Part 1: Commercial Remote Sensing Systems

Table 5	IRLS Selection Criteria	FLIR Selection Criteria
Criteria for Selection of Infrared Sensors for Recon- naissance Missions*	 hard copy imagery required 	real-time imagery required
	 image mensuration and analysis required 	 image mensuration and analysis not required
	 wide field of view across track, continuously-mapped imagery desired 	 narrow field of view providing details of selected areas desired
	 operator has little or no control over pointing of sensor 	 operator has full control over pointing of sensor
	 sensor operation may impose velocity/height restrictions on aircraft 	 sensor operation will not impose velocity/height restrictions on aircraft
	* William T. Noel, "Utilization of IR Imagery in Tactical Reconnaissance," in Aerial Reconnaissance Systems — Pods/Aircraft. Vol. 79. Edited by Ed Shea. (Reston, Virginia: The Society of Photo-optical Instrumentation Engineers: 24-25 March, 1976), pp. 99-100.	

However, the data will likely be recorded on magnetic tape, or a similar storage medium, and processed after the aircraft has returned to base to provide the final interpretable product.

None of the sensors described previously is able to penetrate cloud cover. In contrast, airborne radar systems can collect imagery regardless of cloud cover. They can also be used day or night because they provide their own illumination.

Radar, an acronym for *ra*dio *d*etection *a*nd *r*anging, is an active sensor that transmits short pulses of microwave energy and then records the echoes received back in their order of arrival. Airborne radars are called side-looking airborne radars (SLAR). SLARs produce continuous strips of imagery of the terrain adjacent to the flight path of the aircraft.

There are two main types of SLAR. Real aperture, or brute force, radars (RAR) require a physically large antenna to achieve any reasonable amount of spatial detail in the resulting images. Synthetic aperture radar (SAR) achieves more spatial detail without having to use a large antenna. It uses the forward motion of the aircraft to create synthetically the effect of an antenna hundreds of metres long (Figure 5).