THE APPLICATION OF TRIGONOMETRY

Then to determine the side b (with A and B), B becomes the middle part, and A and b the extremes disjunct or opposites. Hence:

$$R \cos B = \sin A \cos b$$
. And, consequently,
 $\cos b = \frac{R \cos B}{\sin A}$.

With the two sides a and b, thus obtained, the axes x and \breve{x} are readily calculated. As $\overline{x} = \text{unity}$, $x = \cot a$, or $\log x = \log \cot a$ $a) - \log R$. An inspection of the figure will show this. Finally, axis $\breve{x} = (\tan b) \times x$; or $\log \breve{x} = (\log \tan b + \log x) - \log R$.

This understood, let us proceed, by way of example, to calculate the axial ratios of the three octahedrons in our crystal of sulphur, fig. 12.

1. The Lower Form.

In this form (lettered P), A (see figure 13) = 53° 19'; and B = 42° 29'. Then:

 $(\text{Log cos } 53^\circ 19') + 10 = 19.7762593$ $\text{Log sin } 42^\circ 29' = 9.8295454$

 $9.9467139 = \log \cos a = \log \cos 27^{\circ}48'.$ (seconds being neglected.

The log cot of this latter value $(27^{\circ}48') = 10.2779915$. Deducting 10 (or log R) from this, and seeking for 'the corresponding number, we obtain, for axis x, the value 1.897.

Secondly:

10

 $(\text{Log cos } 42^{\circ}29') + 10 = 19.8677466$ $\text{Log sin } 53^{\circ}19 = 9.9041470$

 $9.9635996 = \log \cos b = \log \cos 23^{\circ}8'$.

The log tan of this angle $(23^\circ 8') = 9.6306556$. Adding the logarithmic value of x to this, and deducting 10 (or log R) from the sum, we obtain $(9.6306556 + 0.2779915) - 10 = \overline{1.9086571} = \log_{10} \overline{x} = \log_{10} 0.8103$.

2. The Middle Form.

In this form, A becomes 63°30'; and B, 56°35'. Calculating from

the and the a the oth ing P. for

] A :: (La L

0.6

(L 1

L