Dans ce cas l'ordonnée y_d devient infiniment grande, la vitesse v_d étant un minimum et égale à o.

 v_d est un maximum pour $x = \varphi$, étant alors aussi, théoriquement parlant,

infiniment grande,

3° Dans la veine verticale et ascendante, où l'effet retardatif produit incessamment par la force de gravitatior, fait au contraire fiéchir les filaments liquides, ves le dehors et diminue leur inflection originale vers l'axe:

$$p_{a} = p_{i} - g = \left\{ \left(\frac{1}{i' \cdot s + i \cdot x} - \frac{i}{\binom{i}{i}} \binom{i' \cdot s + x}{\binom{i' \cdot s + i \cdot x}{i}} \right) \binom{\text{coeff}}{\text{baut}} H - 1 \right\} g \qquad (1_{a})$$

$$\int p_{a} dx = \int (p_{i} - g) dx = \int (dv_{i} v_{i} - g) dx = \frac{1}{2} v_{i}^{2} - gx = \int dv_{a} v_{a} = \frac{1}{2} v_{a}^{2}$$

De là-

$$v_{a} = \sqrt[2]{v_{i}^{2} - 2gx} = 2\sqrt{\frac{2g \binom{\operatorname{coeff}}{\operatorname{vit}} H \binom{i' s + x}{\binom{x}{3}} - 2gx}{i' s + i x}}$$

$$y_{a} = \sqrt[4]{\binom{\operatorname{coeff}}{\operatorname{haut}} H}$$

$$y_{a} = \sqrt[4]{\binom{\operatorname{coeff}}{\operatorname{haut}} H \binom{i' s + x}{\operatorname{virt}} - x}$$

$$(2_{a})$$

$$y_{a} = \sqrt[4]{\binom{\operatorname{coeff}}{\operatorname{haut}} H \binom{i' s + x}{\operatorname{virt}} - x}$$

$$(3_{a})$$

$$t_{a} = \int \frac{dx}{v_{a}} = \sqrt[4]{2g \binom{\operatorname{coeff}}{\operatorname{virt}} H \binom{i' s + x}{\binom{x}{3}} - 2gx}$$

$$(4_{a})$$

$$(5) = (5)$$

y, est un maximum quand-

$$v_{s}^{2} = 2g \left\{ \frac{\begin{pmatrix} \text{creff} \\ \text{hall} \\ \text{orif} \end{pmatrix} \cdot H \begin{pmatrix} i' + s + x \\ f' \\ \text{orif} \end{pmatrix}}{i' + s + i + x} - x \right\} = 0, \quad (5_{a})$$

viz: quand-

$$x = 2\sqrt{\begin{pmatrix} \frac{i' s}{\text{coeff}} \end{pmatrix} H \begin{pmatrix} \frac{i'}{i'} \end{pmatrix} s + \frac{1}{2} \begin{pmatrix} \frac{i' s}{(1)} - \begin{pmatrix} \frac{\text{coeff}}{\text{haut}} \end{pmatrix} H}{i} \end{pmatrix}^2 - \frac{1}{2} \begin{pmatrix} \frac{i' s}{(1)} - \begin{pmatrix} \frac{\text{coeff}}{\text{haut}} \end{pmatrix} H}{i} \end{pmatrix}}$$
(6a)

De plus, y_z est un maximum et en même temps v_z un minimum, quand—

$$d\left\{\frac{i's+ix}{\binom{soeff}{\text{baut}}\binom{i's+x}{\binom{s'}{s}}-\binom{i's}{\binom{s}{s}}-i'sx-ix^2}\right\}=o \qquad (7a)$$

d'où l'on tire :-

$$x = \frac{1}{2} \sqrt{\frac{i'}{i}} Hs + \frac{i'}{i^2} \left(\frac{\cosh}{\sinh}\right) Hs - \frac{i'}{i} s = \frac{1}{2} \sqrt{Hs} \left(\frac{\cosh}{\sinh}\left(\frac{i'}{\sinh}\right) \frac{i'}{i'} - \frac{i'}{i}}{\binom{s}{i}}\right) - \frac{i'}{i} s} = \frac{1}{2} \sqrt{\frac{1}{2} \left(\frac{\cosh}{\sinh}\left(\frac{i'}{\sinh}\right) \frac{i'}{i'} - \frac{i'}{i}}{\binom{s}{i}}\right) - \frac{i'}{i} s} - \frac{i'}{i} s$$

de simples tion p_{tt} de la gravitation, e réservoir,

, v

(24)

(3₄)

éoriquement.

 (5_d)

 $\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$ $\left(\frac{1}{6}\right)$