for bridges in unusually exposed aituations is to bo assumed as fifty lbs. for spans of one hundred feet and under, forty-five lbs. for spans between one hundred and one hundrod and fifty feet, and forty lbs. for apans above ono hundred and fifty feet.

For bridges in positions not unusually oxposed, these numbers can ench be diminighed by ton.

The total area exposed to the wind is to be determued by adding together the areas of the lloor, joists, and lower lateral rolls, and twioe the area of the truss, hand-rail, hub plank, guard rail and the rectaggles erreumseribed chout the onds of the floor beame.
Limutiny Length of Span for lifferent Clear Roads.
The maximum lengths of span for the difforent clear roadways are to be one hundred and forty feet for twelve feet roadways, one hundred and ninety feet for fourteen foet roadivays, two hundred and sixty feet for sirteon foot roadways and thres hundred and fifty feet fur uighteon feet roadways. By 'clear madway' is meant the distance between the innor edges of the latter brace plates.
I mit of Clear Hecdway.-The least allowable clear headway is to be fourteen feot, unless some local cunsideration cause this number to bo incroased. By 'clear headway' is meant the vertical distance from the upper face of the flowing to the lowest part of the portal or overhead bracing.
Lumating Length of Span for Pony Trusses.-Tho greatest allowable length of span measured from centre to coutre of eud pins, or, in case of rivettod connections at the shoes, between the intorsections of the contre lines of lower chord and batter braces, is to be sisty-five feet for pony trusses or bridges without overhead bracing.

Limating Depth of Pony Trusses.-The greatest allowable depth measured from centre to centre of chorde for pony truseses without side bracing is to be six feet, and that for pony trusees with side bracing nine feet.
Limithng Slope for Batter Braces of Pony Trusses. -The least allowable slopo for batter braces of pony trusses is to be two horizontal to one vertical.
Limiting Lenglh of Span for Double Intersection Bridges*.-The least allowable depth of span measured from centre to centre of end pins, or in case of rivetted shoe-connections, between the intersections of the centre lines of chord and batter braces for double intersection bridges is to be one hundred and fifty feet.
side Braces.-The loast allowable batter for side braces in pony truss bridges is to be five inches to the foot, and all side braces are to be made to resist both tension and compression. In no case are they to have less etreugth than that of a $2 \frac{1}{2} " \times 2 \frac{1}{2}=5$ th to foot angle iron.
Limiting Sizes of Sections.-No rods less than threequarters of an inch in diameter are to be used in a brulge. No channels less than five inches in depth are to be usod fur chords, batter braces or posts, or less than inches four in depth for lateral struts. No bars less than one-half inch thick are to be used for dagonals, nor any iron less than onequarter meh thick anywhere in the bridge.
Expansion.-Any span abors fifty feat in length,

[^0]robling on stono, coucrete or iron foundatione, shall be provided with somo meaus of allowing the bridgo to expand and contract longitudinally with the variations of tomporature; and, in spans of fifty feet and under, caro must be taken especially whon the bridge is orected in cold weathor, to seo that the stonowork of the abutments will not provent a little aliding: of the shoes.
Anchoraye.-At least one end of overy bridge must bo anchored to tho foundations. If the overturning moment of the greatest assumed vinit prassure be more than half the resistin: moment of the woight of tho bridge, the latter must be anechoren at the roller ond also, but in such a manner as not to interfere with tho expansion.
Stidiuy.-At the rollor ond of a hridge, if tho frictional resistance to the sliding of the shoe in the direction of the length of the rollers be not more than double the tendency to slide, produred by the wind pressure, a resistance equal to the differonce of these two quantities with a factor of safety of two must he provided.

Continuous Spath.-Except in tho case of swing bridges, consecutive spans are unt to be male continuous over the points of support.

Cambre.-Tho cambre of all bridges must be such that when they are subjected to their heaviest loads, the middle point of the centre line of the bottom chord shall be at least ons inch above the line joining the centre of ond pins.

Vertical Sway Brucing.-In all deck bridges and in all through lridges, where the depth from centre to centre of chords is twenty four feet or over, vertical sway bracing is to be used, and is to be proportioned so as to carry all the wind pressure concentrated at the uppor and intermediate panel points (if there be intermediate struts), on the windward side and at the upper panel point on the leeward side to the lower panol point on the lesward side.

Portal Bracialy. - 'The portal bracing is to be proportioned nut only to resist the direct thrust caused by the wind pressure, but also the bending caused by the stresses in the knee bracing, according to the method given in Burr's work on "Stresses in Bridge and Roof Trusses." Portal struts subjected to bending must first be proportioned for direct stress due to both wind pressure and the initial tensions on the rods meeting at the end of the strut, and then to their section must be addod sufficient area to resist the bending.

Bending Effect on Posts and Butter Braces.-But the bending effect in the posts and batter braces caused by the stresses in the intermediate struts or kneo braces need not be considered to occur when the bridge is fully loaded ; so unless the dead load stresses and the bending together call for more section than tho dead and live loads combined, the bending in these members may be neglected.

Bending Effect on Lateral Struts.-Nor neod there be any bending supposed to be caused by stresses in the kneos connecting uppei or intermediato lateral struts to posts, as the use of these knees may be considered simply to provent vibration, and as, owing to the fact that these struts resiet bending in the planes of their greatest dimensions, there is already a surplus of strength.

Stresses in Upper Lateral Struts.-The stiecses in the upper lateral struts are to be calculated for the wind

[^0]: - For latcr investigations coneorning this limiting length, seo "Econons in Ilighway llidges," in the I'roceedings of the Engineers' Club of l'hiladelphia.

