

Photographic Sciences
Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurèe et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Car tes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Reliè avec d'autres do:uments

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intèrieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se frocurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquées

Pages detached/
Pages dètachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la tivraison

Additional comments:/
Coonmentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâco á la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'3xemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiére page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniére page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

ASTRONOMY

in infancy, youth and maturity.

AStronomy, in infancy, yotth and maturity.
[Address deliverad hefore the Astronomical and Physical Society of Turonto in the Lecture Hall of the Cauadian Institute, Jamuary S.3rel, 1900, by the retiring President, MI. Arthur Harvey, F.R.S.C.]

- The President, Mr. Geo. E: Lumsden, F.R.A.S., occupied the chair I hive found it as difficult to choose a title for my farewell address as to condense it into reasonable compass. I wish to treat, first, of the earliest stage of the development of our science; next, of the time and mamer in which it threw off its swaddling clothes ; and lastly, of some of its latest achiciements. Mr. Liudsay, our editor, suggested as a caption, "The Growth of Astronomy," which will do very well, but I do not intead to attempt a consecutive history.

To be orderly, this paper should begin with the enquiry how old our civilization is.

Plato makes his Kritins tell a curions tale. He brings him to our notice as an old man, who, when a boy, heard from his grandfather the story Solou brought from Egypt. A priest at Sais told the Athenian student that the present Gireeks were children, ignorant of their own history ; they had really occupied Hellas 8,000 years before,* and had waged successful war with the Atlantides, who, coming from a great island just outside the Pillars of Hercules, had subjugated Europe and Africa, as far as the Tyrrhenian sea on the north, and Egypt on the south shore of the Mediterranean. Suddenly, however, great earthquakes and floods occurred, as indeed in the history of the human race they often had before: the island of Atlantis was submerged, and the Greek hosts were also swallowed up. In these fioods the cities sulfered destruction, and none but the hill folk escaped, so that Hellenic civilization had to recommence. Egypt, however, had always been free from earthquakes and torrential rain, having only the usual regulated Hood of the Nile, wherefore it had preserved the records which traced lack its history to the foundation of the kingdom- 9,000 years before. The description given of the Atlantic island is minnte, and it has ever

[^0]been a debated question whether Plato's account is altogether my thical or not. I incline, with Grote, and against Jowett, to think it had a foun. dation in some recorded facts, though there is little to favour the coutention of an American writer that the ancients had a regular communication with Mexico and Peru by galleys which rendezvoused near Ceylon and proceeded to the west coast of both North and South America.

Saint Angustine, in his great work De Civitate Dei,;' refers to a letter written by Alexnnder the Great to his mother Olympias. After the conquest of Persia, Alexander turned his arms to Egypt, which had for a short time heen most mwillingly subject to the Shah. He was receiverl rather as a protector and liberator than as an enemy, and as he professed respect for their great past, for their monuments and their religion, he was favoured by the priests, who were the depositories of historical and scientific lore. One of these supplied him with information from the sacred books to the effeet that even the Assyrian kinglom was 5,000 years old, though the Greek historics, which hegan it with the same king, Belus, assigued to it only 3,500 years. He gave as the duration of the Persian and the Macedonian empires more than 8,000 years, though the Greeks allowed but 580 for the growth of Macedon, and but 233 for the Persian rule. Yet, said he, these high numbers must be trebly multiplied to reach the antiquity of Egypt ! St. Augnstine died in A.D. 430, when authentic copies of Alexander's letter may have been still extant. In an endeavour to minimize the length of time, he says the Egyptian year had been one of four months only, but Diorlorus expressly states that it consisted of three hundred and sixty-five days six hours, and he gives to Egypt an antiquity of more than 20,000 years. Callisthenes, who was in Alexander's retinue, informed Aristotle that the Babylonians reckoned their city to be at least 1,903 years old when Alexamder entered it. And Manetho, who was keeper of the Egyptimu archives under Ptolemy Philadel phus, give 5,300 years as the recorded length of the Egyptian dynasties.

We now have evidence from payyri, monmments and tablets to check these figures, for we have learned to read Egyptim and Assyrian almost as well as our own language, and have spaded up, whole libraries of information. The Prisse d'Avennes papyrus is claimed to be the oldest writing in the world, and of the third dynasty 5,318 B.C. It is in a bohd, clear, firmly set handwriting, which tells of a civilization old

[^1]wen then. Mr. J. C. Condre: salys the Babylonians of the sixth century B.O. believed the first Chatdean empire was established more than 3,200 years before their time, and it was certainly founded by men of Mongol race, whose language, called Akkadian, is found on the oldest records. Scholars have not yet come into thorough accord ; one Dr. Hilprecht assigns $3,000 \mathrm{~B} . \mathrm{C}$. as the date of an inscription in cuneiform writing, which displaced Hittite hieroglyphics when Semitic races became powerful around Babylon, while a Dr. Oppert thinks it a thousand years later. However, the earliest Assyrian and Egyptian records come fairly close together, and there seems no prospect of tracing either further back than six or seven thousand years. \dagger

The origin of astronomical studies is coëval with reason and observation, and a singular record of them appears to be found in the pyramids of Egypt. They seem to have had openings from which a passinge led to the interior, so built that on a certain day the Sun or a given star could be seen from the recesses of the monument, as if shining down a tube. To such stars these pyramids are said to be "oriented." The most recent investigation of this interesting subject is to be found in the Proceedinys of the Royal Society for last November, where Dr. E. A. Wallis Budge discourses on the Pyramid fields of the Sondan, which are especially important because while in northern Egypt the pyramids are oriented east and west, in sonthern Egypt and the Sondan, star worship is indicated. These tombs lad on the south-east side a shrine or chapel, "into the innermost part of which the light from the celestinl body to which it wis oriented could enter. * * They consisted of two and sometimes three ehambers with narrow doorways which served, like the varions sights and sections of a telescope, to direet the rays of light from the celestial body to a given spot-that spot in the case of a pyramid being the centre of the shrine, where a figure of the deceased was placed." Now in these Soudan cemeteries, the star chiefly used as at warning star" is Alpha Centauri, and it was so used from the XIIth dynasty, about 2,700 before Christ. As, owing to the precession of the equinoxes, the place of a star must change, the later tombs would have an orientation

* Nottish Review, Oetober, 1899.
t'The Chinese records ilo not much ilifler, for they state that the tirst Emperor Fohi reigued 2,952 years before Christ, and he, too, composed astronomical tables. The tirst King of the Indies is said to have lived 3,553 years before our er:r, and the astronomical epoch of the Brahmins is supposed to begin in 3,101 B.C.
romerhat diflerent from the earlim ones, and Dr. Bulge says the theory is strengthened $1, y$ the fact that "archaeological consilerations indicate that the pyrmids whieh have different orimations belong to different periods."

Prof. C. Piazzi Smyth, as you probably all know, wrote " book on "Our Inheritance in the Great Y'yramid," in which he insisted that it was a mensure of the polar diameter of the Earth, and was intended as a standard of weights and measures. It seems, however, thoronghly established that it is so oriented that the passage points clue north, at an angle which Col. Howard Vyse measurel ns $26^{\circ} 41^{\prime}$. Sir John Herschel calculated that in 2,121 B.C. the star \& Draconis was the Pole star, and that its lower culmination was then $26^{\circ} 15^{\prime} 45^{\prime \prime}$. As the anmal preces. sion in north polar distance in that part of the sky is 18 ", the date of the orientation, supposing Col. V'yse's mensure to be exact, was 83 years before, or 2,204 B.C.

According to Dr. F. C. Pemrose, Greek temples were similarly oriented, and in the same number of the Proceedinys of the Royal Society he gives several new instances. Three of the temples he has thus surveyed are oriented to "Arietis, rising ; two to Spica rising; one each to " Pegasi setting and "L Leonis rining. To illustrate the method of investigation I trinscribe one :-

Nime of T'emple.	Orienta. tion Angle.		stellar Elements.	Solar Elements.	Name of Star.
The new Ereehtheum.	26.) 9^{\prime}				
		B. Corresponding altitude.	$\begin{aligned} & 0 \quad 30^{\prime} \\ & +\quad 0^{\prime} \end{aligned}$	+ ${ }^{6}-200$	$\stackrel{a}{\text { Arietis }}$
		C. Jeclination D. Hour angles	+10 35	+ ${ }^{2} 3{ }^{\prime}$	risinge
		D. Hour angles E. Depression of Sun when	6h. 13m.	7h. 96 mm .	
		star heliacal		123	
		F. R. A............	23h. 58 m .	1 h .11 m .	
		G. Approximate date	445 B.C.	April 9	

In the case of temples the star would shine through some opening in the wall into the adytum at the date of the festival with which the temple was comnected.

The Greeks took lessons in astronomy from the Egrptians, and perhaps from the Assyrians, and in due course became the teachers of the

Roman worl. Lacretius. the poet of science, gives them that credit in *me woble irsses,* which suffer grievonsly in my translation :-

Of old, when Human life lay erushen to earth
By onerous creeds, each chaiming heavenly birth,
Which showed their horrid forms in drealful guise,
The (ireeks first dared to lift their inestiming eyes.
Noo tales about the gods, no lightning dire,
No growling thonder, threatening hearen's ire,
Cowed their free minds or stoppel their prening will
The gates of nature, theretofore untrien.
And thus the living forces of the soul
Began to eontemplate one glorious whole.
Gutreached the luminons boumdaries of Eath,
Made the great universe a fiell of worth
For mental culture, and eorrectly taught
The lawful bounds of profitable thought.
In his "Republie," + Plato considers of the sciences to be studied. First, he mentions arithmetic, and then geometry, "which draws thre soul towards truth and creates the spirit of philosophy:" Next, hr names astronomy, "For every one, as I think, must feel that astronomy compels the soul to look upwards and leads us from this world to another." "The spangled heavens," he urges, "should be used as a pattern, and with a view to that higher knowledge." And he insists that they should be studied with love "since knowledge acquirel under rompulsion has no hold upon the mind."

These old philosophers had some frive conceptions of the meehanism of the heavens. A paper by Mr. W゙. is, Musson, in our Trensuctions for last year, gives an excellent account of the theories of motion held by various Greeks, and Vince's "Complete system of :astronomy," which we possess, gives a good summary of the history of the seience among eivtern nations. It seems clear to me that Plato spoke of the Earth as "revolving" around its pole, though the word used may have nother meaning. Nor conld Anaxagoras have explained the way in which thr Moon is illuminated unless he had understood its motion with reference to hoth Earth and Sum. He was imprisoned for so thing ; the world often maltreats its benefaetors. The Aristotelians reasoned out the necessary rotundity of celestial bodies, and the Pythagoreans seem to have held a proper theory of the revolntion of the wandering stars. One cail see in

[^2]the Athutean myth that the ancients nppreciated the effect upon our globe of seismic forees and of heavy storms. Bui though they prepared the way for such men ats Tyeho Brahé and Copernicus, we must honour Galileo Galilei ns the mun who lannehed the burque of astronomical seience upon its great modern career. All before him 1 call the childhood of astronomy. With him its vigorons youth began.

Our Librarim has phaced us in possession of a copy of Galileo's works, printed at Bolognr in 1655, only thirteen years after his death. It seens to me that we get nearer to the great men of past centuises through the perisul of these old editions, and he must be dull indeed who does not feel a thrill of unnsual interest when he sees the Syderias Nuncius in something like its ciiginal dress.

After the dedicntion to Cosmo, of the Mediei, dated in Mareh, 1610, and the license to print, decharing that the work contains nothing contrary to the Holy Catholic Faith, the State, or approved custom, the second and fuller title of this celebrated tract appears, "The Astronomical Messenger, being min account of recent observations with the new Perspicillum on the surface of the Moon, the Milky Way and the nebulous stars; also of the innumerable fixed stars and of fons plnnets named the stars of Cosmo, never before seen." (In the dedicntion they nre called "Medicean stars.")
"Abont ten months ago," says Galileo, "there came a rumon' to our ears that n certnin Belgian had made a lens by the aid of which visible ohjects, though far from the eye, could be distinctly seen, as if they were nemr; * * which some believed and others not. A few days afterwards the fact was contirmed in a letter I had from Paris, which cansed me to turn my thoughts to the reason for the effect, and to preparing an instrument that should produce the same result. I studied the subject of refraction, and, having made myself a leaden tube, I fixed glass lenses in the ends of it, plane on one side and spherical on the other-one conrex and the other concare. On plaeing my eye to the concave ginss, I looked at some objects of fair size and at a short distance, which I found three times as close and nine times as large as when looked at with natiral sight. I then made another instrument which magnified sixty times. Finally, sparing neither time nor money, I made one so excellent that things reen by it were almost a thousand times enlargeal, and apireared more than thirty times as close as when viewed by umided vision."
'The revolutionary mad epoch-making marative of two months' ohservations follows.
many centuries had engaged philosophers, as to the essence or material of the Milky Way, which is seen in his telescope to be merely a collection of innmmerable stars, and, passing to nebula, he gives an engraving of one in the head of Orion; also of the Prasepe. In the former he tigures 21 stars, and the hatter, so far from being a single oljeect, is an insemblage of more than 50 . Lastly, and-with more interest still, he describes the four secondars planets he has discovered, eircling around Jupiter. On the seventh of the preceding January (1610), in the second hour of the night, he was looking at the stars with his newest telescope, when Jupiter became risible, and he saw three small but bright stars near the planet, which he supposed to he tixed, but admired becanse they were in a straght line, parallel to the ecliptic. Two were to the tinst of Jupiter, one to the west. Eight days thereafter, by a chance he camot explain, he looked again, and siw quite a different situation : all three were west of the great planet. His work gives 65 diagrams of their positions, with an oceasional fixed star as a point of comparison, and explatins that the four satelliter revolve around Jupiter as the Moon loes aromed the Earth.

The whole of these amomeements-title, dedication, figures and atl-are contained in at pamplet of 41 pages, and, at the end, the "caudid reader" is told he may expect more soon, a promise which was fultilled in the Continuation of the Sidereal Messenger, issued in 1611.

Galileo having found in his survey of the heavens something he did not wish to publish at the time, annomeed it to Kepler in the following jumble of 37 letters:-

Smaismmilmepoetalemibonengettavimas.
Kepler tried to put this "pie "into intelligible words, but failed, so on November 13 th, 1610 , Galileo wrote to him from Florence, whither he had moved from Padua, and gave him the answer to the enigma:-
altissimum , hanetam tex, fminum observari.
(I have seen the farthest planet divided into three, or, consisting of three paits.)

Another such jumble concealed mutil lst Jannary, 1610, the discovery of the phases of Venns. The Continuation annonnced also, though with some uncertainty, the gibbosity of Mars. No wonder Kepler said that Gatileo used his lens like a ladder, with which to scale the furthest and loftiest ramparts of the world!

But all was not done get. Our volume contains the long and famous treatise Delle macchie Solari (on sun-spots), the equally famous singiortore, and the four dialognes in which Sillviate, Sagredo and Simplicio, discuss the causes of coherence and the method of finding centres of gravity. An appendix gives an account of the new discovery that projectiles have a parabolic course, and of one of Galileo's first observations. that the pendulum swings in erpual times whatever be the are it describesa discovery which was fatal to all previous time-keeping appliances, orirntations of public monuments, sum-dials, elepsydras, and hour-glasses.

Those who feel that they have added something to the sum of human knowledge can understand the sentiment of Horace, "Nou ommis moritr." It was not mere vanity that inspi, I Archimedes, as, leaping from his bath, he cried "Eureka!" when tho principle of specific gravity Hashed upon him. It was not an ignoble impulse that animated Bacou, who said, "We build the fomdation of the sciences deeper and more securely and legin investigation earlier than man has done before," nor shonh we irreverently listen to his prayer "that the Father who gave visible light as the first fruits of ereation, nad at the completion of H is work inspired the countenance of man with the light of understanding, would rouchsafe to endow the human rate through his hands with gifts of knowledge." When Newton discovered the law of gravitation he was so eestatic that he had perforce to employ hired service to complete his calculations abont meaner subjects. Franklin's chief honoms were given him because with his key and kite string he first drew lightning from the clouds. Fuluen eripuit celo is a juster title to honour than the S'ceptrumque tyranmis which completes the inseription on his celebrated medial, and none can have felt more justly sure of the so-called immortality of fame than Galileo, when he oprened a glorions new vista in the sky. He accomplished for the leavens what Columbins liad recently been doing for the Earth. He loosened the clasps of a new volume of nature's records and spread open many of the most beantifully illuminated pages of a missal which, before his time, had been all but closed. From Prometheus to Dirwin there is hardly a nobler name. Yet in his lifetiue he was nut hapy, and even now there are some who grudge him his posthmonsglories.

It was, of course, time for his discoveries. Leolardo dat Vinci made drawings of a combination of lenses for seeing distant things enlarged, long lefore the Belgian Lippershey produced his telescope, and had not the inspiration come to Galileo to point the magic tube towatrds the heavenly spheres, it would soon have heen done by otlers, for the

May-time of the modern world was drawing forth the long shmbering energies of mankind. But Lecuardo did not put to use the telescope he designed. He locked up in all but mudecyphemble notes his proofs that the Sun is central and the Earth revolves around it. He was of a procrastinating disposition, and, though divinely gifted in Art, hats lett all too few exemplars to an admining world. Therefore Copernicus can justly elaim the honour of unlocking the riddle of planetary motions. and (Galileo that of bringing the heavens closer to the Earth. There are often more discoverers than one of important facts, quite independent in their work, but the world recognizes him who first makes known his claim and earries on a successful tight for its establisiment.

The Saggiatore is in this light an instructive document. The title is singular. It means "the assay scales," most delicate of balancers. and is in great part a reply to the Libra Astronomica of Lotario Sarsi. It leads off with a complant that the author's desire to serve the wolld by pulbishing his discoveries was met with enmity, detraction and fraud. Galileo was angered by the self-sutticient folks who cheajened the value of his work. "Why," he cries, "what a field for adminablic speculation was afforded by my letter about solar spots, yet many disheliered or thought little ot it, doubted the correctness of my observations and theories, or imputed to me ridiculons or impossible opinions. One person has even claimed priority in the discovery." He was especially irritated because one Simon Marius, who had in earlier years stolen the itea of his geometrical compass, now elamed to have seen the satellites of Jupiter hefore him, and published a book, the Mondo Giociale, to sily so. The Sityifintore was printed in 1623 . Later, in 1638 , in dedicating his dialogues to the Count de Noailles, Galileo says he had been so confused and stupetied by the bad success of his cther works that he once resolved not to print again, but to leave his mamuscripts in some public places. His troubles with the Inguisition had, moreover, heen - followed ly partial deafness and total blindness, and it was when thas afllicted that our Milton risited him.* Paradise Lost seen:s to bear evidences of the meeting. In it he dreans of-

> -" A spot, like which, perhaps,
> Astronomer in the sun's lucent orb) 'Throngh his glazed optic tube yet never saw:"

[^3]And, with the puetic instinct, always prophetic, he speaks of the lordly Sun's
-" Magnetic beam, that gently wams
The universe, and to each inward part With gentle penctration, thongh unsetn, Shoots invisible sirtue, even to the deep."
Milton, himself sighthess, remembered Galikeo when he cried :
" Neasons return, but not to me retmins. Bay, or the swet aproach of even or mom, Or sight of vernal homb, or sumbers prose, Or hoels or herls, of human face divineBut cload instead, and ever-during dark Surroments me."
Even in his blimhess, however, the great Italian must have found some consolation, as Milton tid, in knowing that he hat done much to enlighten the world, and posterity has tone him justice. The whole Earth has made the assay, and weighed the himton of gold correctly, and found Galileo's work entitled to the hall-mark. Une would like, did time fermit, to dilate on the almost parallel experience of Columbus. But it will be enough to say that when one had fombl the way across the Atlantic and the other had bridged the sky, they had hosts of followers who enlarged their discoveries. For each in his chosen way stood at the dividing line between the childhood and the yonth of knowlenge. Each in his sphere broke the leading strings with which the world had been guided, for the time for guidance at the hands of antiquity had passed, new methods and new instruments were needed, new aims anmated a re-born world ; but while we recognize the fact, and so far from regretting it, are endeavouring as our chief olject in this Society to help the progress of the new sciences, we must not forget the respect due to the ancients, who nourished them in infaner:

Let us now issue a new Silereal Messenger and take up the subjects. treated in the old tract. We have in our library the first plates of the great Lunar Atlas, the work of Messis. Loewy and Puisenx, at the Memlon Observatory near Paris. The Society is laving them photographed and mapted to lantern slides, believing that in this way we can here extend the liberality of the Erench Government. Galileo would stand long in wonder if he could soe them! He would have to be told of the achromatic telescopes we now can make, with equatorial mounting, moved ly clock work, so prefected as to follow the complex apparent
motions of the Moon to the smallest fraction of a second in both latitude mud longitude. He wonld have to hear the story of the photographic plate, undreamed of in his time. Wheni he hat mastered the elements of the new science of geology, he would pereeive he could no longer agree with the Pythagorems who thonght the Moon was like the Earth. For, however carefully we sean these grand lumar majs, we ean see no trace of any Nepomian action, no effect that can be referred to the influence of air or water, nothing that resembles the terrestrial layers of limestones, slates or clays. The Moon looks like an aggregation of primitive rocks, and if there have been inundations, they have been those of lava, stiffening ruickly in the intense cold of space. The authors of these majs think they see evidence of five successive lavatlows. The lunar mountains, higher in proportion yet not quite so devated as those of Earth, have leen measured as well as mallued, mod we are watching with the groatest care for some little change in the stony face, which we think will be noticed, if at all, in connection with the small secondary craters of which there are so many, and will be traceable by comparing later photographs with these, for without air or water there can be no smoke or other of the phenomena usual in terrestrial convulsions. The mariu, which Galileo thonght were places covered by stationary elonds, are now known to be low-lying plains. without mists of any kind, though why they are darker than the hilly regions we do not yet know. How he would enjoy looking at our twin planet with the various forms of telescope invented since his day, though he would find none of them fitted with the combination he employed, which has been relegated to the opera glass alone. It would be news to him to hat of the diseovery of planets beyond Saturn, but not surprising to learn that there are moons for all the large planetsoutside the Earth, for he thought it likely. He knew nothing of the hundreds of Asteroids.

Would it not be delightful for Galileo to discourse with us of light? He devotes a page in his first dialogue to a suggestion for measuring its velocity. He wished to have a lamp put on a distant hill in charge of a confederate, and to place a similar one beside himself. This he intended (1) suddenly eover up, and when its extinction was noticed afar off, the other observer was to cover his. He tried this method, but only at the distance of a short mile, and he was "unable to deeide whether light "xpanded instantanconsly or not, but if not, it was extremely rapid." He says he thought light somewhat resembled sound in its way of
moving, hat adled that he saw dithenlties in the way of its traversing at vacumm across the infinith, across the indivisible, across instantancons motions, and there were other matters to be reasoned out in this comection. Here was the intinite so hounded by numbers as to become mity ; from the indivisible must be lorn intinite divisibility, a bacum must become a plenm, and tinally the ciremmference of a circle must be considered as an intinitely long straight line. How gratified he would feel to learn that his own Medicem stars gave the first measme of the velocity of light by the difference of time in the occurrence of their eclipses, when Jupiter was in opposition and conjunction. It is not a little singular that Foucuult's experiment, which first measured the velocity of light across terrestrial distances, was really based on his suggested method. Astronomical and physical science has certainly progressed far when we can correctly measure the wae-longths of varionsly coloured light with a two foot imle, as onr Mr. Chant did in onr presence, at a recent meeting of this Society. Now that we have ther spectroscope, to combine with the telescope and the photographic film, the science seems to have reached maturity, and is ia the plenitude of its powers. Perhaps we may carry on the simile and say that Newton, who tirst produced the sumlight spectrom in a scientific way, and discovered in gravity the hond which holds all worlds together, married astronomy to physics, so that Urmia no longer sits on a solitary eminence. The union has been fruitfin, and while some of the intimates of the pair prefer one, and some the other as a friend, all respect them both, and even we, in the very name of our Society, profess to be admirers of the happy conjunction.

Our new Sidereal Messenger camot indeed say that the stars have a perceptible disc, but we know the distances of many of them, we know that they are in rapid motion, that they are of many kinds, in various stages of growth or decay, that they are not all luminous, that some are revolving around each other. We know several of the substances present in their glowing atmospheres and we are engaged in measuring not only the light they emit but the heat we receive from them, and such is the perfection of our instruments, that at the Yerkes Observatory, Mr. Nichols has a radiometer so semsitive that the heat of a camdle, 28 kilometres or $17 \frac{1}{2}$ miles away, will make it deviate a millimetre. Arcturus gives us no more heat than a common camille 8 or 9 kihmetres or 5 miles distant. Yet we can measure it ! What wonld.

Gatileo think of the photographic examination of Omega Centani, in the southern hemisphere, where over 7,000 stars are seen in a luminous patch resembling a faint clond, and smaller than the Moon, of which we know that 120 are variable?

Galileo was fortunately wrong in thinking he had settled all questions about the Milky Way ; it is the subject of more lively interest now than ever. It seems to be the rim of the stellar aggregation of' which onr Sun forms part, and may be likened to the equator on the globe. Most stars; of the first magnitude appear to be disposed in another great belt in a way resembling the ecliptic. The stars of different constitutions seem to be sorted out in layers or streaks, insomuch that a great difference is noted between the actinic and visual light of staus of ditferent galactic latitudes. The most earnest attention of astronomers is now being given to stellar spectroseopy, the precise work being three-fold-the classification of stars according to the type of spectrum they show, the measurement of the wave-lengths of their bright and dark spectral lines, to identify the substances in their atmospheres, and the measurement of the displacement of such spectral lines from the normal, by which the velocity of the stellar motion in the line of sight can be determined. For this, the giant telescopes are used, also for the measurement of close double stars, the spectroscopic and photographic examination of nebula and the discovery of new planetary satellites. They are not employed in the work formerly done by smaller instruments, but in that which until their advent could not be done at all, so that the smaller observatories still have their hands full, and there is room even for the ordinary instrument of the amateur. To place this question on its lowest plane, 'tis clear there is no telescope so small that its use will not give a better conception than the unaided eye of the features of the Sim, Moon and stars, and enable its possessor to read with increased interest the works of astronomical writers.

One of the most interesting discussions of the present day is as to the age of our system, and especially of our own planet, which is distinct from the question of the time when man first developed upon it, and equally natural and appropriate at the close of a century. Between the physieists and the students of the natural sciences, the battle rages hotly. At the head of the former stands the illustrious Lord Kelvin, who amomeed his opinion in 1862 , when he was Prof. William Thompon." From the rate of inerease of heat as the miner goes down-

[^4]ward, he reasoned out the rate of secular cooling, and declared that our Earth must be more than twenty but less than four hundred millious of years old. This argument has been reinforced by one depending on the retardation of the Earth's rotation by tidal friction, and another on the limitation of the age of the Sun. Lord Kelvin has, therefore, reduced his maximum to " not much more than twenty millions." The contest is by no means new. In the Atlantean myth are clear traces that the geologists of pre-Christian days required great lapses of time between deluge and deluge. That great geologist Hugh Miller, though a cataclysmist, a believer in the sudden destruction of whole races of living beings by terrestrial catastrophes, in beautiful and forcible English almost unequalled in our literature, proved the existence of life during incalculable reons. It is, therefore, historically right that the geologists of to-day, under the banner of Sir Archibald Geikie, should have taken u_{p} the gage of battle against Lord Kelvin, for themselves as well as the biologists. Nor is the subject unimportant, for if the sciences are true, they must be concordant, and it is needful, in the warfate of true knowledge against superstition, which is surviving ignorance, that divergences should be removed, as removed they cannot fail to be. The whole of Sir Archibald's address to the British Association, 1899, ought to be read by all interested in the subject; but I will quote a few sentences now.
"Even in the most aucient of the sedimentary registers of the Earth's history, not only is there no evidence of colossill floods, tides and denudation, but there is incontrovertible proof of continuous orderly deposition, such as may be witnessed to-day in any quarter of the globe. * * The conclusions drawn from the nature and arrangement of the sediments are corroborated and much extended by the structure and manner of entombment of the enclosed organic remains. * * Undonbt. edly, most impressive of all the palæontological data is the testimony borue by the grand succession of organic remains among the stratified rocks as to the vast duration of time required for their evolution. * * So far as I have been able to form an opinion, one hundred millions of years would suffice for that portion of the history which is registered in the stratified rocks of the crust. But if the paleontologists find such a period too narrow for their requirements, I can see no reason on the geological side why they should not be at liberty to enlarge it as far as they may find needful for the evolution of organized existence on the globe."

Sir Archibald proceeds to regret the ubsence of numericul data, to form a satisfactory basis to compute the rate of demudation, and asks for the aid of all who can furuish may, as to the wearing away of coasts, the decny of buildings, and even of tombstones. I feel called upon to respond to his request with a new rule for mensurement.

Our West Algoma is a severely glaciated region, in which none but archean rocks remain, and many gold-bearing reefs have been exposed. Since the ice-cap left, the surface has been decaying, and the greater part of the aluminous and siliceous constituents of the rocks has been removed by water and wind. But the purticles of gold, which are not destructible and are of too high a specific gravity to be blown away or carried off by trickling rain, have, in favourable places, been left, and I had a number of assays made last summer from one such spot. The gold contents of the reef, when "the solid" was reached, were about $\$ 3.50$ to the ton, but the thin surface soil assayed $\$ 100$, and, for several iuches down, the fine particles of the precious metal had "crawled" into the crevices, enriching this surface rock to about $\$ 12$. A veraging the gold contents of half a foot in deptl) at $\$ 25$ to the ton, there must have been an erosion of nearly eight feet, to yield the valnes. Now, in 1875, I ruised a large gneiss boulder to the surface of my grounds in Toronto, since which there bas been a noticeable decay, but it cannot exceed the twentieth part of an inch. If the Algoma rocks have been disintegrated at this rate, it would have taken 6,000 years to wear away a foot, and nearly 50,000 years to erode the eight feet in question. I once measured the amount of detritus carried away by the creek which ran below the plateau where I live, by taking given quantities of its turbid water in times of freshet and measuring the sediment. Assuming continnity of conditions, I found it must have taken 70,000 years to excavate the valley of that Rosedale brook, and I argued that if the geological theory were true and the removal of a glacier dam at the foot of Lake Ontario had caused the fall of its water-level, this was the time that had elapst d since the ice age here. As the ice must have left this latitude and elevation before it left Algoma, the calculations tally fairly, which may indeed be fortuitons, but it is only by averaging reasonable calculations that a safe estinate can be rached. I do not think the time given for the decay of a foot of granite should cause incredulity. I have seen the Pont dir Gard, in France, built about 1,700 years ago, and the great stones there have not decayed three inches. The climate there is perhaps
the less severe, but I think the material is limestone, which can scarcely be so durable as granite. But do rocks, covered lightly by the product of their own decay mad by vegetation, take longer to wear awny than those uncovered, and does much interior decay proceed along with exterior weathering? An affirmative answer to both these questions would perhaps not much change the result obtained; but, until they and many others can be answered, much donbt will envelop the subject, and the limits of possible error will have an enormous superior range.

But as no marked biological changes have been noted in that portion of the quaternary period which is subsequent to the ice age here, the disappearance of the ice-cup mast be geologically very recent. A hundred times as much would be all too short for the evolution of present forms of life from its first beginnings in early stratified rocks, below which we have tens of thousands of feet more of strata in which no traces of life are visible. I myself measured 30,000 feet of the early Cambrian black slates exposed on the north-west of Lake Superior, and searched for many weeks for traces of life therein, without finding any. Only after these do we come to the archean formations, of manown thiokness ! It does seem, fain thongh I am to take sides with the physicists, that there is some error in their computations, of omission or assumption, and that this world is almost from everlasting, while almost to everlasting it must go on, as indeed they themselves prove.

Lord Kelvin's argnment, however, like everything emanating from him, is beautifully simple. He adopts Fourier's analysis of the following problem:-Given, an infinite plane dividing an infinitely large solid mass, with different constant temperatures on each side of the plane (at the beginuing of an epoch). What will be the rate of variation from point to point, and the actual temperature at any point? He shows that in the case of a globe 8,000 miles throngh, the surface may be considered as such a plane, and the depth infinite, without sensible error for more than a thousand millions of years. We thus have an equation into which there enter as elements the initial temperatures, the time, the distance of any point from the given plane and the temperature of that point at the time, also the conductivity of the solid. A tyro in differentials can follow the "mathematicai poem" throughont. Assum. ing time to be a hundred million years, the conductivity, in relation to specific heat, the same as that of Edinburgh rocks; and the temperature $7,000^{\circ}$ hotter than the present surface, the rate of increase works out
one fifty first part of in degree per foot for the tirst hundred thousand feet or so, such rate then rapidly decreasing. The chief variation nallowahle is in the function of the conductivity, and this, diminished by half or increased by one-half, gives the superior and inferior limits first alluded to by Sir Arch. Geikio. What new fact has induced Lord Kelvin to reduce his estimate I do not yet know. The effective temperature of the Sun is stated in the Astrophysical Journal for August, 1890, us $11,300^{\circ}$ Centigrade, which equals $20,340^{\circ}$ Fabr., und if the Earth had at the first a heat approaching this, and the cooled surfnce did not sink, us Lord Kelvin assumes it did, until by convection the temperature was so much reduced that the Earth became practically a solid-if, moreover, the protection given by its atmosphere of many miles introduces a neglected element into the Fourier problem-it may be that even Lord Kelvin's estimate will be again revised aud meet biological requirements. The extension of our thermometrical range by Dewar's apparatus in London, and Moissan's electric furuace in Paris, has made it possible to study the behaviour of substances under conditions of cold and heat respectively, which could not be prodnced until now. In our inmediate neighbourhood are great factories of carbides of calcium and silicon. It is possible that much of our world's original carbon is in the shape of carbides down below. Some of their known qualities may determine the position of active volcanoes which are all near oceans, and otherwise influeuce miners' experiences as to increasing heat.

Some progress has been made in the enquiry into the syncaronism between magnetic storms on the Earth and changes in the luminosity of comets, and this being a discovery of my own, first announced to this Society, I venture to descant upon it here.

If a magnetised bar be suspended at right angles to the magnetic meridian, one force with which it strains towards its normal position, parallel with that meridian, is called the Horizontal Force, while if it be so pivoted as to oscillate up and down, the strain with which it dips towards the magnetic pole is called the Vertical Force. The thirl element, Declination, involving the angle between the geographical and magnetic meridians, is possibly of little importance in this commection. These forces vary, like the wind, from hour to hour, and when the variation is rapid and continuous and considemble, we have what is called a magnetic storm. Some years the magnets are stolidly quiescent, in others they show frequent and striking signs of great agitation. and it

In Prof. Burnawi's ase wite of the brenking up of Brorke's comet of 1893, October 22nd und following days, he says it seemed as if the body was passing through some resisting medium in space. On turning to the magnetic records I fommi a great dinturbance from the 23 rd to the 25 th, und that was the most disturbed presiod of a year of great disturbances, just before a sun-spot maximum, and I thought solar influence might be found to explain the change in the comet more plausilly thm flonting cosmic matter. Additional resenches gave colour to this view, und in our I'ransactions for last year, page 136, are some contimntory notes, especially respecting Eucke's comet in 1871, just after a solar spot-maximum, and Donati's in 1858 , when a maximmm was close at hand. Mr. Elvins subsequently drew my attention to Swift's comet, 1892 , I ; as described by him in the Camadian Magazine. A oril 6 th the comet seemed very bright und on the 7 th the tail was tom up. Shere was magnetic disturbance from the 5 th to the 7 th, not very severr, lut the sm-npot muximum was close at hand. I then wrote to Prof. H. Krenta, the Director of the Astrononical Central lecord Ottice nt liel, who hed the kind civility to reply at length, stating that the idea was new, but referring me to a paper of Prof. Berberieh's in the Astronomische Nachrichten for 1888, in which that distinguished astronomer had treated of a relation between the brilliancy of Enche's comet at its successive visits and the number of sunspots existing it these times. He had the further goodness to send me three recorded instmices of sudden changes in comets, and enquired how they fitted in with the theory advanced. They were comet PonsBrooks, 1884, I, which showed a sudden change in brightness on September $21 \mathrm{st}, 23 \mathrm{rt}, 1883$; comet 1888 , I, which changed its appearance suddenly, May 20th-2lst; and comet 1892, III, Holmes, in which " from a simple mass of nebulons matter withont a nuclens, there suddenly developed on Janary $16 \mathrm{th}, 1893$, a bright nucleus surrounded by nebulous matter, which after some time disappeared." I find with respect to the Pons- Mrools comet that the observations, of which we have a full necount in the "uphlets of our late Honorary member, Father Terby, of Lomvain, , z vy iwnerfect, owing to contimous bad wenther. The comet sisma , we been very variable, and the maguetic wenther was most worthe too. Thre was a very great storm from the 15 th to the 27 th Se_{j},tember, the greatest violence being however, before and after the date given for the cometic change. Comet

1388, I, gives a much more distinct contirmation of my views, for on the 20th May, the day mentioned by Prof. Kreutz, the greatest depression of the year ocenrreal in the curve of Horizontal Force, nud ono of the most remarkable manetic storms known was accompanied ly one of the most brilliant nurcuae ull over the world. Thongh it was at a sum-spot minimum, there was a large regulur spot on the Sun followed by many others in an irregular stream, the whole in a state of constant change. The spotted ureas for Mayand the two months preeeding and following, were:-

1858	March	April	May	June	July
Unhrre.....	5	4	37	5	3
Whole spots..	34	26	206	30	25

The principal spot, first seen on May 11 th and last observed on the 23 d, was 37° past the central solar meridian by noon on the 20 th, Greenwich civi! time.

It only needs a few more of such striking coincidences to establish my theory heyond in sladow of doubt.

It must be admitted that no marked depression oceurred on Jumary 16th, 1893, the date given for a change in the comet Holmes;* there was indeed an increase of Horizontal Foree on the previons day. But a great variability in the comet is recorded, as well as a much disturbed magnetic curve in November and December, 1892, the S S. maximum then fast approaehing. As meteoric stones are known to vary in composition, so comets perhaps vary too, and all may not be equally susceptible to the particular solar influence which produces the brightening or tispersion of their appendages.

As showing the effect of this influence on another body than the Earth, 1 nust refer to Leo Bremer's observation of Mercury on May 18th, 1896, when he was astonished t, ee the dark side of the planet surrounded by a beautifil nureole. To make sure it was not an illusion, he called Madame Manola to the telescope. That day was the crisis of a magnetie storm uןon the Eaıth. He has promised to send me a list of the days when he has seen mureoles around the dark side of Venus, a much more frequent phenomenon, that I may see if they are coincident with magnetic disturbances.

[^5]Berberich's paper on Encke's comet gives data as to its brightness from 1786 to 1885 . The intensity it ought to show is given by the formula $I=\frac{1}{r^{2} D^{2}}$ where r is the distance of the comet from the Sun and D its distance from the Earth. After carefully reading the accounts he gives of its observed brightness, I have assigned to them numerical values from 1 to 10 , placing a concordance with the average between 5 and 6, and have constructed a curve therefrom, which agrees remarkably with the Ellis curves of magnetic Horizontal Force and of sunspot areas. Berherich thinks a higher power of r should be used to bring calculated intensity into accord with what we see when the comet is bright. I suggest adding instead another factor, connected with magnetic stresses, and I hope to find what it should be. I do not doubt that other periodical comets are most luminous at times of great maguetic disturbance, or that more comets can be observed in such seasons. That is, however, a different phenomenon from what I have noted, viz., the immediate effect upon some comets of particular magnetic storms.

No. 1 is the curve for brillancy of Encke's Comet.
No. 2 is the curve of Hor. Magnetic Force.
No. 3 is the curve of sun-spot areas.
The second and third from Mr. Ellis paper; the first prepared from Berberich's descriptions by the author.

Last year was not an annus mirabilis for observational astronomy. The Sun was almost clear of spots. The planets were not in very favourable positions. No large new stars blazed out. Comets were few
and small. Even the November meteors were disappointing. Here it was generally cloudy and I saw through the drifting clouds but one, which was not a Lconid, as it came from Cancer and crossed the barely visible sickle in Leo. It is a beautiful sight to see a large shooting star through a haze or mist. Dr. Larratt Smith observed one such, in Jannary last, which shot upwards from a radiant below the horizon, and Mr. Gordon Mowat reports seeing one through a cloud which shat other stars from view. The observatory at Meudon collected Leonid notes from Delli in India to San Francisco, and olservers all reported a paucity of meteors. The calculation of Leverrier was this verified, that after the fine display of 1866 , the Leonid ring would pass near enough to Jupiter and Saturn to have its orlit changed, and no confocal stream supplied its place, which seems to prove that the meteor-roadway of the ortho-Leonids is comparatively narrow. It is thought the star-shower will be more brilliant in November next. Remarkable observations were, however, nade from balloons, two of which were sent up from Paris and three from other places to see the Leonids from above the clonds. Miss Klumpke, an attachée of Meudon, was one of the aeronants. Balloon observations afford several advantages. The stars shine brighter when seen from above the mists of Earth. Notwithstanding the light of the nearly full Moon, all the stars in Leo Minor could be well seen, and the colours of the meteors were far better marked. Only minutes were noted, as no chronometer was taken up, but in future ascents, when the omission will be made good, comparisons both as to colour and brilliancy can be made with observations from terra firma. The course of such balloons, ascertained by compass, can be checked by dropping weighted cards. The Perseid stream, of Angust, as important in its bearing on meteoric astronomy as the Leonid ring, was well observed in Europe, the average number of meteors during five days being about 100 an hour; and from a simple calculation we can obtain a very fair idea of the celestial spaces involved in the display. The Earth is 8,000 miles through, and rushes across the meteor-stream with a front we may estimate as equal to a plane of fifty million of miles in area. Supposing an observer can see 35 miles in every direction, he covers about 5,000 square miles, so that ten thousand stations would be needed to see all the meteors that fell. Now a hundred an hour, at ten thousand stations, for five days, means a hundred and twenty million meteorites. Again, the orbit traversed by the Earth in a year is about six
hundred millions of miles long, so that in five days, the Earth would have crossed eight millions of miles, which is the breadth of the thickly starred part of the Perseid stream - the only necessary allowance being for the angle at which the orbits of the Earth and of the meteors intersect. Further, the Earth travels its own diameter-length in about seven minutes, so that the plane of fifty million miles with its ten thousand stations met within the space traversed in that time 120,000 meteors, and each one must have been flying along over thirty miles, on the average, from its neighbours.

Though experienced star-gazers may remember more splendid transitory sights than those of last year, observers who are young, either from years or from newly kindled interest (and of such there is a fresh crop every season) have had enough to stimulate them. They have enjoyed what some of us have long since lost ; the exquisite luxury of vivid first impressions. The bright diamonds which attend on Jupiter can be seen every year with quite small telescopes; so, too, can the wonderful Saturnian microcosm. Double stars and nebnle are always with us, I was abont to say mehanged, but that is not the case ; combanion stars circle abont each other, while changes in the form and relative brightness of parts of some nebule are thought to be noticeable also. The Moon is only inconstant in a Shakespearean sense, she is an object of transcendent loveliness of which old astronomers never tire; 1 know not whether she is more beantiful when the lace-like edge of the cresent shows like a fringe between the glare of her sunrise and the darkness of her half-month-long night-when she shines full upon us, a silvery, shadowless sphere-or when, the veil of eclipse thrown over her, she is colonred with the lovely bronze and blue tints of diffracted liglit.

Though passing shows lave heen few, there has been no panse in the progress of onr science. Wonderfnl news reaches us from the mountain tops, where the clearest seeing is. The olservatories there are in an astronomical fairy land, where the visible stars are brighter than below, and doubles shine with coloms like "combinations of garnets and sapphires, topazes and rubies."

Schaeberle, at the Lick telescope, has seen, of a dull purple, the massive companion to Procyon, previously only known to exist by inference, like many other socalled dark stars. The companion to

Sirius is calculated to be of great size and weight, and it is very obscure. It was first seen by Alvan G. Clark in 1862, and has lately been almost in line with its principal, but now emerges. Its orbit is described in $52 \cdot 20$ years. The chief compranion to Algol goes round in less than three days.*

Prof. See suggests that dark stars seem to be so because they shine with vibrations our optic nerves cannot respond to-say of the ultraviolet type. They may in such case be hereafter caught on n well focussed photographic plate, which is sensitive to vibrations the eye cannot perceive. Phobe, the new ninth satellite of Saturn, was so fomd, and has not yet been distinguished by direct vision. It is the most distant of his family, just within the limit of permanent attraction, and quite small, showing only as a $15 \cdot 5$ magnitude starlet.

More asteroids have been "located." The first, Ceres, was discovered on the first of January, 1801, by liazzi, at Palermo. The eccentric Eros, first known as D. Q. (No. 433), was introduced to his elders in 1898, and now we lave E.W., which means that thirty have been found since then. The family gronp is now so large that when new members are caught, they are turned loose again, unless their orbits present some noticeable peculiarity.

Spectroscopists have scored another triumph in the discovery of a layer of carbon in the Sun. Prof. G. E. Hale and Mr. F. Ellerman, of the Yerkes Observatory, anuounce that they have found it at the base of the chromosphere, a very thin envelope, but unmistakealle. Only instruments of the highest power have revealed its existence. Nontelescopic spectroscopists rejoice in the discovery of vanadium in almost all stony meteorites, while it is absent from siderites, which they consider proves diversity in their origin.

Physicists are to the fore with an explanation of transparency, based, if I understand Mr. Sarzae aright, on the arrangement of the particles in the medium and on its elasticity. Light-waves, striking the surface of glass, water, or the like, force back its particles and communicate successive vibrations, which, if the thickness be not sufficient to absorb

[^6]the impulses, are transmitted by the second surface to the ether on the otier side. Transparency, and the index of refraction, depend on the arrangement of the particles in such a method as to propagate wave motion harmoniously. The communication has recently been made to the French Academy.

In Radiography we now speak of Russel rays and Beequerel rays in addition to those of Roentgen. It is suspected indeed that all matter, including the human body, emits influences which will affect a sensitized plate, if kept in darkness for a sufficient time. Until last year uraninm was thought to be the substance whose emanations most rapidly affected the film ; it was displaced by radium, but Madame Curie's discovery of polonium gives us a metal which has four hundred times as much energ., and that without apparent exciting cause or perceptible diminution. Radium is even more energetic, with this remarkable difference, that its influence is affected by an electro-magnetic field, whereas the radiations of polonium seem not to be deflected thereby. This new science has already many applications, the latest being a proposal of Dr. Kolle's, in the Electrical Engineer, to supersede some of the processes of typography.

I do not know under what head to class the announcement by Mr. Chas. Honoré, of Montevideo, that the body of the sun, interior to the photosphere, rotates somewhat more rapidly than the visible exterior, and on an axis inclined to that we see evidence of. He promised proof, and thinks that periodicites in the phenomena of temperature and earthquake can be referred to this helio-thermic year.

We lave had some very interesting records from the Toronto seismograph. The instrument is of the Milne type, only intended to show the time at which shocks occur, to aid in studying the rapidity of the transmission of tiemors, and thus learning something more about the effective rigidity of the Earth. It is not meant to show the character of the oscillations, but it does to some extent show their violence. In 1898 it gave us notes of es earthquakes, and in 1899 of 37 , the excess being probably due to its improved setting. Of these no less than 29 were in September last. It seems by the tracings that for several days the Earth was constantly shivering matil on September 10th at $17 \mathrm{~h} .11^{\prime} 56^{\prime \prime}$ Greenwich mean time a great throe began. The record from Victoria, B.C., miscarried in the mails, so we lack the most interesting comparison, but at Kew the first tremor was 3 minutes 7 seconds later. The maximum was noted here at 20h. 42' $14^{\prime \prime}$ Greenwich mean time, and at Kew 24 minutes 42 seconds later. Another great shake begru at $20 \mathrm{~h} .42^{\prime} 14^{\prime \prime}$ Greenwich mean time, with a maximum at 22h. $3^{\prime} 6^{\prime \prime}$. Mr. Stupait, the director of our observatory, has kindly given me the tracings, and I show you that of the last great shock. The whole dis-
turbance lasted for nine hours, though it was some days before absolute quiet reigned. The centre of disturbance was near Mount St. Elias, in North-western Cunada, but as the Americans own the Pacific coastline there, we shall hereafter read of it as the great Alaska earthquake. The local effects were terrifying and the region affected by the shocks was 4,000 miles or more in diarreter. The contour of the coast-line was permanently changed, larts of islands being swallowed up and wellknown land-marks laving disappeared. Tidal waves rushed in from the ocean, the waters ou submerged reefs were violently agitated and shaken into foam, the waters of ioland lakes were let loose, and the sparse Indian inhabitants of the region were greatly frightened. The Rev. S. Jackson, Superiniendent of Education of Alaska, was at Yakutat Bay, to which some panic-stricken people fled, and we may expect the full details next summer. Dawson City was badly shaken too. The most extraordibary effect seems to have been the changing of the face of every ghacier on the coast, the Mair ghacier with the rest, the ice having been fractured for a mile or more from the sea and having slid or been cast into it.

In the immediate future we are looking forward to the sun-eclipse of May 28th next. Expeditions are being organized on the other side of the Atlantic for its thorongh observation, especially in Algiers, while on this side, observers will favour Georgia and Alabama, where at that time the least interference from clouds is to be expected, and the chance of a clear sky is seven or eight to one. The corona will not be widely extended, the carmine prominences will probably be small and few, but both, as well as other usual phenomena of total eclipses, will be as interesting as they are rare, including the onrush of the Moon's shadow over the Earth, the mysterions grandenr of which is alone worth going South to see.

I must not close without alluding to the progress of time reform, in which this Society has always taken a deep interest. "One of the great reforms of the last twenty years," says the Weather Reciev of Washington, " has been silently advancing. * * This amounts really to an internatioul agreement that longitude and time shall be as far as practicable referred to the Greenwich meridian. * * Thus, in the Atlantic States, we use seventy-fifth meridian time, but in the Mississippi river water-shed, uinetieth meridian time, except, perhaps, in the western portion, where the one himdred and fifth is adopted," as it is on the Pacitic. The same is the case in Canada, and the system is spreading on the other hemispliere. We have not yet succeeded in having the twenty-four hour

81

notation commonly used, or in having astronomical and civil time brought together, the former still beginning its day at noon. The French Annuaire du Bureau des Longitudes has, however, this year adopted mean civil time, from 0h. to 24 h ., and astronomers there will have to fall into line. But a still more important clange is perhaps being accomplished, as I speak, viz., the adoption in Russia of the Gregorian reform of the calendar, which dates from 1582 . Ton days were omitted from the year when first the reform was instituted at Rome, eleven when England adopted it, in 1752, and the Russians wi!! now have to omit thirteen. Reports being as yet contradictory, we are not yet sure. Some say the difficulties in comnection with regulalating church festivals are insuperable. It seems curious that time reckoning, which is strictly a matter of astronomy, should be made a matter of religion. It is however proposed that on January 1st, 1901 all Christendom shall date its letters on the same day and month. 'Then, on to Cosmic time, when every clock will be set to the same hour and minute! The greatest feature of the past century has been the genernl acknowledgment that one law, one common nature, one evolutionary system pervades not only this world but all others, and surely one law as to weights and measures, especially that of time, ought to be observed among men.

And now, in the last year of the century, in the last year of the Society's first decade, with my last words as your President, I think I onght to express the satisfaction we must feel in looking back over our own particular little day. From being peripatetic wanderers, we have become a settled institution, having comfortable quarters under the roof of the Canadian Institute. Our special room is decently furnished. Our library is fast growing into value, our volmmes are properly bound, well arranged and catalogued, and I do hope the Society will continue the assiduous care of this department, for though the heavens are our chief books, written in pandemic language, and their suzerainty is ever preferable to thet of the printed page, we need many others as commentaries upon them. Our Transactions have been regularly issued and have been well received at home and abroad. We are free from debt. Our organization has worked smoothly, our officers have been earnest and faithful, and our future seems as bright as we can reasonably wish. I received my trust from a model President, I surrender it to a capable and respected member. In the hands of Mr. G. E. Lumsden, F.R.A.S., the dignity of the position will not be impaired, and he will repay you for the honour conferred upon him with no less loving service than his predecessors.

[^0]: * In the Timaus the figures are thus given, in the Kritias a thousand more years are added.

[^1]: * Dook NII. chap. 10.

[^2]: * De naturî rerum, Lib. I., vv. 63-67.
 + Book VII.

[^3]: * "There it was that I foum and visited the famous Galileo, grown ohl, : prisoner to the Infuisition, for thinking in astronomy otherwise than the Fran. cisem and Dominican licencers thought."--Wiltonis . Ireoperyitica.

[^4]: * Transactions Royal Socicty Edinburgh, vol. xxiii.

[^5]: * In the Transactions Royal Society for March, 1893, page 332, the accounts given of this comet for January and February do not agree with ℓl of the Nachrichten. The only sign of a tail alluded to is on January 27 th and \perp ebruary 4th, when there were depressions in the Horizontal Force curve.

[^6]: *It is interesting to compare these periods with those of botics such as one of the components of the double donble \in Lyre, which takes 900 years to revolve, of the comet of 1811 which is calculated to have an elliptical orbit with a period of nearly 2,000 years.

