(b) $\left(\frac{3 x}{x+y}\right)^{\frac{3}{4}}+\left(\frac{x+y}{3 x}\right)^{\frac{1}{2}}=2 ; x y-(x+y)=54$.

Put $y=v x$. Tnen the first equat on gives $\left(\frac{3}{1+v}\right)^{\frac{1}{2}}+\left(\frac{1+v}{3}\right)^{\frac{1}{2}}=2$; and squaring and reducing $(1+1)^{2}-6(1+v)+9=0$: and $i+v=3$, or $v=2$.

Then from second equati n,

$$
\begin{aligned}
2 x^{2}-3 x=54 \\
\text { Whence } x=6 \text { or }-42 \\
\text { and } y=12 \text { or }-9 .
\end{aligned}
$$

7. Give that the roots of the equation $\mathrm{ax}^{2}+\mathrm{bx}+:=0$ are p and q, and those of $\mathrm{a}_{1} \mathrm{x}^{2}+\mathrm{b}, \mathrm{x}+\mathrm{c}_{1}=0$ are $p_{\text {, and }} q_{i}$; a!so that $\frac{p}{q}=\frac{p}{q_{1}}$, prove that $\frac{a_{\mathrm{c}} \mathrm{c}}{\mathrm{ac}}=\left(\frac{\mathrm{b}}{\mathrm{b}}\right)^{2}$.

Let $q=\mathrm{mp} \quad$ Then $q,=\mathrm{mp}$.
But $p+q=(1+m) p=-\frac{b}{a}$; and $p,+q=(1+m) p,=-\frac{b}{a}$;
A^{\prime} so $p q=m p^{2}=+\frac{\mathrm{c}}{\mathrm{a}}$; and $p, q_{1}=\mathrm{mp},^{2}=+\frac{\mathrm{c}_{1}}{\mathrm{a}_{4}}$. from the the ory of the quadratic.
From these four equations we must eliminate p, p and m.
Now by division we get the :wo relations -

$$
\begin{aligned}
& \frac{\mathrm{p}}{\mathrm{p}_{1}}=\frac{\mathrm{b}}{\mathrm{a}} \div \frac{\mathrm{b}_{1}}{\mathrm{a}_{1}}=\frac{\mathrm{a}, \mathrm{~b}}{\mathrm{a} \mathrm{~b}_{1}} ; \frac{\mathrm{p}^{2}}{\mathrm{p}_{1}^{2}}=\frac{\mathrm{c}}{\mathrm{a}} \div \mathrm{r}_{1}=\frac{\mathrm{ca}}{\mathrm{c}_{1} \mathrm{a}} \\
& \therefore \frac{a_{1}{ }^{2} b^{2}}{a^{2} b_{1}^{2}}={ }^{2} c_{1} a_{1} \text {; whence } \frac{a_{c} c_{1}}{a c}=b_{b_{1}^{2}}{ }^{2} \text {; q.e.d., }
\end{aligned}
$$

8 Two vehicles start at the same moment from two towns, A and B respectively, and travel towards each other. Trey meet after $101 / 2$ hours, one taking $\frac{7}{2}$ hour more to the mile than the other. If the distance between the towns is 105 miles, what are the rates at which the vehicles travel?

Lit x be the time it takes the first carriage to go a mile. Then $x+1_{2}^{1}$ is the time in hours taken by the second carriage in going a mile.
$\therefore \frac{1}{x}$ is the rate of the first carriage, and $\frac{1}{x+1_{2}}$ is the rate of the second.
And $\left(\frac{1}{x}+\frac{1}{x+12}\right) 10^{1 / 2}=105$.
From which we get $x=\frac{1}{6}$.

$$
\therefore \text { Tne first carriage goes } 6 \text { miles an hour, }
$$

And the second goes 4 miles an hour.
9. If a carriage wheel $16 / 2$ feet in circumference took one second more to revolve, the rate of the carriage would be $1 \frac{7}{8}$ miles less. At what rate is the carriage trayelling ?
$L_{\text {at }}$ the carriage wheel revolve once in t secs. Then the carriage goes $\frac{161 / 2}{t}$ feet per sec. or $\frac{3600}{5280} \cdot \frac{161 / 2}{t}$ miles per hour. Sim larly under the second supposition the carriage goes $\frac{3600}{5280} \cdot \frac{16 \frac{1}{2}}{t+1}$ miles per hour.

$$
\text { And } \frac{3600 \times 16 \frac{1}{2}}{5280}\left\{\frac{1}{t}+\frac{1}{t+1}\right\}=1 \frac{7}{8}
$$

Whence we readily find $t^{2}+:=6$; and $t=2$ or -3 . Taen the velocity of the carriage is $\frac{3600}{5280} \cdot \frac{16 \frac{2}{2}}{2} \mathrm{~m}$. per bour, or $5 \frac{5}{8}$ miles per hour.

The second value of $t,(-3)$, has also a meaning, but I doubt if many of the candidates could make much our of it.

Upon going over this paper I am not astonished that it created great dissatistacin the schools, and that the committee fouad itself constrained to pass men who made 20 or 25% on it; for a considerable portion of it is beyond the state of effi. ciency possessed by the average Junior Leaving candidate.

Paper for 1898.
N F. Dupuis.

