$2 \& 3$ Ply Ready-Made Felt Roofing. Can be laid by any ardioary workman, and is cheap and durable. Just the roof you want. H. H. FULLER \& C0.,
 HALIFAX, N. S.
 A.GENTE EORE NOVA. SCOTMA

TRUROFOUNDRYiMACHINECO. trivero, in. s.
 MANUFACTURERS.

GOLD MINING MACHINERY A SPECILITY.
Boilers and Engines, Stoves. Ship Castings and Ship Steering Whecls.

HMPIROVED ROTAAEY SAW MILLIS.

BHINGLE nud LATMX MACIXINE:S. UNSOLICITED TESTIMONIALS
constantly being received in yavor of the fanous

Heintzmans-:Pianos.

HEW STYLES, IN PLAIN \& FANCY WOODS, Constantly Arriving. prices and terms to suit everybody.

Sole agmils: HALIFAX PIAHO \& ORGAN CO.

JAMES ROTE Manupacterek of

Belfast finger Ale, Lemonade, Orange Phosphiate, Chul Tonic. Potass Witer, Sodia Water, Carbonated Potash \& Lithia, carbonated Lithia, Still Lithia.
HALIFAX, N. S.
Address: WOOD'S WHARF. P. 0.80×400. Telephone 203

C. G. SCHULZE,

Dractical Watch and Chronometer Maker.
Fine Gold and silver Watches, Clocks, Fine Jewelry and Dptical Goods.
Chreriometers for Sale, for Hire \& Repaired. Rates determined by Transit 0bservation.
Special Attention aiven to Repairing Fine Watches.

171 BARRIMGTOM ST., HALIFAX.

GRIFFIN \& KELTIE,

Monumental Designers and SCELPTOIRS.
Manufacturorn and Importers of
monuments and Tablets, in Marble, New Brunswick, Scotch and Quincy Granites.
Wooil and Siato Minatel, Graten, Tilo Hoarthe. Ararble and Tilo Flooria Specisles.

AARON SINFIELD MASOH AHD BUILDER, HALIFAX. BOILERS, OVENS \& all kinds of FURNK.CE WORK a Specialiy.
 Style, in Country as well 23 City ai Loweripo
sble Rates. ADDRESS-BRUNWICKST.
 BEFORE BOYING ENGINES, BOILERS ROTARY SAW MILLS, OR STEAM PUMPS,
Hile GEO. E. EVANS,
62 WRTER STREET, ST. JOHK, N. B. For Catalorao C and p-ices
AMIMONIA
In Balring Powder

|TS volatilay hs aturdjed by react:02 with the Rhiten in me flour
The preparation or an UNOHIFCTIONABLE The preparaion of an UNOHJCCTiONABLE

NO AMMONIA.

MINING.

FAULTING IN VEINS.

Writlen fur the Engineering and Mining Journal by S. F. Emmons.

(Comtinued.)

Fault planes do not, howover, always run across tho bedding planes, but mas bo peariy or quito pirallel with them, and are thon often called thrust planes. Such fuulte are less easily detected then the formor clase, and hence, as accurato and detailed examinations bocome moro frequent, their proportion will probably increaso. Faults are fuund of overy degree of magnitudo, from the groat faulto which form important orogeaphic foatures and havo displacoments of thoussands of foet, down to those which aro so amall that they can ovly bo detected by the microacops. Whether slickensided or pollshed surfaces can bo found upon their walls deponde, as I havo said, upon the nature of the material of these walls, whether it is of a character to receive a poiieh in the first place, and obetber conditions are such as to preservo it in the second. If Mr. Church has nover eeen such surfaces on bedding planes, it is not hecauso they do not occur in nature, nor aro thes confined, as ho eeems to tbink, to oteepls upturued beds. I will cito a fow instances.

The great porphyrite mass, or laccolite, of Gothic Mountain, in Colorado, which rists upon nearly horizontal black shales if the Creticeous, bas been moved on its base (how much there is no mrans of dotermining), and if onc cares to climb its steep slopes sbout 700 ft . above the town of Gothic to the contact plane between shales and porphyry he will find the under surfaces of the latter, where it has been exposed by the undermining of the ehales, striated by this movement. Again the gold voins which cross the stratification of these same shales near Breckenridge, Colo., have boen falted by a movement subsequent to the formation of the veins along the stratificstion planes of tho shales. But thrust planes do not necessanily follow stratification lines, even where their divergonce of angle is so slight as to be hardly perceptible to tho eye, as may be observed in Smuggler Hill, at Aspen, Colo., where a fault of this nature along the steeply upturned beds has cbanged the relationa of the silurian and carboniferous atrata so as to make iheir apparent thickness vary very greatly in comparatively sbort distances. The coberence of reck masees is not wecessarily very much less along bedding planes (rlich are merely indications of changes in the conditions of sedimentation) than along any other plane, unleas thoy wark such very decided and abrupt charges in character of material that the pressure resulting from a great weight of sediments accumulated abovo would be like:y to produce auch a molecular deformstion slong them as is iodicated by alaty clearago.

Fault of grent displacemert or the great alructural faults have been, as far as my experienco tasches, but rarely the loci of mineral deposits. It is the faulta of minor displacement, and moro especially those forming zones or eystems of fracture (rhat Daubreo calls cassures conjuguses) that have more generally become mineral veins. But theeo diffor from the former in degree rather than in kind. They present the same or similar phonomena as evjdences of movement and pressure, but on a emallor scile. In picturing to ont's self the working of the csuses which have preduced theso phenomena. howerer, it is necessary to bear in mind that pressure is as important, if not 8 more important function than movement. It is the neglect of the importarce of this function that would seem to hare been the cause of many of the mieconceptions of oallier writers on vein phenemens, especial:y that which Ifd them to c nsider that the vein matter was the filling of a considerable open fissure into which fiagments might fall frcely irom the walls as they might be dropped dorn a well, and with tro distinct and mell definod walls togond which in either direction no vein matter would naturally be looked for.

A fissare continuously open for any considerable dietance is inconcoivable under the conditions of pressure which must have prevailed at the groit depths et which most veins have been formed.

A fault fissure is ratber 10 be regarded as a s no of crushed material along \& fracluse plase, produced by movement and pressure combined, whoce width may vary, from the mere knife cage of small fissures of iwperceptible displacement, to the 50 or 100 ft . of ciushed material often found along tho faulis of great displacement. The original fracturee, which determioe the direction and location of these zones, were probably suddenly produced by some violent furce in the nature of an carthquake sbeck or a volcanic explosion. But such fractarcs rould not necessarily result in a visiblo fissure rithout a subsequent compressiva strain which would produce a differontial morement along the broken parts. They pould at first be meroly latent or potential cracts along which, although tho cobeaion of the original rock mass bad been broken, somo movement, horever slight, waz necersary for the production of an actual fissure; as wo can conceive a mass of brittle material like glass, firmly inclosed by strung bands, tu be struck a blow of anflicient violencu to shatter it, if free, and jot to show fow if any visiblo cracks until, after the removal of the bands, a d, forential movoment had been produced among the parts.
(To be continucd.

When you're languin and dull in the guriog of the year,
When atomach and licer are all out of poari
Which youro ntupid at morn and feverith at nigh,
And roching gives recish and mothing soes right,

Tho nireat and best of all remodice for all disorlera of the liver, stomach and blood, Tho nureat and bert of anl remodica for
Dr. Dierces Golden MIecieal Dicorery.

