yd. = 3970 sq. yd. : radius of this circle = $(\sqrt{3970 \div \frac{2^2}{7}})$ yd. = 35.541 yd. : width of road = (35.541 - 35) yd.

32. The length contains 3 ft. as many times as the width contains 2 ft. Area of rectangle 3 ft. by 2 ft. = 6 sq. ft. \therefore 240 sq. ft. contains (240 \div 6) of these rectangles = 40. \therefore the length = $(\sqrt{40} \times 3)$ ft. = 18.973 ft.

33. Circumference of circular field = $(\frac{3.2}{7} \times 15)$ rods = $47\frac{1}{7}$ rods, and perimeter of square field = (4×14) rods = 56 rods. \therefore square field by $8\frac{6}{7}$ rods.

34. 7, page 112.

Page 114

- 35. External dimensions are 36 in., 24 in., 18 in. Internal dimensions are 34 in., 22 in., 17 in. No. of cu. in. of material $= 36 \times 24 \times 18 34 \times 22 \times 17 = 2836$ cu. in.
- 36. Side of sq. = $\sqrt{80}$ in. : length = $(\sqrt{80} \div 8)$ in. = 1.118 in.
- 37. Area field = $(40 \times 5\frac{1}{2} \times 3 \times 30 \times 3)$ sq. ft. : side of sq. = $\sqrt{40 \times 5\frac{1}{2} \times 3 \times 30 \times 3}$ ft. = 243.721 ft.
 - 38. 6, page 112.
 - 39. See page 87.
 - 40. Area = 2 $\{(9 \times 10) + (10 \times 7\frac{1}{2}) + (9 \times 7\frac{1}{2})\}\$ sq. ft. = &c.
- 41. Rad. = $\frac{7}{44} \times 55$ in. = $\frac{5}{4}$ in. ... area of circle = $\frac{22}{7} \cdot (\frac{35}{4})^2$ sq. in. ... side of sq. = $\sqrt{\frac{22}{7} \cdot (\frac{35}{4})^2}$ in. = $\frac{35}{4} \sqrt{\frac{22}{7}}$ in. = $\frac{35}{4} \sqrt{3 \cdot 142857}$ in. = 15·512 in.
 - 42. 15, page 112, and 32, page 1.3.
 - 43. Side of square =25 yd., sides of rect. =10 and 40 yd.
- 44. Side of field = $\sqrt{10 \times 4840}$ yd. = 220 yd. Length of wire = $(5 \times 4 \times 220)$ yd. = 4400 yd. Cost of wire = \$(4400 $\times \cdot 03)$ = \$132. No. of posts to a side = 84. ... no. of posts required = $4 \times 84 4 = 332$. Cost of posts = \$(332 $\times \cdot 08)$ = \$26.56. ... total cost = \$(132 + 26.56) = \$158.56.