The Institute has attempted to obtain the best original copy avalable for filming. Features of this copy which may be biblographically unique, which may alter a.iy of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculeeCover title missing/
Le titre de couverture manque

Coloured maps/
Cat tes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de , ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages noont pas ètė filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-Etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui geuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagiesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplëmentaires:

This item is filmer at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

New Series.]
TORONTO, JULY, 18.5.
[Vor. I.-No. 7.

WORK FOR THE MONTH.
This is the proper season to extirpate weeds that are injurious to agriculture. Many farms are nearly ruinei with weeds, the complete destruction of which, wonld sacrifice a large share of the crops upou the ground; land in this state can only be made clean by a systematic course of rotation of crops, and by drill husbandry, and horse and hand-hoeing. No weeds should be permitted to grow in the fence comers, pasture grounds, or road sides; and if possible, the worst species should Le destroyed that may be found among the growing crops of grain. A little attention to this matter would prove of immense importance, and would, in the course of a fow years, be a means of doubling the products of the farm. It matters not how perfect the system may. be that is practiced, if these particulare be neglected it may so happen that the crop will turn out a failure. The turnip, as well as all the other roat crops, will require the greatest attentionduxing shis month; and unless the weeds be thosoughly destroyed, and the plante pro.
perly thimed in the rows, it is uscless lu hope.for a paying crop of cither turnips, mangel-wurtzel, carrots, or parsnips. The cultivalor should be frecly used between the rows of the abore-mentimed root crops, during the first stages of their growth; and if this implement be of th? most improved kind, it will perfo:m its work so well that tho hand hoe need only be used for thinning the plants, and for destroyian such weeds as may be in the rows. The cultivator may, with great advantage, bo used three times between the rows of the root crops, including po. tatoes, at intervals of ten days or a fortnight each; and at the completion of each such hooing, some fresh mould should be thrown around the roots of the plants with either a shovel or a double-mould board plough.

Hay.making--General directions have been given for making hay of a syood quality in each of the previous volumes of this magazine; it therefore would hr out of place to reapitulato what has so often heen submitted for the bencfit of tix Canadian ha' . '... . 'ut it might not
be amiss tomention, that the great secret in .cening hay of a superior quality, con. sists in curing it in small cocks, and af. terwards in larger onies, instead of scat. tering it about upon the ground to be ex. posed to the influence of the sun, dews, and oftentimes rain. The plan of scat. tering and turning the partially cured hay about upon the ground, oannot always be avoided, but it should be praoticed only where neesessity compels it. The revolying horse-rake is the mast effioient implement that has yet been discovered, for gathering the hay into rows, and for performing the offices of the common hand rake; ladecd, this implement, if properly constauted, is of such great value in saving manual labar in the hay field, and for pulling peas, and raking stubbles, that no oultivator should be: whhout it, When their great labor saring properties are fully taken into ac. count, their cost may truly be said to be trifing. Any clever agricultural implement maker understands the principles upon which they are constructed.

As soon as the clover hay is stacked or housed, a top-dressing of marl, mixed with an equal proportion of vegetable mould, should be spread over the sward; one hundred bushels of this mixture ap.plied upon an acre of clover stubble, as soon as the first erop is removed off the land, will promote a large and profitable crop of clover seed, and the secand year's clover witl be greatly improved for grazing. The Canadian farmers cannot conceive the advantages they would derive from marting their kand, untess they make a few experiments with the impor. tant fertiliser.

By the close of this month the winter wheat crop will be ready for harvesting in the south-western portions of tha $p^{\text {mo }}$
vince, and it would be well for cach farmer to make an experiment in cutting a sufficient portion of this crop while the berry is yet soft and in a dough state, to ascertain whether this is a more profitable period for cutting wheat than when it is allowed to fully ripen.

MEMORANDUM FOR PEACH-GROWERS.

It is a well ascertained fact that all deciduous trees suffer less from severe frost in winter, when their wood is perfectly matured by sufficiently warm summers, than when grown in climates where they cannot enjoy that degree of summer heat which they are naturally adapted for, and which they require for the due formation of their tissues. Hence in the North of England, yonng peach trees will be partially injured by a degree of frost, which, though of equal intensity, will not injuriously affect similar plants in the neighborhood of London.
If the mean temperature of February amount to 40°, and that of March to 44° or 45°, the peach tree will be in full flower against a wall with a south aspect about the last week of March,-Now this temperature in those months is not found even to the south of Lake Ontario, where the mean temperature of Februaxy is 26°, and of March 35°, yet excellent peaches are grown in that part of Canada West. From this it would appear that this lower temperature in February and March, is oompensated in Canada by a higher temperature in the following mantas, For it is stateck that the blossoms started by this higher temperature in February and Marah will be followed by ripe fruit in the last week in August, provided that the mean temperature of the iutcrmediate monith be as, follows:

$$
\begin{aligned}
& \text { April, }-\quad-49^{\circ} \\
& \text { Muy, }-55 \\
& \text { June, }-61 \\
& \text { July; }-64 \\
& \text { Ausuat, }-63
\end{aligned}
$$

$$
\begin{gathered}
\text { Muy, }-55 \text { May, - }-58 \\
\text { Mune } \\
\text { Muns }
\end{gathered}
$$

$$
\text { June, - - } 61 \text { Juns, - } 66
$$

Mear Tempmrature of the sams Montils ar the Falls of Niagara.
April, - 50°

July, - - 70
August, - : 69

312

292
D.ference in favour of the Falls, 20 Which nearly compensates the diffe ence in Pebruary and March, which is-

Feb. 40°, March $44^{3}=84^{\circ}$
In Canada, Feb. 26°, March $35^{\circ}=61^{\circ}$

23

This compensation is possibly augmented by the mean temperature of September in Canada being 62°, while about London it is 57° only, and in consequence of the lower temperature of the early months in Canada, peaches are about a fortnight later in ripening as well as in blossoming.

The data here stated, aye taken firom the Penny Cyclopedia. The memorandum may be of use in preventing the attempt to cultivate the peach tree in situations where the thermometer will shew that the heat is insufficient for that cul. ure, both ia degree and continuance.

To the Elitor of the B. A. Cultivator.
Sin, -You will coafer a favour by publishing the following communication, which I think would be a benefit to the conmunity at large, as I have been asked fcr the receipt in question by several persons, one of which I gave to Mr. Hurrison, and I believe he painted the theatre ut Hamilton with the sane conposition, and it has proved a failure.

Having seen a receipt for making a brilliant *hitewash, as is seen on the Presiden's house at Waghington, published in the seventh number of the third volume of the Cultivator, and taken from the- Southern flanter; and having seen it puffed in many of the newspapers from tinie to time, the Jollowing experiments maty be relied on, and may prevent others from being disappointed likewise:
I. Beptember last, I procured some of the very
lest material, guch as unslacked lime, rice flour. glue, whiting, and salt, and mixed according to the receipt, I painted over a large two story Jwelling-house, that had been previously painted with whiteleud and cill, some years ago, and also a large wood and carriage-house that had never beca painted. These luaildings looked well for a few diays, especially ix dry weather; but at the present time they look more shabliby then if they had been left naked, and would haje to be scraped before they could be painsed with white lead and onl. As the whitewush is cmupletely washed off, with the exception of a few seales of dime, both buildings now present the same bad appearance. James Lewis, Esq.e has tried the same with colouring matter with the same bad effect, and has bee: obliged to remove it, and put on oil paint.
I would therefore recommend those that have good buildings, or bad ones, not to use it, as the, making and layng it on occupied near ten da ys and the time was worse than lost. It adhered some better to the chimney-tops, which were briek; but esen they are looking shabby. It adheres better to brick and stone th.n wood. I eould not recammend it in any shape other than a temporary whitewash for the isside of a room; bat whitelead and oil is far better, and cheaper in the end for every purpose.

Y'am, Ae.,
Fraveis G. Winson.
Goredate Farm,
Sulefiect, 7 th June, 1845.
We are obliged to Mir. Willson for the above information, and can only say that we shall in future be more cautious in giving insertion to similar articles as the one alluded to. In experimenting, it is wise to do so upon a small scale, and then there will be no risk in sustaining loss. There have been a number of receipts for making white-wash for buildings inserted in the Cultivalor-each should have been tried upon a small scale, and the relative value of cach would have been known, which, if pab. lished, would have been a boon to the public. It is impossible for the conductor of an agricultural journal to test even a tithe that is rocommended to the atention of his readers, The value of has journal will depend in a great measure tipon the soundness of hls judgment in giting pulslicity to the experiments of others.--Eis.

AGRICULTURAL EDUCATION.

But few subjects that come within the provincs of an agricultural magazine will at all com are in importance with that of education. Agriculture can never take that stand in the ranks with the other rrofessions that its importance would seem to warrant, until those who cultivate the soil become better acquainted with tha principle.s which govern their professions, which at present appear matters of mystery and uncertainty even to those who profess to have some little claim to the appellation of educated far. mers. No one would question the correctness of the assertion, that Canada is emphatieally an agricultural country ; all other interests must bow to this,-and without it the colony would not be worth any attention from the mother country. Notwithstanding all this, there is not an academical institution in the pravince that is of a suitable character, or in which the essential branches are taught, to complete the education of a farmer's son who desires to become proficient in the science of agriculture. If a farmer whose means would admit of the expenditure, should eilucate his son which he intended to be the farmer, at one of the most popular academies, colleges, or universities in the Biitish Imerican provinces, ten chances to one that the kind of training which the student would receive would disqualify him to be a successful farmer. Instead of acquiring a wholesome taste for rural pursuits the lind of associations with which he would be surrounded, would to a certainty give him a distaste for the usefuk ealling for which his parent designed hing to practice. Although the present chartered educational institutions of Canada are unadapted to the exctrmitance and tastes of the iural classes, it by no means follows that
schools of a very superior order could not be introduced, in which the farmers ${ }^{r}$ sons could receive a liberal education. at a moderate rate, which would qualify them to perform their honorable avocations in a manner that would be highly creditable both to the individual and na. tion.

It is difficult to divine what the result of the many appeals that have been made to the Canadian farmers upon this important subject will amount to; but one thing appears to us certain, that no action will be taken in the matter unless more energy be displayed by the interested parties themselves. No doubt there are many who do not believe shat it is essential that formers shourd be a well educated class, but fiom grovelling sentiments we begr to dissent. As the country gets older we hope to see a greater desise manifested by the Canadian farmers in giving their sons, whom they intend to follow the plough, a more liberal education, instead of lavishing some hurrieds of pounds in educating one out of a half dozea boys to prepare him for one of the learned professions, as they are called, to the great disparagement of the neglected members of the family. A sound practical education. is of infinitely more value to a young man commencing business than houses. or lands without it: The following from: a writer in the Agricultural Gazette, will serve to show the correctness of our views:-
"The education of farmers has hitherto merely taught them the labors of the farm mechanically and by rote, without any science. They have been taught the operations and seasons, but unnssisted by any analytical or inductive reasoning; and hence the difficulty to improve them, and the diversity of principles, and the uncertain basis on which much of their practice stands. They may attain a certain skill in practice, such as a working watchmaker may atain in putting tugeihers watch; but ne.improvement can axige wubteas thos
laws and principles on which it must depend are known, and the , mind (governed by right knowledge of causcs and effects,) be broaght into action enlighted but unfettered by previous practice. the time is now come when very ditierent returns for the labor must be realised on the generality of soils, to leave the cultivators any profiit, and the expenditure, too, must be leseened-not by a reduced scale of wages, but by the general use of improved machines and implements. One of the gréat misfortunes attending the study of agricul. ture has been, that the varied knowlege its improved practices calls for, is either not understood, or far too lowly rated; and indeed, it can be fully appreciated only by those who are engaged in the pursuit with proper education and views. You may make a mechamst, an engineer, an arclitect, a surgeon, or an accoumtant, by an education limited to the immediate knowledge to which ether looks. An engineer need not know surgery-nor a surgeon the principles of building -nor an accountani mechanics; but nnless a farmer be so educated that he may select the best implements, estimate righti'y the utility of machinery, arrange his buildings, lay out his improve. ments, doctor his cattle, and keep his accounts, so as ius only to tell him each year's gain or lass, but also to separate the result of each pursuit, he cannot be expected to farm with the advantages that should accompany his large outlay of capital. and the distant and varied returns that attend it. The pursuit of agriculture is, therefore, one in which the man of science finds much to interest him; but it is always taken up by such too engerly, and too generally attended with unfavorable results-not because his scientific views are wrong, but from the fact that whilst farming may receive inportant aids from each, success depends on the well carrying out of every branch, and with a care and an economy that is bestowed only by the masters presence and discretion.

No parsuit has such a variety of interesr, nor can any business or profession vie with it in happiness and independence. The farmer has every day some fresh incident, some new progress to observe-the advance of his crops, the condition of his stock, and the results of his experimentsand his life is passed in the midst of all that should make it enioyable; its attractionsare felt by the highest, and it is a following that never degrades. No profession or, occupation in these respects can compare with it, and without affording large profits, it begins by giving much that large proits and years of labor are devoted to end with. IIswitt Davis, Sining Purt, Croylon. \Extracted from a letter of advice to a father who had consulted the writer as to a pursuit for a son.."

CULTIVATION OR FLAX.

Although this subject has lieen prominently brouglt, before the Canadian busbandmen, through the medium of the the cr.?

British Anerican Cultivator,s still it has not had the effect of producing the results as whs anticipated by its editor, All that was said in favor of, the flax crop nhay be fully realised by every skilful cultivator; and it appears reaily strange that so littlo interest should be evinced in relation to a crop which is so well adapted to the soil and climate of this countrys and which is calculated to enrich both the producer and the nation. It is useless to further urge the flay crop upon. the attention of the farmers: of Canada, bccause they: appear to have neither the will or ability to introduçe those changes in their system of managing their soil which would sceure to them a profitablo system of husbandry. Honorable exceptions, however, may be made to this broad assertion : and it is to be hoped that the day is not far distant when no cultivator will be satisfied with a net profit of one or two pounds per acre from his land, after all expenses are paid, when, by expending a little extra capital and skill, a net profit of from ten. to fiften pounds per acre might be realised as certainly as the small profit mentioned. There are a number of crops that would pay very heavy profits if only'a considerable amount of sfill were expended in this production, which have as yet reccived little or no attention from the farmers of this country. In the catalogue of those neglected erops may be found the one which may be seen at the head of this article; this by na means, should stand at the head of the list, but as' it is ivisely calculated to be generall's cultiyated upon a pretty extensive scale, it may be interesting to some of the readers of this journal that these remarks should embody some practical facts by which an opinion coull be formed of the profits of

So far as experience goes, we can only say that we have cultivated two acres and a half of flax the past year, which yielded in seed twenty-two bushets, and in fibre five hundred pounds of clean flax per acre. The seed was worth one dollar per bushel, and the fibre ten dollars per 100 lbs ., which would give a return of seventy-two dollars for the pro. duce of an acre ; at least one half of this sum was net profits, which would equal the value of the land upon which the crop was grown. The hemp which we grew last year, was worth much more, in proportion to the land sown, than the flas, and the results of both crops were so satisfactory, that we have sown the presont season thirteen acres of flax and. ten acres of hemp. Indeed we feel so sanguine of the result of this experiment, that we intend to sow annually not less than one sixth of our arable land with flax.

Much of the success of the husbandmann will depend upon the rotation of crops which he pursues, and it therefore may be interesting to mention the rotation or succession of crops which we propose to practice in connection with the proposed extensive system of flax growing. As we intend that the profits of this one crop shall pay the entire expenses of the farm, we shall commence our rotation with this crop; and in the management of all the other crops upon the farm, shall have a constant eye in kecping up the fertility of the soil, so that it will be in a clean and fertile state for the flax crop once in every six: years.

With the flax wo shall sow down thr land with clovert, the first ycar of which will be sown in July for hay, and in Oc tober fur seed ; and the second year, up
to the first of August, for pasture, at which period the stock will be removed off the clover; and betw een the twentieth of the same month and the tenth of September, the clover sward will be ploughed, pressed and sown with winter wheat; at the removal of the winter wheat the stubble will be ploughed under and the land sown with rye, to be fed off will sheep the following spring; by the middle of May the whole of the land sown with rye will be liberally manured and ploughed for the root and other hoeing crops, consisting of potatoes, turnips, carrots, mangold wurtzel, parsnips, Indian corn, dwarf field beans for feeding sheep, and a host of other crops which it may be unnecessary to mention, all of which will require an equal amount of attention with that of the ruta bago and carrots.

As soon as the fields are cleared of these multifarious hoeing crops, the land will be ploughed with a heavy winter's furrow, by exposing a large surface to the action of the frst, which is performed simply by raftering or cutting the furrows thirty inches wide, in a similar manner that ribs are formed for turnips; in the following spring, as soon as the ground is sufficiently dyy for harrowing. those ribs will be harrowed down and the land made perfectly smooth, and imnediately ribbed with a twelveinch furrow, and sown wih spring wheat; upon the removal of the spring wheat crop the ground will be ploughed, and the following spring scarified, harrowed, molled, and otherwise, as circumstances may require, be made in a fit state for the flax crop.
Dy lursuitg thisoystum of tillage the soil will be constantly getting richer and hererr, and will in proces of time the.
come of a uniform texture and riohness. stand the principles which govern the The whole of the labour and expense of operations of his exalted profession. A cultivating our farm upon this scale will, in nine cases out of ten, be met with the flax crop alone leaviug the products of five-sixths of the farm as net profits.Probably not one in five hundred who may have read this article will credit this asscrion, but notwithstanding, we have every confidence that we will be fully borne out in our prediction unless some extraordinary influence prevents the complection of our plans, over which we may have no controul. One-sixth of our farm will be annually sown with winter wheat, one-sixth with root or such as are commonly denominated hoeing crops, and one-sixth with spring wheat ; the winter and spring wheat will be sown in rows and horse-hoed, so that by this method one half of our land will be annually hoed, and the other half will be covered with a thick growth of clover and flax, with which no weeds can grow.

The expense of cultivating land in the manner described is much greater than most people would desire, and in all probability but few will practice this or any other expensive mode until the results of our experiments are made known. Every man who prides in being ealled a farmer, manifests more or less a desire to be styled by those around him a clever and intelligent husbandman; this appellation, however, can only be applied in justice so the man whose land is constantly inproving, mand whoso profits in business are on a gradual increase. The ilea of an intelligent farmer cultivating his land with a loss, bcars upon the very face of it a consadiction of terms ; in fact such a cirermstance clearly proves that the farmer do's aut reatly ander-
ment be of rare occurrence, but at times it is scarcely possible to obviate disass. ters; but when any misfortune inas Le. tallen a crop, a diseerning farmer will see at once the propricty of replacing is with another that will be likely to come to perfection. No farmer should rely solcly upon one branch of his businces; every crop that can be successfully grown in the country should be cultiva. ted, and by this means a market would not only be established for a variety of products which have been hitherto comparatively unknown, but the demands for those new preducts would be increasod in proportion with the amount of produc. tions.

The untutored reader will no doubt ho bold in asserting, that the expensive system of cultivation of which we have merely given an outline, will not cover costs, and that the rast amorme of labour that will be required to keep the whode maehinery in enmplete motion, mast of neeessity entait the most ruin ous consequences upon the farmer who odopts it. "A greater mistake than this could not possibly be made, provided that the farmer who practices the inproved system thorouglily understands the scionce as well as tho practice of agriculture.

Plants, like living animats, zequire certain descriptions of food to bring them to a natural state of perfecion, and the individual who stadies Nature's laws in the management of his crops, and attends risilly ta their requirementa, can scarcely, fiil in "ecing a suo. cessfind cultivator.

- The query will very naturally arise in the reader's mind respecting the manner in which the flax crop will be disposed of, to give so large a return in profits as to cover the entire expense of cultivating five-sixths of an arable farm with ctier erops. To satisfy such enquiry, we would state, that we intend to ship our seed to Ireland for sowing, in which country it will command the highest price; and taking one year with another will net at seven shillings and six pence currency, per bushel of fifty-two lbs. The fibre will be spun into cordage, twines, and woven into factory linens, in our country, giving a return to the grower in profits, besides the profits to the manufacturer, of at least two pounds ten shillings jer 100 lbs ., reckoning twenty bushels of seed, and 500 lbs . of clean fibre per acre would equal, according to our calculation, the sum of twenty pounds for the produce of an acre of flax. It is only by good management that this amount of money could be realised from an acre of flax; but at the same time'it may rot ouly be done, but twice that amount of money can be had for the produce of an acre of this crop, if cultivated and managed upon the most approved principles.

Some may accuse us of bnasting, and others of presumption, in unfulding our mind so freely upon this to us very iniportant interest ; but to satisfy the most fastidious mind that other motives besides vain-glory have throughout iufluenced our conduct in agitating this question, we shall occupy a little space in copying some extracts from a series of very able letters written on this suljact by f. If. Bickinson,' London, England, which were inserted in fu'l in recent numbers of that very valuable paper the Agricul«utut Gaz *ie:-
"As some parties have publicly expressel" their opinions on the correctness of my statement that I and others have grown Flax, by whicly we had, after paying all expenses, $£: 20$ per acre profit, without includng the seed, which the Irish farmers viewed as of litte value until lately, when their error is proved by Mr. Warnes, and Mr. Farrow, Secretary to the Ipswich Flax Society, an whose reports will be faund several instances of therr members, gentiemen in Noriolk, having had last year 22,29, and 32 bushels of seed to the acre, which they value for feeding nt 65 . 3 d . per bushel, aillough foreggn seed sold in Ireland last year at 12s. Gd., and the English is equally grod, my object is now to prove 'that my statements are not erroneous;' as some of the oid school farmers would wish to make appenr ; therefore, in justice to myself and the subject, I shall add in proof such facts as I hope will not fail to produce such a spirit of mquiry as will 'prevent the practical farmers' of the present day 'from shutting up their ears' to farther statements ' from me and others on the subject.'
I was favored last winter by Capt. Skinner, Secretary to the Belfast Flax Inprovement Society, with coppes of their ammal report; and on requesting that my letter on the cultivation of Hax should appear in the Asrrcultural Gazette, I torwarded the reports to the Editor, being anxious to convince him that others agreed with me 110 opinon, and that by following up the Belginn systen. If cultuvation, \&c., as recommended by the Belfast Society, a much larger profit than E20 per acre was possible to be obtained; and, in proof of this, I referred to a Mr. Demann, who grew flax near Armagh, for which he got $£ 140$ per ton; I also informed him that I took my statements ns to the value nad q' antity grown ur Ireland in 1843, on 112,200 acres, from a circular sent me by Mr. John Cramsie, Flax-market, Belfast, who averages that year's production at 56 stone per aere, as slated in this letter.
Now, as it alwnys kappens that the finer the quality ss, the grenter the produce per nere, from 60 to 70 stone, and sometimes more, it is us: unreasonable to suppose that Mr. Demann (judgng trom Mr. Clamse's average of 56 stone per acre), has had 60 sione ; if so, his expense and profit is, 60 stone of flax proluced on 1 acre, $\quad \mathbf{f}$ s. d. and sold at 1is. Gd. per stone. 52100 Accordingio the reports of inembers of the Ipswich Flax Society Mr. D. should have had on such superior filax 29 buslels ofseed, at feeding price, 6 s. 3 d .
$9 \quad 13$
Deduct expenses:-
Added to my own experience. I hive the authority of an Irish finsgrower and flax-merchant, Mr. Acluson, Tanderagee, for the items of espenses incurred growing an acre.

Mr. Demann's profit appears to be.

Being requested last spring by soveral gentlemen in Norfolk, Essex, Suffolk, and Scotland, to favour them with such instructions on the cultivation of the plant as I should recominend, I had much plensure in answering their communications; and 1 have still more in stating the result of their experiments. I have now before me samples of their flax, that is so like, in color and quality, to the best Flemish, Dutch, and Courtrai, that it would puzzle the most experien-, ced spınuer to tell but that it is foreign flax ; and it is well worth from $£ 80$ to $£ 120$ per ton. Added to this, some of the growers-among othetrs Mr. Warnes, of Trimingham-assured me they had nearly 70 stone of flax, and from 29 to 32 bushels of seed to the acre.

Aware that theoretical observations can never entirely obliterate prejudice, I will place before those interested in the well-doing of the farmers of this kingdom, facts and experiments which I hope will be sufficient to raise the curtain that has so long covered the stage of the great agricultural theatre of Europe, and concealed from the eyes of the British farmers the profits of flaxgrowing derived by their Continental agricultural neighbors, from whom England derives scarcely any benefit; although it appears from fhe "Irish Farmers' Journal," these people have been draining annually from us between 10 and 12 millions sterling for flax, oil-cake, and flax-seed; and it appears, by the Paliamentary returns up to the 5 th Jan., 1844, that this sum, drawn by our Continental friends, is very little short of the whole value of our exportation of manufactured cotton goods to all parts of the globe, ($£ 16,249$,268.) By the same returns I obsezve that the whole amount ot our exports in linen and yarns was $\mathbf{£ 3 , 6 0 3 , 0 7 9 , ~ s o ~ t h a t ~ i t ~ f o l l o w s ~ w e ~ c o n s u m e ~}$ the agricultural produce of Belgium, \&c., to the amount of from 7 to 9 millions sterling annually, and this sum may and ought to be kept in this country, if landholders and farmers will but study their own interest. I would just say to the calculating farmer, consider the population of Great Britain $18,800,000$; deduct the inhabitants of cities, towns, and villages, who are merchants, manufacturers, and trades-people, then, on seeing what number you may allow to be farmers, ask yourself how much of this 12 millions your own share may be, and do not forget the example you have before you in the north of Ireland, where flax-spinners declare that some of them who have paid $£ 40,000$ per annum to the French, Dutch, and Russians, for flax, now distribute those large sums annually amongst the farmers in their immediate district.
I would also call attention to the following:An Irish gentleman, Mr. Cassidy, of Glenbrook, Magherafelt, in writing on the 26th ult., to the Secretary of the Belfast Flax Society says, "I have rend with pleasure and much interest the digcussion on the flax question in the 'Farmers' Journal;' and I must say the opponents of flax do it thost gross injustice; for instance, in 1843 I got 5145 for flax grown on barely 6 Irish acres
(or say 8 English,) and I calculate, atter making a liberal allowance for expenses, I had $£ 100$, or more than $\mathbf{t 1 6}$ per necre clear profit by selling the flax at 8s. to 8s; Gd. per stone in Cookstown;" then he aidds, "this year" I saved some sond of the flax on the Courtrai sjscem" (before this perion he did not do so, the seed was as usunl lost in the watering ;) "on applying it 1 'find the seed excellent and putritive tood for milch cows, pigs, and hbrses; and to this klnd of food we attribute the: remarkable sleckness of animals reeding on it, and we observe that the milk' of the cows improved, both in quality and quantity, immediately aftar we co.amenced giving them the bools."
Now, as this genileman states that he had without the seed (for it appenrs he followed int 1843 the old system, a clear profit on the

Flax-grown on eight English àcres $£ 10000$
We must add to this, what seed he should have had according to the Norfolk farmers' calculation, 29 bushels to the acre, or 232 bushels, at 6s. 3d. per bushel.
f172 100
Therefore, had he saved the seed, even working the flax on the old system, he would had a clear profit of $£ 21$ 11s. 3 d . per acre, whercas, had he managed the whole crop on the improved method, he would have got more than 8 s . or 8 s 6 d . per stone for the flax; in all probability, 10s. ar 123. It is a well-krown fact, that any uneducaled ploughman can sow and reap of an acre of good land from 20 to $25^{\prime} \mathrm{cwtt}$. of wheat or barley, and obtain the highest priee in the market. In this case the land gives the quality and does all, after the seed leaves the hand that sows it; but in flax-growing the land produces the bulk, and ckill and hand-management gives quality ; therefore the cultiva:ion of such a crop is certain to give pleasure and profit to a skilful practical farmer.
Having read with pleasure the letter following mine, in page 247 of the Chronicle, and agreeing as I do with the writer's views, and with every syllable he makes use of respecting the neglected portion of Ireland, and comparing those parts with the northern province, which is attended to by considerate landlords, such men as the late and much-lamented Marquis of Downshire, and knowing as I do the good results from the landholders in that quarter, taking up the subject of flax cultivation, and interesting themselves in eyerything calculated to benefit their tenantry, I must borrow a few words from your correspondent and ask, how can it be that the newspapers are daily filled with advertisements of railway companies, joint stock compànies, and many other uncertain speculations, patronised, as would appentrfrom the prospectuses, by noblemen and other landed proprietors, yet-not one company has yet started in this country to grow, or encourage the growth of flax, ap article that is consumed in such quantities, and of sach vast importance to the landed
interest: and above all, gn certain to leave a profit for labor and moncy employed? I do not expect to see the Government starting modei farme in every county or diatrict in England, but I say, if the landowners of Great Britan will not be alive to their own interest, individual capitalists had far better invest their money, and try what they can do to keep in this country the 10 or 12 million sterling now paid away annually to foreigners for flax, oll-cake, and fiax-seed; they will find a ready market in Yorkshire and Lancashire, for all the flax they can produce; and they will find buyers for their seed, and oilcake among those farmess who may not grow it, although they must aduit, that it is supetior to angthing yet found out for fattening catile.

As the present prosperous atate of our trade causes money to be plentiful, landowners are prerailed npon everywhere to lead their names, capitsl, and mfluence, to speculations on enbarknatents and excovations. It might be prudent for landowners, while they sink their money in railwaps, to seflect on the state of the tenant-farmer, whilst the menufacturers are calling out to a man for open ports, and as by this letter I prove that a farmer can grow on cight acres of land what will have safficient profit to pay the rent of a farn containing 125 acres at the highest average price in Cagland (Leicester, 26s. 9a.,) it might be advisable for landed proprietors to do less in ralways and use a little of then kn mployed capital and :nfluence in promoting the growth of Fiax, ar article that would reniunerate farmers and enable them to pay their rents, regardless © the present proteciing duty. This could be done by a joint etock company, with branches and model farms; such a company would command the influence and assistance of a powerful and wealthy body, the flax-spinners of Great Bratain, who are deeply interested and most anxious to see an article grown at home that they have to look to toreigners for, an article so superior to cotion in texture and durability; such a company would act as a golden link between agricultare and commerce.

To the Edttor of the B. A. Cultivator.

S_{In},-The last mail brought me a supply of wid country papers, and I see with regret that the laudowners and farmers are using their utmost -xeations to excite a hostile feeling in England to the Imperial Act for the admission of Canadian ireduce free of daty, and are urging the necessity of a simultancous movement amongst the agriculturalists to effect its repeal. The old cry, that used to be raised, about the impolicy of depending on foreign countries for a supply of the first necessary of life, is now, no longer leard. That answered well enough, while the threatened competition came from aoroad; but when the producers are natives of the British isles, or their children, and subjects of the British
empire, though dwelling on this olde of the Atlantic, some fresh pretext must be brought forward. We accordingly find that the speakers, at the public meetings, now dwell upon the immense and unfuir advantages which the Canadian farmer enjoys. He pays no taxes worth naming-he has no poor rateb-he occupies a rich virgin soll whech brings ferth year afier year successive crops of wheat wathout manure. Then it is assumed, that the lowest price of wheat which can remunerate the Enghish grower, is 56s. sterling, per quarter; and as the Canadian wheat has been sold in the English market below that price, the conclusion is drawn, that our advantages, above set forth, enable us to raise it with a profit, and undersell the old conntry farmers. Little do these orators know of Canada. Seated by their snug firesides, or enjoying all that wealth, and science, and labour can contribute to swell the enjoyments of the highest degree of civilization ever yet reached by man, they seem to fall into a state of feverish apprehersion at the anticipated extent of competition with which they are threatened by the industry of the Canadian backwoodsman! Little do they know how small a portion of profit falls to the share of the farmer or labourer (as Col. Prince would call him) here! Now, I am convinced. that if a farmer in Canada, were to calculate tho cost of raising a bushel of wheat, and then deduct the amount from the 3 s .6 d . currency, which has been about the average price given by the merchant during the two last winters, it vould be quite cvident, that he is not remunerated. Nay; more I am eatisficd, and those well acquainted with England conirm my vierr, that when wheat only fetches 56 s. stering in the English market, the English famer realizes, in spite of all drasbbacks, a greate profit than the Canadian. The fact is, that in spite of the axiom in political economy, that capital will net remain employed, unless at a remuncrative profit, there is an exception in the case of the Canadian backwoodsman. The reason is not difficult to discern. His grand object is to free his land from the embarrassment of debr due in the shape of instalments to the Crowt, the Canada Company, or private individuals. To leave a frechold estate to his children is his aim; and the arcomplishment of this depends on the labour of himself and family. That labour may be great and piotracted, but the end is certain. Thes can raise wheat - wheat always commands
money,-and money will eventually leave them in possession of an unincumbered freehold farm.

At present, the important question for us Canadians is, whether the Agricultural agitators in England are likely to succeed in their avowed object-the repeal of the Canadr Corn Admission Bill? For the following reasons, I am of opin ion they will faii: Firstly,-The repeal of that Act would be a manifest breach of faith. It was distinctly held out to us by the Mother Country, that on certain conditions our grain should be admitted free of duty. We complied with those conditions, and the above Act was accordingly passed. Since then, capital has bee , invested in all parts of Canada, on the faith \mathbf{f} its continuance, as a solemn Act of the British Legisjature, and it woald be difficult to discover a more monstrous example of caprice, inupolicy, and injustice, than its repeal. Secondly,-The plan of Sir Robert Peel geems to be, to hold a a steady balance between the agricultural and manufacturing classes in Great Britain; and the existing law is a compromise between the extreme viesss of both, and therefore, likely to be permanent. There has bee: nothing besides, either in the acts or words of Sir Robert Peel, to warrant the belief that he will yield to the clamour of the agriculturists. Thirdly,-The present critical state of the relations beiween Great Britain and the United States, make it highly inexpedient to repeal an Act which is calculated, if let alone, to give ten-fold strength to the connection of Canada with the Mother Country.

> I am, \&c.

An Exgeramt.
June ј, 184 Ј.
How to make Suap.-Messrs. Elitors-If you think the following article worthy of an insertion in your valuable paper, it is at your service. I have seen a great many well wirtten aticles on Agricuiture, Cookery, \&e. \&c., but as I do not recollect of seeing any thing written on "moking Soap," I will give you the following, which is the result of years of exp erience:

First, set your tub as usual, with sticks and siraw, and then pat your lime (slacked) on the straw to the depth of three or four inches-then take a long stick tiat will come a few inches above the top of the tub-wind a hay rope around the stick nearly its whale length-det the sick go through the tub two or three inches, then you can draw your ley without putting your hands into it underneath. Put your grease inio the kestle, and tura in about two quarts (or enough
to cover the bottom of the kette) of your atrongest ley. Boil a few minutes, then turn in a titile more ley, and continue to turn in as the ley boils over, until your kettle is about two thirds or three quarters full, when you can fill up the ketlle, and atter skinming the contents well, dip out and emply it into the barrel. Put in two poands rosin to one barrel soap. If yourley is of safficient strength, you will be sure to have sood sonp. I have heard people complain a great deal that they did not have "good luck" in making sonp. Their ashes were not good or not made from gooxl wood, or something or other. But if the above directions are carefully followed, I can assure them that they will have no reason to complain of " poor luck," or any thing of the kind.
N. B.-Clear grease doesnot require more than ten minutes boiling, bat where there are bonee, it takes longer time. Some people pat lirne in the middle of the cask or tub, but the main nse of lime is to strain the ley, and make it pare-theretore it should be put on the top of the straw al the bottom of the tub.

An Ond Hand.
Grey, February 23th, 1845.
-Maine Cult.
Experimental Crops.-The boys shouhl request their fathers to let them have a small patch of land on which to grow experimental crops this season. The schoolboys on a model farm near Dublin, last year, raised in a large field, a orop of potatocs averaging 750 bushels per acie, and thus supported themselves at school, and made fair progress in their studies. A humble gardener in the vicinity of Cheshire, raised 64 bushels of rood wheat weighing 70 lbs. per bushel, from a trite over a half acre of highly cultivatest ground. Another person produced 28 bushels of wheat from a quarter of an acre. The secret of getting these crops lies in.manuring properly and pulverizing the soil very deep, say two or thice feet, which they did with a spade; but you can do it minch easicr with a subsoil plough.

In makiag experiments, keep a caroful record of all expenses: such as the value of labor, manure, seed, and rent of land; the value of the crop at harvesting, and the increased worth of the land. Then strike the balance between the two sums, and the difference will bo the loss or gain.-Am. Ag.

To take tuat fram from.-Apply epirits of targentine.

ON THE INJURY AND WASTE OF GRAIN,
anisfag from the use of too mect seed.
In the last volume of the Cultivator we directed its readers to the highly important subject of sowing the proper quantity of seed-grain upon land, as set forth in a little pamphlet written by $M r$. Hewitt Davis; and considering the amount of good that would result to the Canadian farmers from a thorough acquaintance with this branch of their business, we copy the following ably written paper from the pen of the same gentleman, for which we are indebted to the Agricultural Gazelte, and which will be found to accord with the opinions of the author published in this journal, as previously alluded to. Unfortunately most o! the new theories that are calculated to benefit mankind, are published to the world in such a crude form, that in a majority of cases the experimenter fails at arriving at the results anticipated; and not unfrequently the discovery is condemned without a fair trial, and class. cd among the modern humbugs. The practice of sowing a less quantity of seed grain upon a given area of land than what is usually sown, would undoubtedly, under a certain system of cul. tivation, be a means of greatlyincreasing the amoart of produce from the soil, and under other certain management, would be a means of lessening the products; now, without giving a full statement of the whole system, it is highly probable that the inquirer after truth would attrilute the results to wrong causes, and draw erroneous conclusions from experineuts. Mr. Davis has neglceted to mention a very essential feature of his farm..anagc...nnt, and upon which in a great measure his almost unparalleled success as a wheat-grubicrdepends. By referring
to his former essay, it will be seen, that the order of his rotation of croping is most complete, and also that the whole of his crops, excepting clover, are sown in rows, and horse and hand-hoed. Under Mr. D's system of cultivation the land is constantly improving, and cannot be otherwise than in a fit state for the full and natural perfection of the growth of the crops. Three pecks of seed-wheat per acre, if sown in drills twelve inches asunder, are an abundance, if the crop be horse or hand-hoed in the early part of May. By depositing the seed in rows, and by carefully hoeing the growing crop, a reduction of at least one half the seed may be made, or in other words, two pecks of seed sown in drills twelve inches apart, is equal to four pecks sown in the usual broad-cast method. If the plants be in rows, they will not only have room to stock out, but the stirring of the soil with the hoes will greatly promote this process, especially if they be not tco much crowded in the rows. No one nt all acquainted with agricultural pursuits would recommend the practice of sowing three pecks of seed wheat upon an acre of land, unless under very favorable innluences. There are only three methods of management by which a farmer could safely sow this small quantity of seed, one of which has been already mentioned, and the other two are,-dibbing the seed ia rows, and depositing from two to three grains in a hole-a machine for doing which has been lately introduced in England, which will execute in a most perfect manner from four to five acres per day,-and sowing the seed upon land recently cleared from the lorest. The reason why new land requires less seedgrain than old, is principally because the soil is free and open, which encourages the full developing powers of the plants;
a very similar result is effected by hoeing the crop ufon old land at the proper pe-: riod, a clear illustration of which may be seen in hoeing garden vegetables.

There is much to be learnt, by the enlightened agriculturist carefully investigating this interesting subject; and we doubt not but the correctness of Mr . Davis' conclusions will be established by all who give the subject an impartial examination. To satisfy our readers that what we recommend to their notice we practice, as far as practicable, we would mention, that we sowed only three pecks per acre upon a nine acre field of fall wheat, which was sown in rows fifteen inches asunder, and which at this period bids fair for a full average crop of sound grain, free from all impurities. The crop in question was horse-hoed in the early part of May last, at a cost of two and six pence per acre, and the ground is entirely free from every description of weeds that is injurious to husbandry.

[^0]as I shall best dencribe what I have been doing by bringing only one description of grain in illustration, I will take Wheat for moy example, only premising that the reduction hes been proportionatcly made in all other cern sowings, and with the like results, and that much of my land hase been reclaimed from heath, and is of the poorest quality I ercr enw in cultivation.
In the year 1833 I became the tenant of the Spring Park Farm, a part of a large estate that had for some years previously been in my management for the proprictor, so that although cnly at that period had I become the tenant, I had previcusly had it in cultivation for six or seven years. The proportions of seed wheat that had alrays becte given, were from $2 \frac{1}{2}$ to 3 bushels to the acre, broadcast or drilled in rows 7 inches apart, and notwithstanding that manure was usually applitd for this crop (and ouly the best portions of the farm were considered good encugh for this grain,) the retury seldom exceeded 24 buske.'s per acre, and frequently uot so much. My attention was first awakened to the subject by the general yellow cast that uniformly in the spring of the year came cver the thickest parts of the young wheat, and I observed that hewever promising the plant had arpeared in the winter, a change then took place lor the worse, and that, too, at the season when the meadows and other vegetables put on their mest verdant colors. I furiher noliced that at the turn of the lands, where frequently the drill had twiee depasited seed, this change was still mole apparent: wrilst the corn plants that had been thinncd cut by wireworm, or that had been thinner sown, were remarkable for their greener hue. These observations led me, in 1834 , to lessen my sewings by halr a bushel per acre, and find ng at harvest my crcp of wheat the largest I had cver bucwn on this farm, my success indueed me further to lessen the çuantity of seed, and since then my practice has becm to grow gradually diminishing my quantilice, carefully watching the consequences that I might nct hazard loss; for the stake I have at risk is tee ecnsiderable for me to venture far, withcut first fecling my way. In this manner, and more particularly from having accidentally on one occasion sown with adrantage so little as cnly 2 pecks to the acre, I have gone en reducing my sowin!gs until, at this time, my standard is only 3 pecks per acre; ald I fancy I still sow too much. Since I have written on the subject, I have each ycar (to cnable the public to , itness the contrast) had the whecl that regulates the quantity of seed changed for a turn in two or three fields, so as to put on a double allouance (6 pecks per acre) that the difficence might be seen; and last year I had a.field at Selsden, near Croydon, in wheat, situate by the side of the high road to Croydon, having in the centre a dcuble turn thus sown; the whole came up selll: but throughout the winter the thicker sown showed by far the best, and had the greenest hue, the difference being apparent a mile cff; and thus it continued till towards April, when this part gradually drcoped, and became equally remarkable for its yellower fue, and up to the harrest never recovered to bear ecra? parison with the thinner sown; and their, strange to sxy, the strew was 3 inches shorter, aud the cars
the less, than the rest cr the fie'd, and it had every appearanee of owing its lesser luxuriance to a want of dressing, and which the remainder of the field seemed to have had. Whereas, tbe whole field had no dressing of any kind for four years, and during that period had borne six luxuriant crops, viz :1st year, Swedes, half of which were sold at 20 guineas per acre, and pulled and caried off by the purchaser to London. 2nd year, Oats, the yield of which was upwards of 105 bushels par acre. gru year, Rad Clover, which was twice mown, and made ints hay, and afterwauds again cut for green meat, and such was its luxuriance, that the third cutting lasted till the second week in Norember. 4th year, Eeuns, the preduce was heyond 4 quarters to the acre, wathe a goxd erep of Turnips sown in the Beans. 5th year, Wheat, which yielded above 41 quarters per acre; and yet no dressing of any hind had been applied since the one for the Suedes, save what the sheep had left when leeding off the half crup of Swedes and the Turnips which had been sown aunng the Beans; the field at this time spring, 184J, is Swen with Tares, and has the promise of a fine crep. I have selected this field above every other fir an example to be rade public; for, frem its situation-it lay in the sight of many of the farmers whwattended Croyd.n market, ant passed it wethly-the experiment, cannot have fa.led to huve been noticed by them and hundreds of others: and the facts here stated are top whll dmown to adnit of any doubt of their crrrectness.
Having th is slown, in practice, what has resultcd from diminishug my quantilies ci ccrn setd, I will now ex, lain why it is that 3 pecks of Wheat per aere will jield more than a large quantity. T"te contents cl an average ear of Wheat, taken cras whe e the usual quantity of seed (say $2 \frac{1}{3}$ bushels) has been sown, is about 30 grains; theretore it is clear, if a grain of seed preduces coly one ear, 30 times the seed should be returned at harsest. It alss follows that, if the yield of an acre be 30 bushcls, and more than 1 bushel has been soisn, mare plants will at first be prcduced than come to maturity, and the censequence must be that, aiter growing through the winer, a pericd will arrive when their will be neither space, air, ner nutriment for the whole to continue to increase in a healhy state, and stagnation and disease of the whole must easuc; that all this dees happen, the sickly appearance of the Wheat in the spring, and the greit number of defective plants at harvest, has clearly slown to me. I am aware it may be said, I have made no allowance for the less by birds, מiratrorms, sluys, game, and the many enemies the young plants have to struggle with; but tothis objoction I reply, that such is the extracrdinary power given to all the cereal grasses to stock out, that no allomance is necessary (and nere in necessary, I should say rrong would be done to previde against an uncertain, casual, and partial lcss, by orersowing in the first instance, and with the certainty of thereby iajuring the rhale;) but the fact is, that, instead cf calculating the return at thirtyfold, tnat is to say, that oniy one grain of seed will produce only one ear, and that ear only 30 grains, a single grain will preduce, where room is giren,
many ears, and these ears frem 40 to 100 grains each, so thint the return, as has frequently been shown, wo:ld be above a thousand-fcla; and hence extra allowance for casual lcss cannot under any view be necessary cr advisable when a bushel is talked of as the quantity of secd fer aniacre of land.

It is an extracrdinary fact, that whilst the wheat is naturaliy so prolific a plant as to yield a thesand fer cne, the retuin for the seed sown thrcughout Great Britain cannct be said to be more than abcut ten-fold; and cf the crep raised, a tenth is given back to the seil, and yet the saving of seed which I advise may be mest adrantagecusly made, wculd afford six weehs chasumpricn, and in iteif imeunts to mere than the average importaticus in the last 14 years; so that accerdang tomy thecry atd practice, a saviug at oncee may be made to diminish the expenses of the cultivation of the arable lard ci Great Britan, equal to macre than half the ent that is paid fir it, and by the saring the eccasinn for a fereign supply wculd be superstded, and ths, ta, simply by aneccinfis, the want (f which I am anxicus w show is in rise'f high!y injuricus to the growth of corn, and even of far more ecnsequence than the ralue of the lest seed. A further and very impertant cussideration is also necessary, namely, how far the Theat-plant, from the prescnt practice of crer-crum ding it, is prevented frem fartaking of the improvemum in size and yield, which better irdividual attention to cultivation and selecLin of seed has made with plants in gardering. We are indebted fer cur fincr fruits ard segetables wholly to the care gisen to affict increased ruitiment ard ample space for the better deveicpment of selected plants; ard Ifency an cF ning is here befcre us mhich scme day may be taken advantage cf to prcpuce a larger an d better berry; but ample space must nct be frgctten to be affided, cr it will be in rain to leck fer larger grcwith. It is gratifying to me to find that already very considerable attention has been paid to my representations, and I have heard frem many of heir success who have been trging thinner suwing; and in my travelsin the autumn, I have frequently cbserved by the greater width cf the drills, that my ncticns are being very generally tested. I have cnly to express my hepe that when failure results, as urder esery system will happen cceasicnally, care will be taken to trace it to the right cause, and net to impute every want of plant, every short crep, to thinner sowing; fer want of planis and failure cf ercy is is frequently the attendant of thick sowing, and may arise frem 20 causes independent of thin sowing. Were I called upen to say what is the greatest difficulty in the way of ogricultural improvemente, 1 shculd answer it is the attributing of resulks to wrong causes, and drawing errcnecus cenclusions frem experiments; tothese mistakes must be owing the contradictions ecrinually apparent in the cpinicns and examplescf practical men, and the uncertainty that prevails on many points of practice, and it is against these errcrs I wish to warn any one who weuld test my assertion on the subjeet of thin sowing. By the time this paper can appear in the 'Jcurnal,' many trials note in progress will have adranced sufficiently to try the correctiness of what I have said, and I trust their
results will become generaliy known, for I have the fullest confidence that the dxctrine I have adranced wilh prove correct, viz., that the quantity of seed to be sown should be only in proportion to the number of plants that the space will allow to mature, and that to apply more is a waste of seed, and an injury to the after-growth of the eutire crop, attended at first with unnecessary expense, and at last with a diminiahed produee.-Hewitt Davis,3, Frederick-place, Oiả Jewry, London.

PLANT WATERING.

As good potting is the first step in plant grow ing, 80 good watering is most assuredly the second ; the former even when rightly accomplished and with the best materials may be defeated through want of skill in waterins. Inperfect knowledge or carelessness in the due administration of this essential element kills more plants, or keeps more in suspense between life and death, than utter ignorance in all other matters relating to plant growing. Let us not imagine that because we have put a root to a plant, and placed it in a pot in the right way and in the proper kind of soil, that the object of our solicitude is accomplished, and that out duty is terminated; for the contrary is the fact, if we h ve ambition enough to desire our echievements to be admired or recorded.

It may be superfluous to state, that plants either, suffer from too much or too little water; but it is not so to show that this is frequently the case in the same pot at the same time ; that this an evil far more extersive in a general collection of plants than may be supposed, and a point opposed to good cultivation earnestly demanding our attention. When the surface-soil in the pors beeomes dry, a careless hand aads at once a fresh supply, without ascertaining whether the soil, in which the roots are, at all requires it, and again on the other hand, the top soil frequently appears perfectly wet, while the bottom of the ball is as dry as dust. This is a most calamitous circumstance, and one of common occurrence, especially amongst newly-potted plants: When a plant is just potted, it should have a sufficient supply to penetrate every part of the ball, and then remain until another supply is positiveiy required, that is, till the ball has parted with the grenter portion of its moisture and the plant is upon the point of flagging, the interstices being all filled with air as it should be. This air again requires to be driven ont by a fresh supply of water, thus keeping up a vigorous and healthy action by continual interchanges of air and water, but at the same sime never allowing either of them to remain long enough to affect the health of the plant. Watering by "driblets" is the worst of all watering; it keeps the surface of the soilin a puddle, but never reaches the roots; the eye is thus deceived, and the plant is offen dead before the cause is discovered. When a plant does not part with its moisture freely, like its neighbours, but remans in a wetstate, it should immedia:ely be inspected; for should a plant remain subject daily to the ap-
plication of driblets of water for any time, death must of necessity ensue. One effectual watering, whether applied to plants in pots under glass or to those committed to the soil in the open groand, is not only of far greater utility, but much mbre economical than ten ineffectual supplits. Ther" is no duty attending plant cultivation so difficuit to perform as this, nid to intrust it in carclegs and incompetent hands will certainly entail upon a collection of valuable plants prsitive ruin; for unless he who uses the watering-pot has some practical nquaintance with vegetable economy, and can discriminate so far ns to act agreeably to the necessities and wants of the subjecte committed to his care, he will always find himself a day's march in arrear. These necessities and wants, be it remembered, are not quite so apparent to the naked cye of the novice as they are to the keen and scrutinising vision of the everanxious, atd hance ever-nutchful, cultivator.

There is a kind of watering very comomonly performed in many places, which cannot, when valuable and choice plants wre attempted to be cultivated, be too severely censured. This is the daily afternoon supply, which is given to every plant as far as time will ndmit, regardiess of its requirements-at least, when this operation is intrusted to men of ine.sperience, which is but too common; and this kind of gardening goes on in many places for yeurs. Plams die, it is true; bui this is one of the unresolved mysteries in gardening, which, to some minds, is quite satisfictory, and enables hem to account for the luss of plants by violent means. Finaliy, it has been asked, how ofte . are we to water this or that plant, and the answer usually is, alwajs when it requires it ; lei us, therefore, add, and with some carncs:ness, never leforc.-Daro.-Gard. Chron.

Almond Cheese Cake.-Put 4 ounces of blanched sweet almonds into cold water, pound them in a marble mortar, add a tea spoonful of rose water and 4 oz . loaf sugar and the yolks of 4 eggs beat fine. Work the whole till it becomes frothy, and then make a rich puff paste as follows: Take $\frac{1}{2} \mathrm{lb}$. of flour and $\frac{1 \mathrm{lb}}{}$. of butter: rub a little of the butter into the flour, mix it stiff with cold water, and then roll out the paste. Strew on a liitle flour and lay over it in thin bits onethird of the butier; throw a little more flour over the bottom and do the like three times. Put the paste into tins, grate sugar over them and grate them gently.

For a Sort Toc voith proind flesh.-Apply ine filings of horn, till a cure is aficcted.

For the sting of a Bee.-Apply spirits of hartshora.
'IHE HISTORY OF THE THRIFTY AND UNTHRIFTY.

BY A NEIGHBOR.

In the neighboring village hard by, there are two farmers of equal standing as regards honesty of purpose, benevolence of intention, and all the social virtues. They both mean to discharge all their duties to society, their families and friends, and it is only when we try them by their performances that we find any striking difference. But $t 0$ mark their qualities more fully, and afford instruction through the successive progression of their parcutage, youth and manhood, we must notice them distinctly in each.

Their Fathers.-They were both born in the rillage where they now reside, and of equally reputable parents. Both were farmers and respectable members of society. The same year that the father of Thrifty was sent to the General Assembly, the father of Unthrifiy received the commission for the office of Justice of the Peace. There was a slight difference in their respective charactersin only one particular. They were both "well to do in the world," as the phrase is; but while the elder Unthrifty had inherited all his property, a part of which he had already spent by his easy good nature and somewhat indolent habits, the father of 'Thrifiy had been a poor boy and worked his own way in the world, and having married early in life, had brought up a large falmily, white the other had but this only son.

Their Mothers. - The greatest difference however in their parents, was in their mothers. Like her husband, Mirs. Thrifty was a poor child and an orphan, but had been "brought up" by a wi. dowed aunt in habits of great industry, order, and conomy. She was early taught to have a place for everything, and everything in its place; to waste nothing and spend no time in idleness; and when her work was done instead of sozzling away her time, playing with the kitten or her apron strings, or sauntering with Goody Tittetattle's girls, and gossiping about the young men, she devoted her leisure hours to reading useful books, or making up counterpanes, knitting stockings, and other articles that might be usefal: so that when she had become one-and-twenty, she not on'y had her mind well informed, but had made up quite a wardrobe for herself, and had acçuired so good a character, that Mrs. Thrifty thought, and rightly enough too, she was a very good match as a wife. Mrs. Unthrifity, on the other hand, had been indolently and indulgently educated, and always having enough on hand, without any necessity for looking out for herself, her parents " well off," she arrived at what ought to be "years of discretion," without any particular habits of any kind; yet being a pretty, amiable gir, withal, having a prospect of inheriting some money, Unthrify thought himself a lucky dog in securing her as a partner for life.
Their Boyluod.-The bays went to the same district school, yet though Uuthrifty was nearly two years the oldest, little Thrifiy soon caught up to him in his studies, when being put in the
same class, he easily got above him, and after that generally stood at the head, while Unthriffy stond at the foot. This was not owing to any waunt of cuteness on the part of Joe or Josey as he was generally called, tor when occasionally when any prize was offered that Joe wanted to obtain, hp would, by a little application, get ahead of all the boys and seoure the prize; while Tom, as they called young Thrifty, would study with all his might without coming within arm'slength of Joe. At hunting, fishing, or frolicking of any kind, which required ingenuity or skill, Joe was sure to be ahead of all his playmates. But then his habits were negligent, he was half the time late at school, his lessons given him over night not half learned when he got there, and he had very little idea of minding any of the rules; not that he was stubborn or bad tempered, bat he " didn't see any use in sitting in his own seat for three haurs together, and learning arithmetic, geography, and grammar, neither of which would help to tree a squirrel, hole a fox, catch a trout, or bring down a turkey at a shooting match." Tom was always punctual at school, always had his lesson learnt, though he had to work hard for it and always did as he was bid by the master, simply because his parents told him this was the orly way 10 make a man of himself-and he believed them. Josey's parents indulged him as they indulged themselves, and let him take pretty much his own course as they had done before him, and it was universally believed had the boys swopped parents when they were babies, Joe would have been the smartest scholar of the two.

Grown up.-The boys got to be men while they still thought they were youngsters, and before they were three-and-twenty both were married to young women in the village, somewhat after their own character.

The:r Wieses.-Tom's wife was the daughter of a poor, but hard-working waggon-maker, and had always been accustomed to industrious habits; while the wife of Joe had received many more advantages in school, though it is said she had mis-improved them; but she could do worsted embroidery, draw pretty well from a copy, and play common psalm tunes, Yankee Doodle, and country dances, on the piano.

Their Occupation.-Tom took to farming as his father had done before him, and as he had nothing to begin with, he rented a small farm which his father helped him to stock. He had of his own, a pair of oxen, a few sheep, and some tools, which a coaple years of hard service since he "came of age," had enabled him to purchase ; and his wife besides had three gool cows, given her by her mother, while her father gave him a good second-hand or waggon. Tom and his wife went "right" to work. They were up by daylight in the moming, and by the time he hat his "chores" done, the cows milked and turned to pasture, the oxen curried, fed, and yoked, and the pigs provided for, breakfist was on the table, so that he was ready to go out to his day's Fork by the time Jcary and his rife had "tyrned out of bed."

In five yeara after he was married and went to farming, 'Tom had actually got "fore-handed" enough to buy a farm near him, which was natusally very good land, but had "run down" from the shiftlessness of the former owner; for which le paid $\$ 2000$ in cash, out of his own earnings, which were pretty much all used up by the former occupant, in paying off executions and debts against him, and he had just enough left to carry him to Michigan, to begin the world at forty, when Tom began at twenty-one. A mortgage of $\$ 1000$ still due on the place, he assumed to pay to the merchant in the village who had taken it some time before in payment of all old scores, including costs of some $\$ 200$ which had accumulated against the debtor.

Josey had a first-rate farm, too, which had been given to him by his father, who also stocked it with all the horses, cattle, sheep and pigs Joe wanted, but Josey "some how or pther," hadn't met with very "good lack," as he called it. Indeed 'twas sometime before Josey decided he would take to farming at all.

Josey's Professional Inclination.-His father and mother, before him, had been in a good deal of a quandary, whether their son, on whom they thought as all parents generally do, especially if they have but one, was not rather too good for farming. He used to loiter about the bar-room when his father tried the suits brought before him, and he had picked up a good many legal phrases from the smart young attorneys who used to spout there. He could tell what was a "cause of action," whether the "case should be brought as an action of tort, or an action of trover," or simply "as an action on the casc." But though often thinking about it , and rather urged by his ambit:ous parents, he found so many hard words in looking into Blackstone, the " Pons asinorum" of all legal aspirants, that he concluded he would not attempt it. His friends afterwards thought it a great pity, asifhe had only got into practice, the law would give him his fees, whether he rendered any service to his client or not. Other friends equall lamented he did not take hold of medicine, for which he at one time had quite an inclination, but from which he was deterred by an indolent and unsuccessful attempt at mastering the technical names of diseases and their remedies, in that horn-book of young Galens, the Dispensary; as they said, "if he only got a run of castom, he was sure to pocket his feer, as no man living could tell what hind of medicine he gives. If his patients got well in spite of the medicine, he was a first rate doctor, and if they didn't, 'twas the fault of the disease; and as to a trial formalpractice, it must be decided by the docters themselves, and if they gave it against him, they would be the losers, as it would unsettle confidence in the profession. But if he went to farming, and didn't plant and sow right, and do his harvesting at the proper time, or let his cattle die of diseas: or neglect, he would have to bear the loss himself, sat the law didn't compel his customers, in that case, to pay him for what he didn't sell them."

In short, before they ware thirty, 'Thrifty and Unthrify had at lant got on the same platform or level, for Tom had by this time paid up for his farm, and had it well stocked, and was entirely out of debt.

Thrifty's Farming.-But the see-saw did not stop when it brought them to this position, for Tom kept going ap while Josey lept going down. His fother could not help him any more, as he had only enough left to carry him and wife through the world, while Tom had the prospect of getting some money from his father's estate, who had lately died and left a snug property. But the great difference was in their own management. 'Ihrifty's plowing was always done in the right time, his crops were in early, and they were harvested as soon as ready to cut ; his manure was always carried out and spreal on the ground; his orchards were well planted and grafted with the best fruits, and he soon had the choicest to sell, which being better than his neighbors, always commanded a high price, besides supplying his own family with all they could use. The orchard was indeed one of the most profitable things of his farm. His templing ripe peaches, with bread and milk, made a luscious meal for himself and his. little ones. The rich sweet apples and baking pears, when cooked without any addition ofsugar or molasses, was "sauce" good enough for a king; and it is hardly going beyond the truth to say, that it saved hum a barrel of pork a year, besides giving him a luxury which any one might envy. His garden was always the best, for he chose a good spot for it, manured it abundantly, had its seeds in early, and what was best of all, he usually spent a half hour in it with his hoe before the dew was off, by which he secured an early rapid growth; and his garden made up a third of his summer's living, besides giving good vegetables through the winter. Hiscows were well chosen, and well fed, and were another great help to his living. Besides this, his wife made butter and cheese enough to buy all the groceries, which did not come to much, as they made their own ma-ple-sugar and molasses, and little tea and coffee, and no spiriss or wine. His sheep have good fleeces and lambs. The last gave them choice mutton whenever they wanted fresh meat, and besides they occasionally sold some to the butcher, and having got a good name for fine lambs, they always brought a large price. His wife made her own stocking yarn, and home-made flannel, and put out the remainder of ihe wool on shares, to be worked into sattinetts, and fulle. 1 cloth, and flamel, so that their half not only furnished what they wanted for their own use, but gave them some besides to pay their hired mear. His fences were always up, and he never suffere 1 from the depredations of his own or neighbours' catule. His children were punctual at schoon, and the whole family as punctual at churel. All were neat.and tidy, for Mrs. Thrifty was as busy and managing within, as he was withont, and as he was to have been guessed, Thrifty mado rapid progress in "geting on in the world."

Josey's Farming.-With Josey, or as we must now dignify him, Mr. Unihritty, things were quite different. He was going down-hill while Thrifty was going up; yet he took it as easy as he used to do his whippings at school, and thought himself equally as little to blame now as then; in short, "it was all his luck," as he used to say.

His fences were seldom all up at the same sime; and when they were repaired, which was never done till the last mirute, they were just nitched together, so that the first unruly ox that came along, would tumble it over if he squinted very hard at the dwindled, stunted crops, growing on the other side. Indeed, the poverty stricken appearance of the crops more ofien prevented depredation than the fences themselves. He got up late, had his breakfast late, and never went cut to work before he ate it. By this time the dew was off, and none of it was hoed into the ground, or moistened the grass to make the scythe cut ensier. He plowed late, suwed late, planted late, and harvested late, but he had one great advantage in all this, for he had so little to gather, that it never took a great while to secure his crops; or if the storms, snow, or ice, did get then at last, he always consuled himself wath the adea, "that really he hadn't lost much-ithey wese hardly worth gathering." He had a very good orchard on his farm ten years before, thanks to the owner who preceded han, but the wind had broken off some of the branches, and for want ui trimming, the broken and dead limbs had notted down to the trunks, and made the budies quite rotten, and the fruit itself had become stunted and wormy, and didn't bear any; and the few itbore, were only fit for the hogs, which, for the want of suitable attention, matched very well with the appies. These he had procured by years of breeding, pecuiiar to many of the farmets. He always kilied the best pigs because they were fattest, and as soon as he got one into the pen that would not fat at all, he sad she would have pigs just as well as any others, and 'twas a pity to save them, as they were worth something fur pork. Hissheep were neglected and got the scab. He consoled himself by denouncing the whole flock as a misbegotten race, aid unwortiy his regard, and turned them on to the common, where the dogs and crows soon removed both sheep and scab together. His cattle became poor from short allowance and want of attention, and as misery loves company, poverty was soon followed by lice, and thinking them too degencrate for the attention of a man of his expectatons, he called them a lousy, driveiling race of Pharaoh's lean kime, and traded them off for anylhing he could get in exchange, old muskets, fish-nets, and a troopers secondhand rig. His house was leaky, and wanted shanglang, but in rainy weather he cuaidn't go out to do it, and when it was fair he didn't want it ; su his wife was taken sick foum damp toons, ins chaitren had the sentet fever, and he sou a cunirmed theumatis.u which lasted him for lif.
 of the history of Thrifty and Unthrifty, the re-
mainder shall be reserved for the American Agricultural Almanac for 1847.--Extracted from the A. A. Almanac.

Spring Work for Farmers' Wives.Now is the time to see that everything appertaining to the spring house or dairyroom is put in order and all needful repairs made at once. Stop up all holes, so that neither rat nor mouse can en-ter-get the gauze window fitted in to keep out the flies and insects which will soon be buzzing about-and see that the walls and ceiling overhead are thoroughly whitewashed. This may seem rather carly work for our northern farmers; but the truth is, if we do not get it done this month, ten to one our husbands will be so busy the rest of the Spring, that they will not have time to attend to it at all. See that the churns, tubs, and pails, are bright and in order, and that plenty of wide, flat pans fur setting the milk are got ready. The more shallow the milk are set in pans, the more rapidly will the cream 1 ise, and a greater quantity in proportion to the milk will be obtained. When deep, narrow milk pans are used, considerable loss ensues from want of proper rising of the cream. Preserve plenty of calves' rennets for curding the checse, and see that the press is all right. Cheese is getting to be a very important export to Great Britain, and we may soon monopolize that market by paying proper attention to its manufacture among us. I conclude my homily with a hint for the benefit of all good husbands; and as I am a poet by nature, they will excuse my giving it in rhyme:

For work ahead prepare the way, For this ne'er give your wife a nay;
You can't expect a harvest prime, Unless you sow your seed in time.

Domy Homespex.
-Am. Ag.
Film.-Perpaps all readers do not know the easiest as weil as the mest effectual remedy for remoring a film from the eye of an animal. It is simply to apply a teaspoonful of molasses on the sheep in this manner, and know of no other se. medy equal to it.

FEEDING OF ANIMALS.

The determination oi the relative nutritious qualities of food, from the proportion of azote which they contain, is far from being free fiom objection; it has a tendency to make the equivalents too low by overrating the quantity of animal matter. A very small part of the azote obtained by analysis may aise from the nitrates which occur in plants, and which are of no use as regards nutriment. This source of error is, however, in general, scarcely appreciable; but there are leaves and roots which, in certain soils, and those almost free from nitre, are extremely rich in nitrates. It is to this circumstance that I attribute the anomaly presented by the leaves of Mangold Wurzel. In estimating the azote, I confine myself to ascertaining the proportion of animal principle contained in any given nutriment. It is that principle which, though small in amount, it is most important to estimate, as beyond all doubt the relative value of different kinds of vegetable food depends on the degree in which it is present. The other non-azotized principles, such as sugar, starch, and gum, form the greater part of wegetable food, and almost always bear a large ratio to the azotised matter These substances are indispensable. In the process of digestion the amylaceous fecula is changed into gum and sugar, which are then directly absorbed. The fatty matter becomes divided into infinitely small particles, and thus forming an emulsion gives rise to the adipose tissue; the woody fibre, on the contrary, at least in the state in which it exists in plants, does not appear to conduce directly to nutrition; it is found almost unaltered in the excrement. These principles having been admitied, it is easy to perceive what is by no means a matter of indifference, that with a given proportion of animal matter, a certain larger pioportion of starch, sugar, and woody fibre, should co-exist. The starch and other non-azotised substances concur evide- tly in the process of nutrition, whilst the woody fibre is simply inert, exercising merely a mechanical action, and either helping to divide the contents of the stomach, or seiving as a sort of ballast. Hay and Potatoes, reduced to the same degree of dryness, contain almost the same proportions of azote, viz., 1.3 and 1.5 per cent., that is to say, about $\ell \frac{1}{2}$ per cent. of animal principle. In dry Potatoes the remaining $91 \frac{1}{3}$ parts are formed almost entirely of starch. In hay, on the contrary, there is a very large proportion of woody maiter in the residuum.
These facts will explain why, notwithstanding the same proportion of animal matter,* potatoes are really more nutritious than hay, on the probable supposition that the woody matter does not contribute to nutrition. To give then to one table of equivalents all possible precision, we must determine, for each kind of food, the quan-
*Nots.-It must be remembered that the author is speaking of the potatoes divested of their
tity of organic matter which remains undigested. I do not, however, attempt this just at present. By the help of these new data, we should have for each kind of food three elements to enable us to compare its nutritious power, viz., the proportion of azotised matter ; that of non-azotised mntter, as sugar, gum, starch, and peetine ; and thirdly, that it indigesuble substance which must be allowed in the weight of a given meal. The determination of the azote does not enable us to appreciate the different non-azotised substances which enter into the composition of any kind of food, or rather it shows us, though not with rigorous precision, that these substances are the complement of themmal pranciple. This, it must be confessed, is an inconvenience in the method which I have proposed. But the inconvenience is not so great as might be supposed, because the nutritive powers of the azotised matter, which it is of the highest mportance to estimate accurately, are incomparably greater than those of starch, of sugar, or oily substance, which exist without exception in vegetable food. I have chosen, as an example, hay and potatoes, because they differ as much as possible in their composition and nature; nevestheless, therr relative equivalents deduced from their respective proportions of azote agree as nearly as one could wish. In fact, theory indicates 330 as the equivalent of raw potatoes, that of hay being 100 ; and after long-continued experiments on the feeding of hosses, I do not thank it would be prudent to substitnte less than 280 lbs . of potatoes for 100 lbs. of meadow hay.-Am. Ag.

Preservative Composition.-For a composition for coloring and preserving gates, roofs, and timber gencrally, from the weather, melt twelve ounces of rosin in an iron pot or kettle; and three gallons of train oil and three or four rolls of brimstone; when they are melted and become thin, add as much Spanish hrown, (or red or yellow ochre, or any other color you like, ground as usual with oil,) as will give the whole the shade wanted. Then lay it on with a brush as liot and as thin as you can. Some days after the first coat is dried, lay on a second. It is well attested that this will reserve plank for years, and prevent the weather from driving through brick work.-Monthly Visitor.

Lemon or Orange Water.-Peel the outside rinds from oranges or lemons, pound it fine in a mortar, and pour boiling water on it, and cover close when cold ; bottle for use as a substitute for essence.

Currant İce Watex.-Press the juice from ripe currants; strain it clear; to one pint of juice put nearly a pound of loaf sugar. When wanted for use, put to it ice water enough to make a pleasant drink. Grate nutneg over, and serve. Or, it may be fozen like ice creain; for this, it should be sweet apd rich.

FARMERS' CLUBS.

Wakeficld.-At the late annual meeting of this Club their annual report was read, from which we make the following extracts:-At the meeting held Jan. 5, Mr. Charnock read a pmper on draning and its immediate results to the agricultural interest, as well as its effects on the general condition of the people, which was highly approved of, and it was resolved that 100 copies be prinied at the expense of the Club, and one distributed to each member. It was also resolved, " that viewing the formation of the Yorkshre Land Drainng Association as an undertaking pregnant with the most important results to the agricuitural interests, and to the community in general, the Wakefield Farmers' Club do highly approve of the principles and objects of that association." Apral 26. Mr. Briggs then read a paper on the use of gypsum, acids, and other auxiliaries in producing fertility in land, which he illustrated by several experiments, showing that gypsum, neids, and burnt refuse of pit-hills, have the effect of fixing ammonia; and showed specimens of sulphate of ammonia produced by treaung common stable manure and urme with sulphuric acid and with gypsum, and proved the presence of the same acid in the burn pit-hul refuse, as well as in water oozing from stacks of coal. He also exhibited and tested a sait of ammona, beng a sublimation or conde:is tion of the fumes arising from barning pit-huls, which on being submuted to quick-lime gave torth a potent smell of ammonia. May 31.-Mr Braggs volunteered a paper on the best mode of managing fences. He gave it as his opinion that the common thorn formed the most effectual and economical fence ; and recommended that the thor n plants should be at least five years old before pianted; that a trench should be first dag, about lis inghes deep, and the width of a common garden spade, in which 4 inches thick of good rotten manure should be hiid and covered with the top soil. Then cut the plants and set them 4 inches apart in a single row, leaving about three inches of the stem out of the ground. Afterwards cut or clip the shoots made in the first yenr, both at the sides and wathin 10 incherg from the ground, and perform the same opuration each succeeding year, in the winter or early in the spring, leaving the fence 6 inches higher at each dipping, by which means, in about enght years, a thick and impervious fence of upwards of 4 feet in leight, will be obtaned. With regard to reclaiming or renovating old strugyling thorn-hedges, Mr. Briggs recommendcd that old stems siould be nicked and laid in a trench dug alung the line of the fence, and in parts covered with soil; by which means the old baried stems will take root, and pat up vigorous young shoots, in a coaninuous line, and in a few yeate will form a good hedge, by adopting the same process of aunual clipping as recommended wih respect to the younf fences. Mr. B. also recommended that no liting stems should be leit as atahes, but that all, not wanted for laying. should be cut down to the ground, by which
means a thick bottom would be obtained. June 28-Mr. Brakearidge read a paper on the causes of failure in clover crops. These causes, he suggested, might arise-1st. Fiom the exhanstation in the soil of the fuod upon which clovers chiefly depend; and this may in some degre arise from clover beang too frequently sown apon the same land; or oa old going land, frequently fallowed, it may arise from the working out of the soil, or down into the substrata those constituents, the combined action of which is to disengage and volathlise those gases which are the chi 1 food of clover. 2nd. It may be attributed to the careless manner in which clover seeds are too frequently sown upon fallow wheats, without any previous preparation; by which much of the seed is lost in the deep fissures, or destroyed by the heat of the sun, or by cold and wet. 3rd. From turning in young beasts or sheep to depasture upon the young clovers in the autumn of the first year, by which plants are so weakened as to be unable to stand the frost, wet, and cold of the succeeding winter. 4th. From the luxuriance of the corn crops under which the clover has been sown, by which the plants of young clover are drawn up and weakened, and left with slight root-hold. Remedies suggested-1st cause:-Application of lime or gypsum in the calcinuted slate, potash, and sulphuric acid; ploughing deep every time the land is fallowed, so as to bring ap a portion of the subsoil, to be pulverised and incorporated with the surface soil by atmospheric action and culture; laying clay upon, or drilling clay ashes into very light soils. 2nd cause:-Harrowing before sowing the clover seed, so as to fill up the fissures, and prepare a bed of fresh mould in which the seeds can vegetate. Rolling after sowing, except in open barley moulds, which should be also rolled before sowing. 3rd and 4th causes: Abstaining from turning in stock upon clovers in the autumn; and rolling with a sharp roller, that is, a heavy roller of small diameter. Subsequently a variety of opinions were expressed by the members present ; all agreeing that rolling is one great means of preserving the young clover plant during winter: in confirmation of which it was stated that on those parts of the field over which the carts, in leading the corn crop, have most frequently passed, there the clover has afterwards been obscrved to be the best. The majority of the members seemed toincline to the opinion, that ciover could not be grown to advantage more frequently than once in eight years; but some others, umongst whon were Mr. Charnock and Mr. Briggs, maintained that by the application of potash, line, salt, and gypsum, (which contnin thr chief mineral constituents of clover, and therefore yield the necessary food for the plant) in addition to the means recommended by Mr. Brakenridge, its successful growth might lie obtained every foar years. Aug. 23.-Mr. Charnock then procecded to read his paper on irrigation and its benefits, in which ho brought forward various instances of the worderful resuits of irrigation, when properly and scientifically.
conducted, especially in producing a luxuriant and rapid grow th of grans, which might by this means be cut three or four times during the year. Amonget these he mentioned the Edinburgh Pleasance Water Meadows, General IImmilton's Meadows, near Hamilton, in Lanarkshire, and the Duke of Portland's Water Meadows, in Noltinghamshire ;--and suggested that the same good results might easily be obtained on the Ingsbelow the fair ground, Wakeficld, by making use of the water in the Balne Beck, which contains much fertilising matter, derived from the sewers, dyehouses, \&c., above. In the course of the ensuing discusesion, it was unanimously agreed that irrigation is a very desirable proceeding, when and where practicable; but that in all cases when the land is in any degree retentive of water, it must be absolutely necessary to drain it thoroughly, previous to adopting the process. Oct. 25th.Mr. Johnson verbally introduced the subject for discussion:-On the best mode of sowing wheat, and the quantity per acre. He recommended drilling wherever it is practicable; and stated that he generally ploughs his clover leys only 3 or 4 inches deep, then rolls with a heavy roller, and harrows lightly, and afterwards drills from 2 to 3 bushels of seed per acre, varying the quantity according to the quality of soil and other circumstances, but never sowing less than 2 bushels. He recomuended this mode of sowing clover leys, (to which hisobservations were chiefly confined) in preference to pressing and sowing broadcast. Mr. Chariesworth maintained that never less than 3 Lushels ought to be sown; that he had found it answer on his farm, and had much rather find it necessary to harrow up part of this crop in spring if too thick, than have too thin a crop. That he should much prefer a crop that he could smile at, than one which the world would laugh at. Mr. Moore was of opinion, that on good land, $1 \frac{1}{2}$ bushels of seed is sufficient, as he had found on hisown farm; and that even less seed will answer in favorable seasons and under favorable circumstances. He drills all his wheat, and is now sowing 12 inches apart. Mr. T. Wood much recommended ploughing in the wheaf, or what is commonly called ribbing, and applying about 2λ bushels of seed peracre. The result of the discrission was a resolution to the effect, "that in the opinion of the mecting, generally from $1 \frac{1}{2}$ to $2 \frac{1}{2}$ bushels of wheat, according to the quality of land, is the most advisable quantity to be sown per acre."
In the course of the evening, Mr. Charnock gave the following illustration of the usefulness of science in the improvement of art ; mere practice, without sound theory as its guide, never attained anythirg worth notice. Disregard not then entirely as theoretical and impracticable what you may hear or read. And by way of illustrating; what I mean, permit me to give yon one of the ; most remarkable inetances (and that too in the manufacturing world) of how far the opinions of practicai men, when opposed to science, are to be relied on. So recently as about 15 ycars ago, in
the apinning of linen yarn it was considered very fine if it rcached to nbout 5 lbs . for 20,000 yards; and consequently all the yams from which the finer linen fabrics were made, both in this kingdom and on the Continent, were ppun by hand, at a cost of course commensurate with the labor and time required. Some of our more scientific spinners, however, got an iden the.t it was practicable to spin this fine jarn by machipery, and after some consideration they set to work-partly succeeding and partly not;-science and persererance, however, daily overcame the obstacles; and the result is, that at this day, and for some years past, the whole of the fine yarns used in this kingdom, and nearly the whole of those manufactured on the Coutinent into cambrics, \&c., are spun in this country by machinery, mnd the amount exported has risen, within the period I have named, from nothing to something like a million sterling ; and it is now nn every-day process to spin linen yarn, by machinesy, as fine as $\frac{3}{} \mathrm{lb}$. for the 20,000 yards. Now all the ordinary spinners of that day, and who prided themselves on bing practical men, declared that it was utterly impracticable ever to accomplish such an end ; for said they (and the reason was plausible and practical enough,) so fine a thread will never hang together with the speed and vibration of machinery: the result, however, has shown how very far they were mistaken. So much for practicalmen and improvenients. But, gent'emen, do not let me be misunderstood; far be it from me to despise practice-" practice with science;"-it is the abuse, and not the use of it, which I would guard you against ; we may all lise and learn, and the man who thinkes hiaself perfect, depend upon it, is the greatest of fouls.

The following interesting observations were made by Mr. Briggs, the hon. Secretary of the Club. He said, that in his opinion nuech less capital and labor are generally expended upon the land than ought to be-that nothing is more grateful than land when well treated-and that the agricuitural resources of the country might be vast:y increased were more labor expended upon the soil. He said that a great misehief wes farn:ers occupying more land than therr amount of capital entitled them to hold, by which means the country generally suffered hy its best sesources not being so fully developed as they might otherwise be; and lie instanced the tenant on a farm which his brother has lately purehased in Monmouthshire, who, with nearly 200 acres of chiefly arabie land, employs regularly only lumself, his two sons, and ihree horses; the consequence is, that hough the soil is excellent and very productive when properly cultivated, the crops are miserable, and the tenant in distress. Such mismanagement may truly be said to be a national misotitune. Mr. Briggs afterwards reverted to a paper which he read some months ngo before the Club, on growing wheat successively on the same land; and said that no doubt inany experienced farmers had smiled in and ridiculed the idea, but tho more he thought on
the subject, the more he felt convinced of its feasibility. To show that he was supported in the idea by high authority, he mentioned that a friend of his, who attended the late meeting of the British Association, held at York, and had obtained an introduction to Liebeg, kad mentioned to him what Mr. B. and his partner were attempting-that is, in successively growing wheat: "Oh," said he, "they will certainly manage it, if they restore to the land what they extract." Mr. B. also read a letter from the celebrated chemist, Professor Brande, in reference to the same subject, from which the following is an extract:-" I am glad to fin ' you setting the useful example of combining th uretical and experimental sith common practical agriculture. I am quite c atain that if you persevere in this plan you have suggested you must ultumately arrive at the very important results. It appears to me absurd to say that it is impossible to cultivate the same crop upon the same soil for a succession of years. I have not the least doubt that it crn be done, and will be done; and although 1 am not so sanguine as some upon the subject of chemical agriculture, and do not expect that its apparent progress will be so rapid as some have anticipated, I am convinced that much has been done, and that much is now doing, towards collecting materials for the foundation of gigantic improvements in the most ancient and most important of all the arts, and one, the scientific bearings of which have beta so unaccountably misunderstood and neglected. It may require many years before great things are achieved, but I thank that the march oí science in that direction has now seriously been begun, and I cannot help surmising that the rotation of crops will bye and bye give way to systems of the kind you are now speculating upon, and take their place among the vuigar errors of the present age." As a corroboration of the practicability of the plan, Mr. Briggs mentioned that Mr. Holt, of Horbury, had grown wheat on the same lond for 23 out of a series of 25 years, and had obtained crops yielling never less than 33 busheis par acre.-Eng. Ag. Guz.

Snoking Hams.-We are assured by an intelligent farmer that hams are very effectually preserved from the attacks of the fly, while their quality is not at all injured, by throwing red pepper upon the fire in the smoke house, during the latter part of the operation.

Test for Pure Tea.-Make your tea as usual, then pour of the first, filling up with water and instead of replenishing the teapot for a second cup, turn out the leaves on a plate. If they are the real tea, they will retan therr usual color, but if they are sloe or ash, or any other such production, the false coloring matter will have been carried off in the water, and the leaves will remain quite black.-Y. Y. Meclanie,

Parsnip Wine.-Wine mado of par. snips approsches closely to the malmsey of Madeira, and is made with very little expense or trouble, and is wholesome and palatable.
To every 4 lbs . of parsnips, clean and quartered, put one gallon of water ; boil till quite tender ; drain them over a sieve, but do not bruise them, as no process nill clear the liquor afterwards. Pour the liquor into an open vessel, and to each gallon add 3 lbs. of sugar, and an half an ounce of cream of tartar. When cooled to about blood heat, put a little new yeast, or emptyings, let it stand four or Give days in a warm room, then put it into a cask, and when the fermentation has subsided, bung tight, and let it stand 8 or 12 months before using.

The months of April and May are the best for getting a grood fermentation; and in these temperance times it is an experiment worth trying.-Am. Far.

Hoof Ail and Sore Teats--Cows as well as oxen arc liable to the hoof ail. On the treatment of this disease, in connexion with that of sore teats, a writer in the Western. Farmer remarks:
"Both these diseases are early cured by the application of white paint laid on with a small brush; the body of the paint acting mechanically in preventing the action of the air on the sores, and the lead operating mechanically or medicinally in drying and healing them. Care must however be taken not to apply the lead to the teats while they are sucking calves; and afterwards caution must be used at the time of milking, but no danger need be apprehended in the hands of careful persons. In inveterate hoof-ail it might first be necessary, either to cauterize the sore, or dress with blue stone, after which, and in all slight affections, white lead dressing-in other words painting the sores, will be found sufficient to effect a cure."

A Dry or Convulsive Asthma.-It is said that the juice of radishes is good in this complaint. A small dose of castor oil, taken occasionally, will be found beneficial ; or new rnilk drunk morning and evening. Other remedies are recommended, such as garlic, saffion, jpecacuanha.

Potato Rolls.-Take five middle size potatoes-boil, peel, and mash them. Then rub the mashed potatoes through a sieve. To each potato, allorr a pint of sifted flour; a table spoonful of strong fresh yeast, a gill of milk-warm water, a salt spoon of salt, the yolk of an egg, and a bit of fresh butter, about the size of a large hickory nut. Mix tngether the flour, the mashed potatoes and the salt, in a large broad pan. Make a hole in the centre of the mixture, and pour into it the yeast mixed with the w rm water. Sprinkle a litlle flour over the top, and mix in a little from round the sides of the hole. Cover it with a clean towel, and over that a flannel, and set it near the fire to rise. When the dough is quite light, and cracked all over the surface knead in the yolks of eggs (having first beaten them well) and also the butter. Then divide the dough, and make it into long shaped rolls. Cover them, and set them again to rise in a warm place. When perfectly light, lay them in a pan sprinkled with flour, and bake them well. They are best when quite fresh.

Valuable and Simple Medicinc.--W hen food is taken that causes oppression, the best remedy is hot water in which the rind of old cheese has been grated, to be drank freely. This simple remedy ought to be in the possession of every family, as it will genorally afford speedy relief. Some fifty years since a young lady died in this town, from the effects of eating fruit. A post mortem examination was had, and some experiments were madenothing was found to have so good an operation upon the contents of the stomach as the grated cheese rind. Soon after another lady was placed in a similar dangerous siluation from the same cause. Her medical attendant prescribcll the above remedy, and immediately relief was obtained. The medicine became popular with the past generation, and a lady of that age wishes us to pub. lish it to this, and succeeding generations. -Portsmouth Journal.
Another Use for India Rubber.-An English paper says that caoutchoue is an
excellent remedy for toothache. After the cavity of the tooth is cleaned, a piece of caoutchouc is put on a wire, and being softened in the hame of a candle, is pressed while warm into the tooth; thus the air is kept from the nerve, and the cause of toothache removed.

Honeing Razors.-We notice that soap and water have been highly recommended (in place of oil) to be used upon hones in setting razors and other steel instruments. It is some years back that the trials of it were first made in England, but from the certificates givn of its superior cleanliness and efficiency, it would seem desirable that it should be generally adopted.

Sponge Biscuits-Beat the yolks of 2 eggs for half an hour; then put in $1 \frac{1}{2}$ lbs. of grated loaf sugar, and whisk it till it rises in bubles ; beat the whites to a strong froth, and whisk them well with the sugar and yolks, then work in 4 oz . of flour with the rinds of two lemons grated. Bake them in tin moulds buttered, in a quick oven, for an hour; before they are quite done sift a little fine loaf sugar over them.

Stump Lifter.-What is the best kind of machine for taking out stumps? Many contrivances have been got up for the purpose of clearng fields of stumps. One of the most common in this section is the wheel and axis, mounted on high posts so as to lift the stumps up. The Albuny Cultivator has a cut of one which it says cost $\$ 300$ or $\$ 400$, and which has cos: the inventor, first and last, $\$ 10,000$, to bring to perfection. This appears to be in excellent machine, but although it requires but a single horse to pull up a stuanp of the largest rate, yet it costs too much for "these diggings."
We have seen the following very simple pian of slump clearing, adopted with good success.
Take a strong, stiff, hard wood stick of timber, say fifteen ort wenty feet long and six inches in diameter. Cut around the stump and take of some of the roots. Then place the timber upright against the stump, and chain them together strong. Fron the upper end, which is now in the air, let the ehain pass to the axietree of a pair of cart wheels, to the tongue of which a pair of strong oxen ure attrached. When all is ready, stant the uxen along, and the slump "keels over" as easy as you capsize a cabbage

SWINEY-OR DISEASE OR STRAIN OF THE SHOULDER.
This is an affection not uncommon, but yet tittle understood. If of recent occurrence it will be seen that the shoulder is swelled; if of long standing, that the shoulder is diminished in size, the muscles having slirunk away. The shoulder is f.equently shumk when there is no diseass in it. This shri king arises from disuse of the muscles. To retain its fitl volume a muscle nust have constant action. Now, disuse of the muscles of the shoulder may arise from two causes. 1st, lameness of the foot or leg ; 2nd, lanieness of the shouller. If it arise from the toot, no treatment is necessary for the shoulder. It maty be easily known if it proceeds from the foot. In such case the horse, when he moves, lifis his foot clear from the ground; and when he points his foot forward. he places it flat on the ground. If the injury be in the shoulder, when he moves he drays the toc of the foot along the ground, seemingly unable to lift it clear; when he points his foot out, his toe only rests on the ground, not the sole of the foot. If the injury is in the shoulder the horse reluctantly turns his head towards the opposite shoulder; this strains the muscles: but Ge will willingly turn his head toward the lame alioulde, as this relaxes the muscles.

The common causes of shrinking or swiney of the shoulder, whenitarises from the foot or injury to the leg below the shoulder, are all the diseases of the foot anl leg, which contmue long enough to occasion such a disease of the muscles of the shoulder as to occasion their shrmking. Such siseases are foot founder, contraction of the foot, strain of the navicuiar joint, ring-bone, pumiced Eoot, sand crack, quittor, gravel, any separation of the foot, in short, any of the varous diseases of the foot which muluce the horse to favorit, and chus use as little as possible the whole les and shoulder.

The shrinking of the shoulder, where at anses from an injury in the shoulder itselt, has but one ordinary cause, viz., a stram of the shoulder. 5 When there is stran of the shoulder, it is known zt once. Within a few hours atter itsoccurrence ahe shoulder iz swelled, perhaps in its whole lengh, sut generally at the lower end. The strain lies almost always in the museles which attach the shoulder-blade to the body; yet the swelling is an the outsule; but this arises from sympathy.

When the horse is observed to be lame, and it eannot at once be determuned where:ne lameness is, let him be walked, and if he dras his toe, it is in the shoulder. Let the shoulder be examined in front; if the affection be of long standing, the choulder will be seen to be less than the other. If on feeling it, it te found to be free of heat, there will be no fever. The disease is then chronic. If, however, the shoulder be enlarged, it will be found, on feeling, to be hot-the injury is then recent and inflammatory. Where the diseare is in the shoulder, and is chronic, it has gone through the intlammatory stage, and is of soune conaiderable standing. The chronic state
is rarely cured. It is not unlike rheurratism. For the chronic state the best remedy is active listering. This will rouse the vessels to nc. tivity. It may be necessary to blister repeatedly, and exercise should accompany the blistering, with good grooming and general care. Let the exercise commence as soon as the blister begins to diminish its discharge. 'This treatment, continued judiciously and energetically for some time, may cure chronic disease of the shoulder. When the strain is recent, and inflammation exists, the horse should be bled from the neck and from the plate vein on the inside of the leg, as near the body as possible. Rest, cooling physic, both purgative and sedentary, should be given -no Ulistering should be allowed. Embrocations of a cooling nature should be applied. No stimulants should be applied externally, or given. They but add to the inflammation. When the inflammation is subdurd and the shoulder has fallen back to its natural size, the horse needs nothing but rest, with gentle exercise. Let him ve turned out, if in the summer, to grass; in the winter, into a small yard in good weather, and a loose box at mght in bad weather. It will take him some time to get over the effects and be fit for work again.

When the shoulder is shrunk or swineyed from lameness in the foot or leg, below the shoulder, no attention should be paid to the shoulder. When both feet or legs are diseased, so that the horse s seks to relieve each alternately from pressure, both shoulders will be swineyed; they will be both shrunk, and the breast in front will be diminished and fall in. Treatment in these cases is to be addressed to the place of disease. If in the feet, cure them; if in the legs, cure them. Some diseases in the feet cannot be cured, and, of course, if there be swiney from such cause, it cannot be removed. When the feet and legs are cured, and the horse recovers thereby his wonted action, the muscles of the shoulder will by exercise, recover their former size, and the swiney be gone.

Among the ignorant there is a variety of remedies for the swiney, as perging (that is thrusting a knife in the shoulder and blowing in stimulating powders), swimming, setons, \&c. A recent writer in the Southern Cultivator says, "introduce the small blade of a common pocket knife (the point of which must be siarp), into the thinnest part of the shoulder, which will be near the upper margin of the shoulder-blade, holding the knife as you would a pen when writing, and scratch up the membrane that covers the bone for a space the size of a silver dollar; the knife may be then withdrawn. The knife may then be introduced in one or two places below the first, and used in the same way, and the operation is over." Now, if the disease be in the shoulder, this method can only cure by rousing the vessels to action. Blistering will do this better, and is more humana and less dangerous. Wounded membranes frequentiy produce fatal inflammation. Blistering is never dangerous in chronic affections, and
therefore is preferable on that score, and by general action does far better. It is done within two days. Scraping the membrane cannut be through its operation short of weeks.
A. Stevens.

Buffalo, Jan. 1845.
—Am. Ag.

CULTIVATION OF THE GOOSEBERRY.

The tendency to mildew which attends the greuter portion of our most valuable Gooseberries, has in a measure deterred many admirers of this most excellent fruit from pursuiug its cultivation with that interest which otherwise they would give to it . That what we have to say, will if pursued, prove infallible in the successful growth of this fruit to perfection, we cannot avouch; yet we are ready to state that in our judgment as good fruit can be grown of the Gooseberry in this climate as in any other. Let us, at first, glance at the manner in which the bushels are usually grown, and that 100 in some gardens where we thought the cultivator should understand their cuitivation. We find them placed in some portion of the ground where they are fully exposed to the sun and at the same time sheltered from a free current of air; the bush if cultivnted at all, is grown with the branches forming at say six to eight inches from the ground, and in hard showers afier a drought the fruit and branches become covered more or less with the earth bespatered by the fall of water. Very little, if any attention is paid to affording nourishment, essential to the formation of good berries in common soil, in shape of liquid manure.-Attention to pruning is seldom, if ever given to them, indeed it is generally thought that nothing is required to obtain the fruit except a tolerable soil. This is from the fact of the slarub being very hardy adapting itself and in almost any situation making wood and presenting a tolerable healthy appearance.
Permit us now to offer our opinion regarding their culture: first, select a soil neither stifi elay, nor loose sand, but of good, rich, deep mould, in a position where the midday sum will never reach. Plant your bushes three foot apart each way, train them into heads at least two fect from the ground, let the head be formed nearly round and open.

After the head is once formed, attend to the bush. from the time the blossom shows itself until the fruit is ripe, and whenever a branch is pushing forward to make wood nip the end with the finger, thus throwing all the juices into the formation of the fruit, brside kecping the bush more gonen to the air ; with the hoe dig well among their roots, being careful not to break them hut yet to keep the carth lonse and moist. As often as once a week from the time the fuit sets urtil ripe bestow a waterine of liquid manure upos the soil, and use the hoe directly atter it In pruning. let it be bome in mind that the Goowterery produces fruit on the wood not onlv of the preceding sammer's growth but a'so on spurs from old wood. The wood of the last past year however producing
the larger berry, if possible to preserve a rightily formed head, it should be an done; no bearing wood branches should be nearer than six inches of each other, and the shoots should never he more than twelve buds in length. Where old bushes have long remained, if not convenient totransplant to another position, (and for this yeur the season is now toa far advanced) take awny the earth from about the roats and shorter in all the larger ones by cutting to at least one toot each in length, this will cause them to form lew spongoles in great numbersand if the dressing or liquad manure is given as directed, they will offord a vast increase of nourishment to the plant. Should any appearance of milde " become visible, sprinkle the bushes with weak lime water nad scatter lime and sulphur underneath upon the ground. If your bushes are now placed where they are fully exposed to direct heat of midday suns, erect some temporary slade, or plant running beans and train them up as shades.

The origin of the name Gooseberry has been accounted for in various ways, and the number of names by which it is known throughout Eurepe shows that it has been long and exrensively cultivated. Rogers says that, "in some counties in Eugland, it is called faberry, in others frabes, or thapes, while yet in others it bears the name of Carberry, in Scotland it is called grozer or grozet, evidently à curruption of the french name groscille. One writer thinks it derives its nane from haping been used as a sance for geese while green, another from its resemblance to the gorse, or whin bush." It is a mative of most countries of Europe, and is found wild in many parts of the United States.
The number of varieties are now incrensed to several hundreds, yet in 1743 there were but six or seven sorts adnitted as valuable. In Lanchshire, England, their cultivation is a matter of great import, and regular shows of Gooseberries glone are held; with us it will probally neyer become a fruit for extensive market culture, hut on a small scale with attention, we think, it con be made to produce fine and perfect fruits.Cleccland Hor. Mag.

To make Whate-Oil Soap for veushing Fruil Trces.-Take 18 lbs potash and 30 lls . of foot oil and put in a harrel. Every other day pour upon the mixtuke 18 quarts hoiling water, stirring it every day for a few minutes. When the bayrel is filled up with water the sonp will be fit for use. Now put about 4 yalhous of spap into a hogshead of 150 gallons of ivater, and apply the suds to the trees by aid of the garden engine. This applicatron is one of the best destroyers of insects known, and at the same time it is in excellent stimulant to the growth of all vegetation.

CROPS REQUIRE TO BE FED AS WELL AS ANIMALS.

(From the Ohio Cultivator.)

In the first settlement of this country, the domestic anmals found tood growing spontaneously, in the prairies and forests, and they lived almost entirely without the aid of their owners. As the country became more populous, and the animals had greatly increased, this spontaneous food became exhausted, and they had to be fed by the hand of man.

When the soil was first rechimed from the forest, the crops obtained their food, for a number of years. from the abundance of vegetable matter which had been accumulating in the soil, as well as from the inorganic substances, which had been brought there by natural causes. But in a few years, by a constant drain upon the sorl, without making any recompense, this spontaneous food, which nature had provided, has become principaily exhausted; and it ia now as much the interest of the farmer to feed his crops, as it is to feed his animals.
"I do feed my crops," says the Practical Furmer, "I haul out stable manure and straw, and I sometimes plow in clover, and put my land in first-rate order, betore I sow my crops."
"Very well," says Science, "this is all right, so far as it goes, and I grant one in a hondred may do this; but I should like to be able to make this statement in "inverse proportion," that there shall be but one in a hundred who does not do it."
" But, Mr. Practical Farmer, there is another matter connected with feeding your crops, that I wish to press upon your attention, which is this, -It is as important to feed your crops with the kind of food most suitable to their "digestive organs," as it is that of animals. Did you ever think of chis? We do not feed hugs on hay; neither do we give pork to our horses; but we are, nevertheless, careful to give enoush to keep them alive, and to canse the animals to thrive and increase, and, at the same time, we avoid giving them so much as to surfeit or founder them.'
" After all the pains I take," says the Practical Fumer, "I cannot raise good wheat; when I sow it on my land without manure, it is strack with rust; the berry shrivels, and I do not get haif a crop. And then I go to carting on manare, and my whent all goes to straw, falls down fiat on the groual, and has no graun worth the labour of saviny; and su I urra niy hegs into the field to grt what lew grains they can find. It is useless for the to try to mier wheat on my farm; it is either too rich or too poor. If I pat on manure, the straw grows too rank, and is too weak to stand up; if I gov without manare, the theat and mnsture osikes it with rust. I must yo to raisiug enne other crop."

Stop, urighbour," snys Sience," here I have a book that will tell yon snm-thing about raising whrat. ithin 's is probabee dias you hast beed
feeding your hogs on hay, or else you have been giving pork to your horses."
Prac. Far. Och! go away with your book. Do you think I want any of your book farming about me? I have been a practical farmer all my life, and in early tomes I used to raise the best wheat in the country, without manure or books either. Do you think that I don't know how to raise wheat?
Science. Will you read it?
Prac. Far. No. It is so seldom I read, that it is quite a task for me to read a book.

Science. Well, will you listen while I read ?
Prac. Far. I have not time to stay long, ba: I have no objecticn to hearing you read a little ; it won't cost anything, will it?

Science. If you will listen attentively, ì whll read you a few lines with plensure:-From eash acre yielding 25 bushels of wheat, there is estracted from the soil, in the grain, 3.3 pounds of potash, and in the straw, 0.6 of a pound.*

Prac. Fur. What! does wheat contain potash?

Scisnce. Yes. And the 25 bushels of wheat will also take from the soil, in the grain, 3.5 pounds of soda, and the straw, 0.9 of a pound.

Prac. Far. Ah! Does wheat contain soda :no?
Seience. Such an acte of wheat will also tahefrom the soil, in the grain, 1.5 pounds of lime, and in the straw, 7.2 pounds.
Prac. Far. Oh, yes! I have heard of people putting lime on their land, but I never thought enormio of it to try it myself.
S. .e. The 25 bushels of wheat also take from the soil, in the grain, 1.5 pounds of magnesia, and in the straw, 1 pound.

Prar. For. Why, I have heard it said the: magnesia is injurious to crops, and that when farmers apply lime to their land, they should be carefin to use that which does not coniain magnesia! But go on; is there any thing else in what? I con't stay much longer-

Science. In an acre of wheat yielding 25 bushels, there is in the grain 6 pounds of Sllica, and in the straw 86 (cighty-six) ponnds.

Prac. Far. Now I'm stamped! What on earth is silica?

Sciencc. The book sars it is the substance of fint, or pure sand.

Prac. Fir What! the substanve of fint or sand in wheat! Pray, Mir. Scrence, how does at get there?

Sezence. Yon know that sand can he melted. as is done in the manufacture of choser by the application of heat with soda and niher chemices substances; and thas book selis ns that isbecomes soluble in wrater, by the aid of the potash and sodi before mentioned; and when thas dosolved,

[^1]it is taken up by the roots of plamis. But I have not yet got through with the component elemenis of wheat!

One acre of wheat, yielding 25 bushels, also contains, in the grain, $\frac{3}{2}$ pound of sulphuric acid, and in the straw, 1 pound.

Prae. Far. Why, this is oil of vitriol is'nt it?
Science. There is also taken from the soil, by 25 bughels of wheat, in the grain, 0.6 of a pound of phosphoric acid, and in the straw, 5 pounds: also in the grain, 0.15 of a pound of chlorine, and in the straw, 0.9 of a pound. This is all, and you nust remember these are inorganic substances, such as do not grow like vegetables, and therefore they must be extracted from the soil. The total amount of these inorganic substances taken from one acre of ground, yielding 25 bushels of wheat, and including the straw, as it is usually cut by the cradle, is 120 pounds. Three fourths of this is silica, which is rendered soluble by the alkalies, potash, soda, and lime, thus showing the great importance of these substances in soil produeing wheat.

Prac. Far. Well, I declare I did not krow that wheat had so many things in it. I always thought that wheat grew out of the ground, and got its food from the vegetable manure that was contained in it, or was put there by the farmer.

Scicnce. Well friend, you knew before by sad experience, that vegetable manure alone, would not ruise wheat; for you say that when you put manure on your land, your wheat all went to straw, which was so weak that it fell down flat on the ground, and had no berry in the heads; and when you sowed your wheat without manure, it was struck with the rust, and the grain shriveled, so that you got not more than half a crop. Now you see that this book has soid you some things that you did not know before, and which perhars you never would have found out by your own efforts, without calling in the aid of science.

Prac. Far. Well, if the wheat plant contains all these substances, and they are all extracted from the soil, how are we practical farmers to know when they are not present in the soil? and above all, how are we to obtain all this potash, and soda, and lime, and flint; and sulphuric acid, and phosphoric acid?

Seience. The failure of your wheat crop for a series of years is prety goud evidence that some of these substances are wauting in the suil, bat it will not decide which. The only way to determ.ne which one of the foreg.ing substances may be wansing, is to call in the nid of scicace, and hase a correct analysis of the suil made. But. nevertheless, by the nature of the disease that affects the crops, we may be able to judge mpre cortecely of the substance that may be wantug. When the straw is wcak, and nut able to stand erect, it may be certain that the aikalies are wantjug to produce the silisates which are deposited in tive stem, to give it strungth and firanness This bow, howerer, will tell what substanes: yoo mut procure ama app!y to the lead, waich.
will supply the ingredients contained in the wheat plant.
Prac. Far. I should like to hear something more about these matiers.
Science. I'his book gives an account of the component ingredients of wood ashes. It says that "ashes always consists of a mixture in vari-' able proportions of carbonates, silicntes, sulphates and phosphorates of potashs soda, lime and magnesia, with certain other saistances present in maller quantity, yet more or less necessary, it may be presumed, to vegetable grow th." "Dat they contain also, a greater or less quantity of imperfectly burned carbonaceous matter," or charcoal. Here you will perceive that you have nearly all the substances, at once, of which the wheat plant consists. It would seem then, that if ashes be mixed with the soil it will supply the greater part of the substance of wheat. Did you ever think of this before?
Prac. Far. I have heard it casually remarked that ashes were useful, sowed upon wheat ; but I never gave the subject much reflecion, ant therefore it did not strike me very forcibly But does your book teil any thing about the action of lime 3 I feel somewhat anxious to know this, for I have limestone on my farm, and I have a mind to try it.
Science. Yes, this book gives an interesting account of the beneficial action of line uponsoils, and sums up its conclusions as follows;
" Lime improves the quality of almost every cultivated crop."
"It supplies a kind of inorganic food, which appears to be necessary to the healthy growth of ail cultivated plants.
"It neutralizes acid substances, which are naturally found in the soil, and decomposes, or renders harmless, other noxious compounds, which are not unfreguenty within the reach of plants.
"It changes the inert vegetable matter in the soil, so as gradually to render it useful to vegetation."

Prac. Far. It appears then, that lime is areful to vegetation in other respects than in furniching this ingredient to the planis.
Science. There are a varicty of other sobgtances discribed in this hook, which are usefully applied to vegetation, both in ameliorating the soil, and in furnikling specific substances to the growing crops. But it will detain you too long, lam afraid; to read all of these to you now.

Prae Far. Tha must lie a good book for farmers, I shouid think. What is the price ot 1:? Where did you get it? I will certainly hare s get me one.

Scicnce. It may be had at most of the book stores in the State, for a few shillings; and the tith of it is, Lecturcs on Agricultural Chemistry and Geclogy; hy Jas. F. W. Johnston.
Mt. Tabor, Champ. co., 1E45. D. L.
Cure jor Froid IFlow in Trounds-Toke -qual grantites of suot and powdered charcoal, and rarinkle tibernlly in the wounde.

INOCULATION, OR BUDDING.

The object in budding is the same as in grafting, and depends on the same principle; all the difference between a bud and a seio: being that a bud is a shoot or scion in embryo.

Advantages of Budding.-Budded trees are generally two years later in producing their fruit than grafted ones; but the advantages of budding is that, where a tree is rare, a new plant can be got from every eye; whereas by gratting it can only be got from every three or four eyes. There are also trees, which propagate much mo:e readily by buddiug than grafing; and others, as most of the stons fruils, are apt to throw out gum when grafted. When grafting has been omitted, or has failed, in spring, budding comes in as an auxliary in summer.

Season of Budding.-The operation of common budding is performed any time from the beginuing of July to the suddle of August; the creterion being the formation of buds in the axillie of the leaf of the present year. The buds are known to be ready by the shield or portion of bark, to wheh they are attached, easily parting wilh the wood. The buds preferred are generally those on the madlle of a young shout, as being nether so apt to rua to wool as those at the extremty, nor so apt to lie dormant as those at the lower end. In some cases, however, the buds from the middie and extremity of the shoots are to be rejected, and those taken which are at the base of the annual stoots, as Cnight (Ilort, Trans. vol. ini. p. 135) found in the case of the walnut tree. Scallop bulling may be performed in the spring, or at any season.
"Slocks for ludding may, 1 ln general, be much smaller than tor grafting, as the operation may be performed oa the same year's shoot. But it may also be performed on shoots orstems of several years' growh, and ia sach, by inserting a number of buds, a complete tree may be formed at once. Scallop budd.ng may be performed on trees of consilerable age.
"Choice of buds.-For grafing the shoots conmining the bads, a cloudy day, or at early or late hour, should be chosin, on this priaciple, thit the leaves, being at these periols in a less actuve state of perspiration, suffer least fron being separaied from their parent plant. 'They are preserved fresh, and may be sent a great distance by inserting their ends in water or moist moss: though in general they shoull be used as som after gathering as possible; indeed, as in yraft n y aad inarching, the whole operation oug'it be pertormed with the greatest celerisy.

Kinds of budding.-Proffessor Thouin enumorates twenty-three species and varieties of budiling; bat we sha:l here describe oniy fonr, of which but one variety is in general use ir Britain,

Shield-budding, or T budling, is thas per-formed:-Fix on a smooth part on the side of the soock, rather from than towards the sun, and of a height depending, as in grafting, whether dwarf. thole or half stancherd trees are desired; then. with the boduling-inife, make a horizontal ent
ac:oss the rind, quite through to the firm wood; from the middle of this traverse cut, make a slit downward, perpendicularly, an inch or more long, going also quite through to the wood. This done, proced with all expedition to take off a bud; holdung the cutting er scion in one hand, with the thickest end outward, and with knife in the other hand, enter it about half an inch or more below the bud, cutting near half way into the wood of the shout, cuntinuing it with one clean slanting cut, about half an inch or more above the bud, so deep as to take off part of the wood along with it, the whole about an inch and a half long; then, directly with the thumb and finger, or point of the knife, slip of the wooly part remaining to the bad; which done, obscrve whether the eye or gem of the bud remains periect; if not, and a little hole appears in that part, it is inproper, or, a3 gardeners express it, the bud has lost its root, and another must be prepared. This done, placing the back pire of the bud or shiseld between your lipz, expeditiously, with the flat haft of the knife, separate the bark of the stock on each sid? of the perpendicular cut, clear to the wood, for the admission of the bud, which directly slip down, close between the wood and bark to the bottom of the slit. The next operation is to cut off the top part of the shield, and protrude gramulated matter between it and the wood, so as to afect a living union. The parts are now to be imraediately bound around with a ligament of fresh bass, previuusly soaked in water to render it pliable a:ad tough, begiming a litte below the botom of the perpedicular slit, proceeding upward, closely round every part, except just over the eye of the bud, ansl continne it a linte above the horizontal cut, not too tight, but just sufficient to keep the whole tight, and exclude the air, sun, and wet.

Scollop-budding consists in pairing a thin, tongue-shaped section of bark from the side of the stock; ame in taking a similar section from the shout of buds, in neither case removing th. wood. The section or slield coutaining the bud is then laid on the corresponding scollep in the stuck ; its upper elge exactly fitted, as in shiphbudding, and at lenst one of its edges, as in whip,grafing. Atter thi, it is tied in the usual way. The advantages of this mode are, hat it can be pe:formed when the wood anal bark do not separate freely; on trees having very stiff, thick, suberose (cork-like) barks, and at any season o: the year. Its disadvamages are, that it requires longer time to perform she operation, and is less ceriain of stacess:- The French gardeners ofien bud their roses in this mamer in spring; and if they fail, they have a second chance in July, by using the common mole.
Bialding voith double ligatures is a mode . n vented by Kuight, and described by him (IIort. Trans. vol. i. p. 19.4) as "a new and expeditiou: mode of bud ling." The operations are perforned in the mamare firat above deseribed; bur, inste:a 1 of one ligature, two are applied, one above the bud inected on the trinusperse section through the
bark ; the other, which had no further office than that of securing the bud, was applied below in the usual way. As soon as the buds had attached themselves, the lower ligature was taken off, but the others were suffered to remain. "The passage of the sap upwards was, in consequence, much obstructed, and the inserted buds began to vegetate strongly in July, (being inserted in June;) and when these had afforded shoots about four inches long, the remaining ligatures were taken of to permit the excess of sap to pass on, and the young shoots were nailed to the wall. Being there properly exposed to the light, their young wood ripened weli, and afforded blossoms in the succeeding spring; and these would,' he adds, ' no doubt have afforded fruit; but that, leaving my residence, I removed my trees,' \&c.

Future treatment.-In a fortnight, at furthest, after budding, such as have adhered may be known by their fresh appearance at the eye; and in three weeks, all those which have succeeded will be firmly united with the stoch, and, the parts being somewhat swelled in most species, the bandage must be loosened, and, a week or two afterwards, finally removed.-The shield and bud now swell in common with the other parts of the stock; and nothing more requires to be done till spring, when just before the rising of the sap, they are to be headed down close to the bud, by an oblique cut, terminating about an eighth or a quarter of an inch above the shield. In some cases, however, as in grafing, a few inches of the stalk is left for the first season, and the young shoot tied to it for protection from the winds.

Mr. Abner Landrum mentions a mode of treating the stock, and recently inserted bud, somewhat different from that of Mr. Knight, as detailed atove. Instead of Mr. Knight's method of using a strong ligature above the inserted bud, he adopts tue tollowing:-As soon as it can be ascertained that the bud will live, which, he says, may be in about a week, if the stock be small, let it be instantly headed down, just above the bud to be nourished. If the stock be large, amputate the principal branches; and the consequence will be, an immediate bursting of all the latent buds, togeither with the inoculated one. As the inoculated branches multiply, diminish the original one till nothing remains but the new tree.

Mr. Buel, of Albany, in a note to A Treatis: on Gardening, written by Mr. Armstrong, says, ©The modern, and, from experience, I do not hesitate to crill it the best, method, is, to insert the bud woithout scparating the wood from it. I| have buduled, the two last yeare, in June. If thus inserted early, and the stocks headed down when kgaturps are renored, the buds often make half a year's growth the same season, and are not so apt to suffer from the severity of the winter, as thase which remain dommant."

Condamn bad traits by practicing good ones.
Svery mechanic that hasa apot ofland, though if be mall, whould mise some frait, both for pleaक्ष

Dressing Wrounds and Ulcers.-Dr. Langier's new method consists in applying on the surface of the wound or ulcer a solution of gum arabic, and on it a bit of goldbenter's akin; thus dressed, a wound an inch in dinmeter wins reduced in the space of eight days to one-third or one-sixth of an inch in extent. Cicatrisation took place so rapidly that the granulations, covered with a thick epidermis, were as numerous and visible as before, but could be touched without causing pain. A wound produced by amputation of the breast highly inflamed about four and a half inches in length, and one nad a half in breath, under this treatment henled rapidly, and purulent secretion did not take place. He proposes applying this method to a wound left by amputation of the thigh.—Nedical Tines.

Agricultural Statistics of France and Eng-land.-There are about $4,810,000$ hectares pnsture land in France, and $95,000,000$ arable land. The result is a scarcity of cattle, forage, horses, and manure. France anuually imports horses and cattle to the value of $100,000,000$ france. The following is a comparison of the statistics between France and England:

	France.	England.
Horses,	40,000	170,000
Catdle,	800,000	$1,250,000$
Sheep,	$5,200,030$	$10,000,000$

	For each million hectares	
Horses,	1,00	13,077
Cattl,	20,000	96,154
Sheep,	130,000	770,000
For each million of inhabitants.		

For each mi,hon of inhabitants.		30,692
Horses,	1,667	32,333
Cattle,	23,33	221,154
Sheep,	216,667	$1,961,523$

Rancid Bacon.-When ready to hang, swill each fitch with 2 or 3 buckets of water until ail the loose salt is gone, then hang it to dry, and in a week it will be crystallised and as firm as a board, and will keep any reason-ble time, if not covered over with paper, \&c., as that retains moisture on the surface and destroys the crysallization, which will not reform: it must be kept in a dry temperature. I have treated my bacon thus 5 years, and it has been ns good at 2 years old and as sweet as from the first.-J. D. Dlans-field.-As. Gaz.

A Cheap and Durable Cement.-A most valuable and durable cement for the outside covering of woodbuildings, fences, \&c., may be obtained by mixing two parts of sifted wood ashes, one of fine sand, and three of clay ; these being again mixed with oil, and applied to the surfao of the wood, is said to be capable of resisting the inclemency of the heather leven better than marble itsels.

Strawberry Calies.-Sitt a que:c of flour into a pan, and cut up in "t half a pound of fresh butter, or a pint if the butter is soft enough to measure in that manner. Rub the butter into flour with your hand, till the whole is crumbled fine. Beat two eggs till very light; and then mix with them two tablespoonful of powdered white sugar. Wet the flour and butter with the egy and sugar, so as to form a dough. If you find it too stiff; add a very little water-knead the dough till it quits your hands and leaves them clean. Spread some flour on your paste board, (a marble slab is the best for this purpose) and roll out the dough into a moderately thick sheet. Cut it into round cakes, with the edge of a tumbler, or something similar; dipping the cutter frequently into flour, to prevent its sticking. Butter some large square pans, or baking sheets. Lay the cakes in, not too close to each other. Sct them in a brisk oven, and buke them a light brown.-Have ready a sufficient quantity of fine ripe strawberries, sweetened with loafsugar. When the cakes are cool, split them, place them on flat dishes, and cover the bottom-piece of each calie with strawberries, slightly mashed or bruised-then lay on the top-piece, pressing it down on the strayberries.

Cover the whule top and sides with an icing made in the ueual way, of beaten white of egr and powlered loaf-surar. Before the icing is quite dry, omament the top with whele strawberries, a large one in the centre, and a circle of smaller ones surfounding it.
These are delicious and beautiful eakes, if properly made. The strawberries are not to be baked, as the flavor of this fruit like that of pine apple, is much impaired by the action of fire-and is always best when not cooked.

Instead of strawberries, you may use raspberries. There is none so fine as the large white or yellow.

SCAB IN SHEEP.

We gave a recipe, not long eince, which, ifi Gaithfully used, is considered effectual in this troablesome and ruinous disorder in sleep.
In perasing an old work on agricultaral subjects,
the other day, we met will the following recipe, which we copy for the benetit of all concerned, and wheh 18 lepresented as never fuling of success if well applied. It may be sometimes obtamed when the other, which we have alluded to, cannot; and, besides, 18 not so dangerous to the general health of the sheep.
l'ake 3 gallons of brine,
3 gallons of urime,
1 lb. sulphur vivum (flower of sulphur,)
$\frac{1}{4} \mathrm{lb}$. white copperas, (white vitriol or sulphate of zinc,
$t \mathrm{lb}$. alum,
$\frac{1}{1} 1 \mathrm{~b}$. leaf tobacco,
These ingredents to be boiled until reduced to two gallons, and then corked up.

When used, the woul should be parted on the buds of the scab, and a small quantity of the mixture poured on them, and this should be repeated three or four times, and well rubbed in.

I'he writer says: "I scarcely eyer knew this application to fall the first time. My sheep, run mag on a common where this disorder prevailed very much when first 1 kept them. I found it very troublesome; but I have now the pleasure, with this recipe, not only to find my own sheep quite ciear of it, but those of my neighbors."

Let us examine into this recipe a little. It is now known that this disease is a species of itch. That it is caused by animalculae, or little animals, so small as to require a microscope to see them, burrowing in the skin of the animal, and cutting off all supply of nourishment to the wool, which comes off. Wre have no doubt that the ingredieuts mentioned, when properly applied, Will destroy these animalculac, and thereby cure the disorder.

Plain Rusk Pudding.—Rusk your bread in the oven, and pound it fine; to five heaped table spoonsful of it, put a quart of milk, three beaten eggs, three table spoonsful of rolled sugar, a teaspoonful of salt, halfa nutmeg, and three table spoonsful of melted butter; bake an hour. It may be eaten without sauce.

To preserve Eggs for a long time.-As soon as hens begin to lay in the spring. cover each egg with a thick coating of lard, or other soft grease, and then lay them with the small end downwards, in regular piles, on the celliar floor; or pack them in earthen jars, filled with melted fat, not hat; this keeps out the air. Or keep then in jars, and pour lime wateron then, which keeps the air out, and does not injure them, for everybody knows that eggs are composed of hise. -Am. - t 5 .

Cure for Fistula, or Poll Evil--Clear the cavity as near as may. wellbe, then fillit with pawdered saleratus or pearlash.-An. Ag.

A Good Compost for Sandy Land.--Take 10 loads of stable or barn-yard manure, 5 luads of clay, 10 bushels of ashes, and 20 bushels of lime, mix the whole well together, let it remain in a^{2} pile a few days, turn it over, when it will be fit to apply to the land.

The above quantity will make a better dressing for an acre of sand than twenty, or even twenty-five loads of stable or barn-yard manure alone, and will last longer. Let any one who may doubt, try it, and they will be convinced of the truth of what we say.

To stop the scours in sheep and lambs, give them a small quantitty of salt pork: if administered soon after they are attacked, two or three doses will generally effect a cure. I have given it to neat cattle for the same complaint and with good effect.

Curing bacon.-I beg to forward, for the benefit of your correspondent who wishes for a receipt for curing bacon, the following one, which I have found to answer exceedingly well:- $-\frac{1}{2} \mathrm{lb}$. of bay salt, $\frac{1}{2} \mathrm{lb}$. of salipetre, 1 lb . of coarse sugar, and about 1 lb . of common salt. This is sufficient for the bacon and faces of a hog of 10 or 11 score. Pickle altogether, and let it remain in the pickle a month, turning and rubbing it all cvery day. I would remind your correspondent that the flavor of bacon depends quite as much upon its being properly smoked and kept after it is made as it does upon the curing.-Corrcspondent of the Agricultural Gazette.

To preserve Steel Instruments or Tools from Rust.-Take a picce of buckskin and rub it over with a few cents worth of mercurial ointment. This applied, will preserve stcel from rust, but will not take it off. when once on. IMIPLEMENTS, such as Scotch Ploughs, Marrows, Revolving Herse Rakes, \&c. \&c.
He would say that he obtained the seernd Premium for his WOODEN SCOTCH PLOUGH, (a Draving of which is above) and the first Premium for his REVOLVING HORSE RAKE, at the Spring Shew of the Home District Agricullural Socicty this year.

All orders accompnnied with the Cash, or a reference in the City, will be promptly atterded to.
Toronte, July 1815. , JOHN BELI,
Toronto, July, 1815.
Victoria Strect.

TIRISHING MACHINES.

'IIf Subscriber hegs to inform the Farmers of Western Canada, that he has been surcessful in zetting up a Two-horse Partable THRASHING MACHINE, capah'e of Thrushing 100 bushels of Wheit per day, and he has 5) under wav, all c: which can be completed by the 1st Scptember next.

He has alse commenced 100 of 4 and 8 Horse Partable THRASHING MACHINES, which be will sell for Cash or approved Credit.

All ocders acklressed to "CWilliam Mckinlay, West Flamboro," will receive imnucdiate atten'icn, and Machincs will be forwarded to any port on Leka Ontario
W. MckINL天E.

West Fla mboro' ${ }_{2}$ Junc 26_{2} 184J.

J. CLELAND. BOOK AND JOB PRINTER,

 hing street, toronto, Adjoining Mr. Breucr's Dook Store, Iegaling to the Post Officr.$\sqrt{3}$ Every detription of Plain and Ornameam: Printing nestly executed on moderate terms.

FRFSH SEEDS.

100 bushels FLAAX SEED,
100 do. CLOVER and TIMOTHY. Wraranted fresh, witi all the Shakers' GARDEN SEIEDS

ROBERT LOVE

TO WOOLLEN MANLFACTURERS.

THE subscuber begs leave to infurn the public that he has been engaged wah Mr. Christopher Elinot at the I'luenax Foundry, Turonto, for ine last two years past, m buidmg iV colien , 1huchinery, but in consequence of having sutlered a serious loss by the late fire, he has been obliged to give up the business with Mr Liliot, and therefore does not hold hunself accountable for the working of any of the machnery built at the J^{\prime} hoentx Foundry after the first January last.

The Subscrbber has now made arrangements with Mr. J. R. Armstrong, Propnetor of the new City Foundry, to make and furnish all kinds of

WOOLLEN MACIIINERY

that may be required in manufacturing Woollen Cloths in this Province, such as fullows, viz $-\angle$

Pachers, Cardug llachues, Cundensors, Sipinsring Jacks, Broad and Narrow Powect Lowns, Fuling Mall Cranks, Tayping and Teazling Machnnes, Gigs, Shearing Machines, Junnys, Stoves for Heating Press I'Lates, Cust Iron Dye Kettles, together with every other kind of Machinery required to manufacture Cluth.

The machinery will be made under his personal superintendence on the most approved plans, and the material and workmanship will be of the best description.
$0{ }^{5}$ All orders addressed to Aichelaus Tupher, City Fuundry, Yongc Strect, Torouto will be promptly and neatly executed un moderate terms.

ARCHELAUS TUPPER. Toronto, March, 1845.

EASTWOOD \& Co.

Paper Manufacturers, Stationers, School Book Publishers, \&-c.

HAVE constantly on hand an assortment of SCHOOL BOOKS, such as are in general use throughout, he Province.

$$
-\mathrm{AI}, \mathrm{SO},-
$$

Wriking, Wrapping, and Printing Paper, Blank Boolss, Stationery, \&.c.
N. B. Publication Office of "The BritishAme. rican Cultiaator:"
Yonge Sircet, Toronte, 1845.

PATENT WOOL PICKER.

ESQUESING WOOLLEN FACTORY. 1 MMEDIATELI after Sheep-shearing, the Subscribers will be ready to take in exchange 50,000 Ils. fine clean zevol, fur Clolh, Flannel, cr Blankets, on the usual terms, either at the Esquesing Woollen Factory, or at their worhs near Streetsville.

As we have now in hand some Thousand yards of assortcd finished Cloth, cur exchange Customcrs will experience litle or no delay in obtaining manufactured gocds for their Wool.

Any of our Customers who prefer to have their Wool manufactured into Flannel, or Cloth; plain or twilled; white or colored; striped cr checked; Summer Twced, Double Milled Tweed, Sattinet, Blankets or Carpets; will be accemmedated as early as possible, at the customary rates.
Pcoples own Iarn Colored and Wove into Coverleds of neat and superb Patterns.

They likewise leg leave to acquaint their Customers and the Pubic generaly, that the Eiranch of their business, cstablished last year near Streetoville, is superintended by a resident partner of the Firm, who will excharge upon the same terms as at their cstablishment in Esquesing.

W. BARBER \& BROTHERS.

Esquesing, Apri', 1845.

The British American Cultivator, (New Series,)

Is published on the First Day of every Month, at 'Ioronto, by EASTWOOD \& Co., to wibu all orders must be addressed.
$\left.\begin{array}{l}\text { W. G. EDMUNDSON, } \\ \text { EASTWOOD \& Co. }\end{array}\right\}$ Proprietors.
W. G. EDMUNDSON, Elitor.

Each number of the Cultirator contains 32 pages. and is subject to one halfpenny postage, whea dinected to any Pust Olfice in British America.
Alluertisements uill if not exceeding Tacelve lines, and in the ame woportion, if exceeding that number.
Terms-One Dollar per year; Four copice for Three; Eight for Five; 'Twelve for Seven; and Twenty for Ten Dollars.

All payments to be made invariably in advexee, and free of postage.
$0 \overline{3}$ Editors of Provincial newspapers will oblige the Proprietors, by giving this edvertisement a few insertions.

Toronto, Jan, 1845.

[^0]: ${ }^{c c}$ It is with no ordinary satisfaction that I bring before the Sxiety the result of many experiments which I have made for the discovery of the right proportions of seed corn tiat should be sown to secure the largest returns; for the importance of these experiments is very considerable, and the result has shown me that not only may a saving, nearly equal to the reat of the arable land, be adyantageouely effected by a saving in seed, but, what is of far more importance, the quality of the crop and the return per acre will certainly be thereby increased. That such has been the result in my practice I have not the least hesitation in asserting, from an experience of 12 yeara, and over fire farms: and it is now for upwards of two years that I have by my writings invited general inspection of my crops; and sorae hundreds of farmers, during the last dry summer (which for my thin Turnip soils was a most disadyantageous seascny) hare come to see what has thus been grown from litule more than a fourth of the ordiuary proportions of seed, and at a saing of 10 s . or 12 s . per acre: and although some have very much over estimated the quality of my land, or considered me fortunate in having hit on a peculiar system adapted only for a peculiar siluation and ssils still I am not awiare that any anc has denied the unore than ordinary average goodness of the crops. It is now upwards of in ycars since I hegan to diminiah my sewings of sed, and,

[^1]: * Nute.-The weightshere given are in puunus and decinal fractions. thas, 3.3 is three proundoand threr-lentss of a poand, and 0.15 is tifieenhandredits of a pound. It may also be remarted. that de language here used is not taken from the | book alluded to by the witer; mals the subetuber is ubiained therctornk.

