§61. PROPOSITION XXII. The auxiliary biquadratic $\varphi(x) = 0$ either has all its roots rational, or has a sub-auxiliary (see §53) of the second degree, or is irreducible.

12

It will be kept in view that the sub-auxiliaries are, by the manner of their formation, irreducible. First, let the series (54), containing the roots of the sub-auxiliary $\psi_1(x) = 0$ consist of a single term A_1 . Then, by Prop. 111., J₁ is rational. Therefore, by Prop. XX., all the roots of the auxiliary are rational. Next, let the series (54) consist of the two terms \beth_1 and \beth_2 . By this very hypothesis, the auxiliary biquadratic has a quadratic sub-auxiliary. Lastly, let the series (54) contain more than two terms. Then it has the three terms J_1 , J_2 , J_3 . We have shown that these must be severally equal to terms in (64). Neither \exists_2 nor \exists_3 is equal to \exists_1 . They cannot both be equal to $h_1^5 \sqcup_1^4$. Therefore one of them is equal to one of the terms $a_1^5 \perp_1^2$, $a_1^5 \perp_1^3$. But in §50 it appeared that, if \perp_2 be equal either to $a_1^5 \perp_1^2$ or to $e_1^5 \perp_1^3$, all the terms in (64) are roots of the irreducible equation of which \perp_1 is a root. The same thing holds regarding \beth_3 . Therefore, when the series (54) contains more than two terms, the irreducible equation which has \Box_1 for one of its roots has the four unequal terms in (64) for roots; that is to say, the auxiliary biquadratic is irreducible.

§62. Let $5u_1 = \bigsqcup_1^{\frac{1}{5}}$, $5u_2 = a_1 \bigsqcup_1^{\frac{2}{5}}$, $5u_3 = e_1 \bigsqcup_1^{\frac{3}{5}}$, $5u_4 = h_1 \bigsqcup_1^{\frac{4}{5}}$; and, *u* being any whole number, let S_n denote the sum of the u^{th} powers of the roots of the equation F(x) = 0. Then

$$S_{1} = 0; S_{2} = 10 (u_{1} u_{4} + u_{2} u_{3}); S_{3} = 15 \left\{ \Sigma (u_{1} u_{2}^{2}) \right\};$$

$$S_{4} = 20 \left\{ \Sigma (u_{1}^{3} u_{2}) \right\} + 30 (u_{1}^{2} u_{4}^{2} + u_{2}^{2} u_{3}^{2}) - 120 u_{1} u_{2} u_{3} u_{1};$$

$$S_{5} = 5 \left\{ \Sigma (u_{1}^{5}) \right\} + 100 \left\{ \Sigma (u_{1}^{3} u_{3} u_{4}) \right\} + 150 \left\{ \Sigma (u_{1} u_{3}^{2} u_{4}^{2}) \right\};$$

where such an expression as $\Sigma'(u_1 u_2^2)$ means the sum of all such terms as $u_1 u_2^2$; it being understood that, as any one term in the circle u_1 , u_2 , u_4 , u_3 , passes into the next, that next passes into its next, u_3 passing into u_1 .

THE ROOTS OF THE AUXILIARY BIQUADRATIC ALL RATIONAL.

§63. Any rational values that may be assigned to \exists_1 , a_1 , a_2 , etc., in §62, rational. In fact, $S_1 = 0$, 25, $S_2 = 10$, \exists_1 , $(h_1 + a_1, e_1)$, and so on.

Тив А

§64. may be degree, must b

roots 1

By F elass, tl we are sub-aux p and k $\varphi_1(x) =$ q for hTherefore enuncia

a fifth 1

be mor

princip a_1 inv

 $\checkmark (p^2) \\ a_1 = l \\ a_1 \text{ becomes}$

in the

§65.

in r_1 ,