
required for this speed-time curve may be re-stated, as equal
to :

( i ) Energy to accelerate to point L.
(2) Energy to overcome train resistance to point M.
(3) Motor and rheostatic, losses, proportional to (1) and

(2).
If we draw a series of speed-time curves for the same 

schedule, for cars of different weights, the point M shifts, 
as shown by the distance between M and M„ but the total 

of this point is small, and in the computationsmovement
which follow the point M is assumed constant for all cars on 
the same schedule. In computing the power consumption for

on the schedule, Fig. 1, thecars ôf various weights, operating 
following quantities are calculated :

( 1 ) Energy required to accelerate one ton to speed of 
point L, 7 per cent, being added to allow for the effect of rotat
ing parts. The formula for this calculation is 

E = .0205 S2
where E = energy in watt hours, and S = speed in miles per
hour.

(2) Distance traveled by car before reaching point M.

D0
10 30 30 «0 60 60 70 80 90 100 110 120

Seconds
0

Car Weights—Fig. 1.—Typical Speed-time Curves for 50-Ton 
Cars, Speed 30 M.P.H., 10-Second Stops 

Every 5,710 Feet.

(3) Average effective train resistance for the car in ques- 
Then (2) x (3) x .000278 = energy in watt hours to 

train resistance. These figures give the energy 
for the schedule in question, for the distance covered

tion. 
overcome
per ton 
by the speed-time curve.

The curves of Fig. 2 are calculated for cars of various 
weights operating on the schedule of Fig. 1. Vertical dis
tances correspond to watt hours per car mile and horizontal

Curve A shows thedistances and to ton weight of cars.
required for acceleration only, for cars of all weights 

Curve B shows corresponding values of energy 
train resistance only. Curve C is the sum of A 

Curve D shows the total energy including motor

energy 
up to 50 tons.
to overcome 
and B.
losses to operate cars of all weights up to 5° tons on the
schedule in question.

Curve B is calculated with the aid of Armstrong’s formula
for train resistance :

.002 a Sa50
+ .03 S +F =

WVW
Where W = weight of car in tons ; S = speed in miles per 
hour ; a = area of car end in sq. ft. Throughout these com
putations a is taken at 92 sq. ft.

CAR WEIGHTS AS AFFECTING OPERATING COST.*

By M. V. Ayres, Electrical Engineer, Boston & Worcester 
Street Railway.

When it is suggested that a decrease in the weight of 
might be brought about without sacrificing carrying ca-

“Will it
cars
pacity or safety, the question is at once raised : 
pay?” In other words, will not the increased cost of building 
such lighter cars more than offset any saving to be effected in
operating expenses ?

This investigation was undertaken with the hope of throw
ing some light on the question of the relation between the 
weight of cars and operating expenses, 
ducted by means of correspondence with car manufacturing 
companies, operating companies, and various gentlemen who 

known to be interested in the subject ; also by the 
consultation of text books and authorities in the effort to 
obtain theoretical data applicable to the matter.

The effort to obtain information based on actual tests or 
operating data has been largely barren, and therefore the 
theoretical discussion occupies the larger part of the paper.

Probably no argument is needed to show that an increase 
of car weights will cause an increase in the following items

It has been con-

were

of expense :
(1) Cost of power; (2) cost of car repairs; (3) cost of 

track repairs; (4) fixed charges of power plant, and (5) 
fixed charges of distribution system.

While it is evident that these items will increase with car 
weights, it is not obvious that they will increase proportion
ately thereto. An attempt has been made in the following dis
cussion to show the manner in which these various costs vary
with the weight of cars.

Power Consumption.
In Fig. 1, O A B C D is a typical speed-time curve, 

figured for a car of 50 tons’ weight, making a schedule speed 
of 30 m.p.h., with a stop every 5,710 ft., and stops of to sec. 
duration.

The slope of the coasting line, B C, is determined by the
If intrain resistance, taken in this case at 14 lb. per ton. 

stead of weighing 50 tons the car were very much lighter, the 
train resistance per ton would be greater and the slope of the 
coasting line would be steeper, like the line B, C,.

In the figure the areas under the curves O A L N D, 
O A B C D, and O A B, C, D are equal; therefore in each of 
these speed-time curves the car travels the same distance in 
the same time. In the computations which follow, when 
of different weights are assumed to be operated on the same 
schedule, the calculations are based on speed-time curves 
like O A B C D and O A B, C, D ; that is to say, the curves 
of acceleration and braking are kept the same, but the slope 
of the coasting line is changed to correspond with the calcu-

cars

lated train resistance.
The energy required to propel the car on the speed-time 

O A B C D is equal to :
(1) The energy to accelerate to the speed at the point B.
(2) The energy to overcome

curve

train resistance to the
point B.

(3) Motor and rheostatic losses, proportional to (1) and
(2).

The energy used in accelerating from point L to point B 
is all used in overcoming train resistance to point M, at which 
the speed is the same as at point L.

^Abstract of paper presented before the American Street 
and Interurban Railway Engineering Association.

Therefore, the energy
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