In the experimental determination of the discharge curve the following values were used:

 $C_1 = 10^{-6} \text{ farad.}$

 $C_2 = .27 (10)^{-6}$ farad (eapillary No. 12).

L = .81 henries.

 $R_1 = 100 \text{ ohm.}$

 $R_2 = 171000$ ohm (eapillary No. 12, approximate value).

 C_2 was measured by the method already outlined and is the value for zero difference in potential. The resistance was determined from the discharge curve as explained later.

The λ equation becomes

$$\lambda^3 + 150, 3\lambda^2 + 1,238,700 \lambda + 26,741,000 = 0$$
 (12)

Trial shews one root to be -21.64, and the resulting equation yields the roots $-64.33 \pm 1110i$ (13)

so that
$$a = -64.33$$
 $\beta = 1110$.

and the period $\frac{2\pi}{\beta} = .00566$.

The period obtained by experiment is .00567 sec.

We may now determine the constants of integration,

for when
$$t=0$$
 $q_2=Q_2$, $\frac{\mathrm{d}q_2}{\mathrm{d}t}=0$, $q_1=Q_1$ and $\frac{\mathrm{d}q_1}{\mathrm{d}t}=0$

of which one is redundant.

Take
$$a + A = Q_2$$

 $a \lambda + a A + \beta B = 0$, and
 $a \lambda^2 + \alpha^2 A + 2 \alpha \beta B - \beta^2 A = 0$

Solving and substituting values, we have

$$A = 1.00188 Q_{2} A = -\theta.00188 Q_{2} B = 0.0194 Q_{2}$$
 (14)

and $\phi = \tan^{-1} 10.32 = -84^{\circ}.28^{\circ}$ $\omega = \tan^{-1} 23.93 = 87^{\circ}.48^{\circ}$

$$\phi^1 = \tan^{-1} \cdot 05816 = 3_1^{\circ}19$$

We may obtain q_2 experimentally by inserting K_2 at z, q_1 by inserting at y and q_1+q_2 by inserting at x (Fig. 2)

Since
$$Q_2 = \frac{C_2}{C_1} Q_1 = \cdot 27Q_1$$

 $q_1 + q_2 = Q_1 \begin{cases} -21 \cdot 64t - 64 \cdot 33t \left(\frac{\cdot 9938 \cos 1110t + \cdot 0633}{\sin 1110t} \right) \end{cases}$ (15)

If we use the capillar v electrometer to indicate the potential

If we use the capillar y electrometer to indicate the potential without determining q_1 or q_2 , we may insert key K_2 at either z or x, when we obtain the potential of the electrometer at the instant of