Table 1.1 Diversion Path Analysis: Generic Route: U-235, Declared Civilian, Dual-Purpose and Dedicated Nuclear Weapon Facilities

POTENTIAL FACILITY / IOURCES OF MATERIALS		URANUM MINE	URANRAM MELLING	URANUM CONVERSION	URANIUM ENRICHMENT FACILITIES						RESEARCHV TEST REACTOR	ENRICHED URANEUM CONVERSION	NAVAL PROPULSION REACTOR		EXISTING STOCKPILES
RISK RELEVANT PARAMETERS					Electromagnetic Separation {UCI4/calutron}	Gaseous Diffusion (UF6) [1	High Speed Gas Centriluge (UF6)	Laser Separation Methods [2]	Chemical Exchange Methods [3]	Aerodynamic Separation Methods [4]	ISOTOPE PROGRAM USING HEU	FUEL FABRICATION FACILITIES	Submarine [5]	Surface Vessel [5]	
LIKELIHOOD	NWS	low	low	low	Figure L1.1a	Figure 1.1.1b	Figure 1.1.1c	medium	. low	low	very low	high	law	low	high
OF FACILITY	NNWSD	low	low	low	Figure 1.1.1a	Figure 1.1.1b	Figure 1.1.1c	medium	low	medium	medium	high	low	low	high
ANOMALY (L)	NNWSU	high	high	high	Figure 1.1.1a	Figure 1.1.1b	Figure 1.1.1c	very low	very low	medium	medium	high	no undeveloped states with technology	no undeveloped states with technology	low
IMPORTANCE OF ACILITY ANOMALY TO FINAL MATERIAL ACOUISITION (I)		low	low	medium	Ngh	high	ligb	medium (NWS, NNWSD): low (NWS)	low, (technology not developed)	bigh	high	high	medium	medium	high
DIVERSION SIGN	IATURES	-ore quantity accountancy, 100kg HEU requires 20tons ore at 0.1% U with 0.2% U tails (100 tonnes ore per year needed for a 1000MWe reactor)	•accountancy anomalies in product shipments	•accountancy of product shipments •production of a final chemical form which is not used in declared facility	 reconfiguration for high enrichment capacity is easier than diffusion plant -clean out frequency of collectors -detection of HEU on collectors -depleted U tails assay. 	•HEU presence in final stages	 refeed of product to cascade -power consumption changes -rearrangemant of piping: changing/adding stages from parallel to series -replacement/ speed change of centrifuge -feed flow rate changes 	-mknown	•unknown	-batch recycling	-fuel management scheme accountancy -fresh/spent-fuel accountancy	• product enrichment, chemical form assay	•refuelling frequency •fresh/spent fuel accountancy •enrichment of spent fuel	 refuelling frequency fresh/spent fuel accountancy enrichment of spent fuel 	-intelligence
	Technical Means	 remote/local optical surveillance not too useful, as difficult to identify or quantify extent of diversion 	•local camera surveillance very limited effectiveness	 local camera surveillance very limited effectiveness 	 local camera surveillance to detect production process operations ineffective as process not too visible 	-local camera surveillance to detect configuration changes in process stages	 local camera surveillance to confirm interconnection status o centrilinges 	•mknown	•unknown	-unknown	 local cimera surveillance on fuelling operations and freeh/spent-fuel storage 	• DODE VERY effective	·local camera surveillance on fresh/spent-fuel storage	·local camera surveillance on fresh/spent-fuel storage	·local camera surveilance of stockpiles
VERIFICATION	Routine Inspections	•ore quantity accountancy not too useful, due to varying ore contents and large volumes involved	 product drum shipment accountancy product drum seals possible, but large quantities involved product assay inconclusive 	-conversion facility shipment accountancy -product seal verification -chemical product assay verification -weighing of UF6 cylinders	-on-line gas phase enrichment monitor (for feed, product and tails) - materials balance accountancy	-non destructive enrichment monitoring of feed, product and scrap •materials balance accountancy •sampling of feed, product and tails •visual inspection of piping configuration	 non-destructive enrichment monitoring of process piping content -materials balance accountancy -sampling of feed, product and tails 	 non-destructive enrichment monitoring materials balance accountancy (assay/ enrichment), details unknown 	loanance	-equilibrium time between that of GD and GC -materials balance accountancy (assay), details unknown	 fresh/spent-fuel materizis balance accountancy (assay) 	•materials balance accountancy •non- destructive enrichment monitoring	•materials balance accounting of spent fuel •refuelling outage frequency •spent-fuel containment seals	-same as adjacent left	-stockpile materia balance accounta -seal inspection (initial and period -non-destructive assay verification
METHODS	Special Inspections		•SI's have no advantages over routine inspections	•SI's have no advantages over routine inspections, due to time scale of process operation	ISCHE OF DE OCCAS ODCI AMOLA	-design /operation of plant designed for LEU is inflexible for HEU (batch recycling) operation, routine inspections adequate -process equilibrium time =weeks -SI limited value		-would depend on adequacy of RI's	•would depend on adequacy of RI's	-would depend on adequacy of RI's	•SI's limited value	-SI's for enrichmen monitoring	^{it} -SI's limited value	-SI's limited value	-SI's limited valu
FFEÇTIVENESS OF VERIFIX	CATION METHODS	•not very effective, due to large ore quantities also needed for civilian reactors and monitoring of varying ore concentrations		-assay effective for diversion of undeclared compound type for undeclared facility, not very effective for potential diversion to a declared enrichment facility	•RI's should be conclusive •SI's limited value	 if facility designed for LEU, routine inspections are conclusive 	•RI's should be conclusive •SI's limited value	-inadequate information to date	 inadequate information available 	-inadequate information available	•RI's stould be effective	•RI's should be conclusive	•RI's, fuel accountanc should be adequate	y •RI's, fuei accountan should be adequate	ey -RI should be conclusive, if stor locations fixed
		See Figure 2 for the ris	k ranking hierarchy va	ariables and Figures 2.1.1a,	b and c for the relative rankings fo	or NWS, NNWSD and NNWSU, res	pectively.				<u> </u>				a the constant a second
the state of the second se		10	11	12	9	13	8	2	4 4	5	6	3	7	7	1
RISK OF DIVERSION	NWS		12	13	9	10	6	1	5	2	7	4	8	8	- 200 3 400

[1] Mass diffusion and thermal diffusion facilities are omitted as there are no declared facilities of these types. Thermal diffusion, a demonstrated method, is listed under undeclared U-235 facilities, Table 2.1.

[2] There are two main laser isotope separation techniques; molecular and atomic vapour. No distinctions are made between them for the purposes of this analysis.

[3] There are two main methods; solvent extraction and ion exchange. No distinctions are made between them for the purposes of this analysis. Risk rankings imply all types of R &D enrichment facilities.

[4] A large number of perodynamic isotope separation techniques are possible. The demonstrated Hellkon method is implied here.

[5] These facilities also imply the fresh and spent-fuel handling and storage locations, as well as the vessels.