Canadian Architect and Builder.

Canadian Architect and Builder, A Monthly Journal of Modern Conatruotive Methods,
 (With a Weekly Intermediatn Edition-Tlie Canadian Contmact Rucord),

JUELISHED ON THE THIED SATURDAV IN BACI MONTII IN THE INTEREST OP
ARCHITECTS, CIVIL AND SANITARY ENGINEERS, PLUMBERS, DECORATORS, BUILDERS, CONTRACTORS, AND MANU FACTURERS OF AND DEALERS IN BUILDING MATERIALS AND APPLIANCES.

C. H. MORTIMER, Publisher,

14 King Street West, - TORONTO, CANADA.
64 TEMPLE BUILDING, MONTREAI.

ONTARIO ASSOCIATION OF ARCHITECTS.

OFFICERS FOR 1892.

President - - - S. G. Curry, Tornnto.
ist Vice-Pxesiofent
2nd Vice-Presitient
Treasurek

King Arnolimi, Othaza. F. J. Rastrick. Hamitoon. D. B. Dick. Toronto.
council.:
Toronto.
Otrawa.
Toronto.
Peterborough.
'Toronto.

HEGISTKAK ANI) 1, IhKARIAN:
W. A. Langion - Merchants' Bank Building. Timonto.

PROVINCE OF QUEBEC ASSOCIATION OF ARCHITECTS.

The painters' strike at Winnipeg, referred to in our last issue,
is ended. The strikers have returned to work at the old rate of
wages.
THE: United States Customs refulations require that to each invoice of granite exported to the States, there must be attached a diagram of each piece so exported and a sworn statement of the value. Enquiries are being made at Ottawa with the view to ascertain what method is employed by Canadian Customs officiats to ascertain the v:lue of manufactured granite exported by Great Britain aml the United States to Canada.

THF: brick manufacturers in Toronto and vicinity have organized an association, and have decided to reluce the scale of wages paid to employés. This action has been promplly followed by the orpanization of a brickmakers' union, and a determination on the part of the employes to submit in no reduction. The surplus-stocks on hand are so large, and the building outlook so unpromising, that some of the manufacturers decided a month or two aro not to operate their yards this scason. Under these circumstances, the probabilities are decidedly adverse to any satisfactory results being oltained from a strike of employes at this time.

An effort will be made at the next session of the Ontatio Legislature to have the Mechanics' Lien Act imended in several imporiant particulars. At a recent meeting of representatives of the Toronto Builders' Exchange, Trades and Labor Council, and material supply men of Toronto, this subject underwent discussion. A committee was appointed to draft required amendments to this Act and submit the same for consideration at a future meeting. The discussion brought out the fact that the lien law of Ontario afords less protection to mechanics and persons supplying materials, than laws existing for the same object in many of the Siates of the Union.

The Joronto Architectural Sketch Club might profitably follow the custom of English Architectural Societies in visiting in a body as frequently as possible during ench summer buidings in course of erection, previously arranging with the archi. tects of the building to be present to explain the points of interest connected with the construction. It is safe to say that one such visit maty be the means of affording students more practical instruction than could be obtained froni half a dozen lectures. A visit of this character was made to the Hospital for Sick Children on College street, and proved to be of great interest and value. It is to be hoped that a series of similar visits will be artanged for the present summer.

REFIIRENCE has often been made to the unfairness and sometimes the absurdness of the coinditions of architectural competitions. The evil has possibly reached its limit so far as its effects upon architects is concerned. It seems, however, to be now trying to find its way into the engineering profession. The following advertisement recently appeared in the taily papers: "The town of -contemplates the construction of waterworks this year, and invites tenders, to be opened zoth inst. Those tendering to furnish their own plans and specifications at their own expense. The lowest or any tenter not necessarily accepted. For particthars communicate with-_." The above is so patpably a case of "heads I win, tails you lose," that we nay presume no engineer will lxe so foolish its to enter the game.

THE question as to who shall fill the position of City Clerk of Montrenl, lias not at the time of going to press been absolutely decided, but there is very little doubt that Mr. L. O. David will be Mr. Glackmeyer's suecessor. He was nominated by the Fi nance Committec, and in all probability the matter will be decided at the next meeting of the Council. Mr. L. O. David is by no means an unknown man. He has been a prominent figure before the Montreal public for many years, having occupied platform after platform in the intelests of the French-Canadian ele. ment of the population of the Doninion. He has not heretofore occupied any civic position, but his recommendation by the Finance Committec augrs well for his stiscess in a post of such importance as that of City Clerk of Montreal.

In response to : n number of requests, we have decided to publish in the Canadian Architect and Builder for June, the examination papers in connection with the first O. A. A. students' examinations: In this number we present reproductions of a couple of the drawings submitted in these examinations, which will serve to indicate to students taking part in future examinations the claracter their drawings should assume.

The Toronto Ibuilders' Exchange is desirous of making some arringement with the architects which will serve to avoid the delays at present experienced by contractor in obtaining certifcates. A contractor who may be doing work for several architects, sometimes finds it. impossible to get around to their offices and secure his certificates on certificate day, on account of being obliged to wait bis turn in each office. It is suggested that this inconvenience could be avoided by the contractors notifying the architect of his desire to obtain a certificate for a stated amount previous to certificate day, when the certificate could be filled out ready to be handed to him when he might call.

The Toronto Builders' Exchange, an account of the formation and objects of which was published in our April number, is making satisfactory progress. The membership has increased to such a degree that it has been found necessary to remove to more commodious quarters. These have been secured in the new premises now being fitted upat the corner of Victoria and King streets. The Exchange will take possession of jts new home on or about the first of June, and will then have, in addition to a large exchange room, necessary committee rooms and secretary's offices. Mr. John Phillips has been appointed Secretary of the Exchange. It is believed the appointment will prove to be satisfactory. It has been decided to abolish the two classes of membership heretofore existing, and hereafter to allow all members to occupy the same footing. From the fact that during the past month further applications for intormation have been received from other cities desirous of forming exchanges, it would seem probahle thint the organization of the building interests throughout the country will be an event of the near future.

RECENT advices from Vancouver, B. C., point to indications of a busy season for the building trades. The unsettied conditions existing between contractors and mechanics, however, are said to be proving a check upon activity. Some of the contractors are reported to be desirous of increasing the working day from nine to ten hours, while others, rather than provoke trouble with the unions, are willing to pay union wages for a nine hours day. The employers very justly complain of the practice of the unions in denanding increases in the rate of wages without giving due notice which would enable them 10 embody in their estimates the increased cost of tabor. These demands for higher wages are most frequently made after contractors have undertaken a large amount of work, the estimates for which have been based upon the prevailing labor prices. The contractors feel, so long as this unfair treatment is accorded to them by the unions, that they are justified in endeavoring to secure workmen from Enstern Canada and elsewhere, even though by so doing the local labor market should become overstocked. An effort should be made to come to an understand. ing, as is done in Toronto and other eastern cities, under which the rate of wages in the several trades would be fixed for a period of three or five years. Thus the conditions affecting employes, employers and investors would be settled for a definite period.

THE result of the examinations of the Ontario Society of Architects is in every way very satisfactory. They were held too late for us to give the results in our last issue, the reports of the examiners not being in. Since then the Board of Examiners has held its final meeting, made its reports to the Council, and the results have been made public to a certain extent, in the daily press. For our part we-are glad to place on record in our columns the names of those who successfully passed the final examination, which we do in alphabetical order : Baxter, D. G.; Bayley, G. M.; Bond, C. H. A.; Brown, J. F.; Gregg, A. H.; Hynes, J. P.; Langley, C. E.; Matthews, H. E.; McCallum, R. J; Munro, W. L.; Smith, Eden, White, M. A.; Woolnough, J. J. The candidates, whether successful or not, have not been allowed, we understand, to know their marks. The examinations have been throughout conducted on the lines of the University examina. tions, where the marks are known only to the Board of Examiners. On the whole, the passing of thirteen out of nineteen is a very good proportion, and while we wish our new architects every success in the future, we would say to those who failed that there is no reason for discouragement on their part. In many cases to be plucked once is an advantage, and those who were plucked will no doubt set to work earnestly and prepare for a second attack, having found out their weak points. In the second intermediate, nine students passed out of twelve, and in the first intermediate, two out of four. There is to be a supplementary examination some time in September for the benefit of a few candidates in the first and second intermediate classes, whose work at the recent examinations, though not up to the standard, was fairly good, and these will be allowed another chance, that they may be able to take up another stage of examination in the following spring. This advantageous practice of a supplementary
examination has a precedent in the procedure of most profes. sional institutions.

TORONTO ARCHITECTURAL SKETCH CLUB.

The second annual dinner of the Club, heid at Webb's, on the evening of April ioth, was the occasion of much enjoyment. In addition to members of the Club, theie were present the President and, Registrar and Messrs. Burke, Wickson, Gregg, Darling, Gordon, Bousfield, Simpson, Jarvis and Sproatt, of the Ontario Association of Architects. The School of Practical Science was represented by Mr. Wright, lecturer on architecture, and the contracting interests by a number of persons prominently identified with the various trades.

Mr. J. A. Pearson, President of the Club, presided.
The menu card was an unique affit, and occasioned much amusement. It read as follows:

the TORONTO

ARGHITEGTURAL SKETGH GLUB

Specification of work 10 be done and material to be supplied and consumed in renewing the dilapidated condition of the students caused by the drainage systent of the late cxaminations.
contractor
HAKRY WEbね
ALL MEMBERS TO GOME IN SPRUCE TIES, COLLARS, BRACES, AND GHET IRON SHOES.

SOUP
OISTER sour. to be carefully lapped FISH

holled lake trout with herring bone bridging anchovi sauce
ponmes pahiseinne
hREAD AND BUTTER Tidge ROLLS
ENTREES
CHICKEN PATTIES composed of stoplocks, bibeocks. and wanthercocks

JOINTS
To be bolied
All carving so be done in an artistic manner FLLLED AND n OILED TURKEY

Well rubbed down under each coat
ROAST UEEY quarter cut, HORSERADISH SAUCE brown potatoes (Cabor's stain), YOKKSHIRE DUDDING,
All inside work to be well Aushed up after cach course VEGETABLES
To be filled in and well mmmed down in layers not more than za inches deep
mashed potatoes and stewed tonatoes. ENTREAETS
PLUM PUDDING mixed in proper proportions and stored up at least six monits lefore using.
chaklotte russe with jamblinings
LEMON MEXINGUE PIE CEIJERY
AIPLE ME
SWEETS
IIARD UURNED CAKES assorted sizes nad uniform color HAISINS and PIGS up to DATE um line FRUITS
APILES ORANGES HANANAS Nuts and Washers as Collows lemonade and coffee
The whole of the work on completion to the suljected to a smoke test.
The specification was declared to be a most complete and satisfactory one, all cheerfully complying with its conditions. It was observed that perhaps its most unorthodox feature was the provision made for extras. The carrying out 0 . this specification was followed by an interesting programme of speeches and music.
Responding to the toast of "The O. A. A.", the President, Mr. S. G. Curry, referred to the recent student's examinations. Though not resulting as satisfactorily as might have been desired, yet considering that both studends and examiners were without previous experience, they should be regarded as having been on the whole fairly satisfactory, and the knowledge gained would afford a basis for improvement in the future. One beneficial result of such examinations was that they served to direct the study of students in the proper direction. He felt assured that a feeling of cimidity prevented many stadents at the late examinations from doing their best. Many absurd answers would have been avoided if the students had been careful to clearly understand the meaning of the questions. As an example of some of the absurd answers given, a student on being asked for a common test for finding impurity in air replied : "Climb upon the roof and put peppermint down the soil pipe." (Laughter). Another student who was asked what would be a
safe load to impose on ordinary ciay soil, said: "A frame one or tivo storcy house, or load up to 837 tons." Such answers he believed to be due, as already stated, to lack of proper consideration of the questions. These features of the examinations would doubtless in time disappear. At first it was thought the examinations might be concluded within two days, but it was found necessary to double the period. Even four days was much too short a time. It was not right that stidents should be compelled to write on an examination for three or four consecutive days. There should be time allowed for rest and study. Two weeles would not be too long a period. The examinations had revenled the fact that students who were supposed to be well up in certain subjects, in reality knew very little about them The O. A. A. should feel grateful to the students who had come forward to assist it in carrying out its objects. The speaker pointed to the fact that an Act was in a fair way to be passed by the New York Legislature under which no man would be able o call himself an architect without having obtained a license to practice in the State. At the next session of the Legislature the O. A. A. should endeavor to have the word "Registered" struck out of the Architects' Act, and by so doing secure a guarantee to the public that persons practicing architecture were competent to do so. The speaker concluded by expressing the hope that the members of the Architectural Sketch Club might be better able than the architects of the present day to do meritorious work.
In response to the toast "Canadian Architecture," Mr. Langton spoke as follows:
People who live in the older countries have inherited the results of the labor of many generations. They live as it were in a completed edifice and enjoy all its comfort and beauty, and, though in some respects life is therefore so much the less worth living, it cannot be denied that there is great pleasure and priviege in being posterity.
We, on the contrary, are ancestors. We are the early Canadians hard at work upon the foundations. We are not cribbed and cabined and confined like our kin beyond the sea, but, on the other hand the glories of our buildings are all in the future. Canadian architecture is rather a subject for speculation than criticism ; we may say that Canadian architecture as an established fact as yet does not exist.
There has been much said during the last half century in Eng. land about the formation of a modern style. More recently in the United States there has been talk about an American style It was hoped that the late H. H. Richardson had created a style that would become national. It may be true what was said by an English reviewer, that since the architect of the Palace of Diocletian generated Romanesque architecture by takins the column of the Roman order and inserting it under the arch, no one man has done so much to develop a style of architecture as Mr. Richardson. Yet I think it has proved to be a mistake to found on his work the hope of an American style. The school of imitators are one by one turning their attention in another direction. The mark that Mr. Richardson has left upon American architecture is something much wider and deeper than the mere appropriation of the peculiar characteristics of one particular period of architecture. He taught us how to make use of the examples left us from former times by catching from them the spirit of the workman and doing our own work in the sime spirit. He did no copying. What he took from an old example was not only adapted but usually improved. In the case of the most salient example of his reproduction of a model-that of the tower of Trinity church-I think we may fairly say that we should have heard vety little of Salamanca Cathedral if the tower of Trinity Church had not been huilt to put honor upon the tower of Salamanca as the original.
1 think then we may agree that the Richardsonian Romanesque revival had as much vitality in it as it is possible for a style revival ever to have. Not only was the style adopted made to live in our century but there seemed to be something in the theoretical view taken by approving critics that, inasmuch as the style adopted was an undeveloped style, there was the more bope that the natural law of development should have course with it now that it was revived.
However, the course of work in the United States seems to be moving away from $i 1$, retaining only the high standard of taste and the right feeling in design which were introduced into the country along with it, and which I think we may hope are part of the inheritance of American architects and of ourselves henceforth. The right spirit is abroad, and though the architectural world seems to one living in it to be a wild sea of conflicting determinations and shifting views, I think one who has even a slight acquaintance with history will recognize the condition from which have emerged all those results which bave formed steps in the world's advance, from which succeeding generations take their start, and to which they always return for their basis. I think we may almost consider that the word style-though in an old country like England, where tradition has force, and where they are empowered by the excelience of the past, still retains its conventional usage as applied to architecture-may with us on this continent begin to have the deeper and better meaning of character, which includes the other and goes beyond it.
To say that a man or a woman has style, is to give to them the highest expression of admiration for their personal charm Style is leyond beauty, though it often inclukles it-always includes it in the highest sense of the term. It is the harmonious
compoind of qualities which makes the man or woman who possess it strike the eye at once, and impress us as distinct. This is what we want in architecture. Not fashion in architectural clothing, but that the building have always distinction of character in accordance with its own programme of requirement, and the conditions of its circumstances. It must be a growth proceeding from the continual effort to satisfy the condilions of our mode of life, our means, our climate, and our material. I doubt if anything can permanently prevent the growth of a true style of architecture, but it may be delayed by temporary fashion quite enough to prevent any of us having the pleasure of seeing it in our jife-time. So I want to enlist your sympathy on the right side. You will be soon starting out for your-selves-some of you this year-and your services are wanted in this matter. It is the work of the many, and with a common idea we can progress fast, helping one another by example, as iron sharpeneth iron. The English House of Commons as a body is said to be always wiser than the wisest man in it, and we have no need to wait for the advent of a genius to create Canadian architecture, if we only have in common the idea of making our architecture true. It ought not to be necessary to say much upon this subject so long after the acceptance by the architectural world that in art only truth is life. But we have only to look about us to see that its application still lags.

We have still amphitheatrical churches with a couple of storeys of society rooms and class rooms, all contained within an exterior which represents as faithfully as it can the medizeval church with its single spacious hall. We are are about to have a drill shed here which, inasmuch as it is Crovernment work and the result of tradition rather than individital intention, we need not feel shy of criticizing. It is, of course, to be a castellated structure. In former days arms were kept in a castle. Must, therefore, the building that stores our arms nowadays represent a castle, however feebly? Are we to suppose that when Toronto is suriounded by the beleaguering host, our brave defenders will retire upon the impregnable drill shed and man the battlemented turrets and cornice? We might as well hold that because our grandfathers travelled by means of horses, we should, therefore, build our railway stations to represent as far as possible a stable. I do not want to turn this into a lecture upon truth in architecture, only to take the stand that this only is the course along which our architecture can develop.

There was a little dialogue in this morning's Mail which seemed to me to offer a good illustration of the point.

It is as follows :
Artist-"'Those evergreens on the north side of your house have a delightfal effect.'
Former-"I should say they had. Then trees keep of the wind and save about $\$ 8$ worth 0^{\prime} firewood every winter.

That is the whole thing in the nutshell. The farmer plants a row of trees where they are wanted. The trees have a delightful effect. And the more you perceive the usefulness of the trees, the deeper the effect of poetry which they produce. Art ind malter of fact are inseparable.

If architecture is to satisfy, the plan must be convenient, and must be expressed in the composition. The construction must be suitable to the kind of building, to the material, and to the climate. This a brief recipe which, however, means a great deal. And I appeal to you if it is not more manly and more worth the devotion of one's energies than always trying to get away from your own problem in imitation of something entirely different.

It takes thought, of course, but you will have at first, when you begin practice a greit deal of what has been called "God-given leisure," in which you can invent at your will. You wlil find also that you know nothing. It will surprise you to find this. It did me. You will have to learn much then, and will hive to teach yourselves: and you may as well learn the right way while you are about it. The problens of architecture are limited after all. You must ultimately be at home with them in one way or another. If you will get into the way of landling them rightly you wil I be better architects, you will be better men, and you will be happier men. You will not find work wearisome as you grow older, but will find in it an interest that mere money making cannot sive. And Canada will have buildings that will give pleasure to those who see them, which foreigners will recognize as Canadian, intinsately associated with the life of the countrythe Canadian style of buildings.

Mr. W. H. Elliott, responding on behalf of the contractors, said the interests of no two classes could be more identical than those of the architect and contractor. In fact, so close was their relationship, that like cats thrown across a rope, they sometimes got to fighting-about what, the architects only know. (Laughter). One lack in relationship would be supplied if architects would refuse to allow contraclors to work for less than a fiir price. If this rule were adopted, a better class of buildings would be the result. Architects sometimes congratuhated themselves upon having secured a low price for their work, but be desired to tell them, if unaware of the fact, that it was impossible to beat the contractor. (Laughier).

Mr A. H. Gregg claimed that the contraction caused by the recent exams, followed by the sudden expansion on the present occasion, left him in no fit condition to respond to the toast to "The Coming Architects." In no way was the world's progress better illustrated than by the facilities for education which were being placed before the rising Reneration. There was a general
attempt to elevate the standard of all the professions and callings. This extended even to the ranks of the anarchists, who recently placed a charge of dynamite under the School of Archiecture at Madrid, but whose plans, like those of many other reformers, were frustrated and their enthusiasm dampened by a callous caretaker. (Laughter). The students were deeply gratefill to those members of the O. A. A. who had so disinterestedly sought to promote their welfare. The speaker pointed to the need of a better appreciation of the profession of architecture on the part of the public, and even of persons otherwise refined, and mentioned the case of a lady who was desirous that ber son should enter one of the professions, and who brought him toan rchitect's office, with the remark that as he was sometwat dedeficient in education she had clecided that he should become an architect. The speaiker remarked that if the public glance could lave rested on the bundic of papers required to be deall with by the students at the recent examinations, and which, notwithstanding, were but the first fragment of the knowledge to be acquired, they might conclude that some degree of erudition was necessary to the architect.
Some excellent songs were sung beiween the toasts by Messis. . Francis Brown, E. B. Jarvis, R. Wilson, J. J. Woolnough, Geo. Self and Mr. Thomes. Mr. Woolnough also gave a piano solo, and Mr. Jas. Newton some well cxecuted selections on the violin. A couple of recitations were given in creditable style by the l'resident.
The assembly dispersed soon after midnighi, having spent. a thoroughly enjoyable and profitable evening.

A CASE OF ILLICIT COMMISSION.

The Council of the Ontario Association of Architects desire the publication of the following letter which bas come into their possession :
To A. B. C., Essu.
Dear Sik.-I have been accustonier while working under archlects in this city. as well as other places, to allow a commission to those who use theit influence in my behatr, while letling contmets on alicrations, repairs, cie. that they may have in hand. 1 intended to speak to you on this mather while in your office this afierioon, but hailed to get you alone. I will be pleased to arrange natiters betwern yoll and myself in this way, hs I consider an architect and contractor can work together with profit to sach oller. The tine has come when prices are so low that contractors refuire to chence a hiule to come ota square. My usual allowance has been five per cent. on all work and two and it half on all material. If these, figures ate worthy of any notice let us tilk together. Yours suly.

Contractor: It is this sort of thing the Association wats origimally designed expressly to prevent. The members of the Association' are required to sign at declaration binding them to. set their faces against iilicit commissions in their own practice, and now that the feeling of the profession has been actively enlisted in the matter, contractors who scek to "come out square" by this manner of proceeding will find, sooner or later, that it is not to their own advantage.

OUR ILLUSTRATIONS.

mhotogravure hlate-kEsidence of mr. r. it. ross, MONTUEAl, QUb,HKC-N\&UCH PRICE, ARCHITECT, NEW, YORK
RESIDENCE OF MR. E. A. WILI.S, GWYNNE STREET, TOHONTO-J. BKANCIS UROWN. AKEMTECT, TORONTO.
From the grey sandstone foundition to the first storey window sills is built of red brick, laid in brown mortar, with Porlage Entry sindstone trimmings: ubove this is finished in hall-limbered work, starting from a heavy pinte-bolied to brickwork. The balf-timber framing is constructed of $2^{\prime \prime} \times 2^{\prime \prime}$ tuds placed at 12 centres. framed and braced, boarded with wrought boarding, covered will saturated building felf, battened and hathed. The exterior traming is seeured to interior framing; the panels are plastered with centent mortar, conslituted of cement and coarse sand, colored to harmonize with general color scheme. The interior is well finished in oak and pine. The rooms tere spacious, well arcanged and heated whith hot water. the following contractors did the work: Carpenier and joiner's work, Davidson \& Kelly ; masonry, 'T, Self; plumbing, Fred, Armistrong; plasering, F. Beaver : painting and leadglazing, Faircloth Bros. galvanized rronwork, Tucker \& Dillon; her water heating, the E. \& C, Gurney Co.

BAI'TIST CIIAPEL, WALMEK HOAD, TORONTO-LANGLEY \& DURKE,
ARCHITECTS, TORONTO.

- A. A. EXAMINATION in dESIGN-SKETCI FOH. CIIURCII SUBMITTEU
bV j. FRANGIS DROWN, TORONTO; SKETCII FOR thOUSE SUR-
AITTHBDBV W. MUNRO, TORONTO.
We publish elsewhere n list of tests of the Thorold cement, which are claimed by the manufaclurers 10 be the highest tests ever minde of any Crnadian natural cement.

CANADIAN CITY ENGINEERS.
 VI.

Mr. F. W. W. Doane, City Engineer of Halifax, Nova Scotia, was born at Barrington, Sheibourne Co., N. S. on May 3tst, 1863, his father being Capt. Harvey Doane, well known in his native province.
The subject of our sketch began engineering work in 1882. From 1883 to 1891 he was assistant to the provinciat government engineer of Nova Scotia. During that time over $\$ 1,000,000$ was expended on highway bridges. The work of the Department also included railway surveying and construction, water supply, sewerage, laying out, construction and repair of public roads, and reclamation of land from the sea. In 1886, Mr. Doane was sent out on the survey of the Musquodoboit Valley and Stewiacke Ratilway; in 1889 ; on the Carleton Brancl Railway and Western Shore Railway, and in 1890 , on the Heatherton and Guysboro Railway and North Colchester Railway. In June, 1891, lie was appointed Cily. Engineer of Halifax, N. S. The duties embrace all kinds of city works, such as engineer and superintendent of water works, charge of public works, streel grading, paving, repairs, \&ce., sewers, maintenance and repairs of city property, and all improvements.

Mr. Donne has recently recommended the construction of new sewers estimated to cost $\$ 75,000$, and submilted a repert to the City Council on a scheme for improvement in the city water supply. A new $27^{\prime \prime}$ main is to be laid, new dams and gate houses consiructed, and storage capacity increased $275,000,000$ gallons. The improvements are estimated to cost $\$ 200,000$. There have also been inaugurated extensive sircet and sidewalk improvements, which it is expected will add greatly to the appearance and reputation of the city.
In co-operation with the Board of Health, the Engineer is thoroughly reforming the plumbing system and sanitary arrangements of the whole city (of which there was very urgent need).

Mr. Doane is probably the youngest member of the Cathatdian Society of Civil Engineers,
He bas been a member of the Council of the. Institute of Halifax since 1888 , and is likewise'it nember of the Faculty of Pure and Applied Science of Dalhousie. College and Universily, being lecturer on civil engineering and surveyins.

ONTARIO ASSOCIATION OF

 ARCHITECTS.The following is the official list of the results of the recent examinations:

Admitted to registration as members of the Association :Messrs. D. G. Baxler, G. M. Bayly, C. H. Acton Bond, J. F. Brown, A. H. Gregri, J. P. Hynes, C. E. Langley, H. E. Matthews, R. J. McCallum, W. L. Munro, Eden Smith, M. A. White, and J. J. Woolnough. Con-ditioned-Messrs E. A. Bird, W. G. Burns, W. W. Pease.
Second intermediate examination:- Passed-Meśsrs. F, P. Kelley, Wm. Rac, A. E. Wells. Conclitioned-Messis. Kennelli Gordon, T. R. Johnson, H. G. Macklin, R. B: McCiffen, J. V. Munro, Geo M. Scott.

The supplemental examination for conditioned candidates will be hek in next September.

It is not proposed in future years to admit candidates for the final examinations to a supplemental examination. On this.occasion, as many of the students presenting, themselves for the final examination have been obliged to wait for the instruction of the examinations, and so hive served terms longer than required by the Association, the council has appointed a suppleniental in order that the candidates may be hindered as litte as possible in proceeding to practice.

MONTRMAI.

(Correspondence of the Canavian agcilitect and Buildem.)
Mr. J. A. Chausse, architect, is renooving his office to No. 153 Sthniv streen. Mr. A. Dubruell, architetet, has removed from No. 1639 Notre Dame street to No. 1608 on the same street.
TIIE Province of Queber Associntoon of Archinects in a communication to the City Clerk, urges the importance of the office of sanitary inspector, sind the consequent necessity for cnution in the selection of a comperent person to fill the position.
"L'Association de Secours des Ouvriers." is applying for letters of incorporation, with the object of nssisting workaten or workwomen who ibrough) misforturie are ungble to provide for their ows maintenance. Applientis for such nasistance must furnish if required a eertificate of good belhavior. The capital stock of the Association is to be $\$ \mathbf{2}, 000$. A number of prominent Montreal contmetors are interested in the movement.

VoL. V.]

d ßeuilder.
[No. 5.

HRMTM品
Sketch for a Churcil-Submitted by J. Francis Brown, Toronto.

Sketch for a House-Submitted ay W. Munro, Toronto.
O.A.A. EXAMINATION IN DESIGN.

Architect and ßuvilder.

HOW TO ESTIMATE.

By W, H. Hodson.
Below are printed specification and bill of quantities for excavator, mason and bricklayer, accompanying working drawings of Baptist Church, Walner road, Toronto, appearing in this number.

EXCAVATOR, MASON ANO URICKLAYER.
Erect the necessary hoarding in accordance with city hy/laws. All vege rable mould to be put to one side for top dressing., Excatate the ground as requited for the basement, footings of walls, piers and buttresses, and or drains. Excavation tobe 9 in . clear of walls 10 permit of pointing and inspection. Fill in and ram to walls after inspection; level to grade shown. Any soil not required for lerelling to be removed from premises. Execute drainage as shown with approved salt glazed vitrified pipe of Scotch or American imanufacture, jointed in Portland cement and laid to proper fall with all necessary bends, traps, junctions, elc., complete. Put McGuire's cleaning out trap with connection for cleaning carried to within one foot of surface of cellar. Lay weeping drains, as shown, in boiler pit connected with main dmin behind proper glazed pipe Irap. Conneet drain with sewer in street. paying ith fees. Footings of walls to be of large nal stones not less than 6 in. in thickness and $t i n$. on each side wider than the work above, and to extend to at least half the width of wall above. The footings of large piers carrying main colutnns to be in two courses of stone of approved quality, 8 in. thick and not more than two stones to each course. rootings of main chitnneys to be similar, with not more than three stones to cach course. The footings of tower to be similat. The bollom stones o be in length the full width of footing (5 ft .) and not less than 3 ft . wide the next course to be similar, $4^{\prime} 2^{\prime \prime}$ long, and the next $3^{\prime \prime} 4^{n}$ long. Al o be of even thickness, fat on bed and set on a one inch bed of oncthird Portland cement mortar. All the footings of main walls and piers to be set in mortar of similar description. The stome walls above finished ground line on north and rear elevations and corridor to be fimished with a narrow course of brown Credit Valley stone neatly pointed with brown nuortar. The valls on east and west elevations and part of horth, as shown up to level of ground floor window sills, to be faced with the best Credit Faltey brown stone in courses ot varying heights, and well bonded into wall behind with at least one bond stone to ench superficial yard of walling. Stones to be boldly rock faced with mrrow margin drift at angles and laid up in dark brown mortar (Cabot's or Pecorn) with deeply sunk joint. The walls above coursed work (on tower, east and north clevations) as tinted brown, to be of brown Credit Valley stone in random ashlar work of most approved description, well bouded into brick backing and laid up in stmilar mortar with similar joint as above No store to be more than $9^{\prime \prime}$ in height and n preponderance of long thin stone to be used. The reveals and veatherings to be neatly chiseled, and angles to leg finished with narrow margin drift. The walls above the stone work to be carried up in good briek work, composed of the best bard burned bricks laid in the best pre pared mortar, well tushed up. The outside to be faced with hest machinc ooulded dark red bricks of even color laid English bond in dark brown moriar similar to that for stonc wort having a deeply sunk joint. The inside of porch and wrstible at rear to be faced with similar bricks of liphter color in the dado, quoins, etc., and with picked white bricks in the walls, all ald American bond and, eh. The red briuks of the interior to be laid up in mortar colcred with Caboi's The red briks of the interior to be laid up ill nortar colcred with Cabots en morrar sinis. ellow mortar stain, all finished with a neat bead tool joint. The internal window sills to be finished with a course of plinth bricks. The capping of atdo to be a pline brick reversed. The walls of porch and vestibule to h hollow and tivo halr bricits thick, Outer face to he well parged. The the half brick walls with stout hoop iron every fiflh course and atoou one foot apart ; iron to be bent - U- thus and dipped in tar. The auter $9^{\prime \prime}$ walls of dressing rooms and vestry to be built English bond. The walls of church to be also built with a 2^{n} cavity tied with hoop iron as before mentioned, the inside face of outer wall to be carefully parged. The inside walls of auditorium, fromt vestihule, north siairway and tower fuo stories) to be faced with No. I pressed bricks in the very best and mos worknanitike mannuer, laid up in English boud with a natroy joint in putty mortar to harmonize in color with the bricks. The dado. the moulded ricks in jambs and nrches of the west end and the bells and friezes at east and to be executed with pale brown bricks equal to sample in the architeet's ofice. the watls above dado to be faced with bricks of a yellowish buff tone gual to sinple shown. The capping of dado, the angles, jambs, sills, areh ricks and labels as slown to be executed with moulded bricks of approved design: supply moulded bosses, returns or slops where required. State re. duction ir all pressed brick work inside (except fireplaces) be omitted and walls (of hollow and similar thickness) left rough for plas'ering. The jambs, rebes and labels of the three entrances in east elevation, windows adjoining and three windows above to be executed wilh No. 1 pressed and moulded dark brown bricks of approved design laid up in mortar of havmonizing color. The labels over windows in south elevation to be of moulded pressed bricks finishing to moulded stops. There will also be moulded stops to abels of threc windows on east elevation. Dentil bricks at enves of staircase to be moulded and pressed, jambs of staircase windows 10 be simply ounded.
Brick piers in cellar to be of hardest grey or red bricks, built perfectly solid and having neatly struck joints. The walls of boiler pit to be built with similar bricks in 4 stone footings, joints to be meatly struck. Carry up fiues as shown, properly parge the same, and provide and build in casi ron slides to give access for cleaning smoke flues. Provide and build in $15^{\prime \prime}$ collar in smoke flue with chimney stack. Form fireplaces ns shown, those in church to be faced with No. 1 pressed brick of color to harmonize with dado, and having motlded brick courses as shown. Turn arches on wrol. ron camber bars. Form ash dumps properly parged ancl farnished with eist ron soot doors in celiar. Build brick trinimer arehes and level up with concrete to within $I / 2$ of finished foor line. Build vent flucs from below ceiling of gallery as shown, two to be carried up in walls of tower into pinarcies, two in south side to be earried into pinnacles of transept, that in north side to be carried into flue in vestry chimney stack, and that at n. e stairease to be carried up to enve line. The openings in inside to be filled with $12^{\prime \prime} \times 18^{\prime \prime}$ white enamelled valve registers provided and set by mason. Arches 10 windows and doors, \&e., to be cut and guuged. Turn proper clicving arches over atl openings of at least (wo rings. Thoroughly clean down all walls the internal ones with acid), removing all stains or defects. cuting our and replacing any discolored or broken brich, and leaving ail perfiet on completion. Bed in mortar all wood slips, wood bricks, stone or ather twork required to be set in the masonry or brickwork. The walls of vestry and dressing rooms will have strips built in for securing battens. Bed in mortar all lintels, plates, etc., and carefully point round all window and door frames. Citt all neecssary grooves for fatshing, and point up ns required. Beall fils on all walls to underside of roof and floor boarding. Build areats of hard bricks in stone footings and patve with brick on flat. Build in carpenters' bolts for copings. Provide good and sufficient scaffolding which is to remain for the use of ollter trades ns required. Take every
precaunion to prevent walls being discolored from splashings from scaffolding orm foundation for boiler, say $40 \times 2 \Omega$ with fat stone thick and on this lay hirdest elinker bricks set on edge in sand and well flushed. Lay th boiler pit with similar bricks set in a $4^{\prime \prime}$ bed of sharp sand. The coat and ast pit and space adjoining as tinted grey will be concreted. Excavate to additional depth 10 allow for boiler. Form foundation with stone chips 6 deep and on this lay concrete lloor 3^{4} thick formed with coarse gravel, coars and and portand cement in proper proportions and flotited to a smooth and even surface. Provide and sel on brick piers under the eight main col umns squared and dressed approved stone $32^{\prime \prime} \times 32^{\prime \prime} \times 12^{\prime \prime}$ thick. The piers arrying six small mallery columns to be coptd with approved stone $8^{\prime \prime}$, hick and its ses carying beams with stones 4"f hick All 10 bave dressed bed and to be correcily squared Provide similar stones bave dressed bed berms when resling on walls. Cope walls of ash and boiler pit with ap proved stone g in x in thick in long lengths, dressed and carefully set in proved stone 9 in. $x+$ in. thick in long lengths. dressed and carefully set in Portund cement. cope chimneys with credit valley or other approved crimpod and sct in Portand cement. Sills of basemient windows to be Credit Valley stone (brown where exposed). Sills of vestry and dressing room windows sone (brown where exposed). Sills of vestry and dressing nom windows may be executed in Berca or brown stone of approved quality, seilled, weathered, throated and rock-faced. The heads, strings and sills of all other windows to be executed in the best description of Credit Valley brown stone, free from all flaws and defects, tooled or chiselled as may be directed, weathered, seated and throated. Sills at randont work may be rock faced. The steps and landing nt main entrances to be of same Feren or equally approved stone, carefluly set in long lenglos in Portand cemen and joints thoroughly fushed. The coping of parapet of front grable to be of approved brown Credit Valley stone in long lengths, set in Portland cement and wenthered. tooled and throated ns directed. The carving of the four bosses at entrances und the finial on coping is reserved. Prepare for enrving as required. The eight corbels, side walls under principals, and the two corbels at the aist end carrying fool of prillcipals, the four corbels under iron beams at tower and staircase openings, the four corbels under gallery brackets, the cornice at spring of arches at west end, and the head of wo hreplaces to be of light brown stone of appruved descriplion, mould ed and rubbed. Sills and exposel stonework to be boarderl over immediately upon being set.

BILL OF QUANTITIES.

EXCAVATION AND DRAJNAGE.

Board fence, wle., as per city by-laws
1100 cubic yards of excavation, basement walls, piers, huttresse and drains; includes flling, ramming. levelling, etc., etc.
101 \%/s lineal yards of vitrified pipe drain; includes bentls, traps, junctions, etc.
Proveal yards of 4 ill . weeping drain, complete
die 9 in. continuation drain from sewer to street line at pt lineal yard, complete, paying fees for same
1 McGuire's cleaning out imp with connections
Nore.-Excavations are measurud "cube." that is, lergoth. breadili and tlepth, thus: $54 \mathrm{ft}, 9 \mathrm{in} . x 22 \mathrm{ft}, 6 \mathrm{in} . \times 5 \mathrm{ft} .6 \mathrm{in}$. $=$ equal to 6775 fl , 4 in . divided by 27, the number of feet in a cutic yard, gives 25 cubic yards, less (ift. 8 in). Tile drains are measured lineal, that is, rumning measure as indicated in nbove itenis.

> HASONRY AND CUT STONE

157 toise of masonry, complete, including the footing laid in cement
2080 supi. ft. of coursed Credit Valley brown stonc, varying height pointed in brown moriar, includes margin. drat., elc., chis cled reveals
20 supl. yards of foundation to boiler. 6 in. stone chips and 3 in. Thitk concrete, smooth suriace
131 lineal fi. of narrow coursed Credity Valley stone, pointed lineal ft. of Credit Valley brown stone coping in long lengths set in cement
so linent ft. of Credit Valky brown stome coping, parapet of front gable, long lengths, set int cement
18 Credit Valley cut stone sills, 6 ft .6 in , weathered. thronted and scated
7 Credit Valley cut stone sills, 5 fi. 0 in., weathered, thronted nod spated
5 Credit Valley ent stone sills. 3 ft. 6 in., wenthered, throated and scated
10 Credit Valley eut stone sills, 2 ft. 6 in., weathered, throater and seated
7 Credit Valley cut stone sills, 2 ft. oin., weallered, throated and seated
8 columin stones, 32 in. $X 32$ in. $X 12$ in.
6 coping stones to gallery columns, 8 in. lhick, dressed
6 coping stones to beams, 4 in. thick, dresser
8 stones for beam rests, 12 in. $x 8$ in. $x 4$ in., dressed
8 stones for beam rests, $12 \mathrm{in} . \times 8$ in. $\times 4 \mathrm{in}$, , dressed
2 coping slones of Credit Valicy to chimncys, in two pieces, set in cenient and cramped
26 light brown stone corbels front of principals, spring of arches, etc. . etc.
4 boss stones (for carving) and finial
2 Berea stone steps and landing, main entrances, in long lengibs set in cement
4 double footing stones in eement mortar under iron pillars
Boiler foundation, $4^{80} \mathrm{ft}$. of flat stone $4 \mathrm{in}_{\text {. thick, }}$ covered with hardest elinker brick set on edge; well flushed
Note.-Masonry is measured cube and the totals of dimensious added together, divided by 86, the number of cubic feet in at toise. The French measure par toise being $6 \mathrm{ft} . \times 6 \mathrm{ft} . x 2 \mathrm{ft}$., equivalent to $6 \mathrm{ft} .4^{1 / 2} \mathrm{in} . \times 6 \mathrm{ft}$. $4 \% \mathrm{in} . x 2 \mathrm{ft}$. $1 / 2 \mathrm{in}$. English measure, the French foot being $1 / /$ of an inch longer than one foot English. Cut stone facing measured superficial, that is, square, thus: 5×5 gives 25 ft

日RTCK WORK.
60,000 (A2) best hard burnt brick, with white, red and plinth, to sills, alkd reverse to dado, a proportion of pressed and pale brown brick equal 10 snnuple bricks, cie., smiooth jointed
27.500 machine made bricks, laid in brown mortar, tied with hoop iron al cavity
6,100 (At) red and white and pressed brick facing to porch and vestibule
$\mathbf{3 . 3 0 0}$ bricks, moulded for daro capping, angles, jambs, sills, arches, lables, etc., etc.
r,000 dentil monlded and pressed brieks to stair case window 170 hardest clinker bricks to boiler pit, on leed of sharpsand 23 supl. yds. of concrete, to coill and ash pit
50 relieving ares dipped in

4 iz in. $\times 18 \mathrm{in}$. enameiled valve registers, complete
2 cast iron slides to smoke fues
2 Is in. collars to smoke flues
Arches over two fire places and wrought iron camber bars Ash dumps and cast iron soot doors in cellars
'Trimmer arches and concrete to within $1 / 2 / 2$ in. from floor
Vent flues from gallery ceiling, two to be catried up into wall of rower and one in vestry; chimney stack up to eave line
Cleaning down walls, remoring stains and defects, bedding tim.
bers, buiding in strips for battens, pointing to windows and
door frumes, grooving for thashing, beant filling, bolts for
coping, etc., etc., complete
Scaflolding as required and remaining for other trades
Deduction if \mathbf{A} I and \mathbf{z} is not carried out
A 1 deduction, pressed brick omnitted and instend left rough for plastercr
A a deduction, pressed brick omitted and instead left rough for plasterer
Note,-Brickwork is mensured cube and in Montreal the number of bricks give in estimating is 20 ericks to the cube foot, and is ascertained thus:

The opunings are measured and deducter from the solid work. Concrete when not deep is measured by the superficial yard, thus: 3 ft. $\times 3$ ft. gives onc yard. Concrete in heavy work is measured cube, $3 \mathrm{ff}, \times 3 \mathrm{ft} . \times 3 \mathrm{ft}$, or 27 ft. to the cubic yard. Arches, etc, are given in numbers and other tums noted as above.
(To de Contintuefl.)

VENTILATION.*

SOME extracts from various reports of scientific men on the subject of the ventilation of Halls of Assembly which from many years of study 1 believe to be the best solution of a very difficult problem :

Two systems of ventilation so far appear to have been adopted, viz., the upward or the downward exbaust.
The fundamental principles of ventilation are :
1st. Heated air is relatively ligliter than coldet air, and will continue to ascend and the cold air to descend so long as they are fiec to move.
2nd. More or less than a given quantity of air practically considered cannot occupy an apartment and cannot be introduced unless an equal quantity be withdrawn, or withdrawn unless an equal quantity be introduced.
These two simple and self-evident propositions will explain nearly all the phenomena observable in ventilation. The firs! method adopted by engineers and architects to give movement to air for the ventilation of mines and buildings was to heat an upflowing column, thus lessening its specific gravity and causing it to rise with corresponding force. Tliat system was einployed in the Beitish Houses of Parliament, where in many of its towers a charcoal fire was kept burning and thus a force obtained to propel the air through the building. It has been practically demonstrated, however, that one pound of coal burned in the furnace of a steam boiler to drive a fan blower will generate as much force and consequently is capable of producing as strong a current of air as 38 pounds expended in heating a column of air to act by its diminished gravity. If heated air is introduced into an apatment containing air at a lower temperature through registers at the floor, it rises rapidly to the ceiling, and if there are openings at the ceiling it escapes without (except in a very slight degree) mixing with the air in the apartment. The air that passes off in this manner is absolutely lost and the heat imparted to it wasted. It dees not remove the vitiated air contained in the lower part of the apartment, it does not form with it a homogeneous mixture and does not communicate to it more than a small portion of its heat.
But if, instead of escape openings at the ceiling they are placed at the fionr, the phenomena observed will be widely different. The heated air will as before ise to the cciling, but instead of escaping, will press the colder air downward to the exit ducts and fill the apartment with pure warm air; the air vitiated by breathing ivill at once sink below the level of the mouth and in a few seconds will be carried off, no accumulation of foul air being possible.
Various opinions are givell as to the amount of fresh air necessary to render the products of transpiration and respiration innocuous. These estimates made by distinguished observers vary from 2 to 50 cubic feet per minute. These estimates and are generally based upon the liypothesis that the fresh air introduced into an apartment mixes uniformly and homogeneously with the vitiated air and dilutes it to an extent to render it innocuous; but if instead of nixing with the air of the apartment, the warm pure air should rise to the ceiling and escape, ill conclusions based on the hypothesis of homogeneous mixture would be fallacious. If the air that bas once been respired could be imme-

[^0]diately removed without being the second time taken into the lungs, it is obvious that so far as respiration is concerned no more need be introduced into an apartnent than can be breathed; this amount is easily calculated.

At a temperature of from 65° to 70° Fahrenheit the following average results are given by Dr. Wetherill for the respiration of an adult: Number of respirations per minute, 20 ; cubic inches of air inhaled at each respitation, 20 ; cubic inches per minute, 400 . The carbonic acid exhaled is stated to be 15 cubic inches per minute, and the surrounding air vitiated is $2 / / 2$ cubic feet per minute. Four hundred cubic inches is less than one fourth of a cubic foot and this is all that can be taken into the lungs per minute.

The House of Representatives at Washington is provided with 60 cubic feet per man per minute, and yet the vitiated air is not removed. The guantity of air introduced is twenty times as great as the quantity that could be vitiated by respiration provided there was a homogencous mixlure. The facts which are daily observed prove that such a homogeneous mixture does not exist under the present system. If nineteen-twentieths of the heated air which enters the apartment escapes without being utilized, it follows that nearly all the fuel consumed in heating it has been wasted.

In the process of respiration 15 cubic inches of carbonic acid per man per minute are ejected from the lungs. This gas in course of time would diffuse itself throughout the apartment, but it 15 well known that its density is so great that it can be poured from one vessel into another, or if poured into an inclined trough it will fow downwards, extinguishing successively a row of lights.

The specific gravity of this gas is 1.52 or 52 per cenl. heavier than air. Its tendency would therefore be when exhaled to sink below the level of the mouth and occupy the lower portions of an apartment near the floor, but it has been supposed that the elevated temperature at which it is projected fiom the lungs causes this gas to rise and escape at the roof; the fallacy of such an opinion can, however; be readily proved. Even if the temperature at which carbonic acid escapes from the lungs should be so elevated as to render it momentarily lighter than the surrounding air, it would soon part with the excess of heat and then seek the level due to its superior density-but in fact under the condition of things which actually exists there is only 20° difference in temperature between the air when first expelled from the lungs and that of the apartment. As air incleases in volume $1-460$ of its bulk for each degree of Fahrenheit, the effect of increasing the temperature 20° would be to reduce the specific gravity less than ten per cent., and the carbonic acid upon leaving the lungs would still be 40 per cent. heavier than the air of the apartment. It would scem impossible for this dense gas to rise to the ceiling and escape at that level without a violation of the laws of pneumatics, unless by powertul mechanical means.

Dr. Wetherill reports that ench flame of gas consumes as much oxygen and gives out as much carbonic acid as five human beings.

General Morin reported that a ventilation of $141 / 2$ cubic feet per man per minute principally downward left no perceptible odor in'a lecture room, while the upward ventilation of the Halls of Congress with 60 cubic feet per minute, is notoriously defective.
As regards the direction the products of respiration take after leaving the body, the evidence in support of the tendency to rise is from a report from the Smithsonian Institution; its author seems to have smoked a pipe at the Institute and the smoke ascended-but the objection tọ this experiment is that tobacco smoke is not one of the ordinary products of respiration. The expenment does not prove that the gray smoke which was seen to rise was carbonic acid. The experimenter does not state in what direction were the ventilating currents in the apartment or how produced, and there was nothing in the experiment to prove that with a gentle downward ventilition the smoke would not have moved downward instead of upward-in fact it proved nolling at all in reference to the direction of the products of respiration.
Lewis L. Leeds quite agrees with General Herman Haupt in conclusions both as to theory and the necessity for putting in practise a system of exhaust for ventilation from the floors of the housc, and says very extensive practise and close observation for many years past have fully convinced him that the human breath, which is the great source of contamination tends first towards the floor in a still room of 70°, and that there is a probability in a closely occupied room that there will be quite an excess in the accumulation there. This applies to rooms warmed exclusively by heated air. The contrary opinion-that is the assumption that the breath and the impurities exhaled from the body rise to the ceiling and accumulate there-was advocated strong!y in the ventilation of the English House of Parliament, and it is reported that some two or three millions of dollars were spent in endeavoring to heat and ventilate that building comfortably, nnd as the proceedings in regard thereto were spreal orer the world to an extent probably one hundred times greater than any previous puolication or action in regard to ventilation of any public building, that theory of ventilation becance strongly impressed upon the public mind as being the correct one. I consider that iden erroneous, hence all theories of ventilation based upon it are consequently wrong. In the majority of our rooms the heated air entering (which, of course
must assume to be pure air) does not enter warmer than the contained air one half of the time and probably not more than one quarter of the time. Mr. Leeds gues on to advocate ad open fire and furtherstates-" I believe it would be at all times and under all circumstances very desirable to have a large amount of the air drawn from the floor as nearly as possible under or near each member's seat, and also from under the seats of all the benclies in the galleries, but to know how or when and how much to dravy from the ceiling would be a much more difficult question to decide. That there should be such openings we know from everyday experience, the necessity for opening doors or lowering external windows to relieve the upper part of a room when it gets too warm. The openings at or near the ceilings require to be closed or opened according to the varying conditions of the room. Heat applied within any building calises movements of the air with more or less torce according to the difference of temperature of the external and internal atomosphere. The external wind is a source of considerable power. It is important in the application of power, either to make it conform to and cooperate with the natural forces and merely assist their action, or otherwise make it of sufficient power to entirely overcome all these natural forces-if much care is not exercised in the adjustment of these forces one just counterbalances the other and stagnation is the result. Scientific and medical nuthorties genernlly concur in the opinion that in-door air after heating should contain nearly the same proportion of moisture as the average of out-door air of the same temperature, but when air is brought in from out of doors at a temperature of zero and raised by heaters to 68°, it would require the addition of $4.343 . \mathrm{grains}$ of water per cubic foot of air to bring it up to the required degree of moisture. For the proper moistening then of fresh, warmed air introduced at the rate of 20 cubic feet a minute for each one of three hundred persons two hours, the air taken at 2cro and at an average degree of moisture, no less than fifty-nine galions of water would be required to be added. Exactly how much vapor or what per cent. of moisture is the most healthy has not yet been determined. From much observation we have taken 65 per cent. of saturation as the amount most likely to prove healthy-the mean relative humidity of the air at Philadelphia for the year 1863 was 57.2 , and the mean average for twelve years, 68.5 .
Dr. Wetherill in his report on ventilation of the Capitôl at Washington says: "Hood, ("Warming and Ventilation,") estimates the air required for ventilation by the amount needed to take up the moisture from the skin and lungs. The air required for respiration (i. c. oxidation) is very much less than that feeeded to hold in solution the vapor of the skin and lungs, which evolve 12 grains of water per minute.

If the temperature of a room be at 60° with a dew point of 45°, a cubic foot of air will absorb $21 / 4$ grains of vapor, or, in other words, the perspiration from the body will suturate 5% cubic feet of air per minute If, however, we take the dew point lower, say not to exceed 20° or 24°, then $31 / 4$ cubic feet of air per minute will be required to carry off the insensible perspiration, while, for the pulmonary supply one-fourth of a cubic foot will be needed, making a total of 4 cubic feet. In summer, as the dew point is higher, more air will be needed, viz., 5 cubic feet per minute for summer ventilation. In a foot note to the above it is stated that Seguin gives the exhalation of water from the lungs, 7 grains, from the skin, II grains, total grains, i8 per minute. If the dew point is maintained unformly at 52° the following is the calculation of quantity exact for this case : A cubic foot of air at a temperature of 65° with the dew point at 52° will absorb $21 / 2$ grains of vapor, and if we take the mean of the two authorities above cited regarding the quantity exhaled by each person, we will have 15 grains per minute, and to absorb this under the above conditions will require 6 cubic feet of air. Add to this the onefourth cubic foot required for breathing, and we have $61 / 4$ cubic feet as the total amount vitiated per minute. The surface of an average man is about 18 square feet. If, therefore, we imagine such a man walking in the pure open air at the rate of two miles an hour on a perfectly calm day the air will be flowing past him at the rale of 176 feet per minule, and as he is one foot deep from front to back, the average thickness of the envelope of vitiated uir which surrounds him may be found as follows:
L Let $A=$ The quantity of vitialed air per minute in cubic feet. . $61 / 6$
$\mathrm{~B}=$ The surface of the person in square feet. is

feet... 1
$\mathrm{D}=$ The velocity of the current in feet per minule.............. 176
$\mathrm{x}=$ Thickness of envelope in inches
Then 12 A C.
BD
or r / ss of an inch.
and $x=0.018$ or r / ss of an inch.
In supplying air for the upward ventilation of a hall containing an asseinblage of people, however, it is absolutely essential that the direction of the current should be vertical, otherwise that which las been vitiated by one person would be given to another to breathe and perspire into. If we now assume a man standing upright of the average height of $5^{\prime} 6^{\prime \prime}$, and the velocity of the current at 5 feet per minute, we will have for the value of the terms in above formula: $A=6 \frac{1}{4} ; H=18 ; C=52 / 3 \mathrm{D}=5$; where. upon $X=4.16$ inches.

If this envelope of $4^{\prime \prime}$ thickness be drawn upward, it is clear that the nose and mouth will be always supplied entirely with vitiated air, no matter how pure it may be one foot away, while
if it is drawn downward those organs will always be supplied with perfectly pure air. This consideration alone is quite sufficient to determine in favor of downward direction; there are, however, some other advantages in the downward over the upward direction. The temperature of the human body varies 2° either way from 98°, a sudden variation of 5° or 6° being said to be fatal. If, therefore, the air is supplied at a temperature of 65°, it will be 32° cooler than the body. With a downivard current the head will be in this cool air while the feet will be inclosed in an atmosphere nearly if not quite as warm as the blood within them, and to "keep the head cool and the feet varm" is one of the fundamental rules of hygiene as well as of conifort.
A current of air coming up through the floor will always bring along with it the fine dust which the greatest care cannot prevent accumulating there to an extent which renders it unplensantly sensible in all assemblages supplied with an upvard ventilation. With the downward ventilation it is only necessary that the dust shall be thoroughly removed from the inflowing air at the mouth of the inlet duct to maintain the hall perfectly free from dust.

Again, with upward ventilation the entire hall is filled with vitiated air, the vitiation having taken place near the point of admission, while with the downward ventilation the ventilation takes place near the point of exit and the whole upper part is full of pure air. In a hall say, 36 feet from floor to ceiling, and the fresh air is admitted through apertures well distributed in the ceiling-it has thirty feet to move before it comes in contact with the heads of persons on the floor. During this movement all eddying currents induced by the increased velocity with which it is necessary that it shall pass through the apertures have become quiet, and the whole mass descends with an uniformity impossible to obtain in the vicinity of persons ventilated with upward ventilation, and one of the most important considerations to be kept in view in ventilating an apartment is to avoid perceptible draughts. Mr. Goldsworthy Gurney, in his examination before a Committee of House of Lords, said: "We have found the down current always inore agreeable; the up current is sometimes used, but it is not so pleasing and not so effectual."
One objection used against the downward system is that it is against nature to force air downward. Although this opinion is entertained by an extremely large number of otherwise well-informed persons, every engineer of ordinary attainments knows perfectly well that it is as easy to force air in one direction as another. Another objection is, that as air is additionally warmed at the same time it is vitiated, that which is vitiated and warmed has a tendency to rise whatever may be the direction of the general mass surrounding it. This is true, but this tendency is so feeble that its opposition to a current of 5 feet per minute would not be perceptible. It has been shown that with a vertical current of 5 feet per minute the mean thickness of the envelope of vitiated air surrounding a man of the average size when standing is $4^{\prime \prime}$, this more than two hundred times as thick as when he is walking at the rate of 2 miles an hour in a perfect calm. As, however, the air has to be brought from such a direction that mouth and nose are always supplied with air of absolute purity, to insure the control of its direction by mechanical means, a current of 5 feet per minute has been assumed for the minimum velocity to be given.

When the weather is fine, or in other words, when the outer air from which the supply is derived is in the desired condition as regard temperature and maisture, and no expenditure is required upon its conditions, then a maximum amount may be given, the minimum being employed when its condition as regards temperature and moisture has to be changed to the greatest extent. The only limit to the amount of air it will be advantageous to supply is that fixed by the rule that the currents past the person must not be sufficiently rapid to become sensible.

Some persons are sensible to currents of much less velocity than required to render others conscious of them. Most people can feel a current having a velocity of 150 feet per minute, very few can perceive one of 90 feet per minute. To be quite sure that no one, however delicate, should be conscious of being in a current, the maximum current would be safe at 50 feet per minute. But to feet per minute will give a bountifol fresh ventilation. The average thickness of the vitiated envelope will then be two inches, or one hundred times thicker than when walking out doors in a calm. With downward ventilation, however, the nostrils are in pure arr equally as when walking, the vitiated air enveloping the lower part of the person only, leaving him unconscious of its presence.
Even when the weather is good and the temperature of the air delightful and the wind blowing with the most desirable force, an open window in the side of a great hall filled with an assemblage of people would furnish air to those furthest from the window filled with emanations of all the persons it has passed on its way.
That the air as vitiated has a endency to rise has been a favvorite theory among scientific men. Mr. Gurnev was one of the first to stoutly deny the fact in his testimony before Committees of Parliament; he asserted that the downward propulsion which the breath received by the position and direction of the nostrils did not cease so far as the impuritics with which it is laden are concerned, till it deposited them on the grouncl, also bat on a frosty day the vapor from a person's mouth may be seen to describe a parabolic curve to the ground. But any one may see
the vapor of the breath driven from the nostrils taking at first a downward course; a breath of a fair strength, with the thermometer near freezing point, may be seen by its condensed vapor driven downward and slightly outward for a foot or more.
In this observation, a wind wheel (in air of 26° Fahrenheit), moved rapidly near the body, and steadily at a distance of six inches in front and also at two feet above the head. Notwithslanding this upward current, the breath was strongly marked by condensed moisture fourteen inches below the nostrils, and, would doubtless have been seen further down but for the dissipation of the moisture.
In a room with the air at 65° the same wind wheel was in motion close to the vital parts of the body, but stopped entirely at two or three inches distance from the body or above the headthis was anticipated, because the force that carries the wheel is the rising of the air in consequence of its greater heat and lightness than that of the surrounding air, and is ptoportioned to the difference of temperature. In order to determine the amount of heat operating to cause the air to rise, a thermometer was placed within the clothing near the vital parts of the body, where it was found to stand at 82°, while the person remained in air at 65°. On poing into air at 20° with additional clothing, the thermometer stood at 76°. The air around the body in a warm room, therefore, woukd rise with a force not far from 17°, while in the outer air at 20° it would rise with a force not far from 56°. Probably the air would rise with a velocity somewhat less than these figures, but relatively they are nearly correct. A more sensitive instrument would have been affected at a greater distance, but the same wheel showed a distinct downward motion of the breath 15 inches below the nostrils in opposition to all the rising tendency by reason of the warmth of the breath and air about the borly, aud this motion would have been shown at a greater dis: tance by a more sensitive wheel.
Let us now suppose, to be well within bounds, the breath to be moved 12 inches below the face, the downward motion having ceased, the upward motion should then begin, which is to carry the breath up out of the way. This old breath has about one second in which to rise from rest or reverse motion, more than $12^{\prime \prime}$ in order to be out of the way of the next inhalation. The difference of temperalure necessary to give this movement of 12 inches in the first second, if the breath rises by heat alone, will surprise anyone not familiar with such calculations, it is not less than 180°, that is to say, the breath in order to start from rest and rise $12^{\prime \prime}$ in one second through air at 65°, would have to be at a temperature of 245°.
The absurdity to which this calculation and experiment reduce the idea that our breath is carried away from the face by its upward tendency from heat, is increased by the observations which every one may make, that a thermometer at 65° cannot be raised more than one degree by breathing upon it at $9^{\prime \prime}$ distance, and that it $10^{\prime \prime}$ no effect can be perceived. Under the most favorable circumstances all causes combined are not sufficient to carry the expired breath up out of the way before another inhalation, as may be seen on a frosty day, and it is evident that the air contaminated by the body, if carried upward nust be inhaled.
We vill consider the circumstances of a large hall of assembly and show the operation of the two systems. Suppose a floor well packed with people at the bottom of a cubical or hemispherical hall : suppose them to have entered at once, the hall being previously filled with pure air ; directly the lower stratum of air in which is the audience, becomes contaminated by their exhalations and emanations. Now the problem is to get that stratum of air out of the hall before any of it can come into use again, and to replace it with fresh air of the right temperature.
It is obvious that it cannot be taken out sideways, because then many would have to breathe over again the breath of others -it can be taken only either up or down. If taken up, the fresh air that is to supply its place must enter at the foor from which the foul air rises, for no air will leave the spot till other air is ready to fill its place. In order to lift the whole of the foul air bodily from the floor, it is necessary that the whole floor should be open for the admission of fresh air. Wherever there is a piece of solid floor through which the air cannot pass, there will be a dead space of foul air above it which will not rise with the rest, but will remain to be gradually mixed with the fresh air entering around it. If the dead space is considerable, the whole amount of air required must enter in the limited space of the openings, and the velocity must be propoltonately increasen. According is the space is reduced and the velocity increased, the air-entering has a force that carries it up beyond the place where it is to be used, and mixes it with the foul air passing off, a part of which mixture will return in counter currents and gradually replace the air in dead spaces.
Dr. Reid, of the House of Commons, Englind, the most scientific and experienced, perhaps, of the advocates of the upward system, seeing this necessity for introducing the fresh air through the whole extent of the floor, had the entire floor made of perforated iron. This was afterwards covered with hair-cloth carpet. ing, and through nearly its whole extent the fresh air was admit ted. The result was, that on account of the rising of dust by the entering air, and still more on account of the uncomfortable draughts brought up apainst the meinbers' legs, nine-tenths of the floor was covered with sheet lead under thecarpet. When the entrance for fresh air was thus limited complaints became so loud both of strong currents.and of foulness of air, that the whole
matter of ventilation was turned over to Mr. Goldsworthy Gurney, who undertook it on the opposite system of introducing fresh nir above and taking out the foul air at the foor.

It is very imporiant in the warming and ventilating that the pure air to be supplied should be of the same degree of temperature and the same amount of moisture as that of an open space in a pleasant time in summer.

With respect to the actual degree of ventilation recessary for health there is great difference of opinion. The following volumes of air in cubic feet per person and minute have been as: signed by different experimenters: Dr. Arnot, 2 to 3 ; Tredgold, 4 ; Mr. Toynbee, 10 ; Dr. Bell, 10 to 25 ; Peclet, according to circuustances, 10 to 20 ; Peclet, at least 5 ; Roscoe, (insufficient in Bartacks), 10 ; Roscoe requires at least 20 ; Dr. Reid, minimum, 10 ; Dr. Reid requires according to circumstances, 20 to 60 ; Vierordt, $21 / 2$; Hood, ("Warming and Ventilating") estimates the air required for ventilation by the amount needed to take up the moisture from the skin and lungs. The air required for respiration (i. c. oxidation) is very much less than that needed to hold in solution the vapor of the skin and lungs which evolve 12 grains of water per minute. If the temperature of the room be at 60° with a dew point at 45°, a cubic foot of air will absorb $21 / 4$ grains of vapor, or in other words, the perspiration from the body will saturate $51 / 4$ cubic feet of air per minute. If, however, we take the dew point down say not to exceed 20° to 24°, then 31/4 cubic feet of air per minute will be required to carry off the insensible perspiration, while for pulmonary supplies $1 / 4$ cubic foot will be needed, making a total of 4 cubic feet. In summer the dew point is ligher, nore air will be required, viz., 5 cubic feet per minute for summer ventilation.

Professor Miles in his report on ventilation of houses and schools assumes that if the temperature of the air ranges from 65° to 70 degrees Fahrenheit, we have the following average resulis from the respiration of an adult : number of respirations per minute 20 ; cubic inches of airinhaled and respired 20 ; cubic inches of air inhaled per minute 400 ; cubic inches of oxjgen each respiration 4 ; cubic inches oxygen each minute 80 ; products respired: 1. damaged atmosphere with nitrogen in excess; 2. fifteen cubic inches of carbonic acid gas; 3. three grains of vapor of water.

The surrounding air is vitiated by the mixture of the products of respiration with it it the rate of $21 / 2$ cubic feet per minute. The total average loss by the lungs and skin in twenty-four hours is almost $3 / 2$ pounds of water, of which somewhat more, $2 / 3$ say $21 / 2$, are furnished by the skin, of these $21 / 2$ pounds (only 1/6) is furnished by the vital process of secretion by the siveat glands, for the greater part of the moisture transures through the skin by simple evaporation. Fol health the body must evaporate a quantity of water within certain limits; the amount evaporater is influenced by the hygrometric condition of the air and by the state of the body itself. The evaporation is increased by muscular action and by a dry atmosphere, it is diminished by repose and by a moist air.

BXTRACT FROM THE REPORT OF A SELECT COMMITIEE ON
THE VENTILATION OF THE HOUSE OF COMMIONS, LONDON, PRINTED MAY 3IST, 1886 .
"The plan adopted and worked for many years under the superintendence of Dr. Percy consisted in drawing the fresh air into the House and the vitiated air from the House by means of heated shafts in the clock tower and in Victoria tower. By this exhatust process the air in the Housc wast placed under a somewhat lower pressure than the air outside, and a pull thus created which caused the entry of foul air from any accidental source of impurity within reach of this pull, as from closets, etc. Since this plan was established many years ago much progress has been mate in the art and science of ventilation, especially in mechanical appliances for the purpose, and by means of these, greater efficiency and certainty, as well as increased economy in working was attained than was possible under the older system.
The great advantage of mechanical ventilation is that as the air is pumped in, a slight excess of pressure exists in the ventilated spaces over that in the outside, and therefore iny section of air from impure sources, such as imperfect soil pipes, closets, ptc., is avoided. The Committee, for the above reasons, are of opinion it is advisable to cut off the exbaust so that the air pressure may be above rather than below that of the external atmosphere." But it appears by evidence given before the Select Committee of the House of Commons on ventilation, June 1891, that the recommendation in the previous reports had only been carried out to a limited extent, and that the system of extracting the vitiated air at the ceiling is still in operation-the witness stated that air drawn from the Court Yard passes by steam batteries by which it is warmedit then passes down the floor of the house which is perforated ail down the centre and in various other parts, there it ascends through the ceiling and passes down four shafts about 700 feet in length to the basement and then horizontally through the basement for a considerable distance and discharges into the Clock Tower where there is a very powerful up cast, whicls must require a very much larger consumption of fuel than would be necessary if the exhaust were from the floor of the House by mechanical means.

POSITION OF HAJLS.
Some adverse criticisms having been made with respect to the House of Representatives at Washington being surrounded by
rooms, and not having any contact at the sides with the external air. In a report to Congress the objection is thus met, "It is supposed by many that the inclosure of one building within another, the inner one being the liall, is a serious defect in the construction with a view to equable temperature and a healthy ventilation ; on the contrary, it is a great advantare. If the hall approached the exterior wall it wonkl be subject not only to all the internal changes of temperature and elements disturbing the ventilation, but also to all those of the external atmospliere and the weather. Almost every one of the disturbing elements that have been named would be greatly aggravated if the hall approaclied the exterior. External influences like those of noises, winds, and storms would make themselves felt disagreeably which are now altogether excluded. There is no doubi that the more perfect the ventilation is the more perfect the acoustic properties of the hall will be. A pure atmosphere being favorable to the speaker's bealth and strength, will give him greater power of voice and endurance, thus indirectly improving the hearing by strenthening the source of sound, and also enabling the hearer to give his attention for a longer period.
In compiling the foregoing remarks, the various reports to Congress by A. C. Stimers, Naval Engineer, General Haupr, L. W. Leeds, Capt. Meigs, E. Clark and others, have been freely quoted, also reports of Select Committee on Ventilation of the House of Commons, London.
After many years of study and experience 1 an strongly of opinion that the most efficient system of ventiation for halls for the assemblage of large numbers of people is by the introduction of fresh, pure air beated by passing over steam or hot water pipes in chambers and driven and exhausted by the most approved appliances, introducing the pure fresh air at the ceiling and exhausting at the floor, which may be terned the downwards draught and plenum system.

SANITARY PLUMBING.*
 Bu Cefare J. Marani, Grad. S.p.S.
 (Continued from April Number.)

That in so far as it lies wiflin our potwer, the waste pipe system be freed
 from any lendency to retain decomposing motter, giving of saseous products
knowon to de detrimental to healfh, or thene very gaves tuhen Renerated elseknotion
From the mechanical side I should say, bave the work done by a thoroughly reliable and competent worknian; one who knows and realizes lie importance of honest worknanship in connecting pipes, in ventilating traps, etc. To place the work in the hands of an ailmitcedly good nan, thorough mechanic in hims if, but one who always employs underment to do his "jobs," and then to rest at case with the false idea that your share of he work has been performed, and that the workm.anship will turn out as desired, reminds me of the story of that sinp'e-minderi housevife, who, after placing her marketing of ganie and rowl on the lable of her coltage, olher birds of prey, went of keaving the cotlage door wide open. During other birds of prey, went of leaving the cottage door wide open. During
her absence, the fuble gues on to siy, bears, andl other beass, entered and her absence, the fuble gues of
Itried the malketing away.
It is the duty of the architect to determine whether the men actually doing the work are competent or not: and further, be should insikt lant the work ve done by connpetent nen, and competent men only, otherwise all kinds of defects will crawl into the system and provebeyond detection when the work is finished.
Recesses due to badly constructed joints, beads, and strings of solder, or he ends of gaskets in the pipe, all tend to retain filth. Bad connections between vent pipes and traps, destroy the efficiency of the latter. Unnecessary traps, or want of sufficinnt grade, are again, blunders for which the The sizes of the soil pipe plumbing system is alone to blame
The sizes of the soil pipe and waste branches hatve also an important buaring on this point. For nnless they are so proportioned as to be self.cleans. ing, the interior surface of the whole sysiem will cost over with n gre-sy slme, known to gire off pestiferuus guses ten tinies noore aboninable than hose found in the main scwer.
Ventilation, while indispensable as a diluter and safe remover of any gases forming or collecting in the system, tends furthermore to arrest, and to at great extent destroy, such a coating. IIre free ventilation of the whale system, thereforc, demands our most careful consideration. This brings up a point still at issue among leading sanitary authorities :-" The whether in tray should be placed on the house drain hefore it explifes into the street ewer, or not." I ain inclined to side uith those who b. Id that, while there aray be some doubt as to the policy of omitting such a trap in cities, for insance like Toronto, where in the first place the main sewers have been ill conitructed, and still more badiy ventilated; that, even in the cere of only rotembly good sewvers, such argunvents are only valid that advocate the omission of such traps. It is a fuct that such traps arrest the flow of the waste liquids along the pipes, and therefore destroy in a measure their scouring properties, besides reducing the efficiency of carringe of the said iquids
They alse end to complicate the system by rendering it necessary to introluce a fresh aininget pipe, on the louse sithe of their water seals, in order to provide for entilation.
At the $\mathrm{b}:: 1$, this additional pipe, when brought n tew feel above the groind, ceitainly does not add to the artisite effeet of a building, and may somtlimes prove dangerous to children who may be playing in. its vicinity. For since we have the pressure of this obstructing trap on the one side, and sometimes a descembing column of water in the soil on the other, any gases
lhus confined between the two, can only escape by lifis so enlied " lreshlhus confined
air inlet pipe.
Besides, 1 feel fully convinced that the best and most uniform ventitation for our lines of pipes and drains can only be secured when we open one end into the larfer street sewer beneath the ground, and the other towneds the tarry firmament above the roof.
That every part of the plumbing be visible, whenever possible, and conveniently situnted ns against accidents nnd repairs.
It is not long since you could not Find a single fixture in even the most costly of dwellings, that was not tightly alsed in wood. This was partiettlarly so with the watcr closel. Sanitarians pointed out the dangers to lieath arising from such a pmetice, and to-day one con judge of the Renemi
alecture delivered before the Engineering Socicly of the Scliosi of Practical
science, Torma.
mproved tone of puhlis opinion on the matter, by just simply looking though any of the mumerous descriptive catnlogues issued by manuficturers of plumbing fixtures, ste., who, of course, study the demands of the market.
I'tue public taste is cerminly tending in the right direetion, when marble topped wash tasins, supported merely by open Lrackets or brass legs, and water closets frec from all woodwork save for an oak er mahogany lup, are locing iniroduced into the better class of dwellings.
Sxill we find that certain parts of our systetti, just as inportant to the efli cient working of the whole, but beeause of less pretentious appearance than cient working of the whole, but veenuse of less pretentious appearance than the upportionment of the plunbing expenditures. 1 r for to the all inuportthe upporionment of the plunibing exp
One often finds thalt while care and judgunent are manifest in the selection and arrangements of the obber fixtures of a house, any chemp concern bats been accepted to piss for the kitchen sink. Dut, as if instigated by some secred feeling of duat is to the fustifinbleness of such a comrse, and us if a-bamed of the uacanny result, we find that the owner, or architect, has had it securely encased in carpentry.

Noit only are the waste pipes, traps, and joints thus cul off from view where hey mosi require watching, but os the dark foul space underneath the sink is invariably utilized for the storage of cooking utensils, llops, rags, of shoes, coal oil cans, scrubbing brushes, boot blackening, grease, and other matter certainly never calculated to aid sanitary conditions.
The same might be said of the servants' hopper, which shivuld tre free from all wood wouk.
It shou'd be placed where a quantity of light and ventilation enn be had a all times, and not carefully and gingerly contaned to a little cubby hole some where beneath the stairease, or in a dark unventilated closet, where it works mysteriously in a mysterious darkncss.

A word with regard to the soil pipe in the basement. The best pmetice of the day is jusily tending to do away with the burying of the soil pipe with in the house, and underneath the concrete or wooden flooring of the cellar That this was a pernicious habit it is needless to explain.
Should nn obstruction of any kind take place within the house, it might necessitate the tearing up of yards and yards of finoring. And then again a line of pipes so pticed conld nor be tested and examined as effectually as if ruised clear of the floor, and open to view, leaks and otber imperfection amnouncing their presence, and being detected much more readily, in tic
later case.
That all pards be of sount innicrial. free from flatus, blemishes, ar other defacts and of the kind of matrrial besi swifel for heir special purpose.
In the last few years trrought iron las been introducel in the plumbing of huijdings, under what is known as the "Durham system of house drain. age,"
Itre great advantages claimed by Mr. Durham, a civil engineer, for his System ate that "wrought iron pipes are chasticand cannot be broken, and is as when kengths are serewed eogether in a wroughs imn coupling, the joill vertically fom a solid base to the height of any building widuout lateral sup-

port, and buing fouch lighter atr
Mr. Durham goes on to say:
MBy the use of wrought iron pipes and screw-join s we construct a drainage apparatus within the building, which is gas and water tight as regauds the joints: rigid, yet clastic: untirely independent of walls or floors for sup port, and absolutely invulnerable. As a structure it will last as long as any suilding will stand, and without any outhy for reppirs." The thorough relinbility of screw joinis, and the unformity of thickness and strength which can only be secured by the use of wronght iron soil pipes. seun to be the chief points in favour of this sysicm.

Cast iron pipes, when of sufticient thickness, make good soil pijes. This is casily determiaed by their weight, and the onty quatity, known on the markel as "cxtm heavy," cin be sitely recommender.
Even this class of pipe sometimes displays a markerl uncrenness of thick. ness on he opposite sides of a cross section, and therefore being in its weakest part no better than light pipe.

The bells on the "extra heavy" have sufficient strengil to staud the caulking necesary to insure a trustworthy joint, which is not the case with the lighter class of pipes.
Lend is of course unfit for soil pipes, and should no be used even for wiste pipes when a dianneter of over two incles is required. For smaller waste and vent pipes, lead can be used to great ndvantinge, for it bends, cuts. and manipulates ensily.
The thickness of any lead pipe, or in ollier words the weight jer running foot, shoukl alivny; be deterimined with reference to the work it is intended to perform.
Cast lead thtps are objectionable. drawu lead being proferable for that purpose.
I'raps and pipes mide by hand of shetet lead are of course out of finte. Brass is also used in ferrutes and in the best forms of traps. It is also used, either polished or nickle plated, for those portions of the phumbing system that lie exposed in connection with the beter class of fixtures.
Cast brass traps, are among the very best and most eficient, and to my mind a great improvement on lead trops.
Glass, when used as a portion of a irnp, is objectionable, as it is so liable 10 break by a number of cimses.
With regard to the fixtures of this syetem. I might say that the water elo set should be of earthonware or poucelain ware, th one piece, and connected to the soll pipe by the brass flange nuethod. Any of the washout closets are good, though the more rseent siphon chosets, ins for instance the Samitas, and also such improved hopper closets as the "Trent wasli down. art: considerably better. For the respective ndvantages of these I numst refer you to works on the subject. Baths and basins shoukd be of joreethill ware, When a bath of this kind slould be fount too expensive, a "" porculain-lined iron bath" of the Imperial class will nnswer well: and hoppers and kitchen sinks should be preferably of English brown ware, or Yorkshire ware, Por-celain-lined wash tubs are good, bough they do not hist like the porcelnin ones.
That the tatole system be gut lightly lopether in the best approaed manncer. and fossessine wniformily in strempth and durasilisy
This comprises a very wide and impoitant field, for, not only must the meckanienl part, i, e, the cutling, bending, fitting, wiping, soldering caulking, etc. (which go to make the Art as distinct from the Science of plumbing), come under consideration singly; but the whole work nust be previously thought out, with a view to uniformity of strengeth and durability of the entire system. While the most npproved practical methods may be inderstood by the scientist, it takes the practical workman to carry then out in part or in whole, and for this fact a good mechathic is indispensable, For the tightness and safety, then, of our system, we have to depend on the commendable aur of the men we employ. No matier how scientific and emble or defective, wes, if the workmanship prove belownent or failure. I therefore fait to see the force of the argunments scemingly liasel on the
assumption that the science is everything, and the art a very secondary portion of our subject.
That this was the tendency among sanilarians in Great Britain, when saniory plumbing received a fresh impetus some ten years ago, may be seen from the following remaiks by S. Stevens Actlyer :
"If I were going to build a house for my own occupation, I should prefer the plumbing work to be done by the man who was more skilled in the science than in the art of his cmil-that is to say, I should prefer a poor joint wiper to a clever one, providing the former knew what the latler did not, viz., how to select and arrange the trap, pipes, and fittings, so that they would be 'self-cleansing'; what kind of tmp; to select, and how to ventitate them so that they would nol lose their water seals, how to ventilate the wiste-pipes, soil pipes, and drains, so thit the air within them should be consiantly changed-know. in short, how to execute his work on sanitary principles."
In these days of specialisingand high speed, it would almnst be impossible to find a man who might be considered equally competent to lay out both a system of plumbing for you, and construct the same from cellar to attic a system of plumbing Wer you, and consitit. We do not want it. But we with his own hands. We do nell expect it. beads properly made, and the
do insist on the joints being well wiped, the be do insist on the joinis
hells tightly caulked.
That dhe sohole system be as rimple as potrible and consistent wifh conThat bue zohole symem be as fitn
uenience, efticiency, and security.
uenience, efficiency, and security. 1 think this appeals to all scientife minds, though I know of certain plumb. ers in this cown, who, if judged by their works, certainly coukd not be said to ers in this town, who, if judge
agree with me in this respect.
gree with me in this respect.
However, I am glad to notice that there is a strong tendency towards simplification in plumbing work throughout this, continent, which will tend to make good plumbing more popukur and fess cossly, and I firmly believe that a judicious use of anti-siphonic traps will prove one of the-greatest factors in implifying the house-plumbing of the future.
Whife if do nol ndmit that they are preferable in cvery case, and for all fixtures, still I will say this, that the better kinds are more trusworthy. and ess liable to get out of order than architects and sabilarians imagine, and further, that for certain cases they are undoubtedly the only traps thet meet lie requirements to any,degrec.
Owners should be advised against such fads as, for instance, having a basin, or other fixture, placed in some remote corner of the house, and at a considerabte distance from any of the main pipes of the plumbing system. Such arrangements greatly increase the number and compliention of pipes, not to spentit of the cost, and the fact that security is being sacrificen, in at measure, for trifing convenience.
At present the ventholes in water closet fixtures are mude 100 small. A water closet trap should be vented with nothing less than a 3 -in. vent pipe, and running traps under basins, ctc., should be vented with vent-pipes at least of the same size as their wastes, and in most cases a little larger di. meter is preferable.
Sanitnrians seem to forget that while ventilating pipes are useful in preventing the siphoning of traps, their principal work is to ventilate. Experiments have shown that they cannot do this efortively, unless they are made arge enough.
As sink wastes have a tendency to be too large, we may therefore expect lo sce, in the near future, the diminution of the diameter of certain wastes, and the enlarging of certain ventilating pipes, and thereby the increasing of the efficiency of boih.
That the appliances used be economical, reliabie, and adding materially to the comforts of the inmates of the building.
In conclusion, I may siy that the number of fixtures in a dwelling should bc kept down as much as possible. Not merely from a consideration of cconomy, but from the more important standpoint of health. The oftener traps are used the better. Where a bouse has a large number of thasins, somie may be rarely used, and their traps are linble to evapornte away. Wherever overflow-pipes can be done away with, it is for the betier.
Basins provided with the Boston plug, which acts both as a plug and as an overflow waste in itself, are the best fixtures of the kind on the market tonday. Wastes from vefrigerators, cistern, safes, evc., of course should never be conrected directiy to the plumbing system, but all these secondary points are well treated in any of the more tecen books on the subject.
After all, the underlying principle of "" sanitary plumbing." is to secure such an arrangement of pipes, traps, and fixtures, that any solids, liguids, or gases can readily and speedily find an enirance into the plumbing system, it any of the openings in the house: but that having once gained an entrance, they can neveramore return to injure the health of the inmates of that dwelling. When this fundamental principle is thoroughly understoud, it shoukd not prove a hard task to determine upon a sanitary system of house drainagc.

The Hobbs Hardware Company, London, Ont., will siatt a bevelling, silvering and plating factory.
Mr. E. R. Burpee, is at the head of a company which proposes to establish granite polishing works at Calais, N. B.
Mr. Peter Nicholson, one of the oldest contractors of the city of Montreal, died on May grd from injuries caused by n runaway hotse Decrnsed, who was seventy-one years of age, was a natlve of Casthton, Caithness, Scethand. wals seventy-ane years of age, was a native of Castetonal
He was a resident of Monireal for thirty-four years.

(AVIFATVIES NNDMTERLAS

HYDRAULIC CEMENTS-NATURAL AND ARTIFICIAL THEIR COMPARATIVE VALUES.*

(Continued from April Number.)

The Board of Public Works, or the city engineer adverises for cement. The specifications call for a certain fineness, and so many pounds tensile strain-I hour in air and 23 . in water.
Then up comes the great unwashed army of cement-makers, who, unlike the engineers that sil in judgment ever their hard-wrought products, have not yet awakened to the wondrous advantages of association, having no A. S. C. E." (American Society of Cement Experts), through which to clevale their calling to the dignity and standing it deserves. And so they scramble up to the engineer's office cach with his pockets filted whit testiAnd what of the engineer? We notice aniffetured in the unied sinces we never observed before Serenely he surveys the group of yneasy cement. makers before him. He opens the bids, and as usual, the figures are all makers before him. He opens the bids, and as usual, the figures are all bunched elosely together. The cement-makers are anxious. Not so with formation, that the board had ordered a testing machine.
In the course of time it is announced that the contract has been awarded 10 Mr . A., as his crment slood the highest in the lest. Then anolher city 10 Mr. A., as his cememt stood the highest in the lest gets the anolher cily
adveritus, and the same operation is repented, nad B gets adverugus, and the same operation is repeated, nad B gets the coniruct, be-
cause his cement stood the highest in the test. And so with one city after another, and the cement-makers trom A. 10% all get a chance, and all nre another, and the cement-makers from A. io ail get a chance, and ail nre
satisfed, for each has lound a place where his cement hns tested the highest, satished, for each has lound a place where his cement hns
In proving conclusively that each brand was the best. the conn secting link, that as we have said ouglt to exist beiween high tenthe connecing link, that is we have said ouglt to exist between high len-
sile strain and first quallity, we have traveled up and down the whole line, sile strain and first quality, we have traveled up and down the whole line,
commencing withucement containing 50 per cent. clay and so per cept. lime, commencing withycement containing 50 per cent. clay and so per cent. lifme,
and following along up through its varying mixtures until pure white lime with no clay is reached.
These we bave studied under every conceivable manner of manufacture and subsequent manipulation. Studying the varying properties, with all their bewildering and mystifying contradialions ; plodding through the thousand and ore phrases that are continually being developed in the course of a long experience in the study of the natural cements of this country, no iwo brands of which are alike in their proportions of lime, magnesia, silica and alumnia; searching the tables of tests made by prominent engineers from time to time; comparing the tables with the analyses of the brands tested; weighing carefully every feature that gave the slightest promise of throwing light on the subject ; and now, after all these years, we are compelled to admit that we have not been able to discover the slightest relntionship between the high test and good quality. We cannot tell what the fuure may bave in store for us. Some genius who may not have devored more than his spare moments to the sibject, may tell us all about it.
Practical experience teaches that we can find both good and bad cements thit will sustain a high tensile strain, and that we can find both good and bad cements that will test low.
Portland cement has not been in use in this country long enough to earn the fosition it now occupies, but owing to some peculiarity in is molecular construction, it will test higher than our American cements and will get harder. Yet hardness is no evidence of durability; with equal exposure, a fint stone will disintegmde much more rapidly than n soft magnesian lime sione. But the demand is fora higher testing cement, and the engineer who years ago, used American cements in a sever or bridge, without n thought of failure and with no signs of failure yet in sight, wifl incline to the bellief that he ought to use a betier cement. - and so Portand is used in what nre called trying pla ecs. But the fact that he once used American cements successlu:ly in places just as trying, is dismissed, for he does not care to tike any chances of that kind again, and so public opinion has been buill up, and it would be a rash man indeed who would dare to stand up ngainst it.
Even the manufacturer of a first-class American cement, who may have grown grey in the business, looking back over the field. calls to mind the work dome with his cement. Here is a costly bridge wihh its puers reaching far down below the surfice. There is a tunnel running through the base of a mountain. He recalls the great bridges over the Ningara, the water works Ohio. Mississippi and Misouri Chicago ; the great brigges spaniong with their innumerable culverts and bridges; the sewers in all the cities of the country, amounting in the aggregote to hundreds upon hundreds of miles. With all these marvelous engineering works of the past to look upon, con. suming upwards of seventyfive million barrels of natural cement-all minufactured in this country, and none of these works requiring renewal on account of the poor quality of the cement used, yet the manufacturers of this enormous amount of cement are daily reminded that their cement is an artiele good enough perhaps of its class, but it is ouly a common cement at the best. (To be Continued.)

WE

Want every builder to become familuar with Adamant. It is the only fire-resisting water-pioof mortar on the market. Its many advantages

ARE

obvious. It works easier, is harder, cleaner, and in the end more satisfactory than any plastering compound known. Our references are
THE PEOPLE!
Ardamant Mfg. Go.,
100 ESPLANADE EAST, Tencphonic 2180. - TORONTO.

Portland Cements

All the best known brands at from $\$ 1.80$ per cusk.
 SEYYER PIPES, Standard and Scoteh, Fire Bricks Fire Clay Flue Covers Chimney Ldiings and Tops
CALPINED PLASTER We are Agents for the best Nova Scotla makers.

THR LARGEST STOCKS IN CANADA OF THESE GOODS, AND AT BOTTOM PRICES,
W. MeNALLY \& CO.

ESTABLISHED 1876.)

- MOLTNRIRT。

[^0]: -Paper by Thos. Fuller, Chief Archikect, Domiaion Boand of Works, read by Mr.
 Billings at the Second Annual Convention of the Ontario Associntion of Architects.

