the sign of identity, $=$. The sign + is used to express the mental operation by which parts (of extensive quantity) are collected into a whole. For instance, if x represent animals, and y vegetables, $x+y$ will represent the class made up of animals and vegetables together. On the other hand, the sign - is used to express the mental operatio: of separating a whole (of extensive quantity) into its parts. Thus x representing human beings, and y representing negroes, $x-y$ will represent all human beings except negroes. With regard to the sign $\mathrm{x}, x \times y$ or $x y$ (as it may be written) is used to denote those objects which belong at once to the class x and to the class y; just as, in common language, the expression dark waters denotes those objects which are at once dark and waters. Hence we obtain a method of representing a concept taken particularly. For, if x denote men, then, since some men may be viewed as those who besides belonging to the class x belong also to some other class v, some men will be denoted by $v x$. In general,

$$
\begin{equation*}
v x=\text { some } x . \tag{1}
\end{equation*}
$$

It can easily be shown, that, as in Aigebra, so in the logical system which we are describing, the literal symbols, $x, y, \& c$. , are commutative ; that is,

$$
\begin{equation*}
x y=y x \tag{2}
\end{equation*}
$$

and that they are also distributive; that is,

$$
\begin{equation*}
z(x \pm y)=z x \pm z y . \tag{3}
\end{equation*}
$$

Another relation between Algebra and the Logical System under consideration is, that, in the latter as well as in the former, a literal symbol may be transposed from one side of an equation to the other by changing the sign of operation, + or - . But there is an important relation which subsists in the science of Thought, and not generally in Algebra, namely,

$$
\begin{equation*}
x^{2}=x \tag{4}
\end{equation*}
$$

That this is true in the Logical system, is plain; for x^{4}, which is another form of $x x$, denotes (by definition) those things which belong at once to the class x and to the class x; that is, it denotes simply those things which belong to the class x; and it is therefore identical with x. But though the equation (4) does not generally subsist in Algebra, it subsists when x is unity or zero. If, therefore, we take the science of Algebra with the limitation that its unknown

