4. Let P move up $A B$ from A to B, while W moves down $B C$ from B to $E ; B E$ being equal to $B A$. Draw $B D$ and $E F^{\prime}$ perp. to $A C$; and let $E G$, parallel to $C A$, meet $B D$ in G. Then, by the principle of virtual velocities,

$$
P \times D B=W \times G B
$$

$$
\therefore P: W=B G: B D=B E: B C=B A: B C .
$$

But this is the relation which was found, in the previous question, to subsist between P and W.
5. (a). "The magnitude of forces is measured by their effects, and the effect of forces which we consider in Dynamics is velocity. Accelerating Force is measured by the velocity which, in a given time, it would add to the motion of a body...........If the velocity added be equal in equal times, the force is said to be uniform or constant." [The above sentences, which I quoted once before from a work on Dynamics by Dr. Whewell, I quote again, because, though I have endeavoured, year after year, to get candidates for first-class certificates to apprehend the fundamentally important conceptions of acceleration and uniformly accelerating force, the recent examination shows that very general confusion of mind on the subject still prevails. One candidate says: "A uniformly accelerating force is one in which the acceleration is changed for every unit of time which the body moves." The writer would have been nearer the mark if he had said "is not changed." Another candidate says: "A uniformly accelerating force is a force that will move a particle through equal spaces in equal times." In this case I should say that there is no acceleration. Does the force of gravity at the earth's surface move a particle through equal spaces in equal times ? Another candidate says: "A uniformly accelerating force is that which is acted on uniformly acted on (sic) by the force of gravity." Another: "A uniformly accelerating force is a force whose increment of increase is the same in equal times." A considerable number of other such answers have been given. Surely, teachers who desire to obtain first-class certificates may be reasonably expected to master a conception which is by no means abstruse, and without an accurate apprehension of which the whole science of Dynamics must be a mystery to them.-G. P. Y.]
5. (b) and (c). [These have not been satisfactorily answered by any of the candidates. I leave them as exercises for students. I believe that a student will derive benefit from a thorough examination of them. The only remark which I will make is, that the force to whose action, in conjunction with that of gravity acting vertically, the motion of the body along $A B$ is due, is the reaction of the plane.-G. P. Y.]
6. As the uniformly accelerating force of gravity generates a velocity of 32 feet in the second, it will be 10 seconds before the velocity of 320 feet in the second is destroyed; and therefore when the particle shot upwards from A reaches its highest point, its elevation will be 1,600 feet. In 2 seconds more it has fallen 64 feet; hence, if D be the point where it is at the end of the 12 th second, $A D=1,536 \mathrm{ft}$. But $C D$, the space down which the force of gravity has drawn the projectile from B in 12 seconds, is 16×144. Therefore,

$$
A C=A D+D C=1536+16 \times 144=3840 \text { feet. }
$$

Also $A B^{2}=B C^{2}-A C^{2}=(4800)^{2}-(3840)^{2}=2880^{2}$.

$$
\therefore A B=2880 \text {. }
$$

7. Let x be the height to which the liquid will rise in the vessel. Then the pressure, in lbs., of the confined air on the liquid below
is $\frac{15 \times 144}{1-x}$. This is counterbalanced by $15 \times 144+\frac{1152}{16}(1-x)$.
Therefore,

$$
\begin{gathered}
\frac{15 \times 144}{1-x}=15 \times 144+72(1-x) \\
\therefore 30 x=(1-x)_{2} \\
\therefore \quad x=16-\sqrt{ } 255 .
\end{gathered}
$$

8. Solution of Mr. John L. Davison. - (D E is drawn parallel to $A B$.$) Since A B=39$, and $B C=26 . \therefore A C=\sqrt{ }(2197)$.
And, by sim. triangles,

$$
\sqrt{ } 2197: 26:: 26: D C \cdot D C=\sqrt{ } 208
$$

Again, by sim. triangles,

$$
\sqrt{2197}: \sqrt{ } 208:: \sqrt{ } 208: C E \cdot C E=8
$$

[The value of $C E$ is correctly found; but there is a mistake-a simple oversight, I presume-in the statement of the proportion. The second term should be 26 instead of $\sqrt{ } 208 .-G . P$. Y.]

And. $\therefore D M=20$. [This is rather curt; though, of course, when $D C$ and $C E$ are known, $E D$ is known; and, when $E M$ and fi I : are known, M I is known.-(X. P. Y.J

Now, the three forces that keep the body at rest are:
(1) The tension of string ;
(2) The resistance of plane ;
(3) The weight of the body acting vertically.

And since these forces keep the body at rest, the forces are each proportional to the sides of a triangle taken in order.
[This is not very well put. Mr. Davison should have said that the reaction of plane, the tension of string, and weight of body, are proportional to $B D, D M, M B$, the sides, taken in order, of the triangle $B D M$, whose sides are in the direction of the forces.-G. P. Y.] Now, since $M B$ is parallel to the direction the gravity and is 34 feet in length, and since gravity [the weight of thds body.-G. P. Y.] $=34$, therefore each foot of the side correspo the
to 1 lb . Therefore, since $D M$ is 20 ft . in length, the tension of the string $=20 \mathrm{lbs}$.
9. Solution of Mr. John L. Davison.-(Mr. Davison draws $A F$ and $B G$ perpendicular to $D C$.)

$$
\begin{aligned}
\text { Let } R & =\text { force acting along } D A . \\
R^{1} & =-B C .
\end{aligned}
$$

[Mr. Davison resolves the forces vertically, and in a direction at right angles to the vertical ; and then takes the moments about A. This gives him the following equations, x being the distance betwe ${ }^{\text {ell }}$ the central point of the rod and the point of suspension of the weight.-G. P. Y.]

$$
\begin{aligned}
\frac{4 R}{5}+\frac{12 R^{1}}{13} & =112 \\
\frac{3 R}{5} & =\frac{5 R^{1}}{13} \\
56 x+784 & =\frac{168 R^{1}}{13}
\end{aligned}
$$

[From these equations he obtains $x=4 . \cdot$ Therefore, \&c.-G. P. Y.]

1. TEACHERS' INSTITUTES.

Elsewhere our readers will find a report of the proceedings of the Teachers' Institute held in the Central School during Friday and testify turday last. Those who had the good fortune to be present can testify to the practical and excellentcharacter of the work accomplished, and they will probably conclude therefrom that something more mils full be done ere our educational system shall have attained its ${ }^{\text {ed }}$, growth and maturity. What that something is, must be, indernal has been long, evident to all intelligent educators. The Nor School at Ottawa will probably be open for the reception of stlow, dents in a year's time, and two additional ones will likely follow, one at Kingston and the other at some point in the west. Thus whole Province will be amply supplied with Normal School pris it leges. As adjuncts to these Schools for the training of Teachersing is considered that 'Teachers' Institutes are necessary, and, judgosed from the success of that held here last week, we should be disposanto regard them as an essential part of the system. Their advawe tages have been recognized by the Legislatures of several of thde, neighbouring States. Appropriations for them have been madhe and the result, so far, has been pronounced satisfactory. Int ex State of Michigan, $\$ 5,000$ is annually allowed for Institute Inpenses ; in Maine, $\$ 4,000$; in California, $\$ 100$ for each County the stitute of from three to five days' length; in Pennsylvania thing amount varies from $\$ 60$ to $\$ 200$ for each County Institute accordan ${ }^{2}$ to the attendance ; in Iowa, $\$ 50$ is allowed for each, and in India the same amount.

In the School Act passed here early in the year 1850, an appro," priation was made "for the encouragement of Teachers' Institute, and in that year Messrs. Robertson and Hind, then masters ovince. Normal School, held Institutes in each County of the Prov, but Last year the Local Legislature made a similar appropriation, ${ }^{\text {on }} e^{-}$ the money has not yet been touched. Assuming, then, that solion, time during 1874 we shall have two Normal Schools in operat estaone in Toronto and one at Ottawa, with possibly the Kingston est points blishment in course of erection, and Institutes at different po sil as adjuncts to them, the question of efficient management and prepervision immediately presents itself for consideration. At Atite sent the prisons of the Province and the Deaf and Dumb Inste sub ${ }^{\text {b- }}$ at Belleville, and the Institution for the Blind in this town, are who is jected to periodical inspection by a competent officer who responsible to the Local Government. An officer with similar por for ers and suitable qualifications will, we may premise, be needed dis the preposed Institutes and Normal Schonls. For the proper

