IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

33 WEST MAIN STREET Corporation (716) B7.2.4503

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original ccpy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture eridommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur

Colourad ink (i.e. other than blue or blacki/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations on couleur

Bound with other material/
Relié avec d'autres documentsTight binding may cause shadows or distortion alorig interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les dátails de cet exomplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laitinated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou pıquéesPages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Inciudes supplementary material/
Comprend du matériel supplémentarre
Only edition availab!e/
Seule édition disponiblePages wholly or partially obscured by errata slips, tissues, etc., have haen refilmed to ensure the best possible image/
Les pages totalement ou partirllement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées á nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks io the generosity of:

National Library of Canada

The irrages appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriats. All other original copies are filmed begirining on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CON'. TINUED"), oi the symbol $\boldsymbol{\nabla}$ (meaning "END"), whichever apflies.

Maps, pletes, charts, etc., may be filmed at different reduction ratius. Those too large tc be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale du Canada

Les irneges suivantes ont été reproduites avec le plus grand soin, compie tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filir:és en commençant par le preinier plat et en 'erminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires origınaux sont filmés en commençant par la premiàre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reprsduit en un seul ciiché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagramınes suivants illustrent la méthode.

FO

Canadian Contractor's Hand-Book,

A COMPLENDIUM OF

USEFUL INFORMATION

FOR PERSONS ENGAGED ON WORKS OF CONSTRUCTION.

SECOND EDITION

PUHIISIIED RY

GHAS. H. MORTIMER,
 TORONTO, CANAIAA.

TORON'TO:
Canaman Architect and buidier Press, 1893.

PREFACE TO SECOND EDITION.

THE first edition of the Canadian Contractor's Hand-Bgok was issued in $: 889$. For a time the book was given as a premium to new subscribers to the Canadian Architect and Bulder with the olject of introducing that journal, which was then in its infancy, as rapidly and widely as possible to Canadian builders.

Since ceasing to use the book for this purpose, there has been such an unexpected demand for it on the part of contractors, architects and others, as to make it appear desirable to publish this second edition.

The contents of the first edition have been thoroughly revised, and any data not applicable to the present time omitted. Upwards of seventy-five pages of new and most valuable information have been added to the present edition.

It is hoped that the Hand-Book in its present form and at the reasonable price at which it is offered, will commend isself to Canadian builders, contractors, architects, etc., for whose information especially it has been compiled.

Table of Contents.

Iron
Iron
Iron,
Iron,
Iron,
lron,
Iron
Iron,
Iron,
Iron
Iron
Iron,
Iron,
Iron,
Iron,
Joints
Keys
Lami
Light
Lime
Lumb
Maso
Mate
Mate
Moist
Paint
Paint
Panti
Pape
Piers,
Pigm
Pipes
Pipes
Pipes
Pipes
Pipes
Plast
Plum

Pace
${ }^{11} 3$

PAGE
Resin, uses ofRoofs, loads on $12+$
Sand for concrete and mortar 107
Sash weights, table 63
Scaftold by-laws 32-34
Slates, number per square 120
Slates, tests for 150
Staircase, proportions, treads and risers 63
Staircases, putting together 103
Staircases, setting out, winders and newals 102
Stcel, weight of 51
Steel, to remove rust from 134
Steel, to prescue from rust 134
Stone, artificial, strength of 121
Stone, lamination of 108
Stone, limestone 107
Stone, prescrving 137
Stone walls, strength of 104-5
Substances, weights of 4^{8}
'Timber and plank Hoors 127
'Timber, properties of 122
Timber, strength of 128
Tubes, wrought iron and welded 133
Wages, tables $6+-95$
Walls, brick, thickness of 109
Walls, brick, heights and lengths of 103
Walls, moisture penetrating 99
Walls, power to resist pressure 98
Walls, strength of stone 104.5
Walls, test for dryness of 105
Wear and tear of material 62
Weights and measures, tables of 56-63
White pine beams, safe loads 114
White pine struts or posts, safe loads 117
White pine, tests of 124
Wind force 49
Woods, strength of various 128

THE MECHANICS' LIEN ACT.

HER Majesty, by and with the advice and consent of the Legislative Assembly of the Province of Ontario, enacts Short Title. as follows :-
I. This Act may be cited as "The Mechanics' Lien Act." R. S. O. 1877, C. 120, S. I.
II. Where the following words occur in this Act, or in the schedules thereto, they shall be construed in the manner hereinafter mentioned, unless a contrary intention appears :-

I "Contractor" shalı mean a person with or employed directly by the owner for the doing of work or placing or furnishing "Contractor." of machinery or materials for any of the purposes mentioned in this Act ;
2 "Sub-contractor" shall mean a person not contracting with or employed directly by the owner for the purposes aforesaid, but contracting with or employed by the "contractor" or under him by another "sub-contractor ;"
3. "Owner" shall extend to and include a person having any estate or interest in the lands upon or in respect of which the work is done, or materials or machinery are placed or furnished, at whose request and upon whose credit or upon whose behalf or with whose privity or consent or for whose direct berefit any such work is done, or materials or machinery placed or furnisised, and all persons claiming under him, whose rights are acquired after the work in respect of which the lien is claimed is commenced, or the materials or the machinery furnished have been commenced to be furnished. R. S. O. I877, C. 120, S. 2.

1II. No agreement shall be held to deprive anyone otherwise Person not deprived entitled to a lien under this Act, and not a party to the agreement, of lien by agreement, of the beneft of the lien, but the lien shall attach, notwithstanding such agreement. 47 V. C. 18, S. I, part.
4. Unless he signs an express agreement to the contrary, every mechanic, machinst, builder, miner, laborer, contractor or other person doing work upon, or furnishing materials to be used in, the construction, alteration or repair of any bulding or erection, or erecting, furnishing or placing machinery of any kind in, upen or in connection with any building, erection or mine, Mechanics and others shall by virtue of being so employed or furnishing, have a lien for to have liens tor work the price of the work, machinery or materials, upon the bullding, done, etc. erection or inine, and the lands occupied thereby or enjoyed therewith, limited in amount to the sum justly due to the person entitied to the lien. R. S. O. 1877, c. 120, s. $3 ; 47$ V. c. 18 , s. 1 , part.
V. (I) The lien shall attach upon the estate and interest of the owner, as defined by this Act, in the building, erection or mine upon or in respect of which the work is done or the materials or machinery placed or furnished, and the land occupied. thereby or enjoyed therewith.
(2). In cases where the estate or interest charged by the lien is leasehold, the fee simple inay also, with the conserit of the owner thereof, be subject to said charge, provided such consent is testified by the signature of such owner upon the claim at the rirged is leasehold, time of the registering thereof, and duly yerified. R. S. O. 1877, charged in certain c. 120 , s. 6, 47 V. c. 18 s. 5.
(3) In case the land upon or in respect of which any work as aforesaid is executed, or labor performed or upon which materials or machinery are placed is incumbered by a prior mortgage or other charge, and the selling value of the land is increased

Mortgaged land.

Lien for 30 days wages.

Property affected. by the construction alteration or repairs of the building, or by the erection or placing of the materials or machinery, the lien under this Act shall be entitled to rank upon the increased value in priority to the mortgage or other charge. R.S. O. I877, c. 120, s. 7 ; 45 V. c. 15 , s. 13 .
VI. (1). Without prejudice to any lien which he may have under the preceding sections, every mechanic, laborer or or other person who performs labor for wages upon the construction, alteration or repairs of any building or erection, or in erecting or placing machinery of any kind in, upon, cr in connection with, any building, erection, or mine, shall to the extent of the interest of the owner have, upon the building, erection, or mine, and the land occupied thereby and enjoyed therewith, a lien for such wages, not exceeding the wages of thisty days, or a balance equal to his wages for thirty days.
(2). The lien for wages given by this section shall attach when the labor is in respect of a building, erection or mine belonging to the wife of the person at whose instance the work is done upon the estate or interest of the wife in such property, as well as upon that of her husband. 45 Vict. c. 15 , ss. 2, 3.
VII. In all cases, the owner shall, in the absence of a stipu-

Owner may retain so per cent. of contract price.

Claim by sub-contractor limited.

Certain payments to discharge the lien. lation to the contrary, be entitled to retain for a period of thirty days after the completion of the contract, ter per centum of the price to be paid to the contracter. $45 \mathrm{~V} . \mathrm{c} .15, \mathrm{~s} .5$.
VIII. In case the lien is claimed by a sub-contractor, the amount which may be claimed in respect thereof shall be limited to the amount payable to the contractor or sub-contractor (as the case may be) for whom the work has been done, or materials or machinery have been furnished or placed. R. S. O. 1877, c. 120, s. 6.
IX.-(I). All payments, up to ninety per centum of the price to be paid for the work, machinery or materials, as defined by section 4 of this Act, made in good faith by the owner to the contractor, or by the contractor to the sub-contractor, or by one sub-contractor to another sub-contractor, before notice in writing, by the person claiming the lien has been given to such owner, contractor or sub-contractor (as the case may be), of the claim ol such person, shall operate as a discharge pro tanto of the lien created by this Act, but this section shall not apply to any payment made for the purpose of defeating or impairing a claim to a lien existing or arising under this Act. 41 Vic. c. 17, s. 1.
(2). A lien shall, in addition to all other rights or remedies given by this Act, also operate as a charge to the extent of ten per centum: of the price to be paid by the owner for the work,
Licn to extent of 10 per cent. when a charge.
machinery or materials as defined by section 4 of this Act up to ten days after the completion of the work or of the delivery of the materials, in respect of which such lien exists, and no longer, unless notice in writing be given as herein provided. $41 \mathrm{~V} . \mathrm{c}$. 17, s. 2.
(3). A lien for wages for thirty days, or for a balance equal to
rk as ateritgage eased or by e lien value - 120,
the wages for thirty days, shall, to the extent of the said ten per cent. of the price to be paid to the contractor, have prionity over Priority of lien for 3^{0} all other liens under this Act, and over any claim by the owner days' wages. against the contractor for, or in coasequence of the failute of the latter to complete his contract. 45 V.c. 15, s. 4.
X. Save as herein provided, the lien shall not attach so as to make the owner liable to a greater sum than the sum payable by the owner to the contractor. R. S. O. 1877, c. 120, S. 6, part; 45. V. C. 15, S. 4.
XI. All persons furnishing material or doing labor for the person having a iien under this Act, in respert of the subject of such lien, who notify the owner of the premises sought to be affected thereby, withir thirty days atter such material is furnished, or labor performed, of an unpaid account or demand against such lien-holder, for such material or labor, stall be entitled, subject to the provisions of sections 6 and 9 , payable by such owner, under said lien; and if the owner thereupon pays the amount of such charge to the person furnishing material, and doing labor as aforesaid, such payment shall be deemed a satisfaction pro tanto of such lien. R. S. O. 1877, C. 120, S. 8.
XII. In case of a dispute as to the validity or amount of an unpaid account or demand, of which notice is given to the owner under the preceding section, the same shall be first determined by action in the proper court in that behalf, or by arbitration, in manner mentioned in section 14 at the option of the person havExtent of owners' liing the unpaid account or demand against the lien holder ; and pending the proceedings to determine the dispute, so much of the amount ot the lien as is in question therein may be withheld from the person claiming the lien. R. S. O. 1877, C. 120, S. 9.
XIII. In case the person primarily liable to the person giving such notice as mentioned in section 11 fails to pay the amount awarded within ten days after the award is made, the owner, contractor or sub-contractor may pay the same out of any moneys due by him to the person primarily liable as aforesaid,

Disputes as to clains against lien-holders. on account of the work done or materials or machinery furnished or placed in respect of which the debt arose ; and such payment If made after an award (or if made without any arbitration havbeen previously had or dispute existing, then, if the debt in fact existed and to the extent thereof,) shall operate as a discharge protanto of the moneys so due as aforesaid to the person primarily liable. R. S. O. 1877, c. 120, S. 10.
XIV. (r.) In case a claim is made by a sub-contractor in respect of a lien to which he is entitled, and a dispute arises as sulp-contractors to be to the amount due or payable in respect thereof, the same shall referred to arbitration be settled by arbitration.
(2). One arbitrator shall| be appointed by the person making
sie claim, one by the person by whom he was employed, and the

Appoiutiment of arbitrators. third arbitrator shall be appointed by the two so chosen.
(3). The decision of the arbitrators or a majority of them shall be final and conclusive. R.S. O. 1877 , c. 120, s. 18 .
(4). In case either of the parties interested in any surh dispute, refuses or neglects within three days after notice in writing requiring him to do $s o$, to appoint an arbitrator, or if the arbitra-

Failure topay amount awanded.

Property affected by the lien not to be re moved.
tors appointed fail to agree upon a third, the appointment may be made b_{j} a County Judge of the county in which the lands in respect of which the iien is claimed are situate. R. S. O. I877, C. I20. S. I9.
XV. During the continuance of a lien, no portion of the property or machinery affected thereby, shall be removed to the prejudice of the lien ; and any attempt at such removal may be restrained by application to the County Court or the Judge thereof, or the High Court respectively, according as the claim is under or over the sum of \$200. R. S. O. 1877, c. 120, s. 22.
Claim may be regis. XVi. (I). A claim of lien applicable to the case, may be terec. registered in the registry division in which the land is situate, and shall state:
(a). The name and residence of the claimant and of the owner of the property to be charged, and of the person for whom and upon whose credit the work is done or materials or machunery furnished, and the time or period within which the same was, or was to be, done or furnished ;
(b) The work done or materials or machinery furnished;
(c) The sum claimed as due, or to become due;
(d) The description of the land to be charged :
(c) The date of expiry of the period of credit agreed to by the lien-holder for payment for his work, materials or machinery, where credit has been given.
(2). The claim miry be one of the forms given in the schedule in this Act, and shall be verified by the affidavit of the clammant, Affidavit of verifica- or of his agent or assignee having full lnowledge of the matters tion may be made by required to be verified, and the affidavit of an arient or assignee
arent or assignee. shall state he has such knowledge. R. S. O. 1877, c. izo, s. 4 (土, 2) ; 47 V. c. 18, ss. 2, 3.
XVII. A claim for wages may include the claims of any nu:nber of mechanics, laborers, or other persons afnresand, who may Claims for wages may choose to unite therein. In such case each claimant shall verify be combined. his claim by his affidavit, but need not repeat the facts set out in the claim ; and an affidavit substantially in accordance with form 4 in the schedule to this Act, shall be sufficient : 45 V . c. 15, ss. 8, 10.
XVIII. (1). The registrar, upon payment of his fee, shall register the claim, so that the same may appear as an incum-
Registration of claims brance against the land therein described. R. S. O. 1877, c. 120, s. 〕; 47 V. c. 18, s. 4, puri.
(2). The fee for registration shall be twenty-five cents; if
liee. several persons join in one claim, the registrar shall have a further fee of ten cents for every person atter the first. 45 V . c. 15, S. It.
(3). The registrar shall not 'e bound to copy in any registry Mode of tegistration book any claim or affidavit, but he shall number each claim, and shall inse". in the alphabelic and abstract indexes, the like particulars as in other cases; he may describe the nature of the instrument as "Mechanirs' Lien." 45 V. c. 15, 5. 11.
XIX. Where a clain is se registered, the person entitled to Registry Act to ap-the lien shall be deemed a purchaser protanto, and within the ply. Rev. Stat., c. provisions of The Regrastry Act, but except as herein otherwise
t may nds in 1877, e proto the lay be thereim is
provided, The Registry Act shall not apply to any lien arrsing under this Act. R.S. O. 1877, c. 120, ss. $4(3): 26$.
XX. (I). Where the lien is for wages under sections 6 or 9 , the claim may be registered,
(a) At any time within thirty days after the last day's labor for which the wages are payable, or
(b) At any time within thirty days after the completion of Time for registration the construction, alteration or repair of the building or erection, or after the erecting or placing of the machinery, or in towards which, respectively, the labor was performed and the wages earned, but so that the whole period shall not exceed sixty days from the last day's labor aforesaid.
(2). Such lien shall not be entitled to the benefit of the provisions of sections 6: d 9 after the said respective periods, anless the same is duly a egistered before the expiration of the said periods so limited. 45 V. c. '5, s. 6.
(3). Such lien shall have the same priority for all purposes after as before registration.
XXI. In other cases the claim nay be registered before or during the progress of the work, or within thirty days from claim not arising un. the completion thereof, or from the supplying or placing the der s. s. machinery. 45 V.c. $15, \mathrm{~s} .7$.
XXII. Every lien which has not been duly registered under the provisions of this Act shall absolutely cease to exist on the expiration of the time herembetore limited for the registration thereof, unless in the ineantime proceedings are instituted to realize the claim under the provisions of this Act, and a certifi- When unregistered cate thereof (which may be granted by the Court or a Judge L a-lien shall cease. fore whom or in which the procecdings are instituted), is du! registered in the registry office of the registry division wherein the lands in respect of which the lien is claimed are situate. R. S. O. 1877, c. 120, s. 20.
XXIII. Every lien which has been duly registered under the provision of this Act shall absolutely cease to exist after the expiration of ninety days after the work has been completed, or materials or machnery furnished, or wages earned, or the expiry of the period of credit, where such period is mentioned in the when registered hen claim of hen filed, unless in the meantime proceedings are insti- shall cease.
tuted to realize the claim under the provisions of this Act, and a certificate thereof (which may be granted by the Court or Judge before whom or in which the proceedings are instituted), is duly registered in the registry office of the registry division wherein the lands in respect of which the li:n is clamed are 15 ituate. R. S. O. 1877, c. 120, s. 21.
XXIV. If there is no period of credit, or if the date of expiry of the period of credit is not stated in the claim so filed, the lien shall cease to exist upon the expiration of ninety days after the when lien to sease. work has been completed or materials or machinery furnished, unless in the meantime proceedings shall have been instituted pursuant to section 23 of this Act. 47 V. c. 18, s. 2.
XXV. In the event of the death of a lien-holder, his right of lien shall pass to his personal representatives; and the right of Death of lien-holder. a lien-holder may be assigned by any instrunsent in writing. R. S. O. 1877 , c. 120 , s. 16.

Discharge of liens. AXVI. A lien may be discharged by a receipt signed by the ing payment, and verified by affidavit and filed ; such receipt shall be numbered and entered by the registrar like other instruments, but nerd not be copied in any rook: the fees shall be the same as for registering a claim or hen. 45 V . 15 , s. I5;47 V. c. 18, s. 4.
XXVII. Where there is a contract for the execution of the work, as hereinbefore mentioned, the registration of all disCost of registering charges of liens shall be at the cost of the contractor, unless a court or judge otherwise orders. 45 V. c. 15, s. 16 ; 47 V. c. 18 ,
XXVI. A lien may be discharged by a receipt signed by the s. 4 .
XXVIII. (1) Where the amount of the claims in respect of any hen is withn the jurisdiction of the Countv or Division Courts respectively, parceedings to recover the same, according to the usnal procedure of the said court by judgment and execution, may be taken in the proper Division Court or in the County Court of the County in which the land charged is situate; or proceedings may be taken before the julge of the said Enforcerinent of lien in a Livision Court. and order, and may take accounts and make requisite enquiries, and in default of payment may direct the sale of the estate and interest charged, and such further proceedings may be taken as the judge directs.
(2). Any conveyance under the seal of the County Court Judge shall be effectual to pass the estate or interest sold.
(3). The fees and costs in all proceedings taken under this section shall be such as are payable in respect of the like or similar matters according to the ordinary procedure of the said courts respectively. R. S. O. 1877, c. 120, s. 12.
XXIX. In cases other than those specified in the preceding section the lien may be realized on the High Court, according to the ordinary procedure of that court. R.S.O. I877, c. 120, s. I 3.
XXX. (1) Any number of lien-holders may join in one action, and any action bronght by a lien-holder shall be taken to be brought on behalf of all the lien-holders of the same class Action by lien-holder who shall have registered their liens before or within 30 days to be for join benefit. after the commencement of the action, or who shatl within the said 30 days file in the proper office of the court from which the writ issued a statement entitled in or referring to the caid action, of ther respective claims.
(2). In the event of the death of the plaintiff, or his refusal or neglect to proceed, any other lien-holder of the same class who has registered his lien or filed his claim in the manner and with-
Prosecution of claim when plaintiff dies, t 。
Enforcing lien in High Comt.
(5). Where judgment is given in favor of a lien, the court or judge may add to the judgment the costs of and incidental to costs. registering the lien as well as the costs of the action. 45 V . c. 15, s. 14.
(6). Where there are several liens under this Act against the same property, each class of the lien-holders shall, subjeci to the provisions of sections 5, 9 and 11, rank pari passu for their sev- Several liens. cral amounts, and the proceeds at any sale shall, subject as aforesaid, be distributed amongst them pro rata, according to their several classes and rights, and they shall respectively be entitled to execution for any balance due to them respectively after said distribution. R. S. O. 1877, c. 120, s. 17.
(7). Upon application to the County Court, in claims under $\$ 200$, and to the High Court in other cases, the court or judge may receive security or payment into court in lieu of the amount of the claim, and may thereupon vacate the resistry of the lien.
(8). The court or judge may annul the said registry upon any other ground. R. S. O. 1877, c. 120, s. 23.
(9). In any of the said cases mentioned in sub-sections 7 and 8 , the court or judge may proceed to hear and determine the matter of the said lien, and make such order as seems just, and in case the person claiming to be entitled to such lien has wrongfully refused to sign a discharge thercof, or without just cos:s.s. cause claims a larger sum than is found by such court or judge to be due, the court or judge may order and adjudge him to pay costs to the other party. R.S. O. 1877, c. 120, s. 24 ; 47 V. c. 18 , s. 7.
XXXI. Where any mechanic, artisan, machinist, builder, miner, contractor or other person, has furnished or procured materials tor use in the construction, alteration or repair of any building, erection or mine, at the recuest of and for some other person, such materials shall not be subject to execution or other process, to enforce any debt (other than the purchase thereof) due by the person furnishing or procuring such materials, and whether the same have or have not been in whole or in part worked intก or made part of such building or erection. R.S.O. 1877, c. 120 , 5. 25.
XXXII. (1) Every mechanic or other person who has bestowed morey or skill and materials upon any chattel or thing in the alteration and improvement in its properties or for the purpose of imparting an addition 1 value to it so as thereby to be entitled to a lien upon such chattel or thing for the amount or value of the money or skill and materials bestowed, shall, while such lien exists but not afterwards, in case the amount to which he is eatitled remains unpaid tor three months after the same ought to have been paid, have the right in addition to all other remedies provided by law to sell the chattel or thing in respect of which the lien exists, on giving une week's notice by advertisement in a newspaper published in the municipality in which the work was done, or in case there is no newspaper published in such municipality, then in a newspaper published nearest thereto, stating the name of the person indebted, the anount of the debt, a description of the chattel or thing to be sold, the time and place of sale, and the name of the auctioneer,
and leaving a like notice in writing at the last or known place of residence (if any) of the owner, if he be a resident of such municipality.
(2) Such mechanic or other person shall appıy the proceeds Application of pro- of the sale in payment of the amount due to him and the costs
ceeds of sale. of advertising and sale, and shall upon application pay over any surplus to the person entitled thereto. 41 V . c. 17, s. 3.

ERRATA.

Scc. XI, pagre ir, line 7, after the words "sections of and 9," insert the words " to a charge therefor pro rata upon any amount." Sec. XVI (1), page i2, line 2, after words "in the registry" insert the words "office of the registry," etc. Sec. XIX, last line, page 13 , add " 47 V, c. 18 , s. s. 2-3." Note.-Subsection I of section 30 of this act is amended; see section 39 of
chapter 37 following.

AN ACT TO SIMPLIFY THE PROCEDURE FOR ENFORCING MECHANICS' LIENS.

proceeds he costs over any

(Assented to $7^{\text {th }}$ April, rSqo.)

HER Majesty, by and with the advice and consent of the Legislative Assembly of the Province of Ontario, enacts as follows:--
I. Any person claiming a mechanics' lien may enforce the same by means of the proceedings hereinafter set forth.
2. Without issuing a writ of summons or taking any other preliminary procecding, the plantiff may file a statement of statement of claim claim in the office of a master or official referee having jurisdic- to be filed. tion in the county wherein the lands in question are situate.
3. Such statement of claim shall be verified by affidavit. Upon the filing of such statement of claim and affidavit, the master or referee shall issue a certificate in diplicate of the filing of the same.
4. Upon the registration of such certificate in the proper registry office, or lands titles office, the action shall be deemed to have been commenced as against the owner and all other necessary partues to the action.
5. The master or referee shall also, in and by such certificate, appoint a time and place at which he will inquire into the claim of the plaintiff and take all necessary accounts ; such certificate and appointment shall be issued in cluplicate and may be in the form set forth in the schedule hereto.
6. A copy of such certificate and appointment shall be served on the owner and all other proper parties at least ten days before the day therein named for taking the first proceeding thereunder.
7. Within ten days after the service of such certificate and appointment, any person served therewith may file a notice disputing the plaintiff's right to a lien.
8. In case a notice disputing the plaintiff's hen is filed, the master or referee shall, before taking any further proceeding, determine the question raised by the notice, or may adjourn the question before a judge in chambers, and if so required by any parties may thereupon issue a certificate of his finding.
9. But if not required to issue such last mamed certificate, it shall suffice for the master or referee to enter in his book a note of his finding.

1o. Where no notice disputing the plaintiff's lien is filed as atoresaid, and the proceedings are instituted by a sub-contractor, the owner is to file in the office of the master or referee a statement of account showing what, if anything, he admits to be due, for the satisfaction of the plaintiff's lien and all other liens of the same class as the plaintiff's. Such statement is to be filed at least four days before the day named in the certificate mentioned in section 5 for taking accounts, and in case the owner shall not file such statement, or shall file an untrue statement, he may be

Certificate to name time and place for taking accounts.

Service of copy of certuficate and ap. pointiment.

Notice disputing claim.

Determination of the question rassed by notice.

Entry of finding of master.
ordered by the master or referee to pay all costs incurred in establishing the true amount due and owing from him.
II. All lienholders of the same class served with the appointment or who may claim to be entitled to the benefit of the action, shall also within four days named in the appointment for taking the accounts, or within such further time as the master or referee may allow, file in the office of the master or referee a statement of account showing the just and true sum due to them respectively, after giving credit for all sums in cash, merchandise, or otherwise, to which the debtor is entitled to credit on arcount of their respective claims, which accounts shall be verified by affidavit, and such accounts and affidavit may be in the form mentioned in the schedule hereto.
12. A lien-holder who has not filed his claim within the time limited by the next preceding section may apply to the master or referee to be let in to prove his claim at any time before the amount realized by the proceedings for the satisfaction of liens has been distributed, and such application may be granted or refused, and upon such terms as to costs and otherwise as may appear just.
13. Upon the return of the appointment to take accounts, the master or referee shall proceed to take an account of what is due from the owner, and also "hat is due to the respective lienholders and incumbrancers who have filed their clams, and shall also tax to them respectively such costs as he may find them entitled to, and shall settle their priorities and shall make all other inquiries and take all other necessary accounts for the adjustment of the rights of the various parties, including therein where there is a prior mortgage or charge, and the holder thereof is a party to the proceedings, the amount by which it shall appear to the master or referee that the selling value of land has been increased by reason of the work or materials for which a lien is claimed on the land, and shall thereupon make a report of the result of such inquiries and accounts, and shall direct that the money found due by the owner shall be paid into court, to the credit of the action at the expiration of one month from the date of the report.
14. In case any dispute arises as to the amount due from the owner for the satisfaction of the mechanics liens, or as to the amount claimed to be due, to any lien-holder or incumbrancer, the costs occasioned by the dispute shall be in the discretion of the master or referce and shall be borne and paid as he directs.

I5. It nothing is found due by the owner, the master or referee may make an order, staying all further proceedings, and make such order as to costs as shall be just, and at the expiration of fourteen days thereafter may grant a certificate, vacating the lien ot the plaintiff and all other liens of the same class as the plaintiff's, unless the issue of the certificate shall in the meantime be stayed, and if such stay is granted, the certificate may issue forthwith after the removal of the stay, or so soon thereafter as the fourteen days shall expire.
16. When anything is found due by the owner, he may on or

Lien holder not filing his claim may apply to be let in.

Master to take ac. counts, etc., and report.

Costs to be in discretion of master.
at any time before the day appointed for payment, pay the amount found due by him into court, and thereupon, upon proof of such payment, the master or referee may grant ex parte, a certificate in the form in the schedule vacating the liens of the plaintiff and all other liens of the same class as the plaintiff's.
17. The master or referee may make such order as to the owner's costs of obtaining and registering any certificate vacating a lien as may be just.
18. Upon the registration in the proper registry office or land titles office of a certificate vacating any lien or liens the same shall be thereupon vacated and discharged.
19. Upon payment into court of the amount which may be found due by owner the same shall (subject to the payment of any costs thereout as may be ordered) be paid out to the parties found entitled by the report of the master or referee.
20. In default of payment by owner within the time directed by the report, the plaintiff may apply εx parte, to the said master or referee who, upon due proof of the default may issue a judgment for the sale of the land in question for the satisfaction of the lien of the plaintiff and other liens of the same class.
21. The judgment for sale may be in the form set forth in the schedule.
22. Such judgment for sale shall be entered as other judgments are required to be entered in the proper office for entering judgments in the county in which the judgment is mide, and shall have the same force and effect as a judgment made at a trial of an action between the same parties.
23. The sale under said judgment shall be conducted in the manner prescribed by the Consolidated Rules, respecting sales had under the order of the court.
24. After the sale the master or referee shall make his report upon the sale, and shall tax the costs of the sale to the party entitled thereto, and shall in the same report apportion the money realized among the parties entitled thereto, and upon the confirmation of the report, the moneys realized may be paid out of court to the parties found entitled thereto by the report, without iuther order.
25. For the purpose of the proceedings to obtain an order for sale and for carrying out the sale, and the apportionment of the moneys realized thereunder the plaintiff shall be deemed sufficiently to represent all other lien-holders entitled to the benefit of the action unless the court or master or referee otherwise orders.
26. Any lien-holder entitled to the benefit of the action may apply for the carriage of the proceedings, and the master or referee may thereupon make such order, as to costs and otherwise as may be just, and any lien-holder who obtains the carriage of the proceedings shall in respect of all proceedings taken by him be decmed to be the plaintiff in the action.
27. Any person affected by the proceedings may apply to the master or referee to dismiss the same for want of due prosecution and the master or referee may make such order upon the application as to costs or otherwise as may be just.

Distribution of amount paid in by owner.

Judgment for sale of land on default of owner.

Form of judgrent.

Entry of judgment.

Master to make report on sale and tax costs.

Carriage of proceedings.
28. Where any infants are named for defendants the appointment referred to in section 5 may be served upon the official guardian ad litem for such infants, who shall thereupon become and be the guardian ad litem for such infant in the proceedings; and it shall not be necessary to serve any such infant defendant with any further or other proceedings and such infant shall be bound thereby.
29. Where the taxed cost of proceedings to enforce any mechanic's lien which are payable out of the amount realized by such proceedings for the satisfaction of the lien shall exceed 25 per cent. of the amount realized thereby for the satisfaction of the lien such costs shall be reduced proportionately by the master or referee so as the same shall not in the aggregate exceed the same 25 per cent. and no mote costs than such reduced amount shall be recoverable between the party and party, or solicitor and client.
30. After the amount of lien shall be realized any lien-holder who has proved a claim may apply to the said master or referee upon notice to his primary debtor for judgment for the payment of any balance which may remain due after deducting the amount received or payable in respect of the lien, and thereupon the master or referee may refuse the application upon such terms as to costs or otherwise as may be just or in case he sees fit to grant the application he shall grant a certificate of the amount, for which he finds the applicant is entitled to judgment for debt and costs.
31. Such certificate ray be filed in the proper office of the High Court for the entry of judgments if the amount awarded exceeds the sum of $\$ 400$ and the same shall thereupon be entered in the judgment book, and shall thereupon become a judgment of the High Court and may be enforced in like manner as any other judgment for the payment of money is enforced in the High Court.
32. Where the amount awarded by the certificate is less than $\$ 400$ but exceeds $\$ 100$ such certificate may in like manner be entered in the County Court of the County in which the said proceedings, are carried on and may be enforced in like manner as a judgment of such court.
33. Where the amount awarded does not exceed $\$ 100$ the certificate may be entered with the clerk of the Division Court of the division i_{i} which the debtor resides in like manner, as a judgment of such court is entered and thereupon the same shall become and be, a judgment of such court and may be enforced in like manner as any other judgment of such Division Court.
34. The fees payable for entering such certificate as a judgment shall be as follows:

In the High Court, $\$ 1.60$
In the County Court . 80
In the Division Court . 50 .
35. Orders and certificates made by a reteree or master under the Act shall be appealable in like manner as orders made in

Official guardian to be served for infants.

Costs not to exceed 25 per cent. of the amount realized.

Judgment for balance of the realizing amount of lien.

When judgment to be entered in High Court.

And when in Division Court.

[^0]jur
Co pro so am
and
the Chambers by a local judge.
guardian to ed for infants.

An Act to Consolidate the Acts Respecting Compensation to Workmen in C'ertain Cases.

[.55 V., c. 30.]
[Assented to Ifth April, rSqz.] TER Majesty, by and with the advice and consent of the as follows :-
I. This Act may be known and cited as "The Workman's Short title. Compensation for Injuries Act, iS92."
2. Where the following words occur in this Act they shall be Interpretation. construed in the manner hereinafter mentioned, unless a contrary intention appears:
(a) "Superintendence" shall be construed as meaning such general superintendence over workmen as is exercised by a foreman, or person in a like position to a foreman, whether the person exercising the superintendence is or is not ordinarily engaged in manual labour. $52 \mathrm{~V} .$, c. 23, s. 2 (3).
(b) "Employer" shall include a body of persons corporate or "Employer." unincorporate, also the legal personal representatives of a deceased employer and the person liable to pay compensation under section 4 of this Act. R. S. O. 1887, c. 141, s. $2(2), 52$ V., c. 23, S. 2 (4).
(c) "Workman" does not include a domestic or menial ser-"Workman." vant, but, save as aforesaid, means any railway servant and any person who being a laborer, servant in husbandry, journeyman, artificer, handicraftsman, miner, or otherwise engaged in manual labour, whether under the age of twenty-one years, or above that age, has entered into or works under a contract, with an employer, whether the contract be made before or after the passing of this Act, be express or implied, oral or in writing and be a contract of service or a contract personally to execute any work or labour.
(d) "Packing" shall mean a packing of wood or metal or some equally substantial or solid material, of not less than two inches in thickness, and which, when filled in, shall extend to within one and a half inches of the crown of the rails in use on any railway, shall be neatly fitted so as to come against the web of such rails and shall be well and solidly fastened to the ties on which such rails are laid. R. S. O. 1887, c. 4I, s. 2 (3-4).
(e) "Railway servant" shall mean and include a railway ser- "Railway Servant." vant, tramway servant and street railway servant. R. S. O. 1887, c. 141 , s. 2, ; 52 V. c. 23 , s. 2.
3. Where personal injury is caused to a workman :
(a) By reason of any defect in the condition or arrangement of the ways, works, machinery, plant, buildings or premises, connected with, intended for, or used in the business of the employer : or
(b) By reason of the negligence of any person in the service of the employer, who has any superintendence entrusted to him whilst in the exercise of such superintendence: or
(c) By reason of the negligence of any person, in the service of the employer, to whose orders or directions the workman at
"Superintendence," meaning of.

E3 5020

$$
4 \cdot \frac{x}{6}=
$$

pe
an
be
ga
3,

Where workman to have claim against employer.
the time of the injury was bound to conform, and did conform, where such injury resulted from his having so conformed : or
(d) By reason of the act or omission of any person in the service of the employer, done or made in obedience to the by-laws of the employer or in obedience to particular instructions given by the employer, or by any person delegated with the authority of the employer in that behalf: or
(e) By reason of the negligence of any person in the service of the employer who has the charge or control of any points, signal, locomotive, engine, machine, or train upon a railway, tramway, or street railway.

The workman, or in case the injury results in cleath, the legal personal representatives of the workman and any persons entitled in case of death shall have the same right to compensation and remedies against the employer as if the workman had not been a workman of nor in the service of the employer, nor engaged in his work. R. S. O. 1887, c. 14I, s. 3; 52 V. c. 23, ss. 3, 4, 5 .
4. (1) Where the execution of any work is being carried into Employer, who to be effect under any contract, and deemed.
(a) The person for whom the work or any part thereof, is done, owns, or supplies any ways, works, machinery, plant, buildings, or premises used for the purpose of executing the work, and :
(b) By reason of any defect in the condition or arrangements of such ways, works, machinery, plant, buildings or premises, personal injury is caused to any workman, employed by the contractor or by any sub-contractor : or
(c) The defect, or failure to discover the defect or remedy the defect arose from the negligence of the person for whom the work or any part thereof is being done, or of some person being in his service and entrusted by him with the duty, of seeing, that such condition or management is proper :

The person for whom the work or that part of the work is done shall be liable to pay compensation for the injury as if the workman had been employed by him, and for that purpose shall be deemed to be the employer of the workman, within the meaning of this Act. Provided, always; that any such contractor or subcontractor shall be liable to pay compensation for the injury as if this section had not been enacted, so however that double compensation shall not be recoverable for the same injury.
(2) Nothing in thes section contained shall affect any rights or liabilities of the person for whom the work is done and the contractor and sub-contractor (if any) as between themselves. 52 V. c. 23, s. 6.
5. Where within this province personal injury is caused to a workman employed on or about any tailway :
(a) By reason of the lower beams or members of the superstructure of any highway or other overhead bridge, or any other erection or structure over said railway not being of sufficient height from the surface of the rails to admit of an open and clear headway of at least seven feet between the top of the
highest freight cars then running on such railway and the bottom of such lower beams or members : or
(b) By reason of the space between the rails in any railway frog, extending from the point of such frog backward to where the heads of such rails are not less thon five inches apart, not being filled in with packing : or
(c) By reason of the space between any wing rail and any railway frog and between any guard rail and any other rail fixed and used alongside thereof as aforesaid and between all wing rails where no other rail intervenes (save only when the space betweer the heads of any such wing rail and railway frog as aforesaid, or between the heads of any such guard rail and any other rail fixed and used alongside thereof as aforesaid, or between the heads of any such wing rails where no other rail intervenes as aforesaid is either less than one and three-quarters of an inch or more than five inches in width) not being at all times during the month of April, May, June, July, August, September, and October, filled in with packing.

Such injury shall be cleemed and taken to have been caused by reason of a defect within the meaning of sub-aection 1 of section 3 of this Act. But nothing in this section contained shall be taken or construed, as in any respect or for any purpose restricting the meaning of said sub-section. R. S. O. 1887, c. 141, s. 4.
6. A workman shall not be entitled under this Act to any right Exceptions to preof compensation or remedy against the employer in any of the ceding provisions. following cases, that is to say
(a) Under sub-section 1 of section 3, unless the defect therein mentioned arose from or had not been discovered or remedied owing to the negligence of the employer or of some person entrusted by him with the duty, of seeing that the condition or arrangement of ways, works, machinery, plant, buildings or premises are proper. R. S. O. 1887 , c. 14 I , s. 5 , (I) ; 52 V. c. 23 s. 8.
(b) Under sub-section 4 of section 3, unless the injury resulted from i : ropriety or defect in the rules, by-laws, or instructions therei. . entioned; provided, that where a ule or by-law has been approved or has been accepted as a proper rule or bylaw either by the Lieutenant Governor in Council or under and pursuant to any provision in that behalf of any Act, of the Legislature of Ontario or of the Parliament of Canada it shall not be deemed for the purposes of this Act to be an improper or defective rule or by-law. R. S. O. 1887, c. 14I, s. 5, (2).
(c) In any case where the workman knew of the defect or negligence which caused his injury or failed without reasonable excuse to give or cause to be given, within a reasonable time information to the emplover or some person superior to himself in the service of the employer, unless he was aware that the cinployer, or such superior already knew of the said defect or negligence. Provided however that such workman shall not by reason only, of his continuing in the employment of the employer with knowledge of the defect, negligence, act, or omission, which caused his injury, be deemed to have voluntarily incurred the
risk of the injury. R.S.O. 1887 , c. 141, s. 5, (3) 52 V. c. 23 , s. s. 7, 9.
7. The amount of compensation recoverable under this Act, shall not exceed either such sum as may be found to be equivallent to the estimated earnings during the three years preceeding the injury of a person in the same grade employed during those years in the like employment, within this Province, or the sum of fifteen hundred dollars, whichever is larger : and such compensation shall not be subject to any deduction, or abatement, by reason, or on account, or in respect of any matter or thing whatsoever, save such as is specially provided for in section 12 of this Act. R.S.O. 1887, c. 141, s. 6 ; 52 V. c. 23, s. 10.
8. When in any action under this Act compensation is awarded in the case of the death of a workman, for an injury sustained by him in the course of his employment, the amount recovered after deducting the costs, not recovered from the defendant may, if the Court or Julge before whom the action is tried so directs, be divided between the wife, husband, parent, and child of the deceased in such shares as the Court or Judge with or without assessors, as the case may be, or, if the action is tried by a jury, as the jury may determine. 52 V . c. 23, s. 14.
9. An action for the recovery under this Act of Compensation for an injury shall not be maintainable against the employer of

Limit of amount of compensation. the workman, unless notice that injury has been sustained is given within twelve weeks and the action is commenced within six months from the occurrence of the accident causing the injury, or in case of death, within twelve months from the time of death; provided always that in case of death the want of such notice shall be no bar to the maintainance of such action if the Judge shall be of opinion that there was reasonable excuse for such want of notice. R. S. O. 1887, c. 14I, s. 7 ; 52 V. c. 23, S. 11.

Io. No contract or agreement made or entered into by a workman shall be a bar or constitute any defence to an action for the recovery under this Act, of compensation for any injury.
(a) Unless for such workman entering into or making such contract or agreement, there was other consideration than that of his being taken into or continued in the employment of the defendant ; nor
(b) Unless such other consideration was in the opinion of the Court or Judge before whom such action is tried ample and adequate ; nor
(c) Unless in the opinion of the Court or Judge, such contract or agreement, in view of such other consideration was not on the part of the workman, improvident, but was just and reasonable ; And the burthen of proof in respect of such other consideration and of same being ample and adequate, as atoresaid, and that the contract was just and reasonable, and was not improvident as aforesairl, shall, in all cases rest upon the defendant ; provided always that notwithstanding anything in this section contained, no contract or agreement whatsoever made, or entered into by a workman shall be a bar or constitute any defence to an action

Contract by work. man when to const. tute a defence to action for compensation.
for recovery under this Act, of compensation for any injury happening, or caused by reason of any of the matters mentioned in section 5 of this Act. R. S. O. 1887, c. I41, s. 8.

I I. Notwithstanding anything contained in this Act, an action Liability or personal under ecetions 3,4 or 5 shall lie agaiast the legal remesentatives representative. of the deceased employer. $52 \mathrm{~V} . \mathrm{c} .23$, s. 15 .
12. There shall be deducted from any compensation awarded to any workman, or representatives of any workman, or persons clatiming by, under or through a workman in respect of any cause of action arising under this Act, any penalty or damages or part of a penalty or damages, which may in pursuance of any other Act, either of the Parliament of Camada, or the Legislatere of Ontario, have been paid to such workman, representatives or persons in respect of the same cause of action; and where an action has been brought under this Act by any workman or the representatives of any workman or any persons claiming by, under or through, such workman, for compensation in respect of any cause of action arising under this Act, and payment has not previously been made of any penalty or damages or part of a penalty or damages, under any such Act either of the said Parliament, or of the said Legislature, in respect of the same cause of action such workman, representatives or persons shall not so far as the said Legislature has power to enact, be entitled thereafter to receive in respect of the same cause of action any such penalty or damages or part of a penalty or damages under any such last mentioned Act. R. S. O. I887, c. 14I, s. o.
13. (a). Notice in respect of an injury under this Act shall give the amme and address of the person injured and shall state in ordinary language the canse of the injury, and the date at which it was sustained and shall be served on the employer, or if there is more than one employer, upon one of such employers.
(b) The notice may be served by delivering the same to or at the residence or place of business of the person on whom it is to be served.
(c) The notice may be served by post, by a registered letter addressed to the person on whom it is to be served at his last known place of residence or place of business and if served by post shall be deemed to have been served at the time when a letter containing the same would be delivered in the ordinary cuarse of post, and in proving the service of such notice it shall be sufficient to prove that such notice was properly addressed and registered.
(d) Where the employer is a body of persons corporate or unincorporate the notice shall be served by delivering the same at or by sending it by post, in a registered letter addressed to the office or if there be more than one office, any onc, of the offices of such body. R.S. O. 1887, c. 141, s. 10. (t-4).
(c) The want of sufficiency of the notice required by this section or by section 9 of this Act shall not be a bar to the maintainance of an action for the recovery of compensation for the injury if the Court or Judge before whom such action is tried or in case of appeal, if the Court hearing the appeal is of opinion

Money payable under penalty to be deducted from: compensation.

Form and service of notice of injury.
ty or personal intative.
payable unenalty to be ed from: comon.
that there was reasonable excuse for the want or insufficiency and that the defendant has not been thereby prejudiced in his defence. 52 V. c. 23, s. 12.
(f) A notice under this section shall be deemed sufficient if in the form or to the effect following :-

To A. B. of (here insert employer's address) or 'To the-_ - Commany (or as the case may be).
Take notice that on the day i89 C. 1). of (insent address of injured person) a workman in your employ sustained personai injury (add, of which 1.: died, if such be the case), and that such injury was caused by (state shortly the caratse of injurye. g. the fall of a beamj.

Date.

> Yours, etc.,
K. Y.

R. S. O. 1887 , c. 14 i, s. 1o. (6).

14. If the defendant in any action agamst an employer for Defence of want of compensation for an injury sustained by a workman in the couse of his employment intends to rely for a defence on the watnt of notice or the insuffaciency of notice or on the ground that he was not the employer of the workman injured, he shall, not less than seven days before the heating of the action or such other time as may be fixed by the rules, regulating the practice of the Court In which the action is brought, give notice to the plaintiff of his intention to rely on that defence, and the Count may in its discretion and upon such terms and conrlitions as may be just in that behalf, order and ailow an adjourmment of the case for the purpose of enabling such notice to be given ; and subject io any such terms and conditions any notice given pursuant to and in compliance with the order in that behalf shall, as to any such action and for all purposes thercof be held to be a notice given pursuant to and in conformity with sections 9 and 13 of this Act. 52 V.c. 23 , s. 13.
15. In a: action brought under this Act, the particulars of demand or statement of clam shall state in ordinary language the cause of the injury and the date at which it was sustainel, and the amount of compensation clamed ; and where the action is brought by more than one plaintiff the amount of compensattion clamed by each plaintiff, and where the injury of which the plaintiff complains shall have arisen by reason of the negligence, act, of omission of any person in the service of the defendant, the particuiars shall give the name and description of such person. R.: O. 1887, c. 141, s. 11.
16. (a). Upon the trial for the recovery of compensation under this Act before a Judge without a jury, one or more assessors may be appointed by the Court or Judge for the purpose of ascertaining the amount of compensation and the remmeration (if any) to be paid to such assessors shall be fixed and detemmined by the Judge at the trial.
(b). Any person who shall as heremafter povided, be nppointed to act us an assessor, shall be qualified so to act.
(c) In such action a party who desires assessors to be appoirited, shall, ten clear days at least before the day for holding

Appointment of Assessois.
the Court, at which the action is to be tried, file an application stating the number of assessors he proposes to be appointed, and the names, addresses, and of the persons who may have expressed their willingness in writing to act as assessors. If the applicant has obtained the consent of the other party, to the persons named being appointed, he shall file such consent with his application.
(d) Where the application for the appointment of assessors has been made by one party to the action only, he shall, eight clear days before the day for holding the Court at which the action is to be tried, serve a copy of the application so filed upon the other party who may then either file an appliration for assessors or file objections to one or more of the persons proposed.
(e) An application for the appointment of assessors may ibe in the form following, or to the like effect, namely:-

In the (describing the Court)
"The Workman's Compensation for Injuries Act i89z" Between_—_Ilaintiff

The plaintiff (or defendant) applies to have an assessor (or assessors) appointed to assist the Collit in ascertaining the amount of compensation to be awarded to the plaintiff, should the judgment be in his favour, and he submits the narnes of the following persons, who have expressed their willingness in writing to act as assessors should they be appointed.
(Here set out the names, addresses and occupations of the persons: above referred to). (If the party consents to the appointment add the follozing :-

The defendant (or plaintiff) consents to the appointment of any of the persons, above mamerl to act as assessors, in this action, as appears by his consent thereto filed herewith.

Dated this

A. 13.

The above named plaintiff (ras the casc may be).
(f) Where separate applications are filed by the parties, no objections to the persons proposed shall be made by either party, but the Court or Judge may appoint from the persons named in each application one or more assessor or assessors, provided that the same number of assessors be appointed from the names given in such applications respectively.
(g) In such action bought in a Diviston Court, the application for the appointment of assessors, together with any objec. tions made to the persons proposed, shall be forwawided by the Clerk of the Court to the Judge.
(h) Where application for the appointment of assessors is granted the Court or Judge shall appoint such of the persons proposed for assessors as by the Court or Jndge may be deemed fit, subject to the provisions contained in this Act.
(i) In such action where an application for the appointment of assessors has been filed the Court or Judfe may, at any time. prior to the trial inereof nominate one or more additional persons to act as assessors in the action. Where no application for
assessors has been made, the Court or Judge may appoint one or more persons to act as assessor or assessors in the action before, or on the trial of the action.
(j) If at the time and place appointed for the trial, all or any of the assessors appointed shall not attend, the Court or Judge may either proceed to try the action with the assistance of suck of the assessors, if any, as shall attend or may adjourn the trial generally, or upon any terms which the Court or Judge may think fit,or may appoint any person who may be available and who is willing to act, and who is not objected to or who, if objected to, is objected to on some insufficient ground or the Court or Judge may try the action without assessors.
(k) Every person requiring the Court or Judge to be assisted by assessors shall at the time of filing his application, deposit therewith the sum of $\$ 4$ for every assessor proposed, and such payments shall be considered as costs in the action, unless otherwise ordered by the Court or judge: Provided that where a person propesed as an assessor, shall have in writing agreed and consented that he will not require bis remuneration to be deposited, no deposit in respect of such person shall be required.
(l) Where an action shall be tried by a Court or Judge with the assistance of assessors in addition to or independently of any assessors proposed by the parties, the remuneration of such issessors shall be borne by the parties, or either of them as the Judge or Court shall direct.
(m) If after an assessor has been appointed the action shall not be tried, the Court or Judge shall have power to make an allowance to him in lespect of any expense or trouble that he may have incurred by reason of his appointment, and direct the payment to be made out of any sum deposited for his remuneration.
(n) The assessors shall sit with and assist the Court or Judge when required with thelr opinion and special knowledge for the purpose of ascertaining the amount of compensation if any, which the plaintiff shall be enitled to recover. R. S. O. 1887, c. 141 , S. 12.
17. (a) Where several actions shall be btought under this Act, Consolidation of ac. against a defendant, in the same court in respect of the same tions.
negligence, act, $\mathrm{c}^{\text {r }}$ omission, the defendant shall be at liberty to apply to the Judge that the said actions shall be consolidated.
(b) Applications for consolidation of actions shall be made upon notice to the plaintitts affected by such consolidation.
(c) In case several actions shall be brought under this Act, against a defendant in the same court in respect of the same negligence, act, or omission, the defendant may upon filing an undertaking to be bound so far as his liabulity for such negligence, act or omission by the decision in such one of the satd actions as may be selected by the Court or Judge, apply to the Court or Judge for an order to stay the proceedings in the actions other than in the one so selected, until judgment is given in sich selected action.
(d) Applications for stay of proceedings shall be made upon notice to the plaintiffs affected by the stay of proceedings or ex parte.
(e) Upon the hearing of an application for consolidation of actions or for stay of proceedings, the Court or Judge shall have power to impose such terms and conditions and make such order in the matter as may be just.
(f) If an order shall be made by a Court or Judge, upon an exparte application to stay proceedings, it shall be competent to the plaintiffs affected by the order to apply to the Court, or Judge (as the case may be) upon notice or ex parte to vary or discharge the order so made, and upon such last mentioned ipplication such order shall be made as the Court or Judge shall think fit, and the Court or Judge shall have power to dispose of the costs, occasioned by such order as may be deemed right.
(g) In case a verdict in the selected action shall be given, against the defendant, the plaintiffs in the actions stayed, shall be at liberty to procced for the purpose of ascertaining and recovteing their damages and costs.
(h) A defendant may by notice to the opposite party to be given or served at least six days before the day appointed for the trial of the action, admit the truth of any statement of his lia. bility for any alleged negligence, act, or omission as set for th or contained in the plaintiff's statement ot particulars of claim in the action, and after such notice given the pleintiff shall not be aliowed any expense thereafter incurred for the purpose of proving the matter so admitted.
(i) Where two or more persons are joined as plaintiffs under sub-senton 1 of this section and the negligence, act, or omission, w. in is the cause of action shall be proved, the judgment shall be tor all the plaintiffs but the amount of compensation, if any, that each plaintiff is entitled to, shall be separately found and set forth in the judgment and the amount of costs awarded in the action shall be ordered to be paid to such person, and in such manner as the Court or Judge may think fit ; should the defendant fail to pay the several amounts of compensation and the costs awar ted in the action execution may issue as in an ordinary action and should the proceeds of the execution be insufficient after deducting all costs, to pay the whole of the amounts awarded a dividend shall be paid to each plaintiff calculated upon the proportion of the amomnt, which shall have been awarded to the respective plaintiffs to the total amount realized after the deduction of atl costs of the alcion as aforesaid. R. S. O. c. 141, s. 13.
18. Where the time for doing any act, taking any proceeding, Computation of time. or giving any notice under or required by this Act, expires on a Sunday, such act, or proceeding or notice shall so far as regards the time of doing, taking or giving the same, be held to be cluly and sufficiently done taken or given, on the day next following such Sunday. R.S.O. 1887, c. 141, s. 14.
19. In an action brought in any Court to recover compensation under this Act, the forms and methods and rules, and orders in force in Court shall, subject to and save as otherwise provided by the terms and provisions of this Act, apply to and regulate all matters of pleading, practice and procedure in such action, and notwithstanding anything in this Act contained, the forms
and method, pleadings, practice and procedure in any such action shaiı conform to, and be regulated by any rules or orders in that behalf hereafter lawfully and duly made or prescribed with respect to actions brought in any such Court. K. S. O. 1887, c. 141, s. 15.
20. All facts and parts of Acts consistent with this Act, are Saving clause. hereby repealed : but such repeal shall not affect, nor shall any provision of this Act prejudice anything heretofore done or suffred, or any right heretofore acquired or accrued under or in pursuance of said Acts or parts of Acts so repealer' and any proceading in respect of any such right, and any action, suit, or proceeding under or in pursuance of said last mentioned Acts or parts of Acts, shall be instituted, continued, completed and determined and dealt with in all respects, and for all purposes as if this Act had not been passed. R. S. O. I887, c. 14I, s. 16; 52 V. c. 23, s. 16.

No. 3075. A BY-LAW RESPECTING THE CONSTRUCTION OF BUILDJNG SCAFFOLDINGS.

[Passed June 6th, ISq2.]

The Municipal Council of the Corporation of the City of Toronto enacts as follows:
I. All scaffoldings used by bricklayers or other builders in the erection, repairing, altering or improving of buildings, chimneys or other stıuctures, shall be built and constructed as follows:

BUILDERS' SCAFFOLD.

Standards or uprights to be of live, sound Norway pine, tamarac or spruce (tamarac prefered). Distance between each standard eight or ten feet, ani butts of said standard placed in the ground to the depth of not less than two feet six inches, and when placed upon stone flagging or granolithic sidewalk, to be put in a good sound cement or other barrel or a box two feet square by two feet six inches high, and filled with sand or other suitable material. The standards to be not less than four and a half inches at butt, and two and a half inches at the top diameter, and in a very high scaffold, to be increased in size.

Ledgers same material as standards, not less than three inches diamete: at small end, and no ledger to be taken off the standards that would allow a greater distance from the ground than ten feet. Putlogs to be of ironwood, white oak, or other sutable material, the said putlogs to be butted, flattened or squared at the end which enters the wall, and not to be removed according as the scaffold rises. One course of planking, the entire length of scaffold, must remain on each tier of the said putlogs. The putlogs not to be less than three and a half inches in diameter clear of bark. Three putlogs to be placed under planks twelve feet in length, that is to say, one putlog at each end, and one in centre. (When planks sixteen feet long are used five putlogs shall be used.) Planks to be two inches in thickness, and of sound pine, spruce or hemlock, ten or twelve inches in width.

Scaffolds to be stayed from ledgers on to the joists through the openings, and in the absence of openings, to be stayed by other sufficient means.

Racking braces to consist of poles, and tied with ropes. Ropes not to be less than sixteen feet in length, and five-eighths of an inch thick, except in case of small scaffolds, when rope one-half inch thick may be used.

Ladders in all cases to reach five feet above the landing stage, so that plenty of hold will be afforded men when landing off.

When bricks are laid from the inside of fire-proof buildings, there shall be a temporary floor of two-inch plank laid on the girders or temporary joists all around the inside of walls and not less than six feet wide, and when bricks are laid from the mside of buildings not fire-proof, which have joists not over fourteen inches apart, then the temporary floor may be of one-inch boards six feet wide and placed all around the building.

In all cases where the inside scaffolding is bnilt from the foundation the same as the outside scaffolding, the temnorary floors above mentioned shall not ie required.

When trestles are used the height to be from four to six feet and to be made substantial, of good material ; and when a scaffold is formed by putting trestles

ISTRUCTION

 ld allow a greater wood, white oak, ied or squared at ig as the scaffold must remain on three and a half ed under planks nd one in centre. 1sed.) Planks to ck, ten or twelvehe openings, and ns.
pes not to be less xcept in case of
e, so that plenty
there shall be a porary joists all when bricks are ts not over fourboatds six feet
dation the sarre red shatl not le. and to be made putting trestles
one upon another, it shall not be over eighteen feet in height, that is to say, noi more than three trestles shall be used of the height of six feet each.

Where required all overhead protections to be placed fully under scaffolds. When building out to the street line, boards or planks to be placed where the workmen pass under.
II. All scaffolding used by carpenters, in the erection, repairing, altering or improving of buildings, chimneys or other structures, shall be built and constructed as follows:

CARPENTERS' SCAFFOLDING.

1. All uprights of said scaffolding to be 4×4, sound and free from objectionable knots, the brackets nailed to them and to the building, and to be one inch in thickness, and not less than ten inches wide, properly nailed to building and upright; and when there is no opening to nail said bracket, then a piece one inch thick and six inches wide to be notched to secure the bracket, and nailed solid to the wall and to the upright. The boards laid on this to walk on to h-two-inch plank, sound and free from knots, or else two one-inch boards laid ot on top of the other.
2. When bracket scaffold is put up, the leg to be sound and not less than 2×6 on edge, set at the proper angle, to prevent the bracket from tipping from the wall.
3. When scaffolding projects from windows, the scaffold to be one inch thick by not less than ten inches wide, and braced on the angle with a board not less than one inch thick and six inches deep, both brace and bracket well nailed to window, and the brace well nalled to bracket also.
III. The City Commissioner shall prosecute all persons who may proceed with the erection of buildings using scaffolding which is not constructed in accordance with this By-law, and in the event of the City Commissioner finding a scaffold which in his estimation is unsafe, and after due notice to the contractor the same is not made satisfactory, the said Commissioner may take such proccedings against him as he has power under this or any other By-law.
IV. Any person zonvicted of a breach of any of the provisions of this By-law shall forfeit and pary at the discretion of the convicting magistrate a penalty not exceeding the sum of fifty dollars for each offence, exclusive of costs, and in default of payment of the said penalty and costs forthwith, the said penalty and costs, or costs only, may be levied by distress and sale of the goods and chattels of the offender, and in case of there being no distress found out of which such penalty can be levied, the convicting magistrate may commit the offender to the Common Gaol of the City of Toronto, with or without hard labor, for any periorl not exceeding six calendar months, unless the said penalty and costs be sooner paid.

Nn. 3082. A BY-LAW TO AMEND BY-LAW No. 3075 RESPECT:NG THE CONSTRUCTION OF BUILEING SCAFFOLDING.

[Passed July 7th, ISO2.]

The Municipal Council of the Corporation of the City of Toronto enacts as follows:
I. Section 3 of By-law No. 3075 is hereby amended by striking out all the words in the section after the word " By-law" in the third line thereof.

MONTREAL BY-LAW CONCERNING SCAFFOLDS. BY-LAW No. 107, Sec. 51.

All scaffolds erected for use in the erection or repair of any building shall be well and safely supported and of sufficient strength and size and properly secured so as to insure the safety of persons working thereon or passing under the same, against the falling thereof or of such materials as may be used or deposited thereon; any scaffold which may be otherwise erected shall be deemed a nuisance ; and any person who shall erect or use, or cause to be erected or used, any scaffold contrary to the provisions hereof shall be liable to the penalty provided in section IC13 of this By-law.

Section 103 provides that for each offence against any by-law the offender "shall be liable to a fine, and in default of immediate payment of said fine and costs to an imprisonment, the amount of said fine and the term of said imprison'rent to be fixed by the Recorder's Court at its discretion."

GLOSSARY OF TERMS USED IN BUILDING.

ilding shall be roperly securing under the sed or deposit. be deemed a ected or used, e penalty pro-
the offender said fine and said imprison-

Aisle (pronounced ile)--a passageway between seats; the space between the outside walls and the columns in a cathedral church.
Alcove-a recess in the side of a room.
Alto relievo-carving projecting considerably above the surface; also "high relief,"
Ambo-same as pulpit.
Anchor-a term applied to ties and fastenings.
Andirons (or fire dogs)-irons for the support of fuel in open fire places.
Angle bead-a small round moulding secured to outside angles of walls.
Angle brace-a bracket or framing in the angle of two surfaces.
Angle stoff-see angle bead.
Annex-a building subordinate to a main building.
Antique-refering to ancient style.
Apse-semi circular end of a room or chancel.
Arabesque-ornamentation of flat surfices.
Arc-a geometrical term used for a portion of a circle.
Arcade-(I) a series of arches and columns.
(2) a corridor.

Arch-a construction of bricks or other materials so arranged as by mutual pressure to support each other and to become capable of sustaining a superincumbent weight.
Archivolt-same as soffit.
Area-a space, a court yard or sunken court.
Arris-the line or edge formed by the meeting of two plain surfaces.
Ashlar-cut or hewn stone used in the face of a wall, generally with vertical and horizontal joints.
Astragal-semi circular moulding or bead.
Attic-a sub-story rising above the cornice of a building.
Auditorium-a hall for assemblies.
Back arch-a relieving arch.
Ball cock--a water cock in the form of a ball, placed inside a cistern to regulate the inflow of water.
Balderchino-a canopy supported on columns over an altar, tomb or throne.
Ball flower-a gothic ornament like a ball enclosed in three leaves.
Balloon frame--Rough framing of a wooden building.
Baluster-perpendicular standard supporting a rail, also banis'er.
Balustrade-a range of balusters with upper and lower rail.
Barge Board-board used as a finish on the face of a gable, plain or omamental.
Barrel drain-a brick condutt built in cylindrical form.
Barrel vault-a long semi citcular vault or roof.
Base-lower part of a wall or piilar.
Bas relief or basso relievo-carvings raised but little above tire surface; also "low relief."
Bat-a broken brick.
Batten-a thin strip of wood.
Batter-the sloping face of a wall built wider at the bottom than at the top.
Battlement-indentations in the top of a parapet wall.
Bay-a division in the architectural arrangement of a wall.
Bay window-a window forming a recess in a room.
Bead-a small circular mouldng.

Bead and butt-a panel moulded with a bead, abutting against a square surface; also "bead and flush."
Bead and quirk-a bead sunk below the surface with the angles of the surfaie cut off.
Beamfilling-building round the ends of beams or joists in a wall.
Bearer-a strut or post or horizontal piece supporting a shelf or other boards.
Bearing wall or partition-portion of a wall or partition that carries a superstructure.
Bed moulding-strictly speaking a moulding immediately under the cornice of a classic building.
Belvedere-a high turret.
Bevel--a sloping surface.
Billet-a block of wood.
Binder-same as "Header."
Binding joist-same as "Trimmer."
Block plan-a plan showing the outline of a building.
Blocking course-a plain course of stone above a cornice, its face being in the same plane as the face of the walls below.
Bond-in brick or stone work denotes arrangement of headers and stretchers.
Bond, English-in brickwork a course of headers and a course of stretchers laid alternately.
Bond, Flemish-in brickwork, headers and stretchers laid alternately in the same course.
Bond stone-same as "Header."
Bond timber-pieces of wood built into a wall on which to secure the other woodwork.
Bow Window-a semi circular bay window.
Box frame-the trame of a window made hollow for the sash weights.
Box girder-a hollow built girder.
Brace-a stiffening piece in framing.
Breaking joint--a term applied to the joints of masonry or other work which are not continuous.
Breast of a chimney-the projecting portion of a chimnpy stack in a room.
Breast of a window-:hat portion of a wall below the window.
Bressummer-a heavy beam.
Brick nogging-brickwork laid in the interstices of traming.
Bridging-pieces of wood secured between joists for the stiffening of floors.
Broach-the masonry at the foot of an octagonal spire above the square tower.
Bult's nose-a rounded angle.
Bush hammered-the worked face of a stone formed by a bush hammer. This
hammer is formed of several metal points with which the stone is pounded.
Butting joint-the junction of two pieces cut at right angles with the surface.
Cable moulding-a moulding like a rope.
Cant-the surface left when the angle of a square is cut off.
Cantilever-a bracket.
Capor capital-the highest member of a column.
Carriage of a stair-the rough timbers supporting a staircase; also "stringers."
Case-see box frame. Casing-boxing in of pipes, etc.
Casement-(r) a sash hinged like a door.
(2) also a classic moulding (see "Scotia").

Cauking or caulking-filling of joints.
Cavetto-a hollow moulding.
Centre-rough framework for the support of an arch in construction.
uare surface f the surface

Centre of gravity - that point at which all the weight of a mass might be coilected without disturbing the equilibrium of the body.
Chace-ia groove.
Chace mortise-a mortice cut so as to admit of a transverse piece of timber being
er boards. ries a supercornice of a

Chamfer-like a bevel, the cutting off of a right angle to an angle of 45°.
Chancel-the choir of a charch containing an altar.
Cheeks of a mortice - the two solid pieces on each side of a mortice.
Chevron-a zig-zag moulding of the Norman style.
Chiseled zoork-Stone work finished with a chisel.
Choir-part of the chancel of a church.
Chord-a line joining the extremities of an arch.
Cima recta- Greek undulating moulding.
Cima reversa-like a cima recta reversed.
Cinque foii-a Gothic ornament of five semi circular curves with four cusps or points at the junctions of the curves.
Circumference-the outside line of a circular body.
Clamp-a piece of metal or other material by which two stones or other substances are fastened together.
Clapboart-thin boarding covering framework of a buildins.
Clearstorey-the upper portion of a church wall above the aisle roof.
Cleat-a small piece of wood secured to timbers for the support of other woodwork.
e the other
ts.
work which
room.
of floors. rare tower.
mer. This s pounded. surface.

Cloister-a covered and paved walk in connection with a cathedral.
Closer-a portion of a brick less than the width of a header inserted as a beader near the end of a course.
Cofferdam-timber framing employed in bridge building, sunk into the water.
Coin or quoin-blocks of stone finishing the angles of a buidding.
Collar beam-a horizontal beam in roof construction secured to the afters midway between the eaves and ridge.
Column-a perpendicular pillar.
Common rafter-ordinary rafters of a roof.
Concave-a hollor ad surface.
Convex-an outward curved surface.
Cope stone-see coping.
Coping-cap stones of a wall.
Corbie steps-steps up a gable.
Corbel tab'e-a row of corbels or ormamental brackets.
Comnter sinking-any cutting below the general surface.
Crowning-forcing up the centre of a joist by drawing in the ends with a screw rod.

Cuspo-the points of intersection of curves in Gothic architecture.
Dado-lower portion of a wall faced with panelling or other decoration.
Dais-a raised portion of a floor or low platform.
Deafening--any method of construction for the purpose of deadening sound.
Deflection-a term applied to the bencling of a bean from a straight line under pressure.
Dentil-an ornament of square blocks.
Diaper work-decoration of a flat surface, generally carved or sunk, sometimes painted.
Discharging arch, or relieving arch-an arch formed over a lintel to relieve it of the superincumbent weight.

Dog legged stairs-a stair case divided into two flights, the outer string of the upper flight being directly over the handrail of the lower.
Dog tooth moulding-a moulding peculiar to Early English architecture.
Door jamb-the lining on the ingoing of a door.
Dormer-a window in a sloping roof.
Dormitory-a large sleeping room.
Dovetail-a wedge shaped joint for woodwork.
Dozel-a wooden or metal pin.
Dragon piece-a short piece of timber used to strengthen the foot of a principal rafter or to tie together the intersecting eaves-plates at the angles of a building.
Dressings-the finished stonework of windows, doors, etc.
Drips-the formation at changes of levels in flat or sloping roofs.
Drip stone or moulding-a projecting moulding to throw off the water over a window or doorway, called also "Labels."
Dry rot-il disease of vegetable growth that attacks timber in danp situations.
Droved ashlar, margins, etc.-a tooled margin on stone ; also draved.
Eaves-edges of a roof.
Echinus-egg and anchor moulding.
Elliftic arch-arch in the form of an ellipse.
Embrasuri-(i) the splay or bevel of a door or window jamb: (2) a cutting in a thick wall.
Engaged column-a column attached to a wall.
English bond-sce Bond.
Entasis-the swelling or curved vertical line of a shaft or column.
Fintresol-an intermediate storey, called also " Mezza.aine."
Equilateral arch-a pointed gothic arch, the height of the apex above the spring being equal to the width of the span at the spring.
Escutcheon-a key hole plate ; also " scutcheon."
Extrados-the upper surface of an arch.
Eye of a volute-the central spot of a spiral curve.
Fracade-principal or front elevation of a buil itng.
Facing--the outer surface of a wall, at:
Fanlight-a transom light.
Fan tracery-radiating ornament, the decoration applied to Fan valulting, a feature of the perpendicular style.
Fenestration-the spacing of windows in a wall.
Fillet-a small band or square member in mouldings.
Finial-the finish or vertical ornament of a turret, roof or spire.
Flags-paving stones
Flashings-metal coverings round the edges of gutters, etc., on roofs or against brickwork.
Flemish bond-see Bond.
Floating - a term in plastering, the finishing work.
Flush-a term indicating the meeting of two surfaces on the same plane.
Flutes or Flutings-semi-circular sinkings on flat surfaces.
Flying buttress-an arched buttress.
Foils-the curves between the cusps in gothic architecture.
Footings--the lowest courses of foundations.
Formeret-the princ:pal rafter against a wall at the end of a building.
Free stone-sand stone.
tring of the
ture.
a principal f a building.
ater over a situations. d.
utting in a
e the spring
paulting, a
or against

Freize-(1) in classic architecture that part of an entabalature between the architrave and cornice ; (2) the upper portion of a wall in a room, usually so called for decorative purposes.
Fresco painting_painting on flat surfaces of a particular character.
Fret-an ornament of classic art.
Furrings-woodwork beneath the plastering, fastened against the walls or on the underside of joists, etc., to receive the lathing.

Gable-the pointed upper part of a wall.
Girt-surface of a moulding.
Grill-open screen work in any material.
Groin-the line of intersection of the vaults in vaulted ceilings.
Grounds-strips of wood forming the projections to which to fasten finished woodwork.
Grout-liquid mortar or cement.
Gurgoyle or Gargoyle-ornamental spout generally of stone in gothic architecture to conduct rain water from the roofs or gutcers.

Half space-a platform on a staircase.
Half-timbered work-16th century domestic architecture in which framing timbers appear on the surface forming panels usually filled with brick nogging.
Hammer beam-the lower beam projecting horizontally into a building (a hall or church) acting as a base and tie at the foot of a principal rafter.
Hammer dressed-Method of finishing stone surfaces with a hammer, leaving the face rough and broken.
Hanging stile-the uprights to which doors or casements are hinged.
Hasp-a fastening of metal to secure doors.
Hatchway-an opening in a roof or floor.
Header- a brick or stone acting as a bond between the face and back work of a wall.
Heptar,in-a geometrical figure of seven sides.
Herring bone, strutting or bridging-cross pieces of wood secured between joists for stuffening floors. (see Bridging).
IEerring bone masonry-masonry in which the stones are laid diagonally.
Hexagon-a six-sided figure.
High relief-'see Alto relievo.)
Hip-the line formed by the angle of two meeting roofs.
Hip rafter--the ratter at the intersection of two roof slopes.
Hip roof-a roof constructed of equally inclined planes rising to the same pitch and height.
Hood-mould-(see Drip.)
Impost-head of a pier.
Inverted arch-an arch constructed with the apex downwards, used chiefly in foundations.
Intrados-soffit of an arch or dome.
Isle, ile-(see Aisle.)
Jack rafter-(same as Dragon piece.)
lamb-sides of an opening.
Toggle-a notched joint in wood or stone work.
Key-a wedge of wood for tightening up joints.
Key stone-the apex stone of an arch.

King post-the central post in roof framing hanging from the apex to the principal rafters and supporting the tie beam.
Knotting-preparing the knots in woodwork with shellac for painting.
Label-see Dripstone.
Lancet arch-an early English arch of lancet form.
Lattice girder-a metal girder of lattice work.
Lintel-a beam or stone spanning an opening.
Low relief-see Bas relief.
Louvre boards-horizontal boards placed sloping outwards, forming unglazed apertures, such as belfries or ventilators in brewery roofs, etc.
Mansard roof-a roof, the incline of which is in two planes, the lower very steep and the upper one of a slight rise only. The lower is often used and fiaished as an attic storey. It derives its name from its inventor, Francis Mansard, a French architect, born 1598.
Morquetry or I'anquetry-inlaid work of different woods.
Metope-In Doric archirecture, the square space between the tiglyphs.
Mortise-i hollow cavity in woodwork into which is let a tencn of another piece to form a joint.
Mullion-a vertical division between the lights of a window or opening in a screen.
Nathex-the vestibule of a church.
Nave--(I) the body of a church; (2) the centre passage between the seats in a church.
Needle-a ho:izontal timber used as a support.
Nevel-main posts in a railing, principally in a staircase.
Niche-a recess for a statue.
Nogging-see Brick nosging.
Nonagon-a nine-sided figure.
Nosing-projecting moulding of a step or horizontal board.
Obelisk-a quadrangu'ar shaft of stone set on end, the daaneter of which is less near the summit than at the base ; the summit is truncated.
Octagan-an eight-sided figure.
Ogec-i mould of double curve.
Oriel windoru-a projecting window in an upper foor.
I'anel-a raised or sunk portion in a general surface surrounded by mouldings. Pantile-a curved roof tile.
Parallelogram-a four-sided rectangular figure.
P'arapet-a low wall above the eaves of a buidding.
Parquetry-inlaid work of wood.
Parly zeall-a wall the centre line of which is over the dividing line of two properties or lois of ground. The owner of each lot has certatis rights in connection with its use.
Paicra-a circular, flat ornament.
Pedestal-a base.
Pediment-a gable or triangular portion above the cornice of a classic building.
Pendentive-hanging work of stone, timber or any other material.
Penehammer-in masonry, a tool for pounding the inequalities on a flat surface.
Pentagon-a five-sided figure.
Piesd chech-the rebate formed on the bottom of it riser.
Pile-a timber driven into the eath to make a foundation in loose ground.
Pinnacle-the finial of a buttess.
other piece cning in a
seats in :

Plate-a piece of timber laid horizontaliy on a wall to form a bed for the ends of other timbers.
${ }^{-}$Plinth-the projecting sub-base of a base.
Plugs-small pieces of wood driven into walls to fasten woodwork to the wall.
Pointing-the act of filling the face of joints of brick or stone with mortar.
Poleplate-a purlin at the foot of the principals in a roof on which to rest the common rafters.
Princital-tine framied main supports of a roof.
Pugging-deafening with clay.
Purlin--a horizontal piece of timber in roof construction for the support of common rafters. It gets its support from the principals.
Putlogs-short timbers in scaffolds at right angles to the walls.
Quarters-scantlings of timbers in partitions of other framing.
Quarter pace-the quarter landing of a starcase.
Quatre foil-a gothic omament of four semi-circular curves with three points or cusps at the junctions of the curves.
Qucen posts-the two suspended posts of a principal roof truss, supporting the tie bean, acting like a king post but used for langer spans.
Quirk-a curved sinking. See liead and Qurk.
Rabbet or rebate - a rectangular cutting along the edge of a piece of wood or other material.
Rebate joint-a joint formed by a rebate.
Radius-in geometry, a line drawn from the centre to the circumference of a circle
Rafter-the timbers of a roof laill from the eaves to the ridge.
Raking fiece-a piece of wood on a slope.
Ramp-the sudden rise in a handrail or wall or other substance.
Random work, random rubble-masonry with irregnar courses or jointings.
Relicuing arch stme as Discharging areh.
Rendering a plastering coat.
Reredos-a screen or ornamental wall behind and above an altar.
Responds-half piers or buttresses.
Retaining wall -a wall built to support an embankment of earth.
Reveal-the ingoing or recess at right angles to the face of a wall.
Ridse piece-the horizontal board agatinst which the upper end of the rafters ablt.
Riser-the vertical part of a step.
Rirckfaced work-stonework left rough on the face.
Roll and fillet-i. bead having a square projection on its face.
Rolled beams-iron or steel beams rolled between rollers not cast.
Rood soren-a screen at the junction of a chancel with a nave.
Rose arindore-a circular window.
Rough cast-rongh plastering on the exterior of a wall made by throwing small pebbles against the finished coat of plaster.
Kough string-the rongh carriage of a stair.
Suddle-a thin piece of wood bevelled on two edges placed on the floor beneath a door.
Sagging-the bending of a body by its own weight, the ends bemg supported.
Sarsh-the glazed part of a window, also sash frame.
Sash loch or fastener-a metal fastening for a window.
Scanting-small timbers.
Sary-method of joining timbors lengthwise.

Scotia-a hollow moulding.
Screed-in plastering, a strip of wood the exact thickness of the coat of plaster, nailed for the plasterers to work to.
Scribing-fitting pieces of wood together.
Segment-part of a circle.
Set off-a break in the face of a wall, etc.
Setting coat-the last coat in plastering.
Skezoback-the inclined abutment of an arch.
Skirtings-base boards of a room.
Sleepers-timbers laid on the ground to receive the joists of a floor.
Soffit-underside of doorway, staircase, etc.
Span-the opening beneath an arch or lintel.
Spandrel-the triangular space over the haunch of an arch.
Specific gravity - the weight of any body as compared with the same magnitude of rainwater, a cubic foot of which weighs 1000 oz .
Sphere-a circular body, a ball.
Springer- the top of an impost.
Stile-the upright portion: of a door or window sash.
Stilted arch-an arch that has its centre struck from a point above the inmout cap, the curves of the arch being carried down vertically to the impost cap.
Strap-a narow iron band use? to hold timbers together.
Stretcher-a stone or brick with its long side to the face of a wall.
Strins course-a projecting horizontal band of stone plain or moulded.
Stowk joint-a mish given to a mortar or cement joint in brick work or masonry.
Tail joist-joist framed between the tail trimmer and the wall, also trimmi gs joist.
Tail trimmer or triminer-the beam or double joist to carry the hearth laid parallel with the face of chmmey breast.
Tangent -a lone that toaches in part of its length the circumference of a circle.
Templet-a pattem.
Tenon-a tongue of wood to fit the mortise.
Tension rod-a rod of metal used to comnteract a thrust.
Throat-(1) of a chimney, the narowing above the fireplace ; (2) the groove chi under the projecting part of a sill to prevent the water running into the joint.
Tie beam-the borizontal main timber of a roof, etc., tying the ends of the pris. cipal rafters.
Torus-latf-round moulding.
Fracery-(1) ormamental masonry or woodwork of windows ; (2) raised decorations of flat surfaces.
Transept-the "arms" of a church.
Transon-a bar across a window or head of a door with a fanlight over.
Tread-the horizontal portion of a step.
Trefoil-a gothic figure of three semi connected circles.
Triforium-in cathedrals the arcade above the nave arches and below the clear story.
Trimmer-see Tail trimmer, etc.
Truss-a framing of timber to support a weight.
Trussed givder-a beam strengthened by trussing.
Tuck pointing-filling joints in masonry or brickwork and forming a raised joint.
Tvimpanmm-the triangular space in the front of a pediment between the horizontal and sloping cornices.
oat of plaster
Underpinning-rebuilding the lower portion of a wall without pulling down the upper part.
Valley-a junction of two inclines of a roof.
Valley board-board forming a valley.
Vane-a finial of a roof.
Vault-(i) an arched roof of masonry or brickwork ; (2) a compartment securely built for the storing of valuable aticles.
Veneer-a thin layer of any material covering a coarser material.
Volute-spiral curves on a flat surface.
Voussirir-keystone and other radiating stones of an arch.
Wainscoi-a base or darlo.
Wall plate-a nariow timber laid on the top course of the face of a wall to receive the eaves boards, etc.
Winders-triangular steps of a staircase at a corner or bend in the floght.
Weepers or wecpiner drain pipes-a drain laid with unjointed pipes for the purpose of dispersing surface water.
e the immost e impost cap.

ed.

ck work of
so trimmi gs hearth laid
of a circle.
e groove chi ng into the
of the pria
sed decorit
ver.
w the clear
aised joint. n the hori.

NOTES ON ESTIMATING.

Cubic measure is length, breadth and height or depth multiplied together.
Superficial or square measure is the moltiplying together of the two dimensions of a surface.
Lineal, rumning or run measure is measurement in one length.
[Sce Tiables.]

Hxcavuting.

Take excavaling to surface 12 in . deep per sfl. yarci.
Take excavating (ordinary) per culsc yard.
Excavating over 6 ft . deep shonki 'a krpt separate, and illowance made for staging if required.
Trenches for foundations if below genemal excavating, take extra at per. cubic yard.
Allow for width of trenches 6 in . on each side of lowest course of footings.
Allow tor casting away, or removal in other ways as specified, or for part filled in and rammed.
In rock foundations extra time must be allowed.
Struttugg and planking when reguired per line-:oot.
Allow extra cost for st' thing and planking over 6 ft . deep.
Clay puddling, per cubic yard.
Concrete, per cubic yarel.
Allo:, for wheeling or carting.
Levell ing and consoliditling ground, per cubic yart,
Post holes, at so much each, cominted.
Drains, keep different sizes separate, and include cement jointing, etc., per lineal f f ot.
Junctions, bends, Y's, T"s, etc., count nes r foot lin'l of pipe, except special ones.
Cement, per barrel.
Sand, per load.
" River or other special quality, per barrel.
Mortar, per load.
Ccacrete, 6 in. Whek, per sup, yard.
Concrete, over 6 in. thick, per cubic yard.

Masorry.

Stonework is generatly measured by the toise.
A toise virries in different localities as for instance:
A toise in Montreal $=86$ Cubsie feet.
" " "Toronto $=5 \cdot{ }^{\prime} \quad$ " $"$
". ". "Hamilton $=70 \quad$ ". \quad ".
'Take masony, generally per toise.
Allow for hoisting, adding an extra price for every 20 ft . over the first 40 ft . of heght.
Ashlar, or other face work, per sup'l ft.
backing, except very thick walls, per cubic ft . or toise.
Don and window openings to be taken as solid, to allow for labor and cutting.
Cut Stone, per superficial ft.
Ladil kinel of stone to be kept separate, and each kinel of work on each as specified.
Allow for different treatment, as hammerrressed, bush hammered, grooved, throated, smak, chamfered, etc., etc.
Cut stone must be measured to suit courses of brick work.
Treats and risers, per superficial ft.
String coarses, per superficial ft.
All stone under 3 in. thick, per supll fo.
Chanfers, beads, margius, ete., per lin'l ft.
Mitree, stopped ends, stop chamers, counted.
Landings, pavings, ete, per superficial ft.
Nosings, and other edge work, per lineal ft.
Rebrated joints, ete, , per lineal ft.
Pointing as specified, per lineal ft.
Allow for templates
" " hoardings.
" " scaffolding where required.

Rubble masonry when built in courses requires per cubic yard about 35 cubic feet of stone, including zeraste, and $61 / 2$ cubic feet of mortar.
Random and uncoursed rubble 33 cubic feet of stone and 9 cubic fee! of mortitr
1 cubic yard ashlar requires, including waste, $293 / 4$ cubic feet of stone and $23 / 4$ cubic feet of mortir.
I lineal yard pointing to ashlar work requires from one-twentieth to one-thirtieth of a clibic foot of mortar or cement.

Brickwork.

Sizes of bricks vary in different places, but usually, -
For face work allow 7 bricks per sq. foot.
" solid " " 20 " " cub. ft.
" " " 546 " " cub. yd.
a Cub. yd. of brickwork requires about 5 cub. ft. of mortar.
1 Rod of brickwork $=272$ sup. ft. of \mathbf{x}_{2} brickwork.
Take brickwork by ctibic feet, and count per thousand.
Face work by sup'l feet, and count per thousand.
Make no deductions for flues less than 2 feet square, or for cavities in hollow walls.
Take doorways and wiudows as solid, except where there are many, in which case deduct half.
Circular brickwork over 25 ft . radius, measure first as ordinary brickwork, and then measure one face and allow for that amount extra labor.
Brickwork built farr, both sides to be kept separate.
Backing to stone wo:k, per cub. yard.
Allow for eutting to fit against stone, measure foctings, averaging them by adding together lengths of top and hottom courses and dividing by 2.
Moulded bricks, per lin'l foot, and per 1,000.
Brick on edge. persij. yart.
Brick nogging, measuring over :voodwork, per sq. yard.
Brick nogging requires $3 / 4$ cub. it. mortar when flat.
Brick nogging requires ? cub. ft. of mortar when on edge.
Pointing, per sq. yard. " requires if that 16 cub. ft. line mortar, or $1 / 8$ bushel cement.
" requires if tuck, $1 / \mathrm{ccub}$. ft. putty or $1 / 8$ cub. ft. mortar.

State Masom.

Slate slats, per superficial foot.
Allow for bedding in cement, or screwing with copper serews, as specified.
Slate skirtings, per lineal loot.
Rounded edges, rebates, grooves, ete. etc., per lineal foot.
Rounded corners, perforations for pipes, sinkings, holes for basins, ete. ete., counted.

Carpentir amd Joiner

One square $=100$ superficial feet.
Rough timbers, as joists, beams, studding, roof timbers, rafters, etc., per cubic feet.
Care must be taken in calculating the correct number of joists required.
Timbers under 3 in, square, per lineal foot.
'Ilmbers under a in square, per sup. ft.

Keep separate the various sizes of timbers ; flooring, roxt boarding, shingling, etc. per square.
Allnur frn waste in cutting, 25 per cent.
Eaves boards, gutter boards, flashing boards, barge boards, bracketting, facias and the bearers to these, per sup. ft.
In framed work allow for length of tenon.
Allow for laps to plates, etc., 6 in. in every 20 feet.
Take bolts, straps, plates, etc., to principals.
Ribs, chamfers mouldings, rebates, strutting or bridging to floors, eaves and valley fillets, hip and ridge rolls, etc., per lin'l ft.
Note:-In drawings the actual length of hip rafters rarely appears. They must be set oft to seale before figuring.
Ends of rafters, hip knobs, cleats, scarfings, counted.
For scarfings where they are not resting on a principal, allow four times the depth of the beam to every 20 ft . run extra.
Keep different kinds of work separate, and all circular work separate.
Skirtings, mitred boards to hearths, grounds, nosings, architratves, wall strings, and outer strings of stars, hand, and other rails, cornices, mouldings, door frames, etc. etc., per linea! foot.
Window sashes, casements, and frames, shutters, and boxings, window boards, and bearers, panelling, dados, doors, jamb limngs, w.c. fittings, bath fittings, treads, nosers, and winders, seats, shelving, and bearers, and celling lights, casings, etc., per sup. foot.
Newels, mitrings, housings, fitted ends and bosses, pendants, etc. etc., countel.
Mantles, arcades, over-doorways, require to be figured in detail.
Allow for attending on other trades and making good after them.
Allow for clearing up waste and rubbish, and removing slavings from between joists, before laying flooring.
Allow for additional scaffolding as required.

Riooter.

Felt and gravei nther similar roofing material, per squar 'roofeet.
Allow for lapping of fels... d laying double at edges, also for wood strips for securing.

Sluter.

Slates, including nailing, per square of 100 ft .
Allow for cuttings against dormers, chimneys, skylights, hips, valleys, etc.
Take double course at eaves, valleys and other edges.
Slate hips, ridges, etc., per lineal foot.
lelt, if required, per square.
Allowances for laps, etc., as in roster.

Gulvanized Iron.

For flat or inclined roofs, per square.
Allow about 6 in . extra for each drip, raiscu joint, etc.
Gutters, allowing for turning up under slate saly 9 in . on each side, and for laps 4 in . in every 7 ft ., per sup. foot.
Flashings allow $4_{4}^{\prime \prime}$ in every 7 it . $\begin{array}{llll}" & \text { step } & " & " \\ \text { cap } & " & \text { " }\end{array}$
Ridges, hips and valleys and allowance for laps as above, per lineal foot.
Oak wedging for flastings.
Copper nailing as specified, per lineal foot.
Rainwater pipes, eaves, gutters, etc., per lineal foot.
Returned ends, stopped ends, outlets, heards, knees, feet, junctions with drains, cleats, etc., counted.

Plasterer.

Keep separate internal and external work.
Materials required for plastering per yard super:

Brown coat only $3 / 8^{\prime \prime}$ thlek	$\left\{\begin{array}{l} \text { lime (unslaked) } \\ \text { sand } \\ \text { hair } \\ \text { water } \end{array}\right.$	$\begin{aligned} & .15 \text { cubic } \\ & .3 \\ & .3^{\prime} \end{aligned}$
Brown,	flime (ur slaked)	. 22 cubic ft.
and	sand	
finish coat) hair	.12 lb .
$\frac{1}{2 \prime}{ }^{\prime \prime}$ thick	water	ı, 8 gallon.
	(lime (unslaked)	. 25 cubic ft.
2 coats	sand	$\cdot 38$
$58^{\prime \prime}$ thick	hair	. 18
	water (ime (unslaked)	2.00 gallon
	$\left\{\begin{array}{l} \text { line (unslaked) } \\ \text { ind } \end{array}\right.$	$\begin{aligned} & .32 \\ & .38 \end{aligned}$
$3{ }^{\prime \prime}$ " thick		

Finish with (lime (unslacked) .ro cub. ft, putty and $\left\{\begin{array}{l}\text { plaster of l'aris } .03 \text { "" }\end{array}\right.$
plaster $1 / 8^{\prime \prime}$ thick water r.oo gallon.
For rubhle or rough brick walls the above quantities should be incre ased.
'The first or "pricking up" coat on laths requir sabout x -1oth "more coarse stuff than "rendering only," or brown coat only.
La:/hs, containing nominally 400 feet lineal will cover about $4 \frac{1}{8}$ super yards.
Nails-a bundle of 3 .ft. laths takes 500 nails. $4-\mathrm{ft}$. " 470 mails.
Harr-a bushel of dry hair weighs from $14{ }^{\text {to }}$ 15 lbs .
In lest work allow I lb. of hair to $\mathbf{2}$ cubic feet of mortar.
Ordinary work, 1 lb . hair to 3 cubic feet of mortar.
Lime whiting once done requires a cubic foot slaked lime per roo sq. yards; twice done, $12 / 3$ cub. ft. of lime.

Take plastering (generally) to walls, partitions, ceilings, soffits of stairs, etc., two or three coat work as specified, and lathing as described, per sup. yard.
Small quantities, per sup. foot.
Cornices under 12 in. girth, per lineal foot.
Cornices over 12 in . girth, per sup. foot.
Cornices, if bracketted, allow for lothing.
Enriched mouldings, per lineal foot.
Ornaments, bosses, etc., counted.
Mitres, stopped and returned ends, counted.
Mou'. ed ribs, strings, straight or forming panels, per lineal foot.
Note.-Laths - In specifying lathing the terms "lath," "lath and a half," "double lath," refer to the thickness of the laths.
single laths $=1 / 8$ in. to $3-16$ in. tnick.
lath and a half $=1 / 4$ in thick. double laths $=3 / 8 \mathrm{in}$. thick.

Plumber and Gasfitter.

Lead in sinks, cisterns, etc.. per sup. foot.
In measuring lead care should be taken to measure exactly, as small errors become scrious when quantity is reduced to weight.
Corper nailing, soldered angles, per lincal foot.
Iron cisterns, giving capacity, counted.
Slate cisterus, per sup. foot.
Allow for all drillings for pipes, balls and ball cocks, wastes, closet valves, ball levers, etc.
Pipes, tin cased, lead, iron, of all kinds, per lineal foot.
Gas tubing, per lineal foot.
Allow for joints soldered or screwed, wiped, caulked; bends, faucets, offsets, valves, elbows, T"s, Y's, straps, etc.
Brackets and pendants a sum is generally mentioned.
Allow for burners, glass shades, etc.
Lavatory, urinal w. c. bath fittings all according to description.
Ascertain if joiner is to attend on plumber and do all cutting and making good after.
Pumps and fixtures described and counted.
Allow for special requirements for each kind.

Tilcr.

Plain tiling, per square.
Allowances as for slate.
Hips, ridges, etc., per lineal foot.
Finials, etc., counted.
Harduenre。
According to specification, comnted.
walls, partis, etc., two or and lathing
lineal foot. up. foot. r lathing. foot.
ads, counted.
t or forming
lathing the alf," "double of the laths.
in. thick.
sup). foot.
be taken to rors become reduced to
es, per lineal
ounted.
oalls and ball ball levers,

11 kinds, per
wed, wiped, s, valves, el-
is generally
etc.
sall accord-
olumber and d after. counted. reach kind.

Aron Hounder.

Keep separate wrought and cast ion, also the different articles.
Heavy work per cubic foot, and calculate weight in tons at so much a lb, as specified.
Allow for hoisting dad fixing, cartage, extra scaffolding, etc.
Ascertain what assistance is specified to be given by other trades.
For vaults get special prices.
Allow for patterns for all castings.
Allow for drilling, boiting and all other work to be done atter placing in position.
Rivetted girders, fish-plates, pavement lights, coal plates and frames, per sup, foot.
Gratings, bars, rails, straps, bolts not already taken by carpenter, sadale bars, guard bars, balusters, gates, railings, hand rails, etc., per lineal foct.
Iron roof principals, rafters, purlins, with all shoes, cleats, brackets, ties, T irons, etc., take in detail and keep separate.
Holes, perforations, etc., counted.
For girders, ete., consult price lists of iron founders.

Glat:ier

Keep different kinds of glass separate.
Measure all glass in inches and turn into sup. erficial feet, measuring to extreme dimensions.
Allow for sprigging, puttying, or bedding in washleather or india rubber as required.
Embossing, enamelling post lights, per sup. foot.
Lead lights, per sup. foot.
Bevelling, per lineal foot.
Plate glass, the price of, is apt to vary ; pice lists should always be obtained fiom inporters.
Allow for cleaning at completion and for breakages.

prointing.

Keep separate different classes of work.
r lb, while paint mixed with sil, ete, will cover on wood about $4 \frac{1 / 2}{2}$ sup. yards, first coat ; second coat same quantity will cover about $61 / 2$ sup. yards, and each additional coat about $63 / 4$ sup. yards.

- lb. red lead paint mixed and applied as a first coat on iron, about $51 / 4$ sup. yards.
1bl. oxide of iron paint mixed and applied as a first coat on iron, from 8 to 12 sup. yards.
I gallon tar with 1 lb . pitch included, applied hot, will cover about 12 sup. yards first coat on wood and 17 sup. yards each additional coat.
I lb. of putty for stopping is required for every 20 to 25 yards of surface.
Take painting (generally) per sup. foot.
Allow for knottiiag, stopping, etc.
Ascertain if priming is included when two, three or four coat work is specified.
Allow extra when work is finished in two or more colors.
Count windows and double them for painting both sides.
Oiling, rubbing, stainıng, sizing, varnishing, French polishing, graining, etc., per sup. foot.
Railings, gates, gratings, measure round of bars.
Measure t and of bars, open framing, ete.
Skirtings, cornices, strings, etc., per lineal ft.

Paper Manging.

Generally, per sup. foot.
Allow for waste.
To find the number of pieces (12 yards) required for a wall, take the superficial area deducting doors and windows and divide by 54. This rule applies to an average widith of 20 inches to the piece.
Allow for filling cracks in old walls.
Measure borders, per lineal yard.

Bell Manger:

Specification should state positions of bells and pulls.
Bells and pulls, counted,
Aliow for fixing with all cranks, wire, springs, plates.
Zinc or copper tubing, per lineal foot.
Ascertain if various trades are to do cutting required in their own work.
For electric bells and fittings get special prices from engineers.
Pneumatic bells, get special prices from engincers.
Speaking tubes, per lineal foot.
Allow for moullipicces and all fixing as required.

Electric Lighting.

Get special estimates from engineers.

Heating Appuratus.

Get special estimates from manufacturers.

> NOTES ON HOSPITAL WARDS-MINIMUM DIMENSIONS. Space between beds......... 7 ft .6 in . Superficial area per bed go sq. ft. Height of ward . I4 ft. Cubic space per bed. 1260 cul). ft.
> Width of ward . 24 ft .
> No. of beds to a ward (not more than).... 32 .
[Galton.]

WEIGHT OF SUBSTANCES PER CUBIC FOOT.

Average Weight
Aluminium 162
Ash, American white, dry 38
Asphaltum 87
Brass, (copper and zinc) cast 504
" rolled 524
Brick, best pressed 150
" common, hard 125
" soft, inferior 100
Brickwork, pressed brick 140
" ordinary 112
Cement, ordinary 56
English, Portland 90
Cherry, dry 42
Chestnut, dry 41
Coal, broken, loose 49
" solid 84
Coke, loose 62
Copper, cast 542
rolled 548
Earth, dry, loose 76
" " " moderatelyram- med 95
Elin, dry 35
Gold, cast, pure, 24 carat 1204
Granite 170
Hemlock, dry 25
Hickory, 53
Ice. 58.7
Iron, cast 450
" wrought, purest 485
averige 480
Lead 711
Lime, quick ground, loose. 53
" " " " thor-oughly shaken75
Limestones and marbles 168
loose in
irregular fragments 96
Maple, dry 49
Mahogany, Spanish, dry 53
Honduras dry 35
Masonry, granite, or limestone, (well dressed) 165
Masonry, mortar, rubble 154
" dry rubble 138
" sandstone well dressed 144
Mortar, hardened 103
Mud, dry, close. So to 110
Mud, wet flud, maximum 120
Oak, live, dry 59
" white, dry 59
" other kinds 32 to 45
Pine, white, dry 25
" yellow, (Northern) 34 45
Southern)
Southern)
Salt, Liverpool, fine for table use 49
Sand, of pure quartz dry loose,Sand, well shaken99 to 117
perfectly wet 140
Sandstone, fit for building 151
Slate. 175
Snr w, freshly fallen 5 tc 12
Sr_{i}, w, moistened and compact by rain 5 to 20
Spruce, dry 25
Steel 490
Sulphur 125
Tar. 62
Tin, cast. 459
Turf or peat, dry unpressed
30Walnut, clry, (black)
Water, pure rain or distilled, at 38 60° Fahr. $62^{1 / 2}$
Water, Sea 64
Zinc, or spelter 43.7
Green wood, add from one fifthto one half more than dry

APPROXIMATE BREAKING STRENGTHS OF WIRE IN TONS, PER SQUARE INCH.

Annealed iron wire,........25 tons per square inch, tensile resistance. Bright iron wire,............. 35 Bessemersteel wire,...........40 " Mild Siemens steel, wire....60 " "
Crucible cast steel wire. 80 to 90. Patent plough crucible wire.. 100 to 120

"	"	"	"
"	"	"	"
"	"	"	"
	6	"	

Average Weight in lbs .
$\begin{array}{crrr}\text { Cube of } \mathrm{I} & \text { is } & 1 \\ " 1 & 2 & \prime \prime & 8 \\ " 1 & 3 & \prime \prime & 27 \\ \prime \prime \prime & 4 & \prime \prime & 64 \\ " 1 & 5 & 11 & 125 \\ " 1 & 6 & 11 & 210\end{array}$
TABLE OF CUBES.
Cube of
7 is
343
" 8 "
512
" 9 " 729
1110 " 1000
"11 "1331
: $\quad 12$ 11 1728

ALGEBRAIC FORMULAE.

I. $(a+b)(a+b)=a^{3}+2 a b+b^{2}$.
2. $(a+b)(a-b)=a^{2}-b^{2}$.
3. $(x+a)(x+b)=x^{2}+x a+b x+a b$.
4. $(a+b)\left(a^{2}+a b+b\right)=a 3+b 3$.
5. $(a-b)\left(a^{2}+a b+b^{2}\right)=a 3-b 3$.
6. $(a+b) 3=a 3+b 3+3 a b+3 a b^{2}$.
7. $(a-b)^{3}=a 3-b^{3}-3 a^{2} b-3 a b^{2}$.
8. $\frac{x^{2}+x y+y^{2}}{x-y}=x^{3}-y^{3}$.
9. $\frac{x^{2}+x y+y_{2}}{x+y}=x 3+y 3$.
10. $(a+b+c)(a+b+c)=a^{2}+b^{2}+c^{2}+2 a b+a a c+2 b c$.

FORCE AND VELOCITY OF WIND, AND ITS PRESSUREUPON ROOFS, SPIRES, ETC.

VELOCITY.			FORCE OR PRESSURE PER FT. SUP	DESCRIPTION
MLLES PER HOUR	FEET PER MINUTE	$\begin{aligned} & \text { FEET PER } \\ & \text { SECOND } \end{aligned}$		
1	88	1.47	. 005	Barely perceivable.
2	176	2.93	. 027	
3	264	4.4	.044 $\}$	Just perceivable.
4	352	5.87	.079	
5	440	7.33	. 123	Light breeze.
10	880	14.67	$.492\}$	Pleasant breeze.
15 20	1320 1760	22.0 29.3	1. 107 (97	Pleasant breeze.
25	2200	36.6	3.067 (Brisk gale.
30	2640	44.0	4.4291	
35	3080	51.3	6.027 \}	High wind.
40	3520	58.6	7.87 \}	Very high wind.
45	3960	66.0	9.9 \}	Very high wind.
50 60	4400	73.3 88.0	12.304	Storm.
60 70	5280 6160	88.0 102.7	$\left.\begin{array}{l}17.733 \\ 24.153\end{array}\right\}$	Great storm.
80	7040	117.3	3 I .49	
100	8800	146.6	$49.21\}$	Hurricane.

Weights of Materials.

The weight of wrought iron \mathbf{X}

$$
\begin{aligned}
& 0.928=\text { cast iron. } \\
& 0.928=\text { zinc. } \\
& 1010=\text { steel. } \\
& 1.082=\text { brass } . \\
& 1.144=\text { copper } . \\
& 1.468=\text { lead } .
\end{aligned}
$$

The Weight of Wrought-iron Boly Heads, Nuts and Washers.

Diam. ff Bolt.	Hexagon H'ds \& Nuts.	S'qre. Heads and Nuts.	Round Washers.	Diam. of Bolt.	Hexagon H'ds \& Nuts.	Sq're Heads and Nuts.	Round Washers.
incher.	per pair.	per pair.	per pair	inches.	per pair.	per pair:	per pair.
1/4	20 to a lb.	16 to a lb.	20 to a lb.	$13 / 8$	3.00	3.60	3.25
3/8	10 "	$81 / 3$ "	10	$11 / 2$	375	4.42	4.25
1/2	5	41/6"	5	$15 / 8$	475		$5 \cdot 25$
5/8	23/4"	21/2"	3	$13 / 4$	575	7.00	$6 \cdot 50$
3/4	2 "	56 lb .	63 lb .	$17 / 8$	$7 \cdot 27$	$8 \cdot 72$	800
7/8	77 lb .	83	77	2	$8 \cdot 75$	$10 \cdot 50$	9.60
1	125	$1 \cdot 31$	1.25	$21 / 2$	17.00	$21^{\circ} \mathrm{O}$	$19^{\circ} 00$
$11 / 8$	175	2.10	$1 \cdot 75$	3	28.80	36.40	32.50
$11 / 4$	213	$2 \cdot 56$	$2 \cdot 25$				

Round and Square Iron-Weight of a Lineal Foot.

	Round in lbs.	Square in lbs.		Round	Square in lbs.		Round in lbs.	Square		Round in lbs.	$\begin{aligned} & \text { quare } \\ & \text { in llos. } \end{aligned}$
				5952		3					
			$15 / 8$		8.894	3	$37 \cdot 199$		57/8		
5-16			$13 / 4$	8 IOI	$10 \cdot 315$	37/8	$39^{\prime} 720$		6	95.230	50
			$17 / 8$	$9 \cdot 3$	11.841	4	42.324	53.889	1/4	103.331	
7-16	-506	$\cdot 64$				$41 / 8$	$45^{\circ} \mathrm{O} 11$	57.310			
			2						63		
9-16	. 837	${ }^{\circ} \mathrm{O}$	$21 / 4$	13					7	129	
	1.033	1×31	23/8	14		$41 / 2$		68.203	$71 / 2$	148.796	
I-16	1.250		$21 / 2$	16.53	$21^{\circ} \mathrm{O}$	458	56.584	72.045		169:297	
			$25 / 8$	18%	23.208	43	59.684	$75^{\circ} 992$	81/2	191.121	243.35
13-1	1.74		23/4	2.20		47	$62 \cdot 867$	$80 \cdot 044$	9	214.267	
			27/8	21.865	27-839		66.132	84.201	91/2	238.736	
15-16	$2 \cdot$						69.48				
	2.645	$3 \cdot 368$	31/8	$25 \cdot 8$	891			92.832	101/2	291.64	
$11 / 8$	$3.34{ }^{\circ}$	4.263	31/4	27.94	575		-424	97'305	11	320 \% ${ }^{\circ}$	
	$4 \cdot 133$	5.263	33/8	$30^{\prime} 13$	$38 \cdot 364$		$80 \cdot 019$	101884	[11/2		
1/8	5.001	6.368	$31 / 2$				83.698	105.567	,	\%	

Round, Octagonal, and Souare Steel-Tile Weight of a Liveal, Fuor.

Is $\left\{\begin{array}{c}\text { Round } \\ \text { Washers. }\end{array}\right.$
$3 \cdot 25$
4.25
$5 \cdot 25$
$6 \cdot 50$
800
9.60
$19^{\circ} 00$
32.50

00'T.

```
und un. 
```

```
.763 142.300
+525 I 53.457
618 165003j
796 I S9.45j
297 2 15.550
-12 I 2430352
-267 272.812
.736 303.967
```

-527 $336 \cdot 806$
-641 37 I•328
-078 407.535
-837 $445^{\circ} 42{ }^{\circ}$
919'485 000

Diameter of Circle and Oct. and Side of Sçuare.	Round in lbs.	$\begin{gathered} \text { Octagonal } \\ \text { in lbs. } \end{gathered}$	Square in lbs.	Diameter of Circle and Oct. and Side of Square.	Round in lbs.	Octagonat in lbs.	Squa e in
1/8	-0417	-0440	- 0532	1	2.673	2.819	$3 \cdot 403$
3-16	-0940	'0991	-1196	$11 / 8$	3.382	3.568	$4 \cdot 307$
1/4	-1670	-1762	$\cdot 2127$	$11 / 4$	$4 \cdot 176$	$4 \cdot 405$	$5 \cdot 317$
5-16	-2610	$\cdot 2753$	$\cdot 3323$	$13 / 3$	$5 \cdot 053$	5.330	6.433
3/8	- 3758	- 3964	- 4785	$11 / 2$	6.013	6.343	$7 \cdot 656$
7-16	-5.15	-5\%96	-6513	15	$7 \cdot 057$	7.444	8.985
1/2	-668I	-7047	$\cdot 8507$	13	8.185	8.633	$10 \cdot 421$
9-16	-8456	-8919	1×077	$17 / 8$	$9 \cdot 396$	9.910	11.963
5/8	1.044	I 101	$1 \cdot 329$	2	10690	11.276	13.611
11-16	I 263	1332	1.608	$21 / 4$	13.530	14.271	17.227
3/4	1.503	I. 586	1914	$21 / 2$	16.703	17.618	21.267
13-16	1764	1.861	2.246	23/4	20.211	21318	$2 \Gamma .734$
7/3	2.046	2158	$2 \cdot 605$	3	$24^{\circ} \mathrm{O} 53$	$25 \cdot 37$ I	30625
15-16	$2 \cdot 349$	2.478	299				

	Thickness in inches.							
	1/3	1/4	3/8	1/2	5/8	$3 / 4$	7/8	I
		$\begin{gathered} \text { lbe. } \\ \cdot 1063 \end{gathered}$	lbs. :1595	${ }^{\text {lbs. }}$	lbs. - 2658	${ }^{1 \mathrm{lbs}}$	1bs. $\cdot 3722$	lbs. 4253
1/8	-0532	-1063	.1595 .6380	2127 8507	. 2658 I 063	3190 1.276	¢ 3722 1.480	
1/2	2127 \cdot $\cdot 2658$	4253	. 7380	8507	$1 \cdot 003$	1276	1.489 1.861	1701 2.127
$3 / 4$	3190	-6380	$\cdot 9570$	1.276	I',95	1.914	2233	$2 \cdot 552$
7\%	- 3722	-7443	I'117	1489	I 861	$2 \cdot 233$	2.605	2977
1	-4253	-8507	I 276	1×701	$2 \cdot 127$	2.552	2.976	3.403
$11 / 8$	-4785		1.436	I ${ }^{\circ} 14$	2393	2.871	$3 \cdot 350$	$3 \cdot 828$
$11 / 4$	-5317	I 063	I 595	2.127	2.658	3.190	3722	4.253
$13 / 4$	$\checkmark 5849$	1.170	1.755	$2 \cdot 339$	2.924	$3 \cdot 509$	4.094	4.679
$11 / 2$	-6380	1.276	1914	2.552	3'190	3*828	4466	$5 \cdot 104$
$13 / 4$	7444	I 489	2.233	2.977	$3 \cdot 722$	4466	$5 \cdot 211$	5955
2	-8507	1'701	2.552	3.403	4.253	5'104	5955	6.806
$21 / 4$	-9570	1914	2.871	3.828	4785	57.12	6.699	$7 \cdot 656$
21/2	I 063	2'127	3.190	4.253	5.317	6.380	$7 \cdot 444$	8.507
23/4	1.170	2.339	3.509	4.679	$5 \cdot 849$	\%oi8	8.188	$9 \cdot 358$
3	I ${ }^{2} 276$	2.552	3.828	$5 \cdot 104$	$6 \cdot 380$	$7 \cdot 656$	8932	$10 \cdot 208$
31/4	I 382	2.765	4.147	$5 \cdot 530$	6.912	$8 \cdot 294$	9.677	I 1 059
$31 / 2$	I.489	2.977	4.466	5.955	7×444	8.932	$10 \cdot 421$	II ${ }^{\text {a }} 910$
33/4	1-595	3.190	4785	U.380	7975	9.570	II'165	12.760
4	1701	3403	5'104	6806	$8 \cdot 507$	10208	1190	13.611
4,1/4	1-808	3.615	5.423	$7 \cdot 231$	9.039	10.846	12.654	14.462
$41 / 2$	I'914	3.828	5742	$7 \cdot 656$	9.570	11.484	13.398	15.313
434	2.020	4041	6.061	8082	$10 \cdot 102$	12.122	14.143	16.163
5	2.127	4.254	$6 \cdot 380$	8.507	10.634	12.760	14.887	17.014
$51 / 2$	2.339	4.679	7018	9×358	1 16697	$14^{\circ} \mathrm{O} 37$	16.376	18.715
6	2.552	5.104	$7 \cdot 656$	10'208	12.761	15.313	17.865	20.417

Round Cast Iron.-The Weight of a Lineal Foot.

Diam. in inches.	Weight in lbs.	Diam. in inches.	Weight in lbs.	Diam. in inches.	Weight in lbs.
I	2.454	$5^{1 / 2}$	74.245	10	245.437
$11 / 4$	$3 \cdot 835$	$53 / 4$	8I'I48	101/4	25786
J $1 / 2$	$5 \cdot 522$	6	$88 \cdot 357$	101/2	$270 \cdot 595$
$13 / 4$	7.517	61/4	$95 \cdot 874$	$103 / 4$	283.634
$2{ }^{4}$	9.818	61/2	103.697	11	296.979
$21 / 4$	12.425	63/4	111.827	$111 / 4$	310.632
$21 / 2$	15.340	7	120.264	$111 / 2$	324.591
23/4	18.561	$71 / 4$	129.008	$113 / 4$	338.857
3	22.089	$71 / 2$	138.059	12	353.430
$31 / 4$	$25^{\circ} 924$	$73 / 4$	147916	13	414.789
$31 / 2$	30.066	8	$157^{\circ} 080$	14	481.057
33/4	$34 \cdot 515$	$81 / 4$	167.051	15	552.234
4	$39^{\circ} 270$	$81 / 2$	177.329	16	628.320
4%	44.332	83/4	187.913	17	709\%314
$41 / 2$	49701	9	198.804	18	$795 \cdot 217$
43/4	55.377	91/4	$210 \cdot 002$	20	981.750
5	61359	91/2	221.507	22	1187*9'
$51 / 4$	$67 \cdot 649$	$93 / 4$	233.319	24	14137

Round and Square Brass.-The Weiglit of a Linfal Foot.

Diam. or Side in in.	Round in lbs.	Square in lbs.	Diam. or Side in in.	Round in lbs.	Square in lbs.
1-16	'OI 12	- 0142	1 5-16	4*933	$6 \cdot 28 \mathrm{I}$
1/8	-0447	-0570	$13 / 8$	5.414	6.893
3-16	-1012	-1282	1 7-16	5.918	7×534
1/4	-1790	- 2279	$11 / 2$	$6 \cdot 443$	8.203
5-16	$\cdot 2796$	- 3560	19 9-16	-6.991	8\%90:
3/3	-4047	-5127	$15 / 8$	7.563	$9 \cdot 627$
7-16	-5486	$\cdot 6978$	1 11-16	$8 \cdot 155$	10 382
1/2	$\checkmark 7159$	-9115	I $3 / 4$	8.789	11.165
9-16	-9060	I'154	I 13-16	9*40'?	II 977
5/3	I•I 18	I 424	1 1/8	1011\%	12.817
11-16	1•353	I'723	$115-16$	117799	13.686
3/4	1.6 I	2.051	2	11.454	14.583
13-16	1.891	2.407	$21 / 8$	12.932	16.463
7/8	2'194	$2 \cdot 791$	$21 / 4$	14.496	18.457
15-16	2.529	3.204	$23 / 8$	16.152	$20 \cdot 565$
1	2.863	3.646	$21 / 2$	17.896	22.786
1 I-16	3.233	4.116	258	19.731	$25 \cdot 122$
1 1/8	3.624	4.614	$23 / 4$	21.655	27.572
13 -16	4.038	$5 \cdot 141$	27/8	23.670	30.135
$11 / 4$	4.474	$5 \cdot 697$	3	25.771	$32 \cdot 813$

OO＇T．
Weight in lbs．
$245 * 437$ 257.86 $270 \cdot 595$ 283.634 296.979 310．632 324．591 $338 \cdot 857$ 353.430 414.789 48．057 552.234 $628 \cdot 320$ 709.314 $795 \cdot 217$ 981750 $1187^{\circ} 9^{\circ}$ 1413.7

4L Foot．

Square in
lbs．
$6 \cdot 28$ I
6.893

7•534
8.203

8．90：
$9 \cdot 627$
IO 382
11165
II•977
12.817
13.686
14.583
16.46 ；
18.457
20.565
22.786
$25 \cdot 122$
27.572

30． 135
32：8！ 3

	$\pm{ }^{\circ}$	
	m	 自
	$\stackrel{\sim}{\sim}$	
	\cdots	
	m	 品
	\cdots	
	\％	
	\％	
	が	 苗

Cast-IRON Pipes-continued

Bore in inches.	Thickness of Metal in inches.									Bore in Inches.
	$3{ }^{3}$	1/2	5/8	3/4	\% $/$	I	:1/3	1/4.	1 $1 / 2$	
15	$\begin{gathered} \mathrm{lbb} \\ 56604 \end{gathered}$	$\begin{gathered} \text { lbs. } \\ 76 \cdot 086 \end{gathered}$	$\begin{gathered} \text { lbs. } \\ 95 \cdot 874 \end{gathered}$	$\begin{gathered} \text { lbs } \\ \text { II } 5 * 969 \end{gathered}$	$\begin{gathered} \text { lbs. } \\ 136.37 \mathrm{I} \end{gathered}$	$\begin{aligned} & \text { lbs. } \\ & \text { I57.08o } \end{aligned}$	$\begin{aligned} & \text { lbs. } \\ & \mathrm{I} 78.096 \end{aligned}$	$\begin{gathered} \text { lts. } \\ 199^{\circ} 4 \mathrm{I} 8 \end{gathered}$	$\begin{gathered} \text { lbs. } \\ 242.983 \end{gathered}$	
16	60:286	80.994	102.010	123.332	144.962	166.897		211.690	242.983	15
17	63.967	8j"903	10. 146	130.695	144962 153.552	166.897	189140 200.185	211690 223962	257709 272.436	
18	$67 \cdot 649$	$90 \cdot 812$	114.282	1.38059	162.142	186.532	211.230	236.234	$282 \cdot 436$ 287162	178
19	.	93721	120.418	145422	170.732	196.350	221*273	248.505	301.888	19
20		$100 \cdot 629$	126.554	152.785	179.323	206.167	233.319	260.777	. 316614	20
21		$105 * 538$	132.690	160'148	1870913	$215 \% 95$	244364	$373^{\circ} 049$	331.341	21
22		1100447	138.826	$167 \% 11$	195\%503	225:802	255\% 4	285.321	346.067	22
23	.	$115 \cdot 356$	144.962	174.874	205*094	23-620	-66.453	29\%「593	350.793	23
24		120264	151097	182 237	213.684	$2+5437$	277498	309.865	350.793 37519	24
25 26	\ldots	125173	$157: 233$	189600	222.274	255.255	288.542	322.137	390:246	25
26		!30.0¢2	163.360	196.964	230.855	265072	2995	334.409	404.972	26
27	.	1 34.991	160.505	204.327	239455		310.632	$346 \cdot 680$	419.698	27
28	\cdots	139899	175.641	211.690	248045	284.707	321.677	358.952	$434 * 424$	28
29 30	.	144.808	181.776	$219^{\circ} 053$	256.636	294*525	332.721	371.224	$449^{15} 1$	29
30	.	149717	187.913	226416	26:226	304342	343.768	383.496	463.877	30

Bore.	Length when Laid.		Thickness of Metal.	Weight of each pipe.	Size of Lead Joint.	Weight of Lead Joint.
inches. $11 / 2$	ft. in. 60	inches. 3	$\begin{gathered} \text { inches. } \\ 1 / 4 \\ 5-16 \\ 66 \end{gathered}$	lbs. 30	inches.	lbs.
					I 1/2 $\times 1 / 4$	12
2	.			51	66	144
$21 / 2$	،	$31 / 4$		62	${ }^{66}$	1.6
3	90	$31 / 2$	$3 / 8$	I2I	$13 / 4 \times 1 / 4$	$2 \cdot 3$
$31 / 2$	66	66	6	137		2.8
4	66	4	6	157	2. $\times 5.16$	4°
$41 / 2$	6	6	7-16	210	6	4.5
\square	66	6	6	233	6	50
6	6	$41 / 4$	1/2	314	$21 / 4 \times 5-16$	$6 \cdot 5$
7	\%		6	359		7.7
8	66	6	6	408	6	82
9	6	$41 / 2$	9-16	527	$21 / 2 \times 5-16$	$10 \cdot 4$
10	6		6	573		115
II	6	$6 \cdot$	6	672	${ }^{6}$	$14^{\circ} 9$
12	6	6	5/8	755	$23 / 4 \times 3 / 8$	18.2
13	46	66	66	824	*	19.6
14	6	6	6	882	66	208
15	! 6	6.	66	948	66	22.2
16	66	6	$3 / 4$	1217	66	$23 \cdot 8$
17	6	6	,	1289	6	23.2
18	6	6	6	1365	6	$26 \cdot 6$
19	6	6	6	1452	6	27.9
20	66	6	2/8	I 794	6	296
22	6	66	66	1964	6	32.3
24	66	6	6	2136	6	35.0

Various Metals.-The Weight of a Superficial foot.

Thicknes, in inches.	Wrouglit Jron.	Cast Iron.	Steel.	Copper.	Bri.ss.	Lead.	Zinc.	Thickness in inches.
	lbs.	lbs.	lbs.	lbs.	Ibs.	$1 \mathrm{bs}$.	Ibs.	
1-16	2526	2.344	2.552	2.891	2.734	3.708	2.344	I- I 6
1/8	5.052	4.687	5.104	5.781	5.469	7.417	4.687	1/8
3-16	7.578	7.031	7656	8.672	8.203	11.125	7.031	3-16
1/4	10.104	9.375	10.208	11.563	10.938	14.833	9.375	1/4
5-16	12.630	11.719	12760	14.453	13.672	18.542	11.719	5-16
3/8	15.156	14.062	15.312	17.344	16.4 C 6	22.250	14.062	3/8
7-16	17.682	16.406	17.865	20.234	19.141	25.958	16406	7-16
1/2	20.208	18.750	20.417	23.125	21.875	29.667	18.750	1/2
9-16	22.734	21.094	22.969	26.016	24.609	33.375	21.094	9-16
5/8	25.260	23.437	25.521	28.906	$27^{\circ} 344$	37.083	23.437	5/8
11-16	27.786	25781	28.073	31.797	30078	40.792	25.781	II-16
$3 / 4$	30.312	28.125	30625	34.688	32.813	44.500	28.125	3/4
:3-16	32.839	30.469	33177	37.578	35.547	48208	30.469	13-16
7/8	35.365	32.812	35.729	40.469	38281	51.917	32.812	7/8
15-16	37.891	35.156	38.281	43.359	41.016	55.625	35.156	15.16
I	40.417	37.500	40833	46.250	43.750	59.333	37.500	I

Add for each side in Galvanizel Iron og6 lbs. per ft. sup.

Wrought-Iron Pipes.-The Weight of a Lineal Foot.

Bore in inches.	Thickness of Metal in parts of an inch.								Bore in inchos.
	1-16	1/8	3-16	1/4	5-16	3/8	7-16	1/2	
	145.	$1 b s$.	Ibs.	Ils.	lbs.	lbs.	Ibs.		
$1 / 4$	$.208$	$.497$	869	1.324	1.861	2.481	3.184	3.969	$1 / 4$
$3 / 8$. 289	. 661	1.116	1.653	2.273	2.976	3761	4.629	3/8
1/2	. 372	.827	1.364	1.984	2.687	3.472	4340	5.291	1/2
5	.455	1.092	1.612	2.315	3.100	3.968	4.919	5.952	58
$3 / 4$. 537	1.157	1.860	2.645	3.51 .3	4.464	5.497	6.613	34
7/8	.620	1.323	2.108	2.976	3.927	4.960	6.076	7.274	7/8
,	.703	1.488	2.350	3.307	4.340	5.456	6654	7.936	I
$11 / 4$. 868	1.319	2.852	3.968	5.167	6.448	7.812	9.258	$11 / 4$
$11 / 2$	1.033	2.149	3.348	4.029	5.993	7.440	8.969	10581	$11 / 2$
$13 / 4$	1.109	2.480	3.844	5.291	6.820	8.432	10.126	11.904	$13 / 4$
2	1.364	2.811	$4.34 ?$	5.952	7.6 .46	9.424	11.284	13226	2
$21 / 4$	1.539	3.131	4.836	6.613	8.473	10.410	12.441	14.549	$21 / 4$
21/2	1.695	3.472	5.332	7274	9.300	11.408	13598	15872	$21 / 2$
23	1.860	3.803	5.828	$\bigcirc .936$	10.126	12.400	14756	17.194	23
3	2.025	4133	6.324	8.607	10.953	13.392	15.913	18517	3

OOT.

Thickness in inches.

$\begin{aligned} & \approx \\ & \vdots=0 \end{aligned}$	Thickness in inches.												
\geqslant	I-16	1-8	3-16.	$1 / 4$	5-16.	3/8	7-16	1/2	5/8	3/4	7/8	1	
I-16	$\begin{aligned} & \text { lbs. } \\ & .0132 \end{aligned}$	$\begin{aligned} & 1 \mathrm{bs} \\ & .0263 \end{aligned}$	lbs.	$\begin{aligned} & \text { lbs. } \\ & .0526 \end{aligned}$	lbs. .0658	lbs.	los.	lbs.	lbs.		lbs.		
1/3	.0263	$.0526$. 039	.0526	.06,	0759	.0921	. 1053	.1316	. 1579	. 1842	. 2105	I-I6
3-16	. 0303		.0789	. 1053	-1316	. 1579	. 1842	. 2105	.263I	. 3158	. 3684	. 4210	1/8
3-16			. 1184	. 1579	. 1973	. 2368	. 2763	. 3158	- 3947	. 4736	.5526	.6315	3-16
-1/4	.0526	.1053	.1579	. 2105	. 2631	. 3158	. 3684	. 4210	. 5263	.6315	. 7368		
5-16	.0658	. 1316	. 1973	. 2631	. 3289	. 3947	. 4605	. 5263	. 6578	.6315 .7894	. 93210	1.053	
3/8	. 0789	. 1579	. 2368	. 3158	$\cdot .3947$. 4736	. 5526	. 6315	. 7894	. .9473	. 1.105	1.053 1.263	$5-16$
7-16	.092I	. 1842	. 2763	. 3684	. 4605	. 5526	. 6447	. 7368	. 9210	1.105	1.289	1.263 I .474	$\begin{gathered} 3 / 8 \\ 7-16 \end{gathered}$
1/2	.1053	. 2105	-3158	.4210	. 5263	.6315	. 7368	. 8420	1.053				
9-16	. 1184	. 2368	.3552	.4736	. 5920	. 7104	. 8289	. 9473	1.053 1.184	1.263 i. 42 I	1.474 1.658	1.684	1/2
58	.1316	. 2631	. 3947	. 5263	. 6578	.7894	. 9210	1.c53	1.316	1.579	1.842	1.895	9-16
11-16	. 1417	. 2894	. 4342	. 5789	. 7236	. 8083	. 1.013	I. 158	1.347	1.379 1.737	1.042 2.026	2.105 2.316	
4	. 1579	-3158	. 4736	.6315	.7804			I.263		1.895			
13-16	. 1710	. 3421	. 5131	. 6841	.8552	1.026	1105 1.197	1.263 $: .368$	1.579 1.710	1.895 2.052	2.210 2.394	2.526 2.737	
5/8	.1842	. 3684	. 5526	. 7368	.9210	1.105	1.289	1.4,4	1.710 1.842	2.210	2.394 2.579	2.737 2.947	$\begin{gathered} 13-16 \\ 7 / 8 \end{gathered}$
15-16	. 1973	. 3947	. 5920	.7894	.9867	1.184	1.381	1.417 1.579	1.973	2368	2.579 2763	2.947 3.158	$\begin{gathered} 7 / 8 \\ 15-16 \end{gathered}$
I	. 210	. 42 I	.632	. 842	I. 053	1.263	1.474	1.684	2.105	2.526			
11/8	. 237	. 474	. 710	. 947	I. 184	1.42 I	1.658	1.895	2.368	2.926	2947 3.315	3.368 3.789	I
$1{ }_{4}^{1}$. 263	. 526	. 789	1.053	1316	1.579	1.842	1.895 2.105	2.368 2.631	2.042 3.158	3.315 3.684	3.789	I 1/8
$13 / 8$. 289	. 579	. 868	1.158	1. 447	1.579 1.737	1.842 2.026	2.105 2.316	2.631 2.094	3.15 3.473	3.684 4.052	4.210 4.631	I $1 / 4$
$11 / 2$									2.094		4.5	4.031	$13 / 8$
12	-316	.632	. 947	1.263	1.579	1.895	2.210	2.526	3.158	3.789	4.42 I	5.052	
138	-312	. 684	1.026	1.368	1.710	2.052	2.394	2.737	3.421	4.105	4.789	5.473	$15 / 5$
13	- 368	. 737	1.105	1.474	1.842	2.210	2.579	2.947	3.684	4.421	5.157	5.894	13%
$1 / 8$	-395	. 789	I. 184	I. 379	1.973	2. 368	2.763	3.15	3.947	4.736	5.526	6.315	$17 / 3$
2	. 421	. 842	1263	1.684	2.105	2.526	2.947	3.368					
$21 / 8$.447	. 895	1.342	1.789	2.237	2.684	3.131	3.579	4.473	5.368	6.262	6.736 7.157	$\begin{aligned} & 2 \\ & 21 / 8 \end{aligned}$

Flat Bar Iron－Continued．

$\begin{aligned} & \# \\ & 0 \\ & =0 \end{aligned}$	Thickness in inches．												$\begin{aligned} & \cong \\ & \text { 気 } \\ & \text { 気 } \end{aligned}$
	1－16	1／8	3－16	1／4	5－16	3／8	7－16	1／2	5／8	$3 / 4$	7／8	I	
	Ibs．	lbs．	lbs．	lbs．	lbs．	lbs．	lbs．	lb．	lbs．	lbs．	lbs．	lbs．	
$21 / 4$	． 474	． 947	I． 42 I	I 895	2.368	2.842	3.315	3.789	4.736	5.684	6.83 I	7.578	$21 / 4$
$23 / 8$.500	1．000	1．500	2.000	2.500	3000	3.500	4.000	4.999	5.999	6.999	7999	23／8
$21 / 2$	．526	1.053	1．379	2.105	2.631	3．158	3.684	4.210	5.263	6.315	7.368	8.420	$21 / 2$
2 汭	． 533	1.105	1.658	2.210	2.763	3.315	3.868	4.42	5.526	6.631	7.736	8.84 I	$25 / 8$
$23 / 4$	． 579	1.158	1.737	2.316	2.894	3.473	4052	4.631	5.789	6.947	8.104	9.262	23／4
$27 / 3$	． 605	1.210	1.816	2421	3.026	3.0631	4236 ．	4.842	6.052	7.262	8.473	9.683	$27 / 8$
3	.632	1.263	1.895	2.526	3.158	3.789	4.421	5.052	6.315	7578	8.841	IO． 104	3
3.4	． 684	1．368	2.052	2.737	3.421	4．105	4.789	5.473	6.84 I	8.210	9.578	10.946	$31 / 4$
$31 / 2$	．737	1.474	2.210	2.947	3684	4.421	5.157	5.894	7.368	8.84 I	10.315	I 1.788	$31 / 2$
33.4	.789	1.579	2.368	3.158	3.947	4.736	5．526	6.315	7.894	9.473	11.051	12.630	33／4
4	．842	I 684	2.526	3．368	4.210	5.052	5.894	6.736	8.420	10.104	11.788	13.472	4
41／4	． 895	1.789	2.684	3．579	4.473	5.368	6.262	7.157	8.946	10.736	12.525	14.314	$4^{1 / 7}$
$41 / 2$	． 947	1.895	2.8421	3.789	4.736	5.654	6.631	7.578	9.473	11.367	13.262	15.156	$41 / 2$
＋3／4	1．000	2.000	3.000	4.000	4.999	5.999	6.979	7.999	9.999	11.999	13.998	15.998	$43 / 4$
5	1.053	2.105	3.158	4.210	5.263	6.315	7.368	8.420	10.525	12.630	14735	16.840	5
$51 / 4$	1.105	2.210	3.315	4.421	5.526	6.631	7.736	8.841	11.051	13.262	15.472	17.682	$51 / 4$
$51 / 2$	1.158	2.310	3.473	4.631	5.789	6.947	8．104	9.262	11.578	I 3.893	16.209	18.524	$51 / 2$
53／4	1210	2.421	3.631	4.842	6.052	7.262	8.473	9.683	12.104	14．525	10.946	19.366	$53 / 4$
6	1.263	2.526	3.789	5．032	6.315	7.578	8.841 ．	10.104	22．630	15.156	17.682	20.208	

CANADIAN CONTRACTORS HAND BOOK.

Copper Pipes - The Weight of a Lineal, Foot.

Pore in inches.	Thickness of Metal in parts of an inch.							
	I-16	1/8	3-16	1/4	5-16	3/8	7-16	1/2
	lbs.	Ibs.	lbs.	lbs.	1 bs .	lbs.	Its.	1 l ¢,
3-16	-189	-473	851	I 324	1.892	2.554	3.311	4-162
1/4	-236	-568	'993	I'514	$2 \cdot 128$	$2 \cdot 838$	$3 \cdot 6+2$	4.541
5-16	-284	$\cdot 662$	1.135	$1 \cdot 703$	$2 \cdot 365$	3.121	3.973	4.918
3/3	-331	757	1×277	$1 \cdot \mathrm{S92}$	2.601	3406	$4 \cdot 304$	$5 \cdot 297$
7-16	-378	-851	1419	2.081	2.838	$3 \cdot 689$	4.635	5.675
1/2	426	'946	1.561	$2 \cdot 270$	3.075	3.973	4×966	$6 \cdot 054$
9-:6	-473	I 040	1.703	2.459	3.311	4.256	$5 \cdot 297$	6.432
5/8	-520	$1 \cdot 185$	I 845	2.649	3.547	4.540	$5 \cdot 629$	6.81 I
11-16	568	1.230	1.986	2.838	3.783	$4 \cdot 824$	5.959	7190
3/4	$\cdot 615$	$1 \cdot 324$	$2 \cdot 129$	3.027	$4^{\circ} \mathrm{O} 20$	$5 \cdot 108$	6.290	$7 \cdot 568$
13.16	$\cdot 662$	1419	2.271	3.216	4.257	$5 \cdot 392$	6.622	7.946
7/8	709	1.514	2412	3.405	4.493	$5 \cdot 676$	6.953	$8 \cdot 324$
15-16	757	1.608	2.554	3.594	4.729	$5{ }^{\circ} 960$	7.284	8.703
1	-804	1703	2.696	3784	4.966	6.243	7.615	9008 I
$11 / 4$	'993	$2 \cdot 081$	3.263	4.540	5.912	7×38	8.938	10.595
$11 / 2$	1'182	2.459	3.831	5.297	6.857	$8 \cdot 514$	10.264	12.105
134	$1 \cdot 372$	$2 \cdot 833$	4.398	$6 \cdot 055$	7.805	9.646	11.586	13.621
-	1.560	3.217	4.967	$6 \cdot 808$	S.748	10.783	12.911	15.135
21/4	1750	3.591	5.531	$7 \cdot 566$	9.694	$1{ }^{1} 918$	14.234	15.647
$21 / 2$	I 940	3.975	$6 \cdot 103$	8.327	10.643	$13^{\circ} \times 66$	15.565	18.165
23/4	2.128	4.352	6.668	9.081	11.590	$14^{*} 190$	16.886	19.677
3	$2 \cdot 316$	4729	7.238	9737	12.534	15.325	18.212	21.190

Weight per foot run in lbs. $=3.027 \mathrm{D} 2-\mathrm{D}^{\prime} 2, \mathrm{D}$ and D^{\prime} being the external and internal diameter in inches.

Brass Pipes - The Weight of a Lineal Foot.

Bore in inches.	Thickness of Metal in parts of an inch.							
	1-16	1/8	3-16	1/4	5-16	3/8	7-16	1/2
	1 b	1 bs .	1 lbs .	lbs.	1 l s.	115.8	1 lls .	Ibs.
3-16	'178	'447	-805	1'252	1790	2428	3.132	30937
1/4	-226	-537	-940	I.432	2.015	$2 \cdot 684$	3.445	4:295
5-16	-269	.626	$1{ }^{\circ} 074$	1.611	2.260	2.953	3.758	4.653
3/8	-311	714	1.206	1790	2.459	3.219	4.069	5009
7-16	357	-805	1 ${ }^{\prime} 342$	1981	$2 \cdot 684$	3.489	4.384	5369
1/2	403	-895	1.478	2'148	2908	3758	4.698	5‘727
916	-447	. 985	1.623	$2 \cdot 327$	$3 \cdot 132$	4027	$5 \bigcirc 12$	6.085
58	-492	1.076	$1{ }^{\circ} 745$	2.506	3.356	4295	5.324	6.445
11-16	-537	1176	1880	2.684	3.579	4.564	5.637	6.801
34	584	1.253	2.013	$2 \cdot 863$	3.803	4832	5.953	$7 \cdot 179$
13-16	$\cdot 6.8$	$1 \cdot 342$	2.147	3042	4.027	51100	6.264	7616
7/8	${ }^{(C)}$	1.430	2:280	3.219	4248	$5 \cdot 369$	6.595	7×92
15-16	- 704	1.509	2404	3.388	4.462	5.625	6.888	$8 \cdot 227$
	761	1611	2.550	3.579	4.700	5.926	72.53	8.590
$11 / 8$	850	1790	2819	3939	5*165	6.493	7.830	9.308

Brass Pipes.--The Weight of a Lineal Foot.-continued.

$-1 / 2$
 ibs. 4.162
 4.541 4.918 $5 \cdot 297$ 5.675 6.054
 6.432
 6.81I
 7'190
 7•568
 7.946
 8.324
 8.703
 908
 $10 \cdot 595$
 12.105
 13.621
 I5.135
 $15 \cdot 647$
 $18 \cdot 165$
 19.677
 21190
 eing the

1/2
lbs. 3"937
4:295
4.653
$5^{\circ} \mathrm{OO} 9$
5•369

Bore in inches.	Thickness of Metal in parts of an inch.							
	I-16	1/8	3-16	1/4	5-16	3/8	7-16	1/2
1	lbs. -940	$\begin{gathered} \text { lbs. } \\ \text { I }{ }^{\circ} 69 \end{gathered}$	$\begin{gathered} \text { lbs. } \\ 3 \cdot 089 \end{gathered}$	$\begin{gathered} \text { lbs- } \\ 4.315 \end{gathered}$	Ibs $5 \cdot 643$	lbs. 6.980	$\begin{aligned} & \text { lbs. } \\ & 8 \cdot 458 \end{aligned}$	$\begin{gathered} \text { lbs. } \\ \text { 10.022 } \end{gathered}$
$13 / 8$	I 029	$2 \cdot 150$	3376	4.703	6.040	7-519	9082	10.738
$11 / 2$	1•121	$2 \cdot 3+7$	3.674	$5^{\circ} \mathrm{OI} 1$	6.489	8.053	9709	11.454
$15 / 8$	I 226	2.554	3.890	5369	6.933	8.588	10*333	12.168
$13 / 4$	1•327	2.664	4.143	5\%706	7×362	9.107	1c*942	12.865
$17 / 8$	-1337	2.815	4.379	$6 \cdot 35$	7.780	9614	11.538	13.553
2	1 478	3.042	4.698	6.443	8.277	10201	12.216	14.317
$21 / 4$	1.655	3.400	$5 \cdot 235$	7159	9'174	11.276	13.467	$15 \% 49$
21/2	1.833	3758	$5 \cdot 774$	7874	10.067	12.349	14.722	17.181
23/4	$2 \cdot 015$	4.116	$6 \cdot 309$	8.590	10.964	13.422	15.973	18.812
3	$2 \cdot 192$	4.474	$6 \cdot 847$	9.306	11×856	$14^{\circ} 696$	17×225	20'044

Weight per foot run in lbs. $=2.8634 \mathrm{D}_{2}-\mathrm{D}^{\prime} 2, \mathrm{D}$ and D^{\prime} being the external and internal diameter in inches.

Lead Pipes.-The Weight of a Lineal Foot.

Bore in inches.	Thickness of Metal in parts of an inch.					
	1-16	1/8	$3 \cdot 16$	1/4	5-16	3/8
3-16	Ibs. $\cdot 243$	lbs. $\cdot 607$	$\begin{aligned} & \text { lbs. } \\ & \text { I } 0002 \end{aligned}$	Ibs. I•699	lbs. 2427	$\begin{aligned} & \text { lbs. } \\ & \hline 2 \cdot 272 \end{aligned}$
1/4	$\cdot 303$	$\cdot 728$	$1 \cdot 273$	1.942	2.730	3.641
5-16	$\cdot 364$.850	1456	$2 \cdot 184$	3.034	4.004
3/8	-425	-971	1.638	2427	$3 \cdot 337$	4369
7-16	-485	10092	1.820	2.670	3.640	4733
1/2	- 546	1 214	2.013	2.913	3.944	5.097
9-16	$\cdot 607$	I•335	2.184	3'155	4248	$5 \cdot 460$
58	$\cdot 667$	1.520	$2 \cdot 366$	3.398	4.551	5.825
11-16	$\cdot 728$	1.578	2.548	3.641	4.853	6.189
3/4	789	1699	2.731	3.873	5.157	6.553
13-16	. 851	1820	2913	4126	$5 \cdot 461$	6.917
7/8	$\bigcirc 910$	I.942	3095	4368	$5 \cdot 764$	$7 \cdot 281$
15-16	-971	2.063	3.276	4611	6.067	$7 \cdot 646$
	1.032	2'184	3.457	$4 \cdot 854$	6371	8.009
$131 / 4$	1.274	$2 \cdot 670$	$4 \cdot 186$	5.825	7.585	9466
$11 / 2$	1.517	3.155	4.915	6.796	8.796	10.923
13	1760	3.641	5642	$7 \cdot 768$	10.013	12.375
2	$2{ }^{\circ} \mathrm{OOI}$	4.127	6.372	8•734	11.223	13.833
214*	$2 \cdot 245$	4.607	$7{ }^{\circ} 096$	9'707	12.436	15.290
$21 / 2$	2489	5^{100}	7.829	10'683	13.654	16.762
$23 / 4$	$2 \cdot 729$	$5 \cdot 583$	8.554	11.650	$14^{\circ} 869$	18:204
3	2.971	6.066	$9: 286$	12.621	16.080	19.660

Weight per foot run $\left.=3.8834 \mathrm{D}_{2}-\mathrm{D}\right)^{\prime} 2, \mathrm{D}$ and D^{\prime} being the external and internal diameter in inches.

THE WEAR AND TEAR OF BUILDING MATERIALS.

At the tenth annual meeting of the Fire Underwriters' Association st the Northwest, held at Chicago in September, 1879, Mr. 4. W. Spalding read a paper on the wear and tear of building materials, and tabulated the result of his investigations in the following form :

Material in Builiding.	Frame dwelling.		Brick dwelling, (shingle roof.)		Frame store.		Brick store, (shingle roof.)	
Brick.	-	-	75	$11 / 8$	-	-	66	$11 / 2$
Plastering........	20	5	30	$3^{1 / 3}$	16	6	30	$3^{1 / 2}$
Painting, outside. .	5	20	7	14	5	20	6	16
Painting, inside ..	\%	14	7	14	5	20	6	16
Shingles	16	6	10	6	16	6	16	6
Cornice	40	21/2	40	$221 / 2$	30	$3^{1 / 3}$	fo	21/2
Weather-boarding.	33	$31 / 3$	-	-	30	$3^{1 / 3}$	-.	-
Sheathing........	50	2	50	2	40	${ }^{21 / 2}$	50°	2
Flooring	20	5	20	5	13	8	13	8
Doors, complete ...	30	$3^{1 / 3}$	30	$31 / 3$	25	4	30	$3^{1 / 3}$
Windows, complete	30	$3^{1 / 3}$	30	$3^{1 / 3}$	25	4	30	$3^{1 / 3}$
Stairs and newel. .	30	31/3	30	31/3	20	5	20	5
Base.............	40	$21 / 2$	40	21/2	30	$3^{1 / 2}$	30	$3^{1 / 2}$
Inside blinds......	30	$31 / 3$	30	$31 / 3$	30	$3^{1 / 3}$	30	$3^{1 / 3}$
Building hardware.	20	5	20		13	8	13	
Piazzas.sand porches	20	5	20	5	20		20	5
Outside blitds.... Sills and first-floor	16	6	16	6	16	6	16	6
Sills and first-floor joints.	25		40	$21 / 2$	25		30	$3^{1 / 3}$
Dimension lumber	50		75	1 $1 / 3$	40	21/2	66	11/2

These figures represent the averages deduced from the replies made by eighty-three competent builders unconnected with fire-insurance companies, in twenty-seven cities and towns of the eleven Western States.

SASH WEIGHTS
REQUIRED FOR THE FOLLOWING SIZED WINDOWS ：
ation of the ding read a esult of his

Brick store， shingle roof．）

Years．

 －unuue sad

66

66
30
6
6
16
40
50
13
30
30
20
30
30
13
20
16
30
36

；made by companies，

THICKNESS．	NO．OF LIGiHTS．	WEIGHT－LBS．
$13 / 8$	12	6
	8	6
＂	8	6
＂	12	7
＂	12	7
＂	8	7 \％
＂	8	7 －
＂	8	7 ．
＂	8	7 3
＂	8	7 －
＂	12	8 J
＂	8	8 \％
＂	8	8 ，
＂	8	$8{ }^{\text {＇}}$
＂	8	8 ．${ }^{\text {che }}$
＂	8	8 可
＂	4	8 ¢
＂	12	9 告
＂	8	9 告
＂	8	9 ＂
＂	4	9 \％
＂	4	9 ？
＂	4	9 近
＂	12	10 ，
＂	12	10 9
＂	12	10 －
＂	12	10 Z
＂	8 －	10
	8	10
＂	4	10
＇	4	10
＂	12	11
$13 / 4$	4	12

STAIRCASES－PROPORTION OF TREADS AND RISERS．

WIDTH OF	$\begin{aligned} & \text { HEIGHT OF } \\ & \text { RISER. } \end{aligned}$	winth of tread．	height of RISER．
6 inches	$81 / 2$ inches．	11 inches	6 inches
711	$8 \quad 1$	12 l	$51 / 2 \quad 11$
8 ＂	$71 / 211$	$13 \quad 1$	$5{ }^{5}$
9 ＂	711	14 ＂	$41 / 2 \quad 11$
$10 \quad 1$	$61 / 2 \quad 11$	15	411

TABLES

Showing Amount of a Workman's Wages
 from 15 Cents to 45 1/2 Cents

per Hour,

FOR ANY ${ }^{\circ}$ NUMBER OF HOURS,

FROM I TO I20 (A FORTNIGHT).

AT 15 CENTS PER HOUR.

His. Am t.
\qquad

$$
0.37
$$ 0.45 0.52

0.00 0.67
0.75 0.90 0.97 N

| 10 | 1.50 |
| :--- | :--- | | 10 | 1 |
| :--- | :--- | | 11 | 1.65 |
| :--- | :--- |
| II $\frac{1}{2}$ | 1.72 | 12.1 .80 $12 \frac{1}{2} 1.87$ | 13 | 1.95 |
| :--- | :--- |
| 13 | 2.02 |

If 2.10 $14^{\frac{1}{2}} 2.17$ $15 \quad 2.25$ \begin{tabular}{l|l}
$15 \frac{1}{2}$ \& 2.32

16 \& 2

 16 2. 10

$16 \frac{1}{2}$ \& 2.47

\hline

 $17{ }_{17} 2.55$

17 \& 2.62

18 \& 2.62

18 \& 2.70

$18 \frac{1}{2}$ \& 2.77

\hline 10

 19, 2.85 $19 \frac{1}{2} 2.92$ $20 \mid 3.00$

201 \& 3.07

21 \& 3.15

\hline 21 \& 3.15

212 \& 3.22

\hline

22 \& 3.30

$22 \frac{1}{2}$ \& 3.37

222 \& 3.37

23 \& 3.45

23 \& 3.52

23 \& 3.52

2. \& 3.52

24 \& 3.60

$24 \frac{1}{2}$ \& 3.67

\hline

 253.75

25 \& 3.82

26 \& 3.82

2.00

 26 $26 \frac{1}{2} 3.98$ $27+4.05$ $27 \frac{1}{2} 4.12$

28 \& 4.20

281 \&

$28 \frac{1}{2}$ \& 4.27

29 \& 4.35
\end{tabular}

29	4.35
292	4.42

30 4.50
. 1

 302 ल $\omega_{\omega}^{\omega} \omega$ 12
32
32
33
33
34
3
35
3
3
3
3
3
3 ω $\begin{array}{ll}39.2 & 5.9^{2} \\ 40 & 6.00 \\ 40^{\frac{1}{2}} & 6.07 \\ 41 & 6.15\end{array}$
6
601
61
6
6
62
6
6

$$
\begin{aligned}
& 0.35 \\
& 0.39
\end{aligned}
$$

E	
山	
E	
崗	

AT 16 CENTS PER HOUR． Hrs．Am＇t．

Mrs． \mid Am＇t． \mid Hrs． \mid Am＇t． \mid Hrs． \mid Am＇t．

AT $161 / 2$ CENTS PER HOUR．

30.2	4.88	601	9.68	901	14.48			30.1	5.03	$60 \frac{1}{2}$	9.98	90，$\frac{1}{2}$	14.93
31	4.96	61	9.76	91	14.56			31	5.11	61	10.06	91	15.01
$31 \frac{1}{2}$	5.04	$61 \frac{1}{2}$	9.84	$9 \mathrm{r} \frac{1}{2}$	14.64			$3{ }^{1} \frac{1}{2}$	5.20	$61 \frac{1}{2}$	10． 15	911	15．10
32	5.12	62	992	92	14.72	2	0.33	32	5.28	62	10.23	92	I5．18
$32 \frac{1}{2}$	5.20	$62 \frac{1}{2}$	10.00	92！	14.80	$2 \frac{1}{2}$	$0.4{ }^{\text {I }}$	$32 \cdot$	$5 \cdot 36$	$62!$	10.31	92⿺𠃊⿳亠丷厂犬	I5．26
33	5.28	63	10.08	93	14.88	3	0.49	33	$5 \cdot 44$	63	10． 39	93	15.34
$33 \frac{1}{2}$	$5 \cdot 36$	$63 \frac{1}{2}$	10． 16	93.	14.96	$3 \frac{1}{2}$	0． 5^{8}	$33^{\frac{1}{2}}$	5.53	$63 \frac{1}{2}$	10.48	932	I5．43
34	5.44	64	10.24	94	15.04	4	0.66	34	5.61	64	10.56	94	I5．51
342		$64 \frac{1}{2}$	10． 3^{2}	$94 \frac{1}{2}$	15．12	$4 \frac{1}{2}$	0.74	$34{ }^{\frac{1}{2}}$	5.69	$64 \frac{1}{2}$	10.64	$94 \frac{1}{2}$	15.59
35	5.60	65	10．40	95	15.20	5	0.82	35	5.77	65	10.72	95	15.67
351	5.68		10.48	$95 \frac{1}{2}$	I5．28	$5 \frac{1}{2}$	0.91	$35 \frac{1}{2}$	5.86	$65^{\frac{1}{2}}$	10.81	$95 \frac{1}{2}$	15.76
36	5.76	66	10． 5^{6}	96	$15 \cdot 36$		0.99	36	5.94	66	10.89	96	15.84
$36 \frac{1}{2}$	5.84	$66 \frac{1}{2}$	Io． 64	$96 \frac{1}{2}$	15.44	$6 \frac{1}{2}$	1.07	$36 \frac{1}{2}$	6.02	$66 \frac{1}{2}$	10.97	$96 \frac{1}{2}$	I 5.92
37	5.92	67	10.72	97	15.52	7	1． 15	37	6.	67	It．O5	97	． 00
$37 \frac{1}{2}$	6.00	$67 \frac{1}{2}$	10	$97 \frac{1}{2}$	15.60	$7 \frac{1}{2}$	1.24	$37 \frac{1}{2}$	6.19	$67 \frac{1}{2}$	II． 14	$97 \frac{1}{2}$	6．og
38	6.08	68	10.88	98	15.68	8	1.32	38	6.27	68	22	98	16.14
$38 \frac{1}{2}$	6.16	$68 \frac{1}{2}$	10.9	$98 \frac{1}{2}$	I 5.76	81	1.40	$38 \frac{1}{2}$	6.35	$68 \frac{1}{2}$	11．30	$98 \frac{1}{2}$	16.25
39	6.24	69	II． 04		I 5.84		I． 48	39	6.43	69	II． 3^{8}	9	I6．33
3	6.32	69		992	15.92	9.	I． 57	$39 \frac{1}{2}$	6.52	$69 \frac{1}{2}$	II． 47	$99 \frac{1}{2}$	16．42
40	6.40	70	11	100	16.00	10	1． 65	40	6.60	70	11.55	100	16.50
$40 \frac{1}{2}$	6.48	70	I1．28	$100 \frac{1}{2}$	16.08	$10 \cdot 1$	I． 73	$45 \frac{1}{2}$	6.68	701	11.63	$100 \frac{1}{2}$	16.58
41	6.56	71	II． 36	101	16.16	，	I． 81	41	6.76	71	11.71	1	6．66
415	6.64	711	III． 4	IOI $\frac{1}{2}$	I6． 24	$11 \frac{1}{2}$	1.90	$4{ }^{1} 2$	6.85	$7 \mathrm{I} \frac{1}{2}$	11.80	$101 \frac{1}{2}$	16.75
42	6.72	72	11.52	102	16.32	12	1．98	42	6.93	72	11.88	2	16.83
$42 \frac{1}{2}$	6.80	$72 \frac{1}{2}$	11	$102 \frac{1}{2}$	16.40	$12 \frac{1}{2}$	2.06	$42{ }^{\frac{1}{2}}$	7.01	72！	11.96	$22 \frac{1}{2}$	16.91
43	6.8	73	11.68	103	16.48	13	2.14	43	7.09	73	12.04	103	16.99
	6.96	732	11.76	$103 \frac{1}{2}$	16.56	133	2.23	43 ${ }^{\frac{1}{2}}$	7.18	732	12.13	$103 \frac{1}{2}$	17.08
	7.04	74	II． 84	104	16.64	14	$2.3{ }^{\text {I }}$	44	7.26	74	12.21	104	17.16
	7.	74	11.92	104 $4^{\frac{1}{2}}$	16.72	$14 \frac{1}{2}$	2.39	44 $\frac{1}{2}$	$7 \cdot 34$	74 $\frac{1}{2}$	12.29	42	17.24
	7.20	75	12	105	16.8	15	2.47	45	7.42	75	12.37	5	17.32
	7.2	75：	12.0	$105 \frac{1}{2}$	16.88	$15 \frac{1}{2}$	2.56		$7 \cdot 51$	$75 \frac{1}{2}$	12.46	1052	17.41
	7.36	76	12．16	I06	16.96		2.64		7.59	76	12.54	I06	17.49
$4{ }^{2}$	7.44	761	12.24	106 $\frac{1}{2}$	17.04	$16 \frac{1}{2}$	2.7^{2}	$46 \frac{1}{2}$	7.67	$76 \frac{1}{2}$	12.62	061	17.57
	7.52	77	12.32	107	17.12	17	2.80	47	7.75	77	12.70	107	17.65
	7.60	$77 \frac{1}{2}$	12.40	$107 \frac{1}{2}$	17.20	$17 \frac{1}{2}$	2.89	$47 \frac{1}{2}$	7.84	77 ${ }^{\frac{1}{2}}$	12.79	108	17.74
	7.68	78	12.48	8	17.28	18	2.97	48	7.92	78	12.87	108	17.82
2	7.76	781	12.56	1081	17.36	$18 \frac{1}{2}$	3.05	48 L	8．00	78.	12.95	00_{2}	I7．ço
	7.84	79	12.64	9	17.44		3.13	49	8.08	79	13.03	9	17.98
492	7.92 8.00	79	12.72	rog $\frac{1}{2}$	17.52	$19 \frac{1}{2}$	3.22	$49^{\frac{1}{2}}$	8.17	79.1	13.12	$109 \frac{1}{2}$	18.07
	8.00	80	12.8	110	17.60	20	$3 \cdot 3{ }^{\circ}$	50	8.25	80	13.20	10	18.15
5	8.	$80 \frac{1}{2}$	12.88	IiO $\frac{1}{2}$	17.68	20.1	3.3	$50 \frac{1}{2}$	8.33	$80 \frac{1}{2}$	13.28	$10 \frac{1}{2}$	18.23
5	8.16	81	12.96	III	17.76	21	$3 \cdot{ }^{6}$	5 I	8．4I	8 I	13.36	1	18.31
512 52	8.24 8.32	81	13.04	$1 \mathrm{II} \frac{1}{2}$	17.84	$21 \frac{1}{2}$	3.55	$51 \frac{1}{2}$	8.50	$8 \mathrm{I} \frac{1}{2}$	${ }^{1} 3.45$	IIX ${ }^{\frac{1}{2}}$	18．40
	8.32	82	13.12	112	17.92	22	3.63	52	8.58	82	13.53		18.48
$52 \frac{1}{2}$ 53	8.40	$82 \frac{1}{2}$	13.20	$112 \frac{1}{2}$		$22 \frac{1}{2}$	$3.7{ }^{1}$	$52 \frac{1}{2}$	8.66	$82 \frac{1}{2}$	13.61	$12 \frac{1}{2}$	1856
	8.	83	I3．28	II3	18.08	23	3.79		8.74	83	13.69		18.64
	8.5 8.6	83 84	13.36	$113{ }^{\frac{1}{2}}$	18	$23^{\frac{1}{2}}$	3.88	532	8.83	832	13.78	II3 ${ }^{1}$	18.73
	8.64	84	13.44	II4	18.24	24	$3 \cdot 96$		8.91	8	13.86		18.81
	8.72 8.80	8	13.52		18.32	$24^{\frac{1}{2}}$	4.04	$54 \frac{1}{2}$	8.99	$84 \frac{1}{2}$	13.94	II $4 \frac{1}{2}$	18.89
	8.80	85	13.60	II5	18.40	25	4.12	5	9.07		14.02		18.97
$55^{\frac{1}{2}}$	8.83	85	13.68	115	18.48	$25 \frac{1}{2}$	$4.2{ }^{\text {I }}$	$55 \frac{1}{2}$	9.16	$85 \frac{1}{2}$	14． 11	$115 \frac{1}{2}$	19.06
	8.96	86	13.76	116	18.56	26	4.29		9.24	86	14.19		19．14
2	9.04	$86 \frac{1}{2}$	13.84	$1{ }^{1} 61$	18.64	261	$4 \cdot 37$	$56 \frac{1}{2}$	$9 \cdot 32$	$86 \frac{1}{2}$	14.27	$116 \frac{1}{2}$	19.22
	9.12	87	I 3.92	117	18.72	27	4.45	5	9.40	87	14.35	117	19.30
572	9.20 9.28	87	14.00	117\％	18.80	$27 \frac{1}{2}$	4.54	$57 \frac{1}{2}$	9.49	$87 \frac{1}{2}$	14.44	1172	19.39
1	9． 28	88	14.08	118	I 3.88	28	4.62	5	9.57	88	14.52	18	19.47
$58 \frac{1}{2}$	9.36	881	14． 16	m81	18.96	281	$4.7{ }^{\circ}$	581	9.65	$88 \frac{1}{2}$	14.60	$118 \frac{1}{2}$	19．55
	9.44	89	14.24	119	19．04	29	4.78	59	9.73	89	14.68	119	19.63
592	9． 52	893	14.32	1192	19． 12	$29 \frac{1}{2}$	4.87	592	9.82	892	14.77	119.	19.72
60	9.60	90	14.40	120	19.20	30	4.95	60	9.90	yo 1	4.8	1201	19.80

AT 17 CENTS PER HOU R. AT $171 / 22$ CENTS PER HOUR.
t. Hrs. Am't.

- $90 \frac{1}{2} 14.93$ $91 \frac{1}{2} 15.10$ 92 15.18	922	15.26
93	5.34	
5		$93 \frac{1}{2}$ 15.43

 9515.67 \begin{tabular}{l|l|l}
$95 \frac{1}{2}$ \& 15.76

96 \& 15.84

 $96 \frac{1}{2} 15.92$ 971 16.00 $97 \frac{1}{2} 56.09$ $98{ }^{16.17}$

982 \& 16.25

99 \& 16.33
\end{tabular}vu U

$100 \frac{1}{2} 16.58$ IOI 16.66
\qquad

 | $102 \frac{1}{2}$ | 16.91 |
| :--- | :--- | :--- |
| 103 | 169 |

 104 $\frac{1}{2}$ 17.24 105 17.32 105 ${ }^{\frac{1}{2}} 127.41$ 10617.49
 ro7 $\frac{1}{2}$ I7.74

10917.98	$109 \frac{1}{2}$	18.07
110	18.15	
110	18	IIO ${ }^{\frac{1}{2}} 188.23$

 $\begin{array}{llll}114 & \text { I8.81 } \\ \text { II } & 1 & 18.80 \\ 18.89\end{array}$ $\underset{10}{15} 15$ II6 19.14

 | 117 | 19.39 |
| :--- | :--- | :--- |
| 15 | 19.39 | $\begin{array}{lll}118 & 19.47 \\ 118 \frac{1}{2} & 19.55 \\ 19.59\end{array}$ 119 19. 63

Hrs. Am't. Hrs. Am't. Hrs. Am'l. Hrs. Am't. His. Am t. 1 -

$$
\mathrm{Cl}
$$

$$
\begin{aligned}
& 0.42 \\
& 0.5 i
\end{aligned}
$$ - NWW WW OWNWWWWW

 \begin{tabular}{l|l|l}
\hline 601 \& - \& 10.28

61 \& 10.37

\hline 6

\hline $90 \frac{1}{2}$ \& $15 \cdot 38$

91 \& $15 \cdot 47$

91 \& 12

92 \& $5 \cdot 55$
\end{tabular}

$$
\left|\begin{array}{l}
0.34 \\
0.42
\end{array}\right|
$$

Hrs.	Am't.	Hrs.	Am't.
$30 \frac{1}{2}$	$5 \cdot 34$	60.1	10.59
31	5.42	6I	10.67
$31 \frac{1}{2}$	$5 \cdot 5 \mathrm{I}$	$6 \mathrm{I} \frac{1}{2}$	10.76

$$
\begin{array}{l|l|}
4 & 0.68 \\
4^{\frac{1}{2}} & 0.76 \\
\hline
\end{array}
$$

AT 18 CENTS PL... .. OUR. AT $181 / 2$ CENTS PER HOUR.
$\overline{\text { Hrs. Am't. }}{ }^{1}$

IOUR.

	Am'				
$90 \frac{1}{2}$	16.74				
91	I 6.83				
$91 \frac{1}{2}$	16.93				
92	17.02				
$92!$	17.11				
93	17.20				
$93!$	17.30				
94	17.39				
942	17.48				
95	17.57				
95:	17.09				
96	$17.7{ }^{\circ}$				
$96 \frac{1}{2}$	17.85				
97	17.94				
97:	18.04				
98	18.13				
$98 \frac{1}{2}$	18.22				
99	18.31				
$99 \frac{1}{2}$	18.41				
ICO	18.50				
$100 \frac{1}{2}$	18.59				
101	18.68				
IOI $\frac{1}{2}$	18.77				
102	18.87				
$102 \frac{1}{2}$	18.96				
103	19.05				
$103 \frac{1}{2}$	19.15				
104	19.24				
104	19.33				
105	19.42				
$105 \frac{1}{2}$	10.52				
106	19.61				
1061	19.70	$\begin{array}{lll}107 & 19.79\end{array}$	107	19.89	
:---	:---	:---		108	19.9^{8}
:---	:---	:---	108220.07 10920.16 $109 \frac{1}{2} 20.26$	1110	20.35
:---	:---	:---			
110.1	20.44		II I	20.53	
:---	:---	:---			
1 II	20.63		112^{2}	20.7^{-2}	
:---	:---	:---	112! 20.81 $113^{*} \quad 20.00$ II $3!21.00$ II 4.21 .09 11.4! 21.18 $115 \quad 21.27$ $\begin{array}{llll}115 & 2 & 21.37 \\ 1 & 1 & 2 & 21.47\end{array}$	1168	21.55
:---:	:---:	:---:		117	21.64
:---	:---	:---	$117!21.74$	118	21.83
:---	:---	:---	118221.02 $119^{2} 2^{22.01}$ 119822.11	1120	22.30
:---	:---	:---			
120					

AT 19 CENTS PER HOUR.
Hrs. Am't. |Hrs. Ain't.|Hrs. An't. |
Hrs. 'Am't.
Hrs. Aın't.

AT 20 CENTS PER HOUR.
Hrs. An't.

AT 2

HOUR.

$\mathrm{Hrs} .$	Am
901	18.55
91	18.65
$91 \frac{1}{2}$	18.76
92	18.86
92!	18.96
93	19.06
93!	19.17
94	19.27
9412	19.37
95	19.47
$95^{\frac{1}{2}}$	19.58
96	19.68
96!	19.78
97	19.88
$97 \frac{1}{2}$	19.99
98	20.09
981	20.19
99	20.29
$99 \frac{1}{2}$	20.40
100	20.50
$100 \frac{1}{1}$	20.00
101	20.70
$101 \frac{1}{2}$	20.8
102	20.91
1021	21.01
103	21.11
$103 \frac{1}{2}$	21.22
104	21.32
10.4!	21.42
105	21.52
$105 \frac{1}{2}$	21.03
106	21.73
$106 \frac{1}{2}$	21.83
107	21.13
107 ?	22.04
108	22.14
1081	22,24
109	22.34
109!	22.45
110	22.55
110 !	22.05
111	22.75
12	22.

| 112 | 22.40 |
| :--- | :--- | :--- |
| $112!$ | 23.00 |

$1133^{2} 3.10$ $\begin{array}{lllll}1 & 1 & 3 & 2 & 2 \\ 1 & 27 & 27 \\ 1 & 23 & 37\end{array}$ 11.4 ll $23.4 \hat{i}$ | 1 | 115 | $23.5 i$ |
| :--- | :--- | :--- |
| 1 | 15 | 53 |
| 168 | | | $\begin{array}{lll}116 & 2.38 \\ 110.1 & 23.88\end{array}$ $117^{2} \mid 23.9^{8}$ $1178^{2} 24.05$ | 118 | 2.16 .19 |
| :--- | :--- | :--- | 11812.4 .20 110 24.34 110.24 .56 $120 \quad 2.1 .60$

AT 21 CENTS PER HOUR. Hrs.Am't.
Hrs. w 31

AT 22 CENTS PER HOUR.

Hrs. Am't. -

Hrs. Am't. Hrs. Am't. His. Am t.
Hrs. Am't.

AT 24 CENTS PER HOUR.

HOUR.

t. Hrs. Am't

2	$50 \frac{1}{2} 2.2,17$

$9{ }^{1} 92^{2}$ 1 92322.60 3 93 22.78	$93 \frac{1}{2}$	22.91
94	23.03	

 $\begin{array}{lll}95 & 23.27 \\ 95^{\frac{1}{2}} & 23.40\end{array}$ \begin{tabular}{|l|l|l}
952 \& 23.40

96 \& 23.52

963 \& 23.64

9. \&

\hline

962 \& 23.64

97^{2} \& 23.76

\hline

 $97 \frac{1}{2} 23.89$ $98{ }^{2} 2.01$

$98 \frac{1}{2}$ \& 24.13

99 \& 24.25

 99 $\frac{1}{2} 24.33^{8}$ $\left(\begin{array}{ccc}100 & 24.5 \\ 100 \frac{1}{2} & 2.54 \\ 24.621\end{array}\right.$

101 \& 24.74

\hline 102

 10182 ${ }^{1} 2.4 .87$ 102 24.99 $102 \frac{1}{2} 25.11$ 103 25.2:3 $103 \frac{1}{2} 25.36$ 10425.48 104125.60 10525.72 $105 \frac{1}{12} 25.85$

106 \& 25.97

$106!$ \& 26.09

\hline
\end{tabular}

$107^{2} 26.21$
$107!26.34$

108	26.34
106.4^{6}	

10926
109 ! 26.83
110

| 11012 |
| :--- | :--- | :--- |
| 10.07 |

11 27.19
$111{ }_{2}^{1} 27.3^{2}$
11227 . 1
$112 \frac{3}{27.50}$
113 27.04
$\begin{array}{lll}1132 & 27.81\end{array}$
11427.03
$14!28.05$
[15 28.17

| $15 \frac{1}{1}$ | 28.30 |
| :---: | :---: | :---: |
| 16 | 28.12 |

$16!28.54$
17^{2} 28.i\%
$17 \frac{1}{2} 28.79$
18 28.n1
18 f 29. 13

$20 \quad 23.40$

AT 25 CENTS PER HOUR.

IIrs. Irs. E | N |
| :--- |
| 0 |

AT 26 CENTS PER HOUR.
IIrs. Am't. || Irs
\mid
-
תUR $+\omega \omega \omega_{i=1}^{N} N$

Hrs.	Am't.	Hrs.	Am't.
$30 \cdot 1$	7.93	$60 \frac{1}{2}$	15.73
31	8.06	61	15.86
315	8.19	61.1	15.99
32	8.32	62	16.12
32.	8.45	621	16.25
33	8. 58	63	16.38
$33 \frac{1}{2}$	8.71	63.1	16.51
34	8.84	64	16.64
$34 \frac{1}{2}$	8.97	64 ${ }^{\frac{1}{2}}$	16.77
35	9.10	65	16.90
$35 \frac{1}{3}$	9.23	$65!$	17.03
36	$9 \cdot 36$	66	17.16
$35 \frac{1}{2}$	9.49	$66 \frac{1}{2}$	17.29
37	2. 62	67	17.3^{2}
371	9.75	$67 \frac{1}{2}$	17.45
33^{-}	9.88	68	17.58
381	10 OI	681	17.71
39	10. 14	69	17.84
$39 \frac{1}{2}$	10.27	69.	17.97
40	10.40	70	18.10
$40 \frac{1}{2}$	10. 53	$70 \frac{1}{2}$	18.23
4 r	10.65	71	18.36
412	10.79	711	18.49
42	10.92	72	18.62
$42 \frac{1}{2}$	11.05	$72 \frac{1}{3}$	18.75
43	t1.18	73	18.88
$43 \frac{1}{2}$	II. 31	73!	19.01
44	11.44	74	19.24
$44^{\frac{1}{2}}$	II 1.57	74.	19.37
45	11.70	75	19.50
45 $\frac{1}{2}$	11.83	75.1	19.63
46	11.96	76	19.76
$46 \frac{1}{2}$	12.09	$76 \frac{1}{2}$	19.89
47	12.22	77	20.02
$47^{\frac{1}{2}}$	12.35	$77!$	20.15
48	12.48	78	20.28
$48 \frac{1}{2}$	12.61	78.	20.41
49	12.74	79	20.54
$49 \frac{1}{2}$	12,87	79	20.67
50	${ }^{1} 3.00$	80	20.80
$50 \frac{1}{2}$	13.13	$80 \frac{1}{2}$	20.93
51	13.26	81	21.06
$5 \mathrm{5} \frac{1}{2}$	13.39	$8 \mathrm{~L} \frac{1}{2}$	21.19
52	13.52	82	21.32
$52 \frac{1}{2}$	13.65	$82 \frac{1}{2}$	21.45
53	13.78	83	2 I .58
$53{ }^{1}$	13.91	832	21.71
54	${ }^{1} 4.04$	84	21.8 .4
$54 \frac{1}{2}$	14.17	$84 \frac{1}{2}$	21.97
55	14.30	85	22.10
$55 \frac{1}{2}$	1.4 .43	852	22.23
56	14.56	86	22.36
$56 \frac{1}{2}$	14.69	8612	22.49
57	14.82	87	22.62
571	1.4 .95	$87 \frac{1}{1}$	22.75
58	15.08	88	22.88
581	15.21	881	23.01
59	15.34	89	23.14
59.	15.47	39\%	23.27

DUR.

Am't, $90 \frac{1}{2} 23.98$ 9124.11 $9{ }^{\frac{1}{2}} 24.25$ 9^{2} 24.38 $92 \frac{1}{2}$ 24.51 93 24 64	$93^{\frac{1}{2}}$	2.4 .78
94	24.91	$94^{\frac{1}{2}} 25.04$ 95 25.17 $95^{\frac{1}{2}} \cdot 531$ $96 \quad 25 \cdot 44$ $95 \frac{1}{2}$ 25. 57 $97 \mid 25.70$ $97^{\frac{1}{2}} 25.84$ 98 25.97 $98 \frac{1}{2} 26$. 1 c 9926.23 99: 26.37 $100 \quad 26.50$ $100 \frac{1}{2} 26.6$ 101 26.76 101 ${ }_{2}^{1} 26.90$ 10227.03 $102 \frac{1}{2} 27.16$

103 27.29 $103^{\frac{1}{2}} 27.33$ $104{ }^{27.46}$ 10427.59 105 $105 \frac{1}{2} 27.86$ | 106 | 27.99 |
| :--- | :--- |
| 106.4 | 28.12 | 107 $107 \frac{1}{2} 28.39$ ro8 28.52 1081'28.75 109 | 28.88 $110 \quad 29.15$ IIO 29.28 III 29.41 $111 \frac{1}{2} 29.55$ 112 | 29.68 113

129.9 .4

12 113230.08 \begin{tabular}{lll}
114

1142 \& 30.21

\hline 154

\& 115 \& 30.47

1152

116 \& 30.01

10,74

\hline

$116 \frac{1}{2}$ \& 30.87

 1173 3.00

$117 \frac{1}{3}$ \& 31.14
\end{tabular} 118 31.2 118.2 31.40 $1193^{12.53}$ $119 \frac{1}{2} 31.67$ $120 \quad 31.80$

AT 27 CENTS PER HOUR.

Hrs. Am't Hrs. Am't. Hrs. Am't. Hrs. Am't. His. Am t. \begin{tabular}{l|l|}
\hline

\hline

9 \& 2.43

9.1 \& 2.56

2.51
\end{tabular}

10
$10!$
oroo monv a oercat tivn wh Nown

$$
=
$$

$$
\begin{array}{ll}
10! & 83
\end{array}
$$

$$
2.97
$$

$$
\begin{array}{l|l|}
\hline 11_{2}^{2} & 3.10 \\
\hline
\end{array}
$$

$$
12 \mid 3.24
$$

$$
\begin{array}{l|l|}
12 \frac{1}{2} & 3.37 \\
13 & 3.51
\end{array}
$$

$$
\begin{array}{ll|l}
13 \frac{1}{2} & 3.64
\end{array}
$$

$$
15
$$

$$
\begin{array}{l|l|}
15^{\frac{1}{2}} & 4.18 \\
16^{2} & 4.3^{2}
\end{array}
$$

$$
16 \frac{1}{2} 4.45
$$

$$
\begin{array}{l|l|l|}
17^{2} & 4.59 \\
17_{2}^{2} & 4.72 \\
4.72
\end{array}
$$

$$
2
$$

勧

$$
\left[\begin{array}{l}
22 \\
23 \\
23 \\
23
\end{array}\right.
$$

$$
8
$$

,

$$
\begin{array}{l|l|l}
24 & 6.48 \\
24 \frac{1}{2} & 6.61 \\
25 & 6.75 & \\
\hline
\end{array}
$$

$$
{ }^{25} 56.75
$$

$$
\begin{array}{ll}
25 \frac{1}{2} & 6.88 \\
26
\end{array}
$$

$$
\begin{array}{l|l|l|l|l|l|l|}
26 & 7.02 \\
26 \frac{1}{2} & 7.15
\end{array}
$$

$$
27,7.29
$$

$$
27 \frac{1}{2} 7.42
$$

$$
28 \quad 7.56
$$

$$
281 \quad 7.69
$$

$$
\begin{array}{l|l|}
29 & 7.83 \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|}
29 \frac{1}{2} & 7.96 \\
\hline
\end{array}
$$

$$
30|8,10|
$$

$$
\begin{aligned}
& \text { • } \\
& \text {. }
\end{aligned}
$$

AT $271 / 2$ CENTS PER HOUR.
t. His. Am t. Hrs. Am't. Hrs. Am't.| Hrs. Am60

-| 1 | 16.64 |
| :--- | :--- |
| 16.77 | |
| 1 | |12 16.91

$$
\begin{array}{l|l}
63 & 17 \cdot 3^{2} \\
63: & 17.46
\end{array}
$$

$$
6417.60
$$

$$
\begin{array}{l|l|}
642 & 17.74 \\
65 & 17.87 \\
\hline
\end{array}
$$

$$
\begin{array}{c|c}
65! & 18.01 \\
66 & 18.15
\end{array}
$$

$$
66 \frac{1}{2} 18.29
$$

$$
6718.42
$$

$$
\left.68 \frac{1}{2} \right\rvert\, 18.84
$$

$$
69 \mid 18.97
$$

$$
69 \frac{1}{2} 19.11
$$

$70 \frac{1}{2}$
$71 \frac{1}{2}$
7219.80
$72 \frac{1}{2}$ 19.9.4
$73 \quad 20.07$
$73 \frac{1}{2} 20.21$
$74 \frac{1}{2} 20.49$

75	20.62
$75 \frac{1}{2}$	20.76

7620.90
$76!21.04$
$77^{-21.17}$
$77 \frac{1}{2} 21.31$
78: 21.59
$80 \frac{1}{2} 22.14$
$81 \frac{1}{2} 22.41$
$82^{-22.55}$
$82 \frac{1}{2} 22.69$
$83 \frac{1}{2} 22.96$
84 23.10
8623.65
$86 \frac{1}{2} 23.79$
$\begin{array}{ll}872 & 24.06 \\ 88 & 24.20\end{array}$
$89 \frac{1}{2} 24.6 \mathrm{I}$

$$
\begin{array}{l|l|}
\hline 16.64 & 90 \frac{1}{2} \\
16.77 & 91 \\
16.91 & 91 \frac{1}{2} \\
17.05 & 92 \\
17.19 & 92! \\
17.32 & 93 \\
17.46 & 93 \\
17.60 & 94
\end{array}
$$

1	24.89
25.02	

\[
$$
\begin{array}{l|l}
91 & 25.16 \\
92 & 25.30
\end{array}
$$

\]	$92!$	25.44
93	25.57	
:---	:---	9.425 .85 94: 25.99

$$
\begin{array}{l|l}
95^{\frac{1}{2}} & 26.26 \\
96 & 26.40
\end{array}
$$

$$
\begin{array}{l|l|l|l|l|l|l|l|l|}
\hline 96.40 \\
96! & 26.54
\end{array}
$$

$$
9726.67
$$

$$
\begin{array}{l|l}
97 \frac{1}{2} & 26.11 \\
08 & 26.1
\end{array}
$$

$$
9826.95
$$

$$
98127.09
$$

$$
\begin{array}{l|l|}
99^{2} & 27.22 \\
99^{\frac{1}{2}} & 27.36
\end{array}
$$

$$
\begin{array}{|l|l|l}
100 & 27.50 \\
100 \frac{1}{2} & 27.64 \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
102 \\
10228.05 \\
128.19
\end{array}
$$

$$
\begin{array}{l|l|l}
1031 & 28.46 \\
\text { 104 } & 28.60
\end{array}
$$

$$
\begin{array}{l|l}
1028.60 \\
104
\end{array}
$$

$$
\begin{array}{|l|l|l}
10.4 & 28.7+ \\
105 & 28.87 \\
1
\end{array}
$$

$$
\begin{array}{l|l|l|}
105 & 28.87 \\
105^{\frac{1}{2}} & 29.01 \\
106 & 29.15
\end{array}
$$

$$
106
$$

$$
107,29.42
$$

$$
\text { IO7 } 7_{2}^{29 \cdot 5^{6}}
$$

$$
108229.70
$$

$$
\begin{array}{l|l}
108 \frac{1}{2} & 29.84
\end{array}
$$

$$
10929.97
$$

$$
\begin{array}{lll}
1090 & 30.11 \\
10
\end{array}
$$

$$
11030.25
$$

$$
\begin{array}{l|l|l}
110 & 30.39 \\
\hline
\end{array}
$$

$$
11130.52
$$

$$
\begin{array}{|l|l|}
111 & 3 \\
\hline
\end{array}
$$

$$
11230.80
$$

$$
112130.94
$$

$$
114 \mid 31.35
$$

$$
\begin{array}{ll}
1142 & 31.49 \\
15 & 31.62
\end{array}
$$

$$
\begin{array}{ll}
115 \\
115 & 31.62 \\
31.62 \\
31.76
\end{array}
$$

$$
\begin{array}{l|l|l|l|l|l|l|l|}
116 & 31.90 \\
1161 & 32.04 \\
\hline
\end{array}
$$

$$
11732.17
$$

$$
\begin{array}{llll}
117 & 32.3 x \\
1020
\end{array}
$$

$$
\begin{array}{l|l}
118 & 32.45
\end{array}
$$

$$
\begin{array}{l|l|}
1181 & 32.59 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|}
119 & 32.72 \\
1192 & 32.86
\end{array}
$$

$$
\begin{array}{l|l}
62 & 17.05 \\
62 & 17.19
\end{array}
$$

$$
67 \frac{1}{2} \times 8.56
$$

$$
68 \text { 18.70 }
$$

$$
7019.25
$$

$71 \quad 19.52$

$\begin{array}{ll}74 & 20.35\end{array}$

78 21.45
79 21.72
79121.86

| 80^{2} | 22.00 |
| :--- | :--- | :--- |

81 22.27
8322.82
$84^{\frac{1}{2}} 23.24$
85 23.37
$85^{1} 23.51$

87 23.92
88 24.20
$88!2.4 .34$
$89 \quad 2.4 .47$
$90 \mid 24.75$ ' $1-$

| 60 | 16.20 | 90 | 2.4 .16 | 1192 | 32.26 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2.30 | 120 | 32.40 | | |

AT 28 CENTS PER HOUR．AT 28 治 CENTS PER HOUR．

	Am't.		Am＇t．		$\text { Am't. } \mid$		$\text { 5. } \mid A m \text { 'i. }$							18
			． 5.4	$60 \frac{1}{2}$	16.94		25						17．at	$\frac{1}{2} 25.79$
			8.68	61	17.08		25.48			3	8.83		17.38	9125.93
		31	8.82	$6 \mathrm{I} \frac{1}{2}$	17.22		25.62			31.	8.98	$6 \mathrm{I} \frac{1}{2}$	17.53	9126.08
2	0.56	32	8.96	62	17.36		25.76	2	0.57	32	9.12	62	17.67	$\begin{array}{ll}92 & 26.22\end{array}$
21	0.70	$32 \frac{1}{3}$	9.10	$62 \frac{1}{2}$	17.50	$92 \frac{1}{2}$	25.90	$2 \frac{1}{2}$	0.71	$32 \cdot$	9.26	$62 \frac{1}{2}$	17.81	92.126 .36
3	0．8．f	33	9.24	63	17．6．t		$26.0+$	3	0.85	33	9.40		17.95	93.26 .50
3.	0.98	33：	$9 \cdot 38$	631	17.78	93	26． 18	$3 \frac{1}{1}$	1.00	$33 \frac{1}{1}$	9.55	$63 \frac{1}{2}$	18．10	93年 26.65
4	12	34	9.52	64	17.92	94	26.32	4	I． 14	$3+$	9.69	64	18.24	94－26．79
4	1.26	34.	9.66	6.4	18.06		26.46	$4 \frac{1}{2}$	1． 28	$34!$	9.83	$64 \frac{1}{2}$	18.38	$94^{\frac{1}{2}} 26.93$
5	1.40	35	9.80	65	18.20	95	26.60	5	1.42	35	9.97	65	18.52	95.27 .07
5	I． 5.4	351	9.91	$65 \frac{1}{2}$	18．34	95.	26.74	51	I． 57	35！	L0． 12	$65!$	18.67	$95 \frac{1}{2} 27.22$
6	1.68	36	1008	66	18.48	96	26.88		1.71	36	10． 26		18.81	96127.36
6.1	1.82	$36 \frac{1}{2}$	10.22	$66 \frac{1}{2}$	18.62	961	27.02	$6 \frac{1}{2}$	I． 85	$36 \frac{1}{2}$	10.40	$66!$	18.95	$\left.96 \frac{1}{2} \right\rvert\, 27.50$
7	I． 9	37	10.36	67	18.76	97	27.16	7	r． 93	37	10.54	67	19.09	
7	2.10	377	Io． 50	$67 \frac{1}{2}$	18.90		27.30	71	2． 14	$37 \frac{1}{2}$	10.69	67	19.24	$97 \frac{1}{2} 27.79$
8	2.24	38	10.64	68	19.04	98	27．4．		2.28	38	10.83	68	19.38	9827.93
81	2.38	$38 \frac{1}{2}$	10．78	681	19.18	$98 \frac{1}{1}$	27.58	$8: 1$	2.42	$38 \frac{1}{2}$	10.97	$68!$	19.52	98128.07
	2.52	39.	10.92	69	19.32		27.72	9	2． 5^{6}	39	IIIII	69	19． 66	99.28 .21
	2.66	391	11．06	693	$19.4{ }^{6}$		27.86	$9{ }^{1}$	2.71	$39!$	11.26	691	19.81	
10	2.80	\bigcirc	II 1.20	70	19.60	100	28.00	10	285	40	1 I .40	70	19.95	100 28．5c
$10!$	2.94	402	11.34	$70 \frac{1}{2}$	19.74	100！	28．14	$10 . \frac{1}{2}$	2.99	40．＇，	＇．54	$70!$	20.09	100 $\frac{1}{2} 28.6$
11	3.03		11.48	71	19.	IOI	28.28	11	3.13	4 I	68	7 I	20.23	IOI 28.78
1	3.22	$41 \frac{1}{2}$	I 1.62	$71 \frac{1}{2}$	20.02	$101 \frac{1}{2}$	28.42	$1 \mathrm{II}_{2}^{1}$	3.28	$4^{1} 2$	1.63	711	20.35	101 ${ }_{2}^{1} 28.03$
，	$3 \cdot 36$	42	11.76	72	20.16	102	28.56	12	$3 \cdot 4^{2}$	42	11.97	72	20.52	102 29．07
$12 \frac{1}{2}$	$3 \cdot 50$	42.	11.90	$72 \frac{1}{2}$	20.30	$102:$	28.70	$12 \frac{1}{2}$	$3 \cdot 5^{6}$	42.1	12.11	72	20.18	102 ${ }^{1} 20.21$
	3.64	43	12.04	73	1	103	23.84	13	3.70	43	12.25	73	20.80	103 29．35
13	3.78	432	12．18	$73 \frac{1}{2}$	20.58	$103 \frac{1}{2}$	28.98	$13^{\frac{1}{2}}$	3.85	$43{ }^{1} 1$	10	731	20.95	103.29 .50
	3.92	4	12.32	74	20.72	104	29.12	14	3.99	44	12.54	74	21.09	104 2n．64
14	4.06	$44^{\frac{1}{2}}$	12.46	$74 \frac{1}{2}$	20.86	104！	29.26	$14 \frac{1}{3}$	4.13	$44^{\frac{1}{2}}$	12.68	$74!$	21.23	1042 20.78
${ }^{1} 5$	4.20	45	12.60	75		105	29.40	15	4.27	45	12.82	75	21.37	105.29 .12
$15 \frac{1}{2}$	＋34	45．${ }^{1}$	12.74 12.88	75	21.14	105 ${ }^{\frac{1}{2}}$	29.54	$15!$	4.42	$45^{\frac{1}{2}}$	12.97	751	21.52	$105 \frac{1}{2} 30.07$
161	4.48 +62	46	12.88 12.02	76	21.28	106	29.68	16	4.56	461	13．11	76	21．60	$106 \mid 30.21$
$16 \frac{1}{2}$	4.62 4.76	$46!$	13.02	$76 \frac{1}{3}$	21.42 21.56	$106 \frac{1}{1}$	29.82	$\left.1{ }^{1}\right)^{2}$	4.70	$46!$	13.25	76.	2 L .80	$106!30.35$
17	4.76 4.00	47	13.16	77	21.50 21.70	107	29.96	17.	4.84	47	13．39	77	21.94	107 30．19
$17 \frac{1}{2}$	4.90 5.01	47	${ }^{13} 3.30$	$77{ }^{\frac{1}{6}}$	21.70 21.8 .4	107．	30． 10	${ }^{1} 7{ }^{1}$	4.99	$47{ }^{1}$	13.54	77 ！	22.09	$107 \frac{1}{2} 30.54$
	5.04		13.44	78	21.8 .4	108	30.24	18	5．13	48	13.68	78	22.23	
1	5．1	481	13.58	78.	21.98	108！	30.38	18！	5.27	485	13.82	781	22.37	108！ 30.02
19	5	49	13.72	79	22.12	109	30.52	19	5.41	49	13.96	79	22.51	1093 3r．0才
$19 \frac{1}{2}$	5.46	491	13.86	791	22.26	ro9	30.66	19！	$5 \cdot 5^{6}$	49.1	$1 .+15$	79！	22.66	$109!31.21$
20	5.6	50	14.00	80	22.40	1	80	20	5.70	50	1．＋． 25	80	22.80	$110 \mid 3 T .35$
$20 \frac{1}{2}$	5．7．4	$50 \frac{1}{2}$	1．2．I4	80.1	22.54	$110 \frac{1}{2} 3$	，	20.1	5.84	501	$1+39$	$80!$	22.94	110！ 3 i＋${ }^{\text {a }}$
21	5.	51	1.9 .28	81	． 68		3	2 I	5.93	51	14.53	81	23.08	111131.13
$21 \frac{1}{2}$	6.0	51	14.42	81.1	22.82	1111 ${ }_{2}^{1}$	31.22	$21 \frac{1}{2}$	6.13	51.1	＋ 4.68	$81!$	23.23	$\begin{array}{lllllllllll}1 & 31.78\end{array}$
22	6.1	52	14.56	82	22.96	112	35.36	22	6.27	52	4.82	82	2337	$112 \quad 131.92$
221	6.30	52 ！ 1	14.70	82.1	23.10	112.1	$31.3{ }^{(1)}$	$22 \frac{1}{2}$	6.41	52！	4.96	32.1	23.51	
23	6.44	53	14.37	83	23.24		． 64	23	6.55	53	5． 10	83	23.65	
$23!$	6.58	$53{ }^{1}$	14.98	83.	23.38	113 ！	31.78	$23: 1$	6.70	$53 \frac{1}{2}$	5．25	$83!$	23.80	$\begin{array}{lll} 13 & 32.35 \end{array}$
24	6.72	54	15.12	8.4		114	． 92	2.1	6.8 .4	54	5．39	84	23.94	114
$24!$	6.86	54！	15.26	$84 \frac{1}{2}$	23.6	114	32.06	$2 .+2$	6.98	54%	5.53	$84!$	24.08	$114!3.3{ }^{1}$
25	7.	5.5	15.40	85	23.80	115	． 20	25	7.12	55	5． 67	85	24.22	$115,3 \geq .77$
25	7.14	55^{1}	15.54	85：	23.94	115	32.34	25！	7.27	55	5.82	$85 \frac{1}{2} 2$	24.37	11.51320 .42
061	7.28	561	15.68	86	24.08	116	32.48	26	7.41	56	5.96	86	2.4 .51	（1） 33.60
261	7.42	561	15.82	$86 \frac{1}{2}$	24.22	116	32.62	26.2	7.55	$56!2$	16．10	$86!2$	2.4 .65	$116!3.3 .320$
27	7.56	57	15.96	87	24.36	11%	32.76	27	7.69	571	6.24	872	2．4．79	
2781	7.70	572	16.10	871	2.4 .50	$117{ }^{\text {2 }}$	32.70	$27 \frac{1}{2}$	7.81	$57 \frac{1}{2} 1$	6.39	$87 \frac{1}{2} 2$	24.94	$117!3$ ！3．19
28	7．8．9	58	16.24	88	21.04	110	33.04	28	7.98	58	6.53	88	25.08	$118 \quad 38.03$
281	7.98	$58 \frac{1}{2}$	16.38	881	2.1 .78	118 ！	33.18	28.3	8.12	$58 \frac{1}{2}$	6.67	881	25.22	$118!3.33 .77$
29	8.12	59	16.52	89	24.92	110	33.32	29	8.26	5） 1	6.81	89	25.36	110 339 l
$29 \frac{1}{2}$	8.26	59.8	16.66	$89 \frac{1}{2}$	25.06	119.4	33.46	$29 \frac{1}{1}$	8.41	592	6.96	$80{ }^{\text {d }} 2$	25.51	
30	8.40	60	10.80	90	25.20	$120 \mid 3$	33.60	30	8． 55	60 11	7.10	9012	25.65	$120 \quad 13.420$

CANADIAN CONTRACTOR＇S HAND－BOOK．

AT 29 CENTS PER HOUR．｜AT $291 / 2$ CENTS PER HOUR．

OUR．

Hrs．Am $\begin{array}{lll} & \\ 90 \frac{1}{2} & 25.79 \\ 91 & 25.93\end{array}$ 9I 125.93 91娄 26.08 \begin{tabular}{l|l}
92. \& 26.36

02 \& 26.36

 93.26 .50 $93^{\frac{1}{2}} 26.65$

94 \& 26.79
\end{tabular} $94 \frac{1}{2} 26.93$ 95.27 .07 95227.22 96127.36 $96 \frac{1}{2}-27.50$

 $97 \frac{1}{2} 27.79$ \begin{tabular}{l|l|l}
98 \& 27.93

 98128.07 99.28 .21 $99: 28.36$ $100 \quad 28.5 \mathrm{c}$ $100 \frac{1}{2} 28.64$ $101 \quad 28.78$ IOI！ 28.03 $\begin{array}{ll}102 & 29.07\end{array}$ $102 \frac{1}{2} 29.21$ 103 29．35 $\log _{3}^{1} 29.50$ 10.420 .64 104． 20.78

105 \& 29.02

 $105: 30.07$ $106 \quad 30.21$ 106！ 30.35 $\begin{array}{lll}107 & 30.4 ?\end{array}$ $107 \frac{1}{2} 30.64$ $108: 30,78$ $108!30.122$ $109 \quad 31.06$ $109!31.21$ $1110,3 \mathrm{3} .35$ $\left\{\begin{array}{lllll}1 & 10 & 2 & 3 i & 3 \\ 1 & 1 & 1 & 3 & 3 \\ 1 & 1 & 12\end{array}\right.$

1 \& 1 \& $!$ \& 3 \& 31.78

1 \& 7 \& 3
\end{tabular} II2 $\begin{array}{lllll}1 & 2 & 1 & 32.00\end{array}$ II 3 ｜322． 20 II 3！32．35 IId

```
114!
```


II 5

$115!$ 11033.16 110.3 .3320 | 117 | 3 | 3.34 |
| :--- | :--- | :--- | :--- | $117!3.311$ $\begin{array}{llll}18 & 3.3 \\ 1 & 8 & 3.37\end{array}$

119 3301
$114)_{2}^{3} 3.45$ ｜120｜34．．20

Mr．A HeN NoN
－HIrs．Am＇t．Hrs．A

-1
 ल

－
＇t．｜｜ －Hrs．Am＇t．II

$|$| Hrs． |
| :---: |
| $30!$ |
| 3 I |
| 3 I |
| $\frac{1}{2}$ |

\qquad \mid Ann＇t．｜｜ Hrs．Am＇t．

$$
\begin{array}{l|l}
30_{4}^{!} & 8 . \\
3 \mathrm{r} & 8 . \\
3 \mathrm{I}_{2}^{2} & 9 . \\
3^{2} & 9 .
\end{array}
$$

gigage 965 Nु

\qquad $-$	$90 \frac{1}{2}$	26.24
9 I	26.39	
$9 \mathrm{I} \frac{1}{2}$	25.53	
92		\checkmark 4

4
5 \square －帾

$$
\begin{array}{l|l|l|}
12.40 \\
12.4 & 3.62 \\
13 & 3.77 \\
1 & 3.77
\end{array}
$$

$$
\begin{gathered}
14 \\
14 \\
142 \\
12
\end{gathered}
$$ － －

$$
\begin{aligned}
& 6 \\
& \vdots \\
& \omega \\
& \omega \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
$$

AT 30 CENTS PER HOUR.
Hrs. Am't. Mrs. Am t.

Hrs. Am't. Hrs. Am't. Hrs
1
|r

AT $301 / 2$ CENTS PER HOUR.
Hrs. Am

HOUR.

i't. ${ }^{\text {Hrs. }}$ Am't $^{\text {An }}$
$45 \quad 90 \frac{1}{2} 27.60$

AT 32 CENTS PER HOUR.

AT 33 EENTS PER HOUR.

Hrs. Am't. "IIrs. : -

AT 34 CENTS PER HOUR.
Hrs.

CANADIAN CONTRACTOR'S HAND-BOOK

HOUR.

1. ${ }^{\mathrm{Hrs}}$ -

 $106 \quad 34$ 106 3 $3^{1} .74$ 107136 g 1 $107 \frac{1}{2} 37.04$ 108 |37.25 ${ }^{1098} 1037.43$ $109!137.7^{2}$ | 110 | 37.45 |
| :---: | :---: | :---: |
| 110 | 38 |
| 1 | 18 |

$1111^{38,29}$

$\left[\begin{array}{llll}1 & 1 & 1 & 38.17 \\ 1 & 12 & 38 \\ 1 & 38\end{array}\right.$

112

$\begin{array}{ll}113 & 38.98\end{array}$

$114 \frac{1}{2} 3 \ldots 10$
$115 \cdot \mid 31.17$

$1178.40 \quad 54$ 118 107 $118 \frac{1}{2} 40.88$	110	41.05
1109	41.23	

120141.10

AT 35 CENTS PER HOUR. Hrs \mi't. IIrs. Lin't.

AT 36 CENTS PER HOUR.

$\mathrm{N} N$	
-2	

AT $361 / 2$ CENTS PER HOUR.

HOUR.

Hrs. Ant
 902 95 93 ${ }_{9} \mathbf{r r}_{21}^{1} 33$ $92 \cdot 3$. 4, $3,333 \cdot 4$

 ${ }^{9} 8 \frac{1}{2} 3=$ 49 100
100 $\begin{array}{ll}101 \\ 101! & 37.05\end{array}$ 1023723 $102 \frac{1}{2} 37+$ $103!37.74$ 104
10.47.

18. 105
$10513^{88} .5$ 1061
$106!$
 108f 3 … 101
101
11
1
11
11
11
11
11
1
1
1
1 $4 \|_{1}^{1}$

\qquad Hr, Am

AT 37 CENTS PER HOUR.

AT $371 / 2$ CENTS PER HOUR.
t. His. Am't. |Am

\qquad Am' \qquad Irs.

$$
\overline{60.1} 22.69
$$

\qquad

$$
\begin{aligned}
& \infty \\
& \infty \\
& \infty \\
& \infty \\
& 0 \\
& \hline
\end{aligned}
$$ $-$

0

	-
$30 \frac{1}{2}$	11.44
3 I	11.62
31	11.8 I
32	12.00
$32 \frac{1}{2}$	12.19
33	12.37
33 $\frac{1}{1}$	12.56
34	12.75

91	
2	34
92	
2 !	34.
-	
93	35.00
9.1	
$4!$	35.
951	
97	
$8 \frac{1}{2}$	36.94
9	37.12
	37.31
Oo	37.50
1001	37.
101	37
10, ${ }_{2}$	38.06
102	38.25
102!	33.44
103	38.62
103!	38
10.4	39.00
10, !	39. 19
105	
1051	39.56
-6	
!	39.94
1	10. 12
	10.31
108	$4{ }^{10} 50$
108!	10.69
109	40.87
100	41.00
110	41.25
110 !	
111	
111	
112	
112	1.
113	4. $\therefore 37$
$113!$	12.5
1	42.75
11.4	42.13.
15	+3.12
155	13.36
110	1.3.50
$116!$	13.1.19
	13.8
	4.4.
118	4.4.2
1181	+
110	

AT 38 CENTS PER HOUR．

	Am＇t	Hrs．	Am＇t．	II	A									
				${ }^{1}$						$30 \frac{1}{2}$	11.74	60.	3.29	［ ${ }^{3}+{ }_{4}$
			11.78		23.1		34.5			3 I	11.93	61	23.48	9 I 35．03
		312	11.97	${ }^{6} 1 \frac{1}{2}$	23.37	$9{ }^{1} \frac{1}{2}$	34.77			31	12.13	61.	23.68	${ }_{91} 1$
	0.76	32	12.16	б2	23．56		34.96		0.77	32	12.32	62	23.87	$92.35 \cdot 42$
$2!$	0.95	$32{ }^{\frac{1}{2}}$	12.35	$62 \frac{1}{2}$	23.75	92 $\frac{1}{2}$	35.15	$2 \frac{1}{2}$	0.96	32！	12.51	$62 \frac{1}{2}$	24.06	92 交 35.6 t
3	1． 14	33	12.54	63	23.94	93	35.34	3	I． 15	33	12.70	63	2． 2.25	93.35 .80
3	1．33	$33!$	12.73	$63!$	2． 13	$93 \frac{1}{2}$	35．53	$3{ }^{\frac{1}{2}}$	I． 35	$33!$	12.90	63.2	2.45	931
4	I． 52	34	12.92	64	24.	94	35.7	4	1.54	$3+$	13.08	64	24.64	94.36 .19
$4 \frac{1}{2}$	I． 71	$3{ }^{3}$	3.11	$6{ }^{6}+1$	$24.5{ }^{1}$		35．91	$4 \frac{1}{2}$	I． 73	34.	13.28	6.12	2.83	94： 36.38
5	1.90	35	13．30	65	21.70		36．10		I． 92	35	13.47	65	25.02	95.36 .57
5	2.09	35	13.49	65	2． 2.89	$95 \frac{1}{2}$	36.29		2.12	35：	13.67	$65{ }^{1}$	25.22	$95^{\frac{1}{3}} 36.77$
6	2.23	36	13.68		2.5 .08		36.4		2.31	36	13.86	66	2541	36.96
6 ？	2.47	361	I 3.87	$66 \frac{1}{2}$	25.27	$96 \frac{1}{2}$	36.67	$0 \frac{1}{2}$	2.50	361	14.05	$66{ }^{1}$	25.60	$96 \frac{1}{2} 37.15$
7	2.60	37	1.4 .06	67	25.46		36.86		2.69	37	1，＋2． 24	67	25.79	97 137．3．
7	2.85	37	14.25	$67 \frac{1}{2}$	25.05	$97 \frac{1}{2}$	37.05	$7{ }^{12}$	2.89	$37 \frac{1}{2}$	I 4.44	67	25.09	$97 \frac{1}{2} 37.54$
8	3.04	38	14.14	68	25.8 .4		37.24		3.08		14.63	68	26． 18	73
$8 \frac{1}{2}$	3.23	381	14.63	$68 \frac{1}{2}$	26.03	981	37.43	81	3.2	3^{81}	1．4．82	681	26.37	981237.92
9	3.42	39	14.82	69	26.22	99	37.62		3.46	39	15.01	69	26.56	99 38．11
$9!$	5	39.	15.01		41	99	37.	9 9．	3.	39	15.21	69	26.76	$99: 38.31$
10	3.80	40	15.20	\％	6.60	100	38	10	3.85	40	15.	70	26.95	tuo 38.50
$10 \frac{1}{2}$	3.97	40	1.5 .39	70！	26.79	$100 \frac{1}{2}$	38．1	10，	4.04	40.1	15.59	7012	27． 14	$100 \frac{1}{2}$
11	4.1	41	15.58	7 I	9^{8}	＇101	$3^{8 .} 3^{8}$	11	4.23	41	15.78	71	27.33	IOI
II_{2}^{1}	$4 \cdot 37$	$4{ }^{\frac{1}{2}}$	15.77	$71 \frac{1}{2}$	27.17	（10，슬	38.57	11	$4 \cdot 43$	41	15.98	71	27.53	1012
12	4.56	42	15.96	72	$27.3{ }^{6}$	Tu2	38.76	12	4.12	42	16.17	72	27.72	1023987
$12 \frac{1}{2}$	4.75	42 ？	16． 15	$72 \frac{1}{2}$	27.55	$1 \mathrm{r}_{2} \frac{1}{2}$	38.95	12.1	4.31	42 ！	16.36	72.	27.91	$102 \frac{1}{2} 32.46$
13	4.	43	16.34	73	27.74	103	39． 14	13	5.00	43	16.55	73	8． 10	103.39 .65
$13!$	5.	43	16.53	73 ？	27.93	1031	39． 33	$13 \frac{1}{2}$	5.20	43.	16.75	73	28.30	103 3139.85
14	5．32	4.4	16.72	74	28.12	104	39.5	＇t	5.3	44	16．9．4	74.2	28.49	$104,40.01$
14	5.51	44	16.91	74	28．31	10.4	30．1	I +1	$5 \cdot 5$	44^{\prime}	17.13	74 ！	28.	104 ${ }^{1}$ 10，23
15	5.70	45	17.10	75		105	39.9	15	5.77	45	17.32	75	28.87	105｜40．42
	89	458		75！		$105 \frac{1}{2}$		15.		45.	17.52	75	29.07	$105 \frac{1}{1} 40.12$
16	h．08	45	17.48	76	28.88	106	40.28	16	6． 16	40	17.71		29.26	
$16!$	6.27	． 461	17.07	76.	07	106！	． 17	161	6.35	46	17.90	76.	29.45	106！
17	6.45	17	17.86	77	29． 26	107	40． 10	17	6.51	47	18.09	77	29.64	107
17 ？	6.65	47	18.05	7712	29.45	$107 \frac{1}{2}$	40.85	$17 \frac{1}{2}$	6.74	$47 \frac{1}{2}$	18.29	77.	29.34	107
18	6.84	4^{8}	18.2 .4	7	29.44	108	41.0 .4	18	6.93	48	18.48	78	30.03	108
18.1	7.03	481	18.43	78.	29.83	108！	41.23	18.1	7.1	481	18.67	$78!$	30.22	108㙑4．77
19	7.22	49	18.62	70	30.02	109		19	7.31	49		79	$30.4{ }^{1}$	109.47 .90
$19 \frac{1}{2}$	7.	$49 \frac{1}{2}$	8．81	79.		$100 \frac{1}{2}+$		193	7.51	491	19．0	79.		109
20	7.10	50	19.00	80	30．40	110	1.80	20	7.70	50	19.25	80	30.	$\begin{array}{ll}110 & 12.35\end{array}$
20.1	7.7	501	19． 19	$80^{\frac{1}{3}}$	30．59	110	41.99	$20!$	7.8	$50!$	19.4	80 ．	30.99	Ito
21	7.98	51	11）． 3^{8}	81	30.78	111	42.18	21	8． 08	51	19.63	8 I	31． 18	$111+2.73$
21.1	8.17	51	12．57	813	30.97	$1 \mathrm{I}_{2}$	12.37	214	8.28	51.	19.83	8 SI	31.38	ITI 1242.43
22	8． 36	52	19.76	82	31	112	＋2．5	22	8.47	52	20.02	82	31.57	112143.12
22.3	8.55	$52!$	19.95	$82!$	31.35	112	2．7	$22!$	8.1	52 ！	20.21	$82 . \frac{1}{2}$	31.75	112］
23	8.74	53	20． 14	8	31.54	113	2．14	23	8.85	53	20.4	8	31.95	I^{1}
231	8.93	53.	20.33	831	31.73	1132	． 13	23	9.05	531	20.6	831	32.15	11324.3 .70
24	9． 12	5.	20.53	8.	31.92	114	$3 \cdot 32$	24	9．2．4	54	20．\％11	8.4	32.34	11.4 4 3
$24 \frac{1}{2}$	9．31	54.	20.71	$84 \frac{1}{3}$	32． 1	11.42	＋3．51	241	9.43	$5 \cdot 1$	20.98	8.12	32.53	114.14.
25	9． 50	55	20.90	85	32.30	15	43.70	25	9.62	55	21.17	85	32.72	$115 \mid 4427$
$25!$	9.69	55.	21.09	85	32．47	1151	43.89	251	9． 82	55^{1}	21.37	859	32.12	$185!+1.47$
	9． 88	56.2	21.28	86	32.68	IT 4	44.08	26	10.01	3	21.56	86	33.11	180
263	1007	56.	1.47	¢ 2	32.87	516.34	． 27	26.3	10．	$56!$	21.75	863	33.30	1163 州 85
27.	10.26	57	21.196	7	33.06	117	． 46	27	10．39		21.04	87	33.4	117 45．4
27	10.45	57.	21.85	871	33.25	$117 \frac{1}{2}$	4． 6.15	278	1	572	22.14	87.	33.40	1172 45.24
281	10.61	58	22.04	88	33.41	188	4． 8.	28	10.78		22.33	88	3.3 .88	118484
28.21	10.83	5812	22.23	583	33．	118.1	45.03	281	10.97	5312	22.52	88.3		118！
29 20.1 18	11.02	59	22.42	89	33．82	1104	45.22	29	11.16	51	22.71	89	34.26	$119+81$
29.3	11.21		61	89.1	34.01	$110!4$	45．41	29！	11.36	59.2	22.91	89.	34.18	110¢ ${ }^{\text {and }}$
	11.40	60	22，8011	90	34.2011	12014	45.00	30	11．55	00	23.10	90	34.0	1204^{\prime} a

AT 39 CENTS PER HOUR. Hirs. Am't.

$$
\begin{array}{l:l}
21 & 9.3^{3} \\
2.4 & 0.55
\end{array}
$$

\qquad
(1) 1170

| rOI | 38.88 |
| :--- | :--- | :--- |

IOI
IO2

$102 \frac{1}{2} 37.46$

103	39.05
103.	30.85

103.	30.85
10.4,	40.04

$105^{2} 40.12$
10.81 10612 41.00 107
107
108 108141.50 109 . 11.90 $109!42.16$ 110 +2.35
 $11 I_{2}^{1}$ $\begin{cases}117 & 4504 \\ 1172 & 4524\end{cases}$
 $112,43.12$ 113143.50 11.32 4.3.70 $11.4^{\frac{1}{2}}+1.18$ 115
$115^{\frac{1}{4}} 41.47$
161_{1} 116 4.4.06 $116!4.485$

$118!$

1109
$110 f^{4}$ 120

AT 40 CENTS PER HOUR.

Hrs.	Anit		Ann't.
			12.20
			12.40
		$31 \frac{1}{2}$	12.60
2	0.80	32	12.80
$2!$	1.00	$32 \frac{1}{2}$	${ }^{1} 3.00$
3	1.20	33	13.20
$3!$	1.40	33!	13.40
4	1.00	34	13.60
$4!$	1.80	$34 \frac{1}{2}$	13.80
5	2.00	35	1.4 .00
$5 \frac{1}{2}$	2.20	351	14.20
6	2.40	36	I. 4.40
$6!$	2.60	$36 \frac{1}{2}$	14.60
7	2.80	37	14.80
$7{ }^{\frac{1}{2}}$	3.00	$37^{\frac{1}{2}}$	15.00
8	3.20	38	15.20
$8!$	$3 \cdot 40$	$38 \frac{1}{2}$	15.40
9	3.60	39	15.60
$9:$	3.80	391	15.80
10	4.00	40	16.00
$10!$	+ 20	$40!$	16.20
1 I	4.40	41	16.40
$11!$	4.60	412	16.60
12	+ 40	42	16.80
12 !	5.00	$42 \frac{1}{2}$	17.00
13	5.20	43	17.20
13.	5.10	$43{ }^{1}$	17.40
11	5.60	44	17.60
$: 4^{\prime}$	5.80	443	17.80
15	6.00	45	18.00
15!	6.20	$4.5!$	18.20
16	6.40	$4{ }^{6}$	18.10
16.1	1, 6 (3)	4 $4 \frac{1}{2}$	18.60
17	6.80	47	18.80
17%	7.00	$47 \frac{1}{2}$	19.00
14	7.20	15	19.20
$18!$	7.40	- 4 !	19.40
19	7.100	49	19.60
16) 1	7.80	493	19. 80
21)	8.00	50	20.00
20 !	820	501	20.20
21	8.40	51	20.40
211	8.60	51.	20.60
22	8.80	52	20.80
$22!$	9.00	$52!$	21.co
23	9.20	53	21.20
$23!$	$9 \cdot 40$	$53!$	21.40
2.1	9.60	5.4	21.60
2.4 ?	19.80	54!	21.80
25.1	1000	55	22.00
$25!$	10.20	$55!$	22.20
$26) 1$	to. 10	5^{6}	22.10
$26{ }^{1} 1$	10.60	$56!$	22.60
27.1	10.80	57	22.80
$27!1$	11.00	572	23.00
2.41	11.20	58	23.20
2811	11.40	581	23.10
20 I 1	11.60	59	23.60
20) 1	11.80	59	23.80
30	12.00	60	2.1.

 90130.20112048 .00

AT $401 / 2$ CENTS PER HOUR.
Hrs. Am't.

- t.

Hrs	$\text { 5. } \\| \mathrm{Ar}$		$\text { . Am't. } 1$		Am't,
$30 \cdot 1$	$\frac{1}{2} 12.35$	$60 \frac{1}{2}$	24.50	90.	36.65
31	12.55	6r	2.4 .70	91	36.85
312	12.76	$61 \frac{1}{2}$	24.91	912	37.06
32	12.96	62	25. 11	92	37.26
32. !	13.16	$62 \frac{1}{2}$	25.31	$92 \frac{1}{2}$	37.46
33	13.36	63	25 51	93	37.66
$33^{\frac{1}{2}}$	13.57	$63 \frac{1}{2}$	25.72	$93^{\frac{1}{2}}$	37.87
$3+$	13.77	64	25.92	94	38.07
$34 \frac{1}{2}$	13.97	$64 \frac{1}{2}$	26. 12	$94 \frac{1}{2}$	38.27
35	14. 17	65	26.32	95	38.47
$35^{\frac{1}{2}}$	14.38	$65 \frac{1}{2}$	26.53	$95 \frac{1}{2}$	38.68
36	14.58	66	26.73	96	38.88
$36 \frac{1}{2}$	I. 4.78	$66 \frac{1}{2}$	26.93	$96 \frac{1}{2}$	39.08
37	14.98	67	27.13	97	3928
$37 \frac{1}{2}$	15.19	$67 \frac{1}{2}$	27.34	$97 \frac{1}{2}$	39.49
38	15.39	68	27.54	98	39.09
$38 \frac{1}{2}$	I 5.59	$68 \frac{1}{2}$	27.74	981	39.89
39	15.79	69	27.94	99	40.09
$39 \frac{1}{2}$	16.00	$69 \frac{1}{2}$	28.15	99.	40.30
40	16.20	70	28.35	100	40.50
40!	16.40	$70 \frac{1}{2}$	28.55	$100 \frac{1}{2}$	40.70
41	16.60	7 I	28.75	IOI	40.90
41	16.81	71.	28.96	IO. 1	41. 11
42	17.01	72	29.16	102	41.31
$42 \frac{1}{2}$	17.21	$72 \frac{1}{2}$	29.36	$102 \frac{1}{2}$	+1.51
43	17.41	73	29.56	103	41.71
432	17.62	73!	29.77	$103 \frac{1}{1}$	41.92
44	${ }^{1} 7.82$	74	29.97	104	42.12
$44 \frac{1}{2}$	18.02	742	30.17	$1 \mathrm{IO}^{\frac{1}{2}} 4$	42.32
45	18.22	75	30.37	105	42.52
$4.5 \frac{1}{2}$	18.43	751	30.58	105 2	+2.73
46	18.53	76	30.78	106	42.93
451	18.83	$76!3$	30.98	$106 \frac{1}{2}$	+3.13
47	19.03	77	3 L .18	107	+3.33
$47 \frac{1}{2}$	19.24	77! 3	3r. 39	107!	+3.54
48	19.44	783	31. 59	108	41.74
$48!$	19.04	$78!3$	3r. 79	$108 \frac{1}{2}$	3.4
19	19.84	79	31.99	109	+1.14
492	20.05	79.1	32.20	109^{\prime} !	1.5
50	20.25	80	32.40	110	-
50.	20.45	$80!3$	32.30	110.	
51	20.65	81 3	32.80	[11	,
51	20.96	8 E ! 3	33.01	111d	1, 110
52	21.00	82	33.21	112	15.36
52 ?	21.26	82! 3	$33 \cdot 11$	[12. ${ }^{\text {d }}$	15.5
53	21.45	8313	33.61	113	$15.7{ }^{6}$
53 ?	21.67	$83 \frac{1}{3}$	33.82	$113{ }^{1}$	15.97
54	21.87	84.3	34.02	114	1-17
542	22.07	8.423	34.22	11.4 !	19.37
55	22.27	853	3.4 .42	115	13. 57
55	22.98	$85 \frac{1}{2}$	34.63	1152	$4^{12},-8$
56	22.68	86	3.4. 83	110	$\mathrm{f}^{\prime} 128$
50.3	22.89	86.2	35.03	116.	17.18
5	23.08	87.3	35.23	117	17.38
572 ${ }^{\text {2 }}$	23.29	873	35. 44	1171	17.59
58	23.49	88	35.64	118	47.79
58.	23.69	88: 3	35.8.	118.	+7.99
59	23.89	89	36.04	110	48.19
59.	24.10	89.13	36.25	110!	18.40
60	2.4.30	90	30.45	120	18,60

HOUR.

AT 42 CENTS PER HOUR.
Mrs. Am't.

HOUR.

$=\frac{\text { Hrs. }}{90 \frac{1}{2}} \frac{\text { Amit }}{38.45}$	$90 \frac{1}{2}$	38.45
91	38.67	

 93 39.52 \begin{tabular}{l|l|l}
94 \& 39.95

 94ㄹ․ 40.16 95 40.37

952 \& 40.59

96 \& 40.80

 $96 \frac{1}{2} 41.01$ 97, 41.22 $97 \frac{1}{2} 41.44$

98 \& 41.65

98 I \& 4 t .86

 $99 \mid 42.07$ $99!$ | 42.29 10042.50 IOI 42.92 101 ${ }_{2}^{1} 43$. 14 10243.35 102 $\frac{1}{2} 43.56$ 103. 43.77 $103!43.09$ 104.4 .20 $10+\frac{1}{2} 44 \cdot 41$ $\mathrm{IO}_{105} 4.4 .62$ $105^{\frac{1}{2}}+4.3_{4}$ 106

\& 100^{2} \& 45.47

\hline
\end{tabular} 107 $\frac{1}{2}$ 45. 69 108 45.90 $108 \frac{1}{2} 46$. II $109 \mid+5.32$ $109 \cdot 46.54$ $110+{ }^{6.75}$ 1 Io $\begin{array}{ll}11 \\ 1111_{2}^{1} & 47.17 \\ 17.36\end{array}$ 11247.66 $112 \frac{1}{2} 47.81$ п 31248 $114{ }^{18} .45$ $114 \frac{1}{2} 48.061$

 $\begin{array}{lll}1161 & 49.51 \\ 115 & 10\end{array}$
 118 $188 \frac{1}{2} 50.33^{6}$ $119 \frac{1}{2} 50,79$ 120 51.00

AT 43 CENTS PER HOUR. Hrs. 'Un't. ${ }^{\text {Irrs. }}$ Am't.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

AT 44 CENTS PER HOUR．

Hirs．An＇t． ．$|$| H |
| :--- |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 | Hrs．｜Am＇t．｜H

 33
33
3
3
3 0.3 6

2	0.88

AT $441 / 2$ CENTS PER HOUR．
 2.86
3.08 3.3
3.
3.
3.
4.
4.
4.
4.
5.
5.
5.
5 13

$$
4
$$

14

$\left|\begin{array}{|l|l|}33^{\frac{1}{2}} & 14.74 \\ 34 & 14.96 \\ 3\end{array}\right|$

 ． 309

112	5.06	
12	5.20	
12.	5.50	
12.		
18	5.22	

13

14	412	18.26
42	18.4^{8}	

5.91\begin{tabular}{|c|r|}
\hline 43 \& 18.9^{2}

431 \& 18.92

431 \& 19.14

41 \& 19.36
\end{tabular}6.38

6.60$15 \frac{1}{2}$1$16!$

177.04\begin{tabular}{|l|l|}
\hline 7.26

7.18

\hline 7.8

$17!7.70$

18 \& 7.92

$18!$ \& 8.1 .4

19 \& 8.36

192 \& 8.58

\hline 20 \& 8.30

\hline

208.30$20 \frac{1}{2} 9.02$$21 \quad 9.24$

$21 \frac{1}{2}$ \& 9.4^{6}

22 \& 9.68
\end{tabular}$22 \frac{1}{2} 9.9^{\circ}$23 10．1223110.3 .4$2410.5^{6}$$2.4 \frac{1}{2} 10.78$25 11．00$25^{1} 111.22$$26 \quad 11.41$26： $1: .66$2711.8827112.10$28^{12.32}$28112.54$29 \quad 12.76$29． 12.9^{8}

$30 \mid 13.20$
rs．Am＇t． \mid Hrs．$\left.\right|_{-} ^{\text {Am＇t．}} \mid$
20.89
r． 19
30
3
3
3
3
3
3
3
3
3
3
3
331
31
32
32
33
33
34
34
35
35
36

3| 312 | $1 .+7.02$ |
| :---: | :---: |
| 32 | 14.24 |
| $32!$ | 14.46 |

Hrs．Am＇． \mid Hrs．Am＇：

| $90 \frac{1}{2}$ | 40.27 |
| :--- | :--- | :--- |
| 91 | 40.49 |

$91 \frac{1}{2} 40.72$
9240.94

921.41 .16 93 4r． 3^{8} $93 \frac{1}{2}-4 \mathrm{r} .6 \mathrm{z}$ $94 \frac{1}{2} 42.05$ \begin{tabular}{l|l}
95 \& 42.27

95 \& 42.50

95 \& 12.50

96 \& 42.72
\end{tabular}

$96 \frac{1}{2} 42.94$

| 97 | 43.16 |
| :--- | :--- | :--- |
| 978 | 43.39 |

98 43．61
$98 \frac{1}{2} 43.83$
9944.05
$09!24.28$

Ion	44.50
ion	44.72

101： 45.17
102 45．39）
102145.61

IO3 45.83

$103!$	46.06
104	46.28

| $104 \frac{1}{2}$ | 46.50 |
| :--- | :--- | :--- |
| 105 | 46.72 |

105	46.72
－051	46.95

106 47．17

1061	47.39
107	47.61

| 107 | 47.61 |
| :--- | :--- | :--- |
| $107!$ | $47.8 f$ |

108148.00,
$108: / 4^{8.28}$
109 48．50
109348.73
110148.95
110149.17

| II | 49.39 |
| :--- | :--- | :--- |
| II I | 49.62 |

| 112 | 49.84 |
| :--- | :--- | :--- |

$112 \frac{1}{g} 50.06$

1	13	50.23	
1	1	5	50.51

$114 \mid 5 c .7$ ？

| 1142 | 50.95 |
| :--- | :--- | :--- |
| 115 | 51.17 |

115151.40	116	51.62
1161	51.8 .4	
117	52.8	

| 117 | 52.06 |
| :--- | :--- | :--- |

| 1171 | 52.29 |
| :--- | :--- | :--- |
| 118 | 52.51 |

| 118 | 52.51 |
| :--- | :--- | :--- |
| 1181 | 52.73 |

| 119 | 52.05 |
| :--- | :--- | :--- |
| 11982 | 53.18 |
| 120 | 53.40 |

R HOUR．

 $92 \frac{40.94}{}$ \begin{tabular}{ll}
93 \& $4 \mathrm{r} .3^{8}$

931

\hline 12.61

 94 4r．83 $94 \frac{1}{2} 42.05$ $95 \quad 42.27$ ${ }^{951}{ }^{1}{ }^{42.50}$ 9642.72 $96 \frac{1}{2}$ 42．94 97.43 .16 97弪 $43 \cdot 39$ 98 43．6t 98这43． 83 99 44.05 99214.28 IOn 44.50 1002 44.72 joi 44.94 1014 45.17 $10245 \cdot 39$ 1023 45.61 103 45.83 TO3 146.06 10．4 46.28 $104 \frac{1}{2}$ 46． 5^{0} 10546.72 － 051.46 .95 10647.17 106 $\frac{1}{2} 47.39$ 107 47．61 ： $07 \frac{1}{1} 47.8$ ． $108 \mid 48.06$ $108 \frac{3}{2} / 48.28$ 109 48．50 ro9． 48.7 .3 $\begin{array}{ll}110 & 48.9 \\ 1 \text { 108 } & 49.17\end{array}$ I 11 $\mathrm{III}_{2} 49.62$

112 \& 49.84
\end{tabular} 112支50．06 11350.23 113 ！ 50.51 $114 \mid 5 C .75$ $114 \frac{1}{2} 50.95$ 115 115

116
1162
117
117
118
118
119
119
51.17
51.40
51.62
51.84
52.06
52.29
52.51
52.73
52.05
53.18
5.2 .40

AT 45 CENTS PER HOUR．AT $451 / 2$ CENTS PER HOUR．
Hrs．Amt \mid Hrs．Am＇t．$\left.\right|_{\text {Hrs．Am＇t．}} ^{\text {Ars．}}$ Am＇t．Hrs．Am＇t．

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& ${ }^{\text {Am＇}}$＇t． \& H \& A \& Hrs \&

\hline 301 \& 13． 88 \& 601 \& 27.53 \& 903 \&

\hline 31 \& 14．10 \& 61 \& 27.75 \& 91 \& 41．40

\hline $3{ }^{1} 1$ \& 14.33 \& 61 \& 27.78 \& 912 \& 41．63

\hline 32 \& 14.56 \& 62 \& 28.21 \& 92 \& 41． 86

\hline $32 \cdot$ \& 14.79 \& $62 \frac{1}{2}$ \& 28.44 \& $92 \cdot$ \& 42.09

\hline 33 \& 15.01 \& 63 \& 23.66 \& 93 \& 42.31

\hline $33^{\frac{1}{2}}$ \& 15.24 \& 632 \& 28.89 \& $93^{\frac{1}{2}}$ \& 42.54

\hline 34 \& 15.47 \& 64 \& 29．12 \& 44 \& 42.77

\hline $3.4 \frac{1}{2}$ \& 15.70 \& $64 \frac{1}{2}$ \& 29.35 \& $94 \frac{1}{2}$ \&

\hline 35 \& 15.92 \& 65 \& 29.57 \& 95 \&

\hline $35 \cdot \frac{1}{2}$ \& 16.15 \& 65 \& 29.80 \& $95{ }^{\frac{1}{2}}$ \& 43.45 ，

\hline 36 \& 16.38 \& 66 \& 30.03 \& 96 \&

\hline $36 \frac{1}{2}$ \& 16.61 \& $66 \frac{1}{2}$ \& 30.26 \& $96 \frac{1}{2}$ \& 43．91

\hline 37 \& 16.83 \& 67 \& 30.48 \& 97 \& 44．13

\hline 372 \& 17.06 \& $67 \frac{1}{2}$ \& 30.71 \& 97 \& ${ }^{6}$

\hline 38 \& 17.29 \& \& 30.94 \& 98 \&

\hline 388 \& 17.52 \& $68 \frac{1}{2}$ \& 31.17 \& 98. \&

\hline 39 \& 17.74 \& 69 \& 31.39 \& 99 \& 45.04

\hline 292 ${ }^{\frac{1}{2}}$ \& 17.97 \& $69 \frac{1}{2}$ \& 31.62 \& 99. \& 45.27

\hline 40 \& 18.20 \& 70 \& 3 L \& 100 \& 45

\hline 40늘 \& 18.43 \& $7{ }^{2} 2$ \& 32.08 \& 1002 \& 5

\hline 41 \& 18.65 \& 71 \& 32．30 \& 101 \& 45.95

\hline 412 \& 18.88 \& 712 \& 32．53 \& 1012 \& ＋6．18

\hline 42 \& 19.11 \& 72 \& 32.76 \& 102 \& 46.41

\hline 42 ！ \& 19.34 \& 72 ！ \& 32． 99 \& 102 \& 46．64

\hline 43 \& 19.56 \& 73 \& 33．21 \& －3 \& 46.86

\hline 43 I \& 19.79 \& 73. \& 33.44 \& 1038 \& 47．09

\hline 4 \& 20.02 \& 74 \& 33.67 \& 104 \& 47．32．

\hline $44 \frac{1}{2}$ \& 20.25 \& 74. \& 33.90 \& 104 \& 47.55

\hline 45 \& 20.47 \& 75 \& 34.12 \& 105 \& 47.77

\hline 452 \& 20.70 \& 75 \& 34.35 \& 1051 \& 48.00

\hline 46 \& 20.93 \& 76 \& 34.58 \& 106 \& 48.23

\hline ； 612 \& 28．16 \& 76！ \& 34．81 \& 1061
107

102 \& 48.16
48.68

\hline 47 \& 21.38 \& 77 \& 35.03
35.26 \& 107 \& 48.68
48.91

\hline $47!$ \& 21.61 \& 772
78
7 \& 35.26
35.49 \& 1071
108 \& 48.91

\hline 481 \& 22 \& 78 \& 35.49
35.72 \& 1081 \&

\hline 49 \& 22.29 \& 79 \& 35.94 \& 109 \& 49． 59

\hline 491 \& 22.52 \& 79 ！ \& 36． 17 \& 1092 \& 49.82

\hline 50 \& 23.75 \& 80 \& 36． 40 \& 110 \& 50.05

\hline 50. \& 22.98 \& 80 ！ \& 36.63 \& $110!$ \&

\hline 51 \& 23.20 \& 81 \& 36.85 \& 111 \& 50.50

\hline 51 \& 23.43 \& 81 \& 37.08 \& 1112 \& 50．73

\hline 5 \& 23.66 \& 82 \& 37．31 \& 112 \& 50．96

\hline 52. \& 23.89 \& 82 L \& 37.54 \& 1121 \& 51.19

\hline 5 \& 2．4． 11 \& 83 \& 37.76 \& 113 \& 51.41

\hline 53. \& 24.34 \& 83 2． \& 37：99 \& 1131 \& 51.64

\hline 5 \& 24.57 \& 84 \& 38.22 \& 114 \& 51．87

\hline 54. \& 2．4．80 \& 84 \& 38.45 \& 114. \& 52．10

\hline 55 \& 25.02 \& 85 \& 38.67 \& 115 \& 52.32

\hline 552 \& 25.25 \& 851 \& 38.90 \& 1151 \& 52．55

\hline 56 \& 25.48 \& 86 \& 39． 13 \& 16 \& 52．78

\hline 56. \& 25.71 \& 86 \& 39． 3^{6} \& $116 \frac{1}{2}$ \& 53.01

\hline 57 \& 25.93 \& 87 \& 39.58 \& 117 \& 53.23

\hline 572 \& 26.16 \& 872 \& 39．81 \& $117 \frac{1}{2}$ \& 53.46

\hline 5^{8} \& 26.39 \& 88 \& 40.04 \& 18 \& 53.69

\hline 5821 \& 26.62 \& 882 \& 40.27 \& 1183 \& 53.92

\hline 57 \& 26.84 \& 89 \& 40.49 \& 119 \& 54．14

\hline 1 \& 27.07 \& 892 \& 40．72 \& ［192 \& $54 \cdot 37$

\hline 60 \& 27.30 \& 90 \& 40.95 \& 120 \& 54.60

\hline
\end{tabular}

Practical Hints for Builders.

Building Sites - In selecting the site for a dwelling, the preference should be given to one in which the subsoil is naturally dry and the ground elevated, so as to afford facility for getting rid of the seweage and surface water. The best soll is supposed to be gravel cr sand. Chalk and other open strata are also good, but clay, particularly if of a retrentive nature, appears less likely to form a healthy site. The rain water is often retained for a long time on the surface of clayey soil, and with some kinds of clay it is absorbed, making the ground cold and damp, causing fogs, which hang over it longer than usual. The sites to be particularly avoided are those in the neighborhood of swamps, or other ground recently reclaimed from rivers, estuarie., or harbours, in which deposits have been formed from mud containing organic matter such as that produced when sewage is aliowed to flow into the strear. Slight eminences on the borders of swamps are also frequently unhealthy, according to their position with respect to the prevailing winds. Among hills the unheathly spots are enclosed valleys, any spot where the air must stagnate, ravines, or places at their head or entrance. In well-drained towns the nature of the subsoil is not of so much im. portance as in the country, owing to the bulldings, roads, and pavements preventing the ran water from finding its way below the surface, and from the provision usually made for taking it away rapidly into the streams and water courses. To render a site healthy, the level of the subsoll water should be 8 or ro feet belo x the surtace, aud where this does not occur naturally, drains should be formed to keep it below this depth. The raising of subsoil in malarious dis. tricts has been known to cause an outbreak of ague, and the lowering of it by draining has, on the contrary, caused an improvement in the health of the inhabitants. All soils except wheia saturated with water, contan a large quantity of air, and the more porous the soil the more readily does the air pass through it. In the case of towns and habitations generally this fact has an important bearing on health, as this air may be drawn into the houses through the ground under the basement, and dangerous consequences ensure if the soil in the neighborhood is saturated with organic matter, which frequently happens when animal excreta has been deposited on the surface or has escaped from sewers and other receptacles. Ground air is invariably damp and where it is permitted to stagnate as in the basements of houses, the growth of fungi is encouraged and the woodwork of the house is destroyed by dry rot ; an unwholesome smell pervades the whole house, and the health of the occupants suffers. In all cases, even those in which the natural subsoil has not been disturbed, and whatever may be its nature, the ground under the basement of a dwelling should be rendered impervious to air and moisture. To effect this, nothing appears to answer so well as a layer of good concrete about 6 inches thick-probably the best is that made with weli dried gravel and coal tar. Portland cement, both in the concrete and as a rendering oier the surface, also answers, but no lime shouid be used which is not capable of reslating the effects of moisture. Stone slabs or flagging 2 or 3 inches thick, if well bedded and jointed with good mortar or cement, and asphalte not less than $1 / 2$ inch thick, if laid on concrete, may also be used, but they are expensive. Before the adoption of any of these covcrings, it is of
course presumed that the level of the subsorl water is sufficiently below the floor of the basement. Where the subsoil is naturally moist the damp should be pervented from rising through the walls by the interposition of a proper damp course which may be of roofing slates in two thicknesses bedded in Portland cement, o: of glazed earthenware such as that sold for the purpose, but the best appears to be a layer of asphalte about $1 / 2$ inch thick through the thickness of the foundation walls. The ground floor of houses where there is no basement should be raised about two feet above the soil, and the space below well ventilated. Where there is a choice, dwellings should be so placed that as many of the rooms as possible mav receive the sun's rays during some portion of the day. It is said that a south-eastern aspect is the best for the front of a house ; it receives the morning sun. The north and east are usually undesirable aspects to select, owing to the cold winds which usually blow from those points. The selection of an aspect, will, however, mainly depend on the climate, and the direction of the prevailing winds. The prospect from the windows of sitting rooms should be cheerful, whether the house be situated in the town or country, as a pleasantprospect assiists considerably towards inducing a cheerful state of mind-a matter of no small importance to health.
L.aying Foundations.-The foundation of a building, says Sir J. Gowans, is of primary importance, as, unless it is secure, the permanency of the structure cannot be maintained, however well built it may be. Before laying a stone the builder should be satisfied that the strata will give equal resistance to the pressure that may be put upon it. Strata that are hard and soft are very dangerous. Even clay it mixed with bowlders (which often happens) cannot be depended upon, unless they are removed, and means taken to equalize the ground on which the buildings are to be erected. Next to rock, no better foundation can be got than sand or gravel when dry. If wet, means should be taken to drain away the water; but, if this cannot be done, large flat bedded stones of sufficient area, fairly dressed in beds and joints and well put together, will, as the load increases, secure a foundation that anything can be built upon. In my own experience I have often tested this, and particularly when building a bridge on a railway contract I had many years ago. This was an under bridge of considerable span, the girders being in the form of an arch, in segments of cast iron, the security of which depended greatly on the permanent resistance of the abutments, or the bolts which held these segments together at their joints. In digging for a foundation it was found that the strata were very soft, being layers of sand and moss alternately, and to prevent failure I took the precaution to strengthen the foundation of the first abutment by driving piles to a depth of 30 to 40 feet, with horizontal planking, on which the foundation stones were bedded. Before building the second abutment, acting on the advice of a railway contractor who had had more experience than myself, I adopted a different plan-viz., to dig out the soft material to a depth and area as secured an outward resistance to meet the pressure of the large sized stones that were afterwards put into the foundation, course after course, until the load pressed out tite water, and so secured a foundation which was equally as strong, if not stronger, than the first. Where the stratum is unequal or not to be depended upon, 1 know of nothing better than a good bed of concrete not less than 3 ft thick, and no contractor should neglect this where there is the slightest doubt as to the sustaining character of the ground. This is always necessary in erections of different heights, and is particularly required in churches and other buildings where the "spire, tower or *her elevation bears more beavilv on the poיndation than the walls which abut
upon them. And, in addition to this, and to make sure, I would have exira courses in the foundation of the higher and heavier portions, as in the hurry with which we build now-a-days every precaution is necessary. The same care should be iaken with respect to the oriel windows or projections which do not go to the full heighth of the building, and consequently have not the same pressure on the foundation. The walls to which these lightcr projections are attached should not only be well founded, but the tie or bond which unites the one wall to the other should be left free on the upper beds, so as to allow for the subsidence of the heavier wall without causing the fractures so often seen where this precaution is not taken.

The Strength of a Wall.-The strength of a wall depends, of course, largely on the material used. A good, hard burned brick, well laid in cement mortar, makes a very strong wall. To tell a good brick, first examine the color ; if it is very light, an orange red, the brick is apt to be soft. If the brick is easily carved with a knife, it is soft. If it can be crushed to a powder easily, it is scft. If two bricks are struck together sharply and the sound is dull, the bricks are poor ; if the sound is clear, ringing, metallic, the bricks are good and hard. It brick shows a neat fracture, it is a good sign ; a ragged fracture is geneially a poor sign. The fracture also shows the evenness of the burning and fineness of the material. A brick that chips and cannot be cut easily is a good brick. The darker the brick, the harder burned. This of course, does not hold good for artificially-colored bricks. The straight and more regular the brick, the softer it is (as a rule), as hard burning is apt to warp a brick. What has been said of the strength of brick holds good of terra cotta. The latter should be designed to be of same thickness, if possible, in all parts, and any hollows caused thereby must be filled in solid. It is best to fill in the hollows with bricks and mortar several days in advance, and let the filling set, so as to be sure it will not swell up afterwards and burst the terra-cotta.

Capacity of Cylindrical Cisterns.--The following table shows the capa. city in gallons for each foot in depth of cylindrical cisterns of any diameter :

Diameter.	Gallons.	Diameter.	Gallons
25 ft .	3,059	7 ft .	. 239
20 ft .	1,958	$61 / 2 \mathrm{ft}$.	. 206
15 ft .	1,101	6 ft .	. 176
14 ft .	959	5 ft .	. 122
13 ft .	827	$41 / 2 \mathrm{ft}$.	- 99
12 ft .	705	4 ft .	78
11 ft .	592	3 ft .	44
10 ft .	489	$2 \mathrm{t} / 2 \mathrm{ft}$.	30
9 ft .	396	2 ft .	19
8 ft .	313		

Power of Walls to Resist Pressure.-Walls laid up of good, hardburned bricks, in mortar composed of good lime and sharp sand, will resist a pressure of 1,500 pounds per square inch, or 216,000 pounds per square foot, al which figure it would require 1,600 feet height of twelve-inch wall to crush the bottom courses, allowing 135 pounds as the weight of each cubic foot. It also appears from accurate calculations and measurements that walls laid up in the same quality of brick and mortar, with one-third quantity of Portland cement added to the same, are capable of resisting some 2,500 pounds per square inch, or 360,000 pounds per square foot; this would require a height of wall 2,700 feet to crush the bottom bricks.
have exira the hurry same care ich do not same pres ections are unites the , allow for often seen
of course, in cement e the color; ick is easily y, it is soft. bricks are i hard. If geneıally a fineness of rick. The 1 good for the softer een said of e designed ed thereby nd mortar not swell
s the capa. meter :

Gallons

It also up in the d cement lare inch, vall 2,700

To Prevent Moisture from Penetrating Walls.-Sylvester's process fre excluding moisture from external walls consists in using two washes or so.utions for covering the surface of brick walls, one composed of soap and water and one of alum and water. The proportions are three-quarters of a pound of soap to one gallon of water and half a pound of alum to four gallons of water. Both substances must be perfectly dissolved in water before using. The walls should be perfectly clean and dry and the temperature of the ant should not be below 50° Fahrenheit when the compositions are applied. The first, or soap wash. should be laid on when at boiling heat with a flat brush, taking care not to form a froth on the brick work. This wash should remain twenty-four hours, so as to become dry and hard before the second, or alum wash, is applied, which should be done in the same manner as the first.
The temperature of this wash when applied may be 60° or 70°, and it should also remain twenty-four hours before a second coat of the soap wash is put on, and these coats are to be repeated alternately until the walls are made impervious to water. The alum and soap thus combined form an insoluble compound, filling the pores of the masonry and entirely preventing the water from penetrating the walls. Four coatings will render bricks impenetrable.

How to Make Good Blue Prints.-The pilme requisite for making good blue prints is a good tracing. The best material is tracing cloth. If tracing paper is used it should have a bluish but never a yellowish tint, neither should the paper be too thick, as otherwise light will slant through the tracing under the lines. The tracing should have no creases or wrinkles. All lines of the tracing, down to the very finest, should be absolutely black. This is imperative. When ink does not give sufficiently opaque lines, it can be improved by adding burnt sienna, burnt umber or gamboge ; this detracts from its quality as a black drawing ink, but makes it better for tracings to be printed. To properly expose prints it is necessary to use a print frame, with strong springs, and an even, thick clastic cushion. To wash prints it is necessary to have water or developer, in a vessel (bath tray) as large as the tracing, and the bath should always be slightly tepid or at least not cold. The prepared paper should be kept and handled only in dim light, and be carefully protected from dampness. To print, the glass in the frame should be kept clean and free from dust. After removing the back of the frame and the cushion, place the tracing on the glass, with the inked side against the glass (or it will give a negative print,) place on that the prepared paper, the prepared side toward the tracing, and see that all lies smooth and is free from creases or wrinkles. Then put the felt cushion on smoothly, and close and lock the trame. Lack of contact produces blurred prints. Examine tracing and paper through the glass in the frame, and if there is lack of contact anywhere correct it by placing paper or pasteboard between cushion and back of frame. When looking at the print to determine time of exposure, open only part of the frame, and raise a corner of the paper. In carrying the print to the bath after exposure, roll it with the blank side out, to protect it from light, and be quick about it.

Experts in house bulding have suggested that rates in second stories are usually less safe than those below, as the narrower joists give little room for the boxing of the hearth. It is also urged that grates be examined carefully to determine whether the back of the flue is simply of four inch wall, which is always dangerous at the back of a grate in a frame house. This can be determined by measuring the distance the breasts extend out from the wall, and as sometimes the breast runs through flush with the face of the wall in the mext room, the calculation is to be made accordingly.

To Remove Exudations from Brick Walls-The simplest and least expensive method for removing salt-peter exudation from brick work, when the offlorescence is in position where the sun and wind do not have free access, is to wash it off with diluted hydrochloric or common muriatic acid of commerce. About half a pound of the acid is used with an ordinary pailful of water, the application being made with a sponge.

Wood soaked for five days in a 7 per cent. solution of phosphate of soda, and after drying suspended for seven days in a 13 per cent. solution of chloride of barium stands the severest test-twelve months in moist earth near a manure pit-without sign of decay or mold.

To Preserve Pencil Drawings.-Pencil drawings may be rendered ineffaceable by a very simple process. Slightly warm a sheet of ordinary drawing paper, then place it carefully on the surface of a solution of white resin in alcohol, leaving it there long enough to become thoroughly moistened. Afterwards dry in a current r § warm alr. Paper prepared in this way has a very smooth surface. In order to fix the drawing, the paper is simply to be warmed for a few moments. This process may prove useful for the preservation of plans or aesigns when want of time or any other cause will not allow of draughtsmen reproducing them in ink. A simpler plan than this is to brush over the back of the paper containing the pencil sketch with a weak solution of shellac in alcohol. Chalk and pencil drawings may be fixed (though not so thoroughly as by the above methods) by washing them with skimmed rnilk, or with water holding in solution a little isinglass or gum. When the first is used great care must be taken to deprive it of the whole of the cream, as the latter substance would cause the drawing to look streaky. An easy way of applying these fluids is to pour them into a shallow vessel, and to lay the drawings flat upon the surface of the liquid; after which it should be gently removed and placed on white blotting paper in an inclined position to drain and dry.

The Construction of Chimneys.- Many able and scientific men have treated on this subject, but the result of ther observations serves only to prove what is the result of every day's experience, namely, that rarefied air is lighter and less dense than cold air ; and that it will ascend with a velocity proportionate to its rarefaction, unless obstructed by other bodies. Heat that is generated by the combustion of fuel, exists under two distinct forms, and is known by the names of combustible and radiant heat. Combustible heat partakes of smoke, and is carried off with it into the upper reçions, while radiant heat is communicated to opposing bodies in contact with its rays. It is stated by some that combustible heat combined with air and smoke exists in the proportion of toun to one, compared to radiant heat : but its correct proportion has perhaps never been ascertained. It is, however, certain that very little radiant heat will escape from a smothered combustion, while a dense smoke will very slowly ascend, and sometimes a portion of it is discharged into the room, and the chimney is pronounced smoky, while the epithets uttered against masons, on such occasions, would be more properly applied to the builders of the fire. As nature acts by certain laws, we may derive more profitable information by a proper observance of them, than from accidental occurrences. It is one of the laws of nature that rarefied air ascends, while cold or dense air descends. On the same principle, water discharges itselt more copiously through a channel of a uniform and direct surface, on the same inclination. Therefore, channels that are obstructed by eddies and the discharge of other streams into them, are impeded, and the velocity of the water diminished, so as often to produce what is called back-water
least expenthe offloresis to wash ce. About application
f soda, and chloride of r a manure
endered inry drawing e resin in ed. Afterhas a very be warmed on of plans aughtsmen he back of in alcohol. as by the holding in e must be ace would fluds is to surface of te blotting
nen have to prove is lighter :oportiongenerated vn by the f smoke, ommuniome that of tour ps never Ill escape end, and y is procasions, acts by servance ture that rinciple, ad direct cted by he velo-:k-water
for a considerable distance, which, when removed, permits the water to flow with rapidity. Short bends and turnings also present obstacles to the current or flow of water, by which whirlpools are often seen in actual contact with the natural stream. The same observations may be apphed to rarefied air or smoke. Hence those flues will carry smoke the best which arise perpendicularly in a uniform direction. Angles and turnings present obstacles to the progress of the smoke, and should be avoided as much as possible. Particular attention should be paid to the formation of the throat of the chimney, the dimensions of which should in no case exceed the number of square inches contained in a horizontal section of the flue. It has been contended by some that it should be smaller than this, while others have thought that it should be larger ; but experience has shown both of these opmions to be erroneous. When the throat is smaller, the frequent rushes of cold air into it from the opening of doors, etc., sends a gush of smoke into the room, by obstructing the upward current of rarefied air. Wnen the throats are larger, eddies are formed in them, and the smoke, becoming dense by the steam of the fuel, chokes the flue, and instead of ascending is puffed into the room. Experience has shown the best construction to be that where the throat contains as many square inches as a section of the flue. It the latter, for instance, is one hundred and forty-four inches wide, the throat should be four feet long, and three inches wide, nearly on a level with the man-tle-bar, or at the top of the opening of the fire-place, and graduated to the regular dimensions of the flue.

Glueing Joints.-In general, nothing more is necessary to glue a joint after the joint is made perfectly straight, or, in technical terms, out of winding, than to glue both edges while the glue is quite hot, and rub them lengthwise until it is nearly set. When the wood is spongy, or sucks up the glue another methorl must be adopted, one which strengthens the joint, while it does avay with the necessity of using the glue too thick, which should always be avoided; for the less glue there is in contact with the joints, provided they touch, the better; and when the glue is thick, it chills quickly, and cannot be well rubbed out from between the joints. The method to which we refer is, to rub the joints on the edge with a piece of soft chalk, and, wiping it so as to take off any lumps, glue it in the usual manner ; and it will be found, when the wood is porous, to hold much faster than if used without chalking.

The Neutral Axis of Cast-Iron Beams.-"It has long been known that under the existing theory of beams, which recognizes only two elements of strength-namely, the resistances to direct compression and extension-the strength of a bar of cast iron subjected to transverse strain cannot be reconciled with the results obtained from experiments on direct tension, if the neutral axis is in the centre of the bar. The experiments made both in the transverse and on the direct tensile strength of this material have been so numerous and so carefully conducted as to admit of no doubt of their accuracy ; and it results from them, etther that the neutral axis must be at or above the top of the beam, or there must mining the position of the neutral axis be made on such a scale and in such a manner as to place this question beyond doubt, and with this ot,ject two beams were cast, 7 feet long, 6 inches deep and 2 melhes in thickness. Two were employed in order to avoid errors which might arise from accidental irregularities of the metal. Considering the very minute qualities which had to be measured and the numerous causes of disturbance to which observations of so much delicacy were lianle, such as changes of temperature or want of perfect uniformity in the dimensions or texture of the beams, the results point out the
position of the neutral axis as the centre of the beam in a manner so decided as to remove all further doubt upon this subject not only in the smaller strains but in the larger ones also, which, in the case of the second beam, were carrier to about three-founths of the breaking weight."

Setting Out Stairs.-After determining the height of the riser from the "storey rod," the right proportion of tread must be found. Sometimes steps are arranged so that it is easier for a man to go up "two at a time" than to walk up in a proper manner. The reason is, both tread and riser are made small. When a riser is reduced the tread must be increased, and the contrary when the riser is increased, the tread must be reduced in width. Joiners do not often break this rule, but masons very often do, notably in steps leading to and from railway stations. A simple rule may be given for finding a suitable proportion. Take any suitable step as a standard step, that is to say, if you know of a staircase which is comfortable and easy to walk up, take it as a standard to guage others by. Supnose you have a riser given, and require the width of a suitable tread, make use of the following proportion: As the given riser : standard riser : : standard tread : required tread. If the tread is given and the riser required, then - as the given tread : standard tread : : standard riser : required riser. To work out an example : Suppose 10 inch tread and 7 inch riser be taken as a saitable step, let 6 inch be the given riser; then by substituting the value of treads and risers, for the names we have - As $6^{\prime \prime}: 7^{\prime \prime}:: 10^{\prime \prime}:$ required tread ; this gives $70-6$, or $112 / 3$ for the size of the tread. Nicholson gives as a standard a tread c § $12^{\prime \prime}$ to a riser of $51^{\prime \prime}$. Working out the example given by this proportion, we get $I^{\prime \prime}$ instead of $1 I^{2} / 3^{\prime \prime}$; either of these sizes will be an agreeable step. The student will find it a good exercise to compare steps of different buildings with any assumed standard. A rough and ready rule, for the usual sizes of treads and risers, is to make two risers and one tread equal to 24 inches. The proper rule given above may be written for convenience as fcilows:
rcquired riser (or tread, as the case may be.) Pitch boards should be made of hard wood, and should be tested occasionally, for differences in the temperature have a marked effect on the bevel and length of sides. In setting out strings do not depend upon the pitch board for giving the true lengths of the strings. Set a pair of compasses to the length of the hypothenuse of the pitch board, and mark off along the nosing line the number of steps. In this manner accuracy may be ensured. It is a good practice to mark on the strings and on the drawing the word UP after the number of steps which lands in each flight. This simple habit will prevent the not uncommon mistake of putting a step too many in a flight of stairs. In ramping strings to fit each other, it is necessary for the ramps to finish at right angles to the joints ; if they do not, the mould on one string will not intersect with that on the other. The ends of the strings must be prepared to receive skirting before leaving the bench, and it is best generally for the joiner who makes the stairs to work sufficient skirting (to match his strings) to skirt the intermediate landing and the main landings to the nearest architrave. The strings must be gauged, so that there may be a proper margin for plaster. The well strings must be $7 / 8$ inch below the treads or carriages, as the case may be, and the wall string must be flush with them.

Setting-out Winders and Newels.-Winders require particular care ir setting out ; each window must be separately considered; for if not, the beginnel will have great difficulty in fixing. When strings are tongued and grooved
decided as aller strains vere carrier
er from the es steps are a to walk up rade small. ry when the not often o and from proportion. v of a staird to guage t a suitable : standard he riser re: required h riser be tituting the : required gives as a e given by will be an e steps of ule, for the qual to 24 is fcilows:
made of mperature strings do ings. Set and mark y may be twing the nple habit) a flight ramps to tring will prepared the joinet to skirt ve. The er. The may be,
r care is, beginne1 grooved
rogether, simply putting the tongue on one of them instead of the other wall save a great deal of trouble in fixing. This is more particularly the case when the winders finish to a newel or into a solid well. Some times it is a good plan not to "glue up" the winders, for often these winders can be put in when not jointed to the riser. Too often winders are confined to newels at the narrow ends. When winders are set out by means of a falling mould, they are properly arranged and " eased "before reaching the springings. Now the winders round a newel should be similarly situated, although there is no wreath to take intc consideration for the steps should begin to narrow gradually. If there is not room in the staircase to move the flyers back for this, the tread of the flyers must be reduced; a slight reduction will answer the purpose generally. It is a disavantage to have an easy flyer and a steep winder in the same flight of stairs; the pitch should be as unitorm as possible.

Putiling Stairs Together.-Before wedging up both strings of a flight of stairs in which there are winders, or curved steps to newels, or solid wells, every winder or tread which cannot be fixed after the newel or well is on, must be in position. This is often forgotten by experienced hands and causes a great deal of trouble, such as the breaking of the joint of a winder and riser. If the flight has a cut string, each tread should be screwed to the riser of the next step before the treads are wedged to the wall string; if the steps are screwed up like this, they can hardly be wedged up "out of syuare." Strong pieces should be tramped against the nosings until the string board is fixed, blocked and set. The wall strings should be blocked to the treads and risers. Blocks hold the wall string much better than nails through the string into the treads.

Safe Heights and Lengths of Brick Walls.-For first-class buildings (the work manship being good) as a geneaal average the walls should not exceed a greater number of feet in height, than three times their thickness in inches, and the length should not exceed double tne neight, without lateral support or tiffening by pillasters, buttresses or wing walls say for.

Sate height Lenght should not exceed.

Where the length must exceed these discances, as in depots, warehouses, etc., the thickness must be increased. or lateral braces provided (such as plasters is buttresses) and at as short intervals as practicable.

To Make a Very Strong Glue.-An ounce of the best isinglass may be dissolved, by the application of a moderate heat, in a piat of water. Take this solution and strain it through a piece of cloth, and add to it a proportionate quantity of the best glue, which has been previously soaked for about four and iwenty hours, and a gill of vinegar. After the whole of the materials have been brought into a solution, let it once boil up, and strain off the impurities. This glue is well adapted for any work which requires particular strength, and where the joints themselves do not contribite towarns the combination of the work, or in small fillets and mouldings, and carved pattera that are held on the surface by the glise

STRENGTH OF STONE MASONRY.

Gy Pfof. I. O. Baker,

The universal custom in determining the ability of stone to 1 esist pressure is to test the compressive resistance of small cubes. The results obtained by testing small specimens of stone are very useful in determining the relative strength of different kinds of stone, but such results are of no value in determining the ultimate strength of the same stone when built into a masonry structure. The strength of a nass of masonry depends on the strength of the stone, on the size of the blocks, on the accuracy of the dressing, on the proportion of headers to stretchers, and on the strength of the mortar. A variation in any one of these items may greatly change the strength of the masonry. The importance of the mortar as affecting the strength of mason:y to resist direct compression, is generally overlooked. The mortar acts as a cushion between the blocks of stone, and if it has insufficient strength it will squeeze out lateraly and cause a tensile strain therefore weak mortar causes the stone to fail by tension instead of by compres sion. Stone is several times stronger to resist compression than tension, ans hence, where great strengti is required it is necessary that the mortar should b of the best.

No experiments have ever been made, for obvious reasons, upon the strengt. of stone masonry under the conditions actually occurring in masonry structures; but experiments made upon brick piers 12 inches square and from 2 to 10 fee: high, laid in mortar composed of one volume Portland cement and two of sand show that the strength per square inch of the masonry is only about one-sixtl of the strength of the brick. An increase of 50 per cent. in the strength of the brick produced no appreciable effect on the carength of the masonry; but the substifution of cement mortar-one part Portland cement and two sand-for lime mortar-one part lime and three parts sand-increased the strength of the masonry 70 per cent. The method of failure of these piers indicates that the mortar squeezed out of the joints and caused the brick to fail by tension. Since the mortar is the weakest element, the less mortar used the stronger the wall ; therefore the thinner the joints and the larger the blocks, the stronger the masnnry, provided the surfaces of the stone do not come in contact. It is generally stated that the working strain on stone masonry should not exceed onetwentieth to one-tenth of the strength of the stone; but it is clear from the ex. periments on brick piers referred to above, that the strength of the masonry depends on the strength of the stone only in a remote degree.

In a general way it may be said that the results obtained by testing small cubes may vary 50 per cent. from each other, or say 25 per cent. from the mean, owing to undetected differences in the material, cutting and manner of applying the pressure ; and also that stones crack at half of their ultimate crushing strength. Hence, when the greatest care possible is exercised in selecting and bedding the stone, the safe working strength of the stone alone should not be regarded as more than one-fourth to three-eighths of the ultimate strength. A further allowance, depending upon the kind of structure, the quality of mortar, the closeness of the joints, etc., should be made to secure safcty. Experiments upon comparatively large specimens are but little help in deciding this question ; the only way is to determine the load carried by actual structures. The following are the greatest loads carried by stone masonry, that were discovered by an extended search through engineering literature :

Early builders used much more massive masonry, proportional to the load to be carried, than is customary at present ; experience and experiments have shown that such great strength is unnecessary. The load on the monolithic piers supporting the large churches in Europe dues not exceed 30 tons per square foot red by testve strength mining the ture. The on the size headers to re of these ance of the 2, is gener. stone, and sisile strain y compres nsion, ane should b
e strengt. itructures ; to 10 fee! o of sand one-sixtl gth of the ; but the sand-for gth of the s that the on. Since the wall ; panger the It is genceed onen the ex. masonry
ng small he mean, applying crushing cting and d not be ngth. A f mortar, eriments question ; e follow. ed by an
e load to ve shown iers suplare foot
(420 pounds per square inch) or aboat one-thirtieth of the ultimate strength of the store alone. The stone-arch bridge of 140 feet span at Pont-y-tu-Prydd, over the Toff, in France, erected in 1750 , is supposed to have a pressure of 20.7 tons per square foot (290 per square inch) on hard limestone rubble masonry laid in lime mortar. A former bridge at the same place fanled with 64 tons per square foot. Rennie subjected good hard limestone rubble in columns 4 feet square to 22 tons per square foot, (300 pounds per square inch). The granite piers of the Saltash bridge (England) sustains a pressure of 9 tons per square foot (125 pounds per square inch). The maximum pressure on the granite masonry of the Brooklyn bridge is about $281 / 2$ tons per square foot (about 400 pounds per square inch) ; the maximum pressure on the limestone masonry is about ten tons per square foot (125 pounds per square inch). The face stones ranged in cubical contents from $1 / 2$ to 5 cubic yards; the stones of the granite backing averaged about $11 / 2$ cubic yards, and of the limestone about $11 / 4$ cubic yards per pier. The nortar was 1 volume of Rosendale cement and 2 of sand. The stones were rough axed or pointed to half-inch bed joints, and half-inch vertical face-joints. These towers are very fine examples of the masons' art. The pressure on the limestone piers of the St. Louis bridge was, before completion, 38 tons (527 pounds) ; after completion the pressure was 19 tons (273 poinds) on the piers and 15 tons (198 pounds) on the abutments. The limestone masonry in the towers of the Niagara Suspension bridge failed under 36 tons per square foot, and were taken down ; however, the masonry was not executed. At the South Street bridge, Philadelphia, the pressure on the rubble masonry in the pneumatic piers is 15.7 tons per square foot (220 pounds) at the bottom and 12 tons at the top ; this is unusually heavy, but there are no signs of weakness. The maximum pressure on the rubble masonry and cement mortar of some of the large masonry dams is from 10 to 14 tons per square foot. The proposed Quaker bridge dam, which is to impound water for Niew York City, and which is the largest in the world, is designed for a maximum pressure of $162 / 3$ tons per square foot on massive rubble masonry in best hydraulic cement mortar.

HOW TO TEST THE DRYNESS OF WALLS.

A curious device for resistıng the dryness of walls is described in the Wiener Bonindustrie-Zuitung. The apparatus for the purpose consists simply in small sheets of gelatine, which are made by taking the sheet-gelatine of commerce, selecting the thinnest pieces, soaking them for a quarter of an hour in water until they are quite soft, spreading them out flat on a greased sheet of glass, and stretching them with the fingers until the folds and creases are smoothed out and the whole made as thin and uniform as possible. The sheets are then thoroughly dried in the air, the edges, which are rough and uneven, are trimmed off, and the whole cut into pieces about two inches wide and four inches long, for use in testing. If kept flat in a dry place, these gelatine strips are very sensitive to moist air. If a wall is suspected of being damp, a strip is moved slowly over it near its surface, but not touching it. If any damp spots exist, they are immediately shown by the curling of the gelatine as it passes near them. Although every one takes some interest in knowing whether his house is dry or not, this simple test is likely to be of more practical use to fresco-painters and paper hangers than to any one else. Both of these, to avoid disappointment and loss, need to know with certainty whether the walls and ceilings on which their art is to be excrcised are dry or not, as their paper and colors will often change on damp plastering. In the case of a wall of m asonry, particularly, plastered on the brick work it is difficult to tell by ordmary inspection whether the moisture has dried out or not, and the gelatine sheets may give the desired information with such certainty and precision as to be of great service.

GRAPHIC METHOD OF DETEEMINING THE STABILITY OF A PIER OR BUTTRESS.

Let A B C D represent a pier which sustains a given thrust T, at B.

Draw the indefinite line BX in the direction of the thrust through the centre of gravity of the pier (which in this case is at the centre of the pier), draw a vertical line until it intersects the line of the thrust at E . As a force may be considered to act anywhere in its line of direction, we may consider the thrust and the weight to act at the point E ; and the resultant of these two forces can be obtained by laying off the thrust T from E on $E X$, and the weight of the pier W from E on the line E Y both to the same scale (pounds to the inch) completing tie parallelogram and drawing the diagonal. If this diagonal prolonged cuts the base upon the outer edge, the pier will be unstable and its dimensions must be changed. The stability of a pier may be increased by adding to its weight by placing some heavy material on top or by increasing its width at the base by means of "set-offs."

> [Kidder.]

BONDING WITH HOOP IRON.

Hoop iron is in narrow strips about an inch in breadth, and for bonding is generally dipped in hot tar before being built into a wall to preserve it from rust. It is often laid in the centre of a thin wall, but tnere should be one hoop iron to every half brick in thickness of wall. Two courses of hoop iron should be built into every' story, one below the window sill and one above the head, but where the expense can be permitted it nay be placed in every few courses of brick. The ends of the iron lengthways should overlap and be hooked together, and at angles of wall the iron should also be hooked togethe:

WATERPROOFING STONLWORK.

Coal tar is recommended for waterproofing masonry. For exposed surfaces apply from cne to three coats boiling hot. By adding a small quantity of India rubber dissolved in benzine the coating will last longer. To whiten the color, dust with plaster of Paris before dry. For surfaces to be covered by earth a single coating of tar made thick by blazing is preferable ; two or three gallons should ve boiled and lighted when hoiling. While blazing stir continually till volume is reduced and becomes pasty in cooling. Spread over stone rapidly with large flat brush.

BOILER SETTING.

Brickwork for boiler setting is very different from ordinasy brickwork The joints should be very thin and both inside and out must be very carefully executed. Kiolin or prepared fire clay should be used as mortar for the fire brick and mixed so thin that it must be put on with iron spoons instead of trowels. The fire brick should be dipped in water before laying so that it will take up the water in the cement. Every sixth course beginning with the grates should be headers well bonded into the rear work; they must be well bonded into the setting to hold upper part of wall in position as the lower courses of fire brick bern away. This admits of replacing of fire bricks without rebuilding the wall

ILI'TY OF

pstains a given
rection of the e pier (which Iraw a vertica! t at E. As a e in its line of the weight to ese two forces T from E on E on the line he inch) comthe diagonal. pon the outer hensions must to its weight h at the base

Kidder.]

or bonding is it from rust. hoop iron to ould be built id, but where ses of brick. ather, and at
sed surfaces atity of India en the color, by earth a ree gallons timually till one rapidly
work The refully exee fire brick of trowels. vill take up ates should led into the f fire brick ig the wall

LIMFSTONES.

Limstones are for many reasons eminently suitable for constructive purposes, being cheap and easily woiked, but they readily absorb moisture. This moisture usually contains carbonic acid and gradually dissolves the stone, and in winter serious injury is often caused by the freezing of the moisture and its subsequent expansion. Recent experiments prove that metallic fluosilicates, more especially those of aluminium, magnesium and zinc, are successful preservatives. The surfaces should be brushed over with a solution of salt chlorine, causing on first application an abundant froth, due to the liberation of carbonic acid gas. When dry, wash over again once or twice according to the quality of the stone; on an average, 1.7 pounds of solution to 40° Beaume are required per cubic yard. The process is : mpleted in 24 hours. This treatment almits of polishing of the stone, and b a suitable choice fluosilicate used, different colors can be communicated to the stone. The process is cheap and good alike for mortars and cement containing lime.

SAND FOR CONCRETE OR MORTAR.

Sand when rubbed in the hand should give a dry crackiling sound and be prackly to the skin. Clean and sharp sand if wetted and taken up in the hand, after being tightly held will not, on being loosed, retain the shape nor soil the hand.
[T. M. Clarke]

INVERTED ARCHES.

A foundation or basement of piers constructed with badly formed inverted arches is rorse than if the arches had been omitted altogether. They are introduced for the purpose of distributing the superincumbent weight and are intended to obviate a solid wall. By means of the inverted arch the whole weight of the building is distributed over the whole foundation, and it is necessary that the outer arch at each end of the wall should inave a sufficient abutment to prevent the arch pushing out the final piers. The inverted arcl, when used, should be the full thickness of the piers against which it abuts. Semi-ellipse is a good form, but it should be built of particularly good brick set in quick setting cement, the cement joints being very fine. The rims of the arch should not be more than half brick in height, and nothing should be built upon the intrados. If it is necessary to build solid above the arch a stone should be inserted above the abutment of the arch, and the upper work should rest on it. Great care must be taken to form the abutmeat, which must be above the top course of the footings of the giers.

ARCRES.

In constructing arches of wide spans, an important factor of safety is the thickness of the material from the intaiados to the extrados, especially at the crosin or keystone. Several rules for determining the depth of the keystone lave been devised, but there is a very wide difference between them. Prof. Rankine's rule, however, seems to answer for most purposes: "Take the mean proportional between the inside radius at the crown and 0.12 of a foot ior a single arch, and 0.17 of a foot for an arch forming one of a series.

Formulæ:
Depth of keystone for single arch in feet $=\sqrt{ }$ (o $\sqrt{12 \times r a c i u s}$ at crown.
Depth of keystone 'or an arch of a series in feet $=\overline{(0.17 \times \text { radius at crown.) }}$

LAMINATION IN STONE.

All sandstones may be grouped in three ways: (i) those that are very hard, very compact, very fine in grain, and generally speaking of a pale color ; (2) those that are durable but costly ; (3) those that are hard and laminated. That is the character that belongs to almost all rocks that have been found in water, but in some it shows itself more markedly than in others. In stones that are completely laminated thee appearance is like sheets of paper placed one over the other, and you can almost separate them. Trese stones are easily perishable. There are, however, laminated stones of good quality. These are generally not of fine grain, although they maty be so. They are most frequently of a mixed grain marle up of particles of sand and small pebbles of different sizes. Very often they have reddish ints of color owing to the presence of iron, and they are often very irregular in their character. There are some soft stones which are laminated and generally red, but soft and bad. These are the three kinds of sand stones. They are subject to decay in this way: First, from lamination. Having been formed in water, they have been deposited in beds one over the other and nover become entirely free from water, and when exposed to the air are liable to give of the water by evaporation and take it again by absorption winen rain comes or when the air is damp. After this if a change of temperature follows and a severe cold sets in, the temperature of the stone passing below the point of the extreme density of water, the water begins to expand. Then again, water contains foreign substances floating in the atmosphere which are soluble in water. These substances include a large number of gases; acid gases for the most part, but some others. For example, they include carbonic acid gas, and carbonic at id dissolves in water; they include also sulphuric acid, and this is taken up $b ;$ the water ; also sulphate of ammonia, all these substances being produced in the atmosphere of large towns. These substances entering into the body of the stone begin to act upon the cementing medium. If the cementing medium is easily acted upon chemically by these substances, it is, of course, very soon removed. I! it is not easily affected by them, then the stone remains unaltered ; but generally speaking, it is the case that sandstones that have either lime or clay as their cementing medium are more or less affected by foreign substances entering into them through the atmosphere. There is then a cause of decay in the sandstones, and the sandstones, when they are very absorbent, generally become readily disintegrated in this manner.

TABLE SHOWING PERMISSIBLE LOADS UPON VARIOUS KINDS OF FOUNDATION BEDS, PER SQUARE FOOT.

Abstract

Rock foundations, 4,000 to $40,000 \mathrm{lbs}$., aver. $20,000 \mathrm{lbs}$. Coarse gravel and sand 2,500 to 3,500 lbs. Clay. 4,000 lbs. Concrete. 8,000 Ibs. liles in artificial soil, for each pile 4,000 lbs. Piles in firm soil, for each pile. 30,000 to 140,000 lbs.

THICKNESS OF WALLS IN DWELLING HOUSES-BRICK.

e very hard, e color ; (2) ated. That nd in water, pes that are one over the perishable. enerally not - of a mixed sizes. Vely and they are s which are ee kinds of lamination. ne over the d to the air absorption temperature g below the Then again, are soluble ases for the id gas, and and this is ances being ing into the cementing , of course, ne remains have eitlier by foreign e is then re very ab-

Height up to 100 feet.	Length up to 45 feet. Two stories $21 / 2 \mathrm{in}$. Three " $17 \frac{1}{2} \mathrm{in}$. Remainder 13 in.	Length up to 80 feet. Two stories 26 in . $\begin{array}{cc}" 1 & 211 / 2 \mathrm{in} . \\ \text { " } & 171 / 2 \mathrm{in} . \\ \text { Remainder } \\ 13 & \mathrm{in} .\end{array}$	Lergth unlimited. One story 30 in. Two stories 26 in. " Remainder $177^{1 / 2} \mathrm{in}$. in.
Height up to 90 feet.	Length up to 45 feet. Two stories $21 / 2 \mathrm{in}$. $\begin{array}{ll} \\ \text { Remainder } & 171 / 2 \mathrm{in} \mathrm{in} .\end{array}$	Length up to 70 feet. One story 26 in. Two stories $21 / 2 \mathrm{in}$. $\begin{array}{ll}\text { Remainder } & 171 / 2 \\ & \mathrm{in} \\ \mathrm{in} .\end{array}$	Length unlimited. One story 30 in. Two stories 26 in. One story $211 / 2 \mathrm{in}$. Two stories $171 / 2 \mathrm{in}$. Remainder 13 in.
Height up to 80 feet.	Length up to 40 fect. One story $211 / 2 \mathrm{in}$. Two stories $271 / 2 \mathrm{in}$. Remainder 13 in.	Length up to to feet. Two stories $21 / 2 \mathrm{in}$. 	Length unlimited. One story 26 in . Two stories $21 / 1 / 2 \mathrm{in}$. Remainder $171 / 2 \mathrm{in}$. Remainder 13 in.
Height up to 70	Length up to to feet. Two stories $171 / 2 \mathrm{in}$. Remainder 13 in .	Length up to 55 feet. One stoly $211 / 2 \mathrm{in}$. Two stories $171 / 2 \mathrm{in}$. Remainder 13 in .	Length unlimited. One story 26 in. Two stories $211 / 2 \mathrm{in}$. One story 17 in. Remainder 13 in.
Height up to 60 feet.	Length up to 3) feet. One story $17 \frac{1}{2}$ in. Remainder 13 in .	Length up to 50 feet. Two stories 17% in. Remander 13 in .	Length unlimited. One story $211 / 2 \mathrm{in}$. Two strries $171 / 2 \mathrm{in}$. Remainder 13 in .
Height up to feet.	Length up to 30 feet. Wall below the top story 13 in . $\begin{array}{ll}\text { Top story } & 83 / 2 \mathrm{in} . \\ 81 / 2\end{array}$ Remainder $81 / 2 \mathrm{in}$.	Length up to 45 feet. One story $171 / 2 \mathrm{in}$. Rest of wall below top story 13 in . Top story $81 / 2 \mathrm{in}$. Remainder $81 / 2 \mathrm{in}$.	Length unlimited. One story $21 / \frac{1}{2} \mathrm{in}$. Remainder 13 i/2 in.

TABLE SHOWING NUMBER OF BRICKS IN WALLS OF VARIOUS THICKNESSES.

Superficies of wall.	THICKNESS OF WALLS.									
	$\begin{aligned} & 4 \frac{1}{2} \text { in. or } \\ & \text { 1/2 brick } \end{aligned}$	$\left\lvert\, \begin{array}{lll} 9 & \mathrm{in} . \text { or } \\ \mathrm{I} \text { brick } & \mathrm{in} 2 \mathrm{in} . \text { or } \\ \mathrm{I} \frac{1}{2} \text { brick } \end{array}\right.$					$33^{\mathrm{in} . \text { or }} 35 \mathrm{in}$. or 39 mn . or $3 \frac{1}{2}$ brick 4 brick $4 \frac{1}{2}$ brick			$\begin{array}{r} 44 \text { in. or } \\ 5 \text { brick } \end{array}$
ft in.										
0.6	31 ${ }^{\frac{1}{2}}$	7	$10 \frac{1}{2}$	14	$17 \frac{1}{2}$	21	24: $\frac{1}{2}$	28	312	35
1.0	7	14	21	28	35	42	49	56	63	70
1.6	$10 \frac{1}{2}$	21	$31 \frac{1}{2}$	42	521	63	$73 \frac{1}{2}$	84	$94 \frac{1}{2}$	105
2.0	14	28	42	56	70	84	98	112	126	140
2.6	$17 \frac{1}{2}$	35	$52 \frac{1}{2}$	70	871	105	$122 \frac{1}{2}$	140	$157 \frac{1}{2}$	175
3.0	2 I	42	63	84	105	126	147	168	189	210
3.6	24 $\frac{1}{2}$	49	732	98	$122 \frac{1}{2}$	147	$171 \frac{1}{2}$	196	$220 \frac{1}{2}$	245
4.0	28	56	84	112	140	168	196	224	252	280
4.6	$31 \frac{1}{2}$	63	942	126	$157 \frac{1}{2}$	189	$220 \frac{1}{2}$	252	$283 \frac{1}{2}$	315
5.0	35	70	105	140	175	210	245	280	315	350
5.6	$38 \frac{1}{2}$	77	$115 \frac{1}{2}$	15 f	$192 \frac{1}{2}$	231	$269 \frac{1}{2}$	308	$346 \frac{1}{2}$	385
6.0	42	84	126	168	210	252	294	336	378	420
6.6	$45^{\frac{1}{2}}$	91	$136 \frac{1}{2}$	182	227 $\frac{1}{2}$	273	$318 \frac{1}{2}$	364	$409 \frac{1}{2}$	455
7.0	49	98	147	196	245	294	343	392	441	490
7.6	$52 \frac{1}{2}$	105	$157 \frac{1}{2}$	210	$262 \frac{1}{2}$	315	$367 \frac{1}{2}$	420	$472 \frac{1}{2}$	525
8.0	56	112	168	224	280	336	392	448	504	560
8.6	$59 \frac{1}{2}$	119	178.	238	$297 \frac{1}{2}$	357	$416 \frac{1}{2}$	476	$535 \frac{1}{2}$	595
9.0	63	126	189	252	315	378	44 I	504	567	630
9.6	$66 \frac{1}{2}$	133	$199 \frac{1}{2}$	266	$332 \frac{1}{2}$	399	$465 \frac{1}{2}$	532	$598 \frac{1}{2}$	665
10.0	70	40	210	280	350	420	490	550	630	700
15.0	105	210	315	420	525	630	735	840	945	1050
23.0	140	280	420	560	700	840	980	1120	1260	1400
30.0	210	0	630	840	1050	1260	1470	1680	1890	2100
40.0	280	560	840	1120	1400	1680	1960	2240	2520	2800
50.0	350	700	1050	1400	1750	2100	2450	2800	3150	3500
60.0	420	840	1260	1680	2 ioo	2520	2940	3360	3780	4200
70.0	490	980	1470	1960	2450	2940	3430	3920	4410	4900
80.0	560	1120	1680	2240	2800	3360	3920	4480	5040	5600
90.0	630	1260	1890	2520	3150	3780	4410	5040	5670	6300
100.0	700	1400	2100	2800	3500	4200	4900	5600	6300	7000
200.0	1400	2800	4200	5600	7000	8400	9800	11200	12600	14000
300.0	2100	4200	6300	8400	10500	12600	14700	16800	18900	21000
400.0	2800	5600	8400	11200	14000	16800	19600	22400	25200	28000
500.0	3500	7000	10500	14000	17500	21000	24.500	28000	31500	35000
600.0	4200	8400	12600	16800	21000	25200	29400	33600	37800	42000
700.0	4900	9800	14700	19600	24500	29400	34300	39200	44100	49000
800.0	5600	11200	16800	22400	28000	33600	39200	44800	50400	56000
900.0	6300	12600	18900	25200	31500	37800	44100	50400	56700	63000
1000.017	7000 I	14000	21000	28000	35000	42000	49000	56000	13000	70000

TABLE OF KEYSTONES FOR ARCHES OF FIRST-CLASS CUT STONE.

(From Trautzine's C. E. Handbook.)

For second-class cut stone add about one-eighth part. For good rubble or brick add about one-fourth part.

$\begin{aligned} & \text { Span } \\ & \text { in } \\ & \text { feet. } \end{aligned}$	RISE IN PARTS OF THE SPAN.						
	1/2	1/3	1/4	1/5	1/6	1/8	1/10
2	Key ft. 0.55	$\begin{gathered} \text { Key ft. } \\ 0.56 \end{gathered}$	Key ft. o. 58	Key ft. 0.60	Key ft. 0.6 I	Key ft. 0.64	Key ft. 0.68
2	0.55 0.70	0.56 0.72	0.74	0.76	0.79	0.83	0.88
6	081	0.83	0.86	0.89	0.92	0.97	1.03
8	0.91	0.93	0.96	1.00	1.03	1.09	I. 16
10	0.99	I.OI	1.04	1.07	1.11	1.18	1.26
15	I. 17	I. 19	1.22	1.26	1.30	1.40	1.50
20	I. 32	I. 35	1.38	1.43	1.48	1.59	1.70
25	I. 45	1.48	1.53	1.58	1.64	1.76	1.88
30	I. 57	1.60	1.65	1.71	1.78	1.91	2.04
35.	1.68	1.70	1.76	1.83	1.90	2.04	2.19
40	1.78	1.81	1.88	1.95	2.03	2.18	2.33
50	1.97	2.00	2.08	2.16	2.25	2.41	2.58
60	2.14	2.18	2.26	2.35	2.44	2.62	2.80
80	2.44	2.49	2.58	2.68	2.78	2.98	3.18
100	2.70	2.75	2.86	2.97	3.09	3.32	3.55
120	2.94	2.99	3.10	3.22	3.35	3.61	3.88
140	3.16	3.21	3.33	3.46	3.60	287	4.15
160	3.36	3.44	3.58	3.72	3.87	4.17	
180	3.56	3.63	3.75	3.90	4.06	4.38	
200	3.74	3.81	3.95	4.12	4.29		
220	3.91	4.00	4.13	4.30	4.48		
240	4.07	4. 15	4.30	4.48			
260	4.23	4.31	4.47	4.66			
280	4.38	4.46	4.63				
300	4.53	4.62	4.80				

CRUSHING STRENGTH OF BRICKWORK.

-[F. E. Kidder.]

Piers, uniform size, $8^{\prime \prime} \times 12^{\prime \prime} \times 22^{1 / 2 \prime}$ high, common mortar, good average quality, Cement, pare Portland, $1 / 2$ inch thick under and on top of each pier. Age of piers, 4 months 26 days, exposed to air only, not in water.

COMPOSITION OF MORTAR, ETC.

Lime mortar, plain.
Lime mortar 3 parts, Rosendale cement, i part
Lime mortar 3 parts, Roman cement I part.
Portland cement I part, sand 2 parts........
Newark and Rosendale cement I part, sand 2 parts.
Roman cement I part, sand 2 parts...........

lbs.
150,000
245,000
195,000
240,000
205,000
185,000

lbs.	lbs.	tons.
1,562	833	59
2,552	I,354	97
2,030	I,O4I	75
2,500	1,302	93
2, I 35	708	51
I,927	1,770	127

Maximum crushing weight of walls built of :;ood hard burned bricks laid in good lime and sand mortar, per sq. inch

> 1,500 lbs.

Maximum crushing weight of walls built of good hard burned bricks laid in good lime and sand mortar, per sq. foot. $216,000 \mathrm{llbs}$.
Maximum crushing wetght of walls built of best hard bricks in Portland cement mortar, $1 / 3$ cement, per sq. inch. $2,500 \mathrm{lbs}$. Maximum crushing weight of walls built of best hard bricks in Portland cement mortar, $1 / 3$ cement, per sq. foot.............. $360,000 \mathrm{lbs}$.
Results of from 30 per cent. to 50 per cent. lower have been obtained by previous competent authorities.

Bricks used for the Indiana Statehouse (F. W. Vogdes' Sup.) specimens having been rubbed to parallel faces and averaging $4^{\prime \prime} \times 8^{\prime \prime} \times 21 / 8^{\prime \prime}=32^{\prime \prime}$ sup., were tested separately without mortar and bore a pressure of 55 tons before yielding, crushing under 80 tons; this was the lowest grade admitted, the pressure being equal to $5,600 \mathrm{lbs}$. per square inch. Of the specimens tested, the results varied from crushing under 40 tons to remaining uninjured while bearing a pressure of $971 / 2$ tons (equal to $6,825 \mathrm{lbs}$. per scq. in.) for 15 minutes. Of Philadelphia facebrick (best) used in Municipal Buildings, Philadelphia, the tests gave for one specimen $15,240 \mathrm{lbs}$. per square inch and another $10,240 \mathrm{lbs}$. per square inch.
[Vogdes' "Pocket Companion."]

TO PREDETERMINE EFFLORESCENCE ON BRICKWORK.

It is possible to determine in advance of their use whether bricks will effloresce. Knowing this, architects and builders should permit the use of none that will not stand the test. At the Royal testing station of building material in Berlin bricks are gradually heated to the boiling point in a water bath and are then suddenly immersed in cold water. They are boiled for one hour in a 15 per cent. solution of common salt and frequently cooled as before. They are again boiled half an hour in 5 per cent. soda lye. They are further boiled half an hour in the same solution with the addition of i per cent. of ammonirm sulphate. They are then boiled half an hour in a solution containing 2 per cent. blue vitriol and io per cent. common salt. Fragments of the brick are placed for 75 hours in 3 per cent. hydrochloric acid, and for 50 hours more in 5 per cent. hydrochloric acid. By further treatment of the fragments with pure 4 per cent. hydrochloric acid a fluid clear as water is formed, wiich when treated with barium salts should not show the presence of sulphates, which are the cause of efforescence. These tests determine the quality of the bricks as well, and none which fail to stand the test should be used. It may be only necessary to test a few samples of brick from each brick yard when the general quality of the clay from which the bricks are made will be ascertained.

Table Showing Diameter and Height of Chimney for any Boiler.
(Kidder's Hand Book.)

Horse power of boiler.	Height of chinmey in feet.	Interior diameter at top.	Horse power of boiler.	Height of chimney in feet.	Interior diameter at top.
10	60	14 inches.	70	120	30 inches.
12	75	14 "	80	120	34 "
-16	90	16 "	120	135	38 "1
- 20	99	17 "	160	150	43 "
30	105	$21 \quad 11$	200	165	47 11
50	120	26 "	250	180	52 "
60	120	27 "	380	195	57 "

GENERAL RULES FOR BRICK CHIMNEYS.
(Molesworth.)
The diameter at the base should be not less than one-tenth of the height. Batter of chimneys 0.3 inch to the foot.
Thickness of Brickwork :
One brick, from top to 25 feet from top.
Brick and a half, from 25 feet from top to 50 feet from top.
Increase thickness by balf a brick for each 25 feet from top.
If the inside diameter at top exceeds 4 feet 6 inches the top length should be a brick and a half.
Area of Chimneys:
$\mathrm{Q}=$ Quantity of coal consumed per hour in lbs.
$\mathrm{H}=$ Height of chimney in feet.
$\mathrm{P}=$ Indicated horse power of engine.
$A=$ Area of chimney at top in square inches.

$$
A=\frac{15 Q}{\sqrt{H}}=\frac{150 P}{\sqrt{H}}
$$

The area for entrance of air to ash pit should be $1 / 4$ the area of grate, 2 feet 6 inches is sufficient depth. The grate bars inclining downwards i in. per foot, not more than $3 / 4 \mathrm{in}$. thick and $3 / 8$ to $1 / 2 \mathrm{in}$. spaces between. The furnace should have 3 cubic feet of space above each superficial foot of grate bar surface.
[7ones \&o Laughlin.]
TABLE OF SAFE LOADS,
UNIFORMLY DISTRIBUTED, FOR WHITE PINE BEAMS, SUPPORTED AT BOTH ENDS IN TONS OF 2,000 POUNDS.

BEAMS 6 INCHES DEEP.					BEAMS 7 INCHES DEEP.					
Clear span in feet.	Breadth.				Clear span in feet.	Breadth.				
	3 in .	4 in.	5 in .	6 in.		3 in.	4 in .	5 in.	6 in.	7 in.
2	3.	4.	5.	6.	2	4. I	5.4	6.8	8.2	9.5
3	2.	2.7	3.3	4.	3	2.7	3.6	4.5	5.4	6.3
4	1. 5	2.	2.5	3.	4	2.1	2.7	3.4	4. I	4.6
5	I. 2	I. 6	2.	2.4	5	1.6	2.2	2.7	3.2	3.8
6	1.	I. 3	т. 6	2.	6	I. 4	1.8	2.2	2.7	3.1
7	. 84	I. 1	I. 4	1.7	7	1.2	1.5	1.9	2.3	2.7
8	. 73	. 98	1.2	I. 5	δ	1.	1.3	1.7	2.	2.3
9	. 64	. 86	I. 1	I. 3	9	. 88	I. 2	I. 5	1.8	2.1
10	.58	. 77	. 96	I. 2	13	. 79	I.I	1.3	I. 6	I. 8
11	. 52	. 7	. 87	I.I	II	. 7	. 93	I. 2	1.4	I. 6
12	. 49	. 63	. 79	. 95	12	. 65	. 86	I. I	I. 3	I. 5
14	- 39	. 53	. 66	. 79	14	.55	.73	.91	I. 1	I. 3
16	. 34	. 46	. 56	. 68	16	. 47	. 62	. 78	. 94	I. 1
18	. 28	. 4	. 49	. 59	18	. 41	.54	. 67	. 82	. 95

$\begin{aligned} & \text { 吉苞 } \\ & \text { E. } \\ & \text { H. } \end{aligned}$	Dimensions of Cross-Sections in Ins. Safe load in tons of 2000 lbs .							
	4×5	4×t\|	4×7	4×8	4×1	4×10	x	I
6	4.1	5.0	5.8	6.6	7.4	8.3	9.1	9.9
7	38		3.3	6.0	6.8	7.5	8.3	9.0
8	3.5		4.9	5.6	C. 8	7.8	7.7	8.4
3	3.2	3.9	4.6	5.2	5.9	6.5	7.2	7.8
10	2.9	3.5	4.0	4.6	\$. 2	5.8	0.3	6.9
11	2.6	3.2	8.7	4.2	4.7	5.13	5.8	6.3
13	9.4	2.2	3.3	3.8	4.3	4.7	5.2	5.7
13	2.0	2.4	2.8	3.2	3.6	4.0	4.4	4.8
14	1.8	2.1	2.3	2.8	3.2	3.5	3.9	4.3
15	1.4	1.7	1.9	2.2	2.5	2.8	3.0	3.3
16	1.1	1.4	1.6	1.8	2.0	2.3	2.5	2.7
17	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4
18	0.9	1.1	1.2	1.4	1.6	1.8	1.8	2.1

Strengin of Whitr Ping Stbuts on Pillaits. Continued.							
	Dimensions of Cross-Sections in Ins. Safe load in tons of 2000 lbu .						
	7×5	\times	$\times{ }^{7}{ }^{7} \times$	7×9	$\times 10$	$\times 11$	7×12
10	7.7	3.2	$\overline{10.8} 12.3$	13.9	15.4	16.9	18.4
11	7.2	8.6	10.111 .5	13.0	14.4	15.8	17.2
12	6.8	8.0	9.510 .9	12.2	13.6	15.0	16.0
13	6.5	7.7	9.010 .3	11.6	13.0	14.2	15.4
14	6.2	7.4	8.689	11.1	12.4	13.5	14.8
15	5.9	7.0	8.29 .4	10.5	11.8	12. ${ }^{\text {d }}$	14.0
16	5.6	10.7	7.8 8.9	10.0	11.2	12.2	13.4
17	5.3	6.4	$\begin{array}{ll}7.4 & 8.5\end{array}$	9.5	10.6	11.7	± 2.8
18	5.1	6.0	7.08	9.0	10.0	11.0	12.0
19	4.7	. 6	6.6	8.5	9.4	10.3	11.2
20	4.4	2	6.17 .0	1.8	8.8	9.6	10.4
21	4.1	4.9	5.76	7.3	8.2	8.9	9.8
22	3.8	18	$5.3 \mid 6.1$	0.8		8.4	0.2
	Dimensions of Cross-Sections in Ins. Safe load in tons of 2000 lbs .						
	$\times 5$	8×6	$\times 18$	8×9	<1	$\times 11$	$\times 12$
10	9.6	11.5	13.415 .3	17.2	19.2	21.0	23.0
11	9.0	10.8	12.6 14.4	16.2	18.0	19.8	21.6
12	8.5	10.2	11.913 .6	15.3	17.0	18.7	20.4
13	8.1		11.313 .9	14.5	10.2	17.7	19.4
14	7.7		10.812 .3	13.9	15.4	16.9	18.4
15	7.8		10.211 .7	13.1	14.6	16.1	17.6
16	7.0		0.811 .2	12.6	14.0	15.4	16.8
17	6.8		9.410 .7	12.1	13.4	14.7	16.0
18	6.2	7.7	$\begin{array}{lll}9.0 & 10.2\end{array}$	11.5	12.8	14.1	15.4
19	6.1	7.4	8.509 .7	10.9	12.2	13.3	14.8
20	5.8	7.0	8.19 .3	10.4	11.6	12.8	14.0
21	5.8	6.6	7.7 8.8	9.9	11.0	12.1	13.2
22	5.3	6.3	$7.41 \cdot 8.4$	9.5	10.6	11.0	12.6

Strength of White Pine Strues oh Pillars. Continued.							
	Dimensions of Cross-Sections in Ins. Safe load in tons of 2000 lbs .						
	11×6	$\times 7$	IX	11×1	11×10	1 $\times 1$	11×12
12	18.0	21.0	24.0	27.0	30.0	88.0	
13	16.9	19.7	24.6	25.4	${ }^{4} 82$	31.0	8
14	11.0	iR 7	9 l	24.0	26.8	93.4	32.0
15	15.4		20.4	23.0	25.6	48.1	60.8
16	14.7.		19.6	22.0	24.6	26.9	29.4
17	14.2		18.8	21.2	23.6	25.9	28.4
18	13.8	15.8	18.0	20.3	22.6	24.9	27.0
19	13.0	17.2	17.4	19.5	21.8	23.9	26.0
20	12.5	14.6	15.8	18.8	21.0	23.0	25.0
21	12.0	14.0	16.0	18.0	20.0	22.0	24.0
22	11.6	13.5	15.1	17.4	19.4	21.2	23.2 .
23	11.2	13.0	14.8	16.7	18.6	20.5	
24	10.8			10.	180		
	Dimensions of Crosa-Sections in Ins. Safe load in tons of 2000 lbs .						
	$\overline{12 \times 6}$	x 7	2. $2 \times$	2×19	12×10	12×11	12×12
12	21.0	24.5	28.0	31.5	35.0	38.5	12.0
13	19.9	29.2	26.4	29.8	33.2	56.4	39.7
14	18.8	21.0	25.1	28.1	31.4	34.4	3.6
15	17.9	20.9	23.8	28.8	29.8	32.8	3
15	17.1	20.0	22.8	25.7	28.6	31.4	34.2
17	16.4	19.1	21.8	24.6	47.4	31.0	32.7
18	15.7	18.3	21.0	21.6	20.2	28.8	31.2
19	15.1	17.6	20.2	22.7	25.2	27.7	30.2
20	14.6	17.0	19.4	21.9	24.4	28.7	29.2
21	14.1	16.5	188	21.2	23.6	25.8.	28.2
22	13.1	15.9	18.2	20.5	28.8	25.0	27.8
23	13.1	15.3	17.4	19.6	21.8	24.0	26.2
24	12.	14.7	116.8	180	21.0	981	28.2

TABLE OF BOARD MEASURE．

Explanation．－The length of the board is given，in feet，in the left－ hand column ；the width is given，in inches，in the upper row of figures；and the contents are given under the width，and opposite the length．Thus，the contents of a board 13 feet long and 7 inches wide will be found under 7，and opposite 13 ， and is 7 feet 7 inches．

	Length， in feet．	
 	a	录
 	v	
$\infty 0+\infty 0+\infty 0+\infty 0+\infty 0+\infty 0+\infty 0+\infty 0+\infty 0+\infty 0+\infty$ 系	∞	
 	\cdots	
 	－	
 	Ξ	
	N	
 	む	
 	$\stackrel{\square}{\text { a }}$	

TABLE OF BOARD MEASURE-'Continued.)
the left. ; and the contents posite I3,

Floors for Dancing must be springy and elastic ; joists may be 18 inches apart or even more ; the boards should be in narrew widths, of pine, well beeswaxed, and should follow as much as possible the round of the room. Allow 1 cwt . per foot superficial as safe load.

RULE FOR COMPUTING THE NUMBER OF SLATES IN A SQUARE.

Subtract three inches, or the amount of head-cover, from the length of the slate, multiply the remainder by the width, and divide by two. This will give the number of square inches covered per slate; divide 14,400 (the number of square inches in a square) by the number so found, and the result will be the number of slates required.

The following table gives the number of slates per square for the usual sizes, allowing three inches for head-cover :-

Number of Slates per Souare.

Size, in inches.	Pieces per square.	Size, in inches.	Pieces per square.	Size, in inches.	Pieces per square.
$6 \times \times 12$	533	8×16	277	12×20	141
7×12	457	9×16	246	14×20	121
$8 \times \times 12$	400	10×16	221	11×22	137
9×12	355	9×18	213	12×22	126
7×14	374	10×18	192	14×22	108
$8 \times \times 14$	327	12×18	160	12×24	118
9×14	291	10×20	169	14×24	94
$10 \times \times 14$	261	11×20	154	16×24	86

The weight of slate per cubic foot is about 174 pounds, or, per square foct ol various thicknesses, as follows :-

Thickness, in inches.	1-8	$3-16$	$\mathrm{I}-4$	3.8	$\mathrm{I}-2$
Weight, in pounds...	I .8 I	2.71	3.62	5.43	7.25

The weight of slating laid per square foot of surface covered will, of course, depend on the size used. The weight of 10 by 18 slate, three-sixteenths of an inch thick, for example, per square foot of roof, would be 5.86 pounds.

An experienced roofer will lay, on an average, two squares of slate in ten hours.
Orủinary roofing-paper weighs about fifteen pounds per square, and averages about fifty pounds in a roll.

At the present time the additional cost of laying slate in elastic cement varies from thirteen to fifteen per cent.

SHINGLES.

The average width of a shingle is four inches : hence, when shingles are laid four inches to the weather, each slingle averages sixteen square inches, and 900 are required for a square of roofing.

If $41 / 2$ inches to the weather, 800 will cover a square.

5	$"$	$"$	$"$	720	$"$	$"$
$51 / 2$	$"$	$"$	$"$	655	$"$	$"$
6	$"$	$"$	600	$"$	$"$	

This is for common gable-roofs. In hip-roofs, where the shingles are cut more or less to fit the roof, add five per cent. to above figures.

A carpenter will carry up and lay on the roof from fifteen hundred to two thousand shingles par day, or two squares to two squares and a half of plain gable-roofing.

One thousand shingles laid four inches to the weather will require five pounds of shingle-nails to fasten them on. Six pounds of fourpenny nails will lay one thousand split pine shingles.

TES

gth of the 5 will give number of vill be the usual sizes,

CRUSHING AND TENSILE STRENGTH, IN LBS., PER SQ. INCH OF NATURAL AND ARTIFICIAL STONES.

DESCRIPTION.	Weight per Cubic ft., in lbs.	Crushing Force. Lbs. per sq. inch.
Aberdeen Blue Granite	164	8,400 to 10,914
Quincy Granite.	166	15,300
Freestone, Belleville		3,522
Freestone, Caen.		1,088
Freestone, Connecticut.		3,319
Sandstone, Acquia Creek, used for Capitol Washington		5,340
Limestone, Magnesian, Grafton, Ill.		17,000
Marble, Hastings, N. Y		18,941
Marble, Italian.		12,624
Marbie, Stockbridge, City Hall, N. Y		10,382
Marble, Statuary		3.216
Marble, Veined.	165	9,681
Slate.		9,300
Brick, Red.	135.5	808
Brick, Pale Red	130.3	562
Brick, Common.		800 to 4,000
Srick, Machine Pressed.		6,222 to 14,216
Brick, Stock		2,177
Brick-work, set in Cement, bricks not very hard.		${ }_{521}^{51}$
Brick, Masonry, Commen.		500 to 800
Cement, Portland.		1,000 to 8,300
Cement, Portland, Cement i, Sand i		1,280
Cement, Roman.		342
Miortar.		120 to 240
「rown Glass		31,000
		tension.
Portland Cement.		427 to 711
Portland Cement, with Sand		92 to 284
Class, Plate.		9,420
Mortar.		50
Plaster of Paris		72
Slate. .		11,000

PROPERTIES OF TIMBER.

DESERIPTION.	Weight per Cubic Foot in lbs.	Weight per foot B. M. in lbs., average.	Tensile strengta per sq. in., in lbs.	Crusning strength per sq. inch, in lbs.	Relative strength for cross breaking White Pine=100.	Shearing strength with the grain, lbs. . per sq. inch.	Pressure in lbs. per sq. inch, to indent $\mathbf{1 - 2 0}$
Ash.......	43 to 55.8	4.1	11,000 to 17,207	4,400 to 9,363	120 to 180	45^{8} to 700	1,800 to 1,850
Beech.	43 to 53.4	3.9	11,500 to 18,000	5,800 to 9,363	100 to 104		
Cedar.	50 to 56.8	$4 \cdot 5$	10,300 to 11,400	5,600 to 6,000	55 to 63		
Cherry					130		
Chestnut	33	2.75	10,500	5,350 to 5,600	96 to 123	
Elm ${ }^{\text {- }}$	34 to 36.7	2.9	13,400 to 13,489	6,831 :0 10,331	96		
Hemlock			8,700	5,700	88 to 95		
Hickory			12,800 t0 18,000	8,925	150 to 210		
Locust. .	44	3.7	20.500 to 24,800	9, II3 to II,700	132 to 227		
Maple	49	4. 1	10,500 to 10,584	8,150	122 to 220	367 to 647	1,700 to 1,900
Oak, White	45 to 545	4.1	10,253 to 19,500	4,684 to 9,509	130 to 177	752 t0 9б́	2,300 to 3,550
Oak, Live	70	5.8		6,850	155 to 189		
Pine, White....	30	2.5	10,000 10 12,000	5,000 to 6,650	100	225 to 423	875 to 1,160
Pine, Yellow.	28.8 to 33	2.6	12,600 to 19,200	5,400 to 9,500	98 to 170	286 to 415	1,900
Spruce.			10,000 to 19,500	5,050 to 7,850	86 to 110	253 to 374	875 to 1,025
Walzut, Black.	42	3.5	9,286 to 16,000	7,500			2,200 to 2,600

T
tilled
inch

AVOIRDUPOIS WEIGHT.

The standard avoirdupois pound is the weight of 27.7015 cubic inches of distilled water, weighed in the air, at 39.83 degrees Fahr., barometer at thirty inches.

A drachm $=27.343$ grains.
A stone $=14$ pounds.
A quintal $=100$ kilogrammes.
7000 frains $=1$ avorr. pound $=1.21528$ troy pounds. 5760 grains $=1$ troy pound $=.82285$ avoir. pound.

Kilos p. sq. centim. $\times 14.22=$ pounds p. sq. inch. Pounds p. sq. inch $\times .0703=$ Kilos p. sq. centim.

FRENCH WEIGHTS.

EQUIVALENT TO AVOIRDUPOIS

	Grains.	Ounces.	Pounds.
Milligramme	. 015433		
Centigramme. .	. 154331	. 000352	.000022
Decigramme	1.54331	.003527	.000220
Gramme . . .	15.4331	. 035275	.002204
Decogramme.	154.331	. 352758	. 0222047
Hectogramme.	1543.31	3.52758	. 2220473
Kilogramme. .	15433.1	35.2750	2.20473
Myriogramme.		${ }_{352.758}$	$\begin{array}{r} 22.0473 \\ 220.473 \end{array}$
Quintal. .		3527.58 35275.8	2204.73
Millier or Tonne		35275.8	2204.,3

AVOIRDUPOIS WEIGHT．

（Canadian．）
$271 / 3$ grains ．．．．．．．．$=$ I drachm $=27.34375$ giains．
16 drachms ．．．．．．．．$=1$ ounce $=437.5$ grains．
16 ounces．．．．．．．．．．．$=$ I pound $=7000$ grains．
25 pounds ．．．．．．．．．．．$=$ I quarter．
4 quarters．．．．．．．．．．$=$ I hundredweight．
zo hundredweight．．．．$=$ I ton or 2000 lbs．
CIRCLES．
The diameter of a circle is 0.31831 times the circumference．
The circumference is .31416 times the diameter．
The diameter multiplied by 0.8862 equals the side of a square of the same area．

The inside of a square +1.128 equals the diameter of a circle of the same area．

WEIGHT OF VARIOUS LOADS ON ROOFS． ioo ft．Span or less．			
Covered with corrugated iron：－			
Laid on purlins．	$=8 \mathrm{lbs}$. per sq．ft．		
Covered with slate ：－			
Laid on parlins．	13		1
boards	$=16$		＂
Covered with shingles or laths．	$=10$		＂
If plastered below ．．．．．．．．．．．．．．add	10	＂	＂
For iron construction ．．．．．．．．．．．．add	4		＂
For snow and vertical component of wind force．．．．．．．．．．．．．．．．．．．．．．．．．．add	30	＂	＂

SAFE HEIGHT OF PILLARS OF STONE OR BRICK．

No pillar or support of brick or stone should，as a rule，exceed in height 12 times its least thickness at the base．When longer there is a considerable fall－ ing off in strength．A height of 24 times the thickness reduces the strength from to to 7 ．When increased to 30 times the strength is reduced one－half，and when increased to 40 times the strength is reduced to one－third．

TEST OF WHITE PINE．

The strength of white pine varies widely in different samples．Some careful tests made recently by J．W．Woodman，Building Inspector，Minneapolis，gave the following results，all but two samples being taken from different boards and from different trees．Thirteen pieces $\mathrm{I}^{\prime \prime} \times 1^{\prime \prime}, 12^{\prime \prime}$ between bearings and loaded at centre，broke as follows ：

> 1. 420 lbs .
> 5. 610 lbs .
> 9. 295 Ibs.
> 2. 580 "
> 6. 530 "
> 10. 540 "
> 3. 430 "
> 7. 395 11
> 11. 270 i"
> 4. 465 11
> 8. 280 "
> 12. 420 "
> 13. $210 \quad 11$

SQUARE OR SURFACE MEASURE.
Inches. Feet. Yards. Poles. Chains. Roods.

Square foot	144	1				
Square yard	1,296	9	1			
Rod, pole or persh..	39,204	$2721 / 4$	$301 / 4$	1		
Square chain.	627,264	4,356	484	16	1	
Rood .	1,568,160	10,800	1,210	40	21/2	I
Acre.	6,272,640	43,560	4,840	160	10	4

I square mile $=640$ acres $=2560$ roods $=6400$ chains
$=102,400$ rods (poies or perches)
$==3,097^{\prime} 600$ square yards.
1 square acre $=209$ teet (nearly) or $123 / 4$ rods on each side.

CUBIC OR SCLID MEASUKE.
1728 cubic inches............................ I cubic foot. 27 cubic feet I cubic yard. 40 " of rough timber $\}$.......... I ton or load. 50 " of hewn timber 42 " of timber................... , shipping ton. ı08 " i stack of wood. 128 " $4 \times 4 \times 8 \ldots$. . 1 cord of wood. 40 " merchandise I ton shipping.

MEASURES OF LENGTH.

Inches. Feet. Yards. Poles. Chairs. Furlongs.
height 12 erable falle strength e-half, and
ne careful oolis, gave oards and loaded at

WEIGHT OF WATER.
I cubic foot of water. $=64.425 \mathrm{lbs}$.
1 cubic inch of water............... $=.03612 \mathrm{lbs}$.
I gailon. $=10$ lbs.
I $\mathbf{c w t} .=1.8$ cubic fect $=1 \mathbf{1} .2$ gallons.
I ton $=35.9$ cubic feet. $=224$ gallons.
1 cubic foot of sea water. $=64.11 \mathrm{lbs}$.

CONVERTING SUPERFICIAL MEASURE INTO ROARD MEASURE FOR FLOORS．

	ơo
	に
$\begin{aligned} & \text { ㄷ 几 } \\ & \text { 를 } \\ & \text { N } \end{aligned}$	－
$\begin{aligned} & \text { 듬 } \\ & \text { ́ㅡㄴ } \\ & \text { N } \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { 들 } \\ & \text { 은 } \\ & \text { O } \end{aligned}$	
䂞氙	
$\begin{aligned} & \text { 들 } \\ & \text { 블 } \\ & \text { 언 } \end{aligned}$	
¢ 易 岕	
$\begin{aligned} & \text { 등 } \\ & \text { 를 } \\ & \text { OU } \\ & \hline \end{aligned}$	8 88888888888888888888888888
$\begin{aligned} & \text { A } \\ & \text { N } \end{aligned}$	

STRENGTH OF SOLID TIMBER AND PLANK FLOORS,

i. e., FLOORS OF LARGE BEAMS AT 8 FT. CENTRES COVERED WITH PLANKS.
(From Kidder. By C. J. H. Woodbury.)

WEIGHT PER SQ. FT. OF FLOOR.

Superficial load.	Weight of beam in lbs.	Weight of floor plank.	Total.
50	3.00	$\} 6.07$ \{	
	4.08		60.15
	5.33		61.40
75	3.00) $7.40\{$	85.40
	4.08		86.48
	5.33		87.73
100	3.00	$\} 8.55$ \{	III. 1.55
	4.08		II 1.63
	5.33		113.88
125	3.00	$\} 9.55\{$	137.55
	4.08		138.63
	5.33		139.88
150	3.00	\}10.45 $\{$	163.45
	4.08		164.53
	5.33		165.78
175	3.00	\}11.26 $\{$	189.26
	4.08		190.34
	5.33		191.59
200	3.00	$\} 12.05\{$	215.05
	4.08		216.13
	5.33		217.38
225	3.00	\}12.75	240.75
	4.08		241.83
	5.33		243.08
250	3.00	13.45	266.45
	4.08		267.53
	5.33		268.78
275	3.00	$\} 13.55\{$	291.55
	4.08		292.63
	5.33		293.88
300	3.00	\} 14.72	317.72
	4.08		318.80
	5.33		320.05

DIMENSIONS OF BEAN:S.

Depth in inches.	Breadth in inches.	$\begin{aligned} & \text { Span } \\ & \text { in } \\ & \text { feet. } \end{aligned}$	of floor plank in inches.
12	6	20.95)
14	7	26.16	2.43
16	8	31.63	
12	6	17.42	
14	7	21.82	\} 2.96
16	8	26.46)
12	6	15.25	
14	7	19.12	\} 3.42
16	8	23.23	,
12	6	13.73)
14	7	17.23	\} 3.82
16	8	20.96)
12	6	12.59	
14	7	15.82	\} 4.18
16	8	19.25)
12	6	11.71	
14	7	14.70	\} 4.5 I
16	8	17.91)
12	6	10.98	
14	7	13.80	\} 4.82
16	8	16.81	,
12	6	10.38	
14	7	13.06	\} 5.11
16	8	15.90	5.10
12	6	9.86	
14	7	12.40	\} $5 \cdot 38$
16	8	15.08) 5
12	6	9.43	
14.	7	11.86	\} 5.62
16	8	14.46	
12	6	9.03	
14	7	11.36	5 5.89
16	8	13.85	,

SOLID BUILT BEAMS.

In the construction of "built" beams for wide spans concerning the keys used to prevent sliding of the timbers, Tredgold says, "the breadth of the key should be twice its depth," and the sum of the depths should be equal to once and a third the total depth of the beam." The bolts and keys may with great advantage be placed at an angle of 45 degrees with the axis of the beam, those on the left half sloping one way, those on the right, the reverse. Keys are made in two pieces with a wedge between left projecting when first driven in tight so as to admit of tightening up in the event of shrinkage. When the depth of the beam is restricted by circumstances so that keys cannot be used, the beams should be notched on the sides that touch, the notches or indentations corresponding exactly. The two timbers are then held together by means of straps or bolts, but this method does not admit of wedges by which the beams may be tightened up. Beams of several thicknesses should "break joint."

DRY ROT.

To prevent dry rot, good se: soning of the timber before using and good vertilation for it when in place in a building are essential. Charring and coal tar are recommended. To cure dry rot, a solution of corrosive sublimate in water (an ounce to a gallon used hot) or a solution of sulphate of copper (half a lb. to a gallon of water used hot) are good washes. Where dry rot results from want of ventilation no cure will be effective short of supplying the necessary air. The best cure is to substitute new timbers for rotten ones, clear away every particle of fungus from adjoining walls and timbers, afterwards apply some of the washes given for the preservation of timber. Coal tar will effect the same purpose, or a weak solution of vitriolic acid with water will generally stop the rot if it has not gone tco far, and pyroligneous acid is recommended to prevent the spread of dry rot. When lincleum or kamptulicon are fastened down to wood floors dry rot is almost inevitable ; free ventilation under the boards will prevent it but that is generally impracticable, or when practicable it is difficult to obtain sufficient ventilation.

STRENGTH OF TIMBER.

The following figures give the transverse strengths of several woods in common use as compared with cast iron. The test piece in each case being a bar I in. square in cross section, one foot long between supports:

\quad Materials. | Breaking weight |
| :--- |
| in pounds. |\quad| Weight carried |
| :---: |
| with safety. |

TABLE OF LUMBER MEASURE.

A table of lumber measure is convenient to have when making bills of quantities. In the table here given the length of the timber is set off in the upper line ranging from 12 to 30 ft ., and the size is indicated in the left hand column. Thus a stick $6 \times 6 \mathrm{in}$. and 26 ft . long contains 78 ft ., board measure.

Size in inches	12	14	16	18	20	22	24	26	28	30
2x3	6	7	8	9	10	11	12	13	14	15
2x4	8	9	11	12	13	15	16	17	19	20
2×6	12	14	16	18	20	22	24	26	28	30
2x8	16	19	21	24	27	29	32	35	37	40
2xIO	20	23	27	30	33	37	40	43	47	50
2×12	24	28	32	36	40	44	48	52	56	60
2×14	29	33	37	42	47	51	56	61	65	70
3×4	12	14	16	18	20	22	24	26	28	30
3×6	18	21	24	27	30	33	36	39	42	45
3×8	24	28	32	36	40	44	48	52	56	60
3×10	30	35	40	45	50	55	60	65	70	75
3×12	36	42	48	54	60	66	72	78	84	90
3×14	42	49	56	63	70	77	84	91	98	105
4×4	16	19	21	24	27	29	32	35	37	40
4×6	24	28	32	36	40	44	48	52	56	60
4×8	32	37	43	48	53	59	64	69	75	80
4×10	40	47	53	60	67	73	80	87	93	100
4×12	48	56	64	72	80	88	96	104	112	120
6×6	36	42	48	54	60	66	72	78	84	90
6×8	48	56	64	72	80	88	96	104	112	120
6x10	60	70	80	90	100	110	120	130	140	150
6×12	72	84	96	108	120	132	144	156	168	180
8×8	64	75	85	96	107	117	128	139	149	160
8×10	80	93	107	120	133	147	160	173	187	200
8×13	96	112	128	144	160	176	192	208	224	240
10×10	100	117	133	150	167	183	200	217	233	250
10×12	120	140	160	180	200	220	240	260	280	300
12×12	144	168	192	216	240	264	288	312	336	360
12×14	168	196	224	252	280	308	336	364	392	420
14×14	196	229	261	294	327	359	392	425	457	490

STRENGTH OF MATERIALS.

Beams decrease in strength much faster than the length is increased ; for instance, if a beam of any given size 20 ft . long will sustain a load of 100 lbs . per foot, a beam of the same size 40 ft . long will only sustain 25 lbs . per foot, and that with much more deflection, while the same beam cut down to 10 ft . long would carry 400 lbs . to each foot in length.

With posts the ratio of strengths to their lengths differs somewhat with different proportions, but roughly speaking, posts of sizes in common use diminish in strength as they increase in length in a ratio of about $1 / 3$ to 2 , that is, if a post of a given size and 10 ft . long is capable of supporting 12 tons, one of the same material and size but 20 ft . long will support but 4 tons.

The comparative strength of rods sustaining loads by suspension is not materially affected by their length. A few examples are given as a basis of calculations.
A mill has to be constructed 50 ft . wide of three stories each ro ft. high, centre posts and beams 8 ft . between centres, making beams 25 feet long from posts to walls. To carry safely the ordinary load of 200 lbs . per square foot the beam should be of Southern pine 12×16 with posts in lowest stories, round, 11 inches diameter, or square, io inches diameter; second story posts 9×9 or 10 inches diameter, and in the third story 8×8 or 9 inches diameter to carry roof. A 15 inch I beam 150 lbs . per yard 25 ft . long would be about the same strength as a 12×16 beam.

A 6 -inch round wrought iron column of 58 -inch shell or a 6 -inch cast iron column free from flaws, with $1 / 2$-inch shell would be the same strength as the ioxio posts, cast iron being stronger in columns than wrought iron, except where they are very slender.

Iron will not resist heat so long as wood, wrought iron becoming soft and pliable and cast iron cracking with heat and water.

If a brick pier is to carry a load of roxio posts it should be well built, 2 ft . square, or at least 20×24 inches, and it will resist the action of heat longer th:mn any other of the materials mentioned.

A $13 / 4$ inch rod will safely support by suspension the same amount of floor surface of a single floor as is carried by one of these posts.

It the mill is to be used as a warehouse, filled with barrels of flour, the weight shoulid be calculated for 400 lbs. to the square foot, and it would require another row of posts between the centre posts and the wall, thus making the beams about 12 feet between the bearings; the beams remaining the same size ond the posts increased a little, the wood about I inch, the iron $\frac{1}{2}$ inch.

BEAMS AND GIRDERS.

It is often necessary to decide quickly what sort of beam or girder shall be used across any wide span. To ascertain the required strength estimates must be made of the following : the amount of walling, brick or stone, which the beam will have to carry, the beam being able to support twice as much when the load is evenly distributed along its length than when concentrated in the centre. When there is a central pier between windows, the heaviest part will be in the centre and must be allowed for. Allow I cwt. per cubic foot as weight of brick or stone, the share of flooring or roof that the beam will carry either resting on itself or in the wall above. Half the entire weight upon any such floor will be carried as a
distributed load upon the beam. Hurst's Handbook gives the following weights per square foot which floors should be calculated to sustain, including the floor itself:

> Ordinary dwelling house floors...................... $11 / 4 \mathrm{cwt}$.
> Public buildings, etc. $11 / 2 \mathrm{cwt}$. Warehouses, factories, etc. $1 / 2 \mathrm{cwt}$. to 4 cwt .

These are high, but they allow for part being moving weights. For the roofing 40 lbs . per square foot may ordinarily be allowed, which includes timbers, covering, etc.

WEIGHT OF CROWDS.

Authorties differ to an extraordinary degree as to the weight of crowds, some giving as a correct weight per square foot as much as four times that given by others. The lowest calculation (given by Trautwine and Stoney) of 41 lbs. per square foot has been shown by Trautwine himself to be insufficient. Tredgold gives 120 lbs . per square foot, a result obtained by actual experiment with men packed together as closely as possible on a platform of 20 ft . diameter, conducted by Mr. Nash, the architect of Buckingham Palace. Prof. Kernot obtained a result of 143 lbs. per square foot, while Mr. Stoney found by experimenting with 58 men at one time and 76 at another he obtained a weight of 147.4 lbs. per square foot. Therefore, in round figures, from 140 lbs to 150 lbs . per square foot may be considered the actual weight of a crowd of stationary human beings, but tor bridges or any place where the crowd is moving a greater weigh must be allowed for in addition to calculations for the resistance to strains caused by movement.

Mr. Kidder (Boston, 1885) states that for dwelling houses it is not necessary to allow for more than 40 lbs . per square foot, and in most cases 80 lbs . per square foot for assemblages of people will be sufficient. He gives the following table of weights in addition to the weight of the floors:

For str	8 l lbs. per square fo		
" floors of dwellings.	40	"	"
" churches, theatres, ball-rooms..... . 80 to	120	"	"
" schools	80	"	"
" hay lofts.	80	"	"
" storage of g	100		"
" warehouses and general merchandise	250	"	"

Special cailculations should be made for weights of particular loads on floors. Wooden floors for dwellings weigh per sq. ft. (on the aver.) 17 to 22 lbs. Wooden floors for public buildings 25 lbs.
er shall be mates must h the beam the load is re. When the centre :k or stone, itself or in arr'ed as

USES OF RESIN.

There are many useful purposes to which resin can be applied outside those of general practise. As a non-conductor of heat it is used as a protector of water pipes, particularly in the crossing of bridges, where the pipe is laid in a long box and the whole filled with melted resin. Resin is also used in supporting basement floors in machine shops which may be laid over some dry material, as spent moulding sand, which is carefully levelled off and the planking laid upon temporary supports separating it about 2 inches above the sand. Numerous holes about 2 inches in diam. being bored through these planks, melted resin is forced through them by means of funnels until the whole space is solidly filled and then the upper flooring is laid upon these planks. In case the floor is subjected to shocks sufficient to break the resin it rapidly joins together again in much the same manner as the relegation of ice. Resin is also used to form water proof paper for use in butcher's shops, fish markets, and also for building purposes, and strange to say, this improvement reduces the cost of the paper. All methods of applying resin in solution after the paper is finished adds heavily to its cost, and also renders it very brittle; but if the resin is dis. solved in potash and mixed with the pulp in the beating engine and this alkali afterwards treated with alum, it becomes neutralized and washed away, leaving the finely diffused resin throughout the whole mass. It is also used for protecting tive coarser manufactured products, such as agricultural implements, against: :ast, by mixing it with a solution of benzine. This is applied as a varnish, and the benzine rapidly dries away leaving a coat which protects the material until it goes to the severe service of actual use.

LIGHTNING_CONDUCTORS.

The immunity of private houses from injury by lightning, when unfurnished with regular conductors is much marked, and it is said to be due to the fact of the metal work on the roofs being connected with the eaves troughs and down pipes whereby no doubt the electric fluid finds a conductor and so is dispersed in the drain. In planning the roof covering it is as well to bear ihis in mind and to arrange for a continuation of metal whereby whout going to the expense of a regular copper conductor, a conductor ni.i; be forned with the niaterial that has to be used.

PANTILES.

A curved tile about $131 / 2$ inches long, 7 inches wide, $1 / 2$ inch thick, rather more than half the weight of plan tiling, less secure in rough weather. To find the number of pantiles of the abovedimensions to cover a roof, the weathering being Io inches, multiply the area in superficial feet by 1.80 . To f.nd the weight in tons, multiply the area in superficial feet by .00377.

PUTTY FOR REPAIRING BROKEN WALLS.

Equal parts of whiting and plaster of paris walls may be coloured immediately after the application of putty. Whiting and size is not a good mixture, as it rises above the surface of the walis and shows patches. Lime must not be used as it destroys colour.
utside those protector of is laid in a in supportne dry mahe planking e the sand. ese planks, hole space s. In case ly joins to\sin is also ts, and also the cost of is finished esin is disthis alkali nay, leaving ed for promplements, d as a varts the ma-
infurnished fact of the down pipes sed in the 1 and to are of a regu. hat has to
ather more o find the ring being weight in
imediately , as it rises used as it

Lap-Welded American Charoual Iron Boiler Tubee. Taile of Standard sizf.						
			${ }^{\circ} 5$			
			Fect.	1 n .	In.	b.
	. 836		3.819	0.575	0.785	
	1.103		3.4513	1.960	1.227.	0.9
	1.334	.03. 3	$2.34 i$	1,39	1.767°	,
1\%/4	1.500	. 045	2.163	1.91	2.405	-08
	1.804		1.919	2.3inf	3.142	1.98
	2.054	. 1.18	1.698	8.314	3.976	2.23
24	2.281	. 109	1.528	4.09	4.339	2.75
	2.893	. 109	1.2nN	5.05	5.940	4
	2.75	. 109	1.973	6.118:	7.069	3.33
	3.012	. 1111	1.175	7.105	8.246	3.95
	3.262	. 119	1.14)	8.377	11.621	4.27
	3.141	.130	0.1.155	10.992	12.504	
	4.341	. 130	0.819	14.126	15.004	6.01
57	4.72	. 147	0.764	17.497	19.633	7.22
	5	. 151	U,	- 50	1071	
Rule for Strength of Cylurler Boiles. $S=$ tensile strength of the iron.						
$T=$ thlekness of plate, in luches.						
$=$ bursilng pressure.						
Then $P=T \times B^{s} \times 2$ and $T=P \times D$						
Working slritn allowed by U. S. laws for single-riveted bollers 1-6, and for doubleriveted bollers $1-5$ the bursting pressure.						

FORMULAE FOR CAST AND WROUGHT IRON PILLARS.

These formulæ are intended to apply to pillars with flat ends, of any length and any form of section.
$\mathbf{w}=$ breaking load in lbs. per square inch.
$\frac{w}{6}=$ safe load for cast iron.
$\frac{\mathbf{w}}{4}=$ safe load for wrought iron.
1 =length of pillar in inches.
$\mathrm{h}=$ exterior diameter of round, or least exterior dimension in inches if otherwise shaped.
$\mathrm{f}=\mathrm{a}$ co-efficient of the material in respect to compression.
$\mathrm{a}=\mathrm{a}$ co-efficient of the material in respect to flexure.
$f=\left\{\begin{array}{l}36.000 \text { for wrought iron. } \\ 80.000 \text { for cast iron }\end{array}\right.$
$a=\left\{\begin{array}{l}\frac{1}{4500} \text { for wrought iron. } \\ \frac{1}{400} \text { for cast iron. }\end{array}\right.$
$w=\frac{f}{1+a\left(\frac{1}{h}\right)^{2}}= \begin{cases}\frac{35.000}{1+\frac{1}{4500}\left(\frac{1}{h}\right)^{2}} & \text { For wrought iron. } \\ \frac{80.000}{1+\frac{1}{400}\left(\frac{h}{h}\right)^{2}} & \text { For cast iron. }\end{cases}$

RULES FOR OBTAINING APPROXIMATE WEIGHT OF WROUGHT IRON.

For round bars.-Multiply the square of the diameter in inches by the length in feet and that product by 2.6. The product will be the weight in lbs., nearly,

For square and flat bars.-Multiply the area of the end of the bar in inches by the length in feet and that by 3.32 . The product will be the weight in lbs., nearly.

Wrought iron usually assumed:
I cubic feot.......... $=480 \mathrm{lbs}$.
1 sq. foot I in. thick..$=40 \mathrm{lbs}$.
a bar I in. sq., I ft. !ong $=31 / 3 \mathrm{lbs}$.
$1 \mathrm{yd} . \operatorname{loig}=10 \mathrm{lbs}$.

Specific gravities:
Cast iron. average 7.21
Wrought iron...... " 7.28
Cast steel " $\quad 1.85$
Bessemer steel..... $\quad 7.86$

Shrinkage in castings:
Pipes $=1 / 8$ in. in Ift.
Girders, beams, etc $=1 / 8$ in 15 ins.
Thin brass $=1 / 8$ in. in 9 ins.
Thick brass $=11$ ins.

Zinc $=/ 16$ in. in 1 foot.
Lead $=\quad " \quad \prime$
Copper.... $=16 \quad$ "
Tin....... $=1 / 4 \quad \|$

TO REMOVE RUST FROM STEEL.- $-\frac{1}{2}$ oz. cyanide of potassium, $\frac{1}{2}$ oz. castile soap, 1 oz. whiting and water, to make a paste. Brush the rusted parts with this compound.

TO PRESERVE STEEL FROM RUST.-I caoutchouc, 16 turpentine ; dissolve with a gentle heat, and add 8 parts boiled oil. Mix by bringing them to a temperature of 212° Fahr., and lay on with a brush.

TABLE SHOWING WEIGHT SUSTAINED WITH SAFETY BY A COLUMN OF CAST IRON.

Length or height in feet.	8	10	12	14	16	18	20	22	24
Diameter in inches.	WEIGHT IN CWTS.								
21	91	77	65	55	47	40	34	29	25
3	145	128	111	97	84	73	64	56	49
$3 \frac{1}{1}$	214	191	172	156	135	119	106	94	83
4	288	266	242	220	195	178	160	144	130
$4 \frac{1}{2}$	379	354	327	301	275	251	229	208	189
5	479	452	427	394	365	337	310	285	262
6	573	550	525	497	469	440	413	386	360
7	989	959	924	887	848	808	765	725	686
8	1289	1259	1224	1185	1142	1097	1052	1005	959
9	1672	1640	1603	1561	1515	1467	1416	1364	1311
10	2077	2045	2007	1964	1916	1865	181:	1755	1697
11	2520	2490	2450	2410	2358	2305	2248	2189	2127
12	3020	2970	2930	2900	2630	2780	2730	2670	2600

HT IRON.

 the length bs., nearly. r in inches ght in lbs.,
STRENGTH OF STRUCTURAL IRON AND STEEL.

The greatest strength of cast iron is resistance to crushing, hence it is appli cable for columns. Its strength as a girder is greater than wrought iron, but its comparatively brittle character makes it inapplicable for this purpose, where it would be subject to jarring. Its most important element is probably its stiffness.
In general cast iron should be used wherever its strength can be made so far in excess of any strain that can be put upon it that there is no necessity of applying calculations to determine the strength. The only exception to this is its ase in columns supporting a perfectly dead load.

Wrought iron is strongest under tension, not so strong as a girder, and weakest under compression. Its extreme between the strongest and the weakest is not so great as in cast iron, consequently it may be used in any position, but its strength and stiffness under compression are so much less than cast ${ }^{\text {: }}$ on that except for special reasons it is not used in compression.

Wrought steel may be said in general to have the same characteristics as wrought iron slightly exaggerated, and is therefore suitable for the same purposes. Its use is recommended in place of wrought iron where extra strength is required without increase of size.

Cast steel, except those grades for tools, has the same characteristics as cast iron, but is stronger in every wav and not so brittle.

A PLAN FGR CUTTING IRON RAILS.

An ingenious method is followed in some German stee! works to secure rails of exactly the same length. During the process of cutting it often happens that even with the same gauge one rall will be longer than the others owing to the different heat at which they enter the saws. Those which were the hottest when cut are shortes: when cold, having contracted more than the othess after cutting. In the German mills the workmen look at the heated rail through a dark glass, so tinted that when the metal has cooled to a certain temperature the rails cannot be seen at all. A dark blue or orange yellow glass will make a red hot rail invisible. It may be considered a fact that any two rails looked at through the same pair of glasses will disappear at the same temperature. If every rail is allowed to cool until it is just invisible through a certain pair of glasses all will be of the same temperature and their lengths will be the same.

EXAMINING IRON CASTINGS.

Strike the edges with a light hammer. If the blow makes a slight impression the iron is probably of good quality provided it be uniform throughout. If fragments fly off and no sens'jle indentation is :made, the iron is hard and bittle. Air bubbles are a common and dangerous source of weakness. They should be searched for by tapping the casting all over with a hammer. Bubbles or flaws filled in with sand cause a dulness in the sound which leads to their detection. The exterior surface of the metal should be smooth and clear, and edges sharp and perfect. The surface of a fracture should be of a uniform bluish grey color and high metallic lustre.

NOTES CONCERNING THE SPECIFICATIONS OF QUALITY FOR IRON.

The tensile strength of iron is properly determined by ascertaining the load nn der which permanent set takes place, and the amount of stretch under the proof load, rather than from the ultimate load that causes the fracture of the bar. In other words, the elastic limit rather than the breakıng strain should be regarded as the measure of quality in a bar, and working loads should be proportioned with reference to the elastic limit instead of to the so-called ultimate strength.

Tough, sinewy iron is what is required in a tension bar, and although a hard, unyielding iron may show greater ultımate strength under a gradually applied strain, yet it is not suitable for use under tension for the reason that a sudden shock may cause it to snap under a weight that it ought to carry with enture safety.

Good bar iron should be of uniform character and possess a limit of elasticity of not less than 25,000 pounds per square inch. The ultimate resistance of prepared test-bars having a sectional area of about one square inch for a length of to inches should be no: less than 50,000 pounds per square inch when the test-bars have been prepared from full-sized bars having not more than 4 square inches of sectional area. For each additional square inch of full-sized bar area above 4 square inches a reduction of 500 pounds per square inch may be alicw... ed down to a minimum ultimate resistance of 46,000 pounds. The amount of stretch under the breaking load should be not less than 15 per cent. in 10 inches of the test-bar.

Bars that are to be used in tension should stand, without cracking, a coal bend. ing test to 90 degrees to a cuvature the radius of which is about the thirkness of the bar under test, and at lea t one-third of the lot should stand bending to 180 degrees under the same conditions.

A round bar, one inch in diameter, should bend double, cold, without signs of fracture. A square bar of the same quality may show cracks on the edges under sucha test.

Under a breaking pull the reciuction of area should be not less than 25 per cent. of the original section.

The shape of a bar has much influence in determining the breaking-strain. The ultimate strength of round bars is, for this reason, considerably greater than the.. of flat bars, but in either case the elastic limit will be found to occur at about the same point for equally good qualities of iron.

Within the elastic limit the extension of iron may, for all practical purposes, be stated as follows:

Wrought iron, one ten-thousandth of its length per ton per square inch.
Cast iron, one five thousandth of its length per ton per square inch.
The compression of wrought iron within the limits of elasticity follows the same law, and the amount of sho:tening under pressu.e will be in direct proportion to the weight applied. But with cast iron the amount of compression does not follow a constant ratio, the compression per ton becoming greater with the increase of the weight. Thus, a cast iron bar, one square inch in section was compressed one fifty-nine-hundredths of its length by a load of one ton; but under a load of 17 tons, instead of being compressed seventeen fifty-nine-hundredths, it was compressed twenty fifty-nine-hundredths.

The Modulus of Elasticity is a term used to designate such a weight as would exter.d a bar through a space equal to its original length, supposing the elasticity of the bar to be perfect. Or, the modulas of elasticity of any given material in feet is the height in feet of a column of this material, the weight of which would extend a bar of any determinate length through a space equal to this length. Thus, if one ton extends an inch bar of wrought iron one tenthousandth of its length, it is evident that, upon the supposition that the bar is

OR IRON. the loadinnor the proof fe bar. In e regarded roportioned strength. ugh a hard. lly applied t a sudden with entire
of elasticisistance of br a length when the in 4 square d bar ares be alicz amount of 1 Io inches coal bend. aickness of ing to 180
ut signs of lges under
ian 25 per
ing-strain. eater than occur at
purposes,
inch.
ach.
Hlows the proporion does with the tion was but un-ine-hunsing the y given veight of equal to ne tenbar is
perfectly elastic, 10,000 tons would extend it to twice its original length. Hence, on this assumption, 10,000 tons, or $22,400,000$ pounds, will be the modulus of elasticity of the wrought iron stated in weeight. But an inch bar of wrought iron to weigh $22,400,000$ pounds, at $3^{1 / 3}$ pounds per foot, would be $6,720,000$ feet long, and this would express the modulus of elasticity in feet.
The modulus of elasticity will of course, vary according to the character of the material tested, being much higher in the better than it is in the lower grades of iron, but it forms a very useful and convenient standard of comparison in determining quality.

THE WAY PORTLAND CEMENT IS MADE.

Portland cement is an artificial product, chemically proportioned by the propar selection of the material entering into its composition. These whether chalk or clay, as in England, marl or clay as in Germany, or hy draulic limestones, ar in this country, are in every case reduced to the finest powder by either wet os dry grinding, and this powder moistened merely in the dry process, or in the form of paste in the wet process, becomes practically, either by drying in large tanks or by being inoulded into bricks, eggs, or other torm, a new stone, into which all the elements are brought in close contact and are in perfect chemical proportion. The artificially made new stone, bucnt, as it is, at high heat in close kilns, has every element chemically active, and the clinker represents practically, when preperly proportioned chemically, a composition of bi-basic silicate of lime and aluminate of lime. This ground clinke! is the Portland cement of commerce, a fixed uniform product, sold under a warranty of its strength and firmness, and depends upon the controllable elements of skillful manufacture for its character and uniformity.

PRESERVING STONE.

Hoout a year ago I watched with great interest the operation of the workmen ruilding devoted to the manufacture of candy in this city. The building v.....cce and the men were engaged in holding litile charcoal furnaces about a tor. uare against the outside walls. They went over every square foot of this building--and it was five stories high by about seventy-five feet deep-holding the glowing coals against the brick sides. My curiosity on the subject was somewhat aroused, and upon inquiry I found that it was a new process for preserving brick and making it impervious to the storms of wintel. Now I find that the same process is being used on obelisk, and that these little charcoal furnaces are burning the sides of Cleopatra's Needle from the base to the apex. This famous stone, that has stood the storms of centuries in Egypt, was begining to succumb to the curious climate of the United States, and fears were entertained that a few nore winters would make serious inroads upon it; but someone suggested burning it with paraffine, and it is now being done. The heat is so intense that it is burned in for a full inch; then when the stone cools again it is as hard as adamant.-Nere York Letter.

Soapstone incorporated with oil, after the manner of a paint, is said to be superior to any kind of paint as a preservation. Soapstone is to be had in an exceedinglv fine powder, mixes readily with prepare己 oils for paint use, covers well surfaces of iron, stee.; or stone, and is an effectual remedy against rust. It has been known to protect some stonework, such as obelisks, in China for ages past.

Hints for Plasterers

THE MAKING OF MORTAR.

THE making of mortar, comprehends the slacking of lime and the mixture of ingredients worked up with it. As we have already seen, both the former process and the nature of the latter differ, according to the nature of the lime to be dealt with. It is, however, an universal rule, in contradiction to the slovenly practice of some builders, that all limes, of what nature soever, should be reduced to a paste before being mixed with the other ingredients. People who have not studied the actions of the hydrates in a scientific and consecutive manner, oppose the introduction of the previous manipulation of the lime on the score of the extra expense, and on the pretence that the lime loses in strength thereby. As to the objection of the expense, that must of course be estimated by the importance of the work. The second objection is to be met by observing that the rich limes require to be for a long time exposed to the air to enable them to take up the carhonic acid gas, and that, therefore, so far from losing, they gain by exposure; and, moreover, the hydraulic limes being very difficult to slack it is necessary that all their particles should be put in contact with the water. If the lime be not previously reduced into the state of a perfect hydrate, it is always exposed to blister, and to disintegrate, in a manner depending upon the comminution of its particles before being employed; for it is evident that ii the lime be ground, the more inactive particles are in a more favorable condition for the absorption of the water. The degree of consistence of this paste should vary with the nature of the extraneous matter. It should be stiff whenever it is intended to form a guage for substances whose particles are hard and palpable, and which are capable of preserving sensible distances from one another. It should be more liquid when the substances to be mixed with it are pulverulent, of jmpalpable and fine grains, presenting an homogeneous appearance, and in which it is impossible to distinguish the separate elements, such as the puozzolanos, \&c. To secure a proper state of the hydrate, it is of very great importance, however, not to use too much water in slacking the lime. So much should be used, and only so much, as is necessary to cause the quicklime to fall to powder. It is also equally important not to mix up into the state of paste more lime than is immediately required to be used; for although, upon 'eeing reworked, the hydrates, which begin to carbonite, give off the water they had rendered latent, as 1 i :vere, yet a portion of their force must be lost by their doing so in proportion to the degree of advancement of the process. In France, whenever great care is required in the fabrication of the mortars, the lime is worked up into a paste in a mill, consisting of two vertical stones working in a trough. The lime, after going through this operation, is then mingled with the sand in a pug-mill or by hand, upon a floor. If the dimensions of the con structions should be such as to justify the expense, it should be made a neces
mixture of the former lime to be slovenly uld be reeople who ative manme on the strength estimated y observto enable m losing, difficult to with the t hydrate, ling upon nt that is le condihis paste iff whenhard and one anth it are appear, such as ery great So much ue to fall of paste eing reley had by their France, lime is gg in a Ith the e con neces
sary condition that mechanical means be employed, for even with the greatest possible care the mixture by hand is never perfectly effected. The quantities of sand to be used vary, as might be expected, according to the nature of the limes, and also of this sand. Within certain limits, if they do not gair. by the mixture, at least their effect is not sensibly diminished. Thus we find that, for the rich limes, the resistance is rather increased if the sand be in the proportions varying from 50 to 240 per cent of the paste measured in bulk in the state of a firm paste. Beyond that point the resistance decreases. The resistance of hydraulic limes increases, if the sand be mixed in the proportion of 50 to 180 per cent of the paste; from thence it decreases. The much greater proportion of sand the rich limes are able to support, may perhaps account for the partiality of the builders in their favor. If it be required to mix common lime and puozzolanos, the best proportions according to General Treussart, are r of lime in po vder to 2 of trass; or I of lime to I of sand, and I of puozzolano or trass. The best hydraulic limes, as we have seen, lose much of their qualities if long exposed to the air; it is therefore advisable to work them only for the time absolutely necessary to ensure, firstly, their perfect reduction to the state of hydrates; and secondly, the intimate mixture of the lime and sand. The rich limes, however, as we have before said, inasmuch as they absorb the carbonic acid gas with difficulty, gain by being exposed for a longer period to the contact of the atmosphere. As far as such a proceeding is consistent with economy, it is advirable then, to protract the operation of their manipulation as much as possible; it is even advisable to work up large quantities of such mortar beforehand, which are subsequently rendered fit for use by a second manipulation. Some of Vicate's experiments show that all limes lose two- fifths of their strengin if mixed with too much water. It is then better to wet the material to be used, and to employ a stiff mortar than to ful!ow the course usually adopted by masons and bricklayers of using very fluid soft mortar. The system of grouting is more than questionable in its results; the lime suspended in it is nearly destroyed, the extra quantity of water is but an addition to the difficulties of setting opposed to the mortar alieady in place. There are conditions of the atmospheric state which affect the goodness of the mortars, about whose actions the best authorities are not decided. For instance those made in summer are always worse than those made in winter. It has been supposed by some that this fact is accounted for by the too rapid desication of the mortar; and Vicate even asserts that they lose four-fifths of their strength if allowed to dry very rapidly. He recommends, in consequence, that the masonry be watered during the summer months, in all constructions of importance, to guard against this danger. Probably the the hydrates are not in a favorable condition to absorb the carbonic acid gas, if they be allowed to dry rapidly; the presence of the water being necessary for the combination of the lime and the carbon. The n . fom of the water from carbonic acid gas in solution is also a necessary condition. \boldsymbol{f} the successful use of the hydraulic limes. Their success depends, in fact, upon .he slow gradual manner in which they take up that gas from the atmosphere, and crystallized about the nuc'ri offered to their actions. Some engineers prescribe that the water should be deprived of such impurities by boiling, and although the precaution be rather exaggerated, it is certainly of a useful tendency. As the lime reduced into a paste does not fill up the voids of the materials it is mixed with, there is necessarily a very considerable diminution of bulk upon the quantities of the respective substances taken separately. The exact amount of this diminution varies of course with the limes or sands employed; but as a general rule it may be taken as about three-fourths of their collective volumes. To state this in a convenient formula; is $a=$ the bulk of the lime, $b=$ the bulk of the sand; then $(a+b) \times 0.75=$ the bulk of the mortar they will produce The
position in which a mortar of any description is to be used, also modifies the proportions of sand which it is desirable to mix with it. Under ground, in the water, and in damp positions, less is and should beemployed than in the open air, where it is exposed to the changes of the atmosphere. It is often a matter of importance to know the power of resistance of mortars, but, as they differ within a very large range, it is n gt easy to state it very precisely. The best experiments, however, show that we may safely calculate for all practical purposes upon a resistance of 14 lbs . avordupois per inch superficial, to a force acting in a direction to tear asunder - an effort of longitudinal traction-of 42 lbs to a crushing force; and of $53 / 4 \mathrm{lbs}$. per inch superfic...l to a force tending to make the particles slide upon one another. It would not be safe to expose new vorks to greater efforts than those which could be classed under the above heads.

Plastering is always measured by the square yard for all plain work, and by the foot superficial for all cornices of plain members, and by foot lineal for enriched or carved mouldings in cornices.

By plain work is meant straight surfaces (like ordinary walls and ceilings,) without regard to the style or quality of finish put upon the job. Any panneled work, whether on walls or ceilings, run with a mould, would be rated by the foot superficial.

Different methods of valueing plastering find favor in different portions of the country. The following general rules are believed to be equitable and just to all parties ;

Rule I .-Measure on all walls and ceilings the surface actually plastered, without deducting an; grounds, or any openings of less extent than seven superficial yards.

Rule 2.-Returns of chimney breasts, pilasters, and all strips of plastering, less than 12 in . ir. width, measure as 12 inches wide; and where the plastering is finished down upon the washboard surbase or vainscoting, add 6 inches to height of walls.

Rule 3.-In closets, add one-half $\ddagger n$ the measurement; or if shelves are put up before plas ering, charge double measurement. Raking ceilings and soffits of stairs, add one-half to the measurement. Circular or elliptical work, charge two prices; domes or groined ceilings, three prices.

Rule 4.-For each 12 feet interior work is done further from the ground than the first 2 feet, add five per cent. For outside work, add one per cent. for each foot the work is done, above the first 20 feet.

Rule 5.-Rinnd corners measure per foot lineal extra. Arrisses (other than chimney breasts) measure per foot lineal. All joinings of new plastering to old measure liseal by ft . in width extra. This does not apply to patching or repairing, which should be done at an agreed price.

Any firring or straightening of joist or studding to be charged for by day's time, but the owner or main contractor should be notified of the necessity of such work before it is done by the plasterer, or at his expense.

[^1]modifies the and, in the n the open n a matter they differ he best exal purposes e acting in 42 lbs. to g to make new works heads.
rk. and by eal for en-

1 ceilings,) y panneled by the foot
tions of the and just to
plaśtered, ven super-
plasterıng, plastering inches to
es are put and soffits k , charge
pund than t. for each
ther than ing to old tching or
by day's cessity ot

YARDS

Hints for Painters and Decorators.

PAINTING is measured by the superficial yard, girting every part of the work that is covered by paint, and allowingan ad 'ition to the actual surface for the difficulty of covering deep quirks or mouldings, carved or enriched surfaces, as in iron railings, and for "cutting in "as in sash and shelving, or where there is a change of color on same work. Allowances are frequently made for distance from the ground, as in cornices, balconies, dormers, etc. Charges are usually made for each coat of paint put on, at a certain price per yard sup. and per coat. Graining and Marbling (imitations of wood and stone,) are classed differently, and rated at different prices from plain work ; and so also with Varnishing.
The following Rules of Measurement, which are based upon, and a fair average of those in use in many sections of the country, are suggested as being equitable and just to both employer and employed, and a reliable standard of valuation.
Rule I.-All surfaces less than 6 inches wide, or girt, to be measured as 6 inches; and over 6 inches and under 12 inches, to be measured as 12 inches ; over 12 inches, to be taken sup. nett.
Rule 2.-All openings to be deducted natt, and all jambs and reveals to be measured as per Rule 1 .
Rule 3.-Window sash, when there are more than two lights, to be measured square (as if solid.) Two, and single-light sash to be measured as per Rule i.

Rule 4.-In measuring doors, panneled shutters, and plain pannel work, girt in and out of pannels both ways and add one edge to each side of door or shutter. Measure sash-doors solid. Fur batten doors, girt over battens for height ; and if beaded, add I inch in width for each bead.

Rule 5.-Measure Venetian blinds or shutters as if square plain pannels, and add one hundred per cent. for labor of working in the slats, etc.

Rule 6.-Measure all architraves, casings, jamos, base, cornices, and similar moulded work, by girting every part of the work covered ; and in carved or enriched work add per ft. sup. nett for amount of such work. Girt dentil work twice.
Risle 7.-For consoles, modillions, brackets, cantilevers, ornamental iron work, balusters, lattice work, and paling or balustrade fences, girt in each direction, and add one hundred per cent. to prices of plain work.
Rule 8.-All "picked out" work to be valued by the measurer accordıng to amount of labor performed; and all work not specified in preceding Rules to be rated at an average of rates for other work.

Rule 9.-For "knotting," puttying and cleaning off each coat with sand-paper, add five per cent. to prices of plain work (not graining or marbling). For cutting down with pumice-stone and water, add ten per cent. more.
Rule 10.-For all work done above level of ground, if interior work, add five per cent, for each story of 12 feet or less, above first story. For exterior work,
add one per cent. for each fiot of height above the first 12 feet. For exterior walls, take half the whole height as the average height.

Rule ir.-For change of colors or pannel work, cornices, washboard, etc., add one-fifth for each tint employeri. On paling or picket fences, if the tops are painted different colors from the rest of the fence, add six inches to height of fence.

ABOUT PAPER HANGING.

"An eight or ten inch bristle smoothing brush, a six to eight inch paste brush, a fourteen to sixteen inch pair of shears, a paper knife, seam roller, plumb-bob, chalk line, paste pail, size kettle, paper boards, trestles and step-ladder, these are the necessary tools for general work, though it is necess.ry to save time and trouble to have besides these tools a good sized kalsomine brush and a double width putty knife.

The next we need to proceed with is a bucket of paste. Use flour paste, except on very rare occasions when the tints are very delicate. The best patent flour is the most adhesive, and retains its consistency much better than starci.

Take a common patent pail and put in one-half gallon of flour. Stir in enough cold water to mix a flour batter; work out all the lumps thoroughly ; have ready three gallons of absolutely boiling water, and stir this until you have enough to cook it. Now pour a little cold water ever the top to prevent skinning over until you are ready to use it. You can thin it down at pleasure.

If the paper put on is not a metallic ground put in four or five ounces of alum in the paste. This will prevent its turning sour and hasten drying. Should the paper be metallic, use a little carbolic acid in place of alum, as alum is liable to turn gilt dark.

If the room you are going to paper is a har: finish, and not very badly smoked up, all that is necessary to prepare the walis is to brush them with a broom. Should they be smoked and dirty, it is best to go over them with a weak solution of glue and alum. If the walls have been papered before it is necessary to go ovar them again with a putty knife and cut the old paper off, pull out all nails, and with some plaster of Paris mixed with paste heal all the bad places.

If the walls have been whitewashed, doctor them with a strong solution of vinegar. Having the walls ready, lay a roll of paper on the boards, and with your straight-edge, which should be six feet long, measure the height to where the border will come and about an inch below the baseboards, and cut the strips off. Match the next strip to the to, ' of the previous one and cut enough strips to cover the room.
To ascertain the number of strips required, take a roll of paper and count the number around the room. Now turn the paper over if you have trimmed it; put the trimmed edges towards you and pull the first over, so that it covers the other strips. This is to prevent the paste from forming on the trimmed edge and making bad work.

Some paper-hangers never trim the paper till after it is pasted. This procedare has some good features and some bad ones, which we will not discuss here. Beginners will find it better to have the paper trimmed beforehand. Commence at one end of the room and hang the slips as nearly perpendicular as you can.

Always brush the paper from the centre down and at either side. If you have wrinkles in the paper pull it off to where the wrinkle is and brush it out from the centre. Run the shears along the paper at the top of baseboards, and cut off nice and even. Never allow the papar to lock haggled or un ven around the base, and cut it close down, but not overlapping.

When you come to an opening let the paper overlap, and trim with the paper
r exterior
pard, etc., e tops are height of
ste brush, lumb-bob, der, these time and a double
paste, exest patent an starcin. Stir in oroughly ; you have ent skinasure.
es of alum hould the s liable to

y smoked

 a broom. k solution sary to go all nails, es.slution of and with to where the strips gh strips
sount the nmed it ; svers the ed edge
his prodiscuss orehand. ndicular

If you sh it out ds, and around
knir- as you work a saw. You will next need short strips, but do not run them beyond the opening unless the piece cut out of the other side will fill up the opposite ; rather lap back again to be sure of a perfect match.

When you come to a corner, never lap the paper around it unless the space is very narrow. Fold up the strips at boih ends measure the distance with your ruled shears, lay the straight-edge on the paper, mark the distance just a little beyond the corner, and cut. In this manner you will always have corners that will be square and stay in position.

Use the same roller, and roll the seams nicely as you go. Cut the border in such lengths as can be easily reached to put on, paste and double up at both ends, so that the lines meet, exactly and cut."

USEFUL INFORMATION.

A gallon of water (U. S. Standard) weighs $81 / 3$ pounds and contains 23 r cubic inches.

A cubic foot of water weighs $621 / 2$ pounds, and contains 1,728 cubic inches, or $71 / 2$ gallons.

Each nominal horse-power of boilers requires one cubic foot of water per hour.

In calculating horse-power of boilers, consider for tubular or flue boilers 15 square feet of heating surface, equivalent to one horse-power.

Condensing engines require 20 to 25 gallons of water to condense the steam evaporated from one gallon of water.

To find the pressure in pounds per square inch of a column of water, multiply the height of the column in feet by 434 . (Approximately, every foot elevation is called equal to one-half pound pressure per square inch.)

To find the capacity of a cylinder in gallons. Multiplying the area in inches by the length in stroke in inches will give the total number of cubic inches; divide this amount by 231 (which is the cubical contents of a gallon in inches), and the product is the capacity in gallons.

Ordinary speed to run pumps is ioo feet of piston per minute.
To find quantity of water elevated in one mınute running at 100 feet of piston per minute. Square the diameter of water cylinder in inches and multiply by 4 . Example : capacity of a five-inch cylinder is desired : the square of the diameter (5 inches) is 25 , which, multiplied by 4 , gives 100 , which is gallons per minute, (approximately).

To find the diameter of a pump cylinder to move a given quantity of water per minute (100 feet of piston being the speed), divide the number of gallons by 4, then extract the square root, and the result will be the diameter in inches.

To find the velocity in feet per minnte necessary to discharge a given volume of water in a given time, multiply the number of cubic feet of water by 144 and divide the product by the area of the pipe in inches.

To find the area of a required pipe, the volume and velocity of water being given, multiply tie numiser of cubic feet of water by 144 , and divide the product by the velocity in feet per minute. The area being found, it is easy to get the diameter of pipe necessary.

The area of the steam piston, multiplied by the steam pressure, gives the total amount of pressure exerted. The area of the water piston, multiplied by the pressure of water per square inch gives the resistance. A margin must be made between the power and resistance, to move the pistons at the required speed; usually reckoned at about 50 per cent.

PIGMENTS.

PIGMENTS AFFECTED BY EXPOSURE TO LIGHT AND THE NORMAL ATMOSPHERE.

RED-Pure scarlet, carmine, crimson lake, scarlet lake, Indian lake, dragons blood.

Yellow-King's yellow, citron yellow, stronian yellow, yellow lake, Italian pink, gamboge, extract of gamboge, gallstone, Indian yellow.

GREEN-Chrome green, Hooker's green, Prussian green, sap green.
Bluf-Prussian blue, Antwerp blue, cyanine blue, indigo, intense blue.
PURPLE-Purple lake, burnt carmine, burnt lake, violet carmine, Indian purple.

Brown-Bone brown.
Citkine-Brown pink.
Olive-Olive lake, olive green.
Gray-Neutral tint, Payne's gray.
PIGMENTS AFFECTED BY AN ATMOSPHERE CONTAINING SULPHURETTED HYDF.OGEN.
White-Flake white, cremnitz, blanc d'argent.
Red-Pure scarlet, red chrome.
Orange-Orange chrome.
Yellow-Deep chrome yellow, pale chrome yellow, Naples yellow.
GREEN-Chrome green, emerald green, malachite green, verdigris.
Blue-Cerulean blue, cobalt blue, smalt, cyanine blue.
Purple-Indian purple.
PIGMENTS WHICH SUFFER CHANGE BY ADMIXTURE WITH WHITE LEAD AND OTHER LEAD COMPOUNDS.
RED-Pure scarlet, carmine, crimson lake, madder carmine, rose madder, scarlet lake, pink madder, madder lake, Indian lake, dragon's blood.

Yellow-King's yellow, yellow lake, Italian pink, gamboge, extract of gamboge, Indian yellow, gallstone.

Green-Sap green.
BluE-Indigo, intense blue.
Purple-Purple lake, burnt carmine, burnt lake, Indian purple, violet carmine.

Citrine-Brown pink.
Olive-Olive lake, olive green.

PIGMENTS WHICH ARE DECOMPOSED BY ADMIXTURE WITH OCHRES AND OTHER FEkRUGINOUS SUBSTANCES.

Red-Pure scarlet, carmine, crimson lake, scarlet lake, madder carmine, rose madder, pink madder, madder lake.

Yellow-King's yellow.
Green-Emerald green, malachite green, verdigris.
Blue-Indigo, intense blue.
PURPLE-Purple lake, burnt carmine, burnt lake, Indian purple, violet carmine.

Citrine-Brown pink.
OLive-Olive lake, olive green,

PF.RMANENT PIGMENTS.

Pigments which withstand the action of light, of atmospheric oxygen and

MAL
, dragons e, Italian
plue. e, Indian

ETTED

LEAD madder, of gam-
c, violet
and carmine,
violet moisture, of sulphuretted hydrogen, and which may be safely mixed with compounds of iron and lead :

White-Zinc white, Chinese white, permanent white.
Red-The vermilions, Mars red, light red, Venetian red, Indian red, red ochre.

Grange-Cadmium orange, Mars orange, burnt sienna, burnt Roman ochre, neutral orange.

Yellow-fureolin, cadmium yellows, lemon yellows, Mars yellow, raw sienna, yellow ochre, Roman ochre, transparent gold ochre, brown ochre.

Green-Oxide of chromium, transparent oxide of chromium, viridian, terre verte, cobalt green.

BLUE-Genuine ultramarine, artificial ultramarine, new blue, permanent blue. Purple-Purple madder, Mars violet.
Brown-Brown madder, Ruben's madder, bistre, Prussian brown, burnt umber, Verona brown, Vandyke brown, Caledonian brown, Cappah brown, asphaltum, Cologne earth, mummy, sepia, warm sepia, Roman sepia.

Citrine-Raw umber, Mars brown.
Gray-Ultramarine ash, mineral gray.
Black-Ivory black, lamp black, blue black, cork black, Indian ink, black lead.
[Field's Chromatographv.]

TINTS FOR PAINTING AND DECORATING, WITH THEIR COMPOUNDING PIGMENTS.

The following is taken from Painting and Decorating, with the note that some pigments being so much stronger than others, it is impossible to give the exact quantities of each required. The pigments are, however, mentioned in the order of their importance in the mixture :

Shrimp Pink-White lead, Venetian red and burnt sienna. A little pale English vermilion will enhance its richness.

Buttercup Yellow-White !ead, lemon chrome yellow.
Spruce Yellow-Frence ochre, white lead, with a small touch of Venetian red.

Peacock Blue-Ultramarine blue, extra light chrome green and white lead.
Cotrine-White lead, orange chrome yellow and lamp black.
RUSSET - White lead, small quantity of lamp black, orange chrome yellow.
Slate-White lead, raw umber, ultramarine blue and a trifle of lamp black.
Myrtes-Dark chrome green, ultramare, lightened up with a small quantity of white lead.
Mastic-White lead, French ochre, Venetian red, a trifle of lamp black.
Turquoise Blue-White lead, cobalt blue, Paris green or extra light chrome green.
Tan-White lead, burnt sienna ; add a trifle of lamp black.
MaUve-Yellow ochre, Venetian red, lamp black, a little white lead.
Salmon-White lead, French ochre, burnt sienna, with a touch of English vermilion (pale).

Primrose--White lead, lemon or medium chrome yellow (according to the shade desired).

ECRU-White lead, French ochre, burnt sienna, lamp black. This tint varies greatly. It means raz. It is intended to show the tint of raw flax or hempen fabrics.

Ashes of Roses-Light Tuscan red, lamp black.
Quaker Drab-White lead, French ochre, lamp black and burnt sienna.
Leaf Bud-White lead, orange chrome yellow, light chrome green.
Dregs of Wine_—Dark Tuscan red, lamp black, to which add a trifle of white lead.

Pompeifan Red-Venetian red. If a richer tone is desired, use half and half American vermilion and Venetian red.

Brown Stone-Orange chrome yellow, dark Tuscan red, lamp black; lighten up to suit with white lead.

LONDON SMOKE-Yellow ochre, ultramarine blue, lamp black; lighten up to suit with white lead.

Bismarck Brown-Burnt sienna, burnt umber, orange chrome yellow, lightened u with white lead.

Amber "3Rown-Burnt sienna, orange chrome yellow, burnt umber, lamp black; lighten up to suit with white lead.

Scarlet-Pale English vermilion, or the various scarlet reds, such as the new Idria, etc.

Purplas Brown-Dark India. 2 red, ultramarine blue, lamp black ; lighten with white lead to suit.

Yellow Bronze-Lemon or medium chrome yellow, French ochre, a trifle of burnt umber.

Crimson-Dark English vermilion or the scarlet reds (deep shades) ; add some carmine, or, better, glaze with it.

Emerald Green-Paris green. A good imitation can be had, answering most purposes, with extra light chrome green.

Hay Color-White lead, orange chrome yellow, light chrome green, Tuscan or Indian red.

Antique Bronze-Orange chrome yellow, ivory black.
Gazelle-Dark Tuscan red, Venetian red, lamp black; lighten up with white lead.

Apple Green--White lead, light chrome green, orange chrome yellow.
Russian Gray-White lead, ultramarine blue, pale Indian red, lamp black.
Golden Brown-French ochre, orange chrome yellow, lamp black; lighten up to suit with white lead.

Gray Green-White lead, ultramarine blue, lemon chrome yellow, lamp black.

Electric Blue-Ultramarine blue, white lead, raw sienna.
[F. Maire.]

Substitute for Plaster of Paris.-Best whiting 2 lbs., glue 1 lb., linseed oil I lb. Heat all together and stir thoroughly. Let compound cool, and then lay it on a stone covered with powdered whiting and heat it well till it becomes of a tough and firm consistence; then put it by for use, covering it with wet cloths to keep it fresh. When wanted for use it must be cut in pieces adapted to the size of the mould, into which it is forced by a screw press. The ornament may be fixed to a wall, picture frame, etc., with glue or white lead. It becomes in time as hard as stone.
int varies hempen ienna. a trifle of f and half p black; ten up to
e yellow, ber, lamp ch as the ighten
e, a trifle
les) ; add
inswering
n, Tuscan
up with
llow. np black. ; lighten ow, lamp

Maire.]

I lb., lincool, and t becomes wet cloths ed to the nent may ecomes in

HOW TO CLEAN VARIOUS SUBSTANCES, ETC.

Brass or Copper-1 oz. oxalic acid, 6 oz . rotten stone, $\frac{1}{2}$ oz. gum arabic finely powdered, add 1 oz. sweet oil, and water to make a paste. Apply with flannel or wash leather.

Bronze-To remove fly specks-Lavender oil, I drachm ; alcohol, 1 oz.; water, $1 \frac{1}{2}$ oz. Apply wit.: soft sponge but rub as little as possible.

Bronze statuary - Weak soap suds and aqua ammonia.
Brushes, paint-Turpentine-press out all particles of color and hang brushes in water, not letting them touch the bottom of the vessel.

Engravings-Expose to the fumes of muriatic acid and wash with water: To remove ir!. spots, apply aqua fortis, diluting application with water as soon as any effect is observed. Dry off with blotting paper and repeat process. Dip in water in which a little potash has been stirred.

Floors-(a) Ink stains may be removed by rinsing with strong vinegar.
(b) Parafin oil, by applying a strong hot solution of oxalic acid, and scrubbing afterwards.

Gilt frames-Soap and water. Boil common size in water sufficient to cover it, strain through muslin and apply with camel's hair brush.

Glass, paint off-Take as much off with a knife as can be removed without scratching glass. Mix oil turps and pumice stone, and apply; clean off with a rag and soap wash, and polish with cotton ag.

Grease spots, before painting-Wash with saltpeire in solution or very thin lime whitewash ; soap suds, if used must be well washed off or paint will not dry.

Grease from stone-Pour strong soda or boiling water over spot ; lay over it fuller's earth made into a paste with boiling water; let it remain some hours.

Iron and steel-Saturate a spongy piece of fig wood tree with a mixture of sweet oil and finely powdered emery, and rub.

Ivory or bone--Brush with a thick paste of common whiting; wash off with water; dry gently near fire and brush again with one drop of alcohol. To remove smoke stains, dip in benzine.

Paint, to remove-4 lbs. Irish moss, 3 lbs. methylated spirits, 30 lbs. water, boiled ; add solution of 16 lbs . caustic potash in 28 lbs . water ; stir till cold, when it will be a gelatinous mass ; apply with brush and allow it to stand for 24 hours; wash off thoroughly.

Varnish brushes-That have dropped, and so got dirty while in use-Clean out well in varnish ; fill brush with varnish and place in keeper, dust will gradually cink; by cleaning with turpentine which is volatile dust and dirt are drawn up to the tin of the blush and will work out when brush is used again.

Wall paper, prease from-Lay blotting paper of several thicknesses over spots and press a hot iron against it.

Whitewash, to remove-A thick paste of wheat flour, with alum added in considerable quantity, applied with whitewash brush; shut door and windows and let it stand over night.

GOLD LACQUER FOR METALS.

1. Shellac 100 parts.

Points to Plumbers.

THE following pages on the hydraulics of plumbing are taken directly from the fifth edition (1884) of an excellent work on "House Drainage and Water Service," by James C. Bayles.

Water is practically an incompressible liquid, weighing, at the average temperature of sixty degrees F., about 62.3 pounds to the cubic foot, and 8.3 pounds to the gallon. These figures are subject to slight variations incident to changes in temperature.

A column of water 12 inches high exerts a downward pressure of about 0.43 of a pound to the square inch. A column two feet high exerts a pressure of about 0.36 of a pounc, or just twice that exerted by a column one foot high. This pressure per square inch, due to head, is irrespective of volume, or any thing else except vertical height of column. With these figures in mind, the calculation of the pressure per square inch due to any head is a simple matter. The following rules will be fourd valuable for reference :-

To Find Pressure in Pounds per Square Inch Exerted by a column of Water.-Multiply the height of the column, in feet, by 0.43 .

To Find the Head.-Multiply the pressure, in pounds per square inch, by 2.31.

Pressure of Water.-The weight of water or of other liquids is as the quantity, but the pressure exerted is as the vertical height.
Fluids press equally in all directions : hence any vessel or conduit containing a fluid sustains a pressure on the bottom equal to as many times the weight of the columin of greatest height of that fluid as the area oi the vessel is to the sectional area of the column.

Lateral Pressure.-The lateral pressure of a fluid on the sides of the vessel or conduit in which it is contained is equal to the product of the length multiplied by half the square of the depth and by the weight of the fluid in cubic unit of dimensic ns. The following formula is simple and satisfactory: Multiply the submerged area in inches by the pressure due to one-half the depth. By "submerged area" is meant the surface upon which the water presses; for example, to find the lateral pressure upon the sides of a tank 12 feet long by 12 feet deep : 144×144 equals 20736 inches of side. The pressure at the bottom will be 12×0.43 equals 5.16 pounds, while the pressure at the top is 0 , giving us, say, 2.6 pounds as the average ; therefore 20736×2.6 equals 53914 pounds.

Discharge of Water.-The quantity of water discharged during a given time from a given oritice, under different heads, is nearly as the square roots of the corresponding heights of the water in the reservoir or containing vessel above the surface of the orifice.

If a cylindrical horizontal tute through which water is discharged be of greater length than its diameter, the discharge is much increased. It can be lengthened with advantage to four times the diameter of the orifice.
to find the Number of United-States Gallons Contained in a Foot of Pipe of any Diameter. --Square the diameter of the pipe in inches, rnd multiply the square by 0.0408 .
to find the Number of Gallons Discharged, when dhe Head Lengtif of Pipe and its Diameter, are Known.-Divide the head of water in feet by the given length in yards, and the nearest number thereto in the table under the diameter will be found opposite the required number of gallons.

Velocity of Flow of Water.-Water which has a chance to flow down-
ward does so with a velocity in exact proportion to its head. The following table gives the velocity of flow of water due to heads of from one to forty feet :Velocity in Feet per Second due to Heads of from I to 40 Feet.
ctly from nd Water age tem3 pounds changes
ut 0.43 of of about h. This fy thing calcula. er. The

COLUMN
inch, by
is as the ontaining weight of is to the
f the vesagth mulin cubic Multiply pth. By sses ; for long by re at the top is o, 6 equals a given roots of sel above
freater agthened 1 inches,
e Head head of ereto in mber of

In plumbing-work we cannot secure this velocity in the flow of water througi pipes, because of the friction which constantly tends to diminish it. The longe. the pipe, the greater the friction and consequent retardation of the flow.

To find the Head of Water, when Diameter and Length of Pipe, and Number of Gallons Discharged per Minute, are Known.-In the above table the head due to a length of one yard is found opposite the number of gallons. Multiply that number by the given length in yards, and we have the required head in feet. Thus, to find the head necessary to deliver 130 gal lons per minute by a pipe 4 inches in diameter, 500 yards long; opposite 130 gallons in the table, and under 4 inches in diameter, is 0.679 , which, multiplied by 500 , gives 339.5 feet, the head sought.
'to find the Diameter of the Pipe, when Head, Lengtif of Pife, and the Number of Gallons Discharged per Minute are Known. Divide the head of water in feet by the length of the pipe in yards, and the number nearest to this in the table opposite the number of gallons will be fourd under the required diameter.
'To find the Length, when the Head, Number of Gallons per Minute, and Diameter or Pipe are Known.-Divide the given head by the head tor one yard, found in the table under the given diameter and opposite the given number of gallons, and the result is the required length.

The discharge of small pipes may be calculated with sufficient accuracy fos practical purposes from the following convenient table, showing the quantity of water that will flow through a pipe 500 feet long in 24 hours, with a pressure due to a head of ten feet :-

CONTENTS OF EARTHWORK.

In estimating the number of cubic yards in an excavation or embankment, the solid contents of the earth before breaking up is taken or "measured in place," as it is commonly termed. If measurements are to be taken from a loose heap, a deduction must be made according to the nature of the soil. In ordinary soils it is the usual practice to deduct one-third or one-fourth.

Shrinkage of Embankment.-[From Trautwine's Handbook.]-"Earthwork when first dug and loosely thrown out swells about I-5 part, so that a cubic yard in place averages about I 1 - 5 or 1.2 cubic yards when dug, or I cubic yard dug is equal $5 \cdot 6$ of a cubic yard in place. When made into an embankment it gradually subsides and settles or shrinks into a less bulk than it occupied before being dug."

The following are approximate averages of the shrinkage, or in other worde, the earth measares in place in a cut will, when made into embankment, occupy a bulk less than before by about the following proportions: Gravel or sand, about 8 per cent., or I in $121 / 2$ less ; clay about 10 per cent., or I in 10 less ; loam about 12 per cent., or I in $81 / 2$ less; loose vegetable surface soil, about 15 per cent., or 1 in $62 / 3$ less ; puddled clay about 25 per cent., or 1 in 4 less.

Trautwine further says, from trials of his own, that one cubic yard of any hard rock in place will make from $12 / 3$ to $13 / 4$ cubic yards of cinbankment; say, on an average, 1.7 cubic yards, or that one cubic yard of rock embankment requires .5882 of a cubic yard in place. He found that a solid cubic yard when broken into fragments made about as follows :

Excavation is measured by the cubic yard. To ascertain the number of cubic yards of excavation made, take the length and multiply the same by the width and the average height; the result will give the number of cubic feet, which divided by 27. will be the amount in cubic yards. Example :-How many yards of excavation in a cellar 15 feet wide by 18 feet long and 7 feet high ? Answer: 15 times 18 times 7 are 1,860 cubic feet; divided by 27 are 70 cubic yards Trenches and pier holes double measurements are usually allowed.

TESTS FOR SI ATE.

A German trade journal advocates the following method for testing the quality of roof slates: The samples of the slate to be tested should be carefully weighed, and ineu put into boiling water for a quarter of an hour, The water must, however, be fairly free from lime, saltpetre and ammonia. The slates are then reweighed, and those that show the greatest increase of weight are those most capable of resisting deterioration.

Cracks in floors, around the skirting board or other parts of a room, may be neatly and permanently filled by thoroughly soaking newspapers in paste made of one pound of flour, three quarts of water and a tablespoonful of alum, thoroughly boiled and mixed. The mixture will be about as thick as putty, and should be forced into the cracks with a bent knife or other handy tool. When dry it will be harder than the boards.

エモエ

Canadian Archiliect and Buluder
 A Monthly Journal of Modern Constructive Methods， （With a weekly Intermediate Edition－THE CANADIAN CONTRACT RECORD）

PUBIIISHED ON THE TIIIRD THURSDAY IN EACH MONTH IN THE INTEREST OF
ARCHITECTS，CIVIL AND SANITARY ENGINEERS，PLUMBERS， DECORATORS，BUILDERS，CONTRACTORS，AND MANU． FACTURERS OF AND DEALERS IN BUILDING MATERIALS AND APPLIANCES．

C．H．Mortimer，Publisher，

Branch Office：Montreal． ．．．．Toronto，Canada． IRICE，\＄V．OD PER IEAK．
SAMPLE COPY AND CARD OF ADVERTISING RATES FREE．

Architectural Books ．．．

We handle a large list，treating on Architectural Designing，Plaming，Drawing，Details，Construc－ tion，Drainage and Ventilation，etc．，etc．．．．．．．．

DRAWING PAPER， DRAWING INSTRUMENTS， TRAGING LINEN， TRAGING PAPER，ETG．

 TIIE BEST QUALITY AT REASONABLE PKICRS．We are CANADIAN HEADQUARTERS for the above，and will make Special Discount to our subscribers．

WRITE FCR CATALOGUE．

The Canadian Architect and Builder， TORONTO，CANADA．

[^0]: Fees for entering certificates

[^1]: AMOUN'I OF MATERIALS REQUIRED FOR PIASTERING 100 SQUARE YARDS (AVERAGE), "TWO COAT" OR "COAT AND SKIM" WORK. Sand, ordinary work. 40 cubic ft Lime, " " with common sand.............. 6 bushels. Hair, $1 / 2$ in. wide, nailed $3 / 8$ in. apart.................. 1440 Nails, 3 rd fine, studding or joist 16 in. apart. 10 lbs. Nails, 3rd fine, studding or juist 12 m. apart. 12 lbs.

