Thence eliminating x as in preceding,

$$\left(\frac{c}{a-\alpha}-\beta\right)^2 - \frac{b-\beta}{a-\alpha} \left(\frac{c}{a-\alpha}-\beta\right) \left(\frac{b-\beta}{a-\alpha}-\alpha\right) + \frac{c}{a-\alpha} \left(\frac{b-\beta}{a-\alpha}-\alpha\right)^2 = 0.$$

9. (1) Book-work.

(2)
$$\frac{x+a}{\sqrt{x^2+a^2}} \gtrsim \frac{x+b}{\sqrt{x^2+b^2}}$$
accd. as
$$\frac{x^2+2ax+a^2}{x^2+a^2}-1 \gtrsim \frac{x^2+2bx+b^2}{x^2+b^2}-1$$
accd: as
$$\frac{ax}{x^2+a^2} \gtrsim \frac{bx}{x^2+b^2}$$
as $ax^2+ab^2 \gtrsim bx^2+a^2b$
as $(a-b)x^2 \gtrsim ab(a-b)$
as $x^2 \gtrsim ab$. If $a-b$ be negative, it will be according

FIRST-CLASS PAPER.

1. (1) Todhunter, § 501.

as $ab > x^2$.

(2) It may be easily shewn by geometry that if a circle can be described through any four consecutive points of a polygon, any one of such circles passes through all the angular points. Hence the answer required is one circle. The question is intended as a "catch" on the geometrical problem.

2. (1)
$$x(1-x)^{-2} = x+2x^2+8x^3+\cdots+nx^n+(n+1)x^{n+1}+\cdots$$

 $(1-x)^n = 1-nx+\frac{n(n-1)}{\lfloor \frac{2}{n}}x^2-\cdots$

.. Multiplying these identities, coefficient of xn+1 on right-hand side is

$$n+1-n.n+(n-1).\frac{n(n-1)}{2}-\ldots$$
 (1)

While coefficient of x^{n+1} on left-hand side is coefficient of x^{n+1} in $x(1-x)^{n-2}$, which is zero. Hence (1) is zero.

$$(2) \frac{-\frac{2}{3} \cdot -\frac{5}{3}}{|0| |1| |1|} (8)(-4) + \frac{-\frac{2}{3} \cdot -\frac{5}{3} \cdot -\frac{5}{3}}{|2| |0| |1|} (-2)^{2}(-4) + \frac{-\frac{2}{3} \cdot -\frac{5}{4} \cdot -\frac{5}{3}}{|1| |2| |0|} (-2)(8)^{2} + \frac{-\frac{2}{3} \cdot \dots \cdot -\frac{1}{3}}{|8| |1| |0|} (-2)^{3}(8) + \frac{-\frac{2}{3} \cdot \dots \cdot -\frac{1}{3}}{|5| |0| |0|} (-2)^{5}.$$

8. (1) In Gross's Algebra the Exponential Theorem is established, and $\log_c(1+x)$ is then deduced. In Todhunter $\log(1+x)$ arises in the course of the investigation which establishes the Exponential Theorem.

(2) In 2 log (1-8x) the coeffi. of
$$x^n$$
 is $2\left(-\frac{1}{n}3^n\right) = -\frac{1}{n} \cdot \frac{6^n}{2^{n-1}}$

Also $\log \{1 - 6x(1 - \frac{2}{3}x)\}$

$$= -\left[6x(1-\frac{3}{2}x)+\frac{1}{2}\left\{6x(1-\frac{3}{2}x)\right\}^{2}+\dots+\frac{1}{n}\left\{6x(1-\frac{3}{2}x)\right\}^{n}+\dots\right]$$

In which the coefficient of x^n is

$$-\left\{\frac{1}{n}6^{n} - \frac{1}{n-1}6^{n-1} \cdot (n-1) \cdot \frac{3}{2} + \frac{1}{n-2}6^{n-2} \cdot \frac{(n-2)(n-3)}{|2|} \left(\frac{8}{2}\right)^{2} - \dots\right\}$$

and equating these coefficients of x^n the required identity is obtained.

4. (1) Book-work.

(2)
$$1000 = I\{(1.04)^{-\frac{1}{4}} + (1.04)^{-\frac{3}{4}} + \dots + (1.04)^{-\frac{13}{4}}\}$$

$$= I(1.04)^{-\frac{1}{4}} \cdot \frac{\{(1.04)^{-\frac{1}{4}}\}^{1 \times 0} - 1}{(1.04)^{-\frac{1}{4}} - 1} = I \cdot \frac{(1.04)^{-2.0} - 1}{1 - (1.04)^{\frac{1}{4}}}$$

$$\therefore I = 1000 \cdot \frac{(1.04)^{\frac{1}{6}} - 1}{1 - (1.04)^{-2.0}} \text{ Ans.}$$

5. The value of the mortgage two months from this, when the first instalment is to be paid, is

100÷100{ $(1.04)^{-\frac{1}{2}} + (1.04)^{-\frac{3}{2}} + \dots 25 \text{ terms.}$ } And the present value of this for the two months is found by multiplying it by $(1.04)^{-\frac{1}{3}}$, giving

$$\left\{100 \quad \frac{(1.04)^{-13}-1}{(1.04)^{-\frac{1}{2}}-1}\right\} (1.04)^{-\frac{1}{8}}.$$

- 6. Book-work.
- 7. (1) Todhunter, § § 681, 630.
- (2) Let z be the number, and x and y the quotients; then 18x+7=z=14y+2. Thence the general value of x is 5+14t, and the succession of values is 5, 19, ... 61, 75, 75 is the value of x which makes z nearest to 1000; and z=982.
 - 8. (1) The scale of relation is $1-5x+4x^2$. Whence series equals $\frac{1}{(1-x)(1-4x)} = -\frac{1}{8} \cdot \frac{1}{1-x} + \frac{4}{8} \cdot \frac{1}{1-4x}$ $= -\frac{1}{3} \{1+x+x^2+\dots\} + \frac{4}{3} \{1+4x+(4x)^2+\dots\}$ Hence general term $= \frac{1}{3}x^n(2^{2n+2}-1)$.

The rates of the
$$(n+2)$$
th to this is $x \frac{2^{2n+4}-1}{2^{2n+2}-1} = x \frac{2^2 - \frac{1}{2^{2n+2}}}{1 - \frac{1}{2^{2n+2}}}$

= 4π ultimately. Hence that the series may be convergent x must be less than $\frac{1}{4}$, (Todhunter, § 559).

(2) Revert the series, i.e. assume $x=A+Ey+Cy^2+Dy^3+...$

..
$$x = A + B(x+2x^2+8x^3) + (!(x+2x^2+8x^3)^2 + ...$$

Equate coeffs. of x;

$$A=0$$
, $B=1$, $2B+C=0$, $3B+4C+D=0$, &c.

..
$$A=0$$
, $B=1$, $C=-2$, $D=5$, d.c., and $x=y-2y^2+5y^3+...$

9.
$$u_0 = \frac{1}{a+a^{-1}}$$
, $u_1 = \frac{1}{a+a^{-1}} - \frac{1}{a+a^{-1}}$, and the law may be shewn

to hold for these terms, for $u_0 = \frac{a - a^{-1}}{a^2 - a^{-2}}$, $u_1 = \frac{a^2 - a^{-2}}{a^3 - a^{-3}}$

Assume that it holds for the n^{th} term, then

$$u^{n+1} = \frac{1}{a + a^{-1} - \frac{a^{n+1} - a^{-(n+1)}}{a^{n+2} - a^{-(n+2)}}}$$
$$= \frac{a^{n+2} - a^{-(n+2)}}{a^{n+3} - a^{-(n+3)}}.$$

Hence if the law holds for the n^{th} , it holds for the $(n+1)^{th}$; but it has been shewn that it holds for the second; hence it holds for the third; hence for the fourth, &c.; and hence generally.

PROBLEMS FOR SOLUTION.

1. Three gamblers A, B, C began to play with \$6.00 altogether in their possession. They played three games and each of them had \$2.00 at the close. In the first game A and B lost and the winner doubled his money; in the second A and C lost and the winner doubled his money; in the third B and C lost and