does not represent an appreciable sink for NO₂ because of the rapid thermal decomposition reaction 6-36. At lower temperatures HO_2NO_2 will achieve higher concentrations and its importance as a sink for NO₂ increases.

The reactions of RO, RO₂ and RCO₃ with NO and NO₂ represent key reactions in the conversion of NO to NO₂ and the formation of organic nitrites and nitrates.

The main alkoxyl radical reactions with NO and NO₂ are: RO + NO \rightarrow RONO (6-37a)

•				
→RCHO +	HNO			(6-37b)
and the second	en et al service de la serv		· · .	

and

 $RO + NO_2 \rightarrow RONO_2$

or

or

(6-38a)

 \rightarrow RCHO + HONO (6-38b)

The reaction of alkylperoxyl radicals with NO is generally assumed to proceed by the oxidation of NO to NO₂ with formation of an alkoxyl radical:

 $RO_2 + NO \rightarrow NO_2 + RO$ (6-22)

Reaction 6-22 is believed to be an important route for the oxidation of NO to NO_2 in the atmosphere (the alkoxyl radical may react further to produce HO₂, which also converts NO to NO_2).

It has been postulated that longer chain peroxyalkyl radicals (n>4) from alkane photooxidation will add to NO to form an excited complex that can be stablized to produce an