PROBLEM XVI.

To construct a rectangle c x on a given base c, equivalent to a given square a^2 .

Altitude
$$x = \frac{a^2}{c}$$
 N. S. $= \frac{a \times a}{c}$ G. S.

PROBLEM XVII.

To construct a trapezoid $\frac{p(m+n)}{2}$ equivalent to a given square a^2 , having given the two bases, m and n.

Altitude
$$p = \frac{a^2}{\frac{1}{2}(m+n)}$$
 N. S.
$$= \frac{a^2}{y}$$
 (See Problem IX.)
$$= \frac{a \times a}{y}$$
 G. S.

PROBLEM XVIII.

To construct a trapezoid $\frac{p(m+n)}{2}$ equivalent to a given square a^2 , having given one of the bases m, and the altitude p.

the other base
$$n=\frac{a^2-\frac{1}{2}p}{\frac{1}{2}p}$$
 N. S. make $\frac{1}{2}p$ $m=y^2$ by Problem VIII., then $n=\frac{a^2-y^2}{\frac{1}{2}p}$ make $a^2-y^2=z^2$ by the 5th formula, then $n=\frac{z^2}{\frac{1}{2}p}=\frac{z\times z}{\frac{1}{2}p}$ G. S.

PROBLEM XIX.

To construct a regular polygon $\frac{b \ c \ r}{2}$, equivalent to a given square a^2 , having given the side c, and the number of sides b.

Apothem
$$r = \frac{2 a^2}{b c}$$
 N. S.

egular

onals ; repre-

XI.)

circle.

d, the

rtion-

alent

t to a