glass is a photographic camera lens or enlarger, consisting of ivo double lenses symmetrical in form and position, at some inches apart, each one consisting of a concavo convex crown and conveso concave fint glags. This throws an enlarged crect image of the sun on the plate exposed in the posterior or camera end shown in the figure, whero the cliemical and optical rays aro again brought to the samo focus. The pointing and adjustment of the instrument are facilltated by the use of ground glass, both in the camera, and in a small pointer fired to the side of the tube. In the focus of the object-glass are fixed cross wires, and immediately bryond them is an exposing shutter, consistiog of a close slidiog brass plate with a small borizontal slit admitting of adjust. ment to greater or less width. The slututer is pulled down by a stronir spring, but can be raised and held above the fiela if view by a piece of thread and pulley, on cutting which the slutter thies across the field, every part of the sun being photographed by tho momentary exposure given tbrough the slit in its rufh over the field. Ho. a rapid series of photoriaphs, such as $i$ is wished to obtain of the advance of the planet on the solar disc, another device is employed, which is a modification of Jausen's revolving shutter, which exposes in succession a number of small circuiar spots, arrange 1 in a circle on the plate, which is itself made to revolve so as to bring each one in turn in the required position. The chic $f$ difficulty is to avoid the bad effect of vibration, which appears to have been done by DIr. Christie's arrangement, to the satisfaction both o: the Astronomer Royal and Monsieur Strupe. The idea of employing photography, as we noticed in our previous article, we owe to Mr. Do La Rue, who first brought golar photography to such a high slandard of perfection and accuracy. The dry process which is atopted is that advocated by Captain Abuey, R.E, who has directed tho training of the photogra. phers of the expedition. The mounting of the photohe liograph is that of an rquatorial; the design we prefer to Simm's on the whole. We cannot say the eame for the fitting and motion of the wheels; but all is good. The eystematic observations necessary to establish the exact latitude and longitude of each station are carrud out at the main stations by transits, altazinuths, or vertical circles, and $i$. one case by telegraph comparisons. At the secondary stations it is done by portable instrusucnts and comparisons of various kinds.

The transits are matie by Sinms ( 40 in. focal length, 3 in. aperture). They have moveable systums of wires connected with micrometers. The altazimuths and vertical circles differ from each other chiefly in the formor having horizontal circles read by micooscopes in four places and in many details. The altazimuths are supplied to stations whose latitude is such that azimuth readings are iequired. Fig. 2, shows the instrument belonging to the Kerguelen Station, which is the best in design and in its performance.-Engineer.

## LEAD MINING IN CANADA.

Lead-mining operations in the Dominıon of Canada have hitherto beer limited t, what may be called surface explorqthons, although the finest rock of lead ore sxhibited at the late l'ar', International Exhibition came from Canada. We learn from a prospectus of the Canadian l.cading Mining and Smeltiug Company (Limited) that extensive operatinns are about to take place to develop the champion mineral lodes in the town--hip of Lansdowne, in the counily of Leeds, Ontario. Sir Wm. Logan, Geological Survey, has frequently called attention in his oficials reports to the promising character of the land lodes in this district. He says, speaking of the nature of the lode, that "through the gangue, which is calc-spar, galena (lead) is found in massus, sometimes 5 or 6 inches in diameter. A trial shaft of 50 feet, which was sunk in one of the lodes, is said to have yic!ded eufficient are to pry the expenses of sinkisg, and that fou: other lead-bearing lodes run parallel with the main, the whole being included in a breadth of about $1,0 \cup 0$ feet."

Pacific Rallwax.- It has been determined to survey the Falley of the Fraser River, with a view to making the terminus of the Pacific Railway at Burrard's Inlet. Mr. Sandford Ficming bas received orders to proceed with the work at onco.

## WEAVING.

## Ancient Loons.

When it is considered how littlo is known of the early history of weaving, it may be casily understood how much less likely it would bo for a description of its various processe's to exist. The products of the loom, wisder certain ndvantageons circumstances, may be preserved for thousands of yours, and still give proof of their pechli,sities, either in cxcrellence or defect of manufacture. Thus, tho mummy voths of Egjpt supply nbundance of proci, not only concerning the existence of weaving 4000 years ago, but of the general excellence of the protucts then produced. Numerous specimrns of this cloth, still wrapped round the embalmed bodies, are to be seen in the various $y$ blic museums, and nothing could give more conclusive evidence ryarding the state of the art in those, the carliest periods of hictory.

Although woollen and cotton cloth have always been most commonly used for clothing and other purposer, it is fortunate that the Egyptians did not enshroud their clead with esther of those materials, and particularly so with wool, which owing to its property of bre ding, or being liable to bucome infested with wirms and insects, would be more.likely to perish lian liuen cloth. Thus linen was purgosely chosen for shoud, on a count of its cleanliness and lasting qualtics. The dead were encased in its folds, so that the bodies should bo presersed uninjured, for a period of 3000 years, when it was believed that the former spirit would return, after its transition state and habitation of the bodies of various animals, to resume its yrevious existence.

It is to this circumstance that we owe what actual knowledge of ancient werving we now possess. Tho lifjptians also ured wool and cotton for weaving purposes, the pourer classes being clothed with woolen cloth, and the rich winh eotton and wool. The priests wore linen, in accordance with their iden of its purity, for they wero not allowed to enter the semples with any article of dress composed of wool, that material being considered unclean, from the circumstances before mentioned.
But although it is possible to preserve cloth for long periods of time, when it has been propared and deposited for that purpose, it is quite another matter as regards the loom in which it was woven. It is characteristic of many things in every-day life which have long been in use, that they rarely suggest to the miad that they may be supplanted by quite duferent methods, and for the old sistems to become totally forgotten. How many of the ancient arts have been lost through the historian making no record of their processes? We thereforo cease to wonder that no certain knowledge of the nncient loom exis's. Fortunately, there are a few very ancient paintings on the walls at Thebes representing several processes of weaving and spinning, but the looms are not clear enough to understand.

Au acconnt of these paintings is given by Sir Gardiner Wilkineon in his "Manners and Customs of the Ancient Egyptians," to which work we are indelted. Thus Fig. 1, on the page 327, represonts a weaver at work upon a piece of cloth, woven in a horizontal position on the ground, and Figs. 2 and 3, represent vertical loomb-for both vertical and horizontal I oms were used by the Egyptians. In Fig 2, the weaver is shown weaving choth with a coloured border, and in Fig. 3, two ferales are shown at work at the loom. It required the services of two to weave with the vertical loom-one, perhaps, to open the shed and attend to the warp, and t io other to woik the shuttle and attend to the weft.

It will be noticed in bolh Figs 2 and 3, that the weaver holds $n$ stick, or lever, in the right hand; at the end of thase levers there is a hooh. Sir Gadiner tells us that he thinks these hooks were for the purpose of drawing the weft thread through the warp-in a similar manner, we may suppose, to willow or horse hair weaving, where short lengths only can be used. If such a system really was in uso by the Egyptisne, and the cloth which now exists fas woven by drawing the thread through the warp shed, the cloth would give evidenco of it, for it must necessitate the formation of an open selvare, or fringe, on at least one edge of the cloth, and, even if the thread was dmwn through by the hook, in such a manner as to uselong lergths of weft, it would then havo a double weft thread, with a perfect selvage on one edge o he cloth, and an open one on the other-similar to the weaving by rome of the modern shuitleless looms. But the Egyptian cloth that we have seen has no double threads, and both the selvages are

