ants before the end of another year. It is time, therefore, that it should be incorporated.

The feverish rush to Alaska has had a set back. The first instalment of the "sadder and wiser," to the number of seventeen, returned to San Francisco on the steam schooner Excelsior, on the 18th of last month. In the course of a lengthy report the Examiner says: -Sitka and Juneau are both crowded with miners who have got that far in their journey homeward, but can get no further. There is no employment for them in either of the cities, and many of them are begging for food and clothes." One of those who returned to San Francisco, a placer miner, said to the Examiner reporter:—"The whole thing made me disgusted with life. I had a few hundred dollars saved up when I was induced to take that trip. Now I haven't a cent. I had to borrow 25 |cents from one of my companions to buy dinner with to-night, and, unless they help me out, I have nowhere to sleep." It is needless to make lengthy comments on the aboveit speaks for itself. We have to chronicle no such experience for miners in the gold fields of British Columbia.

The success which has attended our efforts to establish this journal under trying difficulties is really wonderful. Letters reach us daily from all parts of Eastern Canada and from every state in the Union, as well as from England, from parties who say they have seen and read the Record. Very few of those parties received the paper direct from us, which goes to show that our numerous subscribers are passing it along to their friends at a distance. This is as it should be, and thus the good work goes on of making known the vast resources of this Province.

Fourth Lecture on Chemistry.

By Herbert Carmichael, Public Analyst and Assayer.

EFORE I proceed to show you some of our practical methods of analysis, as I promised to do in this lecture, I would like to draw your attention for a little while to the great chemical changes which are taking place in nature.

Water is the substance which more than any thing else gradually changes the aspect of our landscape. It acts in two ways: First, as a mechanical agent or as a solvent of various matters; second, as a medium by which carbolic acid and oxygen in a dissolved state are applied to the substances undergoing the change. The mechanical action is easily seen in the beds which our rivers and streams cut for themselves in our valleys and down the sides of our mountains. Its solvent powers are not perhaps at first sight so apparent, but water is in all probability the most universal solvent known.

One of its most remarkable uses as a vehicle from a commercial point of view is in its solution of the underground strata of salt in some of the brine springs of the

world. In Cheshire, England, an enormous quantity of salt is used annually in the production of soda and hydrochloric acid, and all this salt is pumped up from the salt strata below in the shape of brine which is then put into shallow pans where the water evaporates leaving salt behind. That this is an economical way of conveying salt will be seen from the fact that although Germany has some enormous salt beds, one through which they have bored 3,940 ft. and have not struck the bottom yellow has been able to compete with her with her brine springs. I believe that one mining company in Germany abardoned mining rock salt in the usual way and turned stream of water into the mine, which, when it had dissolved the salt, was pumped to the surface and there carried a long distance to the crystallizing pans.

Water has also performed a curious office for the rocks of one of the islands of the Southern Pacific. The rocks are composed of crystallized carbonates of lime, perhaps originally coral, but by exposure to the air and by percolation of the water the loose particles of calcarious matter have been washed away and the whole mater have been washed away and the whole

As I mentioned before water holds in solution carbonic acid and that sometimes naturally to a great extent. You are all no doubt familiar with this gas but I hope to bring before you seem to to bring before you some features which may be noted. I have in this flash a formal I have in this flask a few pieces of marble, which is and trially pure carbonate of the tually pure carbonate of lime or calcium carbonate, when I nour on this area. when I pour on this some dilute hydrochloric acid has see by the brisk effervescence which takes place that some gas is being evolved. some gas is being evolved. This is carbonic acid the or carbon dioxide, and I can collect it by passing but delivery tube into this booker. delivery tube into this beaker. The gas is invisible into I can show its presence to I can show its presence by putting a lighted taper the beaker when the light putting a lighted taper when the light putting a lighted taper when the light putting a light put the beaker, when the light immediately goes out, while in a vessel containing of the state of th in a vessel containing air only, the light continues burn as brightly as ever. The reaction which has taken place here and resulted in the place here and resulted in the production of carbon did ide is represented by the following chemical formula:

CaCO₃ -- 2HCl = CaCl₂ -- H₂O -- CO₂ and That is to say the combination of calcium carbonate and hydrochloric acid results in the formation of calcium chloride, water and carbonic acid gas.

We have here two jars already filled with the gas as see by thrusting the we see by thrusting the taper into them, the light immediately outlined in the light into them. immediately extinguished, for carbon dioxide net burns itself libraling burns itself, like hydrogen, nor supports combustion other substances like a other substances, like oxygen. Carbon dioxide is very heavy gas one and a half times as heavy as air, at that I can take this jar containing that I can take this jar containing nothing but air, the taper will burn in it quite readily, and by carefully inverting over it one of the inverting over it of the inver inverting over it one of the jars of carbon dioxide now all of the gas into the lower jar, so that the taper is nich extinguished in it and have extinguished in it and burns freely in the other wind now contains nothing but air now contains nothing but air. Let me now pour this jar of CO2 a little of this is this jar of CO2 a little of this liquid which is a perfectly clear solution of clabed time. clear solution of slaked lime in water. On shaking up with the carbonic acid up with the carbonic acid gas we have a white precipital formed in the water which is " formed in the water, which if allowed to settle and lected, we should find to be really lected, we should find to be calcium carbonate or chalk the same substance which we start and carbonate or chalk the same substance which we started with in the form of marble, to prepare our carbon dioxide.

This gas being so largely dissolved in water becomes peculiarly applicable to fulfil the duties of a chemical agent, since such bodies generally act most readily solution. It has been found that felspar, which forms great part of the hard rocks granite and porphry, withstand for some time almost without injury the active of cold hydrochloric acid which is a powerfully corrosive fuming liquid, but water charged with carbolic acid gets.