of the ountry. will be re livpossian the d that lation. arding mean workf their organpushed better on be

to ad-

1866

mation anufacrmant of all se beaction. t who nanner uction workwork d none inlished , with w how d keep owing n they be no take Their

graduhnical will higher skilled es of an in ork. a who hat it every can rk go e best e. He it is ave. ny intaking , view n g of gradung to ppearmagaed in the , the e inthods ng in eamed ctical

days fine, vinter opinst be o-day t and about made ly so ut as ection n the blame just o get cold seem y are them, rmful

yway,

need

The

of our

about ricity ssible to do life,

both outdoor and in. article a woman told how she found a good electric motor worth more to her than several servants. By its aid she was able to do her own I understand that the whole difficulty at present washing, to clean the house with a vacuum is one of cost. Inventors have not yet worked cleaner, operate a dish washer, a kmile sharpener, out the whole problem of applying electrical meat chopper, coffee grinder, etc. She was also energy to the best advantage—especially for able to heat her house and do her cooking with- heating and cooking. Coal and wood are still out the usual trouble of looking after stoves cheaper to use even in places where electricity and fires, as all she had to do was to push a button when she needed heat. And, best of all, difficulty can be overcome. Personally, I am though, in all probability, not harmful. The because she was able to manage her work in this hoping for a time when we will be getting such way, she was able to preserve the privacy of her service from the Hydro-Electric that the alarmhome. No matter how good a servant is, she is clock can be set so that it will turn on the I have heard, electricity can be applied to all get up.

In a recent magazine kinds of farm work and made to take the place of the elusive and disappearing hired man. If still a stranger, and her presence im the house electricity to heat the house and boil the kettle According to what at the same time that it gives the warning to

An Error in Prescription.

In "Whip's" article on digestive troubles in our January 9th issue, a mistake occurred in the prescription for spasmodic colic. It reads: "11 oz. each of laudanum and sweet spirits of nitre, and 11 oz. of fluid extract of belladonna." It should read "and 1 oz. of fluid extract of bellaerror occurred through an excusable mistake in deciphering manuscript that is usually quite plain, but in this case not perfectly so. We take great pains with our veterinary prescriptions, and in those instances where a slip is made we lose no

Over 5,000 Co-operative Experiments The result of 5,027 co-operative experiments

in agriculture, conducted under ordinary farm conditions during 1912, were made public at the thirty-fourth anniversary of the Omtario Agricultural and Experimental Union, held last week at the Ontario Agricultural College. It was one of the best-attended meetings ever held by the Interest was keen, and a most excellent program of lectures and discussions occupied the several sessions. The Experimental Union is quite largely an O. A. C. ex-students" association. Organized in 1879, the constitution of the Union contained a provision by which members could receive samples of agricultural seeds annually for experimental purposes. In 1886 a change was made by which others than members might participate in the co-operative work. In that year, as brought out in President Goble's address, under the leadership of Lewis Toole, of Mount Albert, twelve members of the Union started the first co-operative experimental work on their own farms. Since then it has gradually grown until in 1912 the scheme of co-operative tests embraced experiments in a riculture, agricultural chemistry, agricultural botany, apiculture, forestry, and public school work in elementary agriculture, horticulture and forestry.

SCHOOL GARDEN EXPERIMENTS.

Much interest has been created by the co-operative experiments carried on under direction of the Schools Division, and Prof. S. B. McCready, who has charge of it. had quite an inspiring report for the meeting. The work has been conducted along the same lines as those laid down four years ago. Distributions of planting material have been made to schools with instructions for carrying out the practical work in the school or home garden, also instructions for using the children's experiences for class-room Forest-tree seedlings and packets of barley, alfalfa, lettuce, onion and other crop seeds were distributed free, while for certain other material sent out charge was made. This comprised flower and vegetable seeds, bulbs, vines and skrubbery. In all about 250 schools shared in the distribution. mas aroused in various instances by the school-yard plots not only among pupils but, in many cases, among their parents. This mature-study work observed Prof. McCready, is the only kind that the pupils take home with them in a pleasant and agreeable way.

By way of preface to his address, Prof. Mc-Cready recalled that sixty-five years ago when Dr. Egerton Ryerson founded Omtario's System of Education, which called for teacher training, a Normal School was established in Toronto, and the Science Master in this school drew up a plan calling for one hour per day devoted to agriculture with provision for experimental plots. But the theory proved unacceptable to the people, many of whom refused to have these trained teachers. More or less endeavor has ever since been made by the authorities to have arriculture taught in the schools. In recent years we have been coming back at the problem in a new way, through the introduction of nature study.

CO-OPERATIVE FORESTRY.

Forestry is a branch of this many-sided work. In 1912, said E. J. Zavitz, reporting upon this phase, 375,000 plants were sent out into 35 counties, and the total distribution has reached one and a half million. Most of the planting has been done on light waste soil, frequently on patches of blow sand put under trees to prevent the sand drifting across adjoining highways. Even on such places, where neighbors amticipated failure, the results have been satisfactory, Scotch pine doing the best of the different species. There are now 1,500 acres at the forest nursery in Norfolk County, and it is expected soon to have 2,000. On the land there are 100 acres of experimental planting, and one and a half million tre's available for future planting.

LEGUME INOCULATION Results of co-operative experiments in the

inoculation of legumes were reported by Prof. S F. Edwards. Of the 4,722 cultures sent out in 1912, 3,898 were for alfalfa, and 570 for red clover. Most of the applications were from Ontario, with a few from Alberta and British Columbia. Out of 771 experimenters reporting, 62.1 per cent. had found benefit from inoculation. During the eight seasons this work has been carried on, the average percentage of favorable College.

Agriculture. reports has been 60.5. In connection with this statement, however, it is just as well to remember that among those not reporting the percentber that among those not reporting the percentage of favorable results would likely be much less than among those who do report.

TESTS WITH FIELD CROPS.

Our tabulated abstract of Prof. C. A. Zavitz's report on the co-operative experiments with farm crops contains the pith of this information. It should be understood that the varieties sent out for co-operative test are chiefly such as have acquitted themselves creditably in tests at the

Experiments		Compar-	Compar- Yield per Acre			
Experiments	Varieties	ative	Straw	Grain	Grain	
		value	tons.	bus.	lbs.	
Oats	(Siberian	100	1.68	50.16		
(61 tests)	(Regenerated Abundance	100			1706	
	(Lincoln	84	1.43	47.08	1601	
	(Lincoln	86	1.44	46.54	1582	
Six-rowed Barley	(O. A. C. No. 21	100	1 00	20.04	1510	
(23 tests)	(Emmer	100	1.26	36.21	1748	
,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	85	1,48	*********	1646	
Two-rowed Barley	(Hanna	. 100	1.26	32.78	1574	
(3 tests) ,	(Two-rowed Canadian	100				
, , , , , , , , , , , , , , , , , , , ,	THE TO TO WOOD COMMENTALLY ,	95	1.30	32.22	1546	
Hulless Barley	(Guy Mayle	100	1.92	28.77	1726	
(6 tests)	(Back Hulless	98			-	
		90	1.85	26.23	1574	
Spring Wheat	(Wild Goose	100	1.09	18.00	1080	
(4 tes s) ,	(Hungarian ,	82	1.05			
	p	04	1.05	15.33	920	
Buckwheat	(Rye	100	1.69	37.67	1808	
(5 tests)	(Silver Hull	78	1.69			
		10	1.09	32.83	1576	
	(Imperial Amber	100	1.52	24.30	1458	
Winter Wheat	'(American Wonder	OK	1.47			
(13 tests)	(Crimson Red	00		21.77	1306	
,	(B n t a	60	1.89	21.54	1292	
	(Tramania Dad	70	1.43	21.15	1269	
	(Tasmania Red	60	1.80	20.96	1258	
Winter Rye	(Mammoth White	100	1.00	00.00	1040	
(4 tests)	(Common	100	1.89	23.93	1340	
()	(Common	68	1.88	19.83	1110	
Spring Rye	(O. A. C. No. 61	. 100	.59	26.79	1500	
(3 tests)	(Common	80				
		80	.46	24.47	1370	
Field Peas	(Canadian Beauty	100	1.07	21.60	1296	
(20 tests)	(Early Britain	83	1.03			
		00	1.05	21.53	1292	
Field Brans	(Marrowfat	100	1.44	31.37	1882	
(12 tests)	(Pea Bean	93	1.19			
		50	1.19	30.11	1806	
Soy Pe ns	(Early Yellow	. 100	1.33	18.13	1088	
(2 tests)	(Brown	76	.84	13.49		
		10	.04	15.49	810	
			Whole			
0 1 0 .			Crop			
Cern for Grain	(Grnesee Vallev	100	15.58	57.86	3240	
(7 tests)	Early California	100	11.06	54.77	3067	
	(Wisconsin Little Dent	77	9.10			
	2000 00000 0000 000	11	0.10	42.69	23 90	

Experiments	Varieties	Compar- ative value	Yield per acre
Mangels (7 tests)	(Ideal (Yellow Leviathan , (Sutton's Mammoth Long Red	0.4	(tons) 32.40 31.89 31.05
Sugar Beets (3 tests)	(Rennie's Tankard Cream(Steele-Brigg's Royal Giant	. 100 . 88	21.05 19.08
Swede Turnips (8 tests)	(Rennie's Empress, (Garton's Keepwell (Steele-Brigg's Good Luck	70	24.51 22.44 21.45
('rrots (10 tests)	(Bruce's Mammoth Intermediate Smooth White Steele-Brigg's Improved Short White	100	22.04 19.78
Fedder Corn (4 tests)	(Hoopengardner's Very Early Yellow Dent (Wisconsin No. 7 (White Cap Yellow Pent	72	17.29 17.10 17.06