 2011
Sputter deposition production equipment	1022
Squids	1061
SRAMs	1031
Stabilizers	6040
Stabilizers, explosives	2008
Staging mechanisms	6030
Stealth devices and materials	1013, 2017, 6170
Stealth technology	1015, 2022, 6170
Steel	4501, 6080
	1091
Storage systems	7002
Storage tanks	
Strain gauges	1092
Structural material	6080
Submarine nets	2009
Submarines	1081, 2009
Submersibles & systems	1081
Substrates	1061
Sugar	5203, 5204
Sugar-containing products	5203
Superalloys	1092
Superconducting solenoid magnets	4503
Superconductive composite	1013
Superconductive electromagnetic sensors	1061
Superconductive electromagnets	1031, 4503
Superconductive equipment	2020
Surface acoustic wave devices	1031
Surface-effect vehicles	1081
Surface vessels	1081, 2009
Surveillance equipment, target	2005
Surveillance systems, electronic	2003
	1061
Survey systems, bathymetric	
Switching equipment, digital	1052, 1054, 1055
Switching devices, electronic	4506
Symmetric algorithms	1151
Syntactic foam	1083
Synthesis reactors	4504
Syrup	5204
Tank destroyers	2002
Tanks	2006
Tantalum	7002
Tape laying machines	1012, 6060
Target drones	6010, 6190
Target surveillance equipment	2005
Tear gas	2007
Technology (see corresponding equipment)	
Technology, A to D converters	1035, 6140
Technology, advanced materials	1015
Technology, aero engines	1095, 6030
	1045, 6130
Technology, analogue computers	
Technology, analogue computers Technology, densification	6070
Technology, densification	6070 6160
Technology, densification Technology, design integration	6160
Technology, densification	

Technology, direction finding	6090
Technology, ECM/EDM drilling	1025, 1095
Technology, environmental test facilities	6150
Technology, flight control	1075, 6100
Technology, fuel injection system	1095
Technology, gas turbine engines	
& components	1095
Technology, information security	1155
Technology, laser drilling	1095
Technology, launch support Technology, marine	6120 1085
Technology, military	2022
Technology, military production	2018
Technology, missiles, rockets and UAVs	6010, 6190, 6200
Technology, modelling	6160
Technology, navigation and avionics	1075, 6090, 6110
Technology, nuclear	3110, 4510
Technology, nuclear effects	6180
Technology, power transfer systems	1095
Technology, propellant production	6050
Technology, propellants	6040
Technology, propeller blades	1095
Technology, propulsion	1095, 6030
Technology, pyrolytic deposition	6070
Technology, simulation	6160
Technology, stealth	6170 1015, 6060
Technology, structural composites Technology, structural material	1015, 6080
Technology, telecommunications	1015,0080
Technology, tempest	1155
Technology, water jet drilling	1095
Technology, wind tunnels	1095
Telecommunications equipment	1051
Telecontrol equipment	6120
Telemetering equipment	6120
Tellurium	1063
Tempest equipment	1151
Terrain mapping	6110
Terrestrial geophones	1061
Test benches	6150
Test equipment	1032
Test equipment, telecommunications	1052
Test equipment, tempest	1152 2018
Test facilities, military Thallium arsenic selenide	1063
Thermal imaging equipment	1061, 2015
Thermocouples	1092
Thermodynamic analysis	6160
Thermoplastic liquid crystal	1013
Thorium	3002
Thrust chambers	1091
Thrust vector control	6020
Titanium	1092, 7002
Titanium-based alloys	1013, 4501
Titanium doped sapphire	1063
Titanium-stabilized duplex stainless steel	6080
Tolooidal Field Coils	5501
Torpedo nets	2009
Torpedoes	2004 1012
Tow-placement Toxic chemicals	7003
TOXIC Clicificals	1005

Toxic gas monitoring systems	7002	Uranium isotope separation equipment	3105
Toxicological agents	2007, 7013	Uranium titanium alloys	1013
Toxins	2007, 7013	Vacuum furnaces	4502
Tracking systems	6120	Vacuum induction furnaces	4502
Tractors, military	2006	Vacuum pumps	4503
Trailers, military	2006	Valves	3101, 3105, 4503,
Trailings, ammunition	2006	a strate descine . By this is a loss the	6030, 7002
Trainers, military	2014	Vapour deposition equipment	1032
Training equipment	2014	Vaporization systems	3105
Trains, armoured railway	2006	Vehicles	2006
Transducers	1061, 1092, 4503	Vessels	1081, 2009
Transient recorders	4507	Vibration test equipment	1092, 4502, 6150
Transistors	1031	Vibration test systems	4502
Transmission equipment	1051	Viruses, human, animal	7013
Travelling wave tubes	1031	Visual imaging equipment	1061
Tritium	3012	Wafer handling systems	1032
Tritium production equipment	4508	Wafers	1031
Tunable filters	1031	Warhead mechanisms	6020
Tungsten	4501, 6080	Water tunnels	1082
Tungsten alloys	1013, 4501, 6080	Water-H ₂ S exchange columns	4504
Tungsten and molybdenum alloys	6080	Water-hydrogen sulfide exchange tray columns	3106, 4504
Turbofan engines	6030	Weapon sights	2002, 2005
Turbojet engines	6030	Weaving machines	1012, 6060
Turning machines	1022, 4502	Wet spinning equipment	6060
Underwater cameras	1081	Wind tunnels	1092, 6150
Underwater communications	1051	Wood products	5101, 5102, 5103,
Underwater detection devices	2009	during all enderships have at mit and	5104
Underwater light systems	1081	X-ray systems	1031, 4505
Underwater robots	1081	X-ray thermal protection	6180
Underwater swimming apparatus	1081, 2017	X-ray tomography	1012
Underwater vessels	1081, 2009	Zinc selenide (ZnSe)	1061, 1063
Underwater vision systems	1081	Zinc sulfide (ZnS)	1061, 1063
United States origin goods	5400	Zirconium metal and alloys	1013, 2008, 3101,
Unmanned Air(borne) Vehicles (UAVs)	2010, 6010, 6190	the second side of the second s	4501, 6040
Uranium	3001, 3002	Zirconium powder	2008
Uranium conversion plants	3107	Zirconium tubes	3101
Uranium, depleted	3002	The second	the second s

*

HOW TO COMPLETE THE APPLICATION

DATE: Enter the date on which the application has been completed. (Top right hand corner).

- EXPORTER: Indicate full name, street address, city, province, country, postal code, telephone number and name of the person that should be contacted regarding this application.
- APPLICANT: Complete this area if the person applying for the individual export permit is different from the exporter, or if the exporter is a non-resident of Canada. THE APPLICANT MUST BE A RESIDENT OF CANADA. Print or type full name, street address, city, province, country, postal code, telephone number and the name of the person who becomes legally responsible for the use of the export permit, if issued.
- CONSIGNEE: Insert the full name, street address, city and country of final destination. The country of final destination is the country in which the goods are to be consumed or finally remain. MAXIMUM THREE CONSIGNEES PER APPLICATION.
- CANADIAN PORT: Indicate the Canadian Customs Port where the Customs entry form B-13 or equivalent export documentation covering the goods will be validated.
- PERCENTAGE OF U.S. CONTENT: COLUMN 1(A): Specify what percentage of the total value of each good being exported is U.S. content as defined by ECL item 5400. If items vary in U.S. content, indicate the U.S. content for each item.
- COUNTRY OF ORIGIN: Column 1(B): If not of U.S. origin, indicate the country of origin.

ECL ITEM NO.: Column 2: Indicate the Export Control List Item number which controls your goods proposed for export.

COMMODITY CODE: If known, please provide the Harmonized System (HS) code for each line item.

DESCRIPTION: Column 3: Describe the goods concerned in sufficient detail so as to disclose their true identity and avoid the use of trade names, generic names or general terms that do not adequately describe the goods. Where there is insufficient space on the application form, an annex may be attached. All annex documents that are submitted become part of the export permit. Each page of the annex should include the application I.D. number and be sequentially numbered.

TOTAL QUANTITY: Column 4: Specify the total quantity of each line item identified in the description column.

UNIT VALUE: Column 5: Specify in Canadian dollars the selling price of each of the items listed.

- TOTAL VALUE: Column 6: For each line item identified in the description column 3, specify in Canadian dollars the total value derived by multiplying column 4 and 5 for that line.
- APPROX. NET WEIGHT: Column 7: Specify the total weight of each line item identified in the description column.
- TOTAL VALUE OF ALL GOODS PROPOSED FOR EXPORT: Total column 6 and enter the total value of all goods to be exported in the space provided.
- IIC/EUC: In certain instances International Import Certificates (IIC), End Use Certificates (EUC), etc., are required prior to issuance of an export permit. If you have included one of these documents with your application, please indicate by marking an X in the appropriate box.
- **TECHNICAL INFORMATION/DESCRIPTION:** In order to determine if the goods are controlled, under what ECL item the goods are controlled, and at what level the goods are controlled, full technical specifications must accompany each application. Mark (x) the appropriate box if this information accompanies the application.
- **PERMIT TO BE SENT TO/BY:** Indicate by marking the appropriate box who the export permit is to be returned to (i.e. exporter or applicant) and how the export permit is to be returned. NOTE: Export permits requested to be returned by courier are at the expense of the exporter/applicant, whichever the case may be.

CERTIFICATION: The exporter or applicant must sign and date the application form.

DEPARTMENTAL USE ONLY: Do not complete or enter any information in the bottom part of this application which is indicated FOR DEPARTMENTAL USE ONLY.

REMEMBER TO SIGN THE APPLICATION FORM

INCOMPLETE OR IMPROPERLY COMPLETED FORMS WILL BE RETURNED WITHOUT ACTION

		EXPORTER/EX				Citer ce numéro demande de ren CONSIGNE	EE(S) AT FINAL	DESTINAT	ION/DES			IME(S)
Name/Nor	n:		CI ONTATEC			Name/Nom:	Max	imum three /	maximum tro	ls		
Address/A	dresse:			-		1. Address/Adresse:		-	19 19 20	City/Ville:	-	-
City/Ville:		Province:		Country/Pays:		Country of Final Des	stination/ Pays de de	stination finale);	-	-	
Postal Cor	de/Code postal:	Telephone No./N	° de téléphone:	Facsimilier/Téléco	and the second second	Name/Nom:	- Andrews	-		-	1.26	
Contact/Re	esponsable:	()		()		2. Address/Adresse:	and the second	-		City/Ville:	1	1.
APPLI	CANT (if oth	er than exporter)/RE	QUÉRANT (si autre que l'e	xportateur)	Country of Final Des	stination/ Pays de de	ctination final	1			10.00
Name/Non							annanoro r ays de de	sunation inal				
Address/A	dresse:					LIBRARY E A/	BIBLIOTHEQUE	A E			1	1.1
City/Ville:	1917	Province:		Co							. 2	
Postal Cod	e/Code postal:	Telephone No./N	° de téléphone:	12-11-2	З	5036 8	2008893	35 0			E PRESE	TED
Contact/Re	sponsable:	()									EXPORT	
		ECL Item No.	1	-								
% of U.S. % des E.U.	Country of origin	N° d'article de la LMEC Commodity Code	-	1.1.1.1							/alue Totale	Approx Net Wgt Poids n
Col. 1(A)	Pays d'origine Col. 1(B)	Code de commodité Col. 2	Col. 3	1							1)	approx Col. 7
				6								00.7
					A gui	ide to	C					20
					contr	ols	Canad	a's	expor	rt		
	8		-									
				16-00								
1												
l.												
i.			G									
i.			Ģ									
0.			G									
0. 1.			G									
0.			Contraction of the second seco									
0. 1. 2. THE TOT	AL VALUE (UR TOTALE	OF ALL GOODS PRO	DPOSED FO	SES À EXPORT	ter visées f	PAR CETTE DE	G. (\$ CAIN) MANDE: (\$ CAI	4)	\$			
		ATION ATTACHED		SES À EXPORT	TER VISÉES F	PAR CETTE DE	MÁNDE: (\$ CAI		-	ATTEST		
0. 10. 11. 2. THE TOT A VALE ADD/ RENSEIGN		E DE TOUTES LES M		SES À EXPORT	xporter	PAR CETTE DE	CERTIFICAT The undersigned 1. All information	TON hereby certifi given in this f	es that: orm	ATTESTA Le soussigné 1. Tous les re	enseigneme	ents donné:
0. 1. 2. THE TOT A VALE RENSEIGN C/EUC C/EUC	UR TOTALE	AATION ATTACHED AATION ATTACHED L'ÉMENTAIRES CI-JOINT Yes No Oui Non		SES À EXPORT	xporter xportateur	Applicant Applicant Applicant Applicant	CERTIFICAT	TON hereby certifi given in this f	es that: orm f Canada,	Le soussigné 1. Tous les re dans cette foi 2. Le requéra	e certifie que enseigneme rmule sont	exacts:
0. 1. 2. HE TOT A VALE RENSEIGN C/EUC C/EUC C/EUC		AATION ATTACHED LÉMENTAIRES CHJOINT Vos Non Oui Non	PERMIT TO LICENCE	O BE SENT TO E A ENVOYER A: E Poste Priste	xporter xportateur	Applicant Applicant	CERTIFICAT The undersigned 1. All information is true and correc	TON hereby certifi given in this f t. s a resident o	es that: orm f Canada,	Le soussigné 1. Tous les re dans cette foi	e certifie que enseigneme rmule sont	exacts:
0. 1. 2. HE TOT A VALE RENSEIGN C/EUC B/CDUC B/CDUC	TIONAL INFORM	AATION ATTACHED LÉMENTAIRES CHJOINT Vos Non Oui Non	PERMIT TO LICENCE / By/Par: Cou Mes	O BE SENT TO E A ENVOYER À: E Poste rrier Collect/ sagerie (port dù)	xporter	Applicant Applicant Applicant Applicant	CERTIFICAT The undersigned 1. All information is true and correc 2. The applicant i	TON hereby certifi given in this f t. s a resident o	es that: orm f Canada,	Le soussigné 1. Tous les re dans cette foi 2. Le requéra	e certifie que enseigneme rmule sont	exacts:
0. 1. 2. HE TOT A VALE ADDO RENSEIGN C/EUC II/CUF schnical Inf enseigneme	UR TOTALE	AATION ATTACHED VERENTAIRES CI-JOINT Ves Non Oui Non iption Yes Non echnique Oui Non	PERMIT TO LICENCE By/Par: Cou Mes FOR	O BE SENT TO E À ENVOYER À: E Mail Poste rrier Collect/ sagerie (port dù) DEPARTMENTAL LICENCE	xporter xportateur Alberta van	Applicant Requérant	CERTIFICAT The undersigned 1. All information is true and correc 2. The applicant i	TION hereby certifi given in this f t. s a resident o	es that: orm f Canada,	Le soussigné 1. Tous les re dans cette foi 2. Le requéra Canada.	e certifie que enseigneme rmule sont ant est un ré	ents donné: exacts: ésident du
0. 1. 2. HE TOT A VALE ADDI TRENSEIGN C/EUC BC/NIC ERMIT The ex- condition Permits Permits	TIONAL INFORM EMENTS COMP ormation / Description Tr ent / Description Tr port of goods de ons described hav re-	AATION ATTACHED "LÉMENTAIRES CI-JOINT Yes No Oui Non iplion Yes No echnique Oui Non scribed above is permitted arein in accordance with the uildings made thereunder	ARCHANDI	OBE SENT TO E A ENVOYER À: E Mail Poste mier Collect/ sagerie (port dú) DEPARTMENTAL LICENCE 1. L'expo port réserv	xporter xportateur Aldrei Aldr	Applicant Requérant kup ur ramassage SAGE DU MINISTÉ	CERTIFICAT The undersigned 1. All information is true and correc 2. The applicant i RE SEULEMENT dessus est autorisée	TION hereby certifi given in this f t. s a resident o S sous	es that: orm f Canada, ignature	Le soussigné 1. Tous les re dans cette foi 2. Le requéra Canada.	e certifie que enseigneme rmule sont ant est un ré	ents donné exacts: ésident du Date
0. 1. 2. HE TOT A VALE ADD A VALE C/EUC Schnical Int enseigneme ERMIT The exporte ERMIT This pe exporte	TIONAL INFORM TIONAL INFORM EMENTS COMP ormation / Description Tr ant / Description Tr and pools de ons described he Act and any re- rmit is valid only re- rr.	AATION ATTACHED Ves No Cui No Cui Ves No Cui Iplion Yes No control Non Cui poton Yes Non Cui scribed above is permitted refin in accordance with the guilations made thereunder for use of the applicant or	ARCHANDI	O BE SENT TO E A ENVOYER À: E Mail Poste mier Collect/ sagerie (port dù) DEPARTMENTAL LICENCE 1. L'expor résarv et au f 2. Cette indiqu	xporter xportateur Hold for Pici Retenue po USE ONLY - À U prtation des march to Règiement sur les licence ne peut ét é.	Applicant Requérant kup ur ramassage ISAGE DU MINISTÉ nandises décrites ci- indiquées aux prése licences d'exportati re utilisée que par le	CERTIFICAT The undersigned 1. All information is true and correc 2. The applicant i CER SEULEMENT dessus est autorisée ntes conformément a on et d'importation. a requérant ou l'expo	TION hereby certifi given in this f t. s a resident o S sous a la Loi rtateur	es that: orm f Canada, ignature	Le soussigné 1. Tous les re dans cette foi 2. Le requéra Canada.	e certifie que enseigneme rmule sont ant est un ré N° de la	ents donné exacts: ésident du Date
0. 1. 2. HE TOT A VALE ADD A VALE C/EUC Schnical Int enseigneme ERMIT The exporte ERMIT This pe exporte	TIONAL INFORM EMENTS COMP ormation / Description Tr ant / Description Tr port of goods de ons described he Act and any re- irmit is valid only r.	AATION ATTACHED "LÉMENTAIRES CI-JOINT Yes No Oui Non iplion Yes No echnique Oui Non scribed above is permitted arein in accordance with the uildings made thereunder	ARCHANDI	O BE SENT TO E A ENVOYER À: E Mail Poste mier Collect/ sagerie (port dù) DEPARTMENTAL LICENCE 1. L'expor résarv et au f 2. Cette indiqu	xporter xportateur Hold for Picd Retenue po USE ONLY - À U bratation des march re des conditions i Reglement sur les licence ne peut êt é.	Applicant Requérant kup ur ramassage ISAGE DU MINISTÉ nandises décrites ci- indíquées aux prése licences d'exportati	CERTIFICAT The undersigned 1. All information is true and correc 2. The applicant i CER SEULEMENT dessus est autorisée ntes conformément a on et d'importation. a requérant ou l'expo	TION hereby certifi given in this f t. s a resident o S sous a la Loi rtateur	es that: orm f Canada, ignature Permit Number	Le soussigné 1. Tous les re dans cette foi 2. Le requéra Canada.	e certifie que enseigneme rmule sont ant est un ré N° de la	ents donné exacts: èsident du Date a licence:
0. 1. 2. HE TOT A VALE ADDr ENSEIGN C/EUC II/CUF Schnical Inf seigneme ERMIT The exporte ERMIT The set Condition Permitti This permitti EXPLOSE Condition Permitti This permitti EXPLOSE Condition Permitti This permitti EXPLOSE Condition Permitti This permitti EXPLOSE Condition Permitti Condition Condit	TIONAL INFORM EMENTS COMP ormation / Description Tr ant / Description Tr port of goods de ons described he Act and any re- irmit is valid only r.	AATION ATTACHED Ves No Cui Non C Ves No Cui Non C Ves Non C Iplion Yes Non C scribed above is permitted refin in accordance with the guilations made thereunder for use of the applicant or	ARCHANDI	OBESENT TO E Mail Poste Mail Poste DEPARTMENTAL LICENCE 1. L'expo rrésory et au f 2. Cette indiqu 3. Les dc	xporter xportateur Hold for Picd Retenue po USE ONLY - À U bratation des march re des conditions i Reglement sur les licence ne peut êt é.	Applicant Requérant kup ur ramassage ISAGE DU MINISTÉ nandises décrites ci- indiquées aux prése licences d'exportati re utilisée que par le	CERTIFICAT The undersigned 1. All information is true and correc 2. The applicant i CER SEULEMENT dessus est autorisée ntes conformément a on et d'importation. a requérant ou l'expo	ION hereby certifi given in this f t. s a resident c sous la Loi rtateur	es that: orm f Canada, ignature Permit Number	Le soussigné 1. Tous les re dans cette foi 2. Le requéra Canada.	è certifie qui enseigneme mule sont ant est un ré N° de la Date d'e	ents donné exacts: èsident du Date a licence:
0. 1. 2. HE TOT A VALE ADD A VALE C/EUC Schnical Int enseigneme ERMIT The exporte ERMIT This pe exporte	TIONAL INFORM EMENTS COMP ormation / Description Tr ant / Description Tr port of goods de ons described he Act and any re- irmit is valid only r.	AATION ATTACHED PLÉMENTAIRES CHJOINT Ves Non [Oui Non [Oui Non] Ploin Yes Non [ploin Yes Non [Non] scribed above is permitted arein in accordance with the guilations made thereunder for use of the applicant or t agree with this permit.	ARCHANDI	SES À EXPORT O BE SENT TO E À ENVOYER À: E Mail Poste Poste I DEPARTMENTAL LICENCE 1. L'expo réserv et au f 2. Cette i. Indiqu 3. Legan	xporter xportateur Hold for Picl Retenue po USE ONLY - À U ortation des march re des conditions i Keglement sur les licence ne peut ét é- bocuments d'export e.	Applicant Requérant kup ur ramassage ISAGE DU MINISTÉ nandises décrites ci- ndiquées aux prése licences d'exportat re utilisée que par le tation doivent être co	CERTIFICAT The undersigned 1. All information is true and correc 2. The applicant i CER SEULEMENT dessus est autorisée ntes conformément a on et d'importation. a requérant ou l'expo	ION hereby certifi given in this f t. s a resident c sous la Loi rtateur	es that: orm I Canada, ignature Permit Number Date of issue:	Le soussigné 1. Tous les re dans cette foi 2. Le requéra Canada.	è certifie qui enseigneme mule sont ant est un ré N° de la Date d'e	ents donné exacts: sident du Date a licence: émission:
0. 1. 2. HE TOT A VALE ADD A VALE C/EUC Schnical Int enseigneme ERMIT The exporte ERMIT This pe exporte	TIONAL INFORM TIONAL INFORM EMENTS COMP ormation / Description Tr ant / Description Tr ormation / Description Tr and goods de ons description Tr goods de ons description Tr and goods de ons description Tr s Act and any re- trimit is valid only is.	AATION ATTACHED VEMENTAIRES CI-JOINT Ves Non Oui Non Oui Non Pedenique Oui Non scribed above is permitted prein in accordance with the pulations made thereunder tor use of the applicant or t agree with this permit.	ARCHANDI	SES À EXPORT O BE SENT TO E À ENVOYER À: E Mail Poste sagerie (port dů) DEPARTMENTAL LICENCE 1. L'expo PORT 2. Cette i indiqu 3. Les de licence	xporter xportateur Hold for Pici Retenue po USE ONLY - À U Dotation des march- re des conditions i Règiement sur les licence ne peut êt é. couments d'export e.	Applicant Requérant Applicant Rup ur ramassage Aspana ISAGE DU MINISTÉ Indiquées décrites ci- indiquées décrites ci- indiquées décrites ci- indiquées decrites ci- nadiquées decrites ci- licences d'expond aspana	CERTIFICAT The undersigned 1. All information is true and correc 2. The applicant i CERE SEULEMENT dessus est autorisée dessus est autorisée dessus est autorisée dessus est autorisée conformément a	ION hereby certifi given in this f t. s a resident o sous b la Loi rtateur E	es that: orm f Canada, ignature Permit Number Pate of issue: ixpiry Date Ex	Le soussigné 1. Tous les re dans cette foi 2. Le requéra Canada.	i certifie que enseigneme mule sont un ré unt est un ré N° de la Date d'e Date d'e	ents donné exacts: sident du Date a licence: émission:
0. 1. 2. HE TOT A VALE ADDr ENSEIGN C/EUC II/CUF Schnical Inf seigneme ERMIT The exporte ERMIT The set Condition Permitti This permitti EXPLOSE Condition Permitti This permitti EXPLOSE Condition Permitti This permitti EXPLOSE Condition Permitti This permitti EXPLOSE Condition Permitti Condition Condit	TIONAL INFORM EMENTS COMP ormation / Description Tr ant / Description Tr port of goods de ons described he Act and any re- irmit is valid only r.	AATION ATTACHED VERENTAIRES CHJOINT Ves No CUI Non CUI Non CUI Non CUI Non Soribed above is permitted rein in accordance with the guilations made thereunder for use of the applicant or t agree with this permit. Ior Secretary of Celpt/	ARCHANDI:	SES À EXPORT O BE SENT TO E À ENVOYER À: E Mail Poste [mier Collect/ sagerie (port dù) [DEPARTMENTAL LICENCE 1. L'expo port réserv et au f 2. Cette i indigu 3. Les dc licence thars/pour le Secrétaire send completed app port Onriels Divisio	xporter xportateur Hold for Pici Retenue po USE ONLY - À U Dotation des march re des conditions i Règlement sur les licence ne peut êt é. couments d'export e. e d'État aux Attaires e lications to/Sourmin (EPE)/Direction	Applicant Requérant kup ur ramassage ISAGE DU MINISTÉ nandises décrites ci- ndiquées aux prése licences d'exportat re utilisée que par le tation doivent être co	CERTIFICAT The undersigned 1. All information is true and correc 2. The applicant i CERE SEULEMENT dessus est autorisée thes conformément a ion et d'importation. a requérant ou l'expo conformes à cette	ION hereby certifi given in this f t. s a resident o sous a la Loi rtateur	es that: orm if Canada, ignature Permit Number Date of issue:	Le soussigné 1. Tous les re dans cette foi 2. Le requéra Canada.	i certifie que enseigneme mule sont un ré unt est un ré N° de la Date d'e Date d'e	ents donné exacts: ésident du Date a licence: émission:

DISTRIBUTION: WHITE/BLANC - Departmental copy (Legal)/Copie ministérielle (Juridique) YELLOW/JAUNE - Exporter's copy (To be presented to customs at port of validation)/Copie de l'exportateur (Présenter aux douanes au port de validation) PINK/ROSE - Departmental copy (Working)/Copie ministérielle (Document de travail) GREEN/VERT - Departmental copy (To be returned to AECB when necessary)/Copie du ministère (Retourner à CCEA si nécessaire) WHITE/BLANC - Applicants file copy (To be kept by the applicant)/Copie du requérant (À retenir par le requérant) EXT 1042 (09/93)

March 2000

A Guide to Canada's Export Controls

Additional copies of this Guide and the form "**Application for Permit to Export Goods**" (Form EXT-1042) can be obtained at the following locations:

Vancouver

Edmonton

International Trade Centre 2000 - 300 West Georgia Street Vancouver, British Columbia V6B 6E1

Tel: (604) 666-0434 Fax: (604) 666-0954

Saskatoon

International Trade Centre 7th Floor 123-2nd Avenue South Saskatoon, Saskatchewan S7K 7E6

Tel: (306) 975-5315 Fax: (306) 975-5334

Ottawa

Foreign Affairs and International Trade Canada

Export Controls Division 125 Sussex Drive, C-6 P.O. Box 481, Station "A" Ottawa, Ontario K1N 9K6 Tel: (613) 996-2387 Fax: (613) 996-9933

Halifax

International Trade Centre

1801 Hollis Street P.O. Box 940, Station "M" Halifax, Nova Scotia B3J 2V9

Tel: (902) 426-7540 Fax: (902) 426-2624

International Trade Centre Canada Place Suite 540 9700 Jasper Avenue Edmonton, Alberta T5J 4C3 Tel: (403) 495-2944 Fax: (403) 495-4507

Winnipeg

International Trade Centre 8th Floor 330 Portage Avenue P.O. Box 981 Winnipeg, Manitoba R3C 2V2 Tel: (204) 983-8036 Fax: (204) 983-2187

Montreal

International Trade Centre Tour de la Bourse 800 Place Victoria Suite 3800 P.O. Box 247 Montreal, Quebec H4Z 1E8 Tel: (514) 283-8185 Fax:(514) 283-3302

Charlottetown

International Trade Centre 75 Fitzroy Street Charlottetown Prince Edward Island C1A 7M8

Tel: (902) 566-7443 Fax: (902) 566-7450

Calgary

International Trade Centre 11th floor 510 - 5th Street S.W. Calgary, Alberta T5P 3S2

Tel: (403) 292-6660 Fax: (403) 292-4578

Toronto

International Trade Centre Dominion Public Building 4th Floor 1 Front Street West Toronto, Ontario M5J 1A4 Tel: (416) 973-5053 Fax: (416) 973-8161

Moncton

International Trade Centre 1045 Main Street Box 103 Moncton, New Brunswick E1C 1H1

Tel: (506) 851-6452 Fax: (506) 851-6429

St. John's

International Trade Centre, Industry Canada Suite 504, Atlantic Place 215 Water Street St. John's, Newfoundland A1B 3R9 Tel: (709) 772-4782 Fax: (709) 772-2373