Here then is a curious state of affairs—when fuels burn, there seems to be loss in weight; but when metals burn, there is very evidently gain in weight, and, therefore, it does not seem as though the two processes were similar and could be explained in the same way.

SS

d.

IP

 $\Pi_{\mathbf{y}}$

ht

int

bу

of

ve

e,

If

th

hs

ng

ce

or on

le,

lie

for

be in

red ne-

. if

sh

ion

he

But if we pay a little closer attention to just what takes place, we shall find that we have made coo of our experiments incompletely. You have often not hat when the chimney is put on to a lighted ker amp it becomes dimmed, or "steamed," for a while, are careful experiment shows that this is really due to tiny crops of water being deposited on the cold glass.

Experiment.—Light a candle and invert over it a dry, empty glass cylinder or bottle. Moisture will be deposited on the inside of the cylinder. It will soon disappear, owing to the warming up of the cylinder.

Further, someone discovered that this steam was not the only thing given off from the flame, but there was also produced a gas that would turn lime-water milky. This gas has been named carbon dioxide—we shall see why later.

Experiment.—If after performing the experiment just described above, the cylinder be removed from the candle, some line-water be poured into it and it be quickly covered with the hand, or otherwise, and then shaken, the line-water will becomilky.

Now, in our experiment of weighing the burning candle, we did not catch the steam and carbon dioxide that were produced and keep them on the balance—it was something like trying to weigh a basket of kitter—it to the kittens jumping out one after the other and run—not of the runnately, a substance called caustic soda has been discovered which has the power of absorbing steam and the like of the holding the kittens); so, if we repeat our the like present with the candle, using caustic soda in the proper to the weight that there is a gain in weight during the like of a candle