等griculthre.

The Atmusphere as a Fertilizer.

This is a subject which, practically, recenes but abont half tho attention it merits. Substantial manares, when obtainable, aro of course tho great desderatum and no soil, howover fertile, can long sustain nutrition without them. But in many instances these are not readily attainable, at'luast is. appreciably large quantities, and it is well to know in sucl. cases how lest to adapt our soil for the absurption of those incxhaustille fertihars which are chemically combined in the air arolnd us.
The composition of the atmosphere is so uell hnown that it need not heso bo rcicatca. It is however worthy of nute, as illustrative of the wondermi resomrees of the arr, that a young sapling, planted in earth that had been oven-dried, and receiving no other nourishment thereafter than that derived from tho air, and an occasional watering, more than quadrupled its weight in a twelvemonth; whilst the earth in which it grew, having been again dried and woighod, sllowed a loss of only two pounds-a fact which proves that wo are indebted almost solely to the atmosphere even for the solidity of our trees. The same truth on a smaller scale, as well as on the large, is being illustrated overy day and all around ns, but the principle could be much more effectively utilized in agriculture than it is, and that siuply by a more thorough pulverization of the soil.
The decomposition of animal and vegetable matter keeps constantly filling the air with fertilizing gases, and periect tillage is the first step necessary to condense theso in the pores of the soil. It follows moreorer that if air is such au esseutial source of vegetable nourishment, the moro of it supplied the better; and so it is, provided only it be supplied through the proper chamel viz :-the coil. Tha nature of suil two must hare be taken into account, fur somo hinds are mach mure eassly permeated than others. For instance, in testing with water, one hundred younds of puro clay, dried, alsurbed seventy pounds of water beiore any came through so as to drop. A similar weight of clay luam took in fifty pounds; Eng. lish chalk, forty-five pounds; loamy soil, forty pounds; calcareous sand, twenty-nine pounds, and dry quartz, twenty-five pounds. The experinent illustrates strihingly the degreo of tillago or pulverization requisite in each case as compared with the others. Carrying tho test stall farther, five hundred pounds of good, fertilo soil taken from various parts of the world and made perfectly dry, gained nine pounds in weight in the courso of an hour by simple absorption from the atmosphere, and thes gan variod with different qualities of carth, in proportion as they recre more or less productivo. The lesson to be derived is obvious-always bearing in mand that that soil is best fitted for the sumultaneous action of aur and water, which will retain about forty per cent of the latter.

Reclamation of Swamp Irands.

This subject is ono of great importance, in many parts of Canada, where vast tracts of crecllent land aro partially or wholly submerged in water-an importanco which has been anticipated and recognized by the Legislature in its passing the Drainago Actafew yeara ago. Referring to the best morle of treating swamp land, which has been newly or recently daained, Mr. Erastus Osborn, of Decatur, Mich., in a pancr read by him beforo the Farmers' Institate of that place, a short time ago, said:-"In 1564 he bought a piece of low land considered almost worthless and commenced to improvo it by ditching and ploughang. His neighbors suid ho could never get his money back, that jt would grow up with the briars and willows which had provionsly covercd it, and be worse than ever. It did
grow up, but, to gool crops of oats and hay. He first cut drains sufficient to carry off the water rapidly. The mowing marsh is usually tough, should be ploughed in the fall so that the ground will frecze and be ready for cultivation tho next season. He regarded buckwheat as the best crop to sow the first season, and found it almost as profitable as wheat. In no case would he recommend seeding to grass until the second season. He found potatoes a profitable crop on this kind of land."

An Excollont Grain House.

The tolluwing phan of a grain house has boen sent by a recent writer to the Uho Farmer. Its clam to supersority is that there 18 no place in the bulding in whinch rats or mace can hide fiom a cat or dog :

The entire building is 20×25 fect. b b aro wheat bins, cyo or barley bins, d d are oat bins, arviad those bins is an open space or walk, a, a, a, 20 inches wade; e 13 a floor to clean and sack grain on, and to keep the fanning mill on ; f is a corn crib 4 fect wide at top and 3 fect at the bottom ; g g are doors, h h h windowe.

Chilled Iron Ploughs.

The great end of forco being to overcome friction and attraction, it follows that whatever lessens cither of the latter will proportionately aid the former. In other words, if by any contrivanco we can diminish the friction of a plough, for example, in passing through the soil, we legsen the draught on our horses by just 80 much. Now the ordinary method of effecting this end in machinery is to use oil or scme other lubricator, which, of course, we could neverapply to the plough. But failing one principle, we can fall back on another which generally, though not invariably, holds goodin mechanics, and that is that friction is usually diminished or increased in proportion to tho hardness or soitness of the rubbing surfaces.

Acting unon this principle, manufacturers havo recently been turning out chilled, $i c$., hardened mouldboards for ploughs, and the results, according to the testimony of some at least who have tried them, are highly satisfactory. Mr. Ives, of Batavia, N.Y., narrating his experience of chilled ploughs to the Western N"ew York Farmers' Club, said:-In ploughing a fow acres of turf ground the last days of December, I took nay best common plough, which is mado for cither two or threo horses, and with two horses commenced ploughing about seven inches deep, but soon found it was too much for the team, so I was obliged to hitch on the third horse, when I was able to go on steadily with the ploughing. The next day I sent my man with the three borse team, and I took two lighter horgas and a chilled plough to the mano land, and after gavging it to
the same depth and width of furrow, I followed the other plough readily that day and the next, and the horses did not appear to have any harder draft than those on the other plough, both turning the same sized furrow, as near as any ore could see, after it was done.
Now, in looking for the reason or cause for so much difference in the draft of these ploughs, we will suppose the form of both to be alike, then the diminished draft comes in favor of the chilled i.on. Now let us sce how much difference that might make. It takes, we will sup. pose, about one third of the draft of the plough to cut and divide the furrow from the land, and two-thirds of the draft goes to overcome the frictivn caused by the plough carrying and turning a heavy furrow while being drawn over bare ground, as it necessarily is. Now, in the case of a hard or a soft sleigh-shoe, we see the differenco between drawing hard or soft iron over bare ground to be probably fifty per cent. in favor of the hard shoe. Or turn the grindstone for sharpening a hard or a soft ax, and we find about as much difference. So then if friction causes two. thirds of the draft of the common plough, and if by having the plough made of hard chilled iron we can save half the friction, then two horses might draw the chilled plough as easily as three would the common one. We wrere also told that the chilled plough would outlast threc or four common ploughs ; but the practical farmor will see readily that Where ho saves a dollar's worth of plough iron becance it is hardened, he will save somo twenty-dive dollar's worth or horse-fiesh in the draft of it.

Leaves from Farming Experience- aro $^{5} 5$.

```
Crops and Feeding.
```

To provide for 810 tons yard manure, and 84,100 wanted, we must manufacture the produce, either into cheese and butter, or checse alone, or into cattle for the butcher. I reckon that every ton of hay, strav and grain ueci thil male $2 f$ tons manure, and every ton of green food used will make 1000 lbs . of manure, one month old, so that a cow will make 13 or 14 tons annually. The stuti grown on theso 180 acres will foed 64 cows, 16 young cattic, and 7 hurses, which will make plenty of manure if caro 25 taten of it. A cow betwecs. 1100 and 1200 lbs . will cat claily in summer 100 pounds cat grass or corn, and two pounds of peas or oats ground; and when hay was used, cach cow got 30 lbs of hay and 9 lbs of barley, or beans, or maitvaried every 14 days. The food and dung being anaigeed by Dr. Thompson and assistants, shows that ahote two thirds of the nitrogen and carbon of the food was veised as manure, and three fourths of the inorganic matter was expclled as manure. Sce the following statement.-
A cow catlog 14 days, at the rate of 100 pourds grass dally, will cat oi-

This shows that threo fourths of the potash, soda, 1-no and posphoric-scid remain in tho dung, and care is necessary to prevent wasto by rain, air or heating; and if the food is rich, the dung will ba rich. Mr. Sibsom stateg that a ton of these mentioned kinds of food, after being converted into manure, may bo worth about, say 1 ton linseed cake, $\$ 18.40$; I ton pess, $\$ 12.50,1$ ton oate, 86.90 , 1 ton com, $\$ 6.30,1$ ton barley, $\$ 5.50,1$ ton clover bay, $\$ 0.00,1$ ton meadow hay, $\$ 6.00,1$ ton of oat straw, $\$ 240$, I ton of turaips, $\$ 0.85$, as manure. The values are bssed on the amount of inorganio materials and nitrogen coartained in each crop named.
There is not mach value set on the carbonaccous parts; still, carbon is of much use to start the plant strong, along with nitrogen; as when it starts with a broad thriving Ieaf it is ablo to abnorb nitrogen and carbonic acid from tho atmosphere.
Bell's Corians, Ont.
Jons Romintsodi:
(Continued avert Mondi.)

