any particular trade, and the laborer must be skilled in special craft. There is much truth in the maxim, "He should know something of everything, and everything of something," and the effect of technical skill in the laborer produces surprising results. A skilful artisan will in a few minutes complete a work beyond the powers of a person unacquainted with that art. A professional man every day, almost without conscious effort, disposes of matters which to the unprofessional person seem hopelessly perplexing.

And it is remarkable that these operations which have taken most pains and time to learn are capable of being ultimately performed with marvellous accuracy and ease, e.g., take the athlete with his astonishing gymnastic feats, or the skilled musician for delicate discriminations in sound and touch, or the cook in preparing savory dishes for the epicure. It is the triumph of art to conceal all effort, and this, at times, makes us inappreciative of the degree of skill attained.

How necessary it is that our artisans should become artists in those produce the manufactures which finest combinations of form and color is brought vividly before our minds when we see the finish and beauty in many imported articles. We see these qualities sometimes in our own manufactures, but we are too apt to think that because we have a good primary school system, and that none need be unable to read and write, we are, therefore, sufficiently "up to date," and quite equal to any other nation in manufacturing ability. It is to be hoped we are not building a fool's paradise about our heads. Take Switzerland, with its population of over 3,000,000, enclosed in some 16,000 square miles, and compare its educational system with ours. search was once made there for the men who could neither read nor write, and they found one, but it was learnt on enquiry that he had come from Savov. In technical education they are enthusiasts, and have schools for forming, silk weaving, cattle grazing, butter making, horology, etc., and from time to time lectures and short courses of instruction are given in different parts of the country on horticulture, viticulture, fodder-growing, cattle-breeding, etc. Even our sister colony spends double amount on technical education that we do. The United States spends over 13,000,000 dollars per annum on secondary schools.

What is Victoria doing in the matter of technical education? Very little indeed. The State assistance to the Working men's Colleges is only £12,000 per annum, and we should bear in mind that the cost of our primary schools has been reduced £250,000 per annum in five years.

In our State schools at present the science taught consists merely of a few principles of physics, physiology, and The curriculum, however, drawing. seems sufficiently extensive, though much might be said in favor of increasing the science by including the elements of such subjects as mechanics, chemistry (especially agricultural), metallurgy, domestic economy, etc., and the main principles underlying our chief industries, seeing that we have no secondary schools in which to teach them. Surely such knowledge would be of infinitely more practical benefit to the boy when he leaves school than so much history, geography, etc. He would then go out into the world with his eyes open to the practical value of science as applied to manufacture, and would be stimulated to further explore fruitful fields.

But our Government is not absolutely dead to our educational requirements. Increased funds, no doubt,