soria in chalk and other minerals, some of which contain them to an exsent perfectly incredible, until proved by ocular demonstration. The mineralised skeletons actually in many cases have contributed to form solid strata of the earth. There is a kind of siliceous stone from Tripoli, which is completely made ap of skeletons or shenths of infusoria. A single cubic inch of bog iron ore contains about two millions of millions of microscopic animalcule. Of the species of fossil in. fusoria thus discovered half at least still exist. In their dead state, and fossil condition, they doubtless contribute to the growth of vegetable substances. We shall now see the wonderful functions they perform during life, for the benefit of us all.

These curious infusorial animalcule are found living in ail the stagnant waters with which wo are acquainted. It may bs truly said,-

> " ___ where the pool

Stands mantled o'er with green, invisiblo
Amid the floating verdure millions stray.
Every fluid drop of the ocean contains them; and they abound in mud.

Like the cels of the wheat again, some of these maintain a torpid existence, when dried up by the summer's sun; and in this condition countless myriads of them are raised up with exhalations into the atmospherc. The guano, so extensively used for manure, is full of the most beautiful infusoria, some of them splendidly iridiscent; and there is no better method of testing the genuineness of this useful substance than by the microscope. A small portion of guano dust, viewed with a quarter of an inch achromatic, afforus a surprising spectacle, as any one who pleases may prove. In short the whole creation teems with life.

> "Link after link the vital chain extends,
> And the iong line of being never ends."
(To le continued.)

From the Farmer's Gazettc.
 EXTRACTS FROM PROFESSOR ALLMAN'S LECTURE ON INSECTS INJURIOUS TO AGRICULTURE.

WIRE wORM.
In the two insects which have just been brought before your notice you must have been struck with the fact that their ravages were confined to a single kind of crop-namely, the turnip; that, however, to which I now request your at. tention is omnivorous, and many very different kinds of crops become its victins.

You will, perhaps, have already anticipated that I allude to the wireworm. Now, under this name very many different grubs and worms have been confounded, and it is important that you should know the true wireworm from those animals with which it has been falsely associated. The proper wireworms are of a nearly cylindrical form, covered with a hard, shining skin of a yellowish brown colour, and rievided into numerous distinct ringe or segments. Six short legs are borne by the three segments wich immediately succeed the head.
Now, all the true wireworms are insects in an imperfect state, and, like the black caterpillar just described, are larva destined to undergo a series of metamorphoses before they arrive at their completely developed condition.
The perfect insects of which the wireworms are larves, belong to a tribe of beetles, called from a remarkable power which they possess of springing with a peculiar snapping sound, when placed upon the back or otherwise annoyed, Elaters or click-beetles.

Among the parents of wiresworms are several species of Elater, but those which at present chiefly demand our attention, as being the most numerous and destructive, aro the two species called by Linnæus, Elater obscurus, and Elater Tineatus and indeed many entomologists are of opinion that these are varieties of the same species. They may be found in abundance from April to midsummer under stones, and in fields, wonds, hedges; and gardens.

Whether the parent beetle lays its eggs in the earth or in the under-ground portion of the plant, which is to become the
food of the wiroworm, has not been accurately determined.The eggs, at all events, are very minute, and from these pro. eced tho little worm, at first almost invisible to the naked oye. It grows slowly, but in time acquires the lenerth of about three-fourths of an inch. Durmig its growh it Irequently changes its skin, and it is ascertnined that it remains in the condition of a larva, or wireworm, for five yeare, becoming more and more voracious as it grows, nttacking the rools and under-ground portions of the stem of almost every crop it has once got possession of-whent, outs, barley, mangle-wurzel, turnips, potatocs, cabbage, grass, and tho fowers and culinary verctables of the garden.

On the expiration of its five years of larva-life, the wire. worm penetrates to a considerable depth in the soil, and thero forms for itself a little carthen cell, in which it undergoes its - metamophosis into the pupt, and from that moment the agriculturist has nothing moro directly to fear from it. This generally oecurs about the end of July or beginning of August. It would seem that they continue in the pupa state generally for two or three weeks; but Mr. Curtis is of opinion that many remain buried thronghout the winter. At length the period of their fimal change arrives, and, bursting the pupa skin and the earthen chamthr which imprisuned them, they rmerge into air and light, witi propensities and habits totally changed, an elegant and active little bectio, no longer the terror of the agricuiturist, and appeasing its casily stated apprtite on the delicnte organs of a few flowers.
For arresting the mages of the wircworm numerous methods have been admont. The use of the roller is by some sirongly recommendas, as well as the folling of oxen and sheep on the infested fields.

Various chemical applications have been found useful, sucir as lime, soot, the refuse lime from gas-works, chloride of lime, nitrate of soda, and common salt.

It is a curious fact that there are some crops which have the effect of expelling the wireworm. Of these, woud, a plant cultivated in some parts of England as a dye, and whute mus, tard, have been highly spolea of. "I learn from Dr. Roy," says Mr. Curtis, "that on breaking up damp meadow and pasture land in Lincolnshire, it it be sown with woad instead of ${ }^{\prime}$ corn, the wireworm will be got rid of; and about Boston it is found to be a very profitable crop. It may be repeated for two years, after which splendid crops of oats and potatces may be obtained from the land: ${ }^{\text {j }}$ Sowing white mustard sced on the infested land was atiended with resultsto the succeeding crop of wheat equally beneficial.
Few modes of destroying the wireworm, however, are to be preferred to the obvious and most effeetual ptocess of hatid. picking. "Mr. G. Pearce, of Pennare Goran," says Mr. Spence, as quoted by Curtis, " saved an acre and a half of turnips sown to replace wheat destroyed by the wireworm, and attacked by hosts of these larva, by setting boys to collect them, who at the rate of $1 \frac{1}{2} \mathrm{~d}$. per 100 , gathered 18,000 ; as many as fifty having been taken from one turnip. Thus, at the expense of only $£ 12 \mathrm{~s} .6 \mathrm{~d}$, an acre and a half of turnips, worth from £5 to $£ 7$ or more, was saved; while, as the boys could each collect 600 per day, 'hirty days' employment was given them at gd. per day, which they could not otherwise have had."

Not only in the case of the wireworm, but in that of almost every other noxious insects, the different species of insectivorous birds, and, ahove all others, the rook, are our best friends, and should always enjoy the careful protection of the farmer; and nothing deserves stronger reprobation than tho wanton destruction which is hut ton often practised of these faithful allies of man.

apmides.

The next insect pest to which I shall for a few moments request your attention, belongs to a family in some respects the most remarkable of the whole class. I allude to the different kinds of aplides-a race from whose attacks there is scarcely a single species of terrestrial plant that can claim excroption.

It is, however, the turnip, and pea, and bean crops on which.

