CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The institute has attempted to obtain the best original copy availabie for filming. Features of this copy which may be bibliographically unique, which may aiter any of the Images in the reproduction, or which may signiflcantiy change the usuai method of filming are checked beiow.

Coioured covers /
 Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coioured ink (i.e. other than biue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloure: :- lates and/or illustrations /
Pie:.: " \because, su illustrations en couleur
Boui is uvith other material /
Relié aser d'autres documents

Only edition available /
Seule édition disponible

Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filınées.

L'Institut a mlcrofilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exempiaire qui sont peut-étre uniques du point de vue bibiiographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normaie de firmage sont indiqués ci-dessous.

Coioured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoioured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Inciudes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partieilement obscurcies par un feuillet d'errata, une peiure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.Opposing pages with varying colouration or disculourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

Additional comments /
Pagination is as follows: p. [12]-15.
Commentaires supplémentaires:

This item is filmed at the reductlon ratio checked below /
Ce document est filmé au taux de réduction indlqué ci-dessous.

The copy filmad hara has been raproducad thanks to tha ganarosity of:

> Blacker-Wood Library of Biology
> McGill University, Montreal

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in kaeping with the filming contract spacifications.

Original copias in prineed paper covers are flimed beginning with the front covar and ending on the last page with a printed or iliustrated impres. sion, or the back cover whan appropriate. All othar original copies are fiimad beginning on the first page with a printed or iliustratad impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (maening "END"I. whichover applies.

Maps. piates, charts. etc., may be filmed at different reduction ratios. Those too iarge to be entiraly includad in one exposure are filmed beginning in the upper left hand cornar, left to right and top to bottom, as many frames as requirad. The following diagrams iliustrate the method:

L'exempleire filme fut reproduit grace ila générosited de:

Blacker-Wood Library of Biology McGill Universiti, Montreal

Les Imeges suiventes ont dit́ reproduites avec le plus grand soin. compte tenu de le condition et de le nettete de l'exempleire filmé. er en conformite evec les conditions du contrat de fllmege.

Les exemplelres origineux dont le couverture en pepier est imprimete sont filmés en commençent per le promier plet ot en terminent soit per le derniore pege qui comporte une empreinte d'Impression ou d'illustretion, soit par le second plat. selon le ces. Tous les eutres exempleires originoux sont filmds en commencent per la premidre pege qui comporte une empreinte d'impression ou d'illustrotion et en terminent par la dernidre peye qui comporte une telle empreinte.

Un des symboles suivents apperoitra sur la dernidre image de cheque microfiche. selon le ces: le symbole \rightarrow signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Les certes, plenches, rebleeux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grend pour dere roproduit en un seul cliche, il est filmé a partir de l'engle supórieur gauche. de geuche à droite. ot de heur en bes, en prenant le nombre d'imeges ndecesseire. Les diagrammes suivants illustrent le methode.

MB G44 Cutter

On Stereomicrography

3001075402 G

(Jovak. R. Mign. Soo., 1902, pp. 12-15.)

> II.-On Stereomicrography.

By G. P. Girdwood, M.D., M.R.C.S. Eng., F.R.S.O., F.I.O., de. PROFEASOR OF CHEMIETBT MED. FAO, MCILL COLLEOE, MOXTREAL; CONBULTINO EUROEON, MONTREAL OENEPAL HOAPITAL : LATE ABET.-BUROEON OREAADLEA OUAIDB.
(Read Number 20th, 1001.)
The beanties of the stereoscopic vision of ordinary objects, the greater amount of detail which is brought out thereby, the greater amount of inforvation afforded by a stereoscopic over an ordinary picture of an object, which enables the third dimension in space to be appreciated, have doubtless been noticed by other workers with the Microscope, and the desire to obtain a stereoscopic picture of a microscopic object often been felt by them ; but as to how to obtain the two pictures of an object viewed from different points which are necessary to produce the true stereoscopic effect, and as to methods to obtain this end, if thought out by others, no one, . 80 far as the author is aware, has published anything practical.

It occurred to the anthor that this might be attainable in a manner somewhat similar to the plan he adopted for taking stereoscopic skiagraphs by X-rays, only reversed ;" he therefore devised a small piece of apparatus to adjust to his Microscope that would enable him to get the necessary two pictures at an angle to the object which should equal the angle of normal vision, with eyes the ares of which are at a distance of $2 \frac{1}{2} \mathrm{in}$. apart and converging to a point at a focal distance of 12 in .

Inasmuch as the object-glass of the Microscope is a monocular apparatus and cannot be moved, it became necessary to move the object itself in such a way that it should give a picture on the screen of the camera, as seen by one eye, and a picture thereof taten, and then to move it in such a way as to present a picture as seen by the other eye, and a picture taken in the second position, taking care to keep the same object or point thereof in the axis of the tube in each position, and thus obtain two pictures, one of which is as seen by each eye.

If we take two points $2 \frac{1}{2} \mathrm{in}$. apart, and join them by a line, and then draw lines from the two points to a thind point which is 12 in. from the first line, and in such a position that a line drawn therefrom would tisect the first line, we should have an isosceles triangle, of which the two equal sides would represent the axes of the two eyes when converged upon a point at 12 in . focus. The same may be arrived at by drawing a circle at 12 in . radius from a point, and selecting any

[^0]two points in the circumference $2 \frac{1}{2} \mathrm{in}$. apart, and joining those prints by radii to the centre; the two radii will represent the axee of the two ejes, and the line between them the distance between the centres of the two pupils. And not, if a Microscope alide be so placed as to form a normal with the radius representing the axis of the left eje, a picture will be given representing the object as seen by the right eye, and then, if sloped in the opposite direction without moring the central object or part thereof, it will, winen viewod in the course of the second radius, present a picture as seen ijy the left eye.

Now, if a Microscope slide with the objects upon it be moved on a centre or point of convergence so as to make the surface of the slide a plane normal to the line represeuting the axis of the left eje, it

Fig. 14.
The apparatus is adjusted upon tise stage of the Mierosonpe on that the centre is in the eptio axis of the instrument. The ohject is pinced on the tiltirg tablo by apriag pressure (aprings not shewn). The icvel of the object is the same us the axis upon whicin the tilting tablo swinga, so that the motion of the table does not alter tie positicn of the object oxcept as to inclination. The object may be moved about tiil the required portion to be photograpied is found, the tilting tabio being rigiliy attaohod to the Mieroscope; and the inclination of the table is set by means of the two cerews at its ends.
will give a picture as seen by the right eye; and shows from the right what is hidden behind the central object of the picture ; and if it be inclined so as to form a normal with the line representing the axis of the right eye, the picture seen in the Microscope will be the picture as seen by the left eye, and shows objects behind the central object as seen from the left side. If two pictures be taken thus, and these two pictures printed and mounted, they will give most beautifully the stereoscopic effect, and :ill show at once in the stereoscope the third dimension and the different planes in which the objects are seen at the time of obser vation.

The plan adopted by the anthor to obtain theme results was to have a rocking stage made in such a way that an ordinary glaw slide with its object ah-! be held recurely and focuseed; and as soon at the particular part of the specinen to be photographed in pleced exeotly in the centre of the fiold, and the neareat part of the object focumed eharp, or in snch a manner as to give the best picture of the object, then the rocking $\mathrm{F}^{2} \cdots$ is rocked by means of the ecrews for that propose till the one is depresed (my the right nide of the alide) to an angle of 7t degine to the plane of the Microscope stage, and a nicture taken. Then, after seeing that the focus in nnimpaired by the movemont, and that the object has not moved from its central position, the alide is made to rotate abont the puat of convergence till it is rocked to the extent of 7t degrees inclination to the proper atage of Microscope on the opposite side. T? on, on seeing that the focun in correct and the object still in the centre, the picture as seen by the right eve is represented, and a picture is taken. The negatives $s 0$ obtained are printed, and the prints monnted give the proper otereoscopie effect. The accor upanying mount, whieh is a photograph of urio acid crystals, shows the resnlt. The resnlts so obtained, when seen by any one, will be admitted to give a better idea of the object than a aingle pictnre.

The rocking alide nsed by the anthor consists of a flat stage with a central opening which attaches to the ordinary Microscope stage by springs. From the upper surface of thin project two lugs, one in front and one in rear, and from these lngs project inwards towards each other two knife-edges, the edges placed downwards towards the Microscope stago; nnder these knife-edges, and pressed up against them and rocking on them, is a flat plate of brass cnt ont flat to receive a glass slide so as to allow of the movement of the object, and eut out of snch a depth that the surface of the glass and the knife-edges are in the same plane. This plate of brass is extended fai enough on either side to be drille. at equal distances from the centre and tapped for a screw ; a thumb-serew is placed in each; an" or nne screw is turned in the ther is turned out, ill the slide in eith...allel with the Microsce atage proper, or in required angle tis it.

A little angle of being screwed on to the bed-plate of the stage and projecting up in fr. wo one end of the rocking stage, and marked with a zero point + which the rock ing atage will be parallel with the bed-plate, and then $n=$? deg'c. marked above and below the zero point, the inclination of slide iu the two positions can be made exact; and $7 \frac{1}{2}$ angle tage base is enongh to place th slide in the position of a n tae axis of vision. The auth avails himself of this opportu: recording his thanks to Mess is and J. Beck, of Cornhill, La, for the kind attention they bave him in making the piece of a ratus by whieh these results have been attained.

The anthor gives this ant of his success, that others may be
able to oxtona the work, apply tb's method to other objecta, and produce pictures of mieromcopic obje in in reliel, and thur give to etudente a more realintio ider of the objrets before them.

The method adoptod in Lhking the pictures exhibited with this paper was to place an ondinary photographic camera horizontally on the table, raisod so that the oponing for the lons should bo juat centred with axis of the Micromeope tube; when the Microncope was turned on its atand to the horizontal position, a thin sheet of rulcanised india-rubber was secured over the hole for the lens in front of the camora, a omall hole was cat in the contre of the rubber-sheet, and the Mieroncope tube withont an oye-pioce was thrust through the amall hol, in the abber, which fits tifht ronad the tube and stope all light eztering; a small diaphragm was placed in the end of the tube to atop light reflected from the inside of the tule, and the object was illnmins! d by a conloil lamp placed opposite the opening in the stage and condensed by a bnill's-eje focuased in the nanal way. If necesary a micrometer might be used on the stago to show magnification.

In the case of the irystals of urie acid shown, a $1-\mathrm{in}$. object-glans was used, 30 secondes exposure with a small single coal-oil lamp, and the picture was deveioped with Rodinal developer in the ordinary manner. In the case of starch-granules of ginger grown and prepared by the author himself, a $\frac{d}{}-\mathrm{in}$. object-glass was used wiva polariscope; exposure for each picture half an hour.

Bince perfecting the apparatns for this work, the author has had brought to his notice the original article by Sir Charles Wheatetone, 'Contributions to the Phyaiology of Vision, Part the First, On some remarkable and hitherto noobserved I'henomena of Binocular Vision,' Philosophical Transactions, 1838, reprinted in 1879, wherein the correctnees of the ideas the author had in designing this stage aro completely borne out.

When a picture is taken by a Microscope, the pictu the object is reversed, and when this negative is printed it is rev. d again, to that the print corresponds to the object itself is reen, is the Microscope; but in transparent objects, reversal of the prints in mounting Fould give a stereoscopic view of the object nis neen from the other side, which in some casee may be is .irable.

$$
r
$$

[^0]: - Montreal Medical Journal, March 1899.

