THE JOURNAT
of ras

FOR U!PBRR CANAUd.

APRII, 1365.

YLAG COMMEROLAE INTERRST IN PLAX.

 (communicated.)It inas been sinted that in Upper Canada 10,000 acres of flas were grown in the year 186s, and that 60,000 acres will be grown this year; this, at ihe rate of 1: busbels of seed per acre, at $\$ 1.50$ per bashel, and 300 lbs . of fibre per acre, valuel at from $\$ 8$ to $\$ 10$, per 100 lbs.,* would realize the sum of $\$ 2,250,000$, by which farmers and otbers will be largely benefised; but oot near to that exient which might be accomplished by a more improved system of cultirating ard oreparing the crop. Tie prices of fiax in Treland at present riuge from 49s. to 72 s . sig. per cwt, of 112 lbs ; and some lots of their very worst flax binge 3 us. per cwt., or abour as wuch as is stated to be the average of cantandian fies. 300 lbs . of fibre per ace iv $\mathrm{g}^{\mathrm{i} v e n}$ as the are:age fur Cabada, 6.50 ibs . per ace for Irelind. In fact, the guantity is wore that double, the rate of price is donble, and the s. Whe exseric uf yround sown in Ireland prodaces from thee to four times the amount of woney it worild do in Cunada. This is not the fault of Cundian suil or cinazie, for it will grow las equal to the besc hrish; is is aiogeiber owing to the systems of cua, ivation and preparation of the crop. The quanticy of seed per acre sown in Canadir has been prosed by experience both in Ireland and other paris of Enrope, to ise quice insufficient. The quatity of the seed sown is alsu much inferior to chat sown io Irelauc:-it is the produce of coarse, short branchy flas, much superior no duciot to the Uoited States seed, but mach inferior to European. It is grown in Canada year after sear, " like begettiug like;" and the mode of preparacion in usual practice is also calcolated to give nothing but an inferior quality of fibre; in fact Cinada is growing and preparing flax afier the old systems which were long in use in lreland, but have been abandoned generally during the last twenty years. It would be well that this subject should be cousidered, not merely by furmers but by the commercial inierests.

[^0]Wben flax had risen to a high figure in Europe in the eurly part of the present century, any one in Treland could mike a profit by the growth of fixy, of a quality no better than that now produced in Cadada, but prices fell, and the growth of flax in Ireland gradually became less and less. In 1813, 52,014 n.cres were grown, and in 1815 it had increased to 148,124 aores, but the European wars being euded by the batile of Waterloo, checked the upward tendency of prices, and flax becoming a less profitable crop, in 1816 only 93,665 ; in $1822,76,809$; in 1847, 58,312 ; aud in 1848, 54,000 acres of flax were grown in Ireland, We then aguin find fiar growiog estending in that country; in $1849,60,000 ; 1850,91,000 ; 1562,150,070 ; 1863$, 214,661; and in 1864, $300 ; 944$ acres. For many years after 1815, the Irish were unable to compete with the Belgians and others more akilled in the cultivation and preparation of flax, and owing to the incieased demaad caused by the introdaciou of spinoing mills into Ieeland, they were unable to get a sufficiency of tbeir own home-grown flizs, when some clear-sighted practical man set abont to discover how the evil could be remedied. The Royal Fiax Impuotenent Society was formed, enquiries were set on foot, and it was soon discovered tbat the reason why Irish farmers could not grow flax to compeie wilh the Belgian, was simply because of the superior skill of the latter. Iostrociors were procured and sent amongst the faruers, pointing oat to them the most approved methods at every stage of the business. I'he value of this is evidenced in the fact that flax is now grown there fully equal to the best Belgian; and though the population of that Island bas decreased about three millions since 1846, we find its cultivation of flax bas extended from 54,000 in 1848, to 300,944 acres in 1S64. In these figures and facts there is an important lesson for Canada. There are many who may be startled by the assertion that the sum of $\$ 2,2 \tilde{0} 0,000$, which will be the value of the furmers' crop of this year at the rates here estimated, is litile more thao one-half of what might be obtained by the adoption of more improved systems of cultivation, and by the proper selection of seed for sowing ; for the produce of fibre now estimaied at 300 lbs . could casily be increased to the lrish average of 650 lbs . per acre, or even to equal some of the prime Irish crops, which have reached the rate of 900 or even $1,000 \mathrm{lbs}$. per acre. By thus increasing the quantily of fibre, no doubt the profits of the seed crop would be lessened, but not abaadoicd. The saviug of the seed is at present a great object in tie economy of careful and skill. ful Irish flizx growers, though until lately they neglected to take advantage of this branch of profit.

By the proper selection of sced and improved cultivation and preparation of flax, the quality is also improved, and flax which under the ordinary treatment is, when scutched, only worth 10 or 12 cents, might by skillful treatment be made worth from 25 to 35 cents. It is not unlikely that upon a review of the produce of the Canadian and Irish crops of 1865 , it will be estimated that a greater returu has been received from 20,000 acres in Ireland than from 50,000 in Canada, under the systems now in practice; though we know. from the very best authority of Irish flax growers, who have narrowly looked into the capabilities of both countries, "that the soil and climate of Canada are admirably adapted to the growth of flax." "Flax grows in Canada luxuriantly," and in it "as good flax can be grown as in Irelaud;" opinions which are fully borne out by the desire evinced at all times by farmers to grow flax, if they could only get machinery to dress it and a market in which to sell it-both of which wants it is now to be hoped will be supplied by men of capital and spirit, who are convinced as to the certainty of the profits to be derived from an investment in these branches of trade.

It may be thought by many that any thing relating to the cultivation of flax is merely an agricultural subject, and that the farmer is the only one inte. rested in it, Such is a very mistakon idea; for agriculture, manufacture and commerce, are so closely linked together in flax that no one of them can carry on its branch of the business without the aid of the other; nor are they the only branches which should exert themselves to encourage it-its uses are known in some degree to nearly every one, but neither its uses nor value are known to such an extent as they ought to be.

By the manufacture of Cotton, ManchesterLiverpool - Ashton - Stockport - Buraly - and other towns, with leading canals and railways, have been made in England.

By the Flax, Yarn, and Linen trade, Belfast-Lisburn-Ballymena-Coleraine-Bainbridge-Guilford-and other towns in Ireland, have grown in population and wealth.

By the cultivation of flax and the employment it has supplied, farmers have accumulated riches and earned independence in the Province of Ulster, which, though inferior to many other parts of Ireland in the fertility of its soil, stands out in bold contrast against its sister Provinces-evidencing the superior prosperity, comfort and happiness of its industrious population; and all this can be traced to its staple trade in flax. In 1824 Mr . Mulhollanderected the first spinning mill in Belfast.

In 1841 there were 250,000 spindles working up 16,000 tons of Glax annually; in 1851 they had increased to 500,000 spindles, working up 32,000 tons of flax ; and in 1864 there were in Ireland 650,638 spindles spinning above 40,000 tons$89,600,000 \mathrm{lbs}$. of flax, which at the rate of 30 clbs . (the average in Canada) would require 298,666 acres to be grown annually to supply these spinning mills. In 1855 there were about 17,000 persons employed in the linen trade of Belfast ; there are now about 25,000 . The value of the Irish crop of flax of 1864 is estimated at $£ 3,962,989$ sterling. The total value of linens exported from the Uniterl Kingdom was, in 1863, $£ 8,469,036$ sterling. In 1852 there were no power looms in Ireland, yet in July, 1864, there were in it about 8,000, performing as much work as 70,000 hand looms. All this prosperity bas grown up from beginnings as small as those which originated in Upper Canada a few years back, and with no more natural advantages in many respects than it possesses.
It is said that in those parts of Belgium where flax is grown pauperism is unknown, because it gives employment to all by its cultivation, preparation and manufacture. Though the value of the raw materials of flax exceeds that of any other crop which a farmer can grow at equal expense, and under similar circumstances, yet its value is small when compared with the resources it possesses for profitable development of labour, industry, skill and capital. The only capitalinvested in it originally is for the purcbase of the seed for sowing. The produce of an acre of flax may be manufactured into materials of ordinary fineness to the value of from $\$ 600$ to $\$ 700$, all of which, except a few dollars originally expended for seed, has been attained by labour. The farmer's sbare of its profits are but small when compared with the profits of others in the trade; but unless the farmers grow the crop there will be no provision of means byswhich these profits can be realized; it is therefore the duty and self interest of every class who is benefited by it to assist in the development of a trade in flas, and to encourage its cultivation, so as to keep up the supply of raw material -to see that the farmer is supplied with suitable sowing seed imported from abroad, and to aid projects which may be set on foot for the erection of factories for the preparation and scutohing of the flax to make it marketable. When the seed is cleaned it is ready for market, and there is no difficulty whatever in disposing of it. The same is the case with regard to fibre when the scutching of it is completed. Were the seed and fibre thus prepared, buyers would be found going to the very houses of the farmers to purchase it.

In Ireland markets are held once a week in the towns, and so near together are they in the north of Ireland, that almost every furmer has markets that he could go to and return from on every day in the week. These markets are well attended by buyers, always ready to purchase more than they can get; and such is the anxiety of buyers to get the flax, that they are to be found daily driving from the house of one farmer and one scutchmill to another, to piek it up before it goes to marker. Flax spinners and merchants have their buyers out in all markets, neither distance nor expense deters them; and if any one man in Canada were : known to have ten tons of scutched flux for sale, there are speculators in the north of Ireland who would not hesitate to send buyers out all the way to Canada to purchase it.

Mills for spinning, weaving, and oil crushing belong to the more advanced stages of the manafacture of flax-their profits are well known to be great, and capital and enterprize will always be ancious to erect such where the raw material can be got abundant, and self-interest will always provide these where they will be profitable. The erection of factories for the preparation and scutching of flax require a much less amount of capital, and they are proportionately more profitable; but, their profits have not been fully understood in Canada, and thus the erection of them has been too long delayed. This is a subject which requires especial attention by farmers, mechanics, merchants and capitalists-they may in this matter act individually or in concert. The latter would be mach the better plan-the project could by it be carried out more succesefully and profitably, and with little capital drawn from each.

The erection of factories for the preparation and scutching of flax, are essentially necessary to promote its cultivation. In Belgium, where labour is abundant and cheap, these operations are carried on by manual labour. In Ireland, also, much of it is done by manual labour, though the factory system is rapidly introducing itself there, as it has done also in many places in France, Belgium, and England; it being found that the various processes can be carried out with greater economy than by manual labour, unless where the latter is at a low price, or supplied by the farmers' family at times when they would otherwise be idle.

Before capital is invested in any speculation, and more particularly in one involving the erection of buildinge and the purchase of machinery, the questions proper to be asked are:-Will the business pay? How much profit will it pay? And bow long will it continue to bring in a profit?

The two first questions more properly belong to a detailed prospectus, by which it can easily be shown that such a speculation would pay a proft of 20 per cent. on the paid-up capital, in addition to the benefits conferred on the public, the flaxgrowers, and those who would be employed. But we will for the present pass on, without entering into the details of those matters, and discuss the question,-How long will it continue to bring in a profit?

The failure of the potatoe crop in Ireland was thought, at the time, to be a calamity for which there was no relief; but it proved a blessing, in stirring up farmers to seek a more profitable crop in its stead. So mary the failure of the wheat crop confer lasting benefits on the farmers of Canada, by teaching them not to put too much dependence in grain crops as a source of profit, and inducing them to gire place, in their rotation of orops, to flax. Farmers are proverbially a cautious class of men, and the great caution with which they are gradually getting into flax growing is some evidence of their knowing its value, and that they are determined to continue growing it. But there are some who, perhaps, imagine that if the wheat crop returns to its former bealth, they will abandon the growth of flax. We do not think so. If they but once taste the sweats of the profits of flax, they will be very reluctant to part with them, for it is a much more profitable crop than either wheat or barley.

There are others who, perbapa, think that the restoration of peace in the American States may lead to consequences which will cause farmers to be unable to grow flax profitably, and that then, of course, it will cease, and capital expended in factories and machinery would be lost. This is, in truth, the great question. There is no doubt but the American civil war has influenced the increased price of tlax; butit was not the only cause operating to bring it into favour in late jears, for, before the war was thought of, an increased demand for flax had sprung up, owing to its own individual merits. The supply of all kinds of raw materials for textile fabrics had not kept pace with the demand, and those interested in their manufacture were looking around with anxiety to discover from whence they might obtain a supply. The Great International Exhibition, held in London, in 1851, had done much to set on foot a spirit of inquiry, and to make the value of flax better understood than it had ever been be. fore. This state of affairs was well described in a small volume, "Flax versus Cotton," published in 1853, written by Mr. G. G. Dodd, who seems to have fully understood the subject. He writes :-
"Cotton and flax being compecitors, flax took the lead in the spiuning aud weaving districts of Eugland antil the days of Largreaves and Arkwright, when machinery gave the advantage to cotton manufacture. Flax is now advancirg agaio, and its uses are extending." "The cotion world is a little uncertain as to the future supply of raw material : the flaz world ufiers to do what flax cannot, and is even bold enough to challenge cotton for the leading position." "The Awerican States' planters grow as much as the slaves can pick, and there is a limit to the supply from thence." "It is now an unquestionable fact, that the consumplive power treads not only close on the heels of the productive, luthas rurpassed it." "Lavcashire is put to jts wits end to derise a mode of escaping from the perilous dependency on the United States for cotion."

Mr. Dodd's words, written eight years before the commencement of the American war, nod when there was no prospect of it, were truly prophetic of the results which followed, when it deprived iancashive of cotton, and threw the manufacture of teatile fabrics out of the Mnnchester cottou-looms into the Irish linen powerlooms, causing an increased demaind for flax, which is growing greater every year.

Mr. Baker, the British Factory Iuspector, in his report of 1861, writes:-" We can veither procure flax from abroad nor induce our farmers to grow the raw material." The same complaint has been made in the United Siates, in which there are several flax factor:es, one of which alone enosumes in thread and twine about 700 tons annually, or more thau one-half of all the flax grown in U_{f} per Canada in 1860. Within the lass three ye:ars, agents from the Uaited States have come to induce farmers in Canada to sow Hix, and they do not hesitate to admit the inferiority of their own growth in quality. Such has been the ansiety ot mannfacturers for ostending its cultivation, that the U.S. Goverument allocated $\$ 20,000$ lately to encourage it; and flax is admitted theve, as well as into Newfoundland and Nova Scotiit, duly free; in the latter (into which it is imported from Europe) it is used to make twine, thread, fishing-nets, \&c. The result of the present civil war must lead to a short supply of cotton from the Southern States for many years to come; and many reasons present themselves to prove that the Sonthern States are not likely again to supply cotion to the extent they have done herctofore. Cotton, which before the commencement of the war would have sold in England for 6d. or 8d., is now 2s. 4d. per lb., without a prospect of any great decline in price. The necessities of the American Governnient have
already suggested to them the imposition of a tax upon cotton, which will heep up iss price almost to what it now is.

British and Irish manufacturers bare been nsing every exertion througbont the world to obtain supplies of colton, but the contirued high price of it proves, to some extent, their want of success. In like mauner it has been sought to procure fia. A company was formed in juelfast, some years ago, which has been endeavouring to cultivate lax in the East Tvdies; but neither in quantity or quality hass it come up to what was expec:ed of it, and the cry of the spinners still is, "Give us more fiax." The demand for libens is increasing, welw mills are being erected, but the ruw material is not fortheoming. A few years ago, power-looms could only weave cotton; but, by improved machinery, they are now applied to the manufacture of liven. King Cotton had a long reigu, but it seems that Queen Flax is dethroning him, and may long hold the sway of manufacturing power.

So long as prices are high inferior qualities mary be purchased; but when the demand lowers they will not be sought after. Superior qualities of raw material always are in request. There is no tradesman who does not understand that a good article is always salenble, So it is with flax. The inferior qualities grown in Treland sold well during the years of increased demand, np to 1815 ; but when that demand fell off, they wero uanbie to compete with the superior quality prodaced in other parts of Europe: nor did the Trish flax growers regain their share of the frade until they altered their system, and produced a better quality.

Canada has now beran to share the flax trade, and she will always continue to hold it, if she oaly improves the quality of her flax fibre, and extends her fields of cultivation so as to prodace a sufficient quantity to attivict manufaoturers or purchasers from abroad, aiter supplying her wants at home. Linen, and vaious other flas manufactures, are now largely imported into the Province, though they might be supplied with advantage and economy either wholly or in part of home grown produce. The home demand for flas would of itself justify the erection of fax scutching nills and preparing factories: tho business once estab. lished would be permanenc and profitable.

It is one of the principles of the far-secing politicians of the present day to deny the aid of governmental credit, or money, to promote objects which would come into competition with or check private enterprizo; but this priaciple may bo carried too far; and there are many projects which it is not only legitimate but expedient for Government to aid by loans or grants from the publio
funds: and of such flax apperrs to have claims at the present time, for beither the Government nor any association in Canada, have jet given to flax nny substantial mark of their, favor, in any degree proportionate to its importance, or similar to what bas been done in other countries, where by fostering care it has been established as one of their staple crops, and of the leading branches of their commerce and manufactures.
In the United States not only have the governments of the States of New York, Maine; Massachusetts, and Rhode Island, lately used efforts to encourage it, bat the Federal Government, by their Bureau of Agriculture, has warmly espoused the cause. France and otber countries have carefully fostered the linen trade by high protective duties. In Russia, government officers strictly esamine and classify the seed exparted for sowing, and to this much of their success in establishing a high character for good sowing seed may be attributed. In Ireland the trade and cultivation of flax has for upwards of two centuries been encouraged by the Government, and has received many favors by grants of public money, bounties, and legislative enactments. But we are too far adranced in the age of free trade to advocate the imposition of high protective tariffs, or the bes. towal of bounties for the encouragement of any branch of trade. There are other ways, however, by which the Government of Canada might aid and estend the cultivation of flax, withont involving any financial loss. One of such ways would be by loans to township municipalities, or incorporated compavies, to purchase machinery, to import foreign seed, and to employ practical instructors. Another way would be to make loans to private individuals for the erection of scutch mills, after the manner provided for in Ireland a few years ago to meet the difficulties then existing in:many parts of that country, such as now exist in most parts of Upper Canada, from want of those indispensable auxiliaries. Grants should be made to the agricultural boards and associations to enable them to assist in the matter. The appropriation of a portion of the school funds to defray part of the expenses of practical instructions to farmers, would seem to be a fitting application of such funds. A board or association should be formed to which the care of the extension and mprovement of flax cultivation should be specially assigned. The value of such an association has been proved to be very great, in the existence of the "Rojal Flax Improvement Association of Ireland," by whose exertions it may justly be said that the present advanced state of the qualities of Irish flax is indebted. This association met with
great discouragement and dificulties in the early efforts of their instructors to overcome the prejudices of Irish farmers, who claimed to have inherited from their forefathers a skill in flax cultivation which they thought superior to any of "the new fangled systems, which might do very well in Belgium, but would not suit in Ireland," as they said; but, by persistent and persevering efforts, their prejudices were overcome, bints and saggestions of the instractors were taken, and a new school of flax growers was created among the farmers, producing fax equal to the best Belgiad.

Instructions of this kind must be carried home to the fields of farmers in a practical way; theoretical instructions and scientific lectures may create. an interest in the subject, and prompt many to try the experiment ; and written essays are valuable in like manner, though with farmers they have not the weight they ought to have; and so many written instructions have been published on the subject that flax growers are often puzzled to understand them. What they want is teaching by practical men, with whom they can have an interohange of ideas on the subject, in their fields, at the various stages of the crop. This fact is well known, and has been acted on by somo of the leading men in the business in this Provinee, who have been instrumental in bringing flax culture to its present extent in Upper Canada.

The prozimity of the markets to the farmers in Ireland has been before alladed to, and from the opportunity afforded to farmers, hncklers, buyers and spinners to meet in crowds at such markets, immense rivantages have been derived. Several hundreds of loads of flas are in these markets exposed to view ats at an agricultural exhibition; each firmer sees his neighbour's flax, its perfoctions and imperfections, learns the value of it, hears the causes of the superiority or inferiority, and interchange their ideas and give their experience to each other, contributing to the information and improvement of all. There are in Canada many who have made up their minds that they are perfectly skilled in the cultivation of fiax, but who are far behind the skill of the growers of the last few years in Europe. There are others who know but little of the modern systems, and yet will take upon themselves to assert that the systems now and hitherto in operation in Canada are the best-in fact the only ones suited to the country; and it is hard to say which of these is the most difficult class to deal with. There are, however, many who know the present system to be wrong, and are endeavouring to improve it ; and there are not a few of the believers in the old eystem whose faith is shaken in it, when they bear
that by it an acre of their flax will not produce one half-perhaps not one third - the price of what is cultivated and prepared under the modern aystems.

Suggestions have been made for the formation of flax companies in Canada for the purpose of erecting scutch mills, and to purchase the crops from the growers. The formation of such companies, and flax growers becoming co-partners in them, would be a step in the right direction. By forming joint stock companies, factories could be erected, and machinery purchased; the grower's flax might be prepared for him on his own account, or purchased from him at its full value and prepared on account of the company, the employees of which must necessarily be men skilled and experienced in the business, who would also aid muoh in giving instruction to farmers as to growing flax. Payment of shares taken by farmers in such companies could be made by flax, and no money would be required of them, and the shares might be of so small amount as to be within the reach of almost everyone. Such stock would soon be found paying a high rate of per centage, and becoming popular would sell at a premium.in the share market. Surely there are men in the Province ready to set on foot such a project, and to carry it out-men whose influence would carry weight with it, and whose money, if needs be, would be forthcoming for investment in a business of such public utility, and which would be largely remunerative to themselves.

It may be asked by some what great secret is there in the cultivation and preparation of flas, the want of knowledge of which prevents any and every one from embarking in it? There is no more secret in it than there is in any other branch of business, which requires a man to be trained to it practically to be able to realize the utmost profits the business is capable of. The knowledge of the kind of seed to sow, capacity to select it, knowledge of the kind of soils in which to sow it, the mode of cultivation of the land, the sowing of the seed, the completing of the labour, the weeding, the pulling and harvesting of the crop, are each branches of business at which a novice would find himself very deficient. The treatment after pulling is one of the most difficult matters to manage properly. It is essentially a chemical treatment, performed no doubt by simple means and in a natural way, but in which some skill in practical cbemistry is necessary. Meohanical aid is also invoked, and some of the most complex and ingenious contrivances have been invented to aid in the preparation of flax, and of such there have been patented in the United Kingdom upwards of

100, in the United States upwards of 30 , in Canada 5, and in Belgium, France, Austria, Prussia, and other European countries great numbers of inventions have been introdused and patented. Gold medals, and money premiums to a large amount, have been awarded for essays written on the subject. Chemical analyses and experiments have been made, and works written on the subject by learned professors. Much has been read, said written, and done, and yet it is a wide field for further discovery; and he would be bold indeed who would assert it to be so simple as to be understood without the necessity of instruction.

THE RECIPROCITY TREATY, AND ITS EFFECT UPON OUR MANUFACTURING AND OTHER INTERESTS.

According to the decision come to by both branches of the Federal Legislature of the Onited States, notice will probably be given to the British Government for the termination of the Treaty, on the 16 th of March, 1866. In view of such a probability, it is well for Canadians to consider the effect it is likely to have upon their industrial interests.

Although we are convinced that the benefits of the 'Ireaty are on the side of the United State日, yet we unhesitatingly say that we consider its continuance, either in its present or a revised form, most desirable. In the first place, because, if terminated, the international difficulties in connection with the Newfoundland and contiguous fisheries, would again be opened to angry controversy; and secondly, because the more unrestricted the commerce and general business intercourse between any two nations, the less likely will it be for war, with its untold and inconceivable horrors, to arise between them. For these reasons do we earnestly desire that the friendly intercourse now existing may not be disturbed in the way proposed.

We cannot, however, look upon its termination as a thing so much to be dreaded; it has both its adrantages and disadrantages. Prior to the Treaty, the milling interests were prosperous throughout Upper Canada, a large portion of our wheat being here manufactured into flour before shipment; but since the Treaty came into opertion, the wheat has been largely purchased by American manufacturers, and by them made into the exact quality of flour suited to their home trade; but, on the other hand, the Treaty has been very beneficial to the lumbering and some other interests of the western part of the Province, and to the residents near the frontier generally.

Should the Treaty be abrogated, a large portion of Canadian wheat wrould, no doubt, atill be purchased by the Americgn manufacturers, to mix with their own growth of wheat, or otherwise; and as our Canadian lumber is so far superior to the American in the Chicago and otber western markets, a large business would still be done, even if the lumber so exported should be subjected to a moderately high American tariff.
What we want is, not abrogation of the Treaty, but entire Reciprocity in all our manufactured as well as natural and raw products. Our manufacturers would then have additional reasons for desiring its continuance, apart from those already referred to; for as it now is, the Americans purchase our raw products and pay for them in manufactured goods, both processes being decidedly to their interest and prejudicial to our manufacturers, to whom it increases the price of the raw material, while subjecting them to an unfair competition in an exceedingly limited market, and results in a large annual balance of trade against us.

If we compare the annual excess of imports from the United States, over exports thereto, both prior to and during the Treaty, we shall see that it has worked more for the benefit of the American people than for ourselves.

For the years 1852-3, the average annual excess of imports over exports was $\$ 2,069,468$. During the year 1854 the Treaty came into operation. For the first five years of the Treaty, 1855, 6, 7, 8, and 9 , the average annual excess of imports from the United States over the exports thereto, was \$4,642,128; showing the balance of trade against us under the Treaty, and before the Rebellion, to have been more than double the amount of the excess prior to the Treaty.

During the years $1860,1,2$, and 3 , the four years of the civil war, the annual excess of imports over exports with the United States was $\$ 4,674,087$.

These facts go to show that, with iccreased facilities for disposing of our raw products to the United States, their faoilities for supplying us with manufactured goods more than doubly increased under the Treaty; and yet their people, press and oongress, with the exception of some of the western States, urge that the benefits are all, or nearly so, on the side of the Provinces, even with the advan. tages they derive from the fisheries and the free navigation of our canals and rivers, consequent upon the Treaty.

Senator Ramsey, a western State representative, having a more correct appreciation of the subject than most of his co-legislators, in a speech delivered by him during the discussion on the nolice to ter minate the Treaty, said:-
"We exported in 1863 from the Onited States into Canada, $\$ 12,339,367$ free of duty by the Peciprocity Treaty, and $\$ 6,595,599$ free of duty by Canadian tariff-an aggregate of $\$ 19,134,966$. As the whole exportation from the United States into Canada was $\$ 23,109,362$, this leaves only $\$ 3,974,396$ subject to the Canadian tariff, of which the value of $\$ 1,855,690$ was of articles not produced or manufactured in the United States. In other words, while Canada admitted free of duty $\$ 19,134,396$ from the United States, the whole amount of our produce and manufactures which were subject to taxation by the Canadiah tariff was $\$ 2,118 ; 706$. The average taxation being twenty per cent, the Canadian consumers paid $\$ 423,741$ into the treasury of the Province. The importations from Canada during 1863 were $\$ 20,050,432$, or an aggregate of trade with the United States of $\$ 43,159,794$. I will not extend these statistical statements. They concur with my former impressions, as a citizen of the Northwest, that the Treaty is mutual and beneficial."

In view of these facts and figures, and especially comparing the excess of imports from the United States before and during the Treaty, we do not see how its termination can injuriously affect the general industrial interests of the Province.

WANT OF PUNCTUALITY.

If there is one evil more prevalent than another amongst business men, in this country, it is the want of punctuality in keeping appointments, and in fulfilling engagements generally. Too many allow themselves to be elected to office, where no emoluments are concerned, merely for the honor it confers upon them, and then feel under no particular responsibility to perform the duties they may have assumed. Others with whom they have to act may attend promptly at the hour of meeting, and have to wait half an hour or an hour, before business can be commenced, or adjourn until some other day-perhaps then to meet with a similar disappointment. We have in numberless instances known business men, of punctual babits, meet a number of times in succession, without having sufficient of their colleagues present to enable them. to proceed to business, thus having their valuable time sacrificed through the culpable neglect of others.
Mechanics and employees too often enter into. rash engagements to have work done, or some: other services performed by a stated time, when, if they had properly calculated their opportunities, it. would be apparent to them that they could not. possibly fulfil the engagements thus rashly entered into. Disappointment and injury is thus caused: to others, and their own reputation for truthfulness and reliability is destroyed.
In matters of apparently but trifing importance,
the same care in fulfilling engagements should be shown as in more important matters; the habit of punctuality would thus be formed, confidence would not be broken, and much valuable time would be saved. The following anecdote of Sir William Napier, furnishes a lesson for the consideration of the class of persons we have alluded to :-
"He was one day taking a lone country walk near Freshford, when the met a litile girl about five years old sobbing over a broken bowl: she had dropped and broken it in bringing it back from the field to which she had taken ber father's diuner in it, and she said she would be beaten on her return home for having broken it; then with a sudden gleam of hope, she innocently looked up into his face, and said, "But yee can mend it, cau't ee? Sir William explained that he could not mend the bowl, but the trouble he could, by the gift of a sixpence to buy noother. However, on opening his purse it was empty of silver, and he had to make amends by promising to meet his little friend in the same spot at the same hour next day, and to bring the sixpence with him, bidding ber, meanwhile, tell her mother she had seen a gentleman who would bring her the money for the bowh riext day. The child, entirely trusting lim, went on her way comforted. On his return home he found an invitation awaiting him to dine in Bath the following evening, to meet some one whom he specially wished to see. He hesitated for some little time, trying to calculate the possibility of giving the meecing to his little friend of the broken bowl and of still being in time for the dinoer party in Bath : bat firding this could not be, he wrote to decline accepting the invitation on the plea of a "pre-engagement," saying to one of his famity as he did so, "I cannot disappoint ber, she trusted me so implicilly."

HAND LOOMS FOR WEAVING.

In the Jabuary number of the Jirmal, wo noticed that a gentleman had nade enquiries of us as to the price of band-looms lor weaviog plain woollen or linen fabrics, and where such looms can be obtained; believing that if introduced bere they would be of lmmense benelit in eumploying a large portion of our inle population duriug the long winter months. A :rieod iniorms us that as power-looms are now being extensively introduced into Ireland, any number of displaced hand looms may be procured at almost uomiaal rates.

I'he price of ordiadry bandlooms and their necessary appliances; he states to be abous ict sterling, or $\$ 20$., in I elavd.

Since writing the abore we notice a commulication on this subject in the Cunada Farmer, from n practical man, which we have copied into :noiher portion of this Journal.

NOTICE TO INVENTORS.

Javentors and Patentees would facilitate the diffusion of a knowledge of their iriventions, by forwarding to this office specifications for publication in the Journal, free of charge; and also any suitable wood cuts or stereotype plates illastrating such inventions.

Communications also on any discoveries of new applications of machinery or inventions to industrial processes, that may have been observed in other countries, are particmarly desiveable for publication iu the Jourzal.

NOTICE TO MANUFACTURERS.

The pages of this Jouraal are always open to manafacturers or others, for descriptions of the natiore and extent of any brainch of manufacture in which they may be engaged, or have any knowledge; aind also to commanications on any subjects connected with or tending to advance any of the various industrial interests of the provinge.

 FOR UPPER CANADA.
FREE LIBRARY OF REFERENCE.

The Lihrary of Reference, containing about 1,300 volumes of valuable works on Patents, Mechanics and Manufactures, Designing and Decoration, Engineering and General Science, Parliamentary Publications, \&e., is open to asl free of charge, each day except the Sabbath, from 10 a.3. to 4 o'eluck r.ar.; and on Thesday and Triday ereaings, for the especial benefit of the industrial classes, and others who canuot attend during the day, it is open from 7 till ten o'clock.

FINAL EXAMINATIONS.

Notise to Institntes.

Directors and meabers of Mechanics' Institutes are remiaded that the Final Examinations of the Board will be held not later than the first week in June nert, and that the names of Candidates, and the subjects they propose to be examined in, must be communicated to the Board on or before the first day of May, so as to enable the Fxaminers to asi the papers necessary for the esaminations.

Blank Forms, upon which to make these returns, will bo mailed to any insritute applying for them.
The details of the preliminary and tual examinations will be found in the No. of this Journal
for Dec. 1864 ; but any further informátion required will be furnished on application.

> W. Edwards,

Secrelary.

DUBLIN EXBIBITION.

The Hon. the Minister of Agriculture has placed at the disposal of this Board a small sum of money, for the purchase of "Objects of Arts and Mainufactured Articles," with a view to securing, at the forthcoming Dublin Eabibition, a "restricted and cheap exhibition of our products, but characteristic and attractive."

The Objects required by this Board will not include natural products, woods, furs, or Indian curiosities, as such will be provided for through other agencies than this Board; nor can bulky or heavy articles be received, even if offered ou the mere condition of transporting them, for two rensons: first, the want of space in the Dublin Exhibition Building, and the character of the exhibition; second, the want of sufficient funds for the forwarding of such goods.

Manufacturers and others possessing suitable articles, must communicate with the Secretary of this Board, at once, as the time is so exceedingly limited.

We would suggest, as suitable objects to send home, 'Tools peculiar to the requirements of this country; manufactures of Wool, Flax, Cotton and Heup; small articles manufactured of Wood, Stone, Glass and Leather ; specimens of Maps, and of Books writted or printed, or written and printed, in Canada; Paper and paper manufactures ; Chemical and Medicinal Preparations; and Art Views and Sketches, illustrative of Upper Canada.

It is much to be regretted that the time is 80 limited for collecting specimens; but as this matter is beyond the control of the Board, they have to rely on the prompt assistance of those immediately interested to easare any degree of success.

W. Edfards,

Secretary.

©runsations of Sotieties.

HAMLITON AND GORE MECHANICS' INSTITUTE.
The Aunual Meeling of the Mombers of the H:milton and Gore Mechanics' Institute, was held on Friday, the 24th February, 1865.

Thomas MeIlwraith, Esq., the President, occupied the Cbair.

In the absence of the Secretary, Mr. Stuart, Mr.

Thos. M. Simons read the Aunoal Repolt of the Directors, of which we give the !oliowing abstract:

NusniJer of Membersin
The nomber of Menibers on the 1st of February, 1864, was 484
Members have been elected dacing
the yeur, uumbering 103
Deduct number of those who heve -
retired during the sant piriod.... 92

$$
\begin{aligned}
& \text { Frum which deduct atso those ovn } \\
& \text { six months in arrear }
\end{aligned}
$$

And there remain is good starsiting on the books 443

Finance,

The Reccipts adad Fixpenditures for the past year are as follow:

Recelpts.

To Balance from last ye:tr 110 cts.
" Subscriptions to lst Febrnary, 1864 ... 107215
"Hall Rent 138107
" Donations 32300
" Paper Sales 15916
" Reunions 78085
" Show Cards 2400
$\$ 380542$
Expendidure.
By Cash paid for: Mu;gziues 3395

*	"	Newspapers..............	30128
"	*	Baildiu; Repairs: \&e...	21043
*	*	Water R.ttes	500
"	*	G:Ls Ascourit	47780
*	*	Outstardiog Debts	59340
"	${ }^{4}$	Salaries	73535
'6	*	Clatuing hall and roorn.	8133
${ }^{4}$	6	- Mortgage to Canadia Life Company \qquad	55000
"	4	Fuel	9214
،	6	Postarge	7484
*	*	Printing	2055
"	،	Books and Binding.....	11984
"	"	Reusias Expersses	417 11:
"			14260
\$3855 42			

'Ihe number of volames added to the Library during the veir has been
of which 160 were purchised, and 20 were dorations.
The total number of volumes at the date of the last Repist was

2844
3024
Deduct dun:ued .ud incomplete worke 45
The number of oolumes in the Librury on the lsisinsw, was therefore

2979
The number of volumes issued during the year was 6711 , or ant average diaily issue of over 21 volumes.
The following gentlemen presented books to the
Institute during the year: Tlhos. McIlwiaith, Esq.,

17 ; Thomas M. Simous, Eeq. 2 ; Wm. Haskins, Esq., 1-20; and a Chart of Natural History by A Macallum, Esq.

Newa Roome

For the gratuitous supply of 46 local and fureign newspapers, the Board recommended that thanks to the gentlemen supplying them be recorded ; and also reported 52 newspapers and magazines as purchased by the Institute.*

It is extremely gratifying to the Directors to be enabled to call attention to the improved condition of the Institute, as exemplified in the fact that during the past year its revenue has been considerably increased. For although the subscriptions amounted to a sum less by $\$ 51.03$ than those of the preceding year, the Hall Rent was more by $\$ 369.45$; the Reunions, a new source of income, added $\$ 363.74$, and newspaper sales were increased by $\$ 78.22$. The Reunions may now be regarded as a legitimate source of revenue, for the favor with which they have been received will render it incumbent on future Boards to continue them, and use every exertion to make them popular entertainments.

The Directors have much pleasure in inviting at tention to the different items of EexpenditureWhile the Library has been increased by 135 volumes, and an excellent supply of Newspapers and Magazines maintained, outstanding debts amounting to $\$ 592.49$ have been satisfied, and $\$ 550$ paid to the Canada Life Assurance Company. The outstanding debts had for years been a source of much trouble and anxiety to the Directors of the Institute, and a determined effort was mado during the past year to pay them off.

The Hall has, during the past year, beon considerably improved. Heretofore, complaints were repeatedly made by those renting the Hall, not only that it was deficient in almost every thing that was requisite for popular entertainments, but because'it was both badly heated and badly ventilated. Neither of these complaints can now be made.

The Board of Directors refer with pleasure to the donations which have been made to the Institute during the past year. The Great Western Railway, with praiseworthy liberality, $\$ 250$; Donald McInnes, Esq., made a Landsome donation of $\$ 50$; Edward Jackion, Esq., gave $\$ 20$; and other gentlemen gave smaller sums.

To the services of the Superintendent, Mr. Rutherford, his zeul and assiduity, the Directors have great pleasure in alluding; he continues to perform the various duties which his office requires.

Report of the Directors was adopted, and ordered to be printed for the use of Members. Resolutions were unanimously adopted, tendering the cordial thanks of the Members to those Ladies and Gentlemen who have so kindly given their assistance at the Reunions during the past year; and to the Manager of the Great Western Railway, for his liberal donation of two hundred and fifty dollars.
It was also resolved to recommend to the Board

[^1]to grant the sum of $\$ 100$ to the Superintendent, Mr. Rutherford, for the various extra duties he had to perform; in connection with the Institute, during the past year.
The following Gentlemen were then elected officebearers for the ensuing year:-President, Thomas McIlwraith ; Vice-President, Tho. M. Simons; Directors; Jas. Milton, Wm. Turnbull. Jas. McIntyre, W. IH. Glassco, A. Harvey, K. Fitzpatrick, R. Roy, Anthony Copp, and W. R. Macdonald. A vote of thanks was accorded to the President VicePresident aud the Directors, for their attention to the interests of the Institute during the past year, and the meeting then adjourned.

TORONTO MECHANICS' INSTITUTE EXHIBITION.

The Exhibition noticed in the last number of the Journal as about to be opened in the Toronto Mechanics' Institute, has more than realized the most sanguine anticipations of its projectors. The collection comprises a very large number of Pictures, Native and Foreign, in Oil, Water Color, Crayon, Pencil, and Engraving; Marble and ParianStatuary ; Modelling in Plaster ; Bronzes ; Models of celebrated European structures ; Natural IIistory, such as prepared Birds, Fishes, Insects, Animals and Reptiles, and various specimens of Native and Foreign Minerals, and Natural Curiosities; several large collections of Coins and Medals; Ancient Books, Manuscripts, Autographs, \&cc.; Volunteer Prize Vases ; Organs and other Musical Instruments; and various superior specimens of Machinery and Manufactures; Ladies Work, \&e., \&c.: and a most interesting and extensive collection of Philosophical and School Apparatus, illustrative of the Eduoational Appliances of Upper Canada, a very large portion of which are of Canadian manufacture, and are exhibited by the Educational Department; who also, on certain evenings, very successfully exhibit-under the control of Dr, May-the Electric Light. We hope to hear of large profits being realized by the Institute, and that other Mechanics' Institutions will organize similar exhibitions, by which the tastes of their members and of the public cannot fail to be educated and improved.

The terror of the desert of Sahara is being removed by the application of science. In 1860 five wells had been opened, bringing fishes to the surface from a depth of 500 feet. Vegetation is springing up around the wells, and the "desert will blossom like the rose."

In science there is work for all hands; and be is usually the most fit to occupy the highest post who has risen from the ranks.

Canaban fatents.

bUREAD OF AGRICULTURE AND STATISTICS.
Patent Office, Quebec.
(For the half year ending December 3 lst, 1864.)
Letters Patent of Invention for a period of noorteen rears, from the dates thereof.

Waleer Unwin, of the Township of Blanshard, County of Perth, Yeoman, for "an improved Plough, called Unwin's Adjustable Plough."-Dated 5th July, 1864.

Jome Hart, of the Township of Granby, District of Bedford, Carpenter and Joiner, for "a new and improved Gas Stove for the consumption of Coal Oil as Fuel."-Dated 1ith July, 1864.

James Fitzaibion David Bract, of the City of Montreal, Merchant, for " an improved Rail and Arch for strengthening and Arching Vessels."-Dated 16th July, 1864.

Joun Condele, of the Town of Brockville, County of Leeds, Artist, for "an improved Artificial Leg." —Dated 23rd July, 1864.

Henry Brown, of the City of Kingeton, County of Frontenac, Merchant, for "the Art of Manufacturing a Pulp from the Bark of the Cedar Tree, furnishing a fit and proper material for a new and useful composition of matter for the manufacture of Paper, called Cedar Bark Paper Pulp."-Dated 23rd July, 1864.

Jofn Condele, of the Town of Brockville, County of Leeds, Artist, for "an improved Artificial Limb, called Condell's Artificial Limb."-Dated 23rd July, 1864.

Datro Coleman; of Castleton, County of Northumberland, Harness-maker, for "a new and useful Draft Neck-Yoke."—Dated 26tb July, 1864.

Cyrds Iforyon, of the Tomnship of Southwold, County of Elgin, Yeoman, for "a new and useful Combined Drill and Sowing Machine."-Dated 26th July, 1864.

Enward Cook, of the Township of West Zorra, County of Oxford, Yeoman, for "a new and useful Safety Rail-Coupling."-Dated 5th August, 1864.

Sanuel Malpugs, of Middleton Centre, County of Norfolk, mill-wright, for "a new and useful Shingle-Jointer."-Dated 16th August. 1864.

Wrlliam Tazlor, of the Township of Malahide, County of Elgin, Clerk, for "an improvement in Carriage Springs, called The Taylor Carriage_Spring." -Dated 17 th August, 1864.

Conrad Vampusen, of the Town of Milton, County of Halton, Geutleman, for "a maehine which he calls The Chrmpion Clothes Dryer."-Dated 17th August, 1864.

Henry Denison Dinaba, of the Village of Oshawa, County of Ontario, Civil Engineer, for "a new aud useful Self-Adjusting Steam Piston-Packing."-Dated 17 th August, 1864.

Joun MoFarlane, of the Township of Etobieoke, County of York, Yeoman, and Daniel McFarland, of the same Township, Yeoman, jointly, for 'an improved Mechanical Contrivance or Machine for openiag and closing any ordinary Gate, called and known as the The McFarlane Self-Acting Gate."-Dated 17th August, 1864.

Abel Merril, of the Township of Houghton, County of Norfolk, Ycoman, for "an improved Keel for Vessels."-Dated 17 th August, 1864.

Andrew Gallowar, of the Township of Glanford. County of Wentworth, Wheel-Wright, for "a new and useful discovery which he calls Galloway's Patent Portable Combination Single and Double Ladder." -Dated 17 th August, 1864.

John Gibson, of the Town of St. Mary's, County of Perth, Blacksmith, for "a new Mill-Pick, called Gibson's Mill-Pick."-Dated 20th September, 1864.

Fredericic John Payne, of the Township of Southwold, County of Elgin, Yeoman, for "a new and useful Field Cultivator."-Daied 20th Séptember, 1864.

Thomas Thompson, of the City of Quebec, Wine and Spirit Merchant, for "an improved Smoking Pipe."-Dated 24th September, 1864.

Thomas Thompson, of the City of Quebec, Wine and Spirit Merchant, for "a new and useful Purifier." -Dated 24th September, 1864.

Isaic Ganacie, of the Town of Levis, Merchant, for "a new and useful Apparatus for Loading and Usloading Vessels."-Dated 24th September, 1864.

Richard Smith, of the Town of Sherbrooke, district of St. Francis, for " a new and improved Tobac-co-Cutter, to be called Smith's Eureka Tobacco-Cutter."—Dated 24th September, 1864.

James E. Thompson, of the City of Toronto, County of Yort, Hydraulic and Gas Engineer, for "an improved Safety-Lock.' -Dated 24th September, 1864.

Isaad Acebraceit Moyer, of the Towaship of Clinton, County of Lincoln, Yeoman, for "a new and useful Meat-Chopper, called The Empire Meat-Chopper."-Dated 27 th September, 1864.

Joseph Thater, of the Town of Belleville, County of Hastings, Machinist, for "a new and useful GuideHead for Lathes, called Thayer's Eccentric Guide-Head."-Dated 27th September, 1864.

Alonzo Quackenbist, of the Village of Port Dalhousie, County of Lincoln, Mariner, for "an improved Churn."-Dated 28th September, 1864.

Exenezer Stovec, of the Village of Mount Forest, County of Grey, Yeoman, for "a new and useful Self-Regulating Snow Gate."-Dated 28th September, 1864.

William Clare Donnelly, of the Tombship of Walpole, County of Haldimand, Physician, and Jesse Pareer, of the same township, Yeoman, for "a Safety Carriage Spring."-Dated 4th October, 1864.

Samuel Mowe Whitmore, of the Parish of St. Francois du Lac, in the County of Yamaska, Farmer, "a new and useful improvement in the art of tan-ning."-Dated 10th October, 1864.

Henry Yeager, of the Township of West Flamboro, County of Wentworth, Wheel-Wright, for "a new and useful machine which he calls \& Tire Upsetting Machine."-Dated 24th October, 1861.

Charifes La Marn, of the Township of Hamilton, County of Northumberland, Yeoman, for "a new and useful Seed-Sowing Machine."-Dated 24th October, 1864.

Josepf C. Henderson, of the Town of Brockville, County of Leeds, Manufacturer, for "an improved Coal-Stove, called Henderson's New Coal-Burner."Dated 24th October, 1864.

Willlam C. Van Buskirk, of the Town of St. Thomas, County of Elgin, Pbysician, for "a new and useful Druining Plough.'-Dated 25th October, 1864.

Wirinim Dutron, of the Township of Vespra, County of Simcoe, Miller, for "a new and useful system of dressing Mill-Stones, called The Ausiliary Mill-Stone Dress." ${ }^{\circ}$-Dated 26th, October, 1864.

David Jouns, of the Village of Exeter, Conity of Huron, Tin-Smith, for "a urw aud usefol Machiue for Moulding Eave-Troughs."-Pated 26ih October, 1864.

John Askew, of the Townsip of Raleigh, County of Kent, Mill-Wright, fer "a Cast-lron Atm 10 apply to Wrought-Iron Axle-frees "-Dated 26 h (laohrr, 1864.

William W. Rectardson, of we City of Homilton, County of Wentrourth, Merchanct, for "the Magio Self-Compressing Clothes Wringiug Machine."-Dated 9th Novernber, 1864.

Edwin Roblin, of the Tomnship of Snuhiasbargh, County of Prince Edvard, Machinist, fur "a new and useful Cbarn Power."-Dated 9th November, 1864.

Stepaen Washboen, of the Township of Sonth Dumfries, County of Rra:t, Mechasic, for "as improved Portable Fence, called the Portable licket Worm Fence."-Dated 15th November, 1864.
Joun Hanfond, the younger, of the Tumn of Windsor, County of Eisex, Mill-Wright, fur "asi innproved Sa Setter."-Dated 18cli November, 1864.

Josepi Van Norman, of the Tuwnship of Derelham, Cointy of Oxford, Iron-Founder; for "a wew and useful improvement in the construction: of firnaces for the melting of metals, and in the art of meling metals therein, to be knowa us Jo ieph Vial Normin's improved Furnace for the Meling of Metuls." Daied 18th Novembér, 1864.

Jesse Weaver, of the Timustip of Malshide, County of Elgid, Farmer, and Rofiat W. Ruis, of the same place, Machinist, for "it Ditching Machine." - Dated 19th November, 1864.

Henry fryatt, of the Village of Auroca, Township of Whituburel, County of Yurk, Caipenter, for "fin improved Sawing Machiue."-Dated 21st November, 1364.

Eranklin P. Goold, of the Vumin of Brantford, County of Brant, Potter, for "a new and aseful improved Churn and Batter-Worker."-Daitd 21st Noveraber, 1864.

Sabuel Lambebt, of the City of Kingiton, County of Frontenac, Mechanio, for ":s new and useful Rail-Joint Pastening for Railways."-Dated 22nd November, 1864.

William Parbon, tie younger. of the City of Toromto, County of York, Oil-Refiner, for "a new and useful machine for furcitg oil and water from the bottom of wells, and water frum mines, to be called and known as Parson's Oil Ejector."-Dated 2znd November, 1864.

James Coinins, of tho Town of Guelph, County of Wellington, Nachinist for "an improved Self. Delivering Attachment for Renging M.chines."- Dited 22nd November, 1864.

Edward Beanes, of the City of Toronto, County of York, Gentleman, for "a new and useful Process for improvements in the Preparing or treating of Avimal Charcoal."-Dated 24th Norember, 1864.
Righard Charlea Honey of the Village of Newtonville, in the Township of Clarke, County of Durham, Coach Builder, ior "a uew and useful improved Wheel-Hub."-Dated 24h November, 1864.

Alexanour Anderson, of thic City of Joudon, County or Midulesez, Machinist, for "a new and uscful Straw-Cutier, to be called and known as Anderson's Straw-Cutter."-Dated 28ih November, 1864.

George: Incet Datilng, of the Town of Simcoe, in the County of Nosfink, Jeweller, "a new and useful macline, to be ealled and buown as Darling's Lever Power nail Vertical Sawing Ma bine."-Dared 29ih November, 1864.

Flavios Gustayus Gloomife, of the Towiship of Dereham, County of Osfurd, Ycoman, for "an improved Seed Drill."-Datel 9r! December, 1864.

Johy S. Roringon, of the City of Lomdon, County of Middesco, Oil Refiner, for "a vew ind weful Curricr's Dil."-Dated 10il December, 1864.

Thonas Robson, of the Town of Bmifford County of Brant, Miller, for "a new and useful Flour-D.ier, to be called the Steam Flour-Drier."-Dated 10th December, 1864.

Henry Carter, of the Touliship of Maldide, County of Elgin, Blacksmith, for "a "elis and useful Hydrostatic Engine."-Dated Joll Decemiser, 1864.

Henvey Eillam, of the Village of Waterfud, Cuanty of Noriolk, Mechanic, for "ia new and useful Mouidboard for Ploughs."-Dited 10th Decem:Jer, 98.4.

James E. Mifuele, of the Town of Pwis, Comenty of Braut, Machinist, "a uew and uweĭu! matching machine, to ict called and knowu at Mitehel's nonparaltel Mateling Machine."....Datcd 10.h Decenlher, 1864.

Joun McArituon, of :he Village of Fergus, in the Connty of Wellngton, Blawssmith, ":a new and beseful Mouldboay."....Dated 1011 December. 1804.

Wholas: Vamby, lhe younger, of the Villaye of Arkom:, in the Councy of Lasbton, Goitlemin," "aa improved Weather Sitip."-Daied $20 . \mathrm{h}$ Decembur, 1864.
(List of Patemts issual by the Patent Office from the 1st January 1865, to the 28il Fubranry 1860)

Cuarlar La Main, of the Township of Hamiton, in the County oi Northumberland, Yeaman, for . ${ }^{3}$
 -Dated 1011 Janusiy, 1865.

Josera Pabadis, of the City of Mantrea, Marisnist, for " Ω new noul useial press fore bomprowing hay, cotton, ubaceo, \&eis, \&e."--inated 16 ct Jannary, 1865.

Comelius Rrian, oi ihe City of Montreal, Tinsnith, fir "- a neiv und useful imporment in stoves and heating apparatus.". . Dated 16 th Jinuary, 1865.
Rfcuand S. Hunrese of the Townhip of Stansteal,
 and usefu' metallic 'threshold asd onir side dour at-tachurent.".-Dited 16uh January, 186J.
Jane:s Homess, of the Township of Batiticore in ihe Distuict of Arthabask:a, Givil Engineer, for "a new and useful machine for matiaficsuring fuel from peat, fin excavitibge canaly and for oblere purposes." -Dated 16.h January, 1865.
 of Stambringe, in the District of Licif...h, Ductar of Medicioe, for "a new num usefai maschine for santing cars."-Dated 16.h Jamuary, 1865.
Jeshun Cenwford. of the City of Poronto, in ithe County if York, Genteman, for "ars Abdumiual Supporter."-Dated 17L Jauuary, 1865.

Anton Linton; of the Town of Brockille, in the County of Leeds, Miller, for " an improved Mill Pick." -Dated 21st January, 186ü.
Join C. Feele, of the Town of Brantford, in the County of Brant, Cabinet Maker, for "a nes and useful Horse-Rake."-Dated 23rd January, 1865.

Wilesam Tomer reson, of the Township of Brantford, in the County ô Brant, Yeomsn, for "the Economical Threshing Machine."-Dated 3rd February, 1865.
Jailes Roabrs Afmstrong the Younger, of the City of Toronto, in the County of York, Iion Fouuder, for "a new and useful cookiag stove, called the 'Armstroug.' "—Dated 3rd February, 1365.

Isatic Westcote, of the Town of Bowmanville, in the County of Durtiam, Blacksnith, for "a new and useful machine called "Westcott's. Culivator.' "Dated 3rd February, 1865.
Johy Wort and Pefter Cliyton, of the Township of Malahide, in the County of Rigin, Yeoman, Esquire, for " \mathfrak{r} new and useful improved wastiug-mahide, called 'Wort's and Clayton's Improved Washing-machiue.'"-Dated 8th February, 1865.

Divid Broot, of the City of London, in the County of Midillesex. Machinist, for " a new and useful improved Sawing-machine."-Dated 8th February, 1 1S65.
Roeert Mite:elel. of the City of Moutreal, Machinist, for "a new abil inproved Radiator."-Disted 14th February, 1865.

Genge Savaga Hobarf, Johy Istabl Enslet, of the Cicy of Kingston, in ihe County of Frontenac, Drugrist, Manufacturer, for "a new and useful combine.l Burner and chimney, with noocondacting wick tube."-Dated 14ich February, 1865.

Iony Rifcure, of Etohenim, iat the County of Levis, Mill-wright, for "a uew and useful machine for holding s:aw-logs, to be called • Ritchie's patent athached eav mill chain.' "-Datell 15th Februairy, 1865.

Eumo. Paysee, of the City of Montreal, Distiller, for "a uew and useful staple clamp for supporting and insulating over ground telegrapla wires."-Dated 15th February, 1865.

Mark licby, ff the 'Township of Bolton, Gentleman, for "a new add asefal inachite for raising allavium, muck and soft earth from swamps, ponds, marshes, beds of rivers or any other place."-Dared 15th February, 1865.
Otrill erccips

Cure Gur biptherta.

Dipiberia in early stages, may be recounised by R"y pestan of ordisary capaciay, by two morked sympluas; the: sensation of at bone or hard subsinuce irs the throat, rendering sivaliowing dificult, and minnfal terdeacies.
(B.) the inplearatice of these sympoms, if the poson is und enungl to do so, give a piece of grm
 it :e eatained in the abonth swallowing siowly the anaiva charged winin is antil i is all gone. In an lour no so give nowither, mad at the end we mober howe a third: a maith will not usoally be requived. bue it the puan and unplensant bres. 1 :re not
 at a litile longer interow, say ino hours.

If the child is young, powder the camphor, which can easily be done by adding a drop or two of spirits or alcobol to it, and mix with it an equal quantity of powdered loaf sugar, of better, powdered rock cindy, find blow it through a quill or tube into its throat, depressing the tongue with a spoon. Sonse recommend powdered alloos or pollitory with the caupluor; but observation and esperience thave satisied us that camphor is suffcient alone. It acts probably by its virtue as a dififusabie scimulant, and antiseptic quality.

Some may be dispised to tey the following more violent remedy, but the foregoing shonld have the presedence.

A lady of Fort Divron, Cayuga Connty, N.Y. has cured six children (ive of her own) of diptheria, or putrid soar throat by the following remedy:
"When the symptons are first discovered, take Sparish flies, pound and mix with Venice turpentive, spread i; on a piece of soft leather or cloth and bind it on the throat, which will raise a blister and soon reanove the disease from the throat."N. Y. Exumine:.

Cure for a Felons

As soon as ihe part begins to swell, get the tincture of lobelia and wrap the part affected with cloth saturated thoroughly with tincture, and the felon is dead. An old physiciau says he has known this to cure in seores of cases, and io never failo if applied in season.

Kitchener's R Relishe:

Ground black pepper and salt, of each loz., allspice, horse-radish, and ebalots, of eirch $\frac{1}{2} \mathrm{oz}$., walnat pick!e, or mushroon ketchup, 1 pint, infuse 14 days, and strais. Uised for sance.

Red Inic.

Permambuco wrood 4 oz . dilute acetic acid 16 oz , water 16 oz ., boil down to 24 uz . ; add 1 oz of alum, evaporate to 16 oz .; add gum arabic 1 oz ., strain, whell cold, add protochloride of tin 1 drachm.Wsber

Wo Varnist Arlicles or Imon sund Steela
Dinsolve ten parte of clear grains of mastie, five onevs of cinnptior. 15 paris of sandarach, and five of elewi, in a sufficiene quantity of alcohol, and "pply this varnish without heat. The articles will not only be presperved from rast, but the varnish uill retinio is tranamemey, ard the metallic brillabrey of we aricles will not be obscured.

 ghue in ithirly of water, strain and evaporate to six
 solved ia that a pare of aldedtol, and one part of wionis \%inc. W!ata requied for use, warin atad sincte edr.

Whocver is master in the aric of tool making, possesses the key to the corssaruction of all macinaes.

Silectex Axticles.

SEASONING AND DRYING LUMBER AND TIMBER.

A COMPARISON OF SUPERHEATED STEAM WITH OTHER MODES OF SEASONING, AS IT REGARDS SPEED, THOROUGH FORK AND CHEAPNESS.
It seems to be a great mystery to the uninitiated how lumber, and other substances, can be dried while in direct contact with steam.

All understand that steamed lumber will dry in the open air, more rapidly after, than before, it is steamed-though all do not understand why it does it. They notice that the lumber comes from the steam in n very wet and soaked state, and the general impression would be, that it would require a longer time to dry than before it was thus soaked.

The fact however that it does dry more rapidly, has induced many to adopt this mode, when they were in haste for some dry lumber, even thongh practical tests have shown that such steaming injuries its beauty of finish, as well as the strength and durability of the lumber and timber. The reason for this will be seen.

This steaming and soaking process extracts the albumen, which if properly coagulated and retained, is a preservative to the lumber, so that they never shrink again to their smallest size, and do not often return as tubes, but shrink into angles; thus injuring the strength as well as beauty of finish. If these improperly shrunk tubes were placed under a powerful microseope, they would look like hills and valleys and very high ones.

This albumen is somewhat difficult to dry in the pores of the lumber, by air drying, for it does not part with its moisture readily, and when dried in the outside pores of the lumber, it nearly hermetically seals the inside, as it becomes nearly impervious to moisture.

Many attempts have been made to get rid of this albuminous substance in the lumber, for even after it has been once dried, it will ferment, if water be added, and this fermentation produces eramacausis or dry rot, which destroys millions of dollars' worth of railroad timbers, ties, and bridges, per year, as well as timber in buildinge, ships, \&c.

Kyanizing, paynizing, burnetizing, and other similar processes, are only modes used to congulate or chemically change this albumen, by using the various kinds of salte, such as corrosive sublimate, zine, copperas, \&c. Many of these modes have been found to be valuable for preserving the timber from the dry rot. But since these processes are usually performed by soaking or steeping the lumber in a solution of these salts, much of the albumen passes out, to the injury of the lumber; for when all of the strength and beauty of finish is desirable, the albumen should be coagulated and retained in the pores of the lumber. Of course the lumber comes from all these processes as well as in steaming, boiling, or soaking in water-in a wet and soaked state, and must therefore be used in the wet state, or afierwards aried by the air, either naturally or artificially. In either oase, the outside of the timber is dried first, and forms an
enamel, which will not further shrink, as the drying progresses, and therefore the timber cannut be brought to its smallest size, even though the drying process be continuèd forever.
Air drying we must remember always commences on the outside of the lumber, and its tendency is to close up its own way, and check materially its own progress, forming an enamel with dried albumen, and by closing the pores of the lumber on the outside first. The further therefore the drying extends into the lumber by this process the slower must be the future drying, for the passage of the moisture from the inside is the more strongly resisted, the thicker this enamel becomes. Is it any wonder, therefore, that the center of thick lumber is rarely ever dried. Comparatively small sticks of oak timber have been used for a fire piece for at least sizty years.

Many millions of dollars hare been expended in experiments to season and dry lumber. The result has generally proved to be drying without seasoning, and seasoning without drying. But when both seasoning and drying have been attained by subjecting the lumber first to one process and then to the other, the result has usually been a sacrifice of the strength and durability of the lumber, as well as its besuty of finish, to say nothing of time and expense.

In contrast with the foregoing plans we will now examine the new mode, that seasons and dries at the same time, by what is called superbeated steam without pressure, or with the simple pressure of the atmosphere. No other mode known to science has ever accomplished this, and yet the process is a very simple one, as I shall attempt to show, though I may fail to make it fully understood in an article that would not be too long for insertion here. If the principle, however, should still be obscure to any one they can inquire by mail.

Suppose a room 14 feet high be divided so that the lower room shall be 8 feet and the upper one 6 feet high. The lower we will call the fire steam room, and the upper the lumber or drying room. The division, however, between these rooms is only the joist on which the lumber is piled, or that sustains the cars on which the lumber is dried, and on which it is passed into and out of the dryer. The two rooms are, therefore, virtually one.

A stove or other beater, with long radiating or smoke pipe, to save all of the heat from escaping into the chimney, as well as to generate beat rapidly, is placed in the fire room, with the door of the stove opening out to supply fuel. This stove and the radiators are placed quite at the lower part of the fire room, which avoids the direct heat of the stove on the lumber, and also to cocupy the coldest part of the room, which is the most favorable for obtnining all the beat of the fuel.

A steam generator may be so arranged at a smull expense, in conncotion with the heater, that stenm will be generated just in proportion to the heat made.

This steam, whether generated in this or in some other convenient wry, should be just sufficient in amount to fill both the fire and lumber room, with no steam to pass off to waste the heat. As soon as the rooms are filled with steam the air is excluded and the steam takes its place for oon-
veying caloric. Steam will convey heat by convection'90 to 300 times as rapidly as air.

This steam atmosphere is not one that can be seen but one that can be felt. It starts a free perspiration from all the pores of the skin When you go into the kiln. It does the same thing to lumber, for it never wets or swells the lumber as by common steam, but the first act is a dryiog one, as the tendency of the moisture of the lamber is all outward; let is see how this is accomplished.

Steam as soon as it is generated rises. As soon, however, as a particle of steam meets a body colder than itself it instantly imparts its heat to that body and is condensed. This particle of condensed steam descends by its own gravity to the fire room. Here it comes into contact with the stove or radintors, and is re-converted into steam, and carries its heat to the lumber and descends again in its condensed form for more heat. This one particle of steam may carry up heat this way a million times, and yet it has imparted no moisture to the lumber, as it has returned with its moisture in the shape of condensed steam. If by any accident this one particle of steam is absorbed or lost, the steam generator supplies another particle to take its place, and thus preserves a constant steam atmosphere among the timber, not only to convey heat but to shut out the air.

It is worthy of note in this connection, to state that a particle of steam will instantly receive as many degrees of heat as there are degrees in the heater with which it may come in contact. If for instance the stove should be red-hot, and the particle of returning or condensed steam should come in contact with the red-hot iron, this particle of steam would instantly receive at least 900 degrees of heat. This 900 degrees of beat would be carried to the lumber, and the condensed particle of steam would return for more heat in the same time as though it carried only 212 or any other number of degrees of heat.

It is also worthy of note that the tendency of steam is to fly to the coldest place to impart its heat. If, for instance, a ball of ice were suspended at the ceiling of a room, and some water should be thrown upon a hot stove in the room the steam thus generated would go continually to the ice until it was melted. Thus as an equalizer of heat steam has no equal.

This superheating and condensing of steam in particles goes constantly on in the kiln, and with a rapidity just in proportion to the amount of heat generated by the stove or heater. All of the heat which the stove makes the steam will absorb and convey to the lumber. If heat is generated rapidly the steam will convey it rapidly to the lumber. Inch lumber has in this way been thoroughly seasoned in six hours.

This mode of heating and condensing progresses until the lumber is so hot that the aqueous or watery portion of the sap is changed into steam.

Up to this time you will notice all of the heat we have made is yet in the kiln, for there has been no means of escape to waste it, nor have we made the lumber wet or damp by the steam since the steam has only imparted its heat and not its moisture or condensed steam.

But when the lumber is all so hot as to generate steam rapidly from the water it contains . $_{\text {. }}$ then
there will be more steam than the kiln can contain, for it was full of steam before: This excess of steam must pass out of the kiln or the kiln would burst and the lumber would never become dry.

When this surplus heat passes out it escapes through sawdust or a similar device to retain the heat while getting rid of the steam: This sawdust should be of such thickness as to balance the steam, retaining a full steam atmosphere inside, while the surplus steam passes out, taking with it the moisture from the lumber. As there is a steam atmosphere at all times surrounding the lumber to be dried, it cannot dry the outside first and form an enamel, as in the case of air drying.

The natare of steam is so penetrating that it finds the center of the lumber, before the drying has made any considerable progress. After the drying commencess ateam generated from the lumber is constantly flowing out, so that the pores of the lumber cannot elose until the moisture is prinoipally out of the lumber, and then the centre must dry first, for the steam must leave the center. before it leaves the outside.

When the aqueous portion of the sap has all been converted into steam and passed out of the lumber, it creates a vacuum which the pores of the lumber close to supply. When this is done the lumber has shrunk to its smallest sise, or to as nearly-a solid as drying can make it.

But as there is moisture in red-hot iron, so there must be some moisture left in the lumber after the pores close and after the shriaking is all done. Indeed if the moisture was all removed the lumber would be ruined for charring commences long before the moisture is all out.

By gaging a piece of timber in the kiln from day to day, it is quite easy to ascertain when the shrinking is all done. When the shrinking of the lumber is completed there is no further advantage in drying, but a positive injury, as far as the strength and toughness is concerned, for the more moisture there is left in the lumber and timber after the shrinking is all done, the better. If desired, however, the lumber may come from the steam in a dryer state than the air can ever make it.

I am admonished, however, that this article will soon be too long for insertion in the Scientific American, and I will reserve, perhaps for No. 3, the degrees of heat necessary to coagulate albumen in lumber at its different stages of drying, and perhaps say something of the degrees of this kind of heat desirable in the drying of fruit and vegetables, and also show why we may use a higher degree of this kind of heat than of air in drying delioate fruits, milk, etc., and still not injure them. I have dried apples in a heat of 239° and still they showed no indications of being oooked by the prooess, but oame out very white and beautiful.

But before I olose I will bring into juxtaposition superheated steam and other modes of drying, in order to show the advantages of superheated steam by comparison.

The air dries only. Superbeated steam seasons and dries at the same time. The air dries slowly -steam quickly. The air produces decay and wastes heat while drying. Superheated steam adds atrength and beauty of finish and saves heat. The interest on lumber while air drying must be for jears-steam for days. Air can never shrink.
lumber so thoroughly that stenar ean not shrink it wore, either in size or weight.

Common steaming, kyanizing, payniziry, and burnetiziag, all season lumber, but swell it to its retrasest capacity, and leare it met and sonked. Is would require more fire to dry this soaked lumber by the hot air process than to season and dry it from the green by the new mode. If the lumber is to be immediately shipped the difference in weight will be from 1,400 to 2,000 pounds per chousand íeet board measure.
One month's stock of lamier for a mannfacturer baving a proper steam dryer, will give him better seasoned lumber than a four year's stock in the air, thus gaving the interest on stock, storage, checks, splits, warps and decay, idecident to open air drying. The incerest at 10 per cent on lumber costing only 40 cents per M. will be $\$ 16$ while air drying for four years, and then that same lumber is not fit for good work unless kiln dried. It can be seasoned and dried by superheated steam, in a better manner than any other, at a cost of 50 cents to $\$ 1$ per M., according to the expense oif fuel.Scientific American.

OLD CLOTHES.

The streams of old clothes that hour by hour are seductively drained, either by floral exchange, attractive advertigement, or by the downright pestering of "Old Ikeys," culminate in the great old olothes mart in Houndsditch where Hebrews most do congregate. To the question of what now becomes of them, we might answer that the greater part of them are now aboat to set upon their travels, to enter new circles of society, and to see life both savage and civilized under a thousand new phases.

Those that are intended to remain in this country have to be tutored and traneformed. The "clobberer," the "resiver," and the "translator" lay hands upon them. The duty of the "clobberer" is to patch, to sew up, and to restore as far as possible the garments to their pristine appearance; black cloth, garments past into the hands of the "revivers," who rejuvenate seedy black coats, and, for the moment, make them look as grood as new. The "transiator's" duty is of a higher order ; his office is to transform one garment into anotherthe skirte of a cast-off coat being the least worn part of the garments make capital waisteoats and tunice for children, fre. Hats are revived in a still more wonderful manner, they are cut down to take out the grease marks, re-lined, and appear in the shops like new ones. The streete surrounding the old clothes' market are full of shops where these "clobbered", and "revived" goods are exposed for sale, and really a stranger to the trade would not know but that they were new goods. There is a department of the market also dedicated to old clothes, male and female. "clobbered" and revived. It is a touching sight to see the class of persons who frequent the men's market and turn over the seedy black garments, that are doing their best to put on a good appearance-the toilworn clerks, who for some social reason are expected to apparel themselves in black, and the equally care worn menibers of the clerical profession, chiefly
curates whose meagre stipends do not permit of the extravagance of new suits of clothes. The ladies' market is a vast wardrobe of silk dresses, but if we are to belige the saleswoman the matrons of Eugland are more thrifty than we gave them credit for. "Servants come here to purchase, Sir ! No, indeed, Sir, ladies worth hundreds: of pounds," was the reply we got to our inquiries as to the class of purehasers.-Black cloth clothes that are too far gone to be "clobbered" and "revived" are always sent abroad to be cut up to make caps. France takes the best of these old clothes for this purpose. The linings are stripped out and in this condition they are admitted duty free as old rags. Russia and Poland, where caps seen to be unirersally worn by the working population, are content with still move threadbare garments to be cut up for this purpose. The great bulk of our castofi clothes of all kinds, however, find their way to two markets,-Ireland and Holland. The old clothes' bags of the collectors may, in fact, be said to be emptied out in the land of Erin, as far as the ordivary order of clothes go, while to Holland only special articles of apparel rre exported. Singularly enough, the destination of the red tunics of the whole British infantry is the chests of the sturdy Dutchman. There seems to be some popular belief or superstition in that waterlogged country ihat red cloth affords the best protection against xheumatism, consequently these jackets all find their way to the land of dykes. The sleeves are cut off, and they are made to button in a double-breasted fashion; thus remodelled they are worn next to the skin like a flannel waistcoat by all cureful Dutchmen among the labouring classes. The Irish chiefly favour cordaroys, and we suspect the wornout legs of British pantaloons of this material are cut off and converted into breeches for Pat.-Where he gets those wouderful swallowed-tailed coats with brass buttons is a puzzle to all dealers; it is very certain they do not come from this side of the Channel, and $i t$ is equally clear they are remnants of costume two generations back. Our readers will perlaps have noticed the special avidity the dealers in old clothen evince for all kinds of regimentils, full dress liveries, Volunteers' uniforms, beadles' coats, \&e. Auything especially splended in this line is markeal by the collectors as a sportsman marks any rare and brilliantly plumaged bird, and ultimately it is sure to be bagged by them. These are the great prizes of the profession-and their barbaric splendours are destined for a special market-ithe South Coast of Africa, where nature puts on her most gorgeous apparel, and the great ones of the land are determined to have something to match. Iravellers often tell us of the marvellous appearance of the cliefs of these parts when in full muiti, but we scarcely expected to find our old clothes dealers the regular coshumier of cibese sable dignitaries, transmittiog regimentals, liveries and cocked hats, as regularly to them as n London tailor sends his clothes to his country cusemers. It is just possible that the Lord Mayors for these Jast duzen fears would be able to recognize their own splendid liveries on the backs of these potentates if they could ever be got together for any purpose whatever. We ourselves saw an assortment of well preserved liveries of the heir to the proudest throne
in the woild, just baing packed for exportation to the grand destination of all fine liveries we have just mentioned. The vast majority of tbe scarlet coaks of our officers thati are a little worn find their way'to the great annual fair at Leipsic. The pepper and salt great coats of our infaniry go to our agricul ural districts and to the Cape; but the hearier and more valuable artillery cloaks find their way to Holland, and that country and Ireland absorb between them the cast off clothes of the police. Therc is oue odd item of old clothes that has a singular history. I'bere are still a certain class in the community addicied to the use of silk velvet waistcoats. This class is generally to be found among the well-iodo tradesmen of country towns. I'the longevity of a black silk velvet waistcoat is proverbial; it will not wear out. After adorning the respectable corporation of some provincial grocer until he is thoroughly tired of it, what does our reader think is its ultima:e destination-the pate of some sireet German or Polish. Jew! In obedience to a Rabbinical law itis not considered right by some of the more conscientious Hebrews to go uucovered, and these second-hand waistcoats are bougdi up to make skull cape for their use.

Eut old cloties, after they have served the purpose of two or three classes of society, are yet far from closing their career; when they bave seen their worst they take altogether a nem lease of existence. When old clothes are too bad for anything else they are still good enough for Shoddy and Alungo. It is not many years since Mr. Feryand denonnced the "devil's dist" of the Yorkshire woollen manufacturens; this "devil's dast" arises from the grand translation of old clothes into new. Hatey, Dewsbury, and Leeds have been described as the grand centies of woollen raga-latterdemalljon capitals, into which are drawn the greasy, frowsy oast-off clothes of Europe, from whence issue the pilos cloths, the Petershams, the beavers, the J'ulmas, the Che terfields, and the Mohairs in which our modarn ladies disport themselves. The old rags, after being reduced to the condition of wool by enormous toothed wheels, are mixed with a varying amount of fresh wool, and the whole is then worked up into the fabrics we have mentioned, which now have the run of fashiou. It is estimated that shoddy and mungo supply the materinls for a third of the woollen nanufactures of this country. Here is a grand transformation. No man can say that the materials of the coat he is wearing has not been already on the inack of some greasy begger. In one corner of the "animal products department" in thie South Kensington Museum the visitor ean see hundieds of specimens of this shoddy and mungo-a perfect resurrection of the old olothes from every country in Europe. The cast-off wardrobes of civilized man by a latw of commerce are sucked into this country, and mainly into this metropolis, and we distribate it in perfeot fabrics, destined to go once nore the round of civilization; wooien fubrios are hard to die, and, for will we houw, clothes are thas ground up over ani over agaia.-London ITimes.

To rearove innmeldify.
Adl is littlo nitric other to the raticid oil, A few drops preserve oils and fats from terning.

DAVY AND THR " LAUGHING GAS."

The dangers which enthusiastic men of scienoewill voluntarily undergo for the sake of the testing new principles have never been more strikingly exemplified than in the history of Sir Humphrey Davy's early experiments on the effect of nitrous oxyd, popularly known is " laughing gns," Divy began his chemical studios in March, 1798, whea n youth of 19 ; and only two years later: appeared his Researches,' which immediately gave him high rank, not as a mere chemist, but as an original discoverer. Herein, for the first time, the properties of nityous oxyd and the wonderful effects of that gas in respiration were disclosed to the astonishment of the public. Hitherto it had been regarded among natural philosophers with a sort of vrgue horror, and from its deadly effects upon small animals it was suspected that it was the very principle of the plague itself, that terriblevisitation which, from time to time, swept over Europe. Nothing daunted by this, the young philosopher boldly resolved to try its effects upon his own system. He could not have been ignorant of the terrors of Spallanzani's experiments upon the gastric juice, and only a short time before the brave Pelletier, the French chemist, had lost his life in the attempt to breathe another kind of poisonous gas.-But the boy. philosopher thought it necessary to compare the effects of nitrous osyd with those of common stimulants, and he was resolved to pluck knowledge out of this dangerous trinl. With this view, he shut himself up, andfirst submitted himself to intoxication so extreme as to produce distressing and alarming symptons. To ascertain the effects of an atmosphere containing large quantities of the same gas, he inclosed himself in Ω box, and at three successive intervals, for an hour and a quarter (during which time be remained in the box), had sixty quarts of the gas thrown in, finally constituting a large proportion. of the air which he was breathing. When the last twenty quarts were thrown in; his emotions became similar to those produced by a moderate dose of the pure gas; but, not satisfied with this, immediately after coming out of his cage, he began to breathe in twenty quaits of nitrous oxyd, probably the most effectual trial ever made of this woinderful agent.

In his owa account of this audacious experiment Davg observes:-"A llirilling, eatending from the chest to the extremities, was almost inmmediately produced-I felt a sense of tangible extension highly pleasurable in every limb; my visible impressions weve dazaling and apparenty magnitied; I beard distinctly every sound in the room, and was peifecily aware of my situation. By degrees, as the pleasarable sensations inoreased, I lost all connection with external things; trains of vivid, visible imagos rapidly passed through my mind, and were connected with words in such a manner as to p;oduce perceptions perfectly novel. I existed in a world of newly conneoted and newly modified ideas. I theorized; I imagined that I made discoveries. When I was awakened from this semi-delirious trance by Dy. Kinglake, who took the bag from my mouth, indignation and pride were the first feelings produced by the sight of the persons about me. My emotions were enthusiastio and sublime, and for a minute I walked around the
room perfectly regardless of what was said to me. As I recovered my former state of mind, I felt an inclination to communicate the discoveries I had made during the experiment. I endeavored to recall the ideas; they were feeble and indistinct.One collection of torms, however, presented itself, and with the most immense belief and prophetic manner I exclaimed to Dr. Kinglake:-" Nothing exists but thoughts 1 -the univense is composed of impressions, ideas, pleasures, and pains !"'
The impunity with which Davy had passed through these wonderful trials emboldened him to attempt the breathing of the deadly fumes from charcoal. His first attempt was made upon four quarts of carburetted hydrogen gas, of which he made three inspirations. "The first inspiration (he tells us) 'produced a sort of numbress and loss of feeling in the chest and about the pectoral muscles. After the second inspiration I lost all power of perceiving external thiogs, and had no distinct sensation except a terrible oppresaion on the chest. During the third inspiration this feeling disappeared; I seemed sinking into annihilation, and had just power enough to drop the mouth-piece from my unclosed lips. A short interval must have passed during which I respired common air before the objects about me were distinguishable.' On recollecting himself he faintly articulated, 'I do not think I shall die.' Putting one finger on his wrist, he found his pulse threadlike, and beating with excessive quickness.-Extreme giddiness, loss of memory, and numbness succeeded, with excruciating pains in the forehead and between the eyes, and transient pains in the chest and extremities.
Davy was, as far as his philosophical learning went, entirely self-instructed. - He was born at Penzance, in Cornwall, on the 17 th of December, 1778. Though some attempt has been made to conccal the fact, there is no doubt that his father, Robert Davy, followed the humble occupation of a wood-carver; Robert was known in that town as 'little carver Davy,' and his son (Humphrey) when young, was always spoken of there as 'carver Davy's boy.' His father dying when the lad was only sixteen, his mother commenced the business of a milliner, and apprenticed her child to an apothocary at Penzance, where, for the first time, he began to show an interest in his favourite study.
"IIis means, of course," says his brother, Dr. Davy, "were very limited; not more extensive than those with which Priestloy and Scheele began their labors in the same faithful field. His apparatus consisted chiefly of phiale, wine-glasses, tea-cupe, tobacco-pipes and earthen crucibles, and his materials were generally the mineral acids and the alkalies, and some other articles which are in common use in medicine." He began his experimental trials in his bedroom, in a friend's house, in which he was a favorite inmate. Here there was no fire, and when he required it he was obliged to come down to the kitchen with his cracible. His biographer, Dr. Paris, states that Davy was indebted to the accident of a wreck on the coast for a case of surgical instruments. This included a clumsy olyster apparatus which he turned into an air pump. The sacred vessels and professional instruments of the surgery were, without tho least hesitation, putinto requisition for any chemical experiments.

It can hardly be doubted that Sir Humphrey Davy'sconstitution, which was so vigorous in youth, withered and decayed long before he reached old age from the effects of injuries sustained by these early experiments. He died in 1829, at Geneva, of an attack of apoplexy, but his end was singularly peaceful. When bis brother (Dr. Davy) entered the room, Sir Humphrey said: "I am dying! When it is all over, I desire that no disturbance of any kind may be made in the house. -Lock the door, and let every one retire quietly to his apartment." The mortal remains of the woodcarver's son-the great philosopher and discoverer -were honored with a public funeral, and deposited in the cemetry outside the walls of Genera.American Artizan.

DISCOVERY OF A BED OF EMERY.

Dr. Charles T. Jackson, of Boston, recently read a paper before the Boston Society of Natural History, in which he announced a discovery of a mine of emery. He said it afforded him great pleasure to announce the discovery of an inexhaustible locality of excellent emery in the central part of the State of Massachusetts, in the town of Chester, Hampden county.

On the 11th October last Dr. Jackson revisited Chester, and was surprised to find that one of the beds, which all had supposed to be magnetie iron ore, and from which hundreds of tons had been taken and smelted with the ores of iron found in Berkshire county, was really composed chiefly of pure emery-one part of the bed being properly iron ore. Had not the occurrence of Margarite and Chlorotoid called his attention to the probable existence of emery at this locality, it would have been overlooked to this day; and no one knows how much longer.
The principal bed of emery on the South Mountain, in Chester, is from four to ten feet in width, and is now quarried at the base of the hill. Its course is nearly N. 20 deg. E.; S. 20 deg. W., and its angle of dip is 70 deg., and to the eastward. The bed widens rapidly as it riees in the mountain, and in one place where it is associated with a bed of iron ore, 17 feet wide, the emery itself not being less than ten feet in the clear. The highest point where it crops out is 650 feet above the immediate base of the mountain, and the bed goes through both the north and the south mountains, and has been traced in length four miles. The depth to which it penetrates below the lowest point seen must be very great, so that we may say, without exaggeration, that it is really inexhaustible.

Dr. Jackson next mentioned several interesting scientific facts as to the condition in which the emery was found, and the means necessary to be taken in breaking it up by fire, it having been found while quarrying it for iron, that many drills were brcken and rapidiy used up on account of the hardness. On the North Mountain, which is separated from the South Mountain by a branch of Westield river, there are found three large beds of rich magnetic ore, six feet wide. Dr. Jnckson mentions as a singular fact that, although one of the hardest minerals known, it has been smoothed and polished by the ageney of drift grinding. The
principle bed of emery on this mountain is seven feet in thickness. It is probable that all three of these beds of iron ore will be found on the South Mountain, for they run directly towards it, and it is not far distant.

Practical trials of the Chester emery by skilled workmen have proved that it is fully equal to the best London prepared emery from Naxos, and in one of the fairest trials it was found to exceed tbat emery in the work it performed in grinding hardened swordblades in the ratio of twenty to fifteen. The Chester emery after grinding twenty swords, was far from being used up, while never more than fifteen had been ground by the wheels armed with the London emery.

ctelacthinery amo eitlamfactures.

Twistat Drille。

At a recent meeting of the Polytechnic Association of the American Inetitute a Mr. Watson introduced some samples of twist drills manufactured by the Manhattan Fire Arms Co. of Newark, N. J., and used by machinists in boring holesjin metals. Mr. Watson said:-
"The perfection to which we have attained in metal-working is one of the miracles of modern times. In all of our large machine shops iron is planed and turned in large masses with a speed and accuracy unknown in former times. I have here one of the modern tools used for working metal which is, as may be seen, not only externally beautiful, but constructed on sound principles. I have here also a common flat drill, such as is ordinarily used, and I deem it unnecessary to more than show you the two, side by side. The advantages resulting from the use of such drills as this twisted one, are, that the work can be done in less than half the time. To say nothing of the first cost of the two tools-which is largely in favor of the twisted drill-it commends itself to mechanics by reason of its perfect accuracy in all that affects size, uniformity of quality and temper. These are standard tools, and as such have a very great value even beyond their intrinsic worth. When I say standard I wish to convey the impression that they are all alike. A bole drilled by a thirteen-thirty-second drill to day, will be the same as one drilled last year by any other drill of that size from the same factory, so that work whioh is laid off and executed by them can be reconstructed in case of breakage with the certainty that the bolts or other fixtures belonging to the job will fit. Beyond this mechanical advantage there is the very great additional moral one of having in daily use tools that are calculated to excite emulation and stimulate mechanics to do good work instead of poor.
"These drills are of all sizes, from three-eights, varying by thirty-seconds of an inch up to one inch and a quarter, with turned taper shanks and sookets to match and with straight shanks, made of Stubb's wire, from three-eights down to a sirtyfourth of an inch, or from No. 1 wire to No. 60 wire.
"I can easily conceive what an immense advantage these drills will be to all metal-prorkers. I
have always thought that twist drills should be sold in the stores as cheaply as augurs for carpenters; and when I speak of the price it is almost incredible to see how they can be sold for it. Why, sirs, this inch-and-a-quarter drill, turned from end to end with a taper shank, accurately ground and tempered, sold ready to drill a hole on the spot, costs but five dollars. No man could go to work and make one like it for three times the money. The four sockets cost but $\$ 10$. I know something of metalworking, and these tools could not be afforded at any thing. like the sum, unless the company worked upon a regular system and had ingenious machines constructed for this very purpose.
The manufacturers spare no pains or expense to make a perfect tool, and I would advise every one interested in metal-werking to send for samples."

Drilling and Turning Glass.

Glass may be readily drilled by using a steel drill, hardened but not drawn at all, wet with spirits of turpentine. Run the drill fast and feed light. Grind the drill with a long point, and plenty of clearance. and no difficulty will be experienced. The operation will be more speedy if the turpentine be saturated with camphor gum. With a hard tool this lubrioated glass can be drilled with small holes, say up to three sixteenths, about as rapidly as cast steel. A breast or row drill may be used, care being taken to hold the stock steady, so as not to break the drill. To file glass, take a 12 inch mill file, single cut, and wet with the above mentioned solution, turpentine saturated with camphor, and the work can be shaped as easily, and almost as fast as if the material were brass.

To turn glass in a lathe, put a file in the tool stock and wet with turpentine and camphor as* before. To square up glass tubes, put them on a hard wood mandrel, made by driving an iron rod with centers through a block of eherry, chesnut or soft maple, and use tne flat of a single cut file in the tool post, wet as before. Run slow. Large holes may be rapidly cut by a tube-shaped steel tool, cut like a file on the angular surface, or with fine teeth after the manner of a rose-bit-great care being necessary, of course, to back up the glass fairly with lead plates or otherwise to prevent breakage from unequal pressure. This tool does not require an extremely fast motion. Lubrioate as before. Neat jobs of boring and fitting in glass may be made by those simple means. I have endeavored to turn glass rods with diamond pointed steel tools, etc,, but without success. The whole secret lies in good high steel, worked low, tempered high, and wet with turpentine standing on gum-camphor.-Scientific Anierican.

Crossley9 Carpets

The largest carpet manufactory in the world is that of Crossley and Sons, at Halifax, England, This frm bae a capital of one million six hundred and fifty thousand pounds sterling, and employs four thousand four hundred work people. Nearly all their immense business is carried. on within one inclosure. In their mills are eighteen and a-half acres of flooring, and they employ two thousand horse-power. They manufacture nearly
erery description of cirpet, and the product is estimated at many millions of yards annually. Bosion Commercial Buildion.

The Linem Mramufacture in Irelando*

\because Of all braaches of industry, however, that which is of the most importance to Ireland, from the amount of capitalit represents, and the number of persons to whom it gives occupation, is the linen trade. I am indebted to the kindnese of Mr. M'11wrath, secretary to the linen trade of Belfast, for much valuable information on that subject, and also to Mr M'Call, of Lisburn, for many interesting particulars, of which I shall endeavour to lay before the Society such general heads as our limited time nay sllow.
"the linen tuade of which Deliast has been the lung establisbed head quarters in Ireland had been milher falling off in amount, until the interruption of the supply of cotion by the Anierican war callod it into immensely increased activity. The contrast in this regard is well shown by the following figures:In 1859 thero were in Ireland 82 hlux.spinning mills containing 651,872 spindles, of which 91,230 wero unemployed; whilst in 1864 there were 74 spinning mills with 650,744 spindles, of which but 8,800 were unenaployed, whilst 50,038 additional spindles were in May last being set.to work. Further, in addition to che above there were employed in 1864, $1: 648$ epindles occupied in making thread, and fire mills were in course of erection to contain 45,000 spindiles. In regard to power loom factoives for linica, n. similar remarkable increase is shown for the same period. Thus, in 1859, there were 28 factorics with 3,632 loonas, of which 500 were unemployed; whilst in 18044 there were 42 factories with 8,188 looms, of which but 258 are unemployed; 1,085 additional looms about being set to work at the date of the rearn in May last. The introdaction of the factory system into the liven trade, and especially the power-loom, is comparativelymodern, che firsi spinning mills for flax in Irelunt having heen establisbell about $18 \cong 8$, previously to which line cottun spinning was much more extensively carried on in Belfust than it his since been.
the great extension of trade and the benefit io the operative classes which followed this change may be illustrated by the following fact,-When spiining and weaving were done by hand, the firm ô Richardsong, of Lisburn, turned out from 10,000 to 20,000 pieces of goods in twelve monith; that firm cian now deliver 250,000 piees of bleached goods in the same time.

As towages in the old day o? spipning on the domestic wheel, the errnings were from 2s. טid. to 43. (62 cts. to $\$ 1.00$) weelly, whilitint present in spinring mills the ordinary work-women maice from 3 s . Gd. to Gs. (86et. to $\$ 1.50$) per weak, and superior hands from 6s. to 83. (\$1 $50 \$ 8$). The best hand loua weaver can only matso Gas. per week, oxt of which ha has to pay charges which leive hin solly 58. (\$1 25) wherens an expert firl, who can stiend to two power looms, can wike 10% ($\$ 250$) per woek clear. Thus the earrings of iodividuals have been malerially increased by the introduction of steam machinery in the liuen trade; and in regard to the

[^2]total ampunt,of employment, here were ten yoars ago, 17,000 persons employed in this twade in and about Belfast, whereas in the presert y ear the nuraber employed in the mills is 25,000 , exclusive of the vast number of outsiders who indirectly derive their subsistance from that branch of manufacture.

Coupled with this development of the linen tarie there has taken place a great increase in the quantity of flax cultivated in Ireland. Darigg tho Crimenn war, when the Balkic trade wils subjected to certain impedimente, the quantity of lind under flax was increased, and amounted, in 1853 to 174 , 579 acrez, but on the restoration of peace, the Balt:o trade being rezumed the demand for home gromn flax dininished, and the cultivation fell of to 91,646 neres in 1858. Since thas time it has progressiyl:increased, and has now assumed proportions entirely unprecedented, the quantity in 1863 having been 214,099 ncres, and in the piesent yoar having increased to 301,942 acres, which at an average of 35 stone of clean scutched flax to the acre, gives the produce of Gber at $10,557,070$ stones or 66,050 tuns; and ath an average price of 7 s .6 d . per stone, the intal value of the crop of the present year is £3,962,989. This great increase of prodiction is accompanied of course with corresponting iverease of the esport trade.

Cuttom Vorling。

A Mr. John Mc.ially, of the Stark Milis, Manchester, N. II., writes ns fullows to the Scientific American:--
"These mills here bare some 1000 looms which in former times were eapployed in cotton, and now the companies have invested in linen as an aduition to their business aud not at all as a substitute for cotton. We make about 1500 seamless, 2 buskel grain bags per day, one half has coiton warp and tow filling and the other half, say 750, has dax warp and sow filing. This last bas is really a first class article and far superior to any I have seen in England for quality of material used. From tests of strength 1 have made of the yarn I find that the flax wayp stood the strain of 20 lbs. weight to three threads stretched 57 inches; the filling stood about the same, while cotton warp brole at 5 los."

Cement for Leather.

Ti,e Anerican A"izzan says:-"Mr. W. Brambill of 60 Fulton streer, New York, in response to our article on this subject, bas shown us some shoes and other articles made by himself experimentally without sewing, and fastened wholly ly a cement which is watorproof. He has woin a paic for wenvly a year, and finds them durable; and he is confident that the cement will make a joint as strong :s solid leather. A sauple of thia moroceo cemented to cloth is interesting, as it promises a useful material for coachmakers, being iupervions to water. He bas cemented belis for machinery, and believes that they will last boter than riveted belts. He is now getting up a pair of boots for his own ase, in which he will test certain ideas that he entertains; and, if they are confirmed, he intends to patent the material and its application to varions uses. From the appearance of theso articles, wo are contident that a
great improvement may be made in the inbrication of shoes and otber articles of leather by the use of cewent. Hie has also made stenm packing, by mixing powdered cork with this cement, and spreading it between two layers of thin hempen or brown flax cloth. This paeking is used by the Rogers Locomotive Works, nud by ollers, whose usc of it is sood evidence of its utility."

Paxamined EVoorld

The dimerican Aritecn eays: Mr. Suart Gwyne has experimented in the preparation of wood for fine wouk, in which quality is of more imporiance tham cheapvess, and has found that paraffine is the bent substance with which to saturate it. It resists moisture, acids, alkalies, and the prevalent causes of decay and change of dimensions, and is ensily forced into the pores, as if fuses at a moderate heat; and it does not injure otber substances. He thinks it will preserve the panels which artists paint upon, so that they will not warp and aplit; and will be applicable for coach and joiner's work. But the work he has applied it to is engineers' work, such as the teeth of wheels, for which it appears to have all the qualities desired. He intends to patent the use of it for such purposes if iurther trials conlirm his present views of i_{i}.

The 6 Twa Hinnded Wheelss and IInnd Lioonn Weaving-
 (230w the Chmula surmor.)

Sir, 一 When a man makes up his mind to go into any new undertaking, the first, and all engrossing question is, will it pay? Now, it can lue shown beyond a doubt, that spinning with ihe "twa handed wheel," and weaving with the hand loom, will not only pay, but pity well in Canadit. Is ordor to show that this would be the ease, I hinve made a very careful calculation of the Scotch fiax reel, as compared with che cotten reel; and find that about two spindles of yarn of the Scoisch reel, will give about as much warp as a bunch of cotton warp. Now, it was the common task for a lass in Scotland, to spin two and a half sipindles of yarn every week; or ten spindles in four weeks. Aod tea spindles is equal to live bunches of cotion, so far ns warp goes. Now five bunches of cotton costs fifteen dollars and Gire york shillings. A wunch is fire pounds weight. Well this would require twenty-five pounds of fine lini, to be equal to five bunches of cotton. And if five dollars is allowed as the price of the lint, there atill remains ten dollars and five yoris shillings. Now where is the Cauadian lass who can enrn as much as this in four weetss spinning wool? Would not this sum pay a fariner, eren to hire the spioning of his lint and tow? lhut I would remark furcher, that if the furmer srew the fax, then the quanity of flas which would yield treenty-five pounds of lint, would aboo yield a good denl of tow, the valne of which wonld go a long way in payiug for scuiching and herkliny the fias.

Fine lint yarn, to take the place of number 8, 9, aud 10 cotton warp, has been much wantod : this good while back, for the winter diresses of women espocialiy. A dress all colton is too cold, and a dress all woollei is too hoavy, thetefore, they wani
the lint yarn, because they cannot got tho colton, it is se searee and denr:
Sir, I was highly detighted in readigg the article in your last numbier, headed "Mand Loom Wcaring.": I have always had the hand loom in view, but I thought that it was no use saying one word about it until it could be seen whether or not lint and tow yarns conld be got to set it agoing. At the present time, there are as many hand loums as work up all the jarn that the people want to put into cloth. Bit where these looms were made, and the price of them, it would be hard to tell The only supposition is, that when a district became a little cleared up, some handy, ingenions weaver made the loom himself, or superinterided the making of it. A Canadian carpenter, who never made a loom belore, could not do it. In my own ense, when I came to the place where I now livio, better than twenty years ago, I and my son went to work and made at loom, and it wrought first rate. . For the encouragene ent of others, and to get the "twa handed wheel" started, I may mention that I made it a point to clear a hundred dollars every winter, for a good number of years. In fact, all the payment for my farm, came through the oye of the shuttle. With regard to the price of looms, so far as I remember, they were about two pounds ten shilliings sterling, before I left Seotland, all made of Americian pine. But the niaking of a loom appesirs to me to be such a simple matter, that I will show any man the way to make one, and give all the information I can to any one, about the manufacturing and weaving of flax; for I mas engaged at the trade for more than thirty years in the old couniry.

James Duik.
Nichole, Feib. in, 1605.

Preservation of Cheege.

The prieservation of chense is a mast imporiant point to those eagaged in the manufacture of them. Their consistence and thoir state of fermentation, more or less advanced, shonld serve ns a guide. The method of masnfacture also affects largety their prescrvation. Those cheeses which have received pressure in a too fresh state, and from which the whey is not entircly soparated, are liable to rise, and have in their centres holes, or receptacles of air, which gire te the paste a spongy nad disagreeable appearance. When this nocident arises during the manufacture, and if the fermentation be considerable, remove the cheese to a cool and dry place, and pierce it with inon ekewers in the spot where it rises most; ly these openings the gases escape, and the cheese subsides. I'o prevent this accident, mix intimately together one pound of nitre and one oupce of powdered Armenian bole; and before salting the cheese, and while it is about being placed in the press, rub in an ounce of this mixture: The addition of the salt, on the one hand, and the preparation or perfection in the storehonse, on the other, succeed in procuring a gentle fermentation, or a gradual renction between the elementary substances of the cheese. 'This renction proceeds so much the more rapidly as the cheese is softer, and the place warmer and more moist. In proportion as the formentation

[^3]has been gentle, so much the more is the flavour of the cheese sweet and agreeable. It is at this precise moment, when the reaction between the elements has produced combinations agreeable to the taste, that it is necessary to perfect the cheese -sooner than this, it is not finished; later it is in a state of decomposition more or less advanced.

The insects which attack cheese are:-

1. The fleshworm or cheesemite (acarus sira), which devours the cheese when partially dried. These animals are so much the more dangerous because they batch beneath the crust, whence they spread throughout the interior, causing great injury. Brashing the cheeses frequently, wiping them with a cloth, and washing the shelves on which they lie with boiling water, constitutes some sort of protection ; but the most certain method is, after having rubbed the cheeses with a brine, to let them dry, and smear them over with sweet oil. It is in this way that Gruyêre cheese is treated when attacked by this destructive insect.
2. The larvæ of the gilded green fly (musca cesar), of the common fly (musca domestica), and, above all, of the fiy of putrefaction (musca putris). These larves introduce themselves into the cheese and commit ravages. All these animals may be destroyed by vinegar, by the vapour of burning sulphur, or by washes of chloride of lime. When these inseots are numerous, take up the cheeses and serape and wash the skelves with water holding in solution chloride of lime; then serub the fioor and whitewash the walls. When the cheeseroom is dry replace the cheeses. If the cheeses have arrived at an advanced stage of decomposition, they should be put into powdered charcoal, mixed with a small quantity of chloride of soda, which destroys the offensive odour. Haste must also be made to finish their manufacture before they become entirely putrid. Mildew can be prevented by soraping the cheese, by brushing it, and by rubbing it with oil.

ALLOYS, OR MISOELLANEOUS METALS.*
 Chaudet's Medal Metat.

Copper '100 parts; tin 417. Cast in moulds formed of cupel bone ash.

> Lead in Grains.

Lead, mele it, and pour it in a small stream from a height of three or four feet into cold water.

Bell Metals.

1. Copper 25 parts ; tin 5. Mix.
2. Copper 79 parts; tin 26. Mix.
3. Copper 78 parts; tin 22. Mix.

Common Bell Metal.
Copper 100 par tin 50. Mir.
Pariszan Bell Metal.
Copper 72 parts; tin 263; iron 11 . This alloy is used for the bells of small ornamental clocks.

Bath Metal.
Brass 32 parts; apelter 9. Mix.

Another.
Brass 35 parts; zinc 9. Mix.
Brass.
Copper 3 parts. Melt, then add zinc 1 part.
Button Makers' Fine Brass.
Brass 8 parts; zinc 5. Mix.
Button Makers' Common Brass.
Button brass 6 parts ; tin 1; lead 1. Mix.
Bright Brass Color.
Brass reduced to fine powder.
Red Brass Color.
Copper filings 3 parts; bole 2. Mix. Fine Brass.
Copper 2 parts ; zine 1. Mix.
Brass for Wire.
Copper 34 parts; calamine 56. Mix.
To give Plates of Copper a Brass Color.
Expose the plates, after being eufficiently heated, to the fumes of zinc.

To Brass Copper Vessels.
Argol 1 part; amalgam of zine 1; muriatic acid 2; water to fill the vessel. Mix.

Brass or Hard Solder.

Brass 2 parts; zinc 1. A little tin is occasionally added.

Jewollers' Metal.

Copper 30 parts ; brass 10 ; tin 7. Mix.

Fusible Alloys.

1. Bismuth 8 parts; lead 5 ; tin 3. This is fusible at boiling water heat.
2. Zinc, lead, and bismuth equal parts. This may be fused in a bit of writing paper, and will melt even in hot water.
3. Lead 3 parts; tin 2 ; bismuth 5. Mix. This alloy melts at 197° Fah. In using this composition to make casts of seals, gems, \&c., it should be employed at the lowest possible temperature at which it will keep fluid; for this purpose it is as well to let it beoome pasty, and then forcibly impress the substanoes together.
4. Bismuth 2 parts; tin 3 parts ; lead 5. Melt. This alloy fuses in boiling water.

German Silver.

1. Nickel 1 part; zine 1 ; copper 2.

When intended for rolling into plates, use the following:
2. Nickel 25 parts ; zinc 20 ; copper 60 ; to which may be added 3 of lead.
3. Pure copper 55 parts; niokel 23 ; zinc 17 ; iron 3; tin 2.

Fine White German Silver.
Iron 1 part; nickel 10; zino 10; copper 20. Mix.

German Silver for Castings, \&cc.
Lead 3 parts; nickel 20 ; zino 20 ; copper 60. Mix.

Genuine German Silver.
Copper 40셜 parts; niokel 31 $\frac{1}{2}$; zine $25 \frac{1}{2}$: iron 27. Mix

Gilding Metal.
Copper 4 parts ; brass 1: tin 1. Ftase together. Another.
Copper 14 parts; zinc 6; tin 4.
To Separate Gold from Gilt Copper or Silver.
Take a solution of borax in water, apply to the gilt surface, and sprinkle over it some finely powdered sulphur; make the article rod hot, and quench it in water: then scrape off the gold, and recover it by means of lead.

Gold in Grains.

Gold 3 parts ; silver 1. Granulate by pouring it in a small stream, from a moderate height, into cold water; then dissolve the silver with nitric acid, and wash well in pure water; next heat the grains, to give them a proper lustre.

Common Gold.
Spanish copper 16 parts : silver 1: gold 2. Melt together.

Onian's Fusible Metal.

Tin 2 parts: lead 3: bismuth 5. Melt. This alloy melts at 197° Fah. The addition of a little mercury renders it still more fusible.

Pewter.

1. Tin 100 parts; antimony 17. Mix.
2. Zinc 1 part ; copper 3; lead 8 ; tin 60 . Melt the copper, then add the rest.
3. Fine. Tin 50 parts; antimony 4; bismuth 1 ; copper 1. Mix, as before.
4. F'rench. Lead 9 parts; tin 41. Mix.

> Keller's Medal Alloy.

Tin 9 parts; copper 89 ; zinc 2.
Gun Metal.
Brass 100 parts; spelter 13; tin 6. Mix.
Another.
Copper 9 parts; tin 1.
Iin Filings.
Take grain tin, and melt it in an iron vessel, and stir it, while cooling, until it becomes a powder ; then sift.

ALLOYS.

One metal does not alloy indifferently with every other metal, but it is governed in this respect by peculiar affinities ; thus, silver will hardly unite with iron, but it combines readily with gold, copper and lead. In comparing the alloys with their constituent elements, the following differences may be noted. In general, the ductility of the alloys is less than that of the separate metals, and sometimes in a very remarkable degree; on the contrary, the alloy is usually harder than the mean hardness of its constituents. The mercurial alloys or amalgams are, perhaps, exceptions to this rule.
The specific gravity is rarely the mean between that of each of its constituents, but is sometimes greater and sometimes less; indicating, in the former case, a closer cohesion; and, in the latter, a recedure of the particles from each other in the act of their union.

Density of Alloys.

Alloys having a Density greater than the Mean of their Constituents.	Alloyg having a Density less than the Menn of their Constituents.
Gold and zinc.	Gold and silver.
Gold and tin.	Gold and iron.
Gold and bismuth.	Gold and lead.
Gold and antimony.	Gold and copper.
Gold and cobalt.	Gold and iridium.
Silver and zinc.	Gold and nickel.
Silver and lead.	Silver and copper.
Silver and tin.	Silver and iron.
Silver and bismuth.	Iron and bismuth.
Silver and antimony.	Iron and antimony.
Copper and zinc.	Iron and lead.
Copper and tin.	Tin and lead.
Copper and palladium.	Tin and palladium.
Copper and bismuth.	Tin and antimony.
Lead and antimony.	Nickel and arsenie.
Platinum \& molybdenum	Zinc and antimony.

The melting point of an alloy cannot be inferred from that of each of its constituent metals. An alloy of 8 parte bismuth, 5 of lead and 3 of tin, melts at the heat of boiling water, 212° Fah., while the melting point deduced from the mean of its components should be 514 Fah., a little mercury added to this alloy renders it still more fusible.

The colours of alloys do not depend in any considerable degree upon those of the separate metals ; thus, the colour of copper, instead of being rendered paler by a large addition of zinc, is thereby converted into a rich looking metal, brass. By means of alloys, we multiply, as it were, the number of useful metals, and sometimes give usefulness to such as are separately of little value.-Ure.

NEW METHOD FOR COMPUTING INTEREST.

J.II. Goldsmith, principal of the Detroit Business College, gives the following methods of computing interest at any rate per cent. for any length of time, as follows:-"Rule-reduce the years and months to months, to half the months annex one-sixth of the days, multiply that number by one-sixth the principal, that will give the interest at one per cent., which multiplied by any rate per cent. you wish, will give you the interest in mills. Example -interest on $\$ 12$ at seven per cent for onc year, eight months and twenty-four days, half the months with one-sixth the days annexed, 104, multiplied by one-sixth the principal (2) equals 208 multiplied by seven (rate per cent.) equals $\$ 1,456$. Second method- $\$ 12$ divided by three equals four, onefourth the months with one-twelfth the days annexed is fifty-two, multiplied by one-third the principal (4) equals 208, multiplied by seven equals $\$ 1,456$.

DENSITY OF STEAM AT VARIOUS TEMPERATURES.

The experiments of Mesers, Fairbairn and Tate on the density of steam, are described in a paper which was read to the Royal Society of London, as the Bakerian lecture, on the 10th of May, 1860,
and published in the "Philosiphical Transactions" for that year. The results of those experiments give what is called the relative volume of steam; that is, the ratio which its volume bears to that of an equal weight of water at the temperature of greatest density. $39^{\circ} 1$ Fah.; but in the following table of comparison, each of those relative volumes is divided ly $62 \cdot 425$, the weight of a cubic foot of water at $39^{\circ} 1$ in 1 bs., so as to give the volume of one lb. of steam in cubic fect. The numbers of the experiments are the same as in the original paper; those mado at temperatures below 212° being numbered from 1 to 9 , and thase made at temperitures above $2 \mathrm{~L}^{\circ}$ from 1^{\prime} to ld^{\prime}.

Volume of 1 lb of Stemn iu

No. of Experiment. 1.	Temperature Eahreoheit.	,	
		Ey Thory.	by exper.
	136.77	132.20	13260
2.	150.33	$85 \cdot 10$	$85 \cdot 4$
3.	$150 \cdot 36$	77.61	$75 \cdot 80$
4.	170.92	$60 \cdot 10$	5962
5.	171.48	$59 \cdot 43$	59.51
6.	174.92	$55 \cdot 13$	55.07
7.	182.30	47.28	48.87
8.	188.30	$41 \cdot 81$	42:03
9.	197.78	3391	3.43
$1{ }^{\prime}$.	24290	15.61	$15 \cdot 11$
2	24482	1475	$14 \cdot 55$
3 '	$245 \% 2$	$14 \cdot \dot{1}$	14:30
$4{ }^{\prime}$	$255 \cdot 50$	12\%3	1217
$5{ }^{\prime}$	$203 \cdot 14$	10.06	$10 \cdot 40$
6^{\prime}.	507.21	10:29	10.18
$7{ }^{\prime}$.	$269 \cdot 20$	9.977	970:
8^{\prime}.	274.70	$9 \cdot 158$	936 L
$9{ }^{\prime}$	$273 \cdot 30$	$9 \cdot 367$	8.702
10^{\prime}.	$270 \cdot 42$	8.539	8.40
11^{\prime}.	282.58	$8 \cdot 145$	$7 \cdot 96$!
12^{\prime}.	$287 \cdot 25$	7603	7.340
$13{ }^{\prime}$.	992.03	7.041	6.938
14^{\prime}.	288.5	7-49.4.	7:201

DISCILARGE OF WATER OVER WEIRS.

Table,--containing the Quantities of Water, in cubic fect, that vill be discharged over a Weir per minute for every inch in its breadth, when the depth of lhe Water from the surface to the top edge of the wasteboard do not excced eijhkica inches.

1	$0 \cdot 403$	$0 \cdot 428$	10	12.748	13.535
2	$1 \cdot 110$	1211	11	$14 \cdot 707$	$15 \cdot 632$
3	2.095	2.226	12	16.758	$17 \cdot 805$
4	$3 \cdot 225$	$3 \cdot 427$	13	18.895	20.076
5	4.507	$4 \cdot 789$	14	$21 \cdot 117$	22.437
6	5.925	6.295	15	$23 \cdot 419$	24.883
7	$7 \cdot 466$	7.933	16	$24 \cdot 800$	$27 \cdot 413$
8	$9 \cdot 122$	9.692	17	$28 \cdot 258$	30.024
9	11.884	$10 \cdot 564$	18	$30 \cdot 786$	32.710

NUMIDE: OF PLANTS TO TIIE ACHE.

The following table shows the number of plants to the acre, at any of the distances mentionel:

Dist. Apart.	No. of Plants.	Dist. Apart.	So
1 foot.	. 43,560	5 fee	1,7
1.1	19,360	6	1,210
2	10,890	9	537
$2 \frac{1}{3}$	6,969	12	362
"	4,810	15	193
	2,7̇2	18	134

Shatistian allufomation.

Exporis and Imports of Canada,

I'he Cutadiun Quarterly Revieve furnishes a tablo of imports and exports of Canada for the last 14t years, differing very slightily from the tibles we furnished in the last No. of the Jownat. Our estimate of the anoual average excess of imports over exports for the last 14 years was nearly $\$ 9$ 000,000 ; the Review gives it for $14 \frac{1}{2}$ years at an annual average of $\$ 8,623,162$. It concudes with the following summary:
"The above table of imports and exports shows, first, that for the first 6 months of $186!$, after adding to the exports $\$ 750,000$ fur short returns, we have imported $\$ 11,148,280$ more than we have esported. Second, that we have in 142 years bonght $\$ 125,035,879$ more than we have sold. 'Ihat the interest that would acorue on those over-importations at the rate of 6 per cent, paid annually would be $\$ 48100: 331$. Of those over-imporiations we have paid the Americans $\$ 36,611,388$ in gold, moreover, we have paid them in lumber and timber, which is the same as gold to us, $\$ 14,000,000$, in round numbers, making $\$ 50,000,000$ for products we could, and would, with sound legislation have produced ourselves."

The Largest English Farm.

The largest farm in England consists of three thousand acres, and belongs to a main with the Yankee name of Samuel Jones. In is:s cultivation he follows the "four course" system, the whole extent of the farm beiog divided into fout great crops- 750 acres to wheat, 750 to barley and oats, 750 to seeds beans, peas otc., and 750 to roots. His live stock is valued as follows: Sheep, $\$ 35,000$; horses, $\$ 15,000$; bullocks, $\$ 12,000$; pigs, $\$ 2,500$. The oil cake purchased annually amounts to $\$ 20,000$ and artificial fertilizers about $\$ 8,000$. The entire cost of manure, in various forms used, annually costs about $\$ 25,000$. Sheep are claimed to be the most profitable stock he keeps, from which he realjzes about $\$ 20,000$ a year. His income firom the whole farm, though not stated can be listle less than $\$ 50,000$ per annum.-Gcrmantown Telegraph.

Grand Trunk Railway.

This is said to be the largest railway in the world, extending from Portland to Quebec and the river Du Loup, east, to Sarnia, at the foot of Lake

Huron, west, with several branch lines, including a total of 1396 miles under one management. It is to be further extended to Chicago, in a direct line from Savnia, by way of Lansing, the capital of Michifan, a distance of 320 miles-making a total of 1716 miles in all.

Chtics is Givent Britaim.

The population of London is $3,015,494$, of Liverpool 476,368, of Manchester 467,763, of Glasgow 423,723 , of Birmingham 327,842, of Doblin 264,808, of Leeds 224,025 , of Ndimburgh 174,180, and of Bristol 171,809 . All of these cities have overfowed their corporate limits, and it is proposed to extend their boundaries.

Pctioleum Trade in Canadr.

llappily for all concernod, and for mony who have the remuants of old oil properties, it has become an established fact, and allowed to be so by even the best Pennsylvaniau authorities, that the Canadian oil, relined as it can now be, is at any rats equal to theic own ; and they moreorer adonit thite in point of body it is superior by 15 pee cena. Tho main point being established, Canada liast the fillowing advantages over other districts:-Hee oil regions are in close proximity to railwins, and to the Lake ports where vessels can loud and clear for Buffalo, Oswego, Monireal, and other Lake ports, and oven, as has often been dowe, acinally direct to a European poit. Then there is oac very significant advantage in favor of Canada, and that is, that the oil both crude and reined is free from any tax, whereas all produced in the States is tiexed, for refined, 20 eents per gallon with drawback, and for coude, 0 cenis per gallon with no drawback-on shipments there are, bevides, c:udless tares, on sates, incomes, ite. io is itile wonder, then, in the face of those facis, that the petroleam business promises to revive in this Piopince. If the oil is found in large quantities the trade may take immense proportions, as the market of the world, long lonked for, is now open to us. The article has only been known some sis years, and aliealy the governineat returns in Pennsylvania alone, of the exports of petroleum for 180., amounted to sixty millions of dollars, being four millions in- excess of those of coal. In adrerting to the oil fields, we should not forect to mention the Buthwell region, which proinises to yield as largely ns Enniskillen. The weils in contise of construction all promise a larige yield, and those completed have been pumped with ifreat sucress. One, the company's well, has produced 6,000 barreis, and Jicks' is at present pumping 00 barrels a day. Already Americ:ns bave bought un a considcrable portion of the developed lots in this district, and extensive operations are about to commence, Bothwell is well situated oa the river Thames, which is navigable for shallow craft to Lovisville, a distance of some twenty miles, where vessels of thee hundred tons can load and clear for uny part of the world. As
to the oil havinis been exhansted at Eaniskillen, there need no longer be any foars; for old wells which have lain idle for a long period, being again tested with approved appliances, nro proving themselves still to have rich stores of oil; and as to the question of tho existence of the oil at a greater depth than that at which it has been heretofore found that bas, been set at rest within only the last ten days by the striking of a ricle spija's saicl to be equal to 100 barrels ar day, at 540 feet, which is double the depth of the old flowing wells. This augurs well for the resulis in this districs.

We know it is a bad time, considering the condition of our local money market, to urge our capitalists to embark in new enterprises. But unless some interest is taken by Canadiuns in this branch of trade, what promises to be an important resource of the country, will lee absorbed by American dealers, and our Province lose the greater muri of the profit which abould belong to them.Mron? Recimo.

The way to ralse Blackberrios.

The viness are plunted in rows three feet apart, and three feet apart in the rows. Over each row is stretched a stout wire at the height of about four feet, with stakes at proper intervals to support it at this height. As the vines grow they are tied to the wire, and bent down along the wire all in the same direction-that is, all toward the south, all toward the north, or in such direction as may be most convenicnt.
The berries are horrie on the wood of the previous year's growlh. In the Spring of each vear, the bearing wood of the yenr before is cut out and removed, aud the new shouts are tied to the wire, the lateral shoots of the new wood being at the same time cut back within a foot of the main stalk. Thus the whole labor of trimming and training the vines is performed at one operation. It is better to minure in the Fall, and this all important watter should ise atteaded to every ycur.

What a Boy ought to Learl.

One of the Government Inspectors of the National Schools, in Fingland, says:-
"A boy of fair average attainuents at the age of twelve years, in a good school, has learned-
" L. To read fluently, and with intelligeace, not merely the school-books, but any woik of general information likely to come in his way.
"2. To write very neatly and correctly from dictation and from menory, and to express himself in tolerably correct language.
$\because 3$. To work all elementary rules of arithmetic with accuracy and rapidig. Tlie arithaticical iustruction in good sebools includes decimal and vulgar fractious, duodecinals, interest, etc.
"4. To parse sentences, and to explain their constraction.
"5. To know the clements of Eoglish history. The boys are generally acquainted with the most important facis, and sbow much interest in the subject.
$\because 6$. In geography the progress is generally satisfactory. In fact, most persons who attend the examinations of good schools are surprised at the
amount and accuracy of the knowledge of physical and political geography, of manners, customs, eto., displayed by intelligent children of both sexes: Well-drawn maps, often executed at leisure-hours by the pupils, are commonly exbibited on these occagious.
" 7 . The elements of physical science, the laws of natural philosophy, and the most stribing phenomena of natural history, form subjects of useful and very attractive lectures in many good schools. These subjects have been introduced within the last fow years, with great advantages to the pupils.
" 8 . The principles of political economy, with especial reference to questions which touoh on the employment and remuneration of labor, principles of taration; uses of capital, etc., effects of strikes on wages, etc., are taught with great clearnese and admirable adaptation to the wants and capacities of the children of artisans, in the reading-books generally used in the metropolitan schools. I have found the boys well acquainted with these lessons in most schools which I have inspected in the course of this year.
" 9. Drawing is taught with great care and skill in several schools by professors employed under the Department of Science and Art."

If any boy in Upper Canada has failed, either through his own neglect or want of opportunity, to attain to anything approaching the above standard, he should now avail himself of the facilities afforded by well appointed Mechanics' Institutes in several of the towns and villages, to perfect himself as far as possible in the most useful of these studies, through the instrumentality of the evening classes. The exercises are generally conducted in an interesting manner, the fees for instruction are but nominal, and no excuse can exist for not profiting by them.

Fresh Beef from Salt Junk.

If a piece of salt meat be put in water either in a vessel the bottom of which is made of a bladder, or in a bag made of untanned skin, and this placed in another vessel of water, the salt will be gradually drawn out of the meat, and pass through the parchment or skin, but the juices of the meat will be left behind in the first vessel. Brine in the beef barrel contains a considerable portion of the juice of the meat, which may be saved by filling the inner vessel with it; the salt from both brine and meat will pass through the membrane. The process is to be continued until salt enough is extracted to leave the meat and liquor palatable. This method ja known and practised upon by sailors in the Mediterranean Sea, who inclose their salt junk and a portion of the brine in a "water skin"-that is, a bag made of goat skin for holding water. This is attached to a line, thrown over-bonrd, and towed through the water until the meat and liquid are freshened to the same degree as sea water. The liquid is then used for soup, and the meat cooked as wanted. A similar operation may be made very useful by soldiers in camp where fresh meat is unobtainable, and families where salt junk forms the staple diet several months in the year.Grocer.

Superphosphates for Bread.

When $10,000 \mathrm{lbs}$. water, $1,000 \mathrm{lbs}$. oil of vitroil, and 1,400 lbs. burnt bones, are agitated together briskly for 18 hours, then drawn off and lixivated, the result is a liquid superphospbate of lime, free from gypeum. This is patented, and so are others by the same inventor. "These superphosphates are used in the preparation of self-raising flour, by sifting intimately together 1.66 lbs . of carbonate of soda, 3.69 lbs . of the diluted superphosphate, and 191 lbs . of flour. They are also used in the manufacture, of what is called yeast powder, or baking powder, by intimately mixing superphosphate and bicarbonate of soda, in the proportion of 20 parts of the former to 9 of the latter. It is also proposed to prepare packages containing parcels of equivalents of soda and superphosphates for given weights of flour-as for 25 lbs . for example." -English Patent dated Feb. 10, 1864.

Presence of Mind and Common Semee.

If a person swallow poison deliberately or by chance, instead of breaking out into multitudinous or incoherent exclamations, despatch some one for the doctor; meanwhile, ran to the kitchen, get half a glass of water in anything that is handy, put into it a toaspoonful of salt, and as muoh ground mustard, stir it an instant, eatch a firm hold of the person's nose, the mouth will soon fly open-then down with the misture, and in a second or two up will come the poison. This answers better in a large number of cases than any other. If, by this time, the physican has not arrived, make the patient swallow the white of an egg, followed by a cup of strong coffee, because these nullify a larger number of poisons than any other accessible article, as antidotes for any poison that may remain in the stomach. If a limb or other part of the body is severely cut, and the blood comes out by epirts and jerks, be in a hurry, or the man will be dead in five minutes; there is no time to tall or send for a physician-say nothing, out with your handserchief, throw it around the limb, tie the two ends together, put a stick through them, twist it around righter and tighter, until the blood ceases to flow. But to stop it the tie must be above the wound, or it does no good. Why? Because only a severed artery throws blood out in jets, and the arteries get their blood from the heart; hence, to stop the flow, the remedy must beapplied between the heart and wounded spot-in other words, above the wound. If a rein had been severed, the blood would have flowed in a regular stream, and, on the other hand, the tie should be applied below the wound, or on the other side of the wound from the heart; because the blood in the veins flows towards the heart, and there is no need of so great a hurry.

Tinder.

When a piece of paper is set on fire, it all burns up except the tinder-which comes from the hot blaze unburned. And yet, if a spark fall upon this tinder it will catch fire and burn far more readily and surely than paper will. Why does it not burn in the blaze with the other portions of the paper?

Paper is made mostly of vegetable fiber, which is composed principally of carbon, oxygen and
hydrogen. The threo elements when combined in this substance are all solid, but if they are separated, the oxygen and hydrogen take the gaseous form, while carbon continues solid. By the application of heat the vegetable fiber is decomposed, when the oxygen and hydrogen expand into gases. As the hydrogen at the high temperature comes in contact with the oxygen of the air, it combines with it to form water; in other words, it burns in the form of a blaze.

Could the carbon come in contact with the oxy. gen of the air at the high temperature of red heat, it also would be burned, but the volume of hydrogen envelopes it, thus preserving it from contact with the air. The body of hydrogen itself burns only upon its outer surface.

The beat absorbed by the hydrogen in its change from the solid to the gaseous state cools down the carbon below the temperature at which it will combine with oxygen, so that as the last of the hydrogen passes away, the fire is extinguished, leaving the carbon in the form of tinder. If paper is kindled in sufficient mass to keep up the temperature of the carbon to the combustion point, it also will combine with the oxygen of the air to form carbonic acid, which will pass off as a gas, leaving only the incombustible ash, which is the small quantity of mineral matter contained in the paper.

Travelling Bottles.

Captain Beecher, editor of the English Nautical Magazine, has compiled within the last ten years the following curious record of voyages of bottles thrown into the sea by unfortunate naviga-tors:-"A good many bottles, cast into the sea next to the African const, found their way to Europe. One bottle seems to have anticipated the Panama route, having traveled from the Panama isthmus to the Irish coast. Another crossed the Atlantic from the Canaries to Nova Scotia. Three or four bottles thrown into the sea by Greenland mariners, off Davis Straits, landed on the northwest coast of Ireland. Another once made a curious trip-swam from the South Atlantic Ocean to the weat coast of Africa, passed Gibraltar, went along the Portuguese coast of France, and was finally picked up on Jersey Island. One bottle was found after sixteen years' swimming, one after fourteen, and two after ten years. A few only traveled more than one year, and one only five days. I'This was sent off by the captain of the Race-horse, on the 17th of April, in the Caribbean Sea, and was found on the 22d, after having gone through some three degrees of longitude (two hundred and ten miles), western direction. Capt. McClure, of the Investigator, threw a bottle into the sea in 1850, on his way to Behring's Straits. It swam three thousand five hundred miles in two hundred days, and was picked up on the Honduras coast."

The Decay of Conversation.

The ancient art of talking is falling into decay. It is an ascertainable fact that, in proportion to an increased amount of population, the aggregate bulk of conversation is lessening. People now-adays have somethingelse to do than talk; not only do they live in such Lurryy that there is only leisure
for just comparing ideas as to the weather, but they have each and all a gross quantity to do, which puts talking out of the question. If persons remain at home, they read; if they journey by rail, they read; if they go to the seaside, they read; we have met misgaided individuals out in the open fields with books in hand; young folks have been seen stretched anderneath trees, and upon the banks of rivers, pouring over pages; on the tops of mountains, in desert, or within forests -everywhere men pull printed sheets from their pockets, and in the earliest, latest, bighest occupations of life, they read. The fact is incontestibly true, that modern men and women are reading themselves into a comparatively silent race. Reading is the great delusion of the preseat time; it has become a sort of lay-piety; according to which, the perusal of volumes reckons as good works; it is, in a word, the superstition of the nineteenth centary.-Chambers' Journal.

Why Boots Should be Polished.

Brightly-polished boots are cooler in warm weather and warmer in cold weather than dull and dusty boots; for in warm weather they refiect the sun, which dusty and dirty boots absorb; and in cold weather the clean boot does not allow the warmth of your foot to radiate freely, whereas the unclean boot does. Clean, bright boots are consequently more comfortable, as well as respectable, both in warm weather and cold. Not only will different substances, as iron and wood, give out heat or take it in, more or less, but the same substance radiates heat more or less actively, as it is bright or dull, rough or smooth. Now, dirty boots are rough as well as dull. They have a surfuce of many little hills and valleys, so that in truth, thure is more surface for the heat to pass through either way. As a rough surface is a larger surface, more heat from within and without always passes through dull and dirty boots than polished ones.

Artificial Sunlight.

Uudoubtedly the civilized world is on the whole deeply indebted to analytical and experimental chemistry. It is quite true that their disciples very frequently enter with great patience into elaborate inquiries and laborious investigations for the mere purpose, as it seems, of deducing facts Which, though startling and curious, have no practical value. Those facts, however, though they may lie dormant for a long time, in the end often fructify, and new experimenters reap from them barreste of knowledge useful to humanity and profitable to themselves. It would not be difficult to sustain this assertion by irresistible evidence gathered from the annals of chemical discovery. As, in regard to mechanical inventions, it is next to an im possibility to apportion to each indivdidual inventor the exact meed of praise due to bim, so is it ${ }^{4}$ beyond human power to assign exactly to eaoh chemist the precise amount of merit to which he is entitled. A distinguished writur has recently said that, "We know no more of the men who really invented our railway system, or our steam engines than we do of the inventors of Gunpowder, or the Mariner's compase;", and there is much truth in the assertion. The idea of one mind becomes the
food upon which another mind subsists, and a third realizes, in a practical form the dreams of both. This is essentially the case in respect of chemistry; and one of the mest recent illustrations of its truth is to be found in the alleged discovery of a means of producing avififial sunlight. We know that for many pears past attempts have been made to evolve from natural elements a gas or Game whish, on a gmall scale, should equal in quality and intensity the light emitted from the sua. Abroad as well as at home, this has been a haunting thought iu the brain of chemists. Innumerable experiments, with more or less success for their pesults, have been made from time to time, and there is no doubt that eventually perseverance will meet its almost unfailing reward --achievenent of the objeot sought.

So long back as 1859, Professor Bunson and Professor Roscoe suggested that the fusion of the metal magnesium night prove to be the solution of the philosophical problem, and now Mr. Sondstadt is actually commencing to manufacture that metal on a large scale for photographic purposes. It has been demonstrated that, by burning mag. nesium wire in a spiritor oil lamp an illuminatiog power of great brilliancy might be gained. The two professors named long since examined the photo-chemical action of the sun, compared with a terrestrial source of light, and this latter was that effected by the co:nbustion of magnesium wire. The application of this light may become, it is easy to perceive, of past importance bryond its photographic uses. A burning magnesium wire of the citickness of 0.297 millimetre, evolves as much light as seventy-four stearine candles, which five go to the pound. In order to produce a light equal to that of seventy-four sach candles burning for ten hours, and in which 20 lbs of stearine would be consumed, 72.2 grammes of magnesium wire wrould be required. The magnesium wire is prepared by forcing out the metal from a heated steel press, having a fine opening at the bottom. For the purpose of consumption, it may be rolled up in coils on a spindle, which, by the ageocy of clock work, or weights above, could be made to revolve. A pair of feeding rollers would pugh the end of the wire forward at a rate commensurate with the speed of its combustion.
Magnesium is not in itself costly at present; but there is no doubt that the efforts of Mr. Sondstadt and others who are devoting attention to the subject will lessen the expense of its production by improved manipulation.
So far as the usefulness of the discorery is concerned in relation to photography, we have the following testimony from Mr. Brothers, of Man-chester:-" The result of an experiment I have just tried, is, that in fifty seconds, with the mag. nesium light. I bave obtained'a good negative copy of an engraving-the copy being made in a darkened room. Another copy was made in the usual way, in daylight, and in fifty seconds the result was about equal to the negative taken by the artificial light." Who shall say, therefore, that at some not distant day, nature and science may not place at our disposal a substitute for the bright orb of day-an arlificial sun.

Silvering and Gilding on Wood.

The process of silvering and gilding on wood consists, first, in giving the wood or moulding a thin coating of glue size (bonnet glue), combined with a little English washed whiting (gilders), which is free of sand. The object is to fill up the pores of the wood, and render it non-absorbant to some extent. Then a composition of whice glue sind whiting of thicker consistency, resembling white house-paint is applied, coat ufter coat as it dries. From five to seven conts are used; parts to be buruished require a thickness of at least the 16 th of an inch of this composition. The surface is then smoothed down with pumice and water, and finished with fine sand paper when dry. It is very important to know if the whitening composition is of the riglit strength. Apply the nail of the finger as a test; ; if the composition can be scratebed, $i t$ is right, if the nail makes no impression, more water and whiting should be added; for if too strong and hard it will not burnish well and the composition will in time crack and peel off. If too weak it will blister when gilding it, the water used will soak through it too easily to the wood, veither will it burnish but chip off.
Second. From five to seven coats of a composition styled burnish gold size, are now applied. This composition consists of best London pipe clay, free of sand, ground in water with best black lead, red chalk and a little grease, and combined when to be used with weak glue size. This mixture is smoothed down with fine emery paper and sometimes washed with cotton cloth and water. In America the gold size composition is used very weak in glue, while in Great Britain it is used very strong. Equalls good work is made by both modes.
Third. The work is now coated with a very meak solution of glue, so weak that when quite cold the liquid will not uore than set into a jelly. Parts to bo burnished get two extra coats, and are not rubbed down with emery paper. The surface is now reidey to receive the silrer or gold leaf. Pure water, or better, new rum, is used to wet the work, aud while wet the silver or gold leaf is cat into suitable pieces, and applicd with a brush styled a gilder's tip. After the work is covered with gold or silver, and dry, a very wenk glue size is used over the metal leaf, except on the burnished parts; such parts are burnished in about two hours after gili. The dead work is rubbed down (styled mat silvering on yilding), with a little cotton wool, and then saiall pieces of silver or gold leaf as may be are applied with new rum to all little omissions. When dey it is again rubbed down with cotton, if the work should now prove perfectly covered with leaf, say silver, it is then coated with gold lacqu s, receiving from three to four coats, nud is known as German moulding or gilding. Gold leaf is not lacquored. To give a minute description of the process would require many pages.

Somp fiom Coalmoil.

The editor of the Oil Ciiy (Pa.) Register, has seen a good article of soap manufactured from coaloil. It is claimed that soap manufactured from this oil will remove all kinds of stains and dirt, and do more work than any other and in less time.

[^0]: * The rates adopted by Mr. Donallason in his Ropori moule to the Committee on Agriculture in July last.

[^1]: - In the list of publications reported as purchased, we notice the name of this Journal. This is a mistalio, as the Journal has been presented free to this and all other Mechanics' Institntes, that we Save any account of, in Upper Canada, frum the date of its firet

[^2]: th rom \boldsymbol{n} paper by Sir Rolet Katio, F. R. S., tead botore ilie Socloly of Arta.

[^3]: Copird fivm this Joumal pare 3.

